Merge tag 'sound-4.18-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-2.6-block.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <net/xfrm.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/ip_fib.h>
65 #include <net/flow.h>
66 #include <net/arp.h>
67 #include <net/ipv6.h>
68 #include <linux/seg6_local.h>
69 #include <net/seg6.h>
70 #include <net/seg6_local.h>
71
72 /**
73  *      sk_filter_trim_cap - run a packet through a socket filter
74  *      @sk: sock associated with &sk_buff
75  *      @skb: buffer to filter
76  *      @cap: limit on how short the eBPF program may trim the packet
77  *
78  * Run the eBPF program and then cut skb->data to correct size returned by
79  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
80  * than pkt_len we keep whole skb->data. This is the socket level
81  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
82  * be accepted or -EPERM if the packet should be tossed.
83  *
84  */
85 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
86 {
87         int err;
88         struct sk_filter *filter;
89
90         /*
91          * If the skb was allocated from pfmemalloc reserves, only
92          * allow SOCK_MEMALLOC sockets to use it as this socket is
93          * helping free memory
94          */
95         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
96                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
97                 return -ENOMEM;
98         }
99         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
100         if (err)
101                 return err;
102
103         err = security_sock_rcv_skb(sk, skb);
104         if (err)
105                 return err;
106
107         rcu_read_lock();
108         filter = rcu_dereference(sk->sk_filter);
109         if (filter) {
110                 struct sock *save_sk = skb->sk;
111                 unsigned int pkt_len;
112
113                 skb->sk = sk;
114                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
115                 skb->sk = save_sk;
116                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
117         }
118         rcu_read_unlock();
119
120         return err;
121 }
122 EXPORT_SYMBOL(sk_filter_trim_cap);
123
124 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
125 {
126         return skb_get_poff(skb);
127 }
128
129 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
130 {
131         struct nlattr *nla;
132
133         if (skb_is_nonlinear(skb))
134                 return 0;
135
136         if (skb->len < sizeof(struct nlattr))
137                 return 0;
138
139         if (a > skb->len - sizeof(struct nlattr))
140                 return 0;
141
142         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
143         if (nla)
144                 return (void *) nla - (void *) skb->data;
145
146         return 0;
147 }
148
149 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
150 {
151         struct nlattr *nla;
152
153         if (skb_is_nonlinear(skb))
154                 return 0;
155
156         if (skb->len < sizeof(struct nlattr))
157                 return 0;
158
159         if (a > skb->len - sizeof(struct nlattr))
160                 return 0;
161
162         nla = (struct nlattr *) &skb->data[a];
163         if (nla->nla_len > skb->len - a)
164                 return 0;
165
166         nla = nla_find_nested(nla, x);
167         if (nla)
168                 return (void *) nla - (void *) skb->data;
169
170         return 0;
171 }
172
173 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
174            data, int, headlen, int, offset)
175 {
176         u8 tmp, *ptr;
177         const int len = sizeof(tmp);
178
179         if (offset >= 0) {
180                 if (headlen - offset >= len)
181                         return *(u8 *)(data + offset);
182                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
183                         return tmp;
184         } else {
185                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
186                 if (likely(ptr))
187                         return *(u8 *)ptr;
188         }
189
190         return -EFAULT;
191 }
192
193 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
194            int, offset)
195 {
196         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
197                                          offset);
198 }
199
200 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
201            data, int, headlen, int, offset)
202 {
203         u16 tmp, *ptr;
204         const int len = sizeof(tmp);
205
206         if (offset >= 0) {
207                 if (headlen - offset >= len)
208                         return get_unaligned_be16(data + offset);
209                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
210                         return be16_to_cpu(tmp);
211         } else {
212                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
213                 if (likely(ptr))
214                         return get_unaligned_be16(ptr);
215         }
216
217         return -EFAULT;
218 }
219
220 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
221            int, offset)
222 {
223         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
224                                           offset);
225 }
226
227 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
228            data, int, headlen, int, offset)
229 {
230         u32 tmp, *ptr;
231         const int len = sizeof(tmp);
232
233         if (likely(offset >= 0)) {
234                 if (headlen - offset >= len)
235                         return get_unaligned_be32(data + offset);
236                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
237                         return be32_to_cpu(tmp);
238         } else {
239                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
240                 if (likely(ptr))
241                         return get_unaligned_be32(ptr);
242         }
243
244         return -EFAULT;
245 }
246
247 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
248            int, offset)
249 {
250         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
251                                           offset);
252 }
253
254 BPF_CALL_0(bpf_get_raw_cpu_id)
255 {
256         return raw_smp_processor_id();
257 }
258
259 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
260         .func           = bpf_get_raw_cpu_id,
261         .gpl_only       = false,
262         .ret_type       = RET_INTEGER,
263 };
264
265 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
266                               struct bpf_insn *insn_buf)
267 {
268         struct bpf_insn *insn = insn_buf;
269
270         switch (skb_field) {
271         case SKF_AD_MARK:
272                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
273
274                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
275                                       offsetof(struct sk_buff, mark));
276                 break;
277
278         case SKF_AD_PKTTYPE:
279                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
280                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
281 #ifdef __BIG_ENDIAN_BITFIELD
282                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
283 #endif
284                 break;
285
286         case SKF_AD_QUEUE:
287                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
288
289                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
290                                       offsetof(struct sk_buff, queue_mapping));
291                 break;
292
293         case SKF_AD_VLAN_TAG:
294         case SKF_AD_VLAN_TAG_PRESENT:
295                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
296                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
297
298                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
299                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, vlan_tci));
301                 if (skb_field == SKF_AD_VLAN_TAG) {
302                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
303                                                 ~VLAN_TAG_PRESENT);
304                 } else {
305                         /* dst_reg >>= 12 */
306                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
307                         /* dst_reg &= 1 */
308                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
309                 }
310                 break;
311         }
312
313         return insn - insn_buf;
314 }
315
316 static bool convert_bpf_extensions(struct sock_filter *fp,
317                                    struct bpf_insn **insnp)
318 {
319         struct bpf_insn *insn = *insnp;
320         u32 cnt;
321
322         switch (fp->k) {
323         case SKF_AD_OFF + SKF_AD_PROTOCOL:
324                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
325
326                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
327                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
328                                       offsetof(struct sk_buff, protocol));
329                 /* A = ntohs(A) [emitting a nop or swap16] */
330                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
331                 break;
332
333         case SKF_AD_OFF + SKF_AD_PKTTYPE:
334                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
335                 insn += cnt - 1;
336                 break;
337
338         case SKF_AD_OFF + SKF_AD_IFINDEX:
339         case SKF_AD_OFF + SKF_AD_HATYPE:
340                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
341                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
342
343                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
344                                       BPF_REG_TMP, BPF_REG_CTX,
345                                       offsetof(struct sk_buff, dev));
346                 /* if (tmp != 0) goto pc + 1 */
347                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
348                 *insn++ = BPF_EXIT_INSN();
349                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
350                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
351                                             offsetof(struct net_device, ifindex));
352                 else
353                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
354                                             offsetof(struct net_device, type));
355                 break;
356
357         case SKF_AD_OFF + SKF_AD_MARK:
358                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
359                 insn += cnt - 1;
360                 break;
361
362         case SKF_AD_OFF + SKF_AD_RXHASH:
363                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
364
365                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
366                                     offsetof(struct sk_buff, hash));
367                 break;
368
369         case SKF_AD_OFF + SKF_AD_QUEUE:
370                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
371                 insn += cnt - 1;
372                 break;
373
374         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
375                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
376                                          BPF_REG_A, BPF_REG_CTX, insn);
377                 insn += cnt - 1;
378                 break;
379
380         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
381                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
382                                          BPF_REG_A, BPF_REG_CTX, insn);
383                 insn += cnt - 1;
384                 break;
385
386         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
387                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
388
389                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
390                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
391                                       offsetof(struct sk_buff, vlan_proto));
392                 /* A = ntohs(A) [emitting a nop or swap16] */
393                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
394                 break;
395
396         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
397         case SKF_AD_OFF + SKF_AD_NLATTR:
398         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
399         case SKF_AD_OFF + SKF_AD_CPU:
400         case SKF_AD_OFF + SKF_AD_RANDOM:
401                 /* arg1 = CTX */
402                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
403                 /* arg2 = A */
404                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
405                 /* arg3 = X */
406                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
407                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
408                 switch (fp->k) {
409                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
410                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
411                         break;
412                 case SKF_AD_OFF + SKF_AD_NLATTR:
413                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
414                         break;
415                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
416                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
417                         break;
418                 case SKF_AD_OFF + SKF_AD_CPU:
419                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
420                         break;
421                 case SKF_AD_OFF + SKF_AD_RANDOM:
422                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
423                         bpf_user_rnd_init_once();
424                         break;
425                 }
426                 break;
427
428         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
429                 /* A ^= X */
430                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
431                 break;
432
433         default:
434                 /* This is just a dummy call to avoid letting the compiler
435                  * evict __bpf_call_base() as an optimization. Placed here
436                  * where no-one bothers.
437                  */
438                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
439                 return false;
440         }
441
442         *insnp = insn;
443         return true;
444 }
445
446 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
447 {
448         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
449         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
450         bool endian = BPF_SIZE(fp->code) == BPF_H ||
451                       BPF_SIZE(fp->code) == BPF_W;
452         bool indirect = BPF_MODE(fp->code) == BPF_IND;
453         const int ip_align = NET_IP_ALIGN;
454         struct bpf_insn *insn = *insnp;
455         int offset = fp->k;
456
457         if (!indirect &&
458             ((unaligned_ok && offset >= 0) ||
459              (!unaligned_ok && offset >= 0 &&
460               offset + ip_align >= 0 &&
461               offset + ip_align % size == 0))) {
462                 bool ldx_off_ok = offset <= S16_MAX;
463
464                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
465                 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
466                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
467                                       size, 2 + endian + (!ldx_off_ok * 2));
468                 if (ldx_off_ok) {
469                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
470                                               BPF_REG_D, offset);
471                 } else {
472                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
473                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
474                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
475                                               BPF_REG_TMP, 0);
476                 }
477                 if (endian)
478                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
479                 *insn++ = BPF_JMP_A(8);
480         }
481
482         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
483         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
484         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
485         if (!indirect) {
486                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
487         } else {
488                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
489                 if (fp->k)
490                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
491         }
492
493         switch (BPF_SIZE(fp->code)) {
494         case BPF_B:
495                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
496                 break;
497         case BPF_H:
498                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
499                 break;
500         case BPF_W:
501                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
502                 break;
503         default:
504                 return false;
505         }
506
507         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
508         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
509         *insn   = BPF_EXIT_INSN();
510
511         *insnp = insn;
512         return true;
513 }
514
515 /**
516  *      bpf_convert_filter - convert filter program
517  *      @prog: the user passed filter program
518  *      @len: the length of the user passed filter program
519  *      @new_prog: allocated 'struct bpf_prog' or NULL
520  *      @new_len: pointer to store length of converted program
521  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
522  *
523  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
524  * style extended BPF (eBPF).
525  * Conversion workflow:
526  *
527  * 1) First pass for calculating the new program length:
528  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
529  *
530  * 2) 2nd pass to remap in two passes: 1st pass finds new
531  *    jump offsets, 2nd pass remapping:
532  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
533  */
534 static int bpf_convert_filter(struct sock_filter *prog, int len,
535                               struct bpf_prog *new_prog, int *new_len,
536                               bool *seen_ld_abs)
537 {
538         int new_flen = 0, pass = 0, target, i, stack_off;
539         struct bpf_insn *new_insn, *first_insn = NULL;
540         struct sock_filter *fp;
541         int *addrs = NULL;
542         u8 bpf_src;
543
544         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
545         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
546
547         if (len <= 0 || len > BPF_MAXINSNS)
548                 return -EINVAL;
549
550         if (new_prog) {
551                 first_insn = new_prog->insnsi;
552                 addrs = kcalloc(len, sizeof(*addrs),
553                                 GFP_KERNEL | __GFP_NOWARN);
554                 if (!addrs)
555                         return -ENOMEM;
556         }
557
558 do_pass:
559         new_insn = first_insn;
560         fp = prog;
561
562         /* Classic BPF related prologue emission. */
563         if (new_prog) {
564                 /* Classic BPF expects A and X to be reset first. These need
565                  * to be guaranteed to be the first two instructions.
566                  */
567                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
568                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
569
570                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
571                  * In eBPF case it's done by the compiler, here we need to
572                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
573                  */
574                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
575                 if (*seen_ld_abs) {
576                         /* For packet access in classic BPF, cache skb->data
577                          * in callee-saved BPF R8 and skb->len - skb->data_len
578                          * (headlen) in BPF R9. Since classic BPF is read-only
579                          * on CTX, we only need to cache it once.
580                          */
581                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
582                                                   BPF_REG_D, BPF_REG_CTX,
583                                                   offsetof(struct sk_buff, data));
584                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
585                                                   offsetof(struct sk_buff, len));
586                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
587                                                   offsetof(struct sk_buff, data_len));
588                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
589                 }
590         } else {
591                 new_insn += 3;
592         }
593
594         for (i = 0; i < len; fp++, i++) {
595                 struct bpf_insn tmp_insns[32] = { };
596                 struct bpf_insn *insn = tmp_insns;
597
598                 if (addrs)
599                         addrs[i] = new_insn - first_insn;
600
601                 switch (fp->code) {
602                 /* All arithmetic insns and skb loads map as-is. */
603                 case BPF_ALU | BPF_ADD | BPF_X:
604                 case BPF_ALU | BPF_ADD | BPF_K:
605                 case BPF_ALU | BPF_SUB | BPF_X:
606                 case BPF_ALU | BPF_SUB | BPF_K:
607                 case BPF_ALU | BPF_AND | BPF_X:
608                 case BPF_ALU | BPF_AND | BPF_K:
609                 case BPF_ALU | BPF_OR | BPF_X:
610                 case BPF_ALU | BPF_OR | BPF_K:
611                 case BPF_ALU | BPF_LSH | BPF_X:
612                 case BPF_ALU | BPF_LSH | BPF_K:
613                 case BPF_ALU | BPF_RSH | BPF_X:
614                 case BPF_ALU | BPF_RSH | BPF_K:
615                 case BPF_ALU | BPF_XOR | BPF_X:
616                 case BPF_ALU | BPF_XOR | BPF_K:
617                 case BPF_ALU | BPF_MUL | BPF_X:
618                 case BPF_ALU | BPF_MUL | BPF_K:
619                 case BPF_ALU | BPF_DIV | BPF_X:
620                 case BPF_ALU | BPF_DIV | BPF_K:
621                 case BPF_ALU | BPF_MOD | BPF_X:
622                 case BPF_ALU | BPF_MOD | BPF_K:
623                 case BPF_ALU | BPF_NEG:
624                 case BPF_LD | BPF_ABS | BPF_W:
625                 case BPF_LD | BPF_ABS | BPF_H:
626                 case BPF_LD | BPF_ABS | BPF_B:
627                 case BPF_LD | BPF_IND | BPF_W:
628                 case BPF_LD | BPF_IND | BPF_H:
629                 case BPF_LD | BPF_IND | BPF_B:
630                         /* Check for overloaded BPF extension and
631                          * directly convert it if found, otherwise
632                          * just move on with mapping.
633                          */
634                         if (BPF_CLASS(fp->code) == BPF_LD &&
635                             BPF_MODE(fp->code) == BPF_ABS &&
636                             convert_bpf_extensions(fp, &insn))
637                                 break;
638                         if (BPF_CLASS(fp->code) == BPF_LD &&
639                             convert_bpf_ld_abs(fp, &insn)) {
640                                 *seen_ld_abs = true;
641                                 break;
642                         }
643
644                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
645                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
646                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
647                                 /* Error with exception code on div/mod by 0.
648                                  * For cBPF programs, this was always return 0.
649                                  */
650                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
651                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
652                                 *insn++ = BPF_EXIT_INSN();
653                         }
654
655                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
656                         break;
657
658                 /* Jump transformation cannot use BPF block macros
659                  * everywhere as offset calculation and target updates
660                  * require a bit more work than the rest, i.e. jump
661                  * opcodes map as-is, but offsets need adjustment.
662                  */
663
664 #define BPF_EMIT_JMP                                                    \
665         do {                                                            \
666                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
667                 s32 off;                                                \
668                                                                         \
669                 if (target >= len || target < 0)                        \
670                         goto err;                                       \
671                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
672                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
673                 off -= insn - tmp_insns;                                \
674                 /* Reject anything not fitting into insn->off. */       \
675                 if (off < off_min || off > off_max)                     \
676                         goto err;                                       \
677                 insn->off = off;                                        \
678         } while (0)
679
680                 case BPF_JMP | BPF_JA:
681                         target = i + fp->k + 1;
682                         insn->code = fp->code;
683                         BPF_EMIT_JMP;
684                         break;
685
686                 case BPF_JMP | BPF_JEQ | BPF_K:
687                 case BPF_JMP | BPF_JEQ | BPF_X:
688                 case BPF_JMP | BPF_JSET | BPF_K:
689                 case BPF_JMP | BPF_JSET | BPF_X:
690                 case BPF_JMP | BPF_JGT | BPF_K:
691                 case BPF_JMP | BPF_JGT | BPF_X:
692                 case BPF_JMP | BPF_JGE | BPF_K:
693                 case BPF_JMP | BPF_JGE | BPF_X:
694                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
695                                 /* BPF immediates are signed, zero extend
696                                  * immediate into tmp register and use it
697                                  * in compare insn.
698                                  */
699                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
700
701                                 insn->dst_reg = BPF_REG_A;
702                                 insn->src_reg = BPF_REG_TMP;
703                                 bpf_src = BPF_X;
704                         } else {
705                                 insn->dst_reg = BPF_REG_A;
706                                 insn->imm = fp->k;
707                                 bpf_src = BPF_SRC(fp->code);
708                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
709                         }
710
711                         /* Common case where 'jump_false' is next insn. */
712                         if (fp->jf == 0) {
713                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
714                                 target = i + fp->jt + 1;
715                                 BPF_EMIT_JMP;
716                                 break;
717                         }
718
719                         /* Convert some jumps when 'jump_true' is next insn. */
720                         if (fp->jt == 0) {
721                                 switch (BPF_OP(fp->code)) {
722                                 case BPF_JEQ:
723                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
724                                         break;
725                                 case BPF_JGT:
726                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
727                                         break;
728                                 case BPF_JGE:
729                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
730                                         break;
731                                 default:
732                                         goto jmp_rest;
733                                 }
734
735                                 target = i + fp->jf + 1;
736                                 BPF_EMIT_JMP;
737                                 break;
738                         }
739 jmp_rest:
740                         /* Other jumps are mapped into two insns: Jxx and JA. */
741                         target = i + fp->jt + 1;
742                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
743                         BPF_EMIT_JMP;
744                         insn++;
745
746                         insn->code = BPF_JMP | BPF_JA;
747                         target = i + fp->jf + 1;
748                         BPF_EMIT_JMP;
749                         break;
750
751                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
752                 case BPF_LDX | BPF_MSH | BPF_B: {
753                         struct sock_filter tmp = {
754                                 .code   = BPF_LD | BPF_ABS | BPF_B,
755                                 .k      = fp->k,
756                         };
757
758                         *seen_ld_abs = true;
759
760                         /* X = A */
761                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
762                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
763                         convert_bpf_ld_abs(&tmp, &insn);
764                         insn++;
765                         /* A &= 0xf */
766                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
767                         /* A <<= 2 */
768                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
769                         /* tmp = X */
770                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
771                         /* X = A */
772                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
773                         /* A = tmp */
774                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
775                         break;
776                 }
777                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
778                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
779                  */
780                 case BPF_RET | BPF_A:
781                 case BPF_RET | BPF_K:
782                         if (BPF_RVAL(fp->code) == BPF_K)
783                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
784                                                         0, fp->k);
785                         *insn = BPF_EXIT_INSN();
786                         break;
787
788                 /* Store to stack. */
789                 case BPF_ST:
790                 case BPF_STX:
791                         stack_off = fp->k * 4  + 4;
792                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
793                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
794                                             -stack_off);
795                         /* check_load_and_stores() verifies that classic BPF can
796                          * load from stack only after write, so tracking
797                          * stack_depth for ST|STX insns is enough
798                          */
799                         if (new_prog && new_prog->aux->stack_depth < stack_off)
800                                 new_prog->aux->stack_depth = stack_off;
801                         break;
802
803                 /* Load from stack. */
804                 case BPF_LD | BPF_MEM:
805                 case BPF_LDX | BPF_MEM:
806                         stack_off = fp->k * 4  + 4;
807                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
808                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
809                                             -stack_off);
810                         break;
811
812                 /* A = K or X = K */
813                 case BPF_LD | BPF_IMM:
814                 case BPF_LDX | BPF_IMM:
815                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
816                                               BPF_REG_A : BPF_REG_X, fp->k);
817                         break;
818
819                 /* X = A */
820                 case BPF_MISC | BPF_TAX:
821                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
822                         break;
823
824                 /* A = X */
825                 case BPF_MISC | BPF_TXA:
826                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
827                         break;
828
829                 /* A = skb->len or X = skb->len */
830                 case BPF_LD | BPF_W | BPF_LEN:
831                 case BPF_LDX | BPF_W | BPF_LEN:
832                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
833                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
834                                             offsetof(struct sk_buff, len));
835                         break;
836
837                 /* Access seccomp_data fields. */
838                 case BPF_LDX | BPF_ABS | BPF_W:
839                         /* A = *(u32 *) (ctx + K) */
840                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
841                         break;
842
843                 /* Unknown instruction. */
844                 default:
845                         goto err;
846                 }
847
848                 insn++;
849                 if (new_prog)
850                         memcpy(new_insn, tmp_insns,
851                                sizeof(*insn) * (insn - tmp_insns));
852                 new_insn += insn - tmp_insns;
853         }
854
855         if (!new_prog) {
856                 /* Only calculating new length. */
857                 *new_len = new_insn - first_insn;
858                 if (*seen_ld_abs)
859                         *new_len += 4; /* Prologue bits. */
860                 return 0;
861         }
862
863         pass++;
864         if (new_flen != new_insn - first_insn) {
865                 new_flen = new_insn - first_insn;
866                 if (pass > 2)
867                         goto err;
868                 goto do_pass;
869         }
870
871         kfree(addrs);
872         BUG_ON(*new_len != new_flen);
873         return 0;
874 err:
875         kfree(addrs);
876         return -EINVAL;
877 }
878
879 /* Security:
880  *
881  * As we dont want to clear mem[] array for each packet going through
882  * __bpf_prog_run(), we check that filter loaded by user never try to read
883  * a cell if not previously written, and we check all branches to be sure
884  * a malicious user doesn't try to abuse us.
885  */
886 static int check_load_and_stores(const struct sock_filter *filter, int flen)
887 {
888         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
889         int pc, ret = 0;
890
891         BUILD_BUG_ON(BPF_MEMWORDS > 16);
892
893         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
894         if (!masks)
895                 return -ENOMEM;
896
897         memset(masks, 0xff, flen * sizeof(*masks));
898
899         for (pc = 0; pc < flen; pc++) {
900                 memvalid &= masks[pc];
901
902                 switch (filter[pc].code) {
903                 case BPF_ST:
904                 case BPF_STX:
905                         memvalid |= (1 << filter[pc].k);
906                         break;
907                 case BPF_LD | BPF_MEM:
908                 case BPF_LDX | BPF_MEM:
909                         if (!(memvalid & (1 << filter[pc].k))) {
910                                 ret = -EINVAL;
911                                 goto error;
912                         }
913                         break;
914                 case BPF_JMP | BPF_JA:
915                         /* A jump must set masks on target */
916                         masks[pc + 1 + filter[pc].k] &= memvalid;
917                         memvalid = ~0;
918                         break;
919                 case BPF_JMP | BPF_JEQ | BPF_K:
920                 case BPF_JMP | BPF_JEQ | BPF_X:
921                 case BPF_JMP | BPF_JGE | BPF_K:
922                 case BPF_JMP | BPF_JGE | BPF_X:
923                 case BPF_JMP | BPF_JGT | BPF_K:
924                 case BPF_JMP | BPF_JGT | BPF_X:
925                 case BPF_JMP | BPF_JSET | BPF_K:
926                 case BPF_JMP | BPF_JSET | BPF_X:
927                         /* A jump must set masks on targets */
928                         masks[pc + 1 + filter[pc].jt] &= memvalid;
929                         masks[pc + 1 + filter[pc].jf] &= memvalid;
930                         memvalid = ~0;
931                         break;
932                 }
933         }
934 error:
935         kfree(masks);
936         return ret;
937 }
938
939 static bool chk_code_allowed(u16 code_to_probe)
940 {
941         static const bool codes[] = {
942                 /* 32 bit ALU operations */
943                 [BPF_ALU | BPF_ADD | BPF_K] = true,
944                 [BPF_ALU | BPF_ADD | BPF_X] = true,
945                 [BPF_ALU | BPF_SUB | BPF_K] = true,
946                 [BPF_ALU | BPF_SUB | BPF_X] = true,
947                 [BPF_ALU | BPF_MUL | BPF_K] = true,
948                 [BPF_ALU | BPF_MUL | BPF_X] = true,
949                 [BPF_ALU | BPF_DIV | BPF_K] = true,
950                 [BPF_ALU | BPF_DIV | BPF_X] = true,
951                 [BPF_ALU | BPF_MOD | BPF_K] = true,
952                 [BPF_ALU | BPF_MOD | BPF_X] = true,
953                 [BPF_ALU | BPF_AND | BPF_K] = true,
954                 [BPF_ALU | BPF_AND | BPF_X] = true,
955                 [BPF_ALU | BPF_OR | BPF_K] = true,
956                 [BPF_ALU | BPF_OR | BPF_X] = true,
957                 [BPF_ALU | BPF_XOR | BPF_K] = true,
958                 [BPF_ALU | BPF_XOR | BPF_X] = true,
959                 [BPF_ALU | BPF_LSH | BPF_K] = true,
960                 [BPF_ALU | BPF_LSH | BPF_X] = true,
961                 [BPF_ALU | BPF_RSH | BPF_K] = true,
962                 [BPF_ALU | BPF_RSH | BPF_X] = true,
963                 [BPF_ALU | BPF_NEG] = true,
964                 /* Load instructions */
965                 [BPF_LD | BPF_W | BPF_ABS] = true,
966                 [BPF_LD | BPF_H | BPF_ABS] = true,
967                 [BPF_LD | BPF_B | BPF_ABS] = true,
968                 [BPF_LD | BPF_W | BPF_LEN] = true,
969                 [BPF_LD | BPF_W | BPF_IND] = true,
970                 [BPF_LD | BPF_H | BPF_IND] = true,
971                 [BPF_LD | BPF_B | BPF_IND] = true,
972                 [BPF_LD | BPF_IMM] = true,
973                 [BPF_LD | BPF_MEM] = true,
974                 [BPF_LDX | BPF_W | BPF_LEN] = true,
975                 [BPF_LDX | BPF_B | BPF_MSH] = true,
976                 [BPF_LDX | BPF_IMM] = true,
977                 [BPF_LDX | BPF_MEM] = true,
978                 /* Store instructions */
979                 [BPF_ST] = true,
980                 [BPF_STX] = true,
981                 /* Misc instructions */
982                 [BPF_MISC | BPF_TAX] = true,
983                 [BPF_MISC | BPF_TXA] = true,
984                 /* Return instructions */
985                 [BPF_RET | BPF_K] = true,
986                 [BPF_RET | BPF_A] = true,
987                 /* Jump instructions */
988                 [BPF_JMP | BPF_JA] = true,
989                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
990                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
991                 [BPF_JMP | BPF_JGE | BPF_K] = true,
992                 [BPF_JMP | BPF_JGE | BPF_X] = true,
993                 [BPF_JMP | BPF_JGT | BPF_K] = true,
994                 [BPF_JMP | BPF_JGT | BPF_X] = true,
995                 [BPF_JMP | BPF_JSET | BPF_K] = true,
996                 [BPF_JMP | BPF_JSET | BPF_X] = true,
997         };
998
999         if (code_to_probe >= ARRAY_SIZE(codes))
1000                 return false;
1001
1002         return codes[code_to_probe];
1003 }
1004
1005 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1006                                 unsigned int flen)
1007 {
1008         if (filter == NULL)
1009                 return false;
1010         if (flen == 0 || flen > BPF_MAXINSNS)
1011                 return false;
1012
1013         return true;
1014 }
1015
1016 /**
1017  *      bpf_check_classic - verify socket filter code
1018  *      @filter: filter to verify
1019  *      @flen: length of filter
1020  *
1021  * Check the user's filter code. If we let some ugly
1022  * filter code slip through kaboom! The filter must contain
1023  * no references or jumps that are out of range, no illegal
1024  * instructions, and must end with a RET instruction.
1025  *
1026  * All jumps are forward as they are not signed.
1027  *
1028  * Returns 0 if the rule set is legal or -EINVAL if not.
1029  */
1030 static int bpf_check_classic(const struct sock_filter *filter,
1031                              unsigned int flen)
1032 {
1033         bool anc_found;
1034         int pc;
1035
1036         /* Check the filter code now */
1037         for (pc = 0; pc < flen; pc++) {
1038                 const struct sock_filter *ftest = &filter[pc];
1039
1040                 /* May we actually operate on this code? */
1041                 if (!chk_code_allowed(ftest->code))
1042                         return -EINVAL;
1043
1044                 /* Some instructions need special checks */
1045                 switch (ftest->code) {
1046                 case BPF_ALU | BPF_DIV | BPF_K:
1047                 case BPF_ALU | BPF_MOD | BPF_K:
1048                         /* Check for division by zero */
1049                         if (ftest->k == 0)
1050                                 return -EINVAL;
1051                         break;
1052                 case BPF_ALU | BPF_LSH | BPF_K:
1053                 case BPF_ALU | BPF_RSH | BPF_K:
1054                         if (ftest->k >= 32)
1055                                 return -EINVAL;
1056                         break;
1057                 case BPF_LD | BPF_MEM:
1058                 case BPF_LDX | BPF_MEM:
1059                 case BPF_ST:
1060                 case BPF_STX:
1061                         /* Check for invalid memory addresses */
1062                         if (ftest->k >= BPF_MEMWORDS)
1063                                 return -EINVAL;
1064                         break;
1065                 case BPF_JMP | BPF_JA:
1066                         /* Note, the large ftest->k might cause loops.
1067                          * Compare this with conditional jumps below,
1068                          * where offsets are limited. --ANK (981016)
1069                          */
1070                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1071                                 return -EINVAL;
1072                         break;
1073                 case BPF_JMP | BPF_JEQ | BPF_K:
1074                 case BPF_JMP | BPF_JEQ | BPF_X:
1075                 case BPF_JMP | BPF_JGE | BPF_K:
1076                 case BPF_JMP | BPF_JGE | BPF_X:
1077                 case BPF_JMP | BPF_JGT | BPF_K:
1078                 case BPF_JMP | BPF_JGT | BPF_X:
1079                 case BPF_JMP | BPF_JSET | BPF_K:
1080                 case BPF_JMP | BPF_JSET | BPF_X:
1081                         /* Both conditionals must be safe */
1082                         if (pc + ftest->jt + 1 >= flen ||
1083                             pc + ftest->jf + 1 >= flen)
1084                                 return -EINVAL;
1085                         break;
1086                 case BPF_LD | BPF_W | BPF_ABS:
1087                 case BPF_LD | BPF_H | BPF_ABS:
1088                 case BPF_LD | BPF_B | BPF_ABS:
1089                         anc_found = false;
1090                         if (bpf_anc_helper(ftest) & BPF_ANC)
1091                                 anc_found = true;
1092                         /* Ancillary operation unknown or unsupported */
1093                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1094                                 return -EINVAL;
1095                 }
1096         }
1097
1098         /* Last instruction must be a RET code */
1099         switch (filter[flen - 1].code) {
1100         case BPF_RET | BPF_K:
1101         case BPF_RET | BPF_A:
1102                 return check_load_and_stores(filter, flen);
1103         }
1104
1105         return -EINVAL;
1106 }
1107
1108 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1109                                       const struct sock_fprog *fprog)
1110 {
1111         unsigned int fsize = bpf_classic_proglen(fprog);
1112         struct sock_fprog_kern *fkprog;
1113
1114         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1115         if (!fp->orig_prog)
1116                 return -ENOMEM;
1117
1118         fkprog = fp->orig_prog;
1119         fkprog->len = fprog->len;
1120
1121         fkprog->filter = kmemdup(fp->insns, fsize,
1122                                  GFP_KERNEL | __GFP_NOWARN);
1123         if (!fkprog->filter) {
1124                 kfree(fp->orig_prog);
1125                 return -ENOMEM;
1126         }
1127
1128         return 0;
1129 }
1130
1131 static void bpf_release_orig_filter(struct bpf_prog *fp)
1132 {
1133         struct sock_fprog_kern *fprog = fp->orig_prog;
1134
1135         if (fprog) {
1136                 kfree(fprog->filter);
1137                 kfree(fprog);
1138         }
1139 }
1140
1141 static void __bpf_prog_release(struct bpf_prog *prog)
1142 {
1143         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1144                 bpf_prog_put(prog);
1145         } else {
1146                 bpf_release_orig_filter(prog);
1147                 bpf_prog_free(prog);
1148         }
1149 }
1150
1151 static void __sk_filter_release(struct sk_filter *fp)
1152 {
1153         __bpf_prog_release(fp->prog);
1154         kfree(fp);
1155 }
1156
1157 /**
1158  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1159  *      @rcu: rcu_head that contains the sk_filter to free
1160  */
1161 static void sk_filter_release_rcu(struct rcu_head *rcu)
1162 {
1163         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1164
1165         __sk_filter_release(fp);
1166 }
1167
1168 /**
1169  *      sk_filter_release - release a socket filter
1170  *      @fp: filter to remove
1171  *
1172  *      Remove a filter from a socket and release its resources.
1173  */
1174 static void sk_filter_release(struct sk_filter *fp)
1175 {
1176         if (refcount_dec_and_test(&fp->refcnt))
1177                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1178 }
1179
1180 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1181 {
1182         u32 filter_size = bpf_prog_size(fp->prog->len);
1183
1184         atomic_sub(filter_size, &sk->sk_omem_alloc);
1185         sk_filter_release(fp);
1186 }
1187
1188 /* try to charge the socket memory if there is space available
1189  * return true on success
1190  */
1191 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1192 {
1193         u32 filter_size = bpf_prog_size(fp->prog->len);
1194
1195         /* same check as in sock_kmalloc() */
1196         if (filter_size <= sysctl_optmem_max &&
1197             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1198                 atomic_add(filter_size, &sk->sk_omem_alloc);
1199                 return true;
1200         }
1201         return false;
1202 }
1203
1204 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1205 {
1206         if (!refcount_inc_not_zero(&fp->refcnt))
1207                 return false;
1208
1209         if (!__sk_filter_charge(sk, fp)) {
1210                 sk_filter_release(fp);
1211                 return false;
1212         }
1213         return true;
1214 }
1215
1216 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1217 {
1218         struct sock_filter *old_prog;
1219         struct bpf_prog *old_fp;
1220         int err, new_len, old_len = fp->len;
1221         bool seen_ld_abs = false;
1222
1223         /* We are free to overwrite insns et al right here as it
1224          * won't be used at this point in time anymore internally
1225          * after the migration to the internal BPF instruction
1226          * representation.
1227          */
1228         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1229                      sizeof(struct bpf_insn));
1230
1231         /* Conversion cannot happen on overlapping memory areas,
1232          * so we need to keep the user BPF around until the 2nd
1233          * pass. At this time, the user BPF is stored in fp->insns.
1234          */
1235         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1236                            GFP_KERNEL | __GFP_NOWARN);
1237         if (!old_prog) {
1238                 err = -ENOMEM;
1239                 goto out_err;
1240         }
1241
1242         /* 1st pass: calculate the new program length. */
1243         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1244                                  &seen_ld_abs);
1245         if (err)
1246                 goto out_err_free;
1247
1248         /* Expand fp for appending the new filter representation. */
1249         old_fp = fp;
1250         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1251         if (!fp) {
1252                 /* The old_fp is still around in case we couldn't
1253                  * allocate new memory, so uncharge on that one.
1254                  */
1255                 fp = old_fp;
1256                 err = -ENOMEM;
1257                 goto out_err_free;
1258         }
1259
1260         fp->len = new_len;
1261
1262         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1263         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1264                                  &seen_ld_abs);
1265         if (err)
1266                 /* 2nd bpf_convert_filter() can fail only if it fails
1267                  * to allocate memory, remapping must succeed. Note,
1268                  * that at this time old_fp has already been released
1269                  * by krealloc().
1270                  */
1271                 goto out_err_free;
1272
1273         fp = bpf_prog_select_runtime(fp, &err);
1274         if (err)
1275                 goto out_err_free;
1276
1277         kfree(old_prog);
1278         return fp;
1279
1280 out_err_free:
1281         kfree(old_prog);
1282 out_err:
1283         __bpf_prog_release(fp);
1284         return ERR_PTR(err);
1285 }
1286
1287 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1288                                            bpf_aux_classic_check_t trans)
1289 {
1290         int err;
1291
1292         fp->bpf_func = NULL;
1293         fp->jited = 0;
1294
1295         err = bpf_check_classic(fp->insns, fp->len);
1296         if (err) {
1297                 __bpf_prog_release(fp);
1298                 return ERR_PTR(err);
1299         }
1300
1301         /* There might be additional checks and transformations
1302          * needed on classic filters, f.e. in case of seccomp.
1303          */
1304         if (trans) {
1305                 err = trans(fp->insns, fp->len);
1306                 if (err) {
1307                         __bpf_prog_release(fp);
1308                         return ERR_PTR(err);
1309                 }
1310         }
1311
1312         /* Probe if we can JIT compile the filter and if so, do
1313          * the compilation of the filter.
1314          */
1315         bpf_jit_compile(fp);
1316
1317         /* JIT compiler couldn't process this filter, so do the
1318          * internal BPF translation for the optimized interpreter.
1319          */
1320         if (!fp->jited)
1321                 fp = bpf_migrate_filter(fp);
1322
1323         return fp;
1324 }
1325
1326 /**
1327  *      bpf_prog_create - create an unattached filter
1328  *      @pfp: the unattached filter that is created
1329  *      @fprog: the filter program
1330  *
1331  * Create a filter independent of any socket. We first run some
1332  * sanity checks on it to make sure it does not explode on us later.
1333  * If an error occurs or there is insufficient memory for the filter
1334  * a negative errno code is returned. On success the return is zero.
1335  */
1336 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1337 {
1338         unsigned int fsize = bpf_classic_proglen(fprog);
1339         struct bpf_prog *fp;
1340
1341         /* Make sure new filter is there and in the right amounts. */
1342         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1343                 return -EINVAL;
1344
1345         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1346         if (!fp)
1347                 return -ENOMEM;
1348
1349         memcpy(fp->insns, fprog->filter, fsize);
1350
1351         fp->len = fprog->len;
1352         /* Since unattached filters are not copied back to user
1353          * space through sk_get_filter(), we do not need to hold
1354          * a copy here, and can spare us the work.
1355          */
1356         fp->orig_prog = NULL;
1357
1358         /* bpf_prepare_filter() already takes care of freeing
1359          * memory in case something goes wrong.
1360          */
1361         fp = bpf_prepare_filter(fp, NULL);
1362         if (IS_ERR(fp))
1363                 return PTR_ERR(fp);
1364
1365         *pfp = fp;
1366         return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(bpf_prog_create);
1369
1370 /**
1371  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1372  *      @pfp: the unattached filter that is created
1373  *      @fprog: the filter program
1374  *      @trans: post-classic verifier transformation handler
1375  *      @save_orig: save classic BPF program
1376  *
1377  * This function effectively does the same as bpf_prog_create(), only
1378  * that it builds up its insns buffer from user space provided buffer.
1379  * It also allows for passing a bpf_aux_classic_check_t handler.
1380  */
1381 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1382                               bpf_aux_classic_check_t trans, bool save_orig)
1383 {
1384         unsigned int fsize = bpf_classic_proglen(fprog);
1385         struct bpf_prog *fp;
1386         int err;
1387
1388         /* Make sure new filter is there and in the right amounts. */
1389         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1390                 return -EINVAL;
1391
1392         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1393         if (!fp)
1394                 return -ENOMEM;
1395
1396         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1397                 __bpf_prog_free(fp);
1398                 return -EFAULT;
1399         }
1400
1401         fp->len = fprog->len;
1402         fp->orig_prog = NULL;
1403
1404         if (save_orig) {
1405                 err = bpf_prog_store_orig_filter(fp, fprog);
1406                 if (err) {
1407                         __bpf_prog_free(fp);
1408                         return -ENOMEM;
1409                 }
1410         }
1411
1412         /* bpf_prepare_filter() already takes care of freeing
1413          * memory in case something goes wrong.
1414          */
1415         fp = bpf_prepare_filter(fp, trans);
1416         if (IS_ERR(fp))
1417                 return PTR_ERR(fp);
1418
1419         *pfp = fp;
1420         return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1423
1424 void bpf_prog_destroy(struct bpf_prog *fp)
1425 {
1426         __bpf_prog_release(fp);
1427 }
1428 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1429
1430 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1431 {
1432         struct sk_filter *fp, *old_fp;
1433
1434         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1435         if (!fp)
1436                 return -ENOMEM;
1437
1438         fp->prog = prog;
1439
1440         if (!__sk_filter_charge(sk, fp)) {
1441                 kfree(fp);
1442                 return -ENOMEM;
1443         }
1444         refcount_set(&fp->refcnt, 1);
1445
1446         old_fp = rcu_dereference_protected(sk->sk_filter,
1447                                            lockdep_sock_is_held(sk));
1448         rcu_assign_pointer(sk->sk_filter, fp);
1449
1450         if (old_fp)
1451                 sk_filter_uncharge(sk, old_fp);
1452
1453         return 0;
1454 }
1455
1456 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1457 {
1458         struct bpf_prog *old_prog;
1459         int err;
1460
1461         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1462                 return -ENOMEM;
1463
1464         if (sk_unhashed(sk) && sk->sk_reuseport) {
1465                 err = reuseport_alloc(sk);
1466                 if (err)
1467                         return err;
1468         } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1469                 /* The socket wasn't bound with SO_REUSEPORT */
1470                 return -EINVAL;
1471         }
1472
1473         old_prog = reuseport_attach_prog(sk, prog);
1474         if (old_prog)
1475                 bpf_prog_destroy(old_prog);
1476
1477         return 0;
1478 }
1479
1480 static
1481 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1482 {
1483         unsigned int fsize = bpf_classic_proglen(fprog);
1484         struct bpf_prog *prog;
1485         int err;
1486
1487         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1488                 return ERR_PTR(-EPERM);
1489
1490         /* Make sure new filter is there and in the right amounts. */
1491         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1492                 return ERR_PTR(-EINVAL);
1493
1494         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1495         if (!prog)
1496                 return ERR_PTR(-ENOMEM);
1497
1498         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1499                 __bpf_prog_free(prog);
1500                 return ERR_PTR(-EFAULT);
1501         }
1502
1503         prog->len = fprog->len;
1504
1505         err = bpf_prog_store_orig_filter(prog, fprog);
1506         if (err) {
1507                 __bpf_prog_free(prog);
1508                 return ERR_PTR(-ENOMEM);
1509         }
1510
1511         /* bpf_prepare_filter() already takes care of freeing
1512          * memory in case something goes wrong.
1513          */
1514         return bpf_prepare_filter(prog, NULL);
1515 }
1516
1517 /**
1518  *      sk_attach_filter - attach a socket filter
1519  *      @fprog: the filter program
1520  *      @sk: the socket to use
1521  *
1522  * Attach the user's filter code. We first run some sanity checks on
1523  * it to make sure it does not explode on us later. If an error
1524  * occurs or there is insufficient memory for the filter a negative
1525  * errno code is returned. On success the return is zero.
1526  */
1527 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1528 {
1529         struct bpf_prog *prog = __get_filter(fprog, sk);
1530         int err;
1531
1532         if (IS_ERR(prog))
1533                 return PTR_ERR(prog);
1534
1535         err = __sk_attach_prog(prog, sk);
1536         if (err < 0) {
1537                 __bpf_prog_release(prog);
1538                 return err;
1539         }
1540
1541         return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(sk_attach_filter);
1544
1545 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1546 {
1547         struct bpf_prog *prog = __get_filter(fprog, sk);
1548         int err;
1549
1550         if (IS_ERR(prog))
1551                 return PTR_ERR(prog);
1552
1553         err = __reuseport_attach_prog(prog, sk);
1554         if (err < 0) {
1555                 __bpf_prog_release(prog);
1556                 return err;
1557         }
1558
1559         return 0;
1560 }
1561
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565                 return ERR_PTR(-EPERM);
1566
1567         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572         struct bpf_prog *prog = __get_bpf(ufd, sk);
1573         int err;
1574
1575         if (IS_ERR(prog))
1576                 return PTR_ERR(prog);
1577
1578         err = __sk_attach_prog(prog, sk);
1579         if (err < 0) {
1580                 bpf_prog_put(prog);
1581                 return err;
1582         }
1583
1584         return 0;
1585 }
1586
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589         struct bpf_prog *prog = __get_bpf(ufd, sk);
1590         int err;
1591
1592         if (IS_ERR(prog))
1593                 return PTR_ERR(prog);
1594
1595         err = __reuseport_attach_prog(prog, sk);
1596         if (err < 0) {
1597                 bpf_prog_put(prog);
1598                 return err;
1599         }
1600
1601         return 0;
1602 }
1603
1604 struct bpf_scratchpad {
1605         union {
1606                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1607                 u8     buff[MAX_BPF_STACK];
1608         };
1609 };
1610
1611 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1612
1613 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1614                                           unsigned int write_len)
1615 {
1616         return skb_ensure_writable(skb, write_len);
1617 }
1618
1619 static inline int bpf_try_make_writable(struct sk_buff *skb,
1620                                         unsigned int write_len)
1621 {
1622         int err = __bpf_try_make_writable(skb, write_len);
1623
1624         bpf_compute_data_pointers(skb);
1625         return err;
1626 }
1627
1628 static int bpf_try_make_head_writable(struct sk_buff *skb)
1629 {
1630         return bpf_try_make_writable(skb, skb_headlen(skb));
1631 }
1632
1633 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1634 {
1635         if (skb_at_tc_ingress(skb))
1636                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1637 }
1638
1639 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1640 {
1641         if (skb_at_tc_ingress(skb))
1642                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1643 }
1644
1645 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1646            const void *, from, u32, len, u64, flags)
1647 {
1648         void *ptr;
1649
1650         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1651                 return -EINVAL;
1652         if (unlikely(offset > 0xffff))
1653                 return -EFAULT;
1654         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1655                 return -EFAULT;
1656
1657         ptr = skb->data + offset;
1658         if (flags & BPF_F_RECOMPUTE_CSUM)
1659                 __skb_postpull_rcsum(skb, ptr, len, offset);
1660
1661         memcpy(ptr, from, len);
1662
1663         if (flags & BPF_F_RECOMPUTE_CSUM)
1664                 __skb_postpush_rcsum(skb, ptr, len, offset);
1665         if (flags & BPF_F_INVALIDATE_HASH)
1666                 skb_clear_hash(skb);
1667
1668         return 0;
1669 }
1670
1671 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1672         .func           = bpf_skb_store_bytes,
1673         .gpl_only       = false,
1674         .ret_type       = RET_INTEGER,
1675         .arg1_type      = ARG_PTR_TO_CTX,
1676         .arg2_type      = ARG_ANYTHING,
1677         .arg3_type      = ARG_PTR_TO_MEM,
1678         .arg4_type      = ARG_CONST_SIZE,
1679         .arg5_type      = ARG_ANYTHING,
1680 };
1681
1682 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1683            void *, to, u32, len)
1684 {
1685         void *ptr;
1686
1687         if (unlikely(offset > 0xffff))
1688                 goto err_clear;
1689
1690         ptr = skb_header_pointer(skb, offset, len, to);
1691         if (unlikely(!ptr))
1692                 goto err_clear;
1693         if (ptr != to)
1694                 memcpy(to, ptr, len);
1695
1696         return 0;
1697 err_clear:
1698         memset(to, 0, len);
1699         return -EFAULT;
1700 }
1701
1702 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1703         .func           = bpf_skb_load_bytes,
1704         .gpl_only       = false,
1705         .ret_type       = RET_INTEGER,
1706         .arg1_type      = ARG_PTR_TO_CTX,
1707         .arg2_type      = ARG_ANYTHING,
1708         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1709         .arg4_type      = ARG_CONST_SIZE,
1710 };
1711
1712 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1713            u32, offset, void *, to, u32, len, u32, start_header)
1714 {
1715         u8 *ptr;
1716
1717         if (unlikely(offset > 0xffff || len > skb_headlen(skb)))
1718                 goto err_clear;
1719
1720         switch (start_header) {
1721         case BPF_HDR_START_MAC:
1722                 ptr = skb_mac_header(skb) + offset;
1723                 break;
1724         case BPF_HDR_START_NET:
1725                 ptr = skb_network_header(skb) + offset;
1726                 break;
1727         default:
1728                 goto err_clear;
1729         }
1730
1731         if (likely(ptr >= skb_mac_header(skb) &&
1732                    ptr + len <= skb_tail_pointer(skb))) {
1733                 memcpy(to, ptr, len);
1734                 return 0;
1735         }
1736
1737 err_clear:
1738         memset(to, 0, len);
1739         return -EFAULT;
1740 }
1741
1742 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1743         .func           = bpf_skb_load_bytes_relative,
1744         .gpl_only       = false,
1745         .ret_type       = RET_INTEGER,
1746         .arg1_type      = ARG_PTR_TO_CTX,
1747         .arg2_type      = ARG_ANYTHING,
1748         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1749         .arg4_type      = ARG_CONST_SIZE,
1750         .arg5_type      = ARG_ANYTHING,
1751 };
1752
1753 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1754 {
1755         /* Idea is the following: should the needed direct read/write
1756          * test fail during runtime, we can pull in more data and redo
1757          * again, since implicitly, we invalidate previous checks here.
1758          *
1759          * Or, since we know how much we need to make read/writeable,
1760          * this can be done once at the program beginning for direct
1761          * access case. By this we overcome limitations of only current
1762          * headroom being accessible.
1763          */
1764         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1765 }
1766
1767 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1768         .func           = bpf_skb_pull_data,
1769         .gpl_only       = false,
1770         .ret_type       = RET_INTEGER,
1771         .arg1_type      = ARG_PTR_TO_CTX,
1772         .arg2_type      = ARG_ANYTHING,
1773 };
1774
1775 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1776                                            unsigned int write_len)
1777 {
1778         int err = __bpf_try_make_writable(skb, write_len);
1779
1780         bpf_compute_data_end_sk_skb(skb);
1781         return err;
1782 }
1783
1784 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1785 {
1786         /* Idea is the following: should the needed direct read/write
1787          * test fail during runtime, we can pull in more data and redo
1788          * again, since implicitly, we invalidate previous checks here.
1789          *
1790          * Or, since we know how much we need to make read/writeable,
1791          * this can be done once at the program beginning for direct
1792          * access case. By this we overcome limitations of only current
1793          * headroom being accessible.
1794          */
1795         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1796 }
1797
1798 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1799         .func           = sk_skb_pull_data,
1800         .gpl_only       = false,
1801         .ret_type       = RET_INTEGER,
1802         .arg1_type      = ARG_PTR_TO_CTX,
1803         .arg2_type      = ARG_ANYTHING,
1804 };
1805
1806 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1807            u64, from, u64, to, u64, flags)
1808 {
1809         __sum16 *ptr;
1810
1811         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1812                 return -EINVAL;
1813         if (unlikely(offset > 0xffff || offset & 1))
1814                 return -EFAULT;
1815         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1816                 return -EFAULT;
1817
1818         ptr = (__sum16 *)(skb->data + offset);
1819         switch (flags & BPF_F_HDR_FIELD_MASK) {
1820         case 0:
1821                 if (unlikely(from != 0))
1822                         return -EINVAL;
1823
1824                 csum_replace_by_diff(ptr, to);
1825                 break;
1826         case 2:
1827                 csum_replace2(ptr, from, to);
1828                 break;
1829         case 4:
1830                 csum_replace4(ptr, from, to);
1831                 break;
1832         default:
1833                 return -EINVAL;
1834         }
1835
1836         return 0;
1837 }
1838
1839 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1840         .func           = bpf_l3_csum_replace,
1841         .gpl_only       = false,
1842         .ret_type       = RET_INTEGER,
1843         .arg1_type      = ARG_PTR_TO_CTX,
1844         .arg2_type      = ARG_ANYTHING,
1845         .arg3_type      = ARG_ANYTHING,
1846         .arg4_type      = ARG_ANYTHING,
1847         .arg5_type      = ARG_ANYTHING,
1848 };
1849
1850 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1851            u64, from, u64, to, u64, flags)
1852 {
1853         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1854         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1855         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1856         __sum16 *ptr;
1857
1858         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1859                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1860                 return -EINVAL;
1861         if (unlikely(offset > 0xffff || offset & 1))
1862                 return -EFAULT;
1863         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1864                 return -EFAULT;
1865
1866         ptr = (__sum16 *)(skb->data + offset);
1867         if (is_mmzero && !do_mforce && !*ptr)
1868                 return 0;
1869
1870         switch (flags & BPF_F_HDR_FIELD_MASK) {
1871         case 0:
1872                 if (unlikely(from != 0))
1873                         return -EINVAL;
1874
1875                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1876                 break;
1877         case 2:
1878                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1879                 break;
1880         case 4:
1881                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1882                 break;
1883         default:
1884                 return -EINVAL;
1885         }
1886
1887         if (is_mmzero && !*ptr)
1888                 *ptr = CSUM_MANGLED_0;
1889         return 0;
1890 }
1891
1892 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1893         .func           = bpf_l4_csum_replace,
1894         .gpl_only       = false,
1895         .ret_type       = RET_INTEGER,
1896         .arg1_type      = ARG_PTR_TO_CTX,
1897         .arg2_type      = ARG_ANYTHING,
1898         .arg3_type      = ARG_ANYTHING,
1899         .arg4_type      = ARG_ANYTHING,
1900         .arg5_type      = ARG_ANYTHING,
1901 };
1902
1903 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1904            __be32 *, to, u32, to_size, __wsum, seed)
1905 {
1906         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1907         u32 diff_size = from_size + to_size;
1908         int i, j = 0;
1909
1910         /* This is quite flexible, some examples:
1911          *
1912          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1913          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1914          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1915          *
1916          * Even for diffing, from_size and to_size don't need to be equal.
1917          */
1918         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1919                      diff_size > sizeof(sp->diff)))
1920                 return -EINVAL;
1921
1922         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1923                 sp->diff[j] = ~from[i];
1924         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1925                 sp->diff[j] = to[i];
1926
1927         return csum_partial(sp->diff, diff_size, seed);
1928 }
1929
1930 static const struct bpf_func_proto bpf_csum_diff_proto = {
1931         .func           = bpf_csum_diff,
1932         .gpl_only       = false,
1933         .pkt_access     = true,
1934         .ret_type       = RET_INTEGER,
1935         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1936         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1937         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
1938         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1939         .arg5_type      = ARG_ANYTHING,
1940 };
1941
1942 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1943 {
1944         /* The interface is to be used in combination with bpf_csum_diff()
1945          * for direct packet writes. csum rotation for alignment as well
1946          * as emulating csum_sub() can be done from the eBPF program.
1947          */
1948         if (skb->ip_summed == CHECKSUM_COMPLETE)
1949                 return (skb->csum = csum_add(skb->csum, csum));
1950
1951         return -ENOTSUPP;
1952 }
1953
1954 static const struct bpf_func_proto bpf_csum_update_proto = {
1955         .func           = bpf_csum_update,
1956         .gpl_only       = false,
1957         .ret_type       = RET_INTEGER,
1958         .arg1_type      = ARG_PTR_TO_CTX,
1959         .arg2_type      = ARG_ANYTHING,
1960 };
1961
1962 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1963 {
1964         return dev_forward_skb(dev, skb);
1965 }
1966
1967 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1968                                       struct sk_buff *skb)
1969 {
1970         int ret = ____dev_forward_skb(dev, skb);
1971
1972         if (likely(!ret)) {
1973                 skb->dev = dev;
1974                 ret = netif_rx(skb);
1975         }
1976
1977         return ret;
1978 }
1979
1980 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1981 {
1982         int ret;
1983
1984         if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1985                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1986                 kfree_skb(skb);
1987                 return -ENETDOWN;
1988         }
1989
1990         skb->dev = dev;
1991
1992         __this_cpu_inc(xmit_recursion);
1993         ret = dev_queue_xmit(skb);
1994         __this_cpu_dec(xmit_recursion);
1995
1996         return ret;
1997 }
1998
1999 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2000                                  u32 flags)
2001 {
2002         /* skb->mac_len is not set on normal egress */
2003         unsigned int mlen = skb->network_header - skb->mac_header;
2004
2005         __skb_pull(skb, mlen);
2006
2007         /* At ingress, the mac header has already been pulled once.
2008          * At egress, skb_pospull_rcsum has to be done in case that
2009          * the skb is originated from ingress (i.e. a forwarded skb)
2010          * to ensure that rcsum starts at net header.
2011          */
2012         if (!skb_at_tc_ingress(skb))
2013                 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2014         skb_pop_mac_header(skb);
2015         skb_reset_mac_len(skb);
2016         return flags & BPF_F_INGRESS ?
2017                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2018 }
2019
2020 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2021                                  u32 flags)
2022 {
2023         /* Verify that a link layer header is carried */
2024         if (unlikely(skb->mac_header >= skb->network_header)) {
2025                 kfree_skb(skb);
2026                 return -ERANGE;
2027         }
2028
2029         bpf_push_mac_rcsum(skb);
2030         return flags & BPF_F_INGRESS ?
2031                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2032 }
2033
2034 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2035                           u32 flags)
2036 {
2037         if (dev_is_mac_header_xmit(dev))
2038                 return __bpf_redirect_common(skb, dev, flags);
2039         else
2040                 return __bpf_redirect_no_mac(skb, dev, flags);
2041 }
2042
2043 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2044 {
2045         struct net_device *dev;
2046         struct sk_buff *clone;
2047         int ret;
2048
2049         if (unlikely(flags & ~(BPF_F_INGRESS)))
2050                 return -EINVAL;
2051
2052         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2053         if (unlikely(!dev))
2054                 return -EINVAL;
2055
2056         clone = skb_clone(skb, GFP_ATOMIC);
2057         if (unlikely(!clone))
2058                 return -ENOMEM;
2059
2060         /* For direct write, we need to keep the invariant that the skbs
2061          * we're dealing with need to be uncloned. Should uncloning fail
2062          * here, we need to free the just generated clone to unclone once
2063          * again.
2064          */
2065         ret = bpf_try_make_head_writable(skb);
2066         if (unlikely(ret)) {
2067                 kfree_skb(clone);
2068                 return -ENOMEM;
2069         }
2070
2071         return __bpf_redirect(clone, dev, flags);
2072 }
2073
2074 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2075         .func           = bpf_clone_redirect,
2076         .gpl_only       = false,
2077         .ret_type       = RET_INTEGER,
2078         .arg1_type      = ARG_PTR_TO_CTX,
2079         .arg2_type      = ARG_ANYTHING,
2080         .arg3_type      = ARG_ANYTHING,
2081 };
2082
2083 struct redirect_info {
2084         u32 ifindex;
2085         u32 flags;
2086         struct bpf_map *map;
2087         struct bpf_map *map_to_flush;
2088         unsigned long   map_owner;
2089 };
2090
2091 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
2092
2093 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2094 {
2095         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2096
2097         if (unlikely(flags & ~(BPF_F_INGRESS)))
2098                 return TC_ACT_SHOT;
2099
2100         ri->ifindex = ifindex;
2101         ri->flags = flags;
2102
2103         return TC_ACT_REDIRECT;
2104 }
2105
2106 int skb_do_redirect(struct sk_buff *skb)
2107 {
2108         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2109         struct net_device *dev;
2110
2111         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2112         ri->ifindex = 0;
2113         if (unlikely(!dev)) {
2114                 kfree_skb(skb);
2115                 return -EINVAL;
2116         }
2117
2118         return __bpf_redirect(skb, dev, ri->flags);
2119 }
2120
2121 static const struct bpf_func_proto bpf_redirect_proto = {
2122         .func           = bpf_redirect,
2123         .gpl_only       = false,
2124         .ret_type       = RET_INTEGER,
2125         .arg1_type      = ARG_ANYTHING,
2126         .arg2_type      = ARG_ANYTHING,
2127 };
2128
2129 BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
2130            struct bpf_map *, map, void *, key, u64, flags)
2131 {
2132         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2133
2134         /* If user passes invalid input drop the packet. */
2135         if (unlikely(flags & ~(BPF_F_INGRESS)))
2136                 return SK_DROP;
2137
2138         tcb->bpf.flags = flags;
2139         tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
2140         if (!tcb->bpf.sk_redir)
2141                 return SK_DROP;
2142
2143         return SK_PASS;
2144 }
2145
2146 static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
2147         .func           = bpf_sk_redirect_hash,
2148         .gpl_only       = false,
2149         .ret_type       = RET_INTEGER,
2150         .arg1_type      = ARG_PTR_TO_CTX,
2151         .arg2_type      = ARG_CONST_MAP_PTR,
2152         .arg3_type      = ARG_PTR_TO_MAP_KEY,
2153         .arg4_type      = ARG_ANYTHING,
2154 };
2155
2156 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
2157            struct bpf_map *, map, u32, key, u64, flags)
2158 {
2159         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2160
2161         /* If user passes invalid input drop the packet. */
2162         if (unlikely(flags & ~(BPF_F_INGRESS)))
2163                 return SK_DROP;
2164
2165         tcb->bpf.flags = flags;
2166         tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
2167         if (!tcb->bpf.sk_redir)
2168                 return SK_DROP;
2169
2170         return SK_PASS;
2171 }
2172
2173 struct sock *do_sk_redirect_map(struct sk_buff *skb)
2174 {
2175         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2176
2177         return tcb->bpf.sk_redir;
2178 }
2179
2180 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
2181         .func           = bpf_sk_redirect_map,
2182         .gpl_only       = false,
2183         .ret_type       = RET_INTEGER,
2184         .arg1_type      = ARG_PTR_TO_CTX,
2185         .arg2_type      = ARG_CONST_MAP_PTR,
2186         .arg3_type      = ARG_ANYTHING,
2187         .arg4_type      = ARG_ANYTHING,
2188 };
2189
2190 BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
2191            struct bpf_map *, map, void *, key, u64, flags)
2192 {
2193         /* If user passes invalid input drop the packet. */
2194         if (unlikely(flags & ~(BPF_F_INGRESS)))
2195                 return SK_DROP;
2196
2197         msg->flags = flags;
2198         msg->sk_redir = __sock_hash_lookup_elem(map, key);
2199         if (!msg->sk_redir)
2200                 return SK_DROP;
2201
2202         return SK_PASS;
2203 }
2204
2205 static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
2206         .func           = bpf_msg_redirect_hash,
2207         .gpl_only       = false,
2208         .ret_type       = RET_INTEGER,
2209         .arg1_type      = ARG_PTR_TO_CTX,
2210         .arg2_type      = ARG_CONST_MAP_PTR,
2211         .arg3_type      = ARG_PTR_TO_MAP_KEY,
2212         .arg4_type      = ARG_ANYTHING,
2213 };
2214
2215 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
2216            struct bpf_map *, map, u32, key, u64, flags)
2217 {
2218         /* If user passes invalid input drop the packet. */
2219         if (unlikely(flags & ~(BPF_F_INGRESS)))
2220                 return SK_DROP;
2221
2222         msg->flags = flags;
2223         msg->sk_redir = __sock_map_lookup_elem(map, key);
2224         if (!msg->sk_redir)
2225                 return SK_DROP;
2226
2227         return SK_PASS;
2228 }
2229
2230 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
2231 {
2232         return msg->sk_redir;
2233 }
2234
2235 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
2236         .func           = bpf_msg_redirect_map,
2237         .gpl_only       = false,
2238         .ret_type       = RET_INTEGER,
2239         .arg1_type      = ARG_PTR_TO_CTX,
2240         .arg2_type      = ARG_CONST_MAP_PTR,
2241         .arg3_type      = ARG_ANYTHING,
2242         .arg4_type      = ARG_ANYTHING,
2243 };
2244
2245 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
2246 {
2247         msg->apply_bytes = bytes;
2248         return 0;
2249 }
2250
2251 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2252         .func           = bpf_msg_apply_bytes,
2253         .gpl_only       = false,
2254         .ret_type       = RET_INTEGER,
2255         .arg1_type      = ARG_PTR_TO_CTX,
2256         .arg2_type      = ARG_ANYTHING,
2257 };
2258
2259 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
2260 {
2261         msg->cork_bytes = bytes;
2262         return 0;
2263 }
2264
2265 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2266         .func           = bpf_msg_cork_bytes,
2267         .gpl_only       = false,
2268         .ret_type       = RET_INTEGER,
2269         .arg1_type      = ARG_PTR_TO_CTX,
2270         .arg2_type      = ARG_ANYTHING,
2271 };
2272
2273 BPF_CALL_4(bpf_msg_pull_data,
2274            struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
2275 {
2276         unsigned int len = 0, offset = 0, copy = 0;
2277         struct scatterlist *sg = msg->sg_data;
2278         int first_sg, last_sg, i, shift;
2279         unsigned char *p, *to, *from;
2280         int bytes = end - start;
2281         struct page *page;
2282
2283         if (unlikely(flags || end <= start))
2284                 return -EINVAL;
2285
2286         /* First find the starting scatterlist element */
2287         i = msg->sg_start;
2288         do {
2289                 len = sg[i].length;
2290                 offset += len;
2291                 if (start < offset + len)
2292                         break;
2293                 i++;
2294                 if (i == MAX_SKB_FRAGS)
2295                         i = 0;
2296         } while (i != msg->sg_end);
2297
2298         if (unlikely(start >= offset + len))
2299                 return -EINVAL;
2300
2301         if (!msg->sg_copy[i] && bytes <= len)
2302                 goto out;
2303
2304         first_sg = i;
2305
2306         /* At this point we need to linearize multiple scatterlist
2307          * elements or a single shared page. Either way we need to
2308          * copy into a linear buffer exclusively owned by BPF. Then
2309          * place the buffer in the scatterlist and fixup the original
2310          * entries by removing the entries now in the linear buffer
2311          * and shifting the remaining entries. For now we do not try
2312          * to copy partial entries to avoid complexity of running out
2313          * of sg_entry slots. The downside is reading a single byte
2314          * will copy the entire sg entry.
2315          */
2316         do {
2317                 copy += sg[i].length;
2318                 i++;
2319                 if (i == MAX_SKB_FRAGS)
2320                         i = 0;
2321                 if (bytes < copy)
2322                         break;
2323         } while (i != msg->sg_end);
2324         last_sg = i;
2325
2326         if (unlikely(copy < end - start))
2327                 return -EINVAL;
2328
2329         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
2330         if (unlikely(!page))
2331                 return -ENOMEM;
2332         p = page_address(page);
2333         offset = 0;
2334
2335         i = first_sg;
2336         do {
2337                 from = sg_virt(&sg[i]);
2338                 len = sg[i].length;
2339                 to = p + offset;
2340
2341                 memcpy(to, from, len);
2342                 offset += len;
2343                 sg[i].length = 0;
2344                 put_page(sg_page(&sg[i]));
2345
2346                 i++;
2347                 if (i == MAX_SKB_FRAGS)
2348                         i = 0;
2349         } while (i != last_sg);
2350
2351         sg[first_sg].length = copy;
2352         sg_set_page(&sg[first_sg], page, copy, 0);
2353
2354         /* To repair sg ring we need to shift entries. If we only
2355          * had a single entry though we can just replace it and
2356          * be done. Otherwise walk the ring and shift the entries.
2357          */
2358         shift = last_sg - first_sg - 1;
2359         if (!shift)
2360                 goto out;
2361
2362         i = first_sg + 1;
2363         do {
2364                 int move_from;
2365
2366                 if (i + shift >= MAX_SKB_FRAGS)
2367                         move_from = i + shift - MAX_SKB_FRAGS;
2368                 else
2369                         move_from = i + shift;
2370
2371                 if (move_from == msg->sg_end)
2372                         break;
2373
2374                 sg[i] = sg[move_from];
2375                 sg[move_from].length = 0;
2376                 sg[move_from].page_link = 0;
2377                 sg[move_from].offset = 0;
2378
2379                 i++;
2380                 if (i == MAX_SKB_FRAGS)
2381                         i = 0;
2382         } while (1);
2383         msg->sg_end -= shift;
2384         if (msg->sg_end < 0)
2385                 msg->sg_end += MAX_SKB_FRAGS;
2386 out:
2387         msg->data = sg_virt(&sg[i]) + start - offset;
2388         msg->data_end = msg->data + bytes;
2389
2390         return 0;
2391 }
2392
2393 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2394         .func           = bpf_msg_pull_data,
2395         .gpl_only       = false,
2396         .ret_type       = RET_INTEGER,
2397         .arg1_type      = ARG_PTR_TO_CTX,
2398         .arg2_type      = ARG_ANYTHING,
2399         .arg3_type      = ARG_ANYTHING,
2400         .arg4_type      = ARG_ANYTHING,
2401 };
2402
2403 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2404 {
2405         return task_get_classid(skb);
2406 }
2407
2408 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2409         .func           = bpf_get_cgroup_classid,
2410         .gpl_only       = false,
2411         .ret_type       = RET_INTEGER,
2412         .arg1_type      = ARG_PTR_TO_CTX,
2413 };
2414
2415 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2416 {
2417         return dst_tclassid(skb);
2418 }
2419
2420 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2421         .func           = bpf_get_route_realm,
2422         .gpl_only       = false,
2423         .ret_type       = RET_INTEGER,
2424         .arg1_type      = ARG_PTR_TO_CTX,
2425 };
2426
2427 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2428 {
2429         /* If skb_clear_hash() was called due to mangling, we can
2430          * trigger SW recalculation here. Later access to hash
2431          * can then use the inline skb->hash via context directly
2432          * instead of calling this helper again.
2433          */
2434         return skb_get_hash(skb);
2435 }
2436
2437 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2438         .func           = bpf_get_hash_recalc,
2439         .gpl_only       = false,
2440         .ret_type       = RET_INTEGER,
2441         .arg1_type      = ARG_PTR_TO_CTX,
2442 };
2443
2444 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2445 {
2446         /* After all direct packet write, this can be used once for
2447          * triggering a lazy recalc on next skb_get_hash() invocation.
2448          */
2449         skb_clear_hash(skb);
2450         return 0;
2451 }
2452
2453 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2454         .func           = bpf_set_hash_invalid,
2455         .gpl_only       = false,
2456         .ret_type       = RET_INTEGER,
2457         .arg1_type      = ARG_PTR_TO_CTX,
2458 };
2459
2460 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2461 {
2462         /* Set user specified hash as L4(+), so that it gets returned
2463          * on skb_get_hash() call unless BPF prog later on triggers a
2464          * skb_clear_hash().
2465          */
2466         __skb_set_sw_hash(skb, hash, true);
2467         return 0;
2468 }
2469
2470 static const struct bpf_func_proto bpf_set_hash_proto = {
2471         .func           = bpf_set_hash,
2472         .gpl_only       = false,
2473         .ret_type       = RET_INTEGER,
2474         .arg1_type      = ARG_PTR_TO_CTX,
2475         .arg2_type      = ARG_ANYTHING,
2476 };
2477
2478 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2479            u16, vlan_tci)
2480 {
2481         int ret;
2482
2483         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2484                      vlan_proto != htons(ETH_P_8021AD)))
2485                 vlan_proto = htons(ETH_P_8021Q);
2486
2487         bpf_push_mac_rcsum(skb);
2488         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2489         bpf_pull_mac_rcsum(skb);
2490
2491         bpf_compute_data_pointers(skb);
2492         return ret;
2493 }
2494
2495 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2496         .func           = bpf_skb_vlan_push,
2497         .gpl_only       = false,
2498         .ret_type       = RET_INTEGER,
2499         .arg1_type      = ARG_PTR_TO_CTX,
2500         .arg2_type      = ARG_ANYTHING,
2501         .arg3_type      = ARG_ANYTHING,
2502 };
2503
2504 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2505 {
2506         int ret;
2507
2508         bpf_push_mac_rcsum(skb);
2509         ret = skb_vlan_pop(skb);
2510         bpf_pull_mac_rcsum(skb);
2511
2512         bpf_compute_data_pointers(skb);
2513         return ret;
2514 }
2515
2516 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2517         .func           = bpf_skb_vlan_pop,
2518         .gpl_only       = false,
2519         .ret_type       = RET_INTEGER,
2520         .arg1_type      = ARG_PTR_TO_CTX,
2521 };
2522
2523 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2524 {
2525         /* Caller already did skb_cow() with len as headroom,
2526          * so no need to do it here.
2527          */
2528         skb_push(skb, len);
2529         memmove(skb->data, skb->data + len, off);
2530         memset(skb->data + off, 0, len);
2531
2532         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2533          * needed here as it does not change the skb->csum
2534          * result for checksum complete when summing over
2535          * zeroed blocks.
2536          */
2537         return 0;
2538 }
2539
2540 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2541 {
2542         /* skb_ensure_writable() is not needed here, as we're
2543          * already working on an uncloned skb.
2544          */
2545         if (unlikely(!pskb_may_pull(skb, off + len)))
2546                 return -ENOMEM;
2547
2548         skb_postpull_rcsum(skb, skb->data + off, len);
2549         memmove(skb->data + len, skb->data, off);
2550         __skb_pull(skb, len);
2551
2552         return 0;
2553 }
2554
2555 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2556 {
2557         bool trans_same = skb->transport_header == skb->network_header;
2558         int ret;
2559
2560         /* There's no need for __skb_push()/__skb_pull() pair to
2561          * get to the start of the mac header as we're guaranteed
2562          * to always start from here under eBPF.
2563          */
2564         ret = bpf_skb_generic_push(skb, off, len);
2565         if (likely(!ret)) {
2566                 skb->mac_header -= len;
2567                 skb->network_header -= len;
2568                 if (trans_same)
2569                         skb->transport_header = skb->network_header;
2570         }
2571
2572         return ret;
2573 }
2574
2575 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2576 {
2577         bool trans_same = skb->transport_header == skb->network_header;
2578         int ret;
2579
2580         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2581         ret = bpf_skb_generic_pop(skb, off, len);
2582         if (likely(!ret)) {
2583                 skb->mac_header += len;
2584                 skb->network_header += len;
2585                 if (trans_same)
2586                         skb->transport_header = skb->network_header;
2587         }
2588
2589         return ret;
2590 }
2591
2592 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2593 {
2594         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2595         u32 off = skb_mac_header_len(skb);
2596         int ret;
2597
2598         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2599         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2600                 return -ENOTSUPP;
2601
2602         ret = skb_cow(skb, len_diff);
2603         if (unlikely(ret < 0))
2604                 return ret;
2605
2606         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2607         if (unlikely(ret < 0))
2608                 return ret;
2609
2610         if (skb_is_gso(skb)) {
2611                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2612
2613                 /* SKB_GSO_TCPV4 needs to be changed into
2614                  * SKB_GSO_TCPV6.
2615                  */
2616                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2617                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2618                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2619                 }
2620
2621                 /* Due to IPv6 header, MSS needs to be downgraded. */
2622                 skb_decrease_gso_size(shinfo, len_diff);
2623                 /* Header must be checked, and gso_segs recomputed. */
2624                 shinfo->gso_type |= SKB_GSO_DODGY;
2625                 shinfo->gso_segs = 0;
2626         }
2627
2628         skb->protocol = htons(ETH_P_IPV6);
2629         skb_clear_hash(skb);
2630
2631         return 0;
2632 }
2633
2634 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2635 {
2636         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2637         u32 off = skb_mac_header_len(skb);
2638         int ret;
2639
2640         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2641         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2642                 return -ENOTSUPP;
2643
2644         ret = skb_unclone(skb, GFP_ATOMIC);
2645         if (unlikely(ret < 0))
2646                 return ret;
2647
2648         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2649         if (unlikely(ret < 0))
2650                 return ret;
2651
2652         if (skb_is_gso(skb)) {
2653                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2654
2655                 /* SKB_GSO_TCPV6 needs to be changed into
2656                  * SKB_GSO_TCPV4.
2657                  */
2658                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2659                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2660                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2661                 }
2662
2663                 /* Due to IPv4 header, MSS can be upgraded. */
2664                 skb_increase_gso_size(shinfo, len_diff);
2665                 /* Header must be checked, and gso_segs recomputed. */
2666                 shinfo->gso_type |= SKB_GSO_DODGY;
2667                 shinfo->gso_segs = 0;
2668         }
2669
2670         skb->protocol = htons(ETH_P_IP);
2671         skb_clear_hash(skb);
2672
2673         return 0;
2674 }
2675
2676 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2677 {
2678         __be16 from_proto = skb->protocol;
2679
2680         if (from_proto == htons(ETH_P_IP) &&
2681               to_proto == htons(ETH_P_IPV6))
2682                 return bpf_skb_proto_4_to_6(skb);
2683
2684         if (from_proto == htons(ETH_P_IPV6) &&
2685               to_proto == htons(ETH_P_IP))
2686                 return bpf_skb_proto_6_to_4(skb);
2687
2688         return -ENOTSUPP;
2689 }
2690
2691 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2692            u64, flags)
2693 {
2694         int ret;
2695
2696         if (unlikely(flags))
2697                 return -EINVAL;
2698
2699         /* General idea is that this helper does the basic groundwork
2700          * needed for changing the protocol, and eBPF program fills the
2701          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2702          * and other helpers, rather than passing a raw buffer here.
2703          *
2704          * The rationale is to keep this minimal and without a need to
2705          * deal with raw packet data. F.e. even if we would pass buffers
2706          * here, the program still needs to call the bpf_lX_csum_replace()
2707          * helpers anyway. Plus, this way we keep also separation of
2708          * concerns, since f.e. bpf_skb_store_bytes() should only take
2709          * care of stores.
2710          *
2711          * Currently, additional options and extension header space are
2712          * not supported, but flags register is reserved so we can adapt
2713          * that. For offloads, we mark packet as dodgy, so that headers
2714          * need to be verified first.
2715          */
2716         ret = bpf_skb_proto_xlat(skb, proto);
2717         bpf_compute_data_pointers(skb);
2718         return ret;
2719 }
2720
2721 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2722         .func           = bpf_skb_change_proto,
2723         .gpl_only       = false,
2724         .ret_type       = RET_INTEGER,
2725         .arg1_type      = ARG_PTR_TO_CTX,
2726         .arg2_type      = ARG_ANYTHING,
2727         .arg3_type      = ARG_ANYTHING,
2728 };
2729
2730 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2731 {
2732         /* We only allow a restricted subset to be changed for now. */
2733         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2734                      !skb_pkt_type_ok(pkt_type)))
2735                 return -EINVAL;
2736
2737         skb->pkt_type = pkt_type;
2738         return 0;
2739 }
2740
2741 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2742         .func           = bpf_skb_change_type,
2743         .gpl_only       = false,
2744         .ret_type       = RET_INTEGER,
2745         .arg1_type      = ARG_PTR_TO_CTX,
2746         .arg2_type      = ARG_ANYTHING,
2747 };
2748
2749 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2750 {
2751         switch (skb->protocol) {
2752         case htons(ETH_P_IP):
2753                 return sizeof(struct iphdr);
2754         case htons(ETH_P_IPV6):
2755                 return sizeof(struct ipv6hdr);
2756         default:
2757                 return ~0U;
2758         }
2759 }
2760
2761 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2762 {
2763         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2764         int ret;
2765
2766         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2767         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2768                 return -ENOTSUPP;
2769
2770         ret = skb_cow(skb, len_diff);
2771         if (unlikely(ret < 0))
2772                 return ret;
2773
2774         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2775         if (unlikely(ret < 0))
2776                 return ret;
2777
2778         if (skb_is_gso(skb)) {
2779                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2780
2781                 /* Due to header grow, MSS needs to be downgraded. */
2782                 skb_decrease_gso_size(shinfo, len_diff);
2783                 /* Header must be checked, and gso_segs recomputed. */
2784                 shinfo->gso_type |= SKB_GSO_DODGY;
2785                 shinfo->gso_segs = 0;
2786         }
2787
2788         return 0;
2789 }
2790
2791 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2792 {
2793         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2794         int ret;
2795
2796         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2797         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2798                 return -ENOTSUPP;
2799
2800         ret = skb_unclone(skb, GFP_ATOMIC);
2801         if (unlikely(ret < 0))
2802                 return ret;
2803
2804         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2805         if (unlikely(ret < 0))
2806                 return ret;
2807
2808         if (skb_is_gso(skb)) {
2809                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2810
2811                 /* Due to header shrink, MSS can be upgraded. */
2812                 skb_increase_gso_size(shinfo, len_diff);
2813                 /* Header must be checked, and gso_segs recomputed. */
2814                 shinfo->gso_type |= SKB_GSO_DODGY;
2815                 shinfo->gso_segs = 0;
2816         }
2817
2818         return 0;
2819 }
2820
2821 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2822 {
2823         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
2824                           SKB_MAX_ALLOC;
2825 }
2826
2827 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2828 {
2829         bool trans_same = skb->transport_header == skb->network_header;
2830         u32 len_cur, len_diff_abs = abs(len_diff);
2831         u32 len_min = bpf_skb_net_base_len(skb);
2832         u32 len_max = __bpf_skb_max_len(skb);
2833         __be16 proto = skb->protocol;
2834         bool shrink = len_diff < 0;
2835         int ret;
2836
2837         if (unlikely(len_diff_abs > 0xfffU))
2838                 return -EFAULT;
2839         if (unlikely(proto != htons(ETH_P_IP) &&
2840                      proto != htons(ETH_P_IPV6)))
2841                 return -ENOTSUPP;
2842
2843         len_cur = skb->len - skb_network_offset(skb);
2844         if (skb_transport_header_was_set(skb) && !trans_same)
2845                 len_cur = skb_network_header_len(skb);
2846         if ((shrink && (len_diff_abs >= len_cur ||
2847                         len_cur - len_diff_abs < len_min)) ||
2848             (!shrink && (skb->len + len_diff_abs > len_max &&
2849                          !skb_is_gso(skb))))
2850                 return -ENOTSUPP;
2851
2852         ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2853                        bpf_skb_net_grow(skb, len_diff_abs);
2854
2855         bpf_compute_data_pointers(skb);
2856         return ret;
2857 }
2858
2859 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2860            u32, mode, u64, flags)
2861 {
2862         if (unlikely(flags))
2863                 return -EINVAL;
2864         if (likely(mode == BPF_ADJ_ROOM_NET))
2865                 return bpf_skb_adjust_net(skb, len_diff);
2866
2867         return -ENOTSUPP;
2868 }
2869
2870 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2871         .func           = bpf_skb_adjust_room,
2872         .gpl_only       = false,
2873         .ret_type       = RET_INTEGER,
2874         .arg1_type      = ARG_PTR_TO_CTX,
2875         .arg2_type      = ARG_ANYTHING,
2876         .arg3_type      = ARG_ANYTHING,
2877         .arg4_type      = ARG_ANYTHING,
2878 };
2879
2880 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2881 {
2882         u32 min_len = skb_network_offset(skb);
2883
2884         if (skb_transport_header_was_set(skb))
2885                 min_len = skb_transport_offset(skb);
2886         if (skb->ip_summed == CHECKSUM_PARTIAL)
2887                 min_len = skb_checksum_start_offset(skb) +
2888                           skb->csum_offset + sizeof(__sum16);
2889         return min_len;
2890 }
2891
2892 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2893 {
2894         unsigned int old_len = skb->len;
2895         int ret;
2896
2897         ret = __skb_grow_rcsum(skb, new_len);
2898         if (!ret)
2899                 memset(skb->data + old_len, 0, new_len - old_len);
2900         return ret;
2901 }
2902
2903 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2904 {
2905         return __skb_trim_rcsum(skb, new_len);
2906 }
2907
2908 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
2909                                         u64 flags)
2910 {
2911         u32 max_len = __bpf_skb_max_len(skb);
2912         u32 min_len = __bpf_skb_min_len(skb);
2913         int ret;
2914
2915         if (unlikely(flags || new_len > max_len || new_len < min_len))
2916                 return -EINVAL;
2917         if (skb->encapsulation)
2918                 return -ENOTSUPP;
2919
2920         /* The basic idea of this helper is that it's performing the
2921          * needed work to either grow or trim an skb, and eBPF program
2922          * rewrites the rest via helpers like bpf_skb_store_bytes(),
2923          * bpf_lX_csum_replace() and others rather than passing a raw
2924          * buffer here. This one is a slow path helper and intended
2925          * for replies with control messages.
2926          *
2927          * Like in bpf_skb_change_proto(), we want to keep this rather
2928          * minimal and without protocol specifics so that we are able
2929          * to separate concerns as in bpf_skb_store_bytes() should only
2930          * be the one responsible for writing buffers.
2931          *
2932          * It's really expected to be a slow path operation here for
2933          * control message replies, so we're implicitly linearizing,
2934          * uncloning and drop offloads from the skb by this.
2935          */
2936         ret = __bpf_try_make_writable(skb, skb->len);
2937         if (!ret) {
2938                 if (new_len > skb->len)
2939                         ret = bpf_skb_grow_rcsum(skb, new_len);
2940                 else if (new_len < skb->len)
2941                         ret = bpf_skb_trim_rcsum(skb, new_len);
2942                 if (!ret && skb_is_gso(skb))
2943                         skb_gso_reset(skb);
2944         }
2945         return ret;
2946 }
2947
2948 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2949            u64, flags)
2950 {
2951         int ret = __bpf_skb_change_tail(skb, new_len, flags);
2952
2953         bpf_compute_data_pointers(skb);
2954         return ret;
2955 }
2956
2957 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2958         .func           = bpf_skb_change_tail,
2959         .gpl_only       = false,
2960         .ret_type       = RET_INTEGER,
2961         .arg1_type      = ARG_PTR_TO_CTX,
2962         .arg2_type      = ARG_ANYTHING,
2963         .arg3_type      = ARG_ANYTHING,
2964 };
2965
2966 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2967            u64, flags)
2968 {
2969         int ret = __bpf_skb_change_tail(skb, new_len, flags);
2970
2971         bpf_compute_data_end_sk_skb(skb);
2972         return ret;
2973 }
2974
2975 static const struct bpf_func_proto sk_skb_change_tail_proto = {
2976         .func           = sk_skb_change_tail,
2977         .gpl_only       = false,
2978         .ret_type       = RET_INTEGER,
2979         .arg1_type      = ARG_PTR_TO_CTX,
2980         .arg2_type      = ARG_ANYTHING,
2981         .arg3_type      = ARG_ANYTHING,
2982 };
2983
2984 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
2985                                         u64 flags)
2986 {
2987         u32 max_len = __bpf_skb_max_len(skb);
2988         u32 new_len = skb->len + head_room;
2989         int ret;
2990
2991         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2992                      new_len < skb->len))
2993                 return -EINVAL;
2994
2995         ret = skb_cow(skb, head_room);
2996         if (likely(!ret)) {
2997                 /* Idea for this helper is that we currently only
2998                  * allow to expand on mac header. This means that
2999                  * skb->protocol network header, etc, stay as is.
3000                  * Compared to bpf_skb_change_tail(), we're more
3001                  * flexible due to not needing to linearize or
3002                  * reset GSO. Intention for this helper is to be
3003                  * used by an L3 skb that needs to push mac header
3004                  * for redirection into L2 device.
3005                  */
3006                 __skb_push(skb, head_room);
3007                 memset(skb->data, 0, head_room);
3008                 skb_reset_mac_header(skb);
3009         }
3010
3011         return ret;
3012 }
3013
3014 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3015            u64, flags)
3016 {
3017         int ret = __bpf_skb_change_head(skb, head_room, flags);
3018
3019         bpf_compute_data_pointers(skb);
3020         return ret;
3021 }
3022
3023 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3024         .func           = bpf_skb_change_head,
3025         .gpl_only       = false,
3026         .ret_type       = RET_INTEGER,
3027         .arg1_type      = ARG_PTR_TO_CTX,
3028         .arg2_type      = ARG_ANYTHING,
3029         .arg3_type      = ARG_ANYTHING,
3030 };
3031
3032 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3033            u64, flags)
3034 {
3035         int ret = __bpf_skb_change_head(skb, head_room, flags);
3036
3037         bpf_compute_data_end_sk_skb(skb);
3038         return ret;
3039 }
3040
3041 static const struct bpf_func_proto sk_skb_change_head_proto = {
3042         .func           = sk_skb_change_head,
3043         .gpl_only       = false,
3044         .ret_type       = RET_INTEGER,
3045         .arg1_type      = ARG_PTR_TO_CTX,
3046         .arg2_type      = ARG_ANYTHING,
3047         .arg3_type      = ARG_ANYTHING,
3048 };
3049 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3050 {
3051         return xdp_data_meta_unsupported(xdp) ? 0 :
3052                xdp->data - xdp->data_meta;
3053 }
3054
3055 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3056 {
3057         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3058         unsigned long metalen = xdp_get_metalen(xdp);
3059         void *data_start = xdp_frame_end + metalen;
3060         void *data = xdp->data + offset;
3061
3062         if (unlikely(data < data_start ||
3063                      data > xdp->data_end - ETH_HLEN))
3064                 return -EINVAL;
3065
3066         if (metalen)
3067                 memmove(xdp->data_meta + offset,
3068                         xdp->data_meta, metalen);
3069         xdp->data_meta += offset;
3070         xdp->data = data;
3071
3072         return 0;
3073 }
3074
3075 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3076         .func           = bpf_xdp_adjust_head,
3077         .gpl_only       = false,
3078         .ret_type       = RET_INTEGER,
3079         .arg1_type      = ARG_PTR_TO_CTX,
3080         .arg2_type      = ARG_ANYTHING,
3081 };
3082
3083 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3084 {
3085         void *data_end = xdp->data_end + offset;
3086
3087         /* only shrinking is allowed for now. */
3088         if (unlikely(offset >= 0))
3089                 return -EINVAL;
3090
3091         if (unlikely(data_end < xdp->data + ETH_HLEN))
3092                 return -EINVAL;
3093
3094         xdp->data_end = data_end;
3095
3096         return 0;
3097 }
3098
3099 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3100         .func           = bpf_xdp_adjust_tail,
3101         .gpl_only       = false,
3102         .ret_type       = RET_INTEGER,
3103         .arg1_type      = ARG_PTR_TO_CTX,
3104         .arg2_type      = ARG_ANYTHING,
3105 };
3106
3107 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3108 {
3109         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3110         void *meta = xdp->data_meta + offset;
3111         unsigned long metalen = xdp->data - meta;
3112
3113         if (xdp_data_meta_unsupported(xdp))
3114                 return -ENOTSUPP;
3115         if (unlikely(meta < xdp_frame_end ||
3116                      meta > xdp->data))
3117                 return -EINVAL;
3118         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3119                      (metalen > 32)))
3120                 return -EACCES;
3121
3122         xdp->data_meta = meta;
3123
3124         return 0;
3125 }
3126
3127 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3128         .func           = bpf_xdp_adjust_meta,
3129         .gpl_only       = false,
3130         .ret_type       = RET_INTEGER,
3131         .arg1_type      = ARG_PTR_TO_CTX,
3132         .arg2_type      = ARG_ANYTHING,
3133 };
3134
3135 static int __bpf_tx_xdp(struct net_device *dev,
3136                         struct bpf_map *map,
3137                         struct xdp_buff *xdp,
3138                         u32 index)
3139 {
3140         struct xdp_frame *xdpf;
3141         int err, sent;
3142
3143         if (!dev->netdev_ops->ndo_xdp_xmit) {
3144                 return -EOPNOTSUPP;
3145         }
3146
3147         err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3148         if (unlikely(err))
3149                 return err;
3150
3151         xdpf = convert_to_xdp_frame(xdp);
3152         if (unlikely(!xdpf))
3153                 return -EOVERFLOW;
3154
3155         sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3156         if (sent <= 0)
3157                 return sent;
3158         return 0;
3159 }
3160
3161 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3162                             struct bpf_map *map,
3163                             struct xdp_buff *xdp,
3164                             u32 index)
3165 {
3166         int err;
3167
3168         switch (map->map_type) {
3169         case BPF_MAP_TYPE_DEVMAP: {
3170                 struct bpf_dtab_netdev *dst = fwd;
3171
3172                 err = dev_map_enqueue(dst, xdp, dev_rx);
3173                 if (err)
3174                         return err;
3175                 __dev_map_insert_ctx(map, index);
3176                 break;
3177         }
3178         case BPF_MAP_TYPE_CPUMAP: {
3179                 struct bpf_cpu_map_entry *rcpu = fwd;
3180
3181                 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3182                 if (err)
3183                         return err;
3184                 __cpu_map_insert_ctx(map, index);
3185                 break;
3186         }
3187         case BPF_MAP_TYPE_XSKMAP: {
3188                 struct xdp_sock *xs = fwd;
3189
3190                 err = __xsk_map_redirect(map, xdp, xs);
3191                 return err;
3192         }
3193         default:
3194                 break;
3195         }
3196         return 0;
3197 }
3198
3199 void xdp_do_flush_map(void)
3200 {
3201         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3202         struct bpf_map *map = ri->map_to_flush;
3203
3204         ri->map_to_flush = NULL;
3205         if (map) {
3206                 switch (map->map_type) {
3207                 case BPF_MAP_TYPE_DEVMAP:
3208                         __dev_map_flush(map);
3209                         break;
3210                 case BPF_MAP_TYPE_CPUMAP:
3211                         __cpu_map_flush(map);
3212                         break;
3213                 case BPF_MAP_TYPE_XSKMAP:
3214                         __xsk_map_flush(map);
3215                         break;
3216                 default:
3217                         break;
3218                 }
3219         }
3220 }
3221 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3222
3223 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3224 {
3225         switch (map->map_type) {
3226         case BPF_MAP_TYPE_DEVMAP:
3227                 return __dev_map_lookup_elem(map, index);
3228         case BPF_MAP_TYPE_CPUMAP:
3229                 return __cpu_map_lookup_elem(map, index);
3230         case BPF_MAP_TYPE_XSKMAP:
3231                 return __xsk_map_lookup_elem(map, index);
3232         default:
3233                 return NULL;
3234         }
3235 }
3236
3237 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
3238                                    unsigned long aux)
3239 {
3240         return (unsigned long)xdp_prog->aux != aux;
3241 }
3242
3243 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3244                                struct bpf_prog *xdp_prog)
3245 {
3246         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3247         unsigned long map_owner = ri->map_owner;
3248         struct bpf_map *map = ri->map;
3249         u32 index = ri->ifindex;
3250         void *fwd = NULL;
3251         int err;
3252
3253         ri->ifindex = 0;
3254         ri->map = NULL;
3255         ri->map_owner = 0;
3256
3257         if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3258                 err = -EFAULT;
3259                 map = NULL;
3260                 goto err;
3261         }
3262
3263         fwd = __xdp_map_lookup_elem(map, index);
3264         if (!fwd) {
3265                 err = -EINVAL;
3266                 goto err;
3267         }
3268         if (ri->map_to_flush && ri->map_to_flush != map)
3269                 xdp_do_flush_map();
3270
3271         err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3272         if (unlikely(err))
3273                 goto err;
3274
3275         ri->map_to_flush = map;
3276         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3277         return 0;
3278 err:
3279         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3280         return err;
3281 }
3282
3283 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3284                     struct bpf_prog *xdp_prog)
3285 {
3286         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3287         struct net_device *fwd;
3288         u32 index = ri->ifindex;
3289         int err;
3290
3291         if (ri->map)
3292                 return xdp_do_redirect_map(dev, xdp, xdp_prog);
3293
3294         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3295         ri->ifindex = 0;
3296         if (unlikely(!fwd)) {
3297                 err = -EINVAL;
3298                 goto err;
3299         }
3300
3301         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3302         if (unlikely(err))
3303                 goto err;
3304
3305         _trace_xdp_redirect(dev, xdp_prog, index);
3306         return 0;
3307 err:
3308         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3309         return err;
3310 }
3311 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3312
3313 static int xdp_do_generic_redirect_map(struct net_device *dev,
3314                                        struct sk_buff *skb,
3315                                        struct xdp_buff *xdp,
3316                                        struct bpf_prog *xdp_prog)
3317 {
3318         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3319         unsigned long map_owner = ri->map_owner;
3320         struct bpf_map *map = ri->map;
3321         u32 index = ri->ifindex;
3322         void *fwd = NULL;
3323         int err = 0;
3324
3325         ri->ifindex = 0;
3326         ri->map = NULL;
3327         ri->map_owner = 0;
3328
3329         if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3330                 err = -EFAULT;
3331                 map = NULL;
3332                 goto err;
3333         }
3334         fwd = __xdp_map_lookup_elem(map, index);
3335         if (unlikely(!fwd)) {
3336                 err = -EINVAL;
3337                 goto err;
3338         }
3339
3340         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3341                 struct bpf_dtab_netdev *dst = fwd;
3342
3343                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3344                 if (unlikely(err))
3345                         goto err;
3346         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3347                 struct xdp_sock *xs = fwd;
3348
3349                 err = xsk_generic_rcv(xs, xdp);
3350                 if (err)
3351                         goto err;
3352                 consume_skb(skb);
3353         } else {
3354                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3355                 err = -EBADRQC;
3356                 goto err;
3357         }
3358
3359         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3360         return 0;
3361 err:
3362         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3363         return err;
3364 }
3365
3366 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3367                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3368 {
3369         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3370         u32 index = ri->ifindex;
3371         struct net_device *fwd;
3372         int err = 0;
3373
3374         if (ri->map)
3375                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog);
3376
3377         ri->ifindex = 0;
3378         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3379         if (unlikely(!fwd)) {
3380                 err = -EINVAL;
3381                 goto err;
3382         }
3383
3384         err = xdp_ok_fwd_dev(fwd, skb->len);
3385         if (unlikely(err))
3386                 goto err;
3387
3388         skb->dev = fwd;
3389         _trace_xdp_redirect(dev, xdp_prog, index);
3390         generic_xdp_tx(skb, xdp_prog);
3391         return 0;
3392 err:
3393         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3394         return err;
3395 }
3396 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3397
3398 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3399 {
3400         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3401
3402         if (unlikely(flags))
3403                 return XDP_ABORTED;
3404
3405         ri->ifindex = ifindex;
3406         ri->flags = flags;
3407         ri->map = NULL;
3408         ri->map_owner = 0;
3409
3410         return XDP_REDIRECT;
3411 }
3412
3413 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3414         .func           = bpf_xdp_redirect,
3415         .gpl_only       = false,
3416         .ret_type       = RET_INTEGER,
3417         .arg1_type      = ARG_ANYTHING,
3418         .arg2_type      = ARG_ANYTHING,
3419 };
3420
3421 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3422            unsigned long, map_owner)
3423 {
3424         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3425
3426         if (unlikely(flags))
3427                 return XDP_ABORTED;
3428
3429         ri->ifindex = ifindex;
3430         ri->flags = flags;
3431         ri->map = map;
3432         ri->map_owner = map_owner;
3433
3434         return XDP_REDIRECT;
3435 }
3436
3437 /* Note, arg4 is hidden from users and populated by the verifier
3438  * with the right pointer.
3439  */
3440 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3441         .func           = bpf_xdp_redirect_map,
3442         .gpl_only       = false,
3443         .ret_type       = RET_INTEGER,
3444         .arg1_type      = ARG_CONST_MAP_PTR,
3445         .arg2_type      = ARG_ANYTHING,
3446         .arg3_type      = ARG_ANYTHING,
3447 };
3448
3449 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3450                                   unsigned long off, unsigned long len)
3451 {
3452         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3453
3454         if (unlikely(!ptr))
3455                 return len;
3456         if (ptr != dst_buff)
3457                 memcpy(dst_buff, ptr, len);
3458
3459         return 0;
3460 }
3461
3462 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3463            u64, flags, void *, meta, u64, meta_size)
3464 {
3465         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3466
3467         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3468                 return -EINVAL;
3469         if (unlikely(skb_size > skb->len))
3470                 return -EFAULT;
3471
3472         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3473                                 bpf_skb_copy);
3474 }
3475
3476 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3477         .func           = bpf_skb_event_output,
3478         .gpl_only       = true,
3479         .ret_type       = RET_INTEGER,
3480         .arg1_type      = ARG_PTR_TO_CTX,
3481         .arg2_type      = ARG_CONST_MAP_PTR,
3482         .arg3_type      = ARG_ANYTHING,
3483         .arg4_type      = ARG_PTR_TO_MEM,
3484         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3485 };
3486
3487 static unsigned short bpf_tunnel_key_af(u64 flags)
3488 {
3489         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3490 }
3491
3492 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3493            u32, size, u64, flags)
3494 {
3495         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3496         u8 compat[sizeof(struct bpf_tunnel_key)];
3497         void *to_orig = to;
3498         int err;
3499
3500         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3501                 err = -EINVAL;
3502                 goto err_clear;
3503         }
3504         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3505                 err = -EPROTO;
3506                 goto err_clear;
3507         }
3508         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3509                 err = -EINVAL;
3510                 switch (size) {
3511                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3512                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3513                         goto set_compat;
3514                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3515                         /* Fixup deprecated structure layouts here, so we have
3516                          * a common path later on.
3517                          */
3518                         if (ip_tunnel_info_af(info) != AF_INET)
3519                                 goto err_clear;
3520 set_compat:
3521                         to = (struct bpf_tunnel_key *)compat;
3522                         break;
3523                 default:
3524                         goto err_clear;
3525                 }
3526         }
3527
3528         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3529         to->tunnel_tos = info->key.tos;
3530         to->tunnel_ttl = info->key.ttl;
3531         to->tunnel_ext = 0;
3532
3533         if (flags & BPF_F_TUNINFO_IPV6) {
3534                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3535                        sizeof(to->remote_ipv6));
3536                 to->tunnel_label = be32_to_cpu(info->key.label);
3537         } else {
3538                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3539                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3540                 to->tunnel_label = 0;
3541         }
3542
3543         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3544                 memcpy(to_orig, to, size);
3545
3546         return 0;
3547 err_clear:
3548         memset(to_orig, 0, size);
3549         return err;
3550 }
3551
3552 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3553         .func           = bpf_skb_get_tunnel_key,
3554         .gpl_only       = false,
3555         .ret_type       = RET_INTEGER,
3556         .arg1_type      = ARG_PTR_TO_CTX,
3557         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3558         .arg3_type      = ARG_CONST_SIZE,
3559         .arg4_type      = ARG_ANYTHING,
3560 };
3561
3562 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3563 {
3564         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3565         int err;
3566
3567         if (unlikely(!info ||
3568                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3569                 err = -ENOENT;
3570                 goto err_clear;
3571         }
3572         if (unlikely(size < info->options_len)) {
3573                 err = -ENOMEM;
3574                 goto err_clear;
3575         }
3576
3577         ip_tunnel_info_opts_get(to, info);
3578         if (size > info->options_len)
3579                 memset(to + info->options_len, 0, size - info->options_len);
3580
3581         return info->options_len;
3582 err_clear:
3583         memset(to, 0, size);
3584         return err;
3585 }
3586
3587 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3588         .func           = bpf_skb_get_tunnel_opt,
3589         .gpl_only       = false,
3590         .ret_type       = RET_INTEGER,
3591         .arg1_type      = ARG_PTR_TO_CTX,
3592         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3593         .arg3_type      = ARG_CONST_SIZE,
3594 };
3595
3596 static struct metadata_dst __percpu *md_dst;
3597
3598 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3599            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3600 {
3601         struct metadata_dst *md = this_cpu_ptr(md_dst);
3602         u8 compat[sizeof(struct bpf_tunnel_key)];
3603         struct ip_tunnel_info *info;
3604
3605         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3606                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3607                 return -EINVAL;
3608         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3609                 switch (size) {
3610                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3611                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3612                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3613                         /* Fixup deprecated structure layouts here, so we have
3614                          * a common path later on.
3615                          */
3616                         memcpy(compat, from, size);
3617                         memset(compat + size, 0, sizeof(compat) - size);
3618                         from = (const struct bpf_tunnel_key *) compat;
3619                         break;
3620                 default:
3621                         return -EINVAL;
3622                 }
3623         }
3624         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3625                      from->tunnel_ext))
3626                 return -EINVAL;
3627
3628         skb_dst_drop(skb);
3629         dst_hold((struct dst_entry *) md);
3630         skb_dst_set(skb, (struct dst_entry *) md);
3631
3632         info = &md->u.tun_info;
3633         memset(info, 0, sizeof(*info));
3634         info->mode = IP_TUNNEL_INFO_TX;
3635
3636         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3637         if (flags & BPF_F_DONT_FRAGMENT)
3638                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3639         if (flags & BPF_F_ZERO_CSUM_TX)
3640                 info->key.tun_flags &= ~TUNNEL_CSUM;
3641         if (flags & BPF_F_SEQ_NUMBER)
3642                 info->key.tun_flags |= TUNNEL_SEQ;
3643
3644         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3645         info->key.tos = from->tunnel_tos;
3646         info->key.ttl = from->tunnel_ttl;
3647
3648         if (flags & BPF_F_TUNINFO_IPV6) {
3649                 info->mode |= IP_TUNNEL_INFO_IPV6;
3650                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3651                        sizeof(from->remote_ipv6));
3652                 info->key.label = cpu_to_be32(from->tunnel_label) &
3653                                   IPV6_FLOWLABEL_MASK;
3654         } else {
3655                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3656         }
3657
3658         return 0;
3659 }
3660
3661 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3662         .func           = bpf_skb_set_tunnel_key,
3663         .gpl_only       = false,
3664         .ret_type       = RET_INTEGER,
3665         .arg1_type      = ARG_PTR_TO_CTX,
3666         .arg2_type      = ARG_PTR_TO_MEM,
3667         .arg3_type      = ARG_CONST_SIZE,
3668         .arg4_type      = ARG_ANYTHING,
3669 };
3670
3671 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3672            const u8 *, from, u32, size)
3673 {
3674         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3675         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3676
3677         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3678                 return -EINVAL;
3679         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3680                 return -ENOMEM;
3681
3682         ip_tunnel_info_opts_set(info, from, size);
3683
3684         return 0;
3685 }
3686
3687 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3688         .func           = bpf_skb_set_tunnel_opt,
3689         .gpl_only       = false,
3690         .ret_type       = RET_INTEGER,
3691         .arg1_type      = ARG_PTR_TO_CTX,
3692         .arg2_type      = ARG_PTR_TO_MEM,
3693         .arg3_type      = ARG_CONST_SIZE,
3694 };
3695
3696 static const struct bpf_func_proto *
3697 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3698 {
3699         if (!md_dst) {
3700                 struct metadata_dst __percpu *tmp;
3701
3702                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3703                                                 METADATA_IP_TUNNEL,
3704                                                 GFP_KERNEL);
3705                 if (!tmp)
3706                         return NULL;
3707                 if (cmpxchg(&md_dst, NULL, tmp))
3708                         metadata_dst_free_percpu(tmp);
3709         }
3710
3711         switch (which) {
3712         case BPF_FUNC_skb_set_tunnel_key:
3713                 return &bpf_skb_set_tunnel_key_proto;
3714         case BPF_FUNC_skb_set_tunnel_opt:
3715                 return &bpf_skb_set_tunnel_opt_proto;
3716         default:
3717                 return NULL;
3718         }
3719 }
3720
3721 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3722            u32, idx)
3723 {
3724         struct bpf_array *array = container_of(map, struct bpf_array, map);
3725         struct cgroup *cgrp;
3726         struct sock *sk;
3727
3728         sk = skb_to_full_sk(skb);
3729         if (!sk || !sk_fullsock(sk))
3730                 return -ENOENT;
3731         if (unlikely(idx >= array->map.max_entries))
3732                 return -E2BIG;
3733
3734         cgrp = READ_ONCE(array->ptrs[idx]);
3735         if (unlikely(!cgrp))
3736                 return -EAGAIN;
3737
3738         return sk_under_cgroup_hierarchy(sk, cgrp);
3739 }
3740
3741 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3742         .func           = bpf_skb_under_cgroup,
3743         .gpl_only       = false,
3744         .ret_type       = RET_INTEGER,
3745         .arg1_type      = ARG_PTR_TO_CTX,
3746         .arg2_type      = ARG_CONST_MAP_PTR,
3747         .arg3_type      = ARG_ANYTHING,
3748 };
3749
3750 #ifdef CONFIG_SOCK_CGROUP_DATA
3751 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3752 {
3753         struct sock *sk = skb_to_full_sk(skb);
3754         struct cgroup *cgrp;
3755
3756         if (!sk || !sk_fullsock(sk))
3757                 return 0;
3758
3759         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3760         return cgrp->kn->id.id;
3761 }
3762
3763 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3764         .func           = bpf_skb_cgroup_id,
3765         .gpl_only       = false,
3766         .ret_type       = RET_INTEGER,
3767         .arg1_type      = ARG_PTR_TO_CTX,
3768 };
3769 #endif
3770
3771 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3772                                   unsigned long off, unsigned long len)
3773 {
3774         memcpy(dst_buff, src_buff + off, len);
3775         return 0;
3776 }
3777
3778 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3779            u64, flags, void *, meta, u64, meta_size)
3780 {
3781         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3782
3783         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3784                 return -EINVAL;
3785         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3786                 return -EFAULT;
3787
3788         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3789                                 xdp_size, bpf_xdp_copy);
3790 }
3791
3792 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3793         .func           = bpf_xdp_event_output,
3794         .gpl_only       = true,
3795         .ret_type       = RET_INTEGER,
3796         .arg1_type      = ARG_PTR_TO_CTX,
3797         .arg2_type      = ARG_CONST_MAP_PTR,
3798         .arg3_type      = ARG_ANYTHING,
3799         .arg4_type      = ARG_PTR_TO_MEM,
3800         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3801 };
3802
3803 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3804 {
3805         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3806 }
3807
3808 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3809         .func           = bpf_get_socket_cookie,
3810         .gpl_only       = false,
3811         .ret_type       = RET_INTEGER,
3812         .arg1_type      = ARG_PTR_TO_CTX,
3813 };
3814
3815 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3816 {
3817         struct sock *sk = sk_to_full_sk(skb->sk);
3818         kuid_t kuid;
3819
3820         if (!sk || !sk_fullsock(sk))
3821                 return overflowuid;
3822         kuid = sock_net_uid(sock_net(sk), sk);
3823         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3824 }
3825
3826 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3827         .func           = bpf_get_socket_uid,
3828         .gpl_only       = false,
3829         .ret_type       = RET_INTEGER,
3830         .arg1_type      = ARG_PTR_TO_CTX,
3831 };
3832
3833 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3834            int, level, int, optname, char *, optval, int, optlen)
3835 {
3836         struct sock *sk = bpf_sock->sk;
3837         int ret = 0;
3838         int val;
3839
3840         if (!sk_fullsock(sk))
3841                 return -EINVAL;
3842
3843         if (level == SOL_SOCKET) {
3844                 if (optlen != sizeof(int))
3845                         return -EINVAL;
3846                 val = *((int *)optval);
3847
3848                 /* Only some socketops are supported */
3849                 switch (optname) {
3850                 case SO_RCVBUF:
3851                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3852                         sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3853                         break;
3854                 case SO_SNDBUF:
3855                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3856                         sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3857                         break;
3858                 case SO_MAX_PACING_RATE:
3859                         sk->sk_max_pacing_rate = val;
3860                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3861                                                  sk->sk_max_pacing_rate);
3862                         break;
3863                 case SO_PRIORITY:
3864                         sk->sk_priority = val;
3865                         break;
3866                 case SO_RCVLOWAT:
3867                         if (val < 0)
3868                                 val = INT_MAX;
3869                         sk->sk_rcvlowat = val ? : 1;
3870                         break;
3871                 case SO_MARK:
3872                         sk->sk_mark = val;
3873                         break;
3874                 default:
3875                         ret = -EINVAL;
3876                 }
3877 #ifdef CONFIG_INET
3878         } else if (level == SOL_IP) {
3879                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3880                         return -EINVAL;
3881
3882                 val = *((int *)optval);
3883                 /* Only some options are supported */
3884                 switch (optname) {
3885                 case IP_TOS:
3886                         if (val < -1 || val > 0xff) {
3887                                 ret = -EINVAL;
3888                         } else {
3889                                 struct inet_sock *inet = inet_sk(sk);
3890
3891                                 if (val == -1)
3892                                         val = 0;
3893                                 inet->tos = val;
3894                         }
3895                         break;
3896                 default:
3897                         ret = -EINVAL;
3898                 }
3899 #if IS_ENABLED(CONFIG_IPV6)
3900         } else if (level == SOL_IPV6) {
3901                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3902                         return -EINVAL;
3903
3904                 val = *((int *)optval);
3905                 /* Only some options are supported */
3906                 switch (optname) {
3907                 case IPV6_TCLASS:
3908                         if (val < -1 || val > 0xff) {
3909                                 ret = -EINVAL;
3910                         } else {
3911                                 struct ipv6_pinfo *np = inet6_sk(sk);
3912
3913                                 if (val == -1)
3914                                         val = 0;
3915                                 np->tclass = val;
3916                         }
3917                         break;
3918                 default:
3919                         ret = -EINVAL;
3920                 }
3921 #endif
3922         } else if (level == SOL_TCP &&
3923                    sk->sk_prot->setsockopt == tcp_setsockopt) {
3924                 if (optname == TCP_CONGESTION) {
3925                         char name[TCP_CA_NAME_MAX];
3926                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3927
3928                         strncpy(name, optval, min_t(long, optlen,
3929                                                     TCP_CA_NAME_MAX-1));
3930                         name[TCP_CA_NAME_MAX-1] = 0;
3931                         ret = tcp_set_congestion_control(sk, name, false,
3932                                                          reinit);
3933                 } else {
3934                         struct tcp_sock *tp = tcp_sk(sk);
3935
3936                         if (optlen != sizeof(int))
3937                                 return -EINVAL;
3938
3939                         val = *((int *)optval);
3940                         /* Only some options are supported */
3941                         switch (optname) {
3942                         case TCP_BPF_IW:
3943                                 if (val <= 0 || tp->data_segs_out > 0)
3944                                         ret = -EINVAL;
3945                                 else
3946                                         tp->snd_cwnd = val;
3947                                 break;
3948                         case TCP_BPF_SNDCWND_CLAMP:
3949                                 if (val <= 0) {
3950                                         ret = -EINVAL;
3951                                 } else {
3952                                         tp->snd_cwnd_clamp = val;
3953                                         tp->snd_ssthresh = val;
3954                                 }
3955                                 break;
3956                         default:
3957                                 ret = -EINVAL;
3958                         }
3959                 }
3960 #endif
3961         } else {
3962                 ret = -EINVAL;
3963         }
3964         return ret;
3965 }
3966
3967 static const struct bpf_func_proto bpf_setsockopt_proto = {
3968         .func           = bpf_setsockopt,
3969         .gpl_only       = false,
3970         .ret_type       = RET_INTEGER,
3971         .arg1_type      = ARG_PTR_TO_CTX,
3972         .arg2_type      = ARG_ANYTHING,
3973         .arg3_type      = ARG_ANYTHING,
3974         .arg4_type      = ARG_PTR_TO_MEM,
3975         .arg5_type      = ARG_CONST_SIZE,
3976 };
3977
3978 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3979            int, level, int, optname, char *, optval, int, optlen)
3980 {
3981         struct sock *sk = bpf_sock->sk;
3982
3983         if (!sk_fullsock(sk))
3984                 goto err_clear;
3985
3986 #ifdef CONFIG_INET
3987         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
3988                 if (optname == TCP_CONGESTION) {
3989                         struct inet_connection_sock *icsk = inet_csk(sk);
3990
3991                         if (!icsk->icsk_ca_ops || optlen <= 1)
3992                                 goto err_clear;
3993                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
3994                         optval[optlen - 1] = 0;
3995                 } else {
3996                         goto err_clear;
3997                 }
3998         } else if (level == SOL_IP) {
3999                 struct inet_sock *inet = inet_sk(sk);
4000
4001                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4002                         goto err_clear;
4003
4004                 /* Only some options are supported */
4005                 switch (optname) {
4006                 case IP_TOS:
4007                         *((int *)optval) = (int)inet->tos;
4008                         break;
4009                 default:
4010                         goto err_clear;
4011                 }
4012 #if IS_ENABLED(CONFIG_IPV6)
4013         } else if (level == SOL_IPV6) {
4014                 struct ipv6_pinfo *np = inet6_sk(sk);
4015
4016                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4017                         goto err_clear;
4018
4019                 /* Only some options are supported */
4020                 switch (optname) {
4021                 case IPV6_TCLASS:
4022                         *((int *)optval) = (int)np->tclass;
4023                         break;
4024                 default:
4025                         goto err_clear;
4026                 }
4027 #endif
4028         } else {
4029                 goto err_clear;
4030         }
4031         return 0;
4032 #endif
4033 err_clear:
4034         memset(optval, 0, optlen);
4035         return -EINVAL;
4036 }
4037
4038 static const struct bpf_func_proto bpf_getsockopt_proto = {
4039         .func           = bpf_getsockopt,
4040         .gpl_only       = false,
4041         .ret_type       = RET_INTEGER,
4042         .arg1_type      = ARG_PTR_TO_CTX,
4043         .arg2_type      = ARG_ANYTHING,
4044         .arg3_type      = ARG_ANYTHING,
4045         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4046         .arg5_type      = ARG_CONST_SIZE,
4047 };
4048
4049 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4050            int, argval)
4051 {
4052         struct sock *sk = bpf_sock->sk;
4053         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4054
4055         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4056                 return -EINVAL;
4057
4058         if (val)
4059                 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4060
4061         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4062 }
4063
4064 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4065         .func           = bpf_sock_ops_cb_flags_set,
4066         .gpl_only       = false,
4067         .ret_type       = RET_INTEGER,
4068         .arg1_type      = ARG_PTR_TO_CTX,
4069         .arg2_type      = ARG_ANYTHING,
4070 };
4071
4072 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4073 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4074
4075 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4076            int, addr_len)
4077 {
4078 #ifdef CONFIG_INET
4079         struct sock *sk = ctx->sk;
4080         int err;
4081
4082         /* Binding to port can be expensive so it's prohibited in the helper.
4083          * Only binding to IP is supported.
4084          */
4085         err = -EINVAL;
4086         if (addr->sa_family == AF_INET) {
4087                 if (addr_len < sizeof(struct sockaddr_in))
4088                         return err;
4089                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4090                         return err;
4091                 return __inet_bind(sk, addr, addr_len, true, false);
4092 #if IS_ENABLED(CONFIG_IPV6)
4093         } else if (addr->sa_family == AF_INET6) {
4094                 if (addr_len < SIN6_LEN_RFC2133)
4095                         return err;
4096                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4097                         return err;
4098                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4099                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4100                  */
4101                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4102 #endif /* CONFIG_IPV6 */
4103         }
4104 #endif /* CONFIG_INET */
4105
4106         return -EAFNOSUPPORT;
4107 }
4108
4109 static const struct bpf_func_proto bpf_bind_proto = {
4110         .func           = bpf_bind,
4111         .gpl_only       = false,
4112         .ret_type       = RET_INTEGER,
4113         .arg1_type      = ARG_PTR_TO_CTX,
4114         .arg2_type      = ARG_PTR_TO_MEM,
4115         .arg3_type      = ARG_CONST_SIZE,
4116 };
4117
4118 #ifdef CONFIG_XFRM
4119 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4120            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4121 {
4122         const struct sec_path *sp = skb_sec_path(skb);
4123         const struct xfrm_state *x;
4124
4125         if (!sp || unlikely(index >= sp->len || flags))
4126                 goto err_clear;
4127
4128         x = sp->xvec[index];
4129
4130         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4131                 goto err_clear;
4132
4133         to->reqid = x->props.reqid;
4134         to->spi = x->id.spi;
4135         to->family = x->props.family;
4136         to->ext = 0;
4137
4138         if (to->family == AF_INET6) {
4139                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4140                        sizeof(to->remote_ipv6));
4141         } else {
4142                 to->remote_ipv4 = x->props.saddr.a4;
4143                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4144         }
4145
4146         return 0;
4147 err_clear:
4148         memset(to, 0, size);
4149         return -EINVAL;
4150 }
4151
4152 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4153         .func           = bpf_skb_get_xfrm_state,
4154         .gpl_only       = false,
4155         .ret_type       = RET_INTEGER,
4156         .arg1_type      = ARG_PTR_TO_CTX,
4157         .arg2_type      = ARG_ANYTHING,
4158         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4159         .arg4_type      = ARG_CONST_SIZE,
4160         .arg5_type      = ARG_ANYTHING,
4161 };
4162 #endif
4163
4164 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4165 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4166                                   const struct neighbour *neigh,
4167                                   const struct net_device *dev)
4168 {
4169         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4170         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4171         params->h_vlan_TCI = 0;
4172         params->h_vlan_proto = 0;
4173         params->ifindex = dev->ifindex;
4174
4175         return 0;
4176 }
4177 #endif
4178
4179 #if IS_ENABLED(CONFIG_INET)
4180 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4181                                u32 flags, bool check_mtu)
4182 {
4183         struct in_device *in_dev;
4184         struct neighbour *neigh;
4185         struct net_device *dev;
4186         struct fib_result res;
4187         struct fib_nh *nh;
4188         struct flowi4 fl4;
4189         int err;
4190         u32 mtu;
4191
4192         dev = dev_get_by_index_rcu(net, params->ifindex);
4193         if (unlikely(!dev))
4194                 return -ENODEV;
4195
4196         /* verify forwarding is enabled on this interface */
4197         in_dev = __in_dev_get_rcu(dev);
4198         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4199                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4200
4201         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4202                 fl4.flowi4_iif = 1;
4203                 fl4.flowi4_oif = params->ifindex;
4204         } else {
4205                 fl4.flowi4_iif = params->ifindex;
4206                 fl4.flowi4_oif = 0;
4207         }
4208         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4209         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4210         fl4.flowi4_flags = 0;
4211
4212         fl4.flowi4_proto = params->l4_protocol;
4213         fl4.daddr = params->ipv4_dst;
4214         fl4.saddr = params->ipv4_src;
4215         fl4.fl4_sport = params->sport;
4216         fl4.fl4_dport = params->dport;
4217
4218         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4219                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4220                 struct fib_table *tb;
4221
4222                 tb = fib_get_table(net, tbid);
4223                 if (unlikely(!tb))
4224                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4225
4226                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4227         } else {
4228                 fl4.flowi4_mark = 0;
4229                 fl4.flowi4_secid = 0;
4230                 fl4.flowi4_tun_key.tun_id = 0;
4231                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4232
4233                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4234         }
4235
4236         if (err) {
4237                 /* map fib lookup errors to RTN_ type */
4238                 if (err == -EINVAL)
4239                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4240                 if (err == -EHOSTUNREACH)
4241                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4242                 if (err == -EACCES)
4243                         return BPF_FIB_LKUP_RET_PROHIBIT;
4244
4245                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4246         }
4247
4248         if (res.type != RTN_UNICAST)
4249                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4250
4251         if (res.fi->fib_nhs > 1)
4252                 fib_select_path(net, &res, &fl4, NULL);
4253
4254         if (check_mtu) {
4255                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4256                 if (params->tot_len > mtu)
4257                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4258         }
4259
4260         nh = &res.fi->fib_nh[res.nh_sel];
4261
4262         /* do not handle lwt encaps right now */
4263         if (nh->nh_lwtstate)
4264                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4265
4266         dev = nh->nh_dev;
4267         if (nh->nh_gw)
4268                 params->ipv4_dst = nh->nh_gw;
4269
4270         params->rt_metric = res.fi->fib_priority;
4271
4272         /* xdp and cls_bpf programs are run in RCU-bh so
4273          * rcu_read_lock_bh is not needed here
4274          */
4275         neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4276         if (!neigh)
4277                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4278
4279         return bpf_fib_set_fwd_params(params, neigh, dev);
4280 }
4281 #endif
4282
4283 #if IS_ENABLED(CONFIG_IPV6)
4284 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4285                                u32 flags, bool check_mtu)
4286 {
4287         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4288         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4289         struct neighbour *neigh;
4290         struct net_device *dev;
4291         struct inet6_dev *idev;
4292         struct fib6_info *f6i;
4293         struct flowi6 fl6;
4294         int strict = 0;
4295         int oif;
4296         u32 mtu;
4297
4298         /* link local addresses are never forwarded */
4299         if (rt6_need_strict(dst) || rt6_need_strict(src))
4300                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4301
4302         dev = dev_get_by_index_rcu(net, params->ifindex);
4303         if (unlikely(!dev))
4304                 return -ENODEV;
4305
4306         idev = __in6_dev_get_safely(dev);
4307         if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4308                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4309
4310         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4311                 fl6.flowi6_iif = 1;
4312                 oif = fl6.flowi6_oif = params->ifindex;
4313         } else {
4314                 oif = fl6.flowi6_iif = params->ifindex;
4315                 fl6.flowi6_oif = 0;
4316                 strict = RT6_LOOKUP_F_HAS_SADDR;
4317         }
4318         fl6.flowlabel = params->flowinfo;
4319         fl6.flowi6_scope = 0;
4320         fl6.flowi6_flags = 0;
4321         fl6.mp_hash = 0;
4322
4323         fl6.flowi6_proto = params->l4_protocol;
4324         fl6.daddr = *dst;
4325         fl6.saddr = *src;
4326         fl6.fl6_sport = params->sport;
4327         fl6.fl6_dport = params->dport;
4328
4329         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4330                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4331                 struct fib6_table *tb;
4332
4333                 tb = ipv6_stub->fib6_get_table(net, tbid);
4334                 if (unlikely(!tb))
4335                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4336
4337                 f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4338         } else {
4339                 fl6.flowi6_mark = 0;
4340                 fl6.flowi6_secid = 0;
4341                 fl6.flowi6_tun_key.tun_id = 0;
4342                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4343
4344                 f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4345         }
4346
4347         if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4348                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4349
4350         if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4351                 switch (f6i->fib6_type) {
4352                 case RTN_BLACKHOLE:
4353                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4354                 case RTN_UNREACHABLE:
4355                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4356                 case RTN_PROHIBIT:
4357                         return BPF_FIB_LKUP_RET_PROHIBIT;
4358                 default:
4359                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4360                 }
4361         }
4362
4363         if (f6i->fib6_type != RTN_UNICAST)
4364                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4365
4366         if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4367                 f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4368                                                        fl6.flowi6_oif, NULL,
4369                                                        strict);
4370
4371         if (check_mtu) {
4372                 mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4373                 if (params->tot_len > mtu)
4374                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4375         }
4376
4377         if (f6i->fib6_nh.nh_lwtstate)
4378                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4379
4380         if (f6i->fib6_flags & RTF_GATEWAY)
4381                 *dst = f6i->fib6_nh.nh_gw;
4382
4383         dev = f6i->fib6_nh.nh_dev;
4384         params->rt_metric = f6i->fib6_metric;
4385
4386         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4387          * not needed here. Can not use __ipv6_neigh_lookup_noref here
4388          * because we need to get nd_tbl via the stub
4389          */
4390         neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4391                                       ndisc_hashfn, dst, dev);
4392         if (!neigh)
4393                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4394
4395         return bpf_fib_set_fwd_params(params, neigh, dev);
4396 }
4397 #endif
4398
4399 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4400            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4401 {
4402         if (plen < sizeof(*params))
4403                 return -EINVAL;
4404
4405         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4406                 return -EINVAL;
4407
4408         switch (params->family) {
4409 #if IS_ENABLED(CONFIG_INET)
4410         case AF_INET:
4411                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4412                                            flags, true);
4413 #endif
4414 #if IS_ENABLED(CONFIG_IPV6)
4415         case AF_INET6:
4416                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4417                                            flags, true);
4418 #endif
4419         }
4420         return -EAFNOSUPPORT;
4421 }
4422
4423 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4424         .func           = bpf_xdp_fib_lookup,
4425         .gpl_only       = true,
4426         .ret_type       = RET_INTEGER,
4427         .arg1_type      = ARG_PTR_TO_CTX,
4428         .arg2_type      = ARG_PTR_TO_MEM,
4429         .arg3_type      = ARG_CONST_SIZE,
4430         .arg4_type      = ARG_ANYTHING,
4431 };
4432
4433 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4434            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4435 {
4436         struct net *net = dev_net(skb->dev);
4437         int rc = -EAFNOSUPPORT;
4438
4439         if (plen < sizeof(*params))
4440                 return -EINVAL;
4441
4442         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4443                 return -EINVAL;
4444
4445         switch (params->family) {
4446 #if IS_ENABLED(CONFIG_INET)
4447         case AF_INET:
4448                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4449                 break;
4450 #endif
4451 #if IS_ENABLED(CONFIG_IPV6)
4452         case AF_INET6:
4453                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4454                 break;
4455 #endif
4456         }
4457
4458         if (!rc) {
4459                 struct net_device *dev;
4460
4461                 dev = dev_get_by_index_rcu(net, params->ifindex);
4462                 if (!is_skb_forwardable(dev, skb))
4463                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4464         }
4465
4466         return rc;
4467 }
4468
4469 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4470         .func           = bpf_skb_fib_lookup,
4471         .gpl_only       = true,
4472         .ret_type       = RET_INTEGER,
4473         .arg1_type      = ARG_PTR_TO_CTX,
4474         .arg2_type      = ARG_PTR_TO_MEM,
4475         .arg3_type      = ARG_CONST_SIZE,
4476         .arg4_type      = ARG_ANYTHING,
4477 };
4478
4479 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4480 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4481 {
4482         int err;
4483         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4484
4485         if (!seg6_validate_srh(srh, len))
4486                 return -EINVAL;
4487
4488         switch (type) {
4489         case BPF_LWT_ENCAP_SEG6_INLINE:
4490                 if (skb->protocol != htons(ETH_P_IPV6))
4491                         return -EBADMSG;
4492
4493                 err = seg6_do_srh_inline(skb, srh);
4494                 break;
4495         case BPF_LWT_ENCAP_SEG6:
4496                 skb_reset_inner_headers(skb);
4497                 skb->encapsulation = 1;
4498                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4499                 break;
4500         default:
4501                 return -EINVAL;
4502         }
4503
4504         bpf_compute_data_pointers(skb);
4505         if (err)
4506                 return err;
4507
4508         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4509         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4510
4511         return seg6_lookup_nexthop(skb, NULL, 0);
4512 }
4513 #endif /* CONFIG_IPV6_SEG6_BPF */
4514
4515 BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4516            u32, len)
4517 {
4518         switch (type) {
4519 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4520         case BPF_LWT_ENCAP_SEG6:
4521         case BPF_LWT_ENCAP_SEG6_INLINE:
4522                 return bpf_push_seg6_encap(skb, type, hdr, len);
4523 #endif
4524         default:
4525                 return -EINVAL;
4526         }
4527 }
4528
4529 static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
4530         .func           = bpf_lwt_push_encap,
4531         .gpl_only       = false,
4532         .ret_type       = RET_INTEGER,
4533         .arg1_type      = ARG_PTR_TO_CTX,
4534         .arg2_type      = ARG_ANYTHING,
4535         .arg3_type      = ARG_PTR_TO_MEM,
4536         .arg4_type      = ARG_CONST_SIZE
4537 };
4538
4539 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4540 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4541            const void *, from, u32, len)
4542 {
4543         struct seg6_bpf_srh_state *srh_state =
4544                 this_cpu_ptr(&seg6_bpf_srh_states);
4545         void *srh_tlvs, *srh_end, *ptr;
4546         struct ipv6_sr_hdr *srh;
4547         int srhoff = 0;
4548
4549         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4550                 return -EINVAL;
4551
4552         srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4553         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4554         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4555
4556         ptr = skb->data + offset;
4557         if (ptr >= srh_tlvs && ptr + len <= srh_end)
4558                 srh_state->valid = 0;
4559         else if (ptr < (void *)&srh->flags ||
4560                  ptr + len > (void *)&srh->segments)
4561                 return -EFAULT;
4562
4563         if (unlikely(bpf_try_make_writable(skb, offset + len)))
4564                 return -EFAULT;
4565
4566         memcpy(skb->data + offset, from, len);
4567         return 0;
4568 }
4569
4570 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4571         .func           = bpf_lwt_seg6_store_bytes,
4572         .gpl_only       = false,
4573         .ret_type       = RET_INTEGER,
4574         .arg1_type      = ARG_PTR_TO_CTX,
4575         .arg2_type      = ARG_ANYTHING,
4576         .arg3_type      = ARG_PTR_TO_MEM,
4577         .arg4_type      = ARG_CONST_SIZE
4578 };
4579
4580 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4581            u32, action, void *, param, u32, param_len)
4582 {
4583         struct seg6_bpf_srh_state *srh_state =
4584                 this_cpu_ptr(&seg6_bpf_srh_states);
4585         struct ipv6_sr_hdr *srh;
4586         int srhoff = 0;
4587         int err;
4588
4589         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4590                 return -EINVAL;
4591         srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4592
4593         if (!srh_state->valid) {
4594                 if (unlikely((srh_state->hdrlen & 7) != 0))
4595                         return -EBADMSG;
4596
4597                 srh->hdrlen = (u8)(srh_state->hdrlen >> 3);
4598                 if (unlikely(!seg6_validate_srh(srh, (srh->hdrlen + 1) << 3)))
4599                         return -EBADMSG;
4600
4601                 srh_state->valid = 1;
4602         }
4603
4604         switch (action) {
4605         case SEG6_LOCAL_ACTION_END_X:
4606                 if (param_len != sizeof(struct in6_addr))
4607                         return -EINVAL;
4608                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4609         case SEG6_LOCAL_ACTION_END_T:
4610                 if (param_len != sizeof(int))
4611                         return -EINVAL;
4612                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4613         case SEG6_LOCAL_ACTION_END_B6:
4614                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4615                                           param, param_len);
4616                 if (!err)
4617                         srh_state->hdrlen =
4618                                 ((struct ipv6_sr_hdr *)param)->hdrlen << 3;
4619                 return err;
4620         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4621                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4622                                           param, param_len);
4623                 if (!err)
4624                         srh_state->hdrlen =
4625                                 ((struct ipv6_sr_hdr *)param)->hdrlen << 3;
4626                 return err;
4627         default:
4628                 return -EINVAL;
4629         }
4630 }
4631
4632 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4633         .func           = bpf_lwt_seg6_action,
4634         .gpl_only       = false,
4635         .ret_type       = RET_INTEGER,
4636         .arg1_type      = ARG_PTR_TO_CTX,
4637         .arg2_type      = ARG_ANYTHING,
4638         .arg3_type      = ARG_PTR_TO_MEM,
4639         .arg4_type      = ARG_CONST_SIZE
4640 };
4641
4642 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
4643            s32, len)
4644 {
4645         struct seg6_bpf_srh_state *srh_state =
4646                 this_cpu_ptr(&seg6_bpf_srh_states);
4647         void *srh_end, *srh_tlvs, *ptr;
4648         struct ipv6_sr_hdr *srh;
4649         struct ipv6hdr *hdr;
4650         int srhoff = 0;
4651         int ret;
4652
4653         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4654                 return -EINVAL;
4655         srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4656
4657         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
4658                         ((srh->first_segment + 1) << 4));
4659         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
4660                         srh_state->hdrlen);
4661         ptr = skb->data + offset;
4662
4663         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
4664                 return -EFAULT;
4665         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
4666                 return -EFAULT;
4667
4668         if (len > 0) {
4669                 ret = skb_cow_head(skb, len);
4670                 if (unlikely(ret < 0))
4671                         return ret;
4672
4673                 ret = bpf_skb_net_hdr_push(skb, offset, len);
4674         } else {
4675                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
4676         }
4677
4678         bpf_compute_data_pointers(skb);
4679         if (unlikely(ret < 0))
4680                 return ret;
4681
4682         hdr = (struct ipv6hdr *)skb->data;
4683         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4684
4685         srh_state->hdrlen += len;
4686         srh_state->valid = 0;
4687         return 0;
4688 }
4689
4690 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
4691         .func           = bpf_lwt_seg6_adjust_srh,
4692         .gpl_only       = false,
4693         .ret_type       = RET_INTEGER,
4694         .arg1_type      = ARG_PTR_TO_CTX,
4695         .arg2_type      = ARG_ANYTHING,
4696         .arg3_type      = ARG_ANYTHING,
4697 };
4698 #endif /* CONFIG_IPV6_SEG6_BPF */
4699
4700 bool bpf_helper_changes_pkt_data(void *func)
4701 {
4702         if (func == bpf_skb_vlan_push ||
4703             func == bpf_skb_vlan_pop ||
4704             func == bpf_skb_store_bytes ||
4705             func == bpf_skb_change_proto ||
4706             func == bpf_skb_change_head ||
4707             func == sk_skb_change_head ||
4708             func == bpf_skb_change_tail ||
4709             func == sk_skb_change_tail ||
4710             func == bpf_skb_adjust_room ||
4711             func == bpf_skb_pull_data ||
4712             func == sk_skb_pull_data ||
4713             func == bpf_clone_redirect ||
4714             func == bpf_l3_csum_replace ||
4715             func == bpf_l4_csum_replace ||
4716             func == bpf_xdp_adjust_head ||
4717             func == bpf_xdp_adjust_meta ||
4718             func == bpf_msg_pull_data ||
4719             func == bpf_xdp_adjust_tail ||
4720 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4721             func == bpf_lwt_seg6_store_bytes ||
4722             func == bpf_lwt_seg6_adjust_srh ||
4723             func == bpf_lwt_seg6_action ||
4724 #endif
4725             func == bpf_lwt_push_encap)
4726                 return true;
4727
4728         return false;
4729 }
4730
4731 static const struct bpf_func_proto *
4732 bpf_base_func_proto(enum bpf_func_id func_id)
4733 {
4734         switch (func_id) {
4735         case BPF_FUNC_map_lookup_elem:
4736                 return &bpf_map_lookup_elem_proto;
4737         case BPF_FUNC_map_update_elem:
4738                 return &bpf_map_update_elem_proto;
4739         case BPF_FUNC_map_delete_elem:
4740                 return &bpf_map_delete_elem_proto;
4741         case BPF_FUNC_get_prandom_u32:
4742                 return &bpf_get_prandom_u32_proto;
4743         case BPF_FUNC_get_smp_processor_id:
4744                 return &bpf_get_raw_smp_processor_id_proto;
4745         case BPF_FUNC_get_numa_node_id:
4746                 return &bpf_get_numa_node_id_proto;
4747         case BPF_FUNC_tail_call:
4748                 return &bpf_tail_call_proto;
4749         case BPF_FUNC_ktime_get_ns:
4750                 return &bpf_ktime_get_ns_proto;
4751         case BPF_FUNC_trace_printk:
4752                 if (capable(CAP_SYS_ADMIN))
4753                         return bpf_get_trace_printk_proto();
4754         default:
4755                 return NULL;
4756         }
4757 }
4758
4759 static const struct bpf_func_proto *
4760 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4761 {
4762         switch (func_id) {
4763         /* inet and inet6 sockets are created in a process
4764          * context so there is always a valid uid/gid
4765          */
4766         case BPF_FUNC_get_current_uid_gid:
4767                 return &bpf_get_current_uid_gid_proto;
4768         default:
4769                 return bpf_base_func_proto(func_id);
4770         }
4771 }
4772
4773 static const struct bpf_func_proto *
4774 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4775 {
4776         switch (func_id) {
4777         /* inet and inet6 sockets are created in a process
4778          * context so there is always a valid uid/gid
4779          */
4780         case BPF_FUNC_get_current_uid_gid:
4781                 return &bpf_get_current_uid_gid_proto;
4782         case BPF_FUNC_bind:
4783                 switch (prog->expected_attach_type) {
4784                 case BPF_CGROUP_INET4_CONNECT:
4785                 case BPF_CGROUP_INET6_CONNECT:
4786                         return &bpf_bind_proto;
4787                 default:
4788                         return NULL;
4789                 }
4790         default:
4791                 return bpf_base_func_proto(func_id);
4792         }
4793 }
4794
4795 static const struct bpf_func_proto *
4796 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4797 {
4798         switch (func_id) {
4799         case BPF_FUNC_skb_load_bytes:
4800                 return &bpf_skb_load_bytes_proto;
4801         case BPF_FUNC_skb_load_bytes_relative:
4802                 return &bpf_skb_load_bytes_relative_proto;
4803         case BPF_FUNC_get_socket_cookie:
4804                 return &bpf_get_socket_cookie_proto;
4805         case BPF_FUNC_get_socket_uid:
4806                 return &bpf_get_socket_uid_proto;
4807         default:
4808                 return bpf_base_func_proto(func_id);
4809         }
4810 }
4811
4812 static const struct bpf_func_proto *
4813 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4814 {
4815         switch (func_id) {
4816         case BPF_FUNC_skb_store_bytes:
4817                 return &bpf_skb_store_bytes_proto;
4818         case BPF_FUNC_skb_load_bytes:
4819                 return &bpf_skb_load_bytes_proto;
4820         case BPF_FUNC_skb_load_bytes_relative:
4821                 return &bpf_skb_load_bytes_relative_proto;
4822         case BPF_FUNC_skb_pull_data:
4823                 return &bpf_skb_pull_data_proto;
4824         case BPF_FUNC_csum_diff:
4825                 return &bpf_csum_diff_proto;
4826         case BPF_FUNC_csum_update:
4827                 return &bpf_csum_update_proto;
4828         case BPF_FUNC_l3_csum_replace:
4829                 return &bpf_l3_csum_replace_proto;
4830         case BPF_FUNC_l4_csum_replace:
4831                 return &bpf_l4_csum_replace_proto;
4832         case BPF_FUNC_clone_redirect:
4833                 return &bpf_clone_redirect_proto;
4834         case BPF_FUNC_get_cgroup_classid:
4835                 return &bpf_get_cgroup_classid_proto;
4836         case BPF_FUNC_skb_vlan_push:
4837                 return &bpf_skb_vlan_push_proto;
4838         case BPF_FUNC_skb_vlan_pop:
4839                 return &bpf_skb_vlan_pop_proto;
4840         case BPF_FUNC_skb_change_proto:
4841                 return &bpf_skb_change_proto_proto;
4842         case BPF_FUNC_skb_change_type:
4843                 return &bpf_skb_change_type_proto;
4844         case BPF_FUNC_skb_adjust_room:
4845                 return &bpf_skb_adjust_room_proto;
4846         case BPF_FUNC_skb_change_tail:
4847                 return &bpf_skb_change_tail_proto;
4848         case BPF_FUNC_skb_get_tunnel_key:
4849                 return &bpf_skb_get_tunnel_key_proto;
4850         case BPF_FUNC_skb_set_tunnel_key:
4851                 return bpf_get_skb_set_tunnel_proto(func_id);
4852         case BPF_FUNC_skb_get_tunnel_opt:
4853                 return &bpf_skb_get_tunnel_opt_proto;
4854         case BPF_FUNC_skb_set_tunnel_opt:
4855                 return bpf_get_skb_set_tunnel_proto(func_id);
4856         case BPF_FUNC_redirect:
4857                 return &bpf_redirect_proto;
4858         case BPF_FUNC_get_route_realm:
4859                 return &bpf_get_route_realm_proto;
4860         case BPF_FUNC_get_hash_recalc:
4861                 return &bpf_get_hash_recalc_proto;
4862         case BPF_FUNC_set_hash_invalid:
4863                 return &bpf_set_hash_invalid_proto;
4864         case BPF_FUNC_set_hash:
4865                 return &bpf_set_hash_proto;
4866         case BPF_FUNC_perf_event_output:
4867                 return &bpf_skb_event_output_proto;
4868         case BPF_FUNC_get_smp_processor_id:
4869                 return &bpf_get_smp_processor_id_proto;
4870         case BPF_FUNC_skb_under_cgroup:
4871                 return &bpf_skb_under_cgroup_proto;
4872         case BPF_FUNC_get_socket_cookie:
4873                 return &bpf_get_socket_cookie_proto;
4874         case BPF_FUNC_get_socket_uid:
4875                 return &bpf_get_socket_uid_proto;
4876         case BPF_FUNC_fib_lookup:
4877                 return &bpf_skb_fib_lookup_proto;
4878 #ifdef CONFIG_XFRM
4879         case BPF_FUNC_skb_get_xfrm_state:
4880                 return &bpf_skb_get_xfrm_state_proto;
4881 #endif
4882 #ifdef CONFIG_SOCK_CGROUP_DATA
4883         case BPF_FUNC_skb_cgroup_id:
4884                 return &bpf_skb_cgroup_id_proto;
4885 #endif
4886         default:
4887                 return bpf_base_func_proto(func_id);
4888         }
4889 }
4890
4891 static const struct bpf_func_proto *
4892 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4893 {
4894         switch (func_id) {
4895         case BPF_FUNC_perf_event_output:
4896                 return &bpf_xdp_event_output_proto;
4897         case BPF_FUNC_get_smp_processor_id:
4898                 return &bpf_get_smp_processor_id_proto;
4899         case BPF_FUNC_csum_diff:
4900                 return &bpf_csum_diff_proto;
4901         case BPF_FUNC_xdp_adjust_head:
4902                 return &bpf_xdp_adjust_head_proto;
4903         case BPF_FUNC_xdp_adjust_meta:
4904                 return &bpf_xdp_adjust_meta_proto;
4905         case BPF_FUNC_redirect:
4906                 return &bpf_xdp_redirect_proto;
4907         case BPF_FUNC_redirect_map:
4908                 return &bpf_xdp_redirect_map_proto;
4909         case BPF_FUNC_xdp_adjust_tail:
4910                 return &bpf_xdp_adjust_tail_proto;
4911         case BPF_FUNC_fib_lookup:
4912                 return &bpf_xdp_fib_lookup_proto;
4913         default:
4914                 return bpf_base_func_proto(func_id);
4915         }
4916 }
4917
4918 static const struct bpf_func_proto *
4919 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4920 {
4921         switch (func_id) {
4922         case BPF_FUNC_setsockopt:
4923                 return &bpf_setsockopt_proto;
4924         case BPF_FUNC_getsockopt:
4925                 return &bpf_getsockopt_proto;
4926         case BPF_FUNC_sock_ops_cb_flags_set:
4927                 return &bpf_sock_ops_cb_flags_set_proto;
4928         case BPF_FUNC_sock_map_update:
4929                 return &bpf_sock_map_update_proto;
4930         case BPF_FUNC_sock_hash_update:
4931                 return &bpf_sock_hash_update_proto;
4932         default:
4933                 return bpf_base_func_proto(func_id);
4934         }
4935 }
4936
4937 static const struct bpf_func_proto *
4938 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4939 {
4940         switch (func_id) {
4941         case BPF_FUNC_msg_redirect_map:
4942                 return &bpf_msg_redirect_map_proto;
4943         case BPF_FUNC_msg_redirect_hash:
4944                 return &bpf_msg_redirect_hash_proto;
4945         case BPF_FUNC_msg_apply_bytes:
4946                 return &bpf_msg_apply_bytes_proto;
4947         case BPF_FUNC_msg_cork_bytes:
4948                 return &bpf_msg_cork_bytes_proto;
4949         case BPF_FUNC_msg_pull_data:
4950                 return &bpf_msg_pull_data_proto;
4951         default:
4952                 return bpf_base_func_proto(func_id);
4953         }
4954 }
4955
4956 static const struct bpf_func_proto *
4957 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4958 {
4959         switch (func_id) {
4960         case BPF_FUNC_skb_store_bytes:
4961                 return &bpf_skb_store_bytes_proto;
4962         case BPF_FUNC_skb_load_bytes:
4963                 return &bpf_skb_load_bytes_proto;
4964         case BPF_FUNC_skb_pull_data:
4965                 return &sk_skb_pull_data_proto;
4966         case BPF_FUNC_skb_change_tail:
4967                 return &sk_skb_change_tail_proto;
4968         case BPF_FUNC_skb_change_head:
4969                 return &sk_skb_change_head_proto;
4970         case BPF_FUNC_get_socket_cookie:
4971                 return &bpf_get_socket_cookie_proto;
4972         case BPF_FUNC_get_socket_uid:
4973                 return &bpf_get_socket_uid_proto;
4974         case BPF_FUNC_sk_redirect_map:
4975                 return &bpf_sk_redirect_map_proto;
4976         case BPF_FUNC_sk_redirect_hash:
4977                 return &bpf_sk_redirect_hash_proto;
4978         default:
4979                 return bpf_base_func_proto(func_id);
4980         }
4981 }
4982
4983 static const struct bpf_func_proto *
4984 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4985 {
4986         switch (func_id) {
4987         case BPF_FUNC_skb_load_bytes:
4988                 return &bpf_skb_load_bytes_proto;
4989         case BPF_FUNC_skb_pull_data:
4990                 return &bpf_skb_pull_data_proto;
4991         case BPF_FUNC_csum_diff:
4992                 return &bpf_csum_diff_proto;
4993         case BPF_FUNC_get_cgroup_classid:
4994                 return &bpf_get_cgroup_classid_proto;
4995         case BPF_FUNC_get_route_realm:
4996                 return &bpf_get_route_realm_proto;
4997         case BPF_FUNC_get_hash_recalc:
4998                 return &bpf_get_hash_recalc_proto;
4999         case BPF_FUNC_perf_event_output:
5000                 return &bpf_skb_event_output_proto;
5001         case BPF_FUNC_get_smp_processor_id:
5002                 return &bpf_get_smp_processor_id_proto;
5003         case BPF_FUNC_skb_under_cgroup:
5004                 return &bpf_skb_under_cgroup_proto;
5005         default:
5006                 return bpf_base_func_proto(func_id);
5007         }
5008 }
5009
5010 static const struct bpf_func_proto *
5011 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5012 {
5013         switch (func_id) {
5014         case BPF_FUNC_lwt_push_encap:
5015                 return &bpf_lwt_push_encap_proto;
5016         default:
5017                 return lwt_out_func_proto(func_id, prog);
5018         }
5019 }
5020
5021 static const struct bpf_func_proto *
5022 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5023 {
5024         switch (func_id) {
5025         case BPF_FUNC_skb_get_tunnel_key:
5026                 return &bpf_skb_get_tunnel_key_proto;
5027         case BPF_FUNC_skb_set_tunnel_key:
5028                 return bpf_get_skb_set_tunnel_proto(func_id);
5029         case BPF_FUNC_skb_get_tunnel_opt:
5030                 return &bpf_skb_get_tunnel_opt_proto;
5031         case BPF_FUNC_skb_set_tunnel_opt:
5032                 return bpf_get_skb_set_tunnel_proto(func_id);
5033         case BPF_FUNC_redirect:
5034                 return &bpf_redirect_proto;
5035         case BPF_FUNC_clone_redirect:
5036                 return &bpf_clone_redirect_proto;
5037         case BPF_FUNC_skb_change_tail:
5038                 return &bpf_skb_change_tail_proto;
5039         case BPF_FUNC_skb_change_head:
5040                 return &bpf_skb_change_head_proto;
5041         case BPF_FUNC_skb_store_bytes:
5042                 return &bpf_skb_store_bytes_proto;
5043         case BPF_FUNC_csum_update:
5044                 return &bpf_csum_update_proto;
5045         case BPF_FUNC_l3_csum_replace:
5046                 return &bpf_l3_csum_replace_proto;
5047         case BPF_FUNC_l4_csum_replace:
5048                 return &bpf_l4_csum_replace_proto;
5049         case BPF_FUNC_set_hash_invalid:
5050                 return &bpf_set_hash_invalid_proto;
5051         default:
5052                 return lwt_out_func_proto(func_id, prog);
5053         }
5054 }
5055
5056 static const struct bpf_func_proto *
5057 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5058 {
5059         switch (func_id) {
5060 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5061         case BPF_FUNC_lwt_seg6_store_bytes:
5062                 return &bpf_lwt_seg6_store_bytes_proto;
5063         case BPF_FUNC_lwt_seg6_action:
5064                 return &bpf_lwt_seg6_action_proto;
5065         case BPF_FUNC_lwt_seg6_adjust_srh:
5066                 return &bpf_lwt_seg6_adjust_srh_proto;
5067 #endif
5068         default:
5069                 return lwt_out_func_proto(func_id, prog);
5070         }
5071 }
5072
5073 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5074                                     const struct bpf_prog *prog,
5075                                     struct bpf_insn_access_aux *info)
5076 {
5077         const int size_default = sizeof(__u32);
5078
5079         if (off < 0 || off >= sizeof(struct __sk_buff))
5080                 return false;
5081
5082         /* The verifier guarantees that size > 0. */
5083         if (off % size != 0)
5084                 return false;
5085
5086         switch (off) {
5087         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5088                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
5089                         return false;
5090                 break;
5091         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
5092         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5093         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5094         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5095         case bpf_ctx_range(struct __sk_buff, data):
5096         case bpf_ctx_range(struct __sk_buff, data_meta):
5097         case bpf_ctx_range(struct __sk_buff, data_end):
5098                 if (size != size_default)
5099                         return false;
5100                 break;
5101         default:
5102                 /* Only narrow read access allowed for now. */
5103                 if (type == BPF_WRITE) {
5104                         if (size != size_default)
5105                                 return false;
5106                 } else {
5107                         bpf_ctx_record_field_size(info, size_default);
5108                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5109                                 return false;
5110                 }
5111         }
5112
5113         return true;
5114 }
5115
5116 static bool sk_filter_is_valid_access(int off, int size,
5117                                       enum bpf_access_type type,
5118                                       const struct bpf_prog *prog,
5119                                       struct bpf_insn_access_aux *info)
5120 {
5121         switch (off) {
5122         case bpf_ctx_range(struct __sk_buff, tc_classid):
5123         case bpf_ctx_range(struct __sk_buff, data):
5124         case bpf_ctx_range(struct __sk_buff, data_meta):
5125         case bpf_ctx_range(struct __sk_buff, data_end):
5126         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5127                 return false;
5128         }
5129
5130         if (type == BPF_WRITE) {
5131                 switch (off) {
5132                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5133                         break;
5134                 default:
5135                         return false;
5136                 }
5137         }
5138
5139         return bpf_skb_is_valid_access(off, size, type, prog, info);
5140 }
5141
5142 static bool lwt_is_valid_access(int off, int size,
5143                                 enum bpf_access_type type,
5144                                 const struct bpf_prog *prog,
5145                                 struct bpf_insn_access_aux *info)
5146 {
5147         switch (off) {
5148         case bpf_ctx_range(struct __sk_buff, tc_classid):
5149         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5150         case bpf_ctx_range(struct __sk_buff, data_meta):
5151                 return false;
5152         }
5153
5154         if (type == BPF_WRITE) {
5155                 switch (off) {
5156                 case bpf_ctx_range(struct __sk_buff, mark):
5157                 case bpf_ctx_range(struct __sk_buff, priority):
5158                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5159                         break;
5160                 default:
5161                         return false;
5162                 }
5163         }
5164
5165         switch (off) {
5166         case bpf_ctx_range(struct __sk_buff, data):
5167                 info->reg_type = PTR_TO_PACKET;
5168                 break;
5169         case bpf_ctx_range(struct __sk_buff, data_end):
5170                 info->reg_type = PTR_TO_PACKET_END;
5171                 break;
5172         }
5173
5174         return bpf_skb_is_valid_access(off, size, type, prog, info);
5175 }
5176
5177 /* Attach type specific accesses */
5178 static bool __sock_filter_check_attach_type(int off,
5179                                             enum bpf_access_type access_type,
5180                                             enum bpf_attach_type attach_type)
5181 {
5182         switch (off) {
5183         case offsetof(struct bpf_sock, bound_dev_if):
5184         case offsetof(struct bpf_sock, mark):
5185         case offsetof(struct bpf_sock, priority):
5186                 switch (attach_type) {
5187                 case BPF_CGROUP_INET_SOCK_CREATE:
5188                         goto full_access;
5189                 default:
5190                         return false;
5191                 }
5192         case bpf_ctx_range(struct bpf_sock, src_ip4):
5193                 switch (attach_type) {
5194                 case BPF_CGROUP_INET4_POST_BIND:
5195                         goto read_only;
5196                 default:
5197                         return false;
5198                 }
5199         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5200                 switch (attach_type) {
5201                 case BPF_CGROUP_INET6_POST_BIND:
5202                         goto read_only;
5203                 default:
5204                         return false;
5205                 }
5206         case bpf_ctx_range(struct bpf_sock, src_port):
5207                 switch (attach_type) {
5208                 case BPF_CGROUP_INET4_POST_BIND:
5209                 case BPF_CGROUP_INET6_POST_BIND:
5210                         goto read_only;
5211                 default:
5212                         return false;
5213                 }
5214         }
5215 read_only:
5216         return access_type == BPF_READ;
5217 full_access:
5218         return true;
5219 }
5220
5221 static bool __sock_filter_check_size(int off, int size,
5222                                      struct bpf_insn_access_aux *info)
5223 {
5224         const int size_default = sizeof(__u32);
5225
5226         switch (off) {
5227         case bpf_ctx_range(struct bpf_sock, src_ip4):
5228         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5229                 bpf_ctx_record_field_size(info, size_default);
5230                 return bpf_ctx_narrow_access_ok(off, size, size_default);
5231         }
5232
5233         return size == size_default;
5234 }
5235
5236 static bool sock_filter_is_valid_access(int off, int size,
5237                                         enum bpf_access_type type,
5238                                         const struct bpf_prog *prog,
5239                                         struct bpf_insn_access_aux *info)
5240 {
5241         if (off < 0 || off >= sizeof(struct bpf_sock))
5242                 return false;
5243         if (off % size != 0)
5244                 return false;
5245         if (!__sock_filter_check_attach_type(off, type,
5246                                              prog->expected_attach_type))
5247                 return false;
5248         if (!__sock_filter_check_size(off, size, info))
5249                 return false;
5250         return true;
5251 }
5252
5253 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
5254                                 const struct bpf_prog *prog, int drop_verdict)
5255 {
5256         struct bpf_insn *insn = insn_buf;
5257
5258         if (!direct_write)
5259                 return 0;
5260
5261         /* if (!skb->cloned)
5262          *       goto start;
5263          *
5264          * (Fast-path, otherwise approximation that we might be
5265          *  a clone, do the rest in helper.)
5266          */
5267         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
5268         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
5269         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
5270
5271         /* ret = bpf_skb_pull_data(skb, 0); */
5272         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
5273         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
5274         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
5275                                BPF_FUNC_skb_pull_data);
5276         /* if (!ret)
5277          *      goto restore;
5278          * return TC_ACT_SHOT;
5279          */
5280         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5281         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5282         *insn++ = BPF_EXIT_INSN();
5283
5284         /* restore: */
5285         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
5286         /* start: */
5287         *insn++ = prog->insnsi[0];
5288
5289         return insn - insn_buf;
5290 }
5291
5292 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
5293                           struct bpf_insn *insn_buf)
5294 {
5295         bool indirect = BPF_MODE(orig->code) == BPF_IND;
5296         struct bpf_insn *insn = insn_buf;
5297
5298         /* We're guaranteed here that CTX is in R6. */
5299         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
5300         if (!indirect) {
5301                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
5302         } else {
5303                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
5304                 if (orig->imm)
5305                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
5306         }
5307
5308         switch (BPF_SIZE(orig->code)) {
5309         case BPF_B:
5310                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
5311                 break;
5312         case BPF_H:
5313                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
5314                 break;
5315         case BPF_W:
5316                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
5317                 break;
5318         }
5319
5320         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
5321         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
5322         *insn++ = BPF_EXIT_INSN();
5323
5324         return insn - insn_buf;
5325 }
5326
5327 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
5328                                const struct bpf_prog *prog)
5329 {
5330         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
5331 }
5332
5333 static bool tc_cls_act_is_valid_access(int off, int size,
5334                                        enum bpf_access_type type,
5335                                        const struct bpf_prog *prog,
5336                                        struct bpf_insn_access_aux *info)
5337 {
5338         if (type == BPF_WRITE) {
5339                 switch (off) {
5340                 case bpf_ctx_range(struct __sk_buff, mark):
5341                 case bpf_ctx_range(struct __sk_buff, tc_index):
5342                 case bpf_ctx_range(struct __sk_buff, priority):
5343                 case bpf_ctx_range(struct __sk_buff, tc_classid):
5344                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5345                         break;
5346                 default:
5347                         return false;
5348                 }
5349         }
5350
5351         switch (off) {
5352         case bpf_ctx_range(struct __sk_buff, data):
5353                 info->reg_type = PTR_TO_PACKET;
5354                 break;
5355         case bpf_ctx_range(struct __sk_buff, data_meta):
5356                 info->reg_type = PTR_TO_PACKET_META;
5357                 break;
5358         case bpf_ctx_range(struct __sk_buff, data_end):
5359                 info->reg_type = PTR_TO_PACKET_END;
5360                 break;
5361         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5362                 return false;
5363         }
5364
5365         return bpf_skb_is_valid_access(off, size, type, prog, info);
5366 }
5367
5368 static bool __is_valid_xdp_access(int off, int size)
5369 {
5370         if (off < 0 || off >= sizeof(struct xdp_md))
5371                 return false;
5372         if (off % size != 0)
5373                 return false;
5374         if (size != sizeof(__u32))
5375                 return false;
5376
5377         return true;
5378 }
5379
5380 static bool xdp_is_valid_access(int off, int size,
5381                                 enum bpf_access_type type,
5382                                 const struct bpf_prog *prog,
5383                                 struct bpf_insn_access_aux *info)
5384 {
5385         if (type == BPF_WRITE) {
5386                 if (bpf_prog_is_dev_bound(prog->aux)) {
5387                         switch (off) {
5388                         case offsetof(struct xdp_md, rx_queue_index):
5389                                 return __is_valid_xdp_access(off, size);
5390                         }
5391                 }
5392                 return false;
5393         }
5394
5395         switch (off) {
5396         case offsetof(struct xdp_md, data):
5397                 info->reg_type = PTR_TO_PACKET;
5398                 break;
5399         case offsetof(struct xdp_md, data_meta):
5400                 info->reg_type = PTR_TO_PACKET_META;
5401                 break;
5402         case offsetof(struct xdp_md, data_end):
5403                 info->reg_type = PTR_TO_PACKET_END;
5404                 break;
5405         }
5406
5407         return __is_valid_xdp_access(off, size);
5408 }
5409
5410 void bpf_warn_invalid_xdp_action(u32 act)
5411 {
5412         const u32 act_max = XDP_REDIRECT;
5413
5414         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
5415                   act > act_max ? "Illegal" : "Driver unsupported",
5416                   act);
5417 }
5418 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
5419
5420 static bool sock_addr_is_valid_access(int off, int size,
5421                                       enum bpf_access_type type,
5422                                       const struct bpf_prog *prog,
5423                                       struct bpf_insn_access_aux *info)
5424 {
5425         const int size_default = sizeof(__u32);
5426
5427         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
5428                 return false;
5429         if (off % size != 0)
5430                 return false;
5431
5432         /* Disallow access to IPv6 fields from IPv4 contex and vise
5433          * versa.
5434          */
5435         switch (off) {
5436         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5437                 switch (prog->expected_attach_type) {
5438                 case BPF_CGROUP_INET4_BIND:
5439                 case BPF_CGROUP_INET4_CONNECT:
5440                 case BPF_CGROUP_UDP4_SENDMSG:
5441                         break;
5442                 default:
5443                         return false;
5444                 }
5445                 break;
5446         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5447                 switch (prog->expected_attach_type) {
5448                 case BPF_CGROUP_INET6_BIND:
5449                 case BPF_CGROUP_INET6_CONNECT:
5450                 case BPF_CGROUP_UDP6_SENDMSG:
5451                         break;
5452                 default:
5453                         return false;
5454                 }
5455                 break;
5456         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5457                 switch (prog->expected_attach_type) {
5458                 case BPF_CGROUP_UDP4_SENDMSG:
5459                         break;
5460                 default:
5461                         return false;
5462                 }
5463                 break;
5464         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5465                                 msg_src_ip6[3]):
5466                 switch (prog->expected_attach_type) {
5467                 case BPF_CGROUP_UDP6_SENDMSG:
5468                         break;
5469                 default:
5470                         return false;
5471                 }
5472                 break;
5473         }
5474
5475         switch (off) {
5476         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5477         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5478         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5479         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5480                                 msg_src_ip6[3]):
5481                 /* Only narrow read access allowed for now. */
5482                 if (type == BPF_READ) {
5483                         bpf_ctx_record_field_size(info, size_default);
5484                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5485                                 return false;
5486                 } else {
5487                         if (size != size_default)
5488                                 return false;
5489                 }
5490                 break;
5491         case bpf_ctx_range(struct bpf_sock_addr, user_port):
5492                 if (size != size_default)
5493                         return false;
5494                 break;
5495         default:
5496                 if (type == BPF_READ) {
5497                         if (size != size_default)
5498                                 return false;
5499                 } else {
5500                         return false;
5501                 }
5502         }
5503
5504         return true;
5505 }
5506
5507 static bool sock_ops_is_valid_access(int off, int size,
5508                                      enum bpf_access_type type,
5509                                      const struct bpf_prog *prog,
5510                                      struct bpf_insn_access_aux *info)
5511 {
5512         const int size_default = sizeof(__u32);
5513
5514         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
5515                 return false;
5516
5517         /* The verifier guarantees that size > 0. */
5518         if (off % size != 0)
5519                 return false;
5520
5521         if (type == BPF_WRITE) {
5522                 switch (off) {
5523                 case offsetof(struct bpf_sock_ops, reply):
5524                 case offsetof(struct bpf_sock_ops, sk_txhash):
5525                         if (size != size_default)
5526                                 return false;
5527                         break;
5528                 default:
5529                         return false;
5530                 }
5531         } else {
5532                 switch (off) {
5533                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
5534                                         bytes_acked):
5535                         if (size != sizeof(__u64))
5536                                 return false;
5537                         break;
5538                 default:
5539                         if (size != size_default)
5540                                 return false;
5541                         break;
5542                 }
5543         }
5544
5545         return true;
5546 }
5547
5548 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
5549                            const struct bpf_prog *prog)
5550 {
5551         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5552 }
5553
5554 static bool sk_skb_is_valid_access(int off, int size,
5555                                    enum bpf_access_type type,
5556                                    const struct bpf_prog *prog,
5557                                    struct bpf_insn_access_aux *info)
5558 {
5559         switch (off) {
5560         case bpf_ctx_range(struct __sk_buff, tc_classid):
5561         case bpf_ctx_range(struct __sk_buff, data_meta):
5562                 return false;
5563         }
5564
5565         if (type == BPF_WRITE) {
5566                 switch (off) {
5567                 case bpf_ctx_range(struct __sk_buff, tc_index):
5568                 case bpf_ctx_range(struct __sk_buff, priority):
5569                         break;
5570                 default:
5571                         return false;
5572                 }
5573         }
5574
5575         switch (off) {
5576         case bpf_ctx_range(struct __sk_buff, mark):
5577                 return false;
5578         case bpf_ctx_range(struct __sk_buff, data):
5579                 info->reg_type = PTR_TO_PACKET;
5580                 break;
5581         case bpf_ctx_range(struct __sk_buff, data_end):
5582                 info->reg_type = PTR_TO_PACKET_END;
5583                 break;
5584         }
5585
5586         return bpf_skb_is_valid_access(off, size, type, prog, info);
5587 }
5588
5589 static bool sk_msg_is_valid_access(int off, int size,
5590                                    enum bpf_access_type type,
5591                                    const struct bpf_prog *prog,
5592                                    struct bpf_insn_access_aux *info)
5593 {
5594         if (type == BPF_WRITE)
5595                 return false;
5596
5597         switch (off) {
5598         case offsetof(struct sk_msg_md, data):
5599                 info->reg_type = PTR_TO_PACKET;
5600                 if (size != sizeof(__u64))
5601                         return false;
5602                 break;
5603         case offsetof(struct sk_msg_md, data_end):
5604                 info->reg_type = PTR_TO_PACKET_END;
5605                 if (size != sizeof(__u64))
5606                         return false;
5607                 break;
5608         default:
5609                 if (size != sizeof(__u32))
5610                         return false;
5611         }
5612
5613         if (off < 0 || off >= sizeof(struct sk_msg_md))
5614                 return false;
5615         if (off % size != 0)
5616                 return false;
5617
5618         return true;
5619 }
5620
5621 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
5622                                   const struct bpf_insn *si,
5623                                   struct bpf_insn *insn_buf,
5624                                   struct bpf_prog *prog, u32 *target_size)
5625 {
5626         struct bpf_insn *insn = insn_buf;
5627         int off;
5628
5629         switch (si->off) {
5630         case offsetof(struct __sk_buff, len):
5631                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5632                                       bpf_target_off(struct sk_buff, len, 4,
5633                                                      target_size));
5634                 break;
5635
5636         case offsetof(struct __sk_buff, protocol):
5637                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5638                                       bpf_target_off(struct sk_buff, protocol, 2,
5639                                                      target_size));
5640                 break;
5641
5642         case offsetof(struct __sk_buff, vlan_proto):
5643                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5644                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
5645                                                      target_size));
5646                 break;
5647
5648         case offsetof(struct __sk_buff, priority):
5649                 if (type == BPF_WRITE)
5650                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5651                                               bpf_target_off(struct sk_buff, priority, 4,
5652                                                              target_size));
5653                 else
5654                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5655                                               bpf_target_off(struct sk_buff, priority, 4,
5656                                                              target_size));
5657                 break;
5658
5659         case offsetof(struct __sk_buff, ingress_ifindex):
5660                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5661                                       bpf_target_off(struct sk_buff, skb_iif, 4,
5662                                                      target_size));
5663                 break;
5664
5665         case offsetof(struct __sk_buff, ifindex):
5666                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5667                                       si->dst_reg, si->src_reg,
5668                                       offsetof(struct sk_buff, dev));
5669                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
5670                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5671                                       bpf_target_off(struct net_device, ifindex, 4,
5672                                                      target_size));
5673                 break;
5674
5675         case offsetof(struct __sk_buff, hash):
5676                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5677                                       bpf_target_off(struct sk_buff, hash, 4,
5678                                                      target_size));
5679                 break;
5680
5681         case offsetof(struct __sk_buff, mark):
5682                 if (type == BPF_WRITE)
5683                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5684                                               bpf_target_off(struct sk_buff, mark, 4,
5685                                                              target_size));
5686                 else
5687                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5688                                               bpf_target_off(struct sk_buff, mark, 4,
5689                                                              target_size));
5690                 break;
5691
5692         case offsetof(struct __sk_buff, pkt_type):
5693                 *target_size = 1;
5694                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
5695                                       PKT_TYPE_OFFSET());
5696                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
5697 #ifdef __BIG_ENDIAN_BITFIELD
5698                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
5699 #endif
5700                 break;
5701
5702         case offsetof(struct __sk_buff, queue_mapping):
5703                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5704                                       bpf_target_off(struct sk_buff, queue_mapping, 2,
5705                                                      target_size));
5706                 break;
5707
5708         case offsetof(struct __sk_buff, vlan_present):
5709         case offsetof(struct __sk_buff, vlan_tci):
5710                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
5711
5712                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5713                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
5714                                                      target_size));
5715                 if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
5716                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
5717                                                 ~VLAN_TAG_PRESENT);
5718                 } else {
5719                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
5720                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
5721                 }
5722                 break;
5723
5724         case offsetof(struct __sk_buff, cb[0]) ...
5725              offsetofend(struct __sk_buff, cb[4]) - 1:
5726                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5727                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
5728                               offsetof(struct qdisc_skb_cb, data)) %
5729                              sizeof(__u64));
5730
5731                 prog->cb_access = 1;
5732                 off  = si->off;
5733                 off -= offsetof(struct __sk_buff, cb[0]);
5734                 off += offsetof(struct sk_buff, cb);
5735                 off += offsetof(struct qdisc_skb_cb, data);
5736                 if (type == BPF_WRITE)
5737                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5738                                               si->src_reg, off);
5739                 else
5740                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5741                                               si->src_reg, off);
5742                 break;
5743
5744         case offsetof(struct __sk_buff, tc_classid):
5745                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
5746
5747                 off  = si->off;
5748                 off -= offsetof(struct __sk_buff, tc_classid);
5749                 off += offsetof(struct sk_buff, cb);
5750                 off += offsetof(struct qdisc_skb_cb, tc_classid);
5751                 *target_size = 2;
5752                 if (type == BPF_WRITE)
5753                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
5754                                               si->src_reg, off);
5755                 else
5756                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
5757                                               si->src_reg, off);
5758                 break;
5759
5760         case offsetof(struct __sk_buff, data):
5761                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5762                                       si->dst_reg, si->src_reg,
5763                                       offsetof(struct sk_buff, data));
5764                 break;
5765
5766         case offsetof(struct __sk_buff, data_meta):
5767                 off  = si->off;
5768                 off -= offsetof(struct __sk_buff, data_meta);
5769                 off += offsetof(struct sk_buff, cb);
5770                 off += offsetof(struct bpf_skb_data_end, data_meta);
5771                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5772                                       si->src_reg, off);
5773                 break;
5774
5775         case offsetof(struct __sk_buff, data_end):
5776                 off  = si->off;
5777                 off -= offsetof(struct __sk_buff, data_end);
5778                 off += offsetof(struct sk_buff, cb);
5779                 off += offsetof(struct bpf_skb_data_end, data_end);
5780                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5781                                       si->src_reg, off);
5782                 break;
5783
5784         case offsetof(struct __sk_buff, tc_index):
5785 #ifdef CONFIG_NET_SCHED
5786                 if (type == BPF_WRITE)
5787                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5788                                               bpf_target_off(struct sk_buff, tc_index, 2,
5789                                                              target_size));
5790                 else
5791                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5792                                               bpf_target_off(struct sk_buff, tc_index, 2,
5793                                                              target_size));
5794 #else
5795                 *target_size = 2;
5796                 if (type == BPF_WRITE)
5797                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5798                 else
5799                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5800 #endif
5801                 break;
5802
5803         case offsetof(struct __sk_buff, napi_id):
5804 #if defined(CONFIG_NET_RX_BUSY_POLL)
5805                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5806                                       bpf_target_off(struct sk_buff, napi_id, 4,
5807                                                      target_size));
5808                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
5809                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5810 #else
5811                 *target_size = 4;
5812                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5813 #endif
5814                 break;
5815         case offsetof(struct __sk_buff, family):
5816                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5817
5818                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5819                                       si->dst_reg, si->src_reg,
5820                                       offsetof(struct sk_buff, sk));
5821                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5822                                       bpf_target_off(struct sock_common,
5823                                                      skc_family,
5824                                                      2, target_size));
5825                 break;
5826         case offsetof(struct __sk_buff, remote_ip4):
5827                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5828
5829                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5830                                       si->dst_reg, si->src_reg,
5831                                       offsetof(struct sk_buff, sk));
5832                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5833                                       bpf_target_off(struct sock_common,
5834                                                      skc_daddr,
5835                                                      4, target_size));
5836                 break;
5837         case offsetof(struct __sk_buff, local_ip4):
5838                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5839                                           skc_rcv_saddr) != 4);
5840
5841                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5842                                       si->dst_reg, si->src_reg,
5843                                       offsetof(struct sk_buff, sk));
5844                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5845                                       bpf_target_off(struct sock_common,
5846                                                      skc_rcv_saddr,
5847                                                      4, target_size));
5848                 break;
5849         case offsetof(struct __sk_buff, remote_ip6[0]) ...
5850              offsetof(struct __sk_buff, remote_ip6[3]):
5851 #if IS_ENABLED(CONFIG_IPV6)
5852                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5853                                           skc_v6_daddr.s6_addr32[0]) != 4);
5854
5855                 off = si->off;
5856                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
5857
5858                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5859                                       si->dst_reg, si->src_reg,
5860                                       offsetof(struct sk_buff, sk));
5861                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5862                                       offsetof(struct sock_common,
5863                                                skc_v6_daddr.s6_addr32[0]) +
5864                                       off);
5865 #else
5866                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5867 #endif
5868                 break;
5869         case offsetof(struct __sk_buff, local_ip6[0]) ...
5870              offsetof(struct __sk_buff, local_ip6[3]):
5871 #if IS_ENABLED(CONFIG_IPV6)
5872                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5873                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5874
5875                 off = si->off;
5876                 off -= offsetof(struct __sk_buff, local_ip6[0]);
5877
5878                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5879                                       si->dst_reg, si->src_reg,
5880                                       offsetof(struct sk_buff, sk));
5881                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5882                                       offsetof(struct sock_common,
5883                                                skc_v6_rcv_saddr.s6_addr32[0]) +
5884                                       off);
5885 #else
5886                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5887 #endif
5888                 break;
5889
5890         case offsetof(struct __sk_buff, remote_port):
5891                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
5892
5893                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5894                                       si->dst_reg, si->src_reg,
5895                                       offsetof(struct sk_buff, sk));
5896                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5897                                       bpf_target_off(struct sock_common,
5898                                                      skc_dport,
5899                                                      2, target_size));
5900 #ifndef __BIG_ENDIAN_BITFIELD
5901                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
5902 #endif
5903                 break;
5904
5905         case offsetof(struct __sk_buff, local_port):
5906                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
5907
5908                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5909                                       si->dst_reg, si->src_reg,
5910                                       offsetof(struct sk_buff, sk));
5911                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5912                                       bpf_target_off(struct sock_common,
5913                                                      skc_num, 2, target_size));
5914                 break;
5915         }
5916
5917         return insn - insn_buf;
5918 }
5919
5920 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
5921                                           const struct bpf_insn *si,
5922                                           struct bpf_insn *insn_buf,
5923                                           struct bpf_prog *prog, u32 *target_size)
5924 {
5925         struct bpf_insn *insn = insn_buf;
5926         int off;
5927
5928         switch (si->off) {
5929         case offsetof(struct bpf_sock, bound_dev_if):
5930                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
5931
5932                 if (type == BPF_WRITE)
5933                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5934                                         offsetof(struct sock, sk_bound_dev_if));
5935                 else
5936                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5937                                       offsetof(struct sock, sk_bound_dev_if));
5938                 break;
5939
5940         case offsetof(struct bpf_sock, mark):
5941                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
5942
5943                 if (type == BPF_WRITE)
5944                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5945                                         offsetof(struct sock, sk_mark));
5946                 else
5947                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5948                                       offsetof(struct sock, sk_mark));
5949                 break;
5950
5951         case offsetof(struct bpf_sock, priority):
5952                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
5953
5954                 if (type == BPF_WRITE)
5955                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5956                                         offsetof(struct sock, sk_priority));
5957                 else
5958                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5959                                       offsetof(struct sock, sk_priority));
5960                 break;
5961
5962         case offsetof(struct bpf_sock, family):
5963                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
5964
5965                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5966                                       offsetof(struct sock, sk_family));
5967                 break;
5968
5969         case offsetof(struct bpf_sock, type):
5970                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5971                                       offsetof(struct sock, __sk_flags_offset));
5972                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
5973                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
5974                 break;
5975
5976         case offsetof(struct bpf_sock, protocol):
5977                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5978                                       offsetof(struct sock, __sk_flags_offset));
5979                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
5980                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
5981                 break;
5982
5983         case offsetof(struct bpf_sock, src_ip4):
5984                 *insn++ = BPF_LDX_MEM(
5985                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
5986                         bpf_target_off(struct sock_common, skc_rcv_saddr,
5987                                        FIELD_SIZEOF(struct sock_common,
5988                                                     skc_rcv_saddr),
5989                                        target_size));
5990                 break;
5991
5992         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5993 #if IS_ENABLED(CONFIG_IPV6)
5994                 off = si->off;
5995                 off -= offsetof(struct bpf_sock, src_ip6[0]);
5996                 *insn++ = BPF_LDX_MEM(
5997                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
5998                         bpf_target_off(
5999                                 struct sock_common,
6000                                 skc_v6_rcv_saddr.s6_addr32[0],
6001                                 FIELD_SIZEOF(struct sock_common,
6002                                              skc_v6_rcv_saddr.s6_addr32[0]),
6003                                 target_size) + off);
6004 #else
6005                 (void)off;
6006                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6007 #endif
6008                 break;
6009
6010         case offsetof(struct bpf_sock, src_port):
6011                 *insn++ = BPF_LDX_MEM(
6012                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
6013                         si->dst_reg, si->src_reg,
6014                         bpf_target_off(struct sock_common, skc_num,
6015                                        FIELD_SIZEOF(struct sock_common,
6016                                                     skc_num),
6017                                        target_size));
6018                 break;
6019         }
6020
6021         return insn - insn_buf;
6022 }
6023
6024 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
6025                                          const struct bpf_insn *si,
6026                                          struct bpf_insn *insn_buf,
6027                                          struct bpf_prog *prog, u32 *target_size)
6028 {
6029         struct bpf_insn *insn = insn_buf;
6030
6031         switch (si->off) {
6032         case offsetof(struct __sk_buff, ifindex):
6033                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6034                                       si->dst_reg, si->src_reg,
6035                                       offsetof(struct sk_buff, dev));
6036                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6037                                       bpf_target_off(struct net_device, ifindex, 4,
6038                                                      target_size));
6039                 break;
6040         default:
6041                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6042                                               target_size);
6043         }
6044
6045         return insn - insn_buf;
6046 }
6047
6048 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
6049                                   const struct bpf_insn *si,
6050                                   struct bpf_insn *insn_buf,
6051                                   struct bpf_prog *prog, u32 *target_size)
6052 {
6053         struct bpf_insn *insn = insn_buf;
6054
6055         switch (si->off) {
6056         case offsetof(struct xdp_md, data):
6057                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6058                                       si->dst_reg, si->src_reg,
6059                                       offsetof(struct xdp_buff, data));
6060                 break;
6061         case offsetof(struct xdp_md, data_meta):
6062                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
6063                                       si->dst_reg, si->src_reg,
6064                                       offsetof(struct xdp_buff, data_meta));
6065                 break;
6066         case offsetof(struct xdp_md, data_end):
6067                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6068                                       si->dst_reg, si->src_reg,
6069                                       offsetof(struct xdp_buff, data_end));
6070                 break;
6071         case offsetof(struct xdp_md, ingress_ifindex):
6072                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6073                                       si->dst_reg, si->src_reg,
6074                                       offsetof(struct xdp_buff, rxq));
6075                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
6076                                       si->dst_reg, si->dst_reg,
6077                                       offsetof(struct xdp_rxq_info, dev));
6078                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6079                                       offsetof(struct net_device, ifindex));
6080                 break;
6081         case offsetof(struct xdp_md, rx_queue_index):
6082                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6083                                       si->dst_reg, si->src_reg,
6084                                       offsetof(struct xdp_buff, rxq));
6085                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6086                                       offsetof(struct xdp_rxq_info,
6087                                                queue_index));
6088                 break;
6089         }
6090
6091         return insn - insn_buf;
6092 }
6093
6094 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
6095  * context Structure, F is Field in context structure that contains a pointer
6096  * to Nested Structure of type NS that has the field NF.
6097  *
6098  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
6099  * sure that SIZE is not greater than actual size of S.F.NF.
6100  *
6101  * If offset OFF is provided, the load happens from that offset relative to
6102  * offset of NF.
6103  */
6104 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
6105         do {                                                                   \
6106                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
6107                                       si->src_reg, offsetof(S, F));            \
6108                 *insn++ = BPF_LDX_MEM(                                         \
6109                         SIZE, si->dst_reg, si->dst_reg,                        \
6110                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6111                                        target_size)                            \
6112                                 + OFF);                                        \
6113         } while (0)
6114
6115 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
6116         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
6117                                              BPF_FIELD_SIZEOF(NS, NF), 0)
6118
6119 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
6120  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
6121  *
6122  * It doesn't support SIZE argument though since narrow stores are not
6123  * supported for now.
6124  *
6125  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
6126  * "register" since two registers available in convert_ctx_access are not
6127  * enough: we can't override neither SRC, since it contains value to store, nor
6128  * DST since it contains pointer to context that may be used by later
6129  * instructions. But we need a temporary place to save pointer to nested
6130  * structure whose field we want to store to.
6131  */
6132 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)                \
6133         do {                                                                   \
6134                 int tmp_reg = BPF_REG_9;                                       \
6135                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6136                         --tmp_reg;                                             \
6137                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6138                         --tmp_reg;                                             \
6139                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
6140                                       offsetof(S, TF));                        \
6141                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
6142                                       si->dst_reg, offsetof(S, F));            \
6143                 *insn++ = BPF_STX_MEM(                                         \
6144                         BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,        \
6145                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6146                                        target_size)                            \
6147                                 + OFF);                                        \
6148                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
6149                                       offsetof(S, TF));                        \
6150         } while (0)
6151
6152 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
6153                                                       TF)                      \
6154         do {                                                                   \
6155                 if (type == BPF_WRITE) {                                       \
6156                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
6157                                                          TF);                  \
6158                 } else {                                                       \
6159                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
6160                                 S, NS, F, NF, SIZE, OFF);  \
6161                 }                                                              \
6162         } while (0)
6163
6164 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
6165         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
6166                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
6167
6168 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
6169                                         const struct bpf_insn *si,
6170                                         struct bpf_insn *insn_buf,
6171                                         struct bpf_prog *prog, u32 *target_size)
6172 {
6173         struct bpf_insn *insn = insn_buf;
6174         int off;
6175
6176         switch (si->off) {
6177         case offsetof(struct bpf_sock_addr, user_family):
6178                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6179                                             struct sockaddr, uaddr, sa_family);
6180                 break;
6181
6182         case offsetof(struct bpf_sock_addr, user_ip4):
6183                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6184                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
6185                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
6186                 break;
6187
6188         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6189                 off = si->off;
6190                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
6191                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6192                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
6193                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
6194                         tmp_reg);
6195                 break;
6196
6197         case offsetof(struct bpf_sock_addr, user_port):
6198                 /* To get port we need to know sa_family first and then treat
6199                  * sockaddr as either sockaddr_in or sockaddr_in6.
6200                  * Though we can simplify since port field has same offset and
6201                  * size in both structures.
6202                  * Here we check this invariant and use just one of the
6203                  * structures if it's true.
6204                  */
6205                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
6206                              offsetof(struct sockaddr_in6, sin6_port));
6207                 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
6208                              FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
6209                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
6210                                                      struct sockaddr_in6, uaddr,
6211                                                      sin6_port, tmp_reg);
6212                 break;
6213
6214         case offsetof(struct bpf_sock_addr, family):
6215                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6216                                             struct sock, sk, sk_family);
6217                 break;
6218
6219         case offsetof(struct bpf_sock_addr, type):
6220                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6221                         struct bpf_sock_addr_kern, struct sock, sk,
6222                         __sk_flags_offset, BPF_W, 0);
6223                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6224                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6225                 break;
6226
6227         case offsetof(struct bpf_sock_addr, protocol):
6228                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6229                         struct bpf_sock_addr_kern, struct sock, sk,
6230                         __sk_flags_offset, BPF_W, 0);
6231                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6232                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
6233                                         SK_FL_PROTO_SHIFT);
6234                 break;
6235
6236         case offsetof(struct bpf_sock_addr, msg_src_ip4):
6237                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
6238                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6239                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
6240                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
6241                 break;
6242
6243         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6244                                 msg_src_ip6[3]):
6245                 off = si->off;
6246                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
6247                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
6248                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6249                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
6250                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
6251                 break;
6252         }
6253
6254         return insn - insn_buf;
6255 }
6256
6257 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
6258                                        const struct bpf_insn *si,
6259                                        struct bpf_insn *insn_buf,
6260                                        struct bpf_prog *prog,
6261                                        u32 *target_size)
6262 {
6263         struct bpf_insn *insn = insn_buf;
6264         int off;
6265
6266         switch (si->off) {
6267         case offsetof(struct bpf_sock_ops, op) ...
6268              offsetof(struct bpf_sock_ops, replylong[3]):
6269                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
6270                              FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
6271                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
6272                              FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
6273                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
6274                              FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
6275                 off = si->off;
6276                 off -= offsetof(struct bpf_sock_ops, op);
6277                 off += offsetof(struct bpf_sock_ops_kern, op);
6278                 if (type == BPF_WRITE)
6279                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6280                                               off);
6281                 else
6282                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6283                                               off);
6284                 break;
6285
6286         case offsetof(struct bpf_sock_ops, family):
6287                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6288
6289                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6290                                               struct bpf_sock_ops_kern, sk),
6291                                       si->dst_reg, si->src_reg,
6292                                       offsetof(struct bpf_sock_ops_kern, sk));
6293                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6294                                       offsetof(struct sock_common, skc_family));
6295                 break;
6296
6297         case offsetof(struct bpf_sock_ops, remote_ip4):
6298                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6299
6300                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6301                                                 struct bpf_sock_ops_kern, sk),
6302                                       si->dst_reg, si->src_reg,
6303                                       offsetof(struct bpf_sock_ops_kern, sk));
6304                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6305                                       offsetof(struct sock_common, skc_daddr));
6306                 break;
6307
6308         case offsetof(struct bpf_sock_ops, local_ip4):
6309                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6310                                           skc_rcv_saddr) != 4);
6311
6312                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6313                                               struct bpf_sock_ops_kern, sk),
6314                                       si->dst_reg, si->src_reg,
6315                                       offsetof(struct bpf_sock_ops_kern, sk));
6316                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6317                                       offsetof(struct sock_common,
6318                                                skc_rcv_saddr));
6319                 break;
6320
6321         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
6322              offsetof(struct bpf_sock_ops, remote_ip6[3]):
6323 #if IS_ENABLED(CONFIG_IPV6)
6324                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6325                                           skc_v6_daddr.s6_addr32[0]) != 4);
6326
6327                 off = si->off;
6328                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
6329                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6330                                                 struct bpf_sock_ops_kern, sk),
6331                                       si->dst_reg, si->src_reg,
6332                                       offsetof(struct bpf_sock_ops_kern, sk));
6333                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6334                                       offsetof(struct sock_common,
6335                                                skc_v6_daddr.s6_addr32[0]) +
6336                                       off);
6337 #else
6338                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6339 #endif
6340                 break;
6341
6342         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
6343              offsetof(struct bpf_sock_ops, local_ip6[3]):
6344 #if IS_ENABLED(CONFIG_IPV6)
6345                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6346                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6347
6348                 off = si->off;
6349                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
6350                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6351                                                 struct bpf_sock_ops_kern, sk),
6352                                       si->dst_reg, si->src_reg,
6353                                       offsetof(struct bpf_sock_ops_kern, sk));
6354                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6355                                       offsetof(struct sock_common,
6356                                                skc_v6_rcv_saddr.s6_addr32[0]) +
6357                                       off);
6358 #else
6359                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6360 #endif
6361                 break;
6362
6363         case offsetof(struct bpf_sock_ops, remote_port):
6364                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6365
6366                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6367                                                 struct bpf_sock_ops_kern, sk),
6368                                       si->dst_reg, si->src_reg,
6369                                       offsetof(struct bpf_sock_ops_kern, sk));
6370                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6371                                       offsetof(struct sock_common, skc_dport));
6372 #ifndef __BIG_ENDIAN_BITFIELD
6373                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6374 #endif
6375                 break;
6376
6377         case offsetof(struct bpf_sock_ops, local_port):
6378                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6379
6380                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6381                                                 struct bpf_sock_ops_kern, sk),
6382                                       si->dst_reg, si->src_reg,
6383                                       offsetof(struct bpf_sock_ops_kern, sk));
6384                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6385                                       offsetof(struct sock_common, skc_num));
6386                 break;
6387
6388         case offsetof(struct bpf_sock_ops, is_fullsock):
6389                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6390                                                 struct bpf_sock_ops_kern,
6391                                                 is_fullsock),
6392                                       si->dst_reg, si->src_reg,
6393                                       offsetof(struct bpf_sock_ops_kern,
6394                                                is_fullsock));
6395                 break;
6396
6397         case offsetof(struct bpf_sock_ops, state):
6398                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
6399
6400                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6401                                                 struct bpf_sock_ops_kern, sk),
6402                                       si->dst_reg, si->src_reg,
6403                                       offsetof(struct bpf_sock_ops_kern, sk));
6404                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
6405                                       offsetof(struct sock_common, skc_state));
6406                 break;
6407
6408         case offsetof(struct bpf_sock_ops, rtt_min):
6409                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
6410                              sizeof(struct minmax));
6411                 BUILD_BUG_ON(sizeof(struct minmax) <
6412                              sizeof(struct minmax_sample));
6413
6414                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6415                                                 struct bpf_sock_ops_kern, sk),
6416                                       si->dst_reg, si->src_reg,
6417                                       offsetof(struct bpf_sock_ops_kern, sk));
6418                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6419                                       offsetof(struct tcp_sock, rtt_min) +
6420                                       FIELD_SIZEOF(struct minmax_sample, t));
6421                 break;
6422
6423 /* Helper macro for adding read access to tcp_sock or sock fields. */
6424 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
6425         do {                                                                  \
6426                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
6427                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6428                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6429                                                 struct bpf_sock_ops_kern,     \
6430                                                 is_fullsock),                 \
6431                                       si->dst_reg, si->src_reg,               \
6432                                       offsetof(struct bpf_sock_ops_kern,      \
6433                                                is_fullsock));                 \
6434                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
6435                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6436                                                 struct bpf_sock_ops_kern, sk),\
6437                                       si->dst_reg, si->src_reg,               \
6438                                       offsetof(struct bpf_sock_ops_kern, sk));\
6439                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
6440                                                        OBJ_FIELD),            \
6441                                       si->dst_reg, si->dst_reg,               \
6442                                       offsetof(OBJ, OBJ_FIELD));              \
6443         } while (0)
6444
6445 /* Helper macro for adding write access to tcp_sock or sock fields.
6446  * The macro is called with two registers, dst_reg which contains a pointer
6447  * to ctx (context) and src_reg which contains the value that should be
6448  * stored. However, we need an additional register since we cannot overwrite
6449  * dst_reg because it may be used later in the program.
6450  * Instead we "borrow" one of the other register. We first save its value
6451  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
6452  * it at the end of the macro.
6453  */
6454 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
6455         do {                                                                  \
6456                 int reg = BPF_REG_9;                                          \
6457                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
6458                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6459                 if (si->dst_reg == reg || si->src_reg == reg)                 \
6460                         reg--;                                                \
6461                 if (si->dst_reg == reg || si->src_reg == reg)                 \
6462                         reg--;                                                \
6463                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
6464                                       offsetof(struct bpf_sock_ops_kern,      \
6465                                                temp));                        \
6466                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6467                                                 struct bpf_sock_ops_kern,     \
6468                                                 is_fullsock),                 \
6469                                       reg, si->dst_reg,                       \
6470                                       offsetof(struct bpf_sock_ops_kern,      \
6471                                                is_fullsock));                 \
6472                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
6473                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6474                                                 struct bpf_sock_ops_kern, sk),\
6475                                       reg, si->dst_reg,                       \
6476                                       offsetof(struct bpf_sock_ops_kern, sk));\
6477                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
6478                                       reg, si->src_reg,                       \
6479                                       offsetof(OBJ, OBJ_FIELD));              \
6480                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
6481                                       offsetof(struct bpf_sock_ops_kern,      \
6482                                                temp));                        \
6483         } while (0)
6484
6485 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
6486         do {                                                                  \
6487                 if (TYPE == BPF_WRITE)                                        \
6488                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
6489                 else                                                          \
6490                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
6491         } while (0)
6492
6493         case offsetof(struct bpf_sock_ops, snd_cwnd):
6494                 SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6495                 break;
6496
6497         case offsetof(struct bpf_sock_ops, srtt_us):
6498                 SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6499                 break;
6500
6501         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
6502                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
6503                                    struct tcp_sock);
6504                 break;
6505
6506         case offsetof(struct bpf_sock_ops, snd_ssthresh):
6507                 SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
6508                 break;
6509
6510         case offsetof(struct bpf_sock_ops, rcv_nxt):
6511                 SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
6512                 break;
6513
6514         case offsetof(struct bpf_sock_ops, snd_nxt):
6515                 SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
6516                 break;
6517
6518         case offsetof(struct bpf_sock_ops, snd_una):
6519                 SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
6520                 break;
6521
6522         case offsetof(struct bpf_sock_ops, mss_cache):
6523                 SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
6524                 break;
6525
6526         case offsetof(struct bpf_sock_ops, ecn_flags):
6527                 SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
6528                 break;
6529
6530         case offsetof(struct bpf_sock_ops, rate_delivered):
6531                 SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
6532                                    struct tcp_sock);
6533                 break;
6534
6535         case offsetof(struct bpf_sock_ops, rate_interval_us):
6536                 SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
6537                                    struct tcp_sock);
6538                 break;
6539
6540         case offsetof(struct bpf_sock_ops, packets_out):
6541                 SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
6542                 break;
6543
6544         case offsetof(struct bpf_sock_ops, retrans_out):
6545                 SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
6546                 break;
6547
6548         case offsetof(struct bpf_sock_ops, total_retrans):
6549                 SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
6550                                    struct tcp_sock);
6551                 break;
6552
6553         case offsetof(struct bpf_sock_ops, segs_in):
6554                 SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
6555                 break;
6556
6557         case offsetof(struct bpf_sock_ops, data_segs_in):
6558                 SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
6559                 break;
6560
6561         case offsetof(struct bpf_sock_ops, segs_out):
6562                 SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
6563                 break;
6564
6565         case offsetof(struct bpf_sock_ops, data_segs_out):
6566                 SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
6567                                    struct tcp_sock);
6568                 break;
6569
6570         case offsetof(struct bpf_sock_ops, lost_out):
6571                 SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
6572                 break;
6573
6574         case offsetof(struct bpf_sock_ops, sacked_out):
6575                 SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
6576                 break;
6577
6578         case offsetof(struct bpf_sock_ops, sk_txhash):
6579                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
6580                                           struct sock, type);
6581                 break;
6582
6583         case offsetof(struct bpf_sock_ops, bytes_received):
6584                 SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
6585                                    struct tcp_sock);
6586                 break;
6587
6588         case offsetof(struct bpf_sock_ops, bytes_acked):
6589                 SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
6590                 break;
6591
6592         }
6593         return insn - insn_buf;
6594 }
6595
6596 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
6597                                      const struct bpf_insn *si,
6598                                      struct bpf_insn *insn_buf,
6599                                      struct bpf_prog *prog, u32 *target_size)
6600 {
6601         struct bpf_insn *insn = insn_buf;
6602         int off;
6603
6604         switch (si->off) {
6605         case offsetof(struct __sk_buff, data_end):
6606                 off  = si->off;
6607                 off -= offsetof(struct __sk_buff, data_end);
6608                 off += offsetof(struct sk_buff, cb);
6609                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
6610                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6611                                       si->src_reg, off);
6612                 break;
6613         default:
6614                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6615                                               target_size);
6616         }
6617
6618         return insn - insn_buf;
6619 }
6620
6621 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
6622                                      const struct bpf_insn *si,
6623                                      struct bpf_insn *insn_buf,
6624                                      struct bpf_prog *prog, u32 *target_size)
6625 {
6626         struct bpf_insn *insn = insn_buf;
6627 #if IS_ENABLED(CONFIG_IPV6)
6628         int off;
6629 #endif
6630
6631         switch (si->off) {
6632         case offsetof(struct sk_msg_md, data):
6633                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
6634                                       si->dst_reg, si->src_reg,
6635                                       offsetof(struct sk_msg_buff, data));
6636                 break;
6637         case offsetof(struct sk_msg_md, data_end):
6638                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
6639                                       si->dst_reg, si->src_reg,
6640                                       offsetof(struct sk_msg_buff, data_end));
6641                 break;
6642         case offsetof(struct sk_msg_md, family):
6643                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6644
6645                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6646                                               struct sk_msg_buff, sk),
6647                                       si->dst_reg, si->src_reg,
6648                                       offsetof(struct sk_msg_buff, sk));
6649                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6650                                       offsetof(struct sock_common, skc_family));
6651                 break;
6652
6653         case offsetof(struct sk_msg_md, remote_ip4):
6654                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6655
6656                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6657                                                 struct sk_msg_buff, sk),
6658                                       si->dst_reg, si->src_reg,
6659                                       offsetof(struct sk_msg_buff, sk));
6660                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6661                                       offsetof(struct sock_common, skc_daddr));
6662                 break;
6663
6664         case offsetof(struct sk_msg_md, local_ip4):
6665                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6666                                           skc_rcv_saddr) != 4);
6667
6668                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6669                                               struct sk_msg_buff, sk),
6670                                       si->dst_reg, si->src_reg,
6671                                       offsetof(struct sk_msg_buff, sk));
6672                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6673                                       offsetof(struct sock_common,
6674                                                skc_rcv_saddr));
6675                 break;
6676
6677         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
6678              offsetof(struct sk_msg_md, remote_ip6[3]):
6679 #if IS_ENABLED(CONFIG_IPV6)
6680                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6681                                           skc_v6_daddr.s6_addr32[0]) != 4);
6682
6683                 off = si->off;
6684                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
6685                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6686                                                 struct sk_msg_buff, sk),
6687                                       si->dst_reg, si->src_reg,
6688                                       offsetof(struct sk_msg_buff, sk));
6689                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6690                                       offsetof(struct sock_common,
6691                                                skc_v6_daddr.s6_addr32[0]) +
6692                                       off);
6693 #else
6694                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6695 #endif
6696                 break;
6697
6698         case offsetof(struct sk_msg_md, local_ip6[0]) ...
6699              offsetof(struct sk_msg_md, local_ip6[3]):
6700 #if IS_ENABLED(CONFIG_IPV6)
6701                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6702                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6703
6704                 off = si->off;
6705                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
6706                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6707                                                 struct sk_msg_buff, sk),
6708                                       si->dst_reg, si->src_reg,
6709                                       offsetof(struct sk_msg_buff, sk));
6710                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6711                                       offsetof(struct sock_common,
6712                                                skc_v6_rcv_saddr.s6_addr32[0]) +
6713                                       off);
6714 #else
6715                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6716 #endif
6717                 break;
6718
6719         case offsetof(struct sk_msg_md, remote_port):
6720                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6721
6722                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6723                                                 struct sk_msg_buff, sk),
6724                                       si->dst_reg, si->src_reg,
6725                                       offsetof(struct sk_msg_buff, sk));
6726                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6727                                       offsetof(struct sock_common, skc_dport));
6728 #ifndef __BIG_ENDIAN_BITFIELD
6729                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6730 #endif
6731                 break;
6732
6733         case offsetof(struct sk_msg_md, local_port):
6734                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6735
6736                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6737                                                 struct sk_msg_buff, sk),
6738                                       si->dst_reg, si->src_reg,
6739                                       offsetof(struct sk_msg_buff, sk));
6740                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6741                                       offsetof(struct sock_common, skc_num));
6742                 break;
6743         }
6744
6745         return insn - insn_buf;
6746 }
6747
6748 const struct bpf_verifier_ops sk_filter_verifier_ops = {
6749         .get_func_proto         = sk_filter_func_proto,
6750         .is_valid_access        = sk_filter_is_valid_access,
6751         .convert_ctx_access     = bpf_convert_ctx_access,
6752         .gen_ld_abs             = bpf_gen_ld_abs,
6753 };
6754
6755 const struct bpf_prog_ops sk_filter_prog_ops = {
6756         .test_run               = bpf_prog_test_run_skb,
6757 };
6758
6759 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6760         .get_func_proto         = tc_cls_act_func_proto,
6761         .is_valid_access        = tc_cls_act_is_valid_access,
6762         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
6763         .gen_prologue           = tc_cls_act_prologue,
6764         .gen_ld_abs             = bpf_gen_ld_abs,
6765 };
6766
6767 const struct bpf_prog_ops tc_cls_act_prog_ops = {
6768         .test_run               = bpf_prog_test_run_skb,
6769 };
6770
6771 const struct bpf_verifier_ops xdp_verifier_ops = {
6772         .get_func_proto         = xdp_func_proto,
6773         .is_valid_access        = xdp_is_valid_access,
6774         .convert_ctx_access     = xdp_convert_ctx_access,
6775 };
6776
6777 const struct bpf_prog_ops xdp_prog_ops = {
6778         .test_run               = bpf_prog_test_run_xdp,
6779 };
6780
6781 const struct bpf_verifier_ops cg_skb_verifier_ops = {
6782         .get_func_proto         = sk_filter_func_proto,
6783         .is_valid_access        = sk_filter_is_valid_access,
6784         .convert_ctx_access     = bpf_convert_ctx_access,
6785 };
6786
6787 const struct bpf_prog_ops cg_skb_prog_ops = {
6788         .test_run               = bpf_prog_test_run_skb,
6789 };
6790
6791 const struct bpf_verifier_ops lwt_in_verifier_ops = {
6792         .get_func_proto         = lwt_in_func_proto,
6793         .is_valid_access        = lwt_is_valid_access,
6794         .convert_ctx_access     = bpf_convert_ctx_access,
6795 };
6796
6797 const struct bpf_prog_ops lwt_in_prog_ops = {
6798         .test_run               = bpf_prog_test_run_skb,
6799 };
6800
6801 const struct bpf_verifier_ops lwt_out_verifier_ops = {
6802         .get_func_proto         = lwt_out_func_proto,
6803         .is_valid_access        = lwt_is_valid_access,
6804         .convert_ctx_access     = bpf_convert_ctx_access,
6805 };
6806
6807 const struct bpf_prog_ops lwt_out_prog_ops = {
6808         .test_run               = bpf_prog_test_run_skb,
6809 };
6810
6811 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6812         .get_func_proto         = lwt_xmit_func_proto,
6813         .is_valid_access        = lwt_is_valid_access,
6814         .convert_ctx_access     = bpf_convert_ctx_access,
6815         .gen_prologue           = tc_cls_act_prologue,
6816 };
6817
6818 const struct bpf_prog_ops lwt_xmit_prog_ops = {
6819         .test_run               = bpf_prog_test_run_skb,
6820 };
6821
6822 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
6823         .get_func_proto         = lwt_seg6local_func_proto,
6824         .is_valid_access        = lwt_is_valid_access,
6825         .convert_ctx_access     = bpf_convert_ctx_access,
6826 };
6827
6828 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
6829         .test_run               = bpf_prog_test_run_skb,
6830 };
6831
6832 const struct bpf_verifier_ops cg_sock_verifier_ops = {
6833         .get_func_proto         = sock_filter_func_proto,
6834         .is_valid_access        = sock_filter_is_valid_access,
6835         .convert_ctx_access     = sock_filter_convert_ctx_access,
6836 };
6837
6838 const struct bpf_prog_ops cg_sock_prog_ops = {
6839 };
6840
6841 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
6842         .get_func_proto         = sock_addr_func_proto,
6843         .is_valid_access        = sock_addr_is_valid_access,
6844         .convert_ctx_access     = sock_addr_convert_ctx_access,
6845 };
6846
6847 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
6848 };
6849
6850 const struct bpf_verifier_ops sock_ops_verifier_ops = {
6851         .get_func_proto         = sock_ops_func_proto,
6852         .is_valid_access        = sock_ops_is_valid_access,
6853         .convert_ctx_access     = sock_ops_convert_ctx_access,
6854 };
6855
6856 const struct bpf_prog_ops sock_ops_prog_ops = {
6857 };
6858
6859 const struct bpf_verifier_ops sk_skb_verifier_ops = {
6860         .get_func_proto         = sk_skb_func_proto,
6861         .is_valid_access        = sk_skb_is_valid_access,
6862         .convert_ctx_access     = sk_skb_convert_ctx_access,
6863         .gen_prologue           = sk_skb_prologue,
6864 };
6865
6866 const struct bpf_prog_ops sk_skb_prog_ops = {
6867 };
6868
6869 const struct bpf_verifier_ops sk_msg_verifier_ops = {
6870         .get_func_proto         = sk_msg_func_proto,
6871         .is_valid_access        = sk_msg_is_valid_access,
6872         .convert_ctx_access     = sk_msg_convert_ctx_access,
6873 };
6874
6875 const struct bpf_prog_ops sk_msg_prog_ops = {
6876 };
6877
6878 int sk_detach_filter(struct sock *sk)
6879 {
6880         int ret = -ENOENT;
6881         struct sk_filter *filter;
6882
6883         if (sock_flag(sk, SOCK_FILTER_LOCKED))
6884                 return -EPERM;
6885
6886         filter = rcu_dereference_protected(sk->sk_filter,
6887                                            lockdep_sock_is_held(sk));
6888         if (filter) {
6889                 RCU_INIT_POINTER(sk->sk_filter, NULL);
6890                 sk_filter_uncharge(sk, filter);
6891                 ret = 0;
6892         }
6893
6894         return ret;
6895 }
6896 EXPORT_SYMBOL_GPL(sk_detach_filter);
6897
6898 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
6899                   unsigned int len)
6900 {
6901         struct sock_fprog_kern *fprog;
6902         struct sk_filter *filter;
6903         int ret = 0;
6904
6905         lock_sock(sk);
6906         filter = rcu_dereference_protected(sk->sk_filter,
6907                                            lockdep_sock_is_held(sk));
6908         if (!filter)
6909                 goto out;
6910
6911         /* We're copying the filter that has been originally attached,
6912          * so no conversion/decode needed anymore. eBPF programs that
6913          * have no original program cannot be dumped through this.
6914          */
6915         ret = -EACCES;
6916         fprog = filter->prog->orig_prog;
6917         if (!fprog)
6918                 goto out;
6919
6920         ret = fprog->len;
6921         if (!len)
6922                 /* User space only enquires number of filter blocks. */
6923                 goto out;
6924
6925         ret = -EINVAL;
6926         if (len < fprog->len)
6927                 goto out;
6928
6929         ret = -EFAULT;
6930         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
6931                 goto out;
6932
6933         /* Instead of bytes, the API requests to return the number
6934          * of filter blocks.
6935          */
6936         ret = fprog->len;
6937 out:
6938         release_sock(sk);
6939         return ret;
6940 }