Merge "do not rely on ALLOW_ERROR_INJECTION for fmod_ret" into bpf-next
[linux-2.6-block.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87
88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90         if (in_compat_syscall()) {
91                 struct compat_sock_fprog f32;
92
93                 if (len != sizeof(f32))
94                         return -EINVAL;
95                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
96                         return -EFAULT;
97                 memset(dst, 0, sizeof(*dst));
98                 dst->len = f32.len;
99                 dst->filter = compat_ptr(f32.filter);
100         } else {
101                 if (len != sizeof(*dst))
102                         return -EINVAL;
103                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
104                         return -EFAULT;
105         }
106
107         return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110
111 /**
112  *      sk_filter_trim_cap - run a packet through a socket filter
113  *      @sk: sock associated with &sk_buff
114  *      @skb: buffer to filter
115  *      @cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126         int err;
127         struct sk_filter *filter;
128
129         /*
130          * If the skb was allocated from pfmemalloc reserves, only
131          * allow SOCK_MEMALLOC sockets to use it as this socket is
132          * helping free memory
133          */
134         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136                 return -ENOMEM;
137         }
138         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139         if (err)
140                 return err;
141
142         err = security_sock_rcv_skb(sk, skb);
143         if (err)
144                 return err;
145
146         rcu_read_lock();
147         filter = rcu_dereference(sk->sk_filter);
148         if (filter) {
149                 struct sock *save_sk = skb->sk;
150                 unsigned int pkt_len;
151
152                 skb->sk = sk;
153                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154                 skb->sk = save_sk;
155                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156         }
157         rcu_read_unlock();
158
159         return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162
163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165         return skb_get_poff(skb);
166 }
167
168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170         struct nlattr *nla;
171
172         if (skb_is_nonlinear(skb))
173                 return 0;
174
175         if (skb->len < sizeof(struct nlattr))
176                 return 0;
177
178         if (a > skb->len - sizeof(struct nlattr))
179                 return 0;
180
181         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182         if (nla)
183                 return (void *) nla - (void *) skb->data;
184
185         return 0;
186 }
187
188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190         struct nlattr *nla;
191
192         if (skb_is_nonlinear(skb))
193                 return 0;
194
195         if (skb->len < sizeof(struct nlattr))
196                 return 0;
197
198         if (a > skb->len - sizeof(struct nlattr))
199                 return 0;
200
201         nla = (struct nlattr *) &skb->data[a];
202         if (nla->nla_len > skb->len - a)
203                 return 0;
204
205         nla = nla_find_nested(nla, x);
206         if (nla)
207                 return (void *) nla - (void *) skb->data;
208
209         return 0;
210 }
211
212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213            data, int, headlen, int, offset)
214 {
215         u8 tmp, *ptr;
216         const int len = sizeof(tmp);
217
218         if (offset >= 0) {
219                 if (headlen - offset >= len)
220                         return *(u8 *)(data + offset);
221                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222                         return tmp;
223         } else {
224                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225                 if (likely(ptr))
226                         return *(u8 *)ptr;
227         }
228
229         return -EFAULT;
230 }
231
232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233            int, offset)
234 {
235         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236                                          offset);
237 }
238
239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240            data, int, headlen, int, offset)
241 {
242         __be16 tmp, *ptr;
243         const int len = sizeof(tmp);
244
245         if (offset >= 0) {
246                 if (headlen - offset >= len)
247                         return get_unaligned_be16(data + offset);
248                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249                         return be16_to_cpu(tmp);
250         } else {
251                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252                 if (likely(ptr))
253                         return get_unaligned_be16(ptr);
254         }
255
256         return -EFAULT;
257 }
258
259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260            int, offset)
261 {
262         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263                                           offset);
264 }
265
266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267            data, int, headlen, int, offset)
268 {
269         __be32 tmp, *ptr;
270         const int len = sizeof(tmp);
271
272         if (likely(offset >= 0)) {
273                 if (headlen - offset >= len)
274                         return get_unaligned_be32(data + offset);
275                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276                         return be32_to_cpu(tmp);
277         } else {
278                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279                 if (likely(ptr))
280                         return get_unaligned_be32(ptr);
281         }
282
283         return -EFAULT;
284 }
285
286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287            int, offset)
288 {
289         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290                                           offset);
291 }
292
293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294                               struct bpf_insn *insn_buf)
295 {
296         struct bpf_insn *insn = insn_buf;
297
298         switch (skb_field) {
299         case SKF_AD_MARK:
300                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301
302                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303                                       offsetof(struct sk_buff, mark));
304                 break;
305
306         case SKF_AD_PKTTYPE:
307                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312                 break;
313
314         case SKF_AD_QUEUE:
315                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316
317                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318                                       offsetof(struct sk_buff, queue_mapping));
319                 break;
320
321         case SKF_AD_VLAN_TAG:
322                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323
324                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326                                       offsetof(struct sk_buff, vlan_tci));
327                 break;
328         case SKF_AD_VLAN_TAG_PRESENT:
329                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
330                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
331                                       offsetof(struct sk_buff, vlan_all));
332                 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
333                 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
334                 break;
335         }
336
337         return insn - insn_buf;
338 }
339
340 static bool convert_bpf_extensions(struct sock_filter *fp,
341                                    struct bpf_insn **insnp)
342 {
343         struct bpf_insn *insn = *insnp;
344         u32 cnt;
345
346         switch (fp->k) {
347         case SKF_AD_OFF + SKF_AD_PROTOCOL:
348                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349
350                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
351                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352                                       offsetof(struct sk_buff, protocol));
353                 /* A = ntohs(A) [emitting a nop or swap16] */
354                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355                 break;
356
357         case SKF_AD_OFF + SKF_AD_PKTTYPE:
358                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359                 insn += cnt - 1;
360                 break;
361
362         case SKF_AD_OFF + SKF_AD_IFINDEX:
363         case SKF_AD_OFF + SKF_AD_HATYPE:
364                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366
367                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368                                       BPF_REG_TMP, BPF_REG_CTX,
369                                       offsetof(struct sk_buff, dev));
370                 /* if (tmp != 0) goto pc + 1 */
371                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372                 *insn++ = BPF_EXIT_INSN();
373                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, ifindex));
376                 else
377                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378                                             offsetof(struct net_device, type));
379                 break;
380
381         case SKF_AD_OFF + SKF_AD_MARK:
382                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383                 insn += cnt - 1;
384                 break;
385
386         case SKF_AD_OFF + SKF_AD_RXHASH:
387                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388
389                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390                                     offsetof(struct sk_buff, hash));
391                 break;
392
393         case SKF_AD_OFF + SKF_AD_QUEUE:
394                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395                 insn += cnt - 1;
396                 break;
397
398         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400                                          BPF_REG_A, BPF_REG_CTX, insn);
401                 insn += cnt - 1;
402                 break;
403
404         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406                                          BPF_REG_A, BPF_REG_CTX, insn);
407                 insn += cnt - 1;
408                 break;
409
410         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412
413                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415                                       offsetof(struct sk_buff, vlan_proto));
416                 /* A = ntohs(A) [emitting a nop or swap16] */
417                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418                 break;
419
420         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421         case SKF_AD_OFF + SKF_AD_NLATTR:
422         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423         case SKF_AD_OFF + SKF_AD_CPU:
424         case SKF_AD_OFF + SKF_AD_RANDOM:
425                 /* arg1 = CTX */
426                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427                 /* arg2 = A */
428                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429                 /* arg3 = X */
430                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
432                 switch (fp->k) {
433                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_CPU:
443                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444                         break;
445                 case SKF_AD_OFF + SKF_AD_RANDOM:
446                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447                         bpf_user_rnd_init_once();
448                         break;
449                 }
450                 break;
451
452         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453                 /* A ^= X */
454                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455                 break;
456
457         default:
458                 /* This is just a dummy call to avoid letting the compiler
459                  * evict __bpf_call_base() as an optimization. Placed here
460                  * where no-one bothers.
461                  */
462                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463                 return false;
464         }
465
466         *insnp = insn;
467         return true;
468 }
469
470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474         bool endian = BPF_SIZE(fp->code) == BPF_H ||
475                       BPF_SIZE(fp->code) == BPF_W;
476         bool indirect = BPF_MODE(fp->code) == BPF_IND;
477         const int ip_align = NET_IP_ALIGN;
478         struct bpf_insn *insn = *insnp;
479         int offset = fp->k;
480
481         if (!indirect &&
482             ((unaligned_ok && offset >= 0) ||
483              (!unaligned_ok && offset >= 0 &&
484               offset + ip_align >= 0 &&
485               offset + ip_align % size == 0))) {
486                 bool ldx_off_ok = offset <= S16_MAX;
487
488                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489                 if (offset)
490                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492                                       size, 2 + endian + (!ldx_off_ok * 2));
493                 if (ldx_off_ok) {
494                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495                                               BPF_REG_D, offset);
496                 } else {
497                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500                                               BPF_REG_TMP, 0);
501                 }
502                 if (endian)
503                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504                 *insn++ = BPF_JMP_A(8);
505         }
506
507         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510         if (!indirect) {
511                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512         } else {
513                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514                 if (fp->k)
515                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516         }
517
518         switch (BPF_SIZE(fp->code)) {
519         case BPF_B:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521                 break;
522         case BPF_H:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524                 break;
525         case BPF_W:
526                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527                 break;
528         default:
529                 return false;
530         }
531
532         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534         *insn   = BPF_EXIT_INSN();
535
536         *insnp = insn;
537         return true;
538 }
539
540 /**
541  *      bpf_convert_filter - convert filter program
542  *      @prog: the user passed filter program
543  *      @len: the length of the user passed filter program
544  *      @new_prog: allocated 'struct bpf_prog' or NULL
545  *      @new_len: pointer to store length of converted program
546  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560                               struct bpf_prog *new_prog, int *new_len,
561                               bool *seen_ld_abs)
562 {
563         int new_flen = 0, pass = 0, target, i, stack_off;
564         struct bpf_insn *new_insn, *first_insn = NULL;
565         struct sock_filter *fp;
566         int *addrs = NULL;
567         u8 bpf_src;
568
569         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571
572         if (len <= 0 || len > BPF_MAXINSNS)
573                 return -EINVAL;
574
575         if (new_prog) {
576                 first_insn = new_prog->insnsi;
577                 addrs = kcalloc(len, sizeof(*addrs),
578                                 GFP_KERNEL | __GFP_NOWARN);
579                 if (!addrs)
580                         return -ENOMEM;
581         }
582
583 do_pass:
584         new_insn = first_insn;
585         fp = prog;
586
587         /* Classic BPF related prologue emission. */
588         if (new_prog) {
589                 /* Classic BPF expects A and X to be reset first. These need
590                  * to be guaranteed to be the first two instructions.
591                  */
592                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594
595                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
596                  * In eBPF case it's done by the compiler, here we need to
597                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598                  */
599                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600                 if (*seen_ld_abs) {
601                         /* For packet access in classic BPF, cache skb->data
602                          * in callee-saved BPF R8 and skb->len - skb->data_len
603                          * (headlen) in BPF R9. Since classic BPF is read-only
604                          * on CTX, we only need to cache it once.
605                          */
606                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607                                                   BPF_REG_D, BPF_REG_CTX,
608                                                   offsetof(struct sk_buff, data));
609                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610                                                   offsetof(struct sk_buff, len));
611                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612                                                   offsetof(struct sk_buff, data_len));
613                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614                 }
615         } else {
616                 new_insn += 3;
617         }
618
619         for (i = 0; i < len; fp++, i++) {
620                 struct bpf_insn tmp_insns[32] = { };
621                 struct bpf_insn *insn = tmp_insns;
622
623                 if (addrs)
624                         addrs[i] = new_insn - first_insn;
625
626                 switch (fp->code) {
627                 /* All arithmetic insns and skb loads map as-is. */
628                 case BPF_ALU | BPF_ADD | BPF_X:
629                 case BPF_ALU | BPF_ADD | BPF_K:
630                 case BPF_ALU | BPF_SUB | BPF_X:
631                 case BPF_ALU | BPF_SUB | BPF_K:
632                 case BPF_ALU | BPF_AND | BPF_X:
633                 case BPF_ALU | BPF_AND | BPF_K:
634                 case BPF_ALU | BPF_OR | BPF_X:
635                 case BPF_ALU | BPF_OR | BPF_K:
636                 case BPF_ALU | BPF_LSH | BPF_X:
637                 case BPF_ALU | BPF_LSH | BPF_K:
638                 case BPF_ALU | BPF_RSH | BPF_X:
639                 case BPF_ALU | BPF_RSH | BPF_K:
640                 case BPF_ALU | BPF_XOR | BPF_X:
641                 case BPF_ALU | BPF_XOR | BPF_K:
642                 case BPF_ALU | BPF_MUL | BPF_X:
643                 case BPF_ALU | BPF_MUL | BPF_K:
644                 case BPF_ALU | BPF_DIV | BPF_X:
645                 case BPF_ALU | BPF_DIV | BPF_K:
646                 case BPF_ALU | BPF_MOD | BPF_X:
647                 case BPF_ALU | BPF_MOD | BPF_K:
648                 case BPF_ALU | BPF_NEG:
649                 case BPF_LD | BPF_ABS | BPF_W:
650                 case BPF_LD | BPF_ABS | BPF_H:
651                 case BPF_LD | BPF_ABS | BPF_B:
652                 case BPF_LD | BPF_IND | BPF_W:
653                 case BPF_LD | BPF_IND | BPF_H:
654                 case BPF_LD | BPF_IND | BPF_B:
655                         /* Check for overloaded BPF extension and
656                          * directly convert it if found, otherwise
657                          * just move on with mapping.
658                          */
659                         if (BPF_CLASS(fp->code) == BPF_LD &&
660                             BPF_MODE(fp->code) == BPF_ABS &&
661                             convert_bpf_extensions(fp, &insn))
662                                 break;
663                         if (BPF_CLASS(fp->code) == BPF_LD &&
664                             convert_bpf_ld_abs(fp, &insn)) {
665                                 *seen_ld_abs = true;
666                                 break;
667                         }
668
669                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672                                 /* Error with exception code on div/mod by 0.
673                                  * For cBPF programs, this was always return 0.
674                                  */
675                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677                                 *insn++ = BPF_EXIT_INSN();
678                         }
679
680                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681                         break;
682
683                 /* Jump transformation cannot use BPF block macros
684                  * everywhere as offset calculation and target updates
685                  * require a bit more work than the rest, i.e. jump
686                  * opcodes map as-is, but offsets need adjustment.
687                  */
688
689 #define BPF_EMIT_JMP                                                    \
690         do {                                                            \
691                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
692                 s32 off;                                                \
693                                                                         \
694                 if (target >= len || target < 0)                        \
695                         goto err;                                       \
696                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
697                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
698                 off -= insn - tmp_insns;                                \
699                 /* Reject anything not fitting into insn->off. */       \
700                 if (off < off_min || off > off_max)                     \
701                         goto err;                                       \
702                 insn->off = off;                                        \
703         } while (0)
704
705                 case BPF_JMP | BPF_JA:
706                         target = i + fp->k + 1;
707                         insn->code = fp->code;
708                         BPF_EMIT_JMP;
709                         break;
710
711                 case BPF_JMP | BPF_JEQ | BPF_K:
712                 case BPF_JMP | BPF_JEQ | BPF_X:
713                 case BPF_JMP | BPF_JSET | BPF_K:
714                 case BPF_JMP | BPF_JSET | BPF_X:
715                 case BPF_JMP | BPF_JGT | BPF_K:
716                 case BPF_JMP | BPF_JGT | BPF_X:
717                 case BPF_JMP | BPF_JGE | BPF_K:
718                 case BPF_JMP | BPF_JGE | BPF_X:
719                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720                                 /* BPF immediates are signed, zero extend
721                                  * immediate into tmp register and use it
722                                  * in compare insn.
723                                  */
724                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725
726                                 insn->dst_reg = BPF_REG_A;
727                                 insn->src_reg = BPF_REG_TMP;
728                                 bpf_src = BPF_X;
729                         } else {
730                                 insn->dst_reg = BPF_REG_A;
731                                 insn->imm = fp->k;
732                                 bpf_src = BPF_SRC(fp->code);
733                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734                         }
735
736                         /* Common case where 'jump_false' is next insn. */
737                         if (fp->jf == 0) {
738                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739                                 target = i + fp->jt + 1;
740                                 BPF_EMIT_JMP;
741                                 break;
742                         }
743
744                         /* Convert some jumps when 'jump_true' is next insn. */
745                         if (fp->jt == 0) {
746                                 switch (BPF_OP(fp->code)) {
747                                 case BPF_JEQ:
748                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
749                                         break;
750                                 case BPF_JGT:
751                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
752                                         break;
753                                 case BPF_JGE:
754                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
755                                         break;
756                                 default:
757                                         goto jmp_rest;
758                                 }
759
760                                 target = i + fp->jf + 1;
761                                 BPF_EMIT_JMP;
762                                 break;
763                         }
764 jmp_rest:
765                         /* Other jumps are mapped into two insns: Jxx and JA. */
766                         target = i + fp->jt + 1;
767                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768                         BPF_EMIT_JMP;
769                         insn++;
770
771                         insn->code = BPF_JMP | BPF_JA;
772                         target = i + fp->jf + 1;
773                         BPF_EMIT_JMP;
774                         break;
775
776                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777                 case BPF_LDX | BPF_MSH | BPF_B: {
778                         struct sock_filter tmp = {
779                                 .code   = BPF_LD | BPF_ABS | BPF_B,
780                                 .k      = fp->k,
781                         };
782
783                         *seen_ld_abs = true;
784
785                         /* X = A */
786                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
788                         convert_bpf_ld_abs(&tmp, &insn);
789                         insn++;
790                         /* A &= 0xf */
791                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792                         /* A <<= 2 */
793                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794                         /* tmp = X */
795                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796                         /* X = A */
797                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798                         /* A = tmp */
799                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800                         break;
801                 }
802                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
803                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804                  */
805                 case BPF_RET | BPF_A:
806                 case BPF_RET | BPF_K:
807                         if (BPF_RVAL(fp->code) == BPF_K)
808                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809                                                         0, fp->k);
810                         *insn = BPF_EXIT_INSN();
811                         break;
812
813                 /* Store to stack. */
814                 case BPF_ST:
815                 case BPF_STX:
816                         stack_off = fp->k * 4  + 4;
817                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
819                                             -stack_off);
820                         /* check_load_and_stores() verifies that classic BPF can
821                          * load from stack only after write, so tracking
822                          * stack_depth for ST|STX insns is enough
823                          */
824                         if (new_prog && new_prog->aux->stack_depth < stack_off)
825                                 new_prog->aux->stack_depth = stack_off;
826                         break;
827
828                 /* Load from stack. */
829                 case BPF_LD | BPF_MEM:
830                 case BPF_LDX | BPF_MEM:
831                         stack_off = fp->k * 4  + 4;
832                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834                                             -stack_off);
835                         break;
836
837                 /* A = K or X = K */
838                 case BPF_LD | BPF_IMM:
839                 case BPF_LDX | BPF_IMM:
840                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841                                               BPF_REG_A : BPF_REG_X, fp->k);
842                         break;
843
844                 /* X = A */
845                 case BPF_MISC | BPF_TAX:
846                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847                         break;
848
849                 /* A = X */
850                 case BPF_MISC | BPF_TXA:
851                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852                         break;
853
854                 /* A = skb->len or X = skb->len */
855                 case BPF_LD | BPF_W | BPF_LEN:
856                 case BPF_LDX | BPF_W | BPF_LEN:
857                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859                                             offsetof(struct sk_buff, len));
860                         break;
861
862                 /* Access seccomp_data fields. */
863                 case BPF_LDX | BPF_ABS | BPF_W:
864                         /* A = *(u32 *) (ctx + K) */
865                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866                         break;
867
868                 /* Unknown instruction. */
869                 default:
870                         goto err;
871                 }
872
873                 insn++;
874                 if (new_prog)
875                         memcpy(new_insn, tmp_insns,
876                                sizeof(*insn) * (insn - tmp_insns));
877                 new_insn += insn - tmp_insns;
878         }
879
880         if (!new_prog) {
881                 /* Only calculating new length. */
882                 *new_len = new_insn - first_insn;
883                 if (*seen_ld_abs)
884                         *new_len += 4; /* Prologue bits. */
885                 return 0;
886         }
887
888         pass++;
889         if (new_flen != new_insn - first_insn) {
890                 new_flen = new_insn - first_insn;
891                 if (pass > 2)
892                         goto err;
893                 goto do_pass;
894         }
895
896         kfree(addrs);
897         BUG_ON(*new_len != new_flen);
898         return 0;
899 err:
900         kfree(addrs);
901         return -EINVAL;
902 }
903
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914         int pc, ret = 0;
915
916         BUILD_BUG_ON(BPF_MEMWORDS > 16);
917
918         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919         if (!masks)
920                 return -ENOMEM;
921
922         memset(masks, 0xff, flen * sizeof(*masks));
923
924         for (pc = 0; pc < flen; pc++) {
925                 memvalid &= masks[pc];
926
927                 switch (filter[pc].code) {
928                 case BPF_ST:
929                 case BPF_STX:
930                         memvalid |= (1 << filter[pc].k);
931                         break;
932                 case BPF_LD | BPF_MEM:
933                 case BPF_LDX | BPF_MEM:
934                         if (!(memvalid & (1 << filter[pc].k))) {
935                                 ret = -EINVAL;
936                                 goto error;
937                         }
938                         break;
939                 case BPF_JMP | BPF_JA:
940                         /* A jump must set masks on target */
941                         masks[pc + 1 + filter[pc].k] &= memvalid;
942                         memvalid = ~0;
943                         break;
944                 case BPF_JMP | BPF_JEQ | BPF_K:
945                 case BPF_JMP | BPF_JEQ | BPF_X:
946                 case BPF_JMP | BPF_JGE | BPF_K:
947                 case BPF_JMP | BPF_JGE | BPF_X:
948                 case BPF_JMP | BPF_JGT | BPF_K:
949                 case BPF_JMP | BPF_JGT | BPF_X:
950                 case BPF_JMP | BPF_JSET | BPF_K:
951                 case BPF_JMP | BPF_JSET | BPF_X:
952                         /* A jump must set masks on targets */
953                         masks[pc + 1 + filter[pc].jt] &= memvalid;
954                         masks[pc + 1 + filter[pc].jf] &= memvalid;
955                         memvalid = ~0;
956                         break;
957                 }
958         }
959 error:
960         kfree(masks);
961         return ret;
962 }
963
964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966         static const bool codes[] = {
967                 /* 32 bit ALU operations */
968                 [BPF_ALU | BPF_ADD | BPF_K] = true,
969                 [BPF_ALU | BPF_ADD | BPF_X] = true,
970                 [BPF_ALU | BPF_SUB | BPF_K] = true,
971                 [BPF_ALU | BPF_SUB | BPF_X] = true,
972                 [BPF_ALU | BPF_MUL | BPF_K] = true,
973                 [BPF_ALU | BPF_MUL | BPF_X] = true,
974                 [BPF_ALU | BPF_DIV | BPF_K] = true,
975                 [BPF_ALU | BPF_DIV | BPF_X] = true,
976                 [BPF_ALU | BPF_MOD | BPF_K] = true,
977                 [BPF_ALU | BPF_MOD | BPF_X] = true,
978                 [BPF_ALU | BPF_AND | BPF_K] = true,
979                 [BPF_ALU | BPF_AND | BPF_X] = true,
980                 [BPF_ALU | BPF_OR | BPF_K] = true,
981                 [BPF_ALU | BPF_OR | BPF_X] = true,
982                 [BPF_ALU | BPF_XOR | BPF_K] = true,
983                 [BPF_ALU | BPF_XOR | BPF_X] = true,
984                 [BPF_ALU | BPF_LSH | BPF_K] = true,
985                 [BPF_ALU | BPF_LSH | BPF_X] = true,
986                 [BPF_ALU | BPF_RSH | BPF_K] = true,
987                 [BPF_ALU | BPF_RSH | BPF_X] = true,
988                 [BPF_ALU | BPF_NEG] = true,
989                 /* Load instructions */
990                 [BPF_LD | BPF_W | BPF_ABS] = true,
991                 [BPF_LD | BPF_H | BPF_ABS] = true,
992                 [BPF_LD | BPF_B | BPF_ABS] = true,
993                 [BPF_LD | BPF_W | BPF_LEN] = true,
994                 [BPF_LD | BPF_W | BPF_IND] = true,
995                 [BPF_LD | BPF_H | BPF_IND] = true,
996                 [BPF_LD | BPF_B | BPF_IND] = true,
997                 [BPF_LD | BPF_IMM] = true,
998                 [BPF_LD | BPF_MEM] = true,
999                 [BPF_LDX | BPF_W | BPF_LEN] = true,
1000                 [BPF_LDX | BPF_B | BPF_MSH] = true,
1001                 [BPF_LDX | BPF_IMM] = true,
1002                 [BPF_LDX | BPF_MEM] = true,
1003                 /* Store instructions */
1004                 [BPF_ST] = true,
1005                 [BPF_STX] = true,
1006                 /* Misc instructions */
1007                 [BPF_MISC | BPF_TAX] = true,
1008                 [BPF_MISC | BPF_TXA] = true,
1009                 /* Return instructions */
1010                 [BPF_RET | BPF_K] = true,
1011                 [BPF_RET | BPF_A] = true,
1012                 /* Jump instructions */
1013                 [BPF_JMP | BPF_JA] = true,
1014                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1015                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1016                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1017                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1018                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1019                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1020                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1021                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1022         };
1023
1024         if (code_to_probe >= ARRAY_SIZE(codes))
1025                 return false;
1026
1027         return codes[code_to_probe];
1028 }
1029
1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031                                 unsigned int flen)
1032 {
1033         if (filter == NULL)
1034                 return false;
1035         if (flen == 0 || flen > BPF_MAXINSNS)
1036                 return false;
1037
1038         return true;
1039 }
1040
1041 /**
1042  *      bpf_check_classic - verify socket filter code
1043  *      @filter: filter to verify
1044  *      @flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
1055 static int bpf_check_classic(const struct sock_filter *filter,
1056                              unsigned int flen)
1057 {
1058         bool anc_found;
1059         int pc;
1060
1061         /* Check the filter code now */
1062         for (pc = 0; pc < flen; pc++) {
1063                 const struct sock_filter *ftest = &filter[pc];
1064
1065                 /* May we actually operate on this code? */
1066                 if (!chk_code_allowed(ftest->code))
1067                         return -EINVAL;
1068
1069                 /* Some instructions need special checks */
1070                 switch (ftest->code) {
1071                 case BPF_ALU | BPF_DIV | BPF_K:
1072                 case BPF_ALU | BPF_MOD | BPF_K:
1073                         /* Check for division by zero */
1074                         if (ftest->k == 0)
1075                                 return -EINVAL;
1076                         break;
1077                 case BPF_ALU | BPF_LSH | BPF_K:
1078                 case BPF_ALU | BPF_RSH | BPF_K:
1079                         if (ftest->k >= 32)
1080                                 return -EINVAL;
1081                         break;
1082                 case BPF_LD | BPF_MEM:
1083                 case BPF_LDX | BPF_MEM:
1084                 case BPF_ST:
1085                 case BPF_STX:
1086                         /* Check for invalid memory addresses */
1087                         if (ftest->k >= BPF_MEMWORDS)
1088                                 return -EINVAL;
1089                         break;
1090                 case BPF_JMP | BPF_JA:
1091                         /* Note, the large ftest->k might cause loops.
1092                          * Compare this with conditional jumps below,
1093                          * where offsets are limited. --ANK (981016)
1094                          */
1095                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1096                                 return -EINVAL;
1097                         break;
1098                 case BPF_JMP | BPF_JEQ | BPF_K:
1099                 case BPF_JMP | BPF_JEQ | BPF_X:
1100                 case BPF_JMP | BPF_JGE | BPF_K:
1101                 case BPF_JMP | BPF_JGE | BPF_X:
1102                 case BPF_JMP | BPF_JGT | BPF_K:
1103                 case BPF_JMP | BPF_JGT | BPF_X:
1104                 case BPF_JMP | BPF_JSET | BPF_K:
1105                 case BPF_JMP | BPF_JSET | BPF_X:
1106                         /* Both conditionals must be safe */
1107                         if (pc + ftest->jt + 1 >= flen ||
1108                             pc + ftest->jf + 1 >= flen)
1109                                 return -EINVAL;
1110                         break;
1111                 case BPF_LD | BPF_W | BPF_ABS:
1112                 case BPF_LD | BPF_H | BPF_ABS:
1113                 case BPF_LD | BPF_B | BPF_ABS:
1114                         anc_found = false;
1115                         if (bpf_anc_helper(ftest) & BPF_ANC)
1116                                 anc_found = true;
1117                         /* Ancillary operation unknown or unsupported */
1118                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119                                 return -EINVAL;
1120                 }
1121         }
1122
1123         /* Last instruction must be a RET code */
1124         switch (filter[flen - 1].code) {
1125         case BPF_RET | BPF_K:
1126         case BPF_RET | BPF_A:
1127                 return check_load_and_stores(filter, flen);
1128         }
1129
1130         return -EINVAL;
1131 }
1132
1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134                                       const struct sock_fprog *fprog)
1135 {
1136         unsigned int fsize = bpf_classic_proglen(fprog);
1137         struct sock_fprog_kern *fkprog;
1138
1139         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140         if (!fp->orig_prog)
1141                 return -ENOMEM;
1142
1143         fkprog = fp->orig_prog;
1144         fkprog->len = fprog->len;
1145
1146         fkprog->filter = kmemdup(fp->insns, fsize,
1147                                  GFP_KERNEL | __GFP_NOWARN);
1148         if (!fkprog->filter) {
1149                 kfree(fp->orig_prog);
1150                 return -ENOMEM;
1151         }
1152
1153         return 0;
1154 }
1155
1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158         struct sock_fprog_kern *fprog = fp->orig_prog;
1159
1160         if (fprog) {
1161                 kfree(fprog->filter);
1162                 kfree(fprog);
1163         }
1164 }
1165
1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169                 bpf_prog_put(prog);
1170         } else {
1171                 bpf_release_orig_filter(prog);
1172                 bpf_prog_free(prog);
1173         }
1174 }
1175
1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178         __bpf_prog_release(fp->prog);
1179         kfree(fp);
1180 }
1181
1182 /**
1183  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *      @rcu: rcu_head that contains the sk_filter to free
1185  */
1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189
1190         __sk_filter_release(fp);
1191 }
1192
1193 /**
1194  *      sk_filter_release - release a socket filter
1195  *      @fp: filter to remove
1196  *
1197  *      Remove a filter from a socket and release its resources.
1198  */
1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201         if (refcount_dec_and_test(&fp->refcnt))
1202                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204
1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207         u32 filter_size = bpf_prog_size(fp->prog->len);
1208
1209         atomic_sub(filter_size, &sk->sk_omem_alloc);
1210         sk_filter_release(fp);
1211 }
1212
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218         u32 filter_size = bpf_prog_size(fp->prog->len);
1219         int optmem_max = READ_ONCE(sysctl_optmem_max);
1220
1221         /* same check as in sock_kmalloc() */
1222         if (filter_size <= optmem_max &&
1223             atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224                 atomic_add(filter_size, &sk->sk_omem_alloc);
1225                 return true;
1226         }
1227         return false;
1228 }
1229
1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232         if (!refcount_inc_not_zero(&fp->refcnt))
1233                 return false;
1234
1235         if (!__sk_filter_charge(sk, fp)) {
1236                 sk_filter_release(fp);
1237                 return false;
1238         }
1239         return true;
1240 }
1241
1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244         struct sock_filter *old_prog;
1245         struct bpf_prog *old_fp;
1246         int err, new_len, old_len = fp->len;
1247         bool seen_ld_abs = false;
1248
1249         /* We are free to overwrite insns et al right here as it won't be used at
1250          * this point in time anymore internally after the migration to the eBPF
1251          * instruction representation.
1252          */
1253         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254                      sizeof(struct bpf_insn));
1255
1256         /* Conversion cannot happen on overlapping memory areas,
1257          * so we need to keep the user BPF around until the 2nd
1258          * pass. At this time, the user BPF is stored in fp->insns.
1259          */
1260         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261                            GFP_KERNEL | __GFP_NOWARN);
1262         if (!old_prog) {
1263                 err = -ENOMEM;
1264                 goto out_err;
1265         }
1266
1267         /* 1st pass: calculate the new program length. */
1268         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269                                  &seen_ld_abs);
1270         if (err)
1271                 goto out_err_free;
1272
1273         /* Expand fp for appending the new filter representation. */
1274         old_fp = fp;
1275         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276         if (!fp) {
1277                 /* The old_fp is still around in case we couldn't
1278                  * allocate new memory, so uncharge on that one.
1279                  */
1280                 fp = old_fp;
1281                 err = -ENOMEM;
1282                 goto out_err_free;
1283         }
1284
1285         fp->len = new_len;
1286
1287         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289                                  &seen_ld_abs);
1290         if (err)
1291                 /* 2nd bpf_convert_filter() can fail only if it fails
1292                  * to allocate memory, remapping must succeed. Note,
1293                  * that at this time old_fp has already been released
1294                  * by krealloc().
1295                  */
1296                 goto out_err_free;
1297
1298         fp = bpf_prog_select_runtime(fp, &err);
1299         if (err)
1300                 goto out_err_free;
1301
1302         kfree(old_prog);
1303         return fp;
1304
1305 out_err_free:
1306         kfree(old_prog);
1307 out_err:
1308         __bpf_prog_release(fp);
1309         return ERR_PTR(err);
1310 }
1311
1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313                                            bpf_aux_classic_check_t trans)
1314 {
1315         int err;
1316
1317         fp->bpf_func = NULL;
1318         fp->jited = 0;
1319
1320         err = bpf_check_classic(fp->insns, fp->len);
1321         if (err) {
1322                 __bpf_prog_release(fp);
1323                 return ERR_PTR(err);
1324         }
1325
1326         /* There might be additional checks and transformations
1327          * needed on classic filters, f.e. in case of seccomp.
1328          */
1329         if (trans) {
1330                 err = trans(fp->insns, fp->len);
1331                 if (err) {
1332                         __bpf_prog_release(fp);
1333                         return ERR_PTR(err);
1334                 }
1335         }
1336
1337         /* Probe if we can JIT compile the filter and if so, do
1338          * the compilation of the filter.
1339          */
1340         bpf_jit_compile(fp);
1341
1342         /* JIT compiler couldn't process this filter, so do the eBPF translation
1343          * for the optimized interpreter.
1344          */
1345         if (!fp->jited)
1346                 fp = bpf_migrate_filter(fp);
1347
1348         return fp;
1349 }
1350
1351 /**
1352  *      bpf_prog_create - create an unattached filter
1353  *      @pfp: the unattached filter that is created
1354  *      @fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363         unsigned int fsize = bpf_classic_proglen(fprog);
1364         struct bpf_prog *fp;
1365
1366         /* Make sure new filter is there and in the right amounts. */
1367         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368                 return -EINVAL;
1369
1370         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371         if (!fp)
1372                 return -ENOMEM;
1373
1374         memcpy(fp->insns, fprog->filter, fsize);
1375
1376         fp->len = fprog->len;
1377         /* Since unattached filters are not copied back to user
1378          * space through sk_get_filter(), we do not need to hold
1379          * a copy here, and can spare us the work.
1380          */
1381         fp->orig_prog = NULL;
1382
1383         /* bpf_prepare_filter() already takes care of freeing
1384          * memory in case something goes wrong.
1385          */
1386         fp = bpf_prepare_filter(fp, NULL);
1387         if (IS_ERR(fp))
1388                 return PTR_ERR(fp);
1389
1390         *pfp = fp;
1391         return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394
1395 /**
1396  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *      @pfp: the unattached filter that is created
1398  *      @fprog: the filter program
1399  *      @trans: post-classic verifier transformation handler
1400  *      @save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407                               bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409         unsigned int fsize = bpf_classic_proglen(fprog);
1410         struct bpf_prog *fp;
1411         int err;
1412
1413         /* Make sure new filter is there and in the right amounts. */
1414         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415                 return -EINVAL;
1416
1417         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418         if (!fp)
1419                 return -ENOMEM;
1420
1421         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422                 __bpf_prog_free(fp);
1423                 return -EFAULT;
1424         }
1425
1426         fp->len = fprog->len;
1427         fp->orig_prog = NULL;
1428
1429         if (save_orig) {
1430                 err = bpf_prog_store_orig_filter(fp, fprog);
1431                 if (err) {
1432                         __bpf_prog_free(fp);
1433                         return -ENOMEM;
1434                 }
1435         }
1436
1437         /* bpf_prepare_filter() already takes care of freeing
1438          * memory in case something goes wrong.
1439          */
1440         fp = bpf_prepare_filter(fp, trans);
1441         if (IS_ERR(fp))
1442                 return PTR_ERR(fp);
1443
1444         *pfp = fp;
1445         return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448
1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451         __bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454
1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457         struct sk_filter *fp, *old_fp;
1458
1459         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460         if (!fp)
1461                 return -ENOMEM;
1462
1463         fp->prog = prog;
1464
1465         if (!__sk_filter_charge(sk, fp)) {
1466                 kfree(fp);
1467                 return -ENOMEM;
1468         }
1469         refcount_set(&fp->refcnt, 1);
1470
1471         old_fp = rcu_dereference_protected(sk->sk_filter,
1472                                            lockdep_sock_is_held(sk));
1473         rcu_assign_pointer(sk->sk_filter, fp);
1474
1475         if (old_fp)
1476                 sk_filter_uncharge(sk, old_fp);
1477
1478         return 0;
1479 }
1480
1481 static
1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484         unsigned int fsize = bpf_classic_proglen(fprog);
1485         struct bpf_prog *prog;
1486         int err;
1487
1488         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489                 return ERR_PTR(-EPERM);
1490
1491         /* Make sure new filter is there and in the right amounts. */
1492         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493                 return ERR_PTR(-EINVAL);
1494
1495         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496         if (!prog)
1497                 return ERR_PTR(-ENOMEM);
1498
1499         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500                 __bpf_prog_free(prog);
1501                 return ERR_PTR(-EFAULT);
1502         }
1503
1504         prog->len = fprog->len;
1505
1506         err = bpf_prog_store_orig_filter(prog, fprog);
1507         if (err) {
1508                 __bpf_prog_free(prog);
1509                 return ERR_PTR(-ENOMEM);
1510         }
1511
1512         /* bpf_prepare_filter() already takes care of freeing
1513          * memory in case something goes wrong.
1514          */
1515         return bpf_prepare_filter(prog, NULL);
1516 }
1517
1518 /**
1519  *      sk_attach_filter - attach a socket filter
1520  *      @fprog: the filter program
1521  *      @sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530         struct bpf_prog *prog = __get_filter(fprog, sk);
1531         int err;
1532
1533         if (IS_ERR(prog))
1534                 return PTR_ERR(prog);
1535
1536         err = __sk_attach_prog(prog, sk);
1537         if (err < 0) {
1538                 __bpf_prog_release(prog);
1539                 return err;
1540         }
1541
1542         return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545
1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548         struct bpf_prog *prog = __get_filter(fprog, sk);
1549         int err;
1550
1551         if (IS_ERR(prog))
1552                 return PTR_ERR(prog);
1553
1554         if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555                 err = -ENOMEM;
1556         else
1557                 err = reuseport_attach_prog(sk, prog);
1558
1559         if (err)
1560                 __bpf_prog_release(prog);
1561
1562         return err;
1563 }
1564
1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568                 return ERR_PTR(-EPERM);
1569
1570         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572
1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575         struct bpf_prog *prog = __get_bpf(ufd, sk);
1576         int err;
1577
1578         if (IS_ERR(prog))
1579                 return PTR_ERR(prog);
1580
1581         err = __sk_attach_prog(prog, sk);
1582         if (err < 0) {
1583                 bpf_prog_put(prog);
1584                 return err;
1585         }
1586
1587         return 0;
1588 }
1589
1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592         struct bpf_prog *prog;
1593         int err;
1594
1595         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596                 return -EPERM;
1597
1598         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599         if (PTR_ERR(prog) == -EINVAL)
1600                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601         if (IS_ERR(prog))
1602                 return PTR_ERR(prog);
1603
1604         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606                  * bpf prog (e.g. sockmap).  It depends on the
1607                  * limitation imposed by bpf_prog_load().
1608                  * Hence, sysctl_optmem_max is not checked.
1609                  */
1610                 if ((sk->sk_type != SOCK_STREAM &&
1611                      sk->sk_type != SOCK_DGRAM) ||
1612                     (sk->sk_protocol != IPPROTO_UDP &&
1613                      sk->sk_protocol != IPPROTO_TCP) ||
1614                     (sk->sk_family != AF_INET &&
1615                      sk->sk_family != AF_INET6)) {
1616                         err = -ENOTSUPP;
1617                         goto err_prog_put;
1618                 }
1619         } else {
1620                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1621                 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622                         err = -ENOMEM;
1623                         goto err_prog_put;
1624                 }
1625         }
1626
1627         err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629         if (err)
1630                 bpf_prog_put(prog);
1631
1632         return err;
1633 }
1634
1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637         if (!prog)
1638                 return;
1639
1640         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641                 bpf_prog_put(prog);
1642         else
1643                 bpf_prog_destroy(prog);
1644 }
1645
1646 struct bpf_scratchpad {
1647         union {
1648                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649                 u8     buff[MAX_BPF_STACK];
1650         };
1651 };
1652
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654
1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656                                           unsigned int write_len)
1657 {
1658         return skb_ensure_writable(skb, write_len);
1659 }
1660
1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662                                         unsigned int write_len)
1663 {
1664         int err = __bpf_try_make_writable(skb, write_len);
1665
1666         bpf_compute_data_pointers(skb);
1667         return err;
1668 }
1669
1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672         return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674
1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677         if (skb_at_tc_ingress(skb))
1678                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680
1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683         if (skb_at_tc_ingress(skb))
1684                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686
1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688            const void *, from, u32, len, u64, flags)
1689 {
1690         void *ptr;
1691
1692         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693                 return -EINVAL;
1694         if (unlikely(offset > INT_MAX))
1695                 return -EFAULT;
1696         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697                 return -EFAULT;
1698
1699         ptr = skb->data + offset;
1700         if (flags & BPF_F_RECOMPUTE_CSUM)
1701                 __skb_postpull_rcsum(skb, ptr, len, offset);
1702
1703         memcpy(ptr, from, len);
1704
1705         if (flags & BPF_F_RECOMPUTE_CSUM)
1706                 __skb_postpush_rcsum(skb, ptr, len, offset);
1707         if (flags & BPF_F_INVALIDATE_HASH)
1708                 skb_clear_hash(skb);
1709
1710         return 0;
1711 }
1712
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714         .func           = bpf_skb_store_bytes,
1715         .gpl_only       = false,
1716         .ret_type       = RET_INTEGER,
1717         .arg1_type      = ARG_PTR_TO_CTX,
1718         .arg2_type      = ARG_ANYTHING,
1719         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1720         .arg4_type      = ARG_CONST_SIZE,
1721         .arg5_type      = ARG_ANYTHING,
1722 };
1723
1724 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1725            void *, to, u32, len)
1726 {
1727         void *ptr;
1728
1729         if (unlikely(offset > INT_MAX))
1730                 goto err_clear;
1731
1732         ptr = skb_header_pointer(skb, offset, len, to);
1733         if (unlikely(!ptr))
1734                 goto err_clear;
1735         if (ptr != to)
1736                 memcpy(to, ptr, len);
1737
1738         return 0;
1739 err_clear:
1740         memset(to, 0, len);
1741         return -EFAULT;
1742 }
1743
1744 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1745         .func           = bpf_skb_load_bytes,
1746         .gpl_only       = false,
1747         .ret_type       = RET_INTEGER,
1748         .arg1_type      = ARG_PTR_TO_CTX,
1749         .arg2_type      = ARG_ANYTHING,
1750         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1751         .arg4_type      = ARG_CONST_SIZE,
1752 };
1753
1754 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1755            const struct bpf_flow_dissector *, ctx, u32, offset,
1756            void *, to, u32, len)
1757 {
1758         void *ptr;
1759
1760         if (unlikely(offset > 0xffff))
1761                 goto err_clear;
1762
1763         if (unlikely(!ctx->skb))
1764                 goto err_clear;
1765
1766         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1767         if (unlikely(!ptr))
1768                 goto err_clear;
1769         if (ptr != to)
1770                 memcpy(to, ptr, len);
1771
1772         return 0;
1773 err_clear:
1774         memset(to, 0, len);
1775         return -EFAULT;
1776 }
1777
1778 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1779         .func           = bpf_flow_dissector_load_bytes,
1780         .gpl_only       = false,
1781         .ret_type       = RET_INTEGER,
1782         .arg1_type      = ARG_PTR_TO_CTX,
1783         .arg2_type      = ARG_ANYTHING,
1784         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1785         .arg4_type      = ARG_CONST_SIZE,
1786 };
1787
1788 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1789            u32, offset, void *, to, u32, len, u32, start_header)
1790 {
1791         u8 *end = skb_tail_pointer(skb);
1792         u8 *start, *ptr;
1793
1794         if (unlikely(offset > 0xffff))
1795                 goto err_clear;
1796
1797         switch (start_header) {
1798         case BPF_HDR_START_MAC:
1799                 if (unlikely(!skb_mac_header_was_set(skb)))
1800                         goto err_clear;
1801                 start = skb_mac_header(skb);
1802                 break;
1803         case BPF_HDR_START_NET:
1804                 start = skb_network_header(skb);
1805                 break;
1806         default:
1807                 goto err_clear;
1808         }
1809
1810         ptr = start + offset;
1811
1812         if (likely(ptr + len <= end)) {
1813                 memcpy(to, ptr, len);
1814                 return 0;
1815         }
1816
1817 err_clear:
1818         memset(to, 0, len);
1819         return -EFAULT;
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1823         .func           = bpf_skb_load_bytes_relative,
1824         .gpl_only       = false,
1825         .ret_type       = RET_INTEGER,
1826         .arg1_type      = ARG_PTR_TO_CTX,
1827         .arg2_type      = ARG_ANYTHING,
1828         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1829         .arg4_type      = ARG_CONST_SIZE,
1830         .arg5_type      = ARG_ANYTHING,
1831 };
1832
1833 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1834 {
1835         /* Idea is the following: should the needed direct read/write
1836          * test fail during runtime, we can pull in more data and redo
1837          * again, since implicitly, we invalidate previous checks here.
1838          *
1839          * Or, since we know how much we need to make read/writeable,
1840          * this can be done once at the program beginning for direct
1841          * access case. By this we overcome limitations of only current
1842          * headroom being accessible.
1843          */
1844         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1845 }
1846
1847 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1848         .func           = bpf_skb_pull_data,
1849         .gpl_only       = false,
1850         .ret_type       = RET_INTEGER,
1851         .arg1_type      = ARG_PTR_TO_CTX,
1852         .arg2_type      = ARG_ANYTHING,
1853 };
1854
1855 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1856 {
1857         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1858 }
1859
1860 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1861         .func           = bpf_sk_fullsock,
1862         .gpl_only       = false,
1863         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1864         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1865 };
1866
1867 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1868                                            unsigned int write_len)
1869 {
1870         return __bpf_try_make_writable(skb, write_len);
1871 }
1872
1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875         /* Idea is the following: should the needed direct read/write
1876          * test fail during runtime, we can pull in more data and redo
1877          * again, since implicitly, we invalidate previous checks here.
1878          *
1879          * Or, since we know how much we need to make read/writeable,
1880          * this can be done once at the program beginning for direct
1881          * access case. By this we overcome limitations of only current
1882          * headroom being accessible.
1883          */
1884         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888         .func           = sk_skb_pull_data,
1889         .gpl_only       = false,
1890         .ret_type       = RET_INTEGER,
1891         .arg1_type      = ARG_PTR_TO_CTX,
1892         .arg2_type      = ARG_ANYTHING,
1893 };
1894
1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896            u64, from, u64, to, u64, flags)
1897 {
1898         __sum16 *ptr;
1899
1900         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901                 return -EINVAL;
1902         if (unlikely(offset > 0xffff || offset & 1))
1903                 return -EFAULT;
1904         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905                 return -EFAULT;
1906
1907         ptr = (__sum16 *)(skb->data + offset);
1908         switch (flags & BPF_F_HDR_FIELD_MASK) {
1909         case 0:
1910                 if (unlikely(from != 0))
1911                         return -EINVAL;
1912
1913                 csum_replace_by_diff(ptr, to);
1914                 break;
1915         case 2:
1916                 csum_replace2(ptr, from, to);
1917                 break;
1918         case 4:
1919                 csum_replace4(ptr, from, to);
1920                 break;
1921         default:
1922                 return -EINVAL;
1923         }
1924
1925         return 0;
1926 }
1927
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929         .func           = bpf_l3_csum_replace,
1930         .gpl_only       = false,
1931         .ret_type       = RET_INTEGER,
1932         .arg1_type      = ARG_PTR_TO_CTX,
1933         .arg2_type      = ARG_ANYTHING,
1934         .arg3_type      = ARG_ANYTHING,
1935         .arg4_type      = ARG_ANYTHING,
1936         .arg5_type      = ARG_ANYTHING,
1937 };
1938
1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940            u64, from, u64, to, u64, flags)
1941 {
1942         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945         __sum16 *ptr;
1946
1947         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949                 return -EINVAL;
1950         if (unlikely(offset > 0xffff || offset & 1))
1951                 return -EFAULT;
1952         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953                 return -EFAULT;
1954
1955         ptr = (__sum16 *)(skb->data + offset);
1956         if (is_mmzero && !do_mforce && !*ptr)
1957                 return 0;
1958
1959         switch (flags & BPF_F_HDR_FIELD_MASK) {
1960         case 0:
1961                 if (unlikely(from != 0))
1962                         return -EINVAL;
1963
1964                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965                 break;
1966         case 2:
1967                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         case 4:
1970                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971                 break;
1972         default:
1973                 return -EINVAL;
1974         }
1975
1976         if (is_mmzero && !*ptr)
1977                 *ptr = CSUM_MANGLED_0;
1978         return 0;
1979 }
1980
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982         .func           = bpf_l4_csum_replace,
1983         .gpl_only       = false,
1984         .ret_type       = RET_INTEGER,
1985         .arg1_type      = ARG_PTR_TO_CTX,
1986         .arg2_type      = ARG_ANYTHING,
1987         .arg3_type      = ARG_ANYTHING,
1988         .arg4_type      = ARG_ANYTHING,
1989         .arg5_type      = ARG_ANYTHING,
1990 };
1991
1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993            __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996         u32 diff_size = from_size + to_size;
1997         int i, j = 0;
1998
1999         /* This is quite flexible, some examples:
2000          *
2001          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004          *
2005          * Even for diffing, from_size and to_size don't need to be equal.
2006          */
2007         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008                      diff_size > sizeof(sp->diff)))
2009                 return -EINVAL;
2010
2011         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012                 sp->diff[j] = ~from[i];
2013         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014                 sp->diff[j] = to[i];
2015
2016         return csum_partial(sp->diff, diff_size, seed);
2017 }
2018
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020         .func           = bpf_csum_diff,
2021         .gpl_only       = false,
2022         .pkt_access     = true,
2023         .ret_type       = RET_INTEGER,
2024         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2026         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2028         .arg5_type      = ARG_ANYTHING,
2029 };
2030
2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033         /* The interface is to be used in combination with bpf_csum_diff()
2034          * for direct packet writes. csum rotation for alignment as well
2035          * as emulating csum_sub() can be done from the eBPF program.
2036          */
2037         if (skb->ip_summed == CHECKSUM_COMPLETE)
2038                 return (skb->csum = csum_add(skb->csum, csum));
2039
2040         return -ENOTSUPP;
2041 }
2042
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044         .func           = bpf_csum_update,
2045         .gpl_only       = false,
2046         .ret_type       = RET_INTEGER,
2047         .arg1_type      = ARG_PTR_TO_CTX,
2048         .arg2_type      = ARG_ANYTHING,
2049 };
2050
2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053         /* The interface is to be used in combination with bpf_skb_adjust_room()
2054          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055          * is passed as flags, for example.
2056          */
2057         switch (level) {
2058         case BPF_CSUM_LEVEL_INC:
2059                 __skb_incr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_DEC:
2062                 __skb_decr_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_RESET:
2065                 __skb_reset_checksum_unnecessary(skb);
2066                 break;
2067         case BPF_CSUM_LEVEL_QUERY:
2068                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069                        skb->csum_level : -EACCES;
2070         default:
2071                 return -EINVAL;
2072         }
2073
2074         return 0;
2075 }
2076
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078         .func           = bpf_csum_level,
2079         .gpl_only       = false,
2080         .ret_type       = RET_INTEGER,
2081         .arg1_type      = ARG_PTR_TO_CTX,
2082         .arg2_type      = ARG_ANYTHING,
2083 };
2084
2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087         return dev_forward_skb_nomtu(dev, skb);
2088 }
2089
2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091                                       struct sk_buff *skb)
2092 {
2093         int ret = ____dev_forward_skb(dev, skb, false);
2094
2095         if (likely(!ret)) {
2096                 skb->dev = dev;
2097                 ret = netif_rx(skb);
2098         }
2099
2100         return ret;
2101 }
2102
2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105         int ret;
2106
2107         if (dev_xmit_recursion()) {
2108                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109                 kfree_skb(skb);
2110                 return -ENETDOWN;
2111         }
2112
2113         skb->dev = dev;
2114         skb_clear_tstamp(skb);
2115
2116         dev_xmit_recursion_inc();
2117         ret = dev_queue_xmit(skb);
2118         dev_xmit_recursion_dec();
2119
2120         return ret;
2121 }
2122
2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124                                  u32 flags)
2125 {
2126         unsigned int mlen = skb_network_offset(skb);
2127
2128         if (unlikely(skb->len <= mlen)) {
2129                 kfree_skb(skb);
2130                 return -ERANGE;
2131         }
2132
2133         if (mlen) {
2134                 __skb_pull(skb, mlen);
2135
2136                 /* At ingress, the mac header has already been pulled once.
2137                  * At egress, skb_pospull_rcsum has to be done in case that
2138                  * the skb is originated from ingress (i.e. a forwarded skb)
2139                  * to ensure that rcsum starts at net header.
2140                  */
2141                 if (!skb_at_tc_ingress(skb))
2142                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2143         }
2144         skb_pop_mac_header(skb);
2145         skb_reset_mac_len(skb);
2146         return flags & BPF_F_INGRESS ?
2147                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2148 }
2149
2150 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2151                                  u32 flags)
2152 {
2153         /* Verify that a link layer header is carried */
2154         if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2155                 kfree_skb(skb);
2156                 return -ERANGE;
2157         }
2158
2159         bpf_push_mac_rcsum(skb);
2160         return flags & BPF_F_INGRESS ?
2161                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2162 }
2163
2164 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2165                           u32 flags)
2166 {
2167         if (dev_is_mac_header_xmit(dev))
2168                 return __bpf_redirect_common(skb, dev, flags);
2169         else
2170                 return __bpf_redirect_no_mac(skb, dev, flags);
2171 }
2172
2173 #if IS_ENABLED(CONFIG_IPV6)
2174 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2175                             struct net_device *dev, struct bpf_nh_params *nh)
2176 {
2177         u32 hh_len = LL_RESERVED_SPACE(dev);
2178         const struct in6_addr *nexthop;
2179         struct dst_entry *dst = NULL;
2180         struct neighbour *neigh;
2181
2182         if (dev_xmit_recursion()) {
2183                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2184                 goto out_drop;
2185         }
2186
2187         skb->dev = dev;
2188         skb_clear_tstamp(skb);
2189
2190         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2191                 skb = skb_expand_head(skb, hh_len);
2192                 if (!skb)
2193                         return -ENOMEM;
2194         }
2195
2196         rcu_read_lock_bh();
2197         if (!nh) {
2198                 dst = skb_dst(skb);
2199                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2200                                       &ipv6_hdr(skb)->daddr);
2201         } else {
2202                 nexthop = &nh->ipv6_nh;
2203         }
2204         neigh = ip_neigh_gw6(dev, nexthop);
2205         if (likely(!IS_ERR(neigh))) {
2206                 int ret;
2207
2208                 sock_confirm_neigh(skb, neigh);
2209                 dev_xmit_recursion_inc();
2210                 ret = neigh_output(neigh, skb, false);
2211                 dev_xmit_recursion_dec();
2212                 rcu_read_unlock_bh();
2213                 return ret;
2214         }
2215         rcu_read_unlock_bh();
2216         if (dst)
2217                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2218 out_drop:
2219         kfree_skb(skb);
2220         return -ENETDOWN;
2221 }
2222
2223 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2224                                    struct bpf_nh_params *nh)
2225 {
2226         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2227         struct net *net = dev_net(dev);
2228         int err, ret = NET_XMIT_DROP;
2229
2230         if (!nh) {
2231                 struct dst_entry *dst;
2232                 struct flowi6 fl6 = {
2233                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2234                         .flowi6_mark  = skb->mark,
2235                         .flowlabel    = ip6_flowinfo(ip6h),
2236                         .flowi6_oif   = dev->ifindex,
2237                         .flowi6_proto = ip6h->nexthdr,
2238                         .daddr        = ip6h->daddr,
2239                         .saddr        = ip6h->saddr,
2240                 };
2241
2242                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2243                 if (IS_ERR(dst))
2244                         goto out_drop;
2245
2246                 skb_dst_set(skb, dst);
2247         } else if (nh->nh_family != AF_INET6) {
2248                 goto out_drop;
2249         }
2250
2251         err = bpf_out_neigh_v6(net, skb, dev, nh);
2252         if (unlikely(net_xmit_eval(err)))
2253                 dev->stats.tx_errors++;
2254         else
2255                 ret = NET_XMIT_SUCCESS;
2256         goto out_xmit;
2257 out_drop:
2258         dev->stats.tx_errors++;
2259         kfree_skb(skb);
2260 out_xmit:
2261         return ret;
2262 }
2263 #else
2264 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2265                                    struct bpf_nh_params *nh)
2266 {
2267         kfree_skb(skb);
2268         return NET_XMIT_DROP;
2269 }
2270 #endif /* CONFIG_IPV6 */
2271
2272 #if IS_ENABLED(CONFIG_INET)
2273 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2274                             struct net_device *dev, struct bpf_nh_params *nh)
2275 {
2276         u32 hh_len = LL_RESERVED_SPACE(dev);
2277         struct neighbour *neigh;
2278         bool is_v6gw = false;
2279
2280         if (dev_xmit_recursion()) {
2281                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2282                 goto out_drop;
2283         }
2284
2285         skb->dev = dev;
2286         skb_clear_tstamp(skb);
2287
2288         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2289                 skb = skb_expand_head(skb, hh_len);
2290                 if (!skb)
2291                         return -ENOMEM;
2292         }
2293
2294         rcu_read_lock_bh();
2295         if (!nh) {
2296                 struct dst_entry *dst = skb_dst(skb);
2297                 struct rtable *rt = container_of(dst, struct rtable, dst);
2298
2299                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2300         } else if (nh->nh_family == AF_INET6) {
2301                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2302                 is_v6gw = true;
2303         } else if (nh->nh_family == AF_INET) {
2304                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2305         } else {
2306                 rcu_read_unlock_bh();
2307                 goto out_drop;
2308         }
2309
2310         if (likely(!IS_ERR(neigh))) {
2311                 int ret;
2312
2313                 sock_confirm_neigh(skb, neigh);
2314                 dev_xmit_recursion_inc();
2315                 ret = neigh_output(neigh, skb, is_v6gw);
2316                 dev_xmit_recursion_dec();
2317                 rcu_read_unlock_bh();
2318                 return ret;
2319         }
2320         rcu_read_unlock_bh();
2321 out_drop:
2322         kfree_skb(skb);
2323         return -ENETDOWN;
2324 }
2325
2326 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2327                                    struct bpf_nh_params *nh)
2328 {
2329         const struct iphdr *ip4h = ip_hdr(skb);
2330         struct net *net = dev_net(dev);
2331         int err, ret = NET_XMIT_DROP;
2332
2333         if (!nh) {
2334                 struct flowi4 fl4 = {
2335                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2336                         .flowi4_mark  = skb->mark,
2337                         .flowi4_tos   = RT_TOS(ip4h->tos),
2338                         .flowi4_oif   = dev->ifindex,
2339                         .flowi4_proto = ip4h->protocol,
2340                         .daddr        = ip4h->daddr,
2341                         .saddr        = ip4h->saddr,
2342                 };
2343                 struct rtable *rt;
2344
2345                 rt = ip_route_output_flow(net, &fl4, NULL);
2346                 if (IS_ERR(rt))
2347                         goto out_drop;
2348                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2349                         ip_rt_put(rt);
2350                         goto out_drop;
2351                 }
2352
2353                 skb_dst_set(skb, &rt->dst);
2354         }
2355
2356         err = bpf_out_neigh_v4(net, skb, dev, nh);
2357         if (unlikely(net_xmit_eval(err)))
2358                 dev->stats.tx_errors++;
2359         else
2360                 ret = NET_XMIT_SUCCESS;
2361         goto out_xmit;
2362 out_drop:
2363         dev->stats.tx_errors++;
2364         kfree_skb(skb);
2365 out_xmit:
2366         return ret;
2367 }
2368 #else
2369 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2370                                    struct bpf_nh_params *nh)
2371 {
2372         kfree_skb(skb);
2373         return NET_XMIT_DROP;
2374 }
2375 #endif /* CONFIG_INET */
2376
2377 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2378                                 struct bpf_nh_params *nh)
2379 {
2380         struct ethhdr *ethh = eth_hdr(skb);
2381
2382         if (unlikely(skb->mac_header >= skb->network_header))
2383                 goto out;
2384         bpf_push_mac_rcsum(skb);
2385         if (is_multicast_ether_addr(ethh->h_dest))
2386                 goto out;
2387
2388         skb_pull(skb, sizeof(*ethh));
2389         skb_unset_mac_header(skb);
2390         skb_reset_network_header(skb);
2391
2392         if (skb->protocol == htons(ETH_P_IP))
2393                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2394         else if (skb->protocol == htons(ETH_P_IPV6))
2395                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2396 out:
2397         kfree_skb(skb);
2398         return -ENOTSUPP;
2399 }
2400
2401 /* Internal, non-exposed redirect flags. */
2402 enum {
2403         BPF_F_NEIGH     = (1ULL << 1),
2404         BPF_F_PEER      = (1ULL << 2),
2405         BPF_F_NEXTHOP   = (1ULL << 3),
2406 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2407 };
2408
2409 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2410 {
2411         struct net_device *dev;
2412         struct sk_buff *clone;
2413         int ret;
2414
2415         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2416                 return -EINVAL;
2417
2418         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2419         if (unlikely(!dev))
2420                 return -EINVAL;
2421
2422         clone = skb_clone(skb, GFP_ATOMIC);
2423         if (unlikely(!clone))
2424                 return -ENOMEM;
2425
2426         /* For direct write, we need to keep the invariant that the skbs
2427          * we're dealing with need to be uncloned. Should uncloning fail
2428          * here, we need to free the just generated clone to unclone once
2429          * again.
2430          */
2431         ret = bpf_try_make_head_writable(skb);
2432         if (unlikely(ret)) {
2433                 kfree_skb(clone);
2434                 return -ENOMEM;
2435         }
2436
2437         return __bpf_redirect(clone, dev, flags);
2438 }
2439
2440 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2441         .func           = bpf_clone_redirect,
2442         .gpl_only       = false,
2443         .ret_type       = RET_INTEGER,
2444         .arg1_type      = ARG_PTR_TO_CTX,
2445         .arg2_type      = ARG_ANYTHING,
2446         .arg3_type      = ARG_ANYTHING,
2447 };
2448
2449 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2450 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2451
2452 int skb_do_redirect(struct sk_buff *skb)
2453 {
2454         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2455         struct net *net = dev_net(skb->dev);
2456         struct net_device *dev;
2457         u32 flags = ri->flags;
2458
2459         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2460         ri->tgt_index = 0;
2461         ri->flags = 0;
2462         if (unlikely(!dev))
2463                 goto out_drop;
2464         if (flags & BPF_F_PEER) {
2465                 const struct net_device_ops *ops = dev->netdev_ops;
2466
2467                 if (unlikely(!ops->ndo_get_peer_dev ||
2468                              !skb_at_tc_ingress(skb)))
2469                         goto out_drop;
2470                 dev = ops->ndo_get_peer_dev(dev);
2471                 if (unlikely(!dev ||
2472                              !(dev->flags & IFF_UP) ||
2473                              net_eq(net, dev_net(dev))))
2474                         goto out_drop;
2475                 skb->dev = dev;
2476                 return -EAGAIN;
2477         }
2478         return flags & BPF_F_NEIGH ?
2479                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2480                                     &ri->nh : NULL) :
2481                __bpf_redirect(skb, dev, flags);
2482 out_drop:
2483         kfree_skb(skb);
2484         return -EINVAL;
2485 }
2486
2487 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2488 {
2489         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2490
2491         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2492                 return TC_ACT_SHOT;
2493
2494         ri->flags = flags;
2495         ri->tgt_index = ifindex;
2496
2497         return TC_ACT_REDIRECT;
2498 }
2499
2500 static const struct bpf_func_proto bpf_redirect_proto = {
2501         .func           = bpf_redirect,
2502         .gpl_only       = false,
2503         .ret_type       = RET_INTEGER,
2504         .arg1_type      = ARG_ANYTHING,
2505         .arg2_type      = ARG_ANYTHING,
2506 };
2507
2508 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2509 {
2510         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2511
2512         if (unlikely(flags))
2513                 return TC_ACT_SHOT;
2514
2515         ri->flags = BPF_F_PEER;
2516         ri->tgt_index = ifindex;
2517
2518         return TC_ACT_REDIRECT;
2519 }
2520
2521 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2522         .func           = bpf_redirect_peer,
2523         .gpl_only       = false,
2524         .ret_type       = RET_INTEGER,
2525         .arg1_type      = ARG_ANYTHING,
2526         .arg2_type      = ARG_ANYTHING,
2527 };
2528
2529 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2530            int, plen, u64, flags)
2531 {
2532         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2533
2534         if (unlikely((plen && plen < sizeof(*params)) || flags))
2535                 return TC_ACT_SHOT;
2536
2537         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2538         ri->tgt_index = ifindex;
2539
2540         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2541         if (plen)
2542                 memcpy(&ri->nh, params, sizeof(ri->nh));
2543
2544         return TC_ACT_REDIRECT;
2545 }
2546
2547 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2548         .func           = bpf_redirect_neigh,
2549         .gpl_only       = false,
2550         .ret_type       = RET_INTEGER,
2551         .arg1_type      = ARG_ANYTHING,
2552         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2553         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2554         .arg4_type      = ARG_ANYTHING,
2555 };
2556
2557 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2558 {
2559         msg->apply_bytes = bytes;
2560         return 0;
2561 }
2562
2563 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2564         .func           = bpf_msg_apply_bytes,
2565         .gpl_only       = false,
2566         .ret_type       = RET_INTEGER,
2567         .arg1_type      = ARG_PTR_TO_CTX,
2568         .arg2_type      = ARG_ANYTHING,
2569 };
2570
2571 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2572 {
2573         msg->cork_bytes = bytes;
2574         return 0;
2575 }
2576
2577 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2578         .func           = bpf_msg_cork_bytes,
2579         .gpl_only       = false,
2580         .ret_type       = RET_INTEGER,
2581         .arg1_type      = ARG_PTR_TO_CTX,
2582         .arg2_type      = ARG_ANYTHING,
2583 };
2584
2585 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2586            u32, end, u64, flags)
2587 {
2588         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2589         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2590         struct scatterlist *sge;
2591         u8 *raw, *to, *from;
2592         struct page *page;
2593
2594         if (unlikely(flags || end <= start))
2595                 return -EINVAL;
2596
2597         /* First find the starting scatterlist element */
2598         i = msg->sg.start;
2599         do {
2600                 offset += len;
2601                 len = sk_msg_elem(msg, i)->length;
2602                 if (start < offset + len)
2603                         break;
2604                 sk_msg_iter_var_next(i);
2605         } while (i != msg->sg.end);
2606
2607         if (unlikely(start >= offset + len))
2608                 return -EINVAL;
2609
2610         first_sge = i;
2611         /* The start may point into the sg element so we need to also
2612          * account for the headroom.
2613          */
2614         bytes_sg_total = start - offset + bytes;
2615         if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2616                 goto out;
2617
2618         /* At this point we need to linearize multiple scatterlist
2619          * elements or a single shared page. Either way we need to
2620          * copy into a linear buffer exclusively owned by BPF. Then
2621          * place the buffer in the scatterlist and fixup the original
2622          * entries by removing the entries now in the linear buffer
2623          * and shifting the remaining entries. For now we do not try
2624          * to copy partial entries to avoid complexity of running out
2625          * of sg_entry slots. The downside is reading a single byte
2626          * will copy the entire sg entry.
2627          */
2628         do {
2629                 copy += sk_msg_elem(msg, i)->length;
2630                 sk_msg_iter_var_next(i);
2631                 if (bytes_sg_total <= copy)
2632                         break;
2633         } while (i != msg->sg.end);
2634         last_sge = i;
2635
2636         if (unlikely(bytes_sg_total > copy))
2637                 return -EINVAL;
2638
2639         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2640                            get_order(copy));
2641         if (unlikely(!page))
2642                 return -ENOMEM;
2643
2644         raw = page_address(page);
2645         i = first_sge;
2646         do {
2647                 sge = sk_msg_elem(msg, i);
2648                 from = sg_virt(sge);
2649                 len = sge->length;
2650                 to = raw + poffset;
2651
2652                 memcpy(to, from, len);
2653                 poffset += len;
2654                 sge->length = 0;
2655                 put_page(sg_page(sge));
2656
2657                 sk_msg_iter_var_next(i);
2658         } while (i != last_sge);
2659
2660         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2661
2662         /* To repair sg ring we need to shift entries. If we only
2663          * had a single entry though we can just replace it and
2664          * be done. Otherwise walk the ring and shift the entries.
2665          */
2666         WARN_ON_ONCE(last_sge == first_sge);
2667         shift = last_sge > first_sge ?
2668                 last_sge - first_sge - 1 :
2669                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2670         if (!shift)
2671                 goto out;
2672
2673         i = first_sge;
2674         sk_msg_iter_var_next(i);
2675         do {
2676                 u32 move_from;
2677
2678                 if (i + shift >= NR_MSG_FRAG_IDS)
2679                         move_from = i + shift - NR_MSG_FRAG_IDS;
2680                 else
2681                         move_from = i + shift;
2682                 if (move_from == msg->sg.end)
2683                         break;
2684
2685                 msg->sg.data[i] = msg->sg.data[move_from];
2686                 msg->sg.data[move_from].length = 0;
2687                 msg->sg.data[move_from].page_link = 0;
2688                 msg->sg.data[move_from].offset = 0;
2689                 sk_msg_iter_var_next(i);
2690         } while (1);
2691
2692         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2693                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2694                       msg->sg.end - shift;
2695 out:
2696         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2697         msg->data_end = msg->data + bytes;
2698         return 0;
2699 }
2700
2701 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2702         .func           = bpf_msg_pull_data,
2703         .gpl_only       = false,
2704         .ret_type       = RET_INTEGER,
2705         .arg1_type      = ARG_PTR_TO_CTX,
2706         .arg2_type      = ARG_ANYTHING,
2707         .arg3_type      = ARG_ANYTHING,
2708         .arg4_type      = ARG_ANYTHING,
2709 };
2710
2711 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2712            u32, len, u64, flags)
2713 {
2714         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2715         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2716         u8 *raw, *to, *from;
2717         struct page *page;
2718
2719         if (unlikely(flags))
2720                 return -EINVAL;
2721
2722         if (unlikely(len == 0))
2723                 return 0;
2724
2725         /* First find the starting scatterlist element */
2726         i = msg->sg.start;
2727         do {
2728                 offset += l;
2729                 l = sk_msg_elem(msg, i)->length;
2730
2731                 if (start < offset + l)
2732                         break;
2733                 sk_msg_iter_var_next(i);
2734         } while (i != msg->sg.end);
2735
2736         if (start >= offset + l)
2737                 return -EINVAL;
2738
2739         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2740
2741         /* If no space available will fallback to copy, we need at
2742          * least one scatterlist elem available to push data into
2743          * when start aligns to the beginning of an element or two
2744          * when it falls inside an element. We handle the start equals
2745          * offset case because its the common case for inserting a
2746          * header.
2747          */
2748         if (!space || (space == 1 && start != offset))
2749                 copy = msg->sg.data[i].length;
2750
2751         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2752                            get_order(copy + len));
2753         if (unlikely(!page))
2754                 return -ENOMEM;
2755
2756         if (copy) {
2757                 int front, back;
2758
2759                 raw = page_address(page);
2760
2761                 psge = sk_msg_elem(msg, i);
2762                 front = start - offset;
2763                 back = psge->length - front;
2764                 from = sg_virt(psge);
2765
2766                 if (front)
2767                         memcpy(raw, from, front);
2768
2769                 if (back) {
2770                         from += front;
2771                         to = raw + front + len;
2772
2773                         memcpy(to, from, back);
2774                 }
2775
2776                 put_page(sg_page(psge));
2777         } else if (start - offset) {
2778                 psge = sk_msg_elem(msg, i);
2779                 rsge = sk_msg_elem_cpy(msg, i);
2780
2781                 psge->length = start - offset;
2782                 rsge.length -= psge->length;
2783                 rsge.offset += start;
2784
2785                 sk_msg_iter_var_next(i);
2786                 sg_unmark_end(psge);
2787                 sg_unmark_end(&rsge);
2788                 sk_msg_iter_next(msg, end);
2789         }
2790
2791         /* Slot(s) to place newly allocated data */
2792         new = i;
2793
2794         /* Shift one or two slots as needed */
2795         if (!copy) {
2796                 sge = sk_msg_elem_cpy(msg, i);
2797
2798                 sk_msg_iter_var_next(i);
2799                 sg_unmark_end(&sge);
2800                 sk_msg_iter_next(msg, end);
2801
2802                 nsge = sk_msg_elem_cpy(msg, i);
2803                 if (rsge.length) {
2804                         sk_msg_iter_var_next(i);
2805                         nnsge = sk_msg_elem_cpy(msg, i);
2806                 }
2807
2808                 while (i != msg->sg.end) {
2809                         msg->sg.data[i] = sge;
2810                         sge = nsge;
2811                         sk_msg_iter_var_next(i);
2812                         if (rsge.length) {
2813                                 nsge = nnsge;
2814                                 nnsge = sk_msg_elem_cpy(msg, i);
2815                         } else {
2816                                 nsge = sk_msg_elem_cpy(msg, i);
2817                         }
2818                 }
2819         }
2820
2821         /* Place newly allocated data buffer */
2822         sk_mem_charge(msg->sk, len);
2823         msg->sg.size += len;
2824         __clear_bit(new, msg->sg.copy);
2825         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2826         if (rsge.length) {
2827                 get_page(sg_page(&rsge));
2828                 sk_msg_iter_var_next(new);
2829                 msg->sg.data[new] = rsge;
2830         }
2831
2832         sk_msg_compute_data_pointers(msg);
2833         return 0;
2834 }
2835
2836 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2837         .func           = bpf_msg_push_data,
2838         .gpl_only       = false,
2839         .ret_type       = RET_INTEGER,
2840         .arg1_type      = ARG_PTR_TO_CTX,
2841         .arg2_type      = ARG_ANYTHING,
2842         .arg3_type      = ARG_ANYTHING,
2843         .arg4_type      = ARG_ANYTHING,
2844 };
2845
2846 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2847 {
2848         int prev;
2849
2850         do {
2851                 prev = i;
2852                 sk_msg_iter_var_next(i);
2853                 msg->sg.data[prev] = msg->sg.data[i];
2854         } while (i != msg->sg.end);
2855
2856         sk_msg_iter_prev(msg, end);
2857 }
2858
2859 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2860 {
2861         struct scatterlist tmp, sge;
2862
2863         sk_msg_iter_next(msg, end);
2864         sge = sk_msg_elem_cpy(msg, i);
2865         sk_msg_iter_var_next(i);
2866         tmp = sk_msg_elem_cpy(msg, i);
2867
2868         while (i != msg->sg.end) {
2869                 msg->sg.data[i] = sge;
2870                 sk_msg_iter_var_next(i);
2871                 sge = tmp;
2872                 tmp = sk_msg_elem_cpy(msg, i);
2873         }
2874 }
2875
2876 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2877            u32, len, u64, flags)
2878 {
2879         u32 i = 0, l = 0, space, offset = 0;
2880         u64 last = start + len;
2881         int pop;
2882
2883         if (unlikely(flags))
2884                 return -EINVAL;
2885
2886         /* First find the starting scatterlist element */
2887         i = msg->sg.start;
2888         do {
2889                 offset += l;
2890                 l = sk_msg_elem(msg, i)->length;
2891
2892                 if (start < offset + l)
2893                         break;
2894                 sk_msg_iter_var_next(i);
2895         } while (i != msg->sg.end);
2896
2897         /* Bounds checks: start and pop must be inside message */
2898         if (start >= offset + l || last >= msg->sg.size)
2899                 return -EINVAL;
2900
2901         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2902
2903         pop = len;
2904         /* --------------| offset
2905          * -| start      |-------- len -------|
2906          *
2907          *  |----- a ----|-------- pop -------|----- b ----|
2908          *  |______________________________________________| length
2909          *
2910          *
2911          * a:   region at front of scatter element to save
2912          * b:   region at back of scatter element to save when length > A + pop
2913          * pop: region to pop from element, same as input 'pop' here will be
2914          *      decremented below per iteration.
2915          *
2916          * Two top-level cases to handle when start != offset, first B is non
2917          * zero and second B is zero corresponding to when a pop includes more
2918          * than one element.
2919          *
2920          * Then if B is non-zero AND there is no space allocate space and
2921          * compact A, B regions into page. If there is space shift ring to
2922          * the rigth free'ing the next element in ring to place B, leaving
2923          * A untouched except to reduce length.
2924          */
2925         if (start != offset) {
2926                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2927                 int a = start;
2928                 int b = sge->length - pop - a;
2929
2930                 sk_msg_iter_var_next(i);
2931
2932                 if (pop < sge->length - a) {
2933                         if (space) {
2934                                 sge->length = a;
2935                                 sk_msg_shift_right(msg, i);
2936                                 nsge = sk_msg_elem(msg, i);
2937                                 get_page(sg_page(sge));
2938                                 sg_set_page(nsge,
2939                                             sg_page(sge),
2940                                             b, sge->offset + pop + a);
2941                         } else {
2942                                 struct page *page, *orig;
2943                                 u8 *to, *from;
2944
2945                                 page = alloc_pages(__GFP_NOWARN |
2946                                                    __GFP_COMP   | GFP_ATOMIC,
2947                                                    get_order(a + b));
2948                                 if (unlikely(!page))
2949                                         return -ENOMEM;
2950
2951                                 sge->length = a;
2952                                 orig = sg_page(sge);
2953                                 from = sg_virt(sge);
2954                                 to = page_address(page);
2955                                 memcpy(to, from, a);
2956                                 memcpy(to + a, from + a + pop, b);
2957                                 sg_set_page(sge, page, a + b, 0);
2958                                 put_page(orig);
2959                         }
2960                         pop = 0;
2961                 } else if (pop >= sge->length - a) {
2962                         pop -= (sge->length - a);
2963                         sge->length = a;
2964                 }
2965         }
2966
2967         /* From above the current layout _must_ be as follows,
2968          *
2969          * -| offset
2970          * -| start
2971          *
2972          *  |---- pop ---|---------------- b ------------|
2973          *  |____________________________________________| length
2974          *
2975          * Offset and start of the current msg elem are equal because in the
2976          * previous case we handled offset != start and either consumed the
2977          * entire element and advanced to the next element OR pop == 0.
2978          *
2979          * Two cases to handle here are first pop is less than the length
2980          * leaving some remainder b above. Simply adjust the element's layout
2981          * in this case. Or pop >= length of the element so that b = 0. In this
2982          * case advance to next element decrementing pop.
2983          */
2984         while (pop) {
2985                 struct scatterlist *sge = sk_msg_elem(msg, i);
2986
2987                 if (pop < sge->length) {
2988                         sge->length -= pop;
2989                         sge->offset += pop;
2990                         pop = 0;
2991                 } else {
2992                         pop -= sge->length;
2993                         sk_msg_shift_left(msg, i);
2994                 }
2995                 sk_msg_iter_var_next(i);
2996         }
2997
2998         sk_mem_uncharge(msg->sk, len - pop);
2999         msg->sg.size -= (len - pop);
3000         sk_msg_compute_data_pointers(msg);
3001         return 0;
3002 }
3003
3004 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3005         .func           = bpf_msg_pop_data,
3006         .gpl_only       = false,
3007         .ret_type       = RET_INTEGER,
3008         .arg1_type      = ARG_PTR_TO_CTX,
3009         .arg2_type      = ARG_ANYTHING,
3010         .arg3_type      = ARG_ANYTHING,
3011         .arg4_type      = ARG_ANYTHING,
3012 };
3013
3014 #ifdef CONFIG_CGROUP_NET_CLASSID
3015 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3016 {
3017         return __task_get_classid(current);
3018 }
3019
3020 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3021         .func           = bpf_get_cgroup_classid_curr,
3022         .gpl_only       = false,
3023         .ret_type       = RET_INTEGER,
3024 };
3025
3026 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3027 {
3028         struct sock *sk = skb_to_full_sk(skb);
3029
3030         if (!sk || !sk_fullsock(sk))
3031                 return 0;
3032
3033         return sock_cgroup_classid(&sk->sk_cgrp_data);
3034 }
3035
3036 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3037         .func           = bpf_skb_cgroup_classid,
3038         .gpl_only       = false,
3039         .ret_type       = RET_INTEGER,
3040         .arg1_type      = ARG_PTR_TO_CTX,
3041 };
3042 #endif
3043
3044 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3045 {
3046         return task_get_classid(skb);
3047 }
3048
3049 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3050         .func           = bpf_get_cgroup_classid,
3051         .gpl_only       = false,
3052         .ret_type       = RET_INTEGER,
3053         .arg1_type      = ARG_PTR_TO_CTX,
3054 };
3055
3056 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3057 {
3058         return dst_tclassid(skb);
3059 }
3060
3061 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3062         .func           = bpf_get_route_realm,
3063         .gpl_only       = false,
3064         .ret_type       = RET_INTEGER,
3065         .arg1_type      = ARG_PTR_TO_CTX,
3066 };
3067
3068 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3069 {
3070         /* If skb_clear_hash() was called due to mangling, we can
3071          * trigger SW recalculation here. Later access to hash
3072          * can then use the inline skb->hash via context directly
3073          * instead of calling this helper again.
3074          */
3075         return skb_get_hash(skb);
3076 }
3077
3078 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3079         .func           = bpf_get_hash_recalc,
3080         .gpl_only       = false,
3081         .ret_type       = RET_INTEGER,
3082         .arg1_type      = ARG_PTR_TO_CTX,
3083 };
3084
3085 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3086 {
3087         /* After all direct packet write, this can be used once for
3088          * triggering a lazy recalc on next skb_get_hash() invocation.
3089          */
3090         skb_clear_hash(skb);
3091         return 0;
3092 }
3093
3094 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3095         .func           = bpf_set_hash_invalid,
3096         .gpl_only       = false,
3097         .ret_type       = RET_INTEGER,
3098         .arg1_type      = ARG_PTR_TO_CTX,
3099 };
3100
3101 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3102 {
3103         /* Set user specified hash as L4(+), so that it gets returned
3104          * on skb_get_hash() call unless BPF prog later on triggers a
3105          * skb_clear_hash().
3106          */
3107         __skb_set_sw_hash(skb, hash, true);
3108         return 0;
3109 }
3110
3111 static const struct bpf_func_proto bpf_set_hash_proto = {
3112         .func           = bpf_set_hash,
3113         .gpl_only       = false,
3114         .ret_type       = RET_INTEGER,
3115         .arg1_type      = ARG_PTR_TO_CTX,
3116         .arg2_type      = ARG_ANYTHING,
3117 };
3118
3119 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3120            u16, vlan_tci)
3121 {
3122         int ret;
3123
3124         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3125                      vlan_proto != htons(ETH_P_8021AD)))
3126                 vlan_proto = htons(ETH_P_8021Q);
3127
3128         bpf_push_mac_rcsum(skb);
3129         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3130         bpf_pull_mac_rcsum(skb);
3131
3132         bpf_compute_data_pointers(skb);
3133         return ret;
3134 }
3135
3136 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3137         .func           = bpf_skb_vlan_push,
3138         .gpl_only       = false,
3139         .ret_type       = RET_INTEGER,
3140         .arg1_type      = ARG_PTR_TO_CTX,
3141         .arg2_type      = ARG_ANYTHING,
3142         .arg3_type      = ARG_ANYTHING,
3143 };
3144
3145 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3146 {
3147         int ret;
3148
3149         bpf_push_mac_rcsum(skb);
3150         ret = skb_vlan_pop(skb);
3151         bpf_pull_mac_rcsum(skb);
3152
3153         bpf_compute_data_pointers(skb);
3154         return ret;
3155 }
3156
3157 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3158         .func           = bpf_skb_vlan_pop,
3159         .gpl_only       = false,
3160         .ret_type       = RET_INTEGER,
3161         .arg1_type      = ARG_PTR_TO_CTX,
3162 };
3163
3164 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3165 {
3166         /* Caller already did skb_cow() with len as headroom,
3167          * so no need to do it here.
3168          */
3169         skb_push(skb, len);
3170         memmove(skb->data, skb->data + len, off);
3171         memset(skb->data + off, 0, len);
3172
3173         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3174          * needed here as it does not change the skb->csum
3175          * result for checksum complete when summing over
3176          * zeroed blocks.
3177          */
3178         return 0;
3179 }
3180
3181 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3182 {
3183         /* skb_ensure_writable() is not needed here, as we're
3184          * already working on an uncloned skb.
3185          */
3186         if (unlikely(!pskb_may_pull(skb, off + len)))
3187                 return -ENOMEM;
3188
3189         skb_postpull_rcsum(skb, skb->data + off, len);
3190         memmove(skb->data + len, skb->data, off);
3191         __skb_pull(skb, len);
3192
3193         return 0;
3194 }
3195
3196 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3197 {
3198         bool trans_same = skb->transport_header == skb->network_header;
3199         int ret;
3200
3201         /* There's no need for __skb_push()/__skb_pull() pair to
3202          * get to the start of the mac header as we're guaranteed
3203          * to always start from here under eBPF.
3204          */
3205         ret = bpf_skb_generic_push(skb, off, len);
3206         if (likely(!ret)) {
3207                 skb->mac_header -= len;
3208                 skb->network_header -= len;
3209                 if (trans_same)
3210                         skb->transport_header = skb->network_header;
3211         }
3212
3213         return ret;
3214 }
3215
3216 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3217 {
3218         bool trans_same = skb->transport_header == skb->network_header;
3219         int ret;
3220
3221         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3222         ret = bpf_skb_generic_pop(skb, off, len);
3223         if (likely(!ret)) {
3224                 skb->mac_header += len;
3225                 skb->network_header += len;
3226                 if (trans_same)
3227                         skb->transport_header = skb->network_header;
3228         }
3229
3230         return ret;
3231 }
3232
3233 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3234 {
3235         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3236         u32 off = skb_mac_header_len(skb);
3237         int ret;
3238
3239         ret = skb_cow(skb, len_diff);
3240         if (unlikely(ret < 0))
3241                 return ret;
3242
3243         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3244         if (unlikely(ret < 0))
3245                 return ret;
3246
3247         if (skb_is_gso(skb)) {
3248                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3249
3250                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3251                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3252                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3253                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3254                 }
3255         }
3256
3257         skb->protocol = htons(ETH_P_IPV6);
3258         skb_clear_hash(skb);
3259
3260         return 0;
3261 }
3262
3263 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3264 {
3265         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3266         u32 off = skb_mac_header_len(skb);
3267         int ret;
3268
3269         ret = skb_unclone(skb, GFP_ATOMIC);
3270         if (unlikely(ret < 0))
3271                 return ret;
3272
3273         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3274         if (unlikely(ret < 0))
3275                 return ret;
3276
3277         if (skb_is_gso(skb)) {
3278                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3279
3280                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3281                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3282                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3283                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3284                 }
3285         }
3286
3287         skb->protocol = htons(ETH_P_IP);
3288         skb_clear_hash(skb);
3289
3290         return 0;
3291 }
3292
3293 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3294 {
3295         __be16 from_proto = skb->protocol;
3296
3297         if (from_proto == htons(ETH_P_IP) &&
3298               to_proto == htons(ETH_P_IPV6))
3299                 return bpf_skb_proto_4_to_6(skb);
3300
3301         if (from_proto == htons(ETH_P_IPV6) &&
3302               to_proto == htons(ETH_P_IP))
3303                 return bpf_skb_proto_6_to_4(skb);
3304
3305         return -ENOTSUPP;
3306 }
3307
3308 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3309            u64, flags)
3310 {
3311         int ret;
3312
3313         if (unlikely(flags))
3314                 return -EINVAL;
3315
3316         /* General idea is that this helper does the basic groundwork
3317          * needed for changing the protocol, and eBPF program fills the
3318          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3319          * and other helpers, rather than passing a raw buffer here.
3320          *
3321          * The rationale is to keep this minimal and without a need to
3322          * deal with raw packet data. F.e. even if we would pass buffers
3323          * here, the program still needs to call the bpf_lX_csum_replace()
3324          * helpers anyway. Plus, this way we keep also separation of
3325          * concerns, since f.e. bpf_skb_store_bytes() should only take
3326          * care of stores.
3327          *
3328          * Currently, additional options and extension header space are
3329          * not supported, but flags register is reserved so we can adapt
3330          * that. For offloads, we mark packet as dodgy, so that headers
3331          * need to be verified first.
3332          */
3333         ret = bpf_skb_proto_xlat(skb, proto);
3334         bpf_compute_data_pointers(skb);
3335         return ret;
3336 }
3337
3338 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3339         .func           = bpf_skb_change_proto,
3340         .gpl_only       = false,
3341         .ret_type       = RET_INTEGER,
3342         .arg1_type      = ARG_PTR_TO_CTX,
3343         .arg2_type      = ARG_ANYTHING,
3344         .arg3_type      = ARG_ANYTHING,
3345 };
3346
3347 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3348 {
3349         /* We only allow a restricted subset to be changed for now. */
3350         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3351                      !skb_pkt_type_ok(pkt_type)))
3352                 return -EINVAL;
3353
3354         skb->pkt_type = pkt_type;
3355         return 0;
3356 }
3357
3358 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3359         .func           = bpf_skb_change_type,
3360         .gpl_only       = false,
3361         .ret_type       = RET_INTEGER,
3362         .arg1_type      = ARG_PTR_TO_CTX,
3363         .arg2_type      = ARG_ANYTHING,
3364 };
3365
3366 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3367 {
3368         switch (skb->protocol) {
3369         case htons(ETH_P_IP):
3370                 return sizeof(struct iphdr);
3371         case htons(ETH_P_IPV6):
3372                 return sizeof(struct ipv6hdr);
3373         default:
3374                 return ~0U;
3375         }
3376 }
3377
3378 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3379                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3380
3381 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3382                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3383                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3384                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3385                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3386                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3387                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3388
3389 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3390                             u64 flags)
3391 {
3392         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3393         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3394         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3395         unsigned int gso_type = SKB_GSO_DODGY;
3396         int ret;
3397
3398         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3399                 /* udp gso_size delineates datagrams, only allow if fixed */
3400                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3401                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3402                         return -ENOTSUPP;
3403         }
3404
3405         ret = skb_cow_head(skb, len_diff);
3406         if (unlikely(ret < 0))
3407                 return ret;
3408
3409         if (encap) {
3410                 if (skb->protocol != htons(ETH_P_IP) &&
3411                     skb->protocol != htons(ETH_P_IPV6))
3412                         return -ENOTSUPP;
3413
3414                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3415                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3416                         return -EINVAL;
3417
3418                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3419                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3420                         return -EINVAL;
3421
3422                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3423                     inner_mac_len < ETH_HLEN)
3424                         return -EINVAL;
3425
3426                 if (skb->encapsulation)
3427                         return -EALREADY;
3428
3429                 mac_len = skb->network_header - skb->mac_header;
3430                 inner_net = skb->network_header;
3431                 if (inner_mac_len > len_diff)
3432                         return -EINVAL;
3433                 inner_trans = skb->transport_header;
3434         }
3435
3436         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3437         if (unlikely(ret < 0))
3438                 return ret;
3439
3440         if (encap) {
3441                 skb->inner_mac_header = inner_net - inner_mac_len;
3442                 skb->inner_network_header = inner_net;
3443                 skb->inner_transport_header = inner_trans;
3444
3445                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3446                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3447                 else
3448                         skb_set_inner_protocol(skb, skb->protocol);
3449
3450                 skb->encapsulation = 1;
3451                 skb_set_network_header(skb, mac_len);
3452
3453                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3454                         gso_type |= SKB_GSO_UDP_TUNNEL;
3455                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3456                         gso_type |= SKB_GSO_GRE;
3457                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3458                         gso_type |= SKB_GSO_IPXIP6;
3459                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3460                         gso_type |= SKB_GSO_IPXIP4;
3461
3462                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3463                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3464                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3465                                         sizeof(struct ipv6hdr) :
3466                                         sizeof(struct iphdr);
3467
3468                         skb_set_transport_header(skb, mac_len + nh_len);
3469                 }
3470
3471                 /* Match skb->protocol to new outer l3 protocol */
3472                 if (skb->protocol == htons(ETH_P_IP) &&
3473                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3474                         skb->protocol = htons(ETH_P_IPV6);
3475                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3476                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3477                         skb->protocol = htons(ETH_P_IP);
3478         }
3479
3480         if (skb_is_gso(skb)) {
3481                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3482
3483                 /* Due to header grow, MSS needs to be downgraded. */
3484                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3485                         skb_decrease_gso_size(shinfo, len_diff);
3486
3487                 /* Header must be checked, and gso_segs recomputed. */
3488                 shinfo->gso_type |= gso_type;
3489                 shinfo->gso_segs = 0;
3490         }
3491
3492         return 0;
3493 }
3494
3495 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3496                               u64 flags)
3497 {
3498         int ret;
3499
3500         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3501                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3502                 return -EINVAL;
3503
3504         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3505                 /* udp gso_size delineates datagrams, only allow if fixed */
3506                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3507                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3508                         return -ENOTSUPP;
3509         }
3510
3511         ret = skb_unclone(skb, GFP_ATOMIC);
3512         if (unlikely(ret < 0))
3513                 return ret;
3514
3515         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3516         if (unlikely(ret < 0))
3517                 return ret;
3518
3519         if (skb_is_gso(skb)) {
3520                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3521
3522                 /* Due to header shrink, MSS can be upgraded. */
3523                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3524                         skb_increase_gso_size(shinfo, len_diff);
3525
3526                 /* Header must be checked, and gso_segs recomputed. */
3527                 shinfo->gso_type |= SKB_GSO_DODGY;
3528                 shinfo->gso_segs = 0;
3529         }
3530
3531         return 0;
3532 }
3533
3534 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3535
3536 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3537            u32, mode, u64, flags)
3538 {
3539         u32 len_diff_abs = abs(len_diff);
3540         bool shrink = len_diff < 0;
3541         int ret = 0;
3542
3543         if (unlikely(flags || mode))
3544                 return -EINVAL;
3545         if (unlikely(len_diff_abs > 0xfffU))
3546                 return -EFAULT;
3547
3548         if (!shrink) {
3549                 ret = skb_cow(skb, len_diff);
3550                 if (unlikely(ret < 0))
3551                         return ret;
3552                 __skb_push(skb, len_diff_abs);
3553                 memset(skb->data, 0, len_diff_abs);
3554         } else {
3555                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3556                         return -ENOMEM;
3557                 __skb_pull(skb, len_diff_abs);
3558         }
3559         if (tls_sw_has_ctx_rx(skb->sk)) {
3560                 struct strp_msg *rxm = strp_msg(skb);
3561
3562                 rxm->full_len += len_diff;
3563         }
3564         return ret;
3565 }
3566
3567 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3568         .func           = sk_skb_adjust_room,
3569         .gpl_only       = false,
3570         .ret_type       = RET_INTEGER,
3571         .arg1_type      = ARG_PTR_TO_CTX,
3572         .arg2_type      = ARG_ANYTHING,
3573         .arg3_type      = ARG_ANYTHING,
3574         .arg4_type      = ARG_ANYTHING,
3575 };
3576
3577 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3578            u32, mode, u64, flags)
3579 {
3580         u32 len_cur, len_diff_abs = abs(len_diff);
3581         u32 len_min = bpf_skb_net_base_len(skb);
3582         u32 len_max = BPF_SKB_MAX_LEN;
3583         __be16 proto = skb->protocol;
3584         bool shrink = len_diff < 0;
3585         u32 off;
3586         int ret;
3587
3588         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3589                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3590                 return -EINVAL;
3591         if (unlikely(len_diff_abs > 0xfffU))
3592                 return -EFAULT;
3593         if (unlikely(proto != htons(ETH_P_IP) &&
3594                      proto != htons(ETH_P_IPV6)))
3595                 return -ENOTSUPP;
3596
3597         off = skb_mac_header_len(skb);
3598         switch (mode) {
3599         case BPF_ADJ_ROOM_NET:
3600                 off += bpf_skb_net_base_len(skb);
3601                 break;
3602         case BPF_ADJ_ROOM_MAC:
3603                 break;
3604         default:
3605                 return -ENOTSUPP;
3606         }
3607
3608         len_cur = skb->len - skb_network_offset(skb);
3609         if ((shrink && (len_diff_abs >= len_cur ||
3610                         len_cur - len_diff_abs < len_min)) ||
3611             (!shrink && (skb->len + len_diff_abs > len_max &&
3612                          !skb_is_gso(skb))))
3613                 return -ENOTSUPP;
3614
3615         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3616                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3617         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3618                 __skb_reset_checksum_unnecessary(skb);
3619
3620         bpf_compute_data_pointers(skb);
3621         return ret;
3622 }
3623
3624 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3625         .func           = bpf_skb_adjust_room,
3626         .gpl_only       = false,
3627         .ret_type       = RET_INTEGER,
3628         .arg1_type      = ARG_PTR_TO_CTX,
3629         .arg2_type      = ARG_ANYTHING,
3630         .arg3_type      = ARG_ANYTHING,
3631         .arg4_type      = ARG_ANYTHING,
3632 };
3633
3634 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3635 {
3636         u32 min_len = skb_network_offset(skb);
3637
3638         if (skb_transport_header_was_set(skb))
3639                 min_len = skb_transport_offset(skb);
3640         if (skb->ip_summed == CHECKSUM_PARTIAL)
3641                 min_len = skb_checksum_start_offset(skb) +
3642                           skb->csum_offset + sizeof(__sum16);
3643         return min_len;
3644 }
3645
3646 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3647 {
3648         unsigned int old_len = skb->len;
3649         int ret;
3650
3651         ret = __skb_grow_rcsum(skb, new_len);
3652         if (!ret)
3653                 memset(skb->data + old_len, 0, new_len - old_len);
3654         return ret;
3655 }
3656
3657 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3658 {
3659         return __skb_trim_rcsum(skb, new_len);
3660 }
3661
3662 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3663                                         u64 flags)
3664 {
3665         u32 max_len = BPF_SKB_MAX_LEN;
3666         u32 min_len = __bpf_skb_min_len(skb);
3667         int ret;
3668
3669         if (unlikely(flags || new_len > max_len || new_len < min_len))
3670                 return -EINVAL;
3671         if (skb->encapsulation)
3672                 return -ENOTSUPP;
3673
3674         /* The basic idea of this helper is that it's performing the
3675          * needed work to either grow or trim an skb, and eBPF program
3676          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3677          * bpf_lX_csum_replace() and others rather than passing a raw
3678          * buffer here. This one is a slow path helper and intended
3679          * for replies with control messages.
3680          *
3681          * Like in bpf_skb_change_proto(), we want to keep this rather
3682          * minimal and without protocol specifics so that we are able
3683          * to separate concerns as in bpf_skb_store_bytes() should only
3684          * be the one responsible for writing buffers.
3685          *
3686          * It's really expected to be a slow path operation here for
3687          * control message replies, so we're implicitly linearizing,
3688          * uncloning and drop offloads from the skb by this.
3689          */
3690         ret = __bpf_try_make_writable(skb, skb->len);
3691         if (!ret) {
3692                 if (new_len > skb->len)
3693                         ret = bpf_skb_grow_rcsum(skb, new_len);
3694                 else if (new_len < skb->len)
3695                         ret = bpf_skb_trim_rcsum(skb, new_len);
3696                 if (!ret && skb_is_gso(skb))
3697                         skb_gso_reset(skb);
3698         }
3699         return ret;
3700 }
3701
3702 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3703            u64, flags)
3704 {
3705         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3706
3707         bpf_compute_data_pointers(skb);
3708         return ret;
3709 }
3710
3711 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3712         .func           = bpf_skb_change_tail,
3713         .gpl_only       = false,
3714         .ret_type       = RET_INTEGER,
3715         .arg1_type      = ARG_PTR_TO_CTX,
3716         .arg2_type      = ARG_ANYTHING,
3717         .arg3_type      = ARG_ANYTHING,
3718 };
3719
3720 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3721            u64, flags)
3722 {
3723         return __bpf_skb_change_tail(skb, new_len, flags);
3724 }
3725
3726 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3727         .func           = sk_skb_change_tail,
3728         .gpl_only       = false,
3729         .ret_type       = RET_INTEGER,
3730         .arg1_type      = ARG_PTR_TO_CTX,
3731         .arg2_type      = ARG_ANYTHING,
3732         .arg3_type      = ARG_ANYTHING,
3733 };
3734
3735 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3736                                         u64 flags)
3737 {
3738         u32 max_len = BPF_SKB_MAX_LEN;
3739         u32 new_len = skb->len + head_room;
3740         int ret;
3741
3742         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3743                      new_len < skb->len))
3744                 return -EINVAL;
3745
3746         ret = skb_cow(skb, head_room);
3747         if (likely(!ret)) {
3748                 /* Idea for this helper is that we currently only
3749                  * allow to expand on mac header. This means that
3750                  * skb->protocol network header, etc, stay as is.
3751                  * Compared to bpf_skb_change_tail(), we're more
3752                  * flexible due to not needing to linearize or
3753                  * reset GSO. Intention for this helper is to be
3754                  * used by an L3 skb that needs to push mac header
3755                  * for redirection into L2 device.
3756                  */
3757                 __skb_push(skb, head_room);
3758                 memset(skb->data, 0, head_room);
3759                 skb_reset_mac_header(skb);
3760                 skb_reset_mac_len(skb);
3761         }
3762
3763         return ret;
3764 }
3765
3766 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3767            u64, flags)
3768 {
3769         int ret = __bpf_skb_change_head(skb, head_room, flags);
3770
3771         bpf_compute_data_pointers(skb);
3772         return ret;
3773 }
3774
3775 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3776         .func           = bpf_skb_change_head,
3777         .gpl_only       = false,
3778         .ret_type       = RET_INTEGER,
3779         .arg1_type      = ARG_PTR_TO_CTX,
3780         .arg2_type      = ARG_ANYTHING,
3781         .arg3_type      = ARG_ANYTHING,
3782 };
3783
3784 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3785            u64, flags)
3786 {
3787         return __bpf_skb_change_head(skb, head_room, flags);
3788 }
3789
3790 static const struct bpf_func_proto sk_skb_change_head_proto = {
3791         .func           = sk_skb_change_head,
3792         .gpl_only       = false,
3793         .ret_type       = RET_INTEGER,
3794         .arg1_type      = ARG_PTR_TO_CTX,
3795         .arg2_type      = ARG_ANYTHING,
3796         .arg3_type      = ARG_ANYTHING,
3797 };
3798
3799 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3800 {
3801         return xdp_get_buff_len(xdp);
3802 }
3803
3804 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3805         .func           = bpf_xdp_get_buff_len,
3806         .gpl_only       = false,
3807         .ret_type       = RET_INTEGER,
3808         .arg1_type      = ARG_PTR_TO_CTX,
3809 };
3810
3811 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3812
3813 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3814         .func           = bpf_xdp_get_buff_len,
3815         .gpl_only       = false,
3816         .arg1_type      = ARG_PTR_TO_BTF_ID,
3817         .arg1_btf_id    = &bpf_xdp_get_buff_len_bpf_ids[0],
3818 };
3819
3820 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3821 {
3822         return xdp_data_meta_unsupported(xdp) ? 0 :
3823                xdp->data - xdp->data_meta;
3824 }
3825
3826 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3827 {
3828         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3829         unsigned long metalen = xdp_get_metalen(xdp);
3830         void *data_start = xdp_frame_end + metalen;
3831         void *data = xdp->data + offset;
3832
3833         if (unlikely(data < data_start ||
3834                      data > xdp->data_end - ETH_HLEN))
3835                 return -EINVAL;
3836
3837         if (metalen)
3838                 memmove(xdp->data_meta + offset,
3839                         xdp->data_meta, metalen);
3840         xdp->data_meta += offset;
3841         xdp->data = data;
3842
3843         return 0;
3844 }
3845
3846 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3847         .func           = bpf_xdp_adjust_head,
3848         .gpl_only       = false,
3849         .ret_type       = RET_INTEGER,
3850         .arg1_type      = ARG_PTR_TO_CTX,
3851         .arg2_type      = ARG_ANYTHING,
3852 };
3853
3854 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3855                              void *buf, unsigned long len, bool flush)
3856 {
3857         unsigned long ptr_len, ptr_off = 0;
3858         skb_frag_t *next_frag, *end_frag;
3859         struct skb_shared_info *sinfo;
3860         void *src, *dst;
3861         u8 *ptr_buf;
3862
3863         if (likely(xdp->data_end - xdp->data >= off + len)) {
3864                 src = flush ? buf : xdp->data + off;
3865                 dst = flush ? xdp->data + off : buf;
3866                 memcpy(dst, src, len);
3867                 return;
3868         }
3869
3870         sinfo = xdp_get_shared_info_from_buff(xdp);
3871         end_frag = &sinfo->frags[sinfo->nr_frags];
3872         next_frag = &sinfo->frags[0];
3873
3874         ptr_len = xdp->data_end - xdp->data;
3875         ptr_buf = xdp->data;
3876
3877         while (true) {
3878                 if (off < ptr_off + ptr_len) {
3879                         unsigned long copy_off = off - ptr_off;
3880                         unsigned long copy_len = min(len, ptr_len - copy_off);
3881
3882                         src = flush ? buf : ptr_buf + copy_off;
3883                         dst = flush ? ptr_buf + copy_off : buf;
3884                         memcpy(dst, src, copy_len);
3885
3886                         off += copy_len;
3887                         len -= copy_len;
3888                         buf += copy_len;
3889                 }
3890
3891                 if (!len || next_frag == end_frag)
3892                         break;
3893
3894                 ptr_off += ptr_len;
3895                 ptr_buf = skb_frag_address(next_frag);
3896                 ptr_len = skb_frag_size(next_frag);
3897                 next_frag++;
3898         }
3899 }
3900
3901 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3902 {
3903         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3904         u32 size = xdp->data_end - xdp->data;
3905         void *addr = xdp->data;
3906         int i;
3907
3908         if (unlikely(offset > 0xffff || len > 0xffff))
3909                 return ERR_PTR(-EFAULT);
3910
3911         if (offset + len > xdp_get_buff_len(xdp))
3912                 return ERR_PTR(-EINVAL);
3913
3914         if (offset < size) /* linear area */
3915                 goto out;
3916
3917         offset -= size;
3918         for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3919                 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3920
3921                 if  (offset < frag_size) {
3922                         addr = skb_frag_address(&sinfo->frags[i]);
3923                         size = frag_size;
3924                         break;
3925                 }
3926                 offset -= frag_size;
3927         }
3928 out:
3929         return offset + len <= size ? addr + offset : NULL;
3930 }
3931
3932 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3933            void *, buf, u32, len)
3934 {
3935         void *ptr;
3936
3937         ptr = bpf_xdp_pointer(xdp, offset, len);
3938         if (IS_ERR(ptr))
3939                 return PTR_ERR(ptr);
3940
3941         if (!ptr)
3942                 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3943         else
3944                 memcpy(buf, ptr, len);
3945
3946         return 0;
3947 }
3948
3949 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3950         .func           = bpf_xdp_load_bytes,
3951         .gpl_only       = false,
3952         .ret_type       = RET_INTEGER,
3953         .arg1_type      = ARG_PTR_TO_CTX,
3954         .arg2_type      = ARG_ANYTHING,
3955         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3956         .arg4_type      = ARG_CONST_SIZE,
3957 };
3958
3959 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3960            void *, buf, u32, len)
3961 {
3962         void *ptr;
3963
3964         ptr = bpf_xdp_pointer(xdp, offset, len);
3965         if (IS_ERR(ptr))
3966                 return PTR_ERR(ptr);
3967
3968         if (!ptr)
3969                 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3970         else
3971                 memcpy(ptr, buf, len);
3972
3973         return 0;
3974 }
3975
3976 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3977         .func           = bpf_xdp_store_bytes,
3978         .gpl_only       = false,
3979         .ret_type       = RET_INTEGER,
3980         .arg1_type      = ARG_PTR_TO_CTX,
3981         .arg2_type      = ARG_ANYTHING,
3982         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3983         .arg4_type      = ARG_CONST_SIZE,
3984 };
3985
3986 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3987 {
3988         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3989         skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3990         struct xdp_rxq_info *rxq = xdp->rxq;
3991         unsigned int tailroom;
3992
3993         if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3994                 return -EOPNOTSUPP;
3995
3996         tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3997         if (unlikely(offset > tailroom))
3998                 return -EINVAL;
3999
4000         memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4001         skb_frag_size_add(frag, offset);
4002         sinfo->xdp_frags_size += offset;
4003
4004         return 0;
4005 }
4006
4007 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4008 {
4009         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4010         int i, n_frags_free = 0, len_free = 0;
4011
4012         if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4013                 return -EINVAL;
4014
4015         for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4016                 skb_frag_t *frag = &sinfo->frags[i];
4017                 int shrink = min_t(int, offset, skb_frag_size(frag));
4018
4019                 len_free += shrink;
4020                 offset -= shrink;
4021
4022                 if (skb_frag_size(frag) == shrink) {
4023                         struct page *page = skb_frag_page(frag);
4024
4025                         __xdp_return(page_address(page), &xdp->rxq->mem,
4026                                      false, NULL);
4027                         n_frags_free++;
4028                 } else {
4029                         skb_frag_size_sub(frag, shrink);
4030                         break;
4031                 }
4032         }
4033         sinfo->nr_frags -= n_frags_free;
4034         sinfo->xdp_frags_size -= len_free;
4035
4036         if (unlikely(!sinfo->nr_frags)) {
4037                 xdp_buff_clear_frags_flag(xdp);
4038                 xdp->data_end -= offset;
4039         }
4040
4041         return 0;
4042 }
4043
4044 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4045 {
4046         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4047         void *data_end = xdp->data_end + offset;
4048
4049         if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4050                 if (offset < 0)
4051                         return bpf_xdp_frags_shrink_tail(xdp, -offset);
4052
4053                 return bpf_xdp_frags_increase_tail(xdp, offset);
4054         }
4055
4056         /* Notice that xdp_data_hard_end have reserved some tailroom */
4057         if (unlikely(data_end > data_hard_end))
4058                 return -EINVAL;
4059
4060         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
4061         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4062                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4063                 return -EINVAL;
4064         }
4065
4066         if (unlikely(data_end < xdp->data + ETH_HLEN))
4067                 return -EINVAL;
4068
4069         /* Clear memory area on grow, can contain uninit kernel memory */
4070         if (offset > 0)
4071                 memset(xdp->data_end, 0, offset);
4072
4073         xdp->data_end = data_end;
4074
4075         return 0;
4076 }
4077
4078 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4079         .func           = bpf_xdp_adjust_tail,
4080         .gpl_only       = false,
4081         .ret_type       = RET_INTEGER,
4082         .arg1_type      = ARG_PTR_TO_CTX,
4083         .arg2_type      = ARG_ANYTHING,
4084 };
4085
4086 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4087 {
4088         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4089         void *meta = xdp->data_meta + offset;
4090         unsigned long metalen = xdp->data - meta;
4091
4092         if (xdp_data_meta_unsupported(xdp))
4093                 return -ENOTSUPP;
4094         if (unlikely(meta < xdp_frame_end ||
4095                      meta > xdp->data))
4096                 return -EINVAL;
4097         if (unlikely(xdp_metalen_invalid(metalen)))
4098                 return -EACCES;
4099
4100         xdp->data_meta = meta;
4101
4102         return 0;
4103 }
4104
4105 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4106         .func           = bpf_xdp_adjust_meta,
4107         .gpl_only       = false,
4108         .ret_type       = RET_INTEGER,
4109         .arg1_type      = ARG_PTR_TO_CTX,
4110         .arg2_type      = ARG_ANYTHING,
4111 };
4112
4113 /**
4114  * DOC: xdp redirect
4115  *
4116  * XDP_REDIRECT works by a three-step process, implemented in the functions
4117  * below:
4118  *
4119  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4120  *    of the redirect and store it (along with some other metadata) in a per-CPU
4121  *    struct bpf_redirect_info.
4122  *
4123  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4124  *    call xdp_do_redirect() which will use the information in struct
4125  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4126  *    bulk queue structure.
4127  *
4128  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4129  *    which will flush all the different bulk queues, thus completing the
4130  *    redirect.
4131  */
4132 /*
4133  * Pointers to the map entries will be kept around for this whole sequence of
4134  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4135  * the core code; instead, the RCU protection relies on everything happening
4136  * inside a single NAPI poll sequence, which means it's between a pair of calls
4137  * to local_bh_disable()/local_bh_enable().
4138  *
4139  * The map entries are marked as __rcu and the map code makes sure to
4140  * dereference those pointers with rcu_dereference_check() in a way that works
4141  * for both sections that to hold an rcu_read_lock() and sections that are
4142  * called from NAPI without a separate rcu_read_lock(). The code below does not
4143  * use RCU annotations, but relies on those in the map code.
4144  */
4145 void xdp_do_flush(void)
4146 {
4147         __dev_flush();
4148         __cpu_map_flush();
4149         __xsk_map_flush();
4150 }
4151 EXPORT_SYMBOL_GPL(xdp_do_flush);
4152
4153 void bpf_clear_redirect_map(struct bpf_map *map)
4154 {
4155         struct bpf_redirect_info *ri;
4156         int cpu;
4157
4158         for_each_possible_cpu(cpu) {
4159                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4160                 /* Avoid polluting remote cacheline due to writes if
4161                  * not needed. Once we pass this test, we need the
4162                  * cmpxchg() to make sure it hasn't been changed in
4163                  * the meantime by remote CPU.
4164                  */
4165                 if (unlikely(READ_ONCE(ri->map) == map))
4166                         cmpxchg(&ri->map, map, NULL);
4167         }
4168 }
4169
4170 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4171 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4172
4173 u32 xdp_master_redirect(struct xdp_buff *xdp)
4174 {
4175         struct net_device *master, *slave;
4176         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4177
4178         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4179         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4180         if (slave && slave != xdp->rxq->dev) {
4181                 /* The target device is different from the receiving device, so
4182                  * redirect it to the new device.
4183                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4184                  * drivers to unmap the packet from their rx ring.
4185                  */
4186                 ri->tgt_index = slave->ifindex;
4187                 ri->map_id = INT_MAX;
4188                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4189                 return XDP_REDIRECT;
4190         }
4191         return XDP_TX;
4192 }
4193 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4194
4195 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4196                                         struct net_device *dev,
4197                                         struct xdp_buff *xdp,
4198                                         struct bpf_prog *xdp_prog)
4199 {
4200         enum bpf_map_type map_type = ri->map_type;
4201         void *fwd = ri->tgt_value;
4202         u32 map_id = ri->map_id;
4203         int err;
4204
4205         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4206         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4207
4208         err = __xsk_map_redirect(fwd, xdp);
4209         if (unlikely(err))
4210                 goto err;
4211
4212         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4213         return 0;
4214 err:
4215         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4216         return err;
4217 }
4218
4219 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4220                                                    struct net_device *dev,
4221                                                    struct xdp_frame *xdpf,
4222                                                    struct bpf_prog *xdp_prog)
4223 {
4224         enum bpf_map_type map_type = ri->map_type;
4225         void *fwd = ri->tgt_value;
4226         u32 map_id = ri->map_id;
4227         struct bpf_map *map;
4228         int err;
4229
4230         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4231         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4232
4233         if (unlikely(!xdpf)) {
4234                 err = -EOVERFLOW;
4235                 goto err;
4236         }
4237
4238         switch (map_type) {
4239         case BPF_MAP_TYPE_DEVMAP:
4240                 fallthrough;
4241         case BPF_MAP_TYPE_DEVMAP_HASH:
4242                 map = READ_ONCE(ri->map);
4243                 if (unlikely(map)) {
4244                         WRITE_ONCE(ri->map, NULL);
4245                         err = dev_map_enqueue_multi(xdpf, dev, map,
4246                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
4247                 } else {
4248                         err = dev_map_enqueue(fwd, xdpf, dev);
4249                 }
4250                 break;
4251         case BPF_MAP_TYPE_CPUMAP:
4252                 err = cpu_map_enqueue(fwd, xdpf, dev);
4253                 break;
4254         case BPF_MAP_TYPE_UNSPEC:
4255                 if (map_id == INT_MAX) {
4256                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4257                         if (unlikely(!fwd)) {
4258                                 err = -EINVAL;
4259                                 break;
4260                         }
4261                         err = dev_xdp_enqueue(fwd, xdpf, dev);
4262                         break;
4263                 }
4264                 fallthrough;
4265         default:
4266                 err = -EBADRQC;
4267         }
4268
4269         if (unlikely(err))
4270                 goto err;
4271
4272         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4273         return 0;
4274 err:
4275         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4276         return err;
4277 }
4278
4279 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4280                     struct bpf_prog *xdp_prog)
4281 {
4282         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4283         enum bpf_map_type map_type = ri->map_type;
4284
4285         /* XDP_REDIRECT is not fully supported yet for xdp frags since
4286          * not all XDP capable drivers can map non-linear xdp_frame in
4287          * ndo_xdp_xmit.
4288          */
4289         if (unlikely(xdp_buff_has_frags(xdp) &&
4290                      map_type != BPF_MAP_TYPE_CPUMAP))
4291                 return -EOPNOTSUPP;
4292
4293         if (map_type == BPF_MAP_TYPE_XSKMAP)
4294                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4295
4296         return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4297                                        xdp_prog);
4298 }
4299 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4300
4301 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4302                           struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4303 {
4304         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4305         enum bpf_map_type map_type = ri->map_type;
4306
4307         if (map_type == BPF_MAP_TYPE_XSKMAP)
4308                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4309
4310         return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4311 }
4312 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4313
4314 static int xdp_do_generic_redirect_map(struct net_device *dev,
4315                                        struct sk_buff *skb,
4316                                        struct xdp_buff *xdp,
4317                                        struct bpf_prog *xdp_prog,
4318                                        void *fwd,
4319                                        enum bpf_map_type map_type, u32 map_id)
4320 {
4321         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4322         struct bpf_map *map;
4323         int err;
4324
4325         switch (map_type) {
4326         case BPF_MAP_TYPE_DEVMAP:
4327                 fallthrough;
4328         case BPF_MAP_TYPE_DEVMAP_HASH:
4329                 map = READ_ONCE(ri->map);
4330                 if (unlikely(map)) {
4331                         WRITE_ONCE(ri->map, NULL);
4332                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4333                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4334                 } else {
4335                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4336                 }
4337                 if (unlikely(err))
4338                         goto err;
4339                 break;
4340         case BPF_MAP_TYPE_XSKMAP:
4341                 err = xsk_generic_rcv(fwd, xdp);
4342                 if (err)
4343                         goto err;
4344                 consume_skb(skb);
4345                 break;
4346         case BPF_MAP_TYPE_CPUMAP:
4347                 err = cpu_map_generic_redirect(fwd, skb);
4348                 if (unlikely(err))
4349                         goto err;
4350                 break;
4351         default:
4352                 err = -EBADRQC;
4353                 goto err;
4354         }
4355
4356         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4357         return 0;
4358 err:
4359         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4360         return err;
4361 }
4362
4363 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4364                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4365 {
4366         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4367         enum bpf_map_type map_type = ri->map_type;
4368         void *fwd = ri->tgt_value;
4369         u32 map_id = ri->map_id;
4370         int err;
4371
4372         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4373         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4374
4375         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4376                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4377                 if (unlikely(!fwd)) {
4378                         err = -EINVAL;
4379                         goto err;
4380                 }
4381
4382                 err = xdp_ok_fwd_dev(fwd, skb->len);
4383                 if (unlikely(err))
4384                         goto err;
4385
4386                 skb->dev = fwd;
4387                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4388                 generic_xdp_tx(skb, xdp_prog);
4389                 return 0;
4390         }
4391
4392         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4393 err:
4394         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4395         return err;
4396 }
4397
4398 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4399 {
4400         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4401
4402         if (unlikely(flags))
4403                 return XDP_ABORTED;
4404
4405         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4406          * by map_idr) is used for ifindex based XDP redirect.
4407          */
4408         ri->tgt_index = ifindex;
4409         ri->map_id = INT_MAX;
4410         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4411
4412         return XDP_REDIRECT;
4413 }
4414
4415 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4416         .func           = bpf_xdp_redirect,
4417         .gpl_only       = false,
4418         .ret_type       = RET_INTEGER,
4419         .arg1_type      = ARG_ANYTHING,
4420         .arg2_type      = ARG_ANYTHING,
4421 };
4422
4423 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4424            u64, flags)
4425 {
4426         return map->ops->map_redirect(map, key, flags);
4427 }
4428
4429 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4430         .func           = bpf_xdp_redirect_map,
4431         .gpl_only       = false,
4432         .ret_type       = RET_INTEGER,
4433         .arg1_type      = ARG_CONST_MAP_PTR,
4434         .arg2_type      = ARG_ANYTHING,
4435         .arg3_type      = ARG_ANYTHING,
4436 };
4437
4438 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4439                                   unsigned long off, unsigned long len)
4440 {
4441         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4442
4443         if (unlikely(!ptr))
4444                 return len;
4445         if (ptr != dst_buff)
4446                 memcpy(dst_buff, ptr, len);
4447
4448         return 0;
4449 }
4450
4451 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4452            u64, flags, void *, meta, u64, meta_size)
4453 {
4454         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4455
4456         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4457                 return -EINVAL;
4458         if (unlikely(!skb || skb_size > skb->len))
4459                 return -EFAULT;
4460
4461         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4462                                 bpf_skb_copy);
4463 }
4464
4465 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4466         .func           = bpf_skb_event_output,
4467         .gpl_only       = true,
4468         .ret_type       = RET_INTEGER,
4469         .arg1_type      = ARG_PTR_TO_CTX,
4470         .arg2_type      = ARG_CONST_MAP_PTR,
4471         .arg3_type      = ARG_ANYTHING,
4472         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4473         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4474 };
4475
4476 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4477
4478 const struct bpf_func_proto bpf_skb_output_proto = {
4479         .func           = bpf_skb_event_output,
4480         .gpl_only       = true,
4481         .ret_type       = RET_INTEGER,
4482         .arg1_type      = ARG_PTR_TO_BTF_ID,
4483         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4484         .arg2_type      = ARG_CONST_MAP_PTR,
4485         .arg3_type      = ARG_ANYTHING,
4486         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4487         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4488 };
4489
4490 static unsigned short bpf_tunnel_key_af(u64 flags)
4491 {
4492         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4493 }
4494
4495 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4496            u32, size, u64, flags)
4497 {
4498         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4499         u8 compat[sizeof(struct bpf_tunnel_key)];
4500         void *to_orig = to;
4501         int err;
4502
4503         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4504                                          BPF_F_TUNINFO_FLAGS)))) {
4505                 err = -EINVAL;
4506                 goto err_clear;
4507         }
4508         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4509                 err = -EPROTO;
4510                 goto err_clear;
4511         }
4512         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4513                 err = -EINVAL;
4514                 switch (size) {
4515                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4516                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4517                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4518                         goto set_compat;
4519                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4520                         /* Fixup deprecated structure layouts here, so we have
4521                          * a common path later on.
4522                          */
4523                         if (ip_tunnel_info_af(info) != AF_INET)
4524                                 goto err_clear;
4525 set_compat:
4526                         to = (struct bpf_tunnel_key *)compat;
4527                         break;
4528                 default:
4529                         goto err_clear;
4530                 }
4531         }
4532
4533         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4534         to->tunnel_tos = info->key.tos;
4535         to->tunnel_ttl = info->key.ttl;
4536         if (flags & BPF_F_TUNINFO_FLAGS)
4537                 to->tunnel_flags = info->key.tun_flags;
4538         else
4539                 to->tunnel_ext = 0;
4540
4541         if (flags & BPF_F_TUNINFO_IPV6) {
4542                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4543                        sizeof(to->remote_ipv6));
4544                 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4545                        sizeof(to->local_ipv6));
4546                 to->tunnel_label = be32_to_cpu(info->key.label);
4547         } else {
4548                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4549                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4550                 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4551                 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4552                 to->tunnel_label = 0;
4553         }
4554
4555         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4556                 memcpy(to_orig, to, size);
4557
4558         return 0;
4559 err_clear:
4560         memset(to_orig, 0, size);
4561         return err;
4562 }
4563
4564 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4565         .func           = bpf_skb_get_tunnel_key,
4566         .gpl_only       = false,
4567         .ret_type       = RET_INTEGER,
4568         .arg1_type      = ARG_PTR_TO_CTX,
4569         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4570         .arg3_type      = ARG_CONST_SIZE,
4571         .arg4_type      = ARG_ANYTHING,
4572 };
4573
4574 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4575 {
4576         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4577         int err;
4578
4579         if (unlikely(!info ||
4580                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4581                 err = -ENOENT;
4582                 goto err_clear;
4583         }
4584         if (unlikely(size < info->options_len)) {
4585                 err = -ENOMEM;
4586                 goto err_clear;
4587         }
4588
4589         ip_tunnel_info_opts_get(to, info);
4590         if (size > info->options_len)
4591                 memset(to + info->options_len, 0, size - info->options_len);
4592
4593         return info->options_len;
4594 err_clear:
4595         memset(to, 0, size);
4596         return err;
4597 }
4598
4599 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4600         .func           = bpf_skb_get_tunnel_opt,
4601         .gpl_only       = false,
4602         .ret_type       = RET_INTEGER,
4603         .arg1_type      = ARG_PTR_TO_CTX,
4604         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4605         .arg3_type      = ARG_CONST_SIZE,
4606 };
4607
4608 static struct metadata_dst __percpu *md_dst;
4609
4610 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4611            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4612 {
4613         struct metadata_dst *md = this_cpu_ptr(md_dst);
4614         u8 compat[sizeof(struct bpf_tunnel_key)];
4615         struct ip_tunnel_info *info;
4616
4617         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4618                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4619                 return -EINVAL;
4620         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4621                 switch (size) {
4622                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4623                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4624                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4625                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4626                         /* Fixup deprecated structure layouts here, so we have
4627                          * a common path later on.
4628                          */
4629                         memcpy(compat, from, size);
4630                         memset(compat + size, 0, sizeof(compat) - size);
4631                         from = (const struct bpf_tunnel_key *) compat;
4632                         break;
4633                 default:
4634                         return -EINVAL;
4635                 }
4636         }
4637         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4638                      from->tunnel_ext))
4639                 return -EINVAL;
4640
4641         skb_dst_drop(skb);
4642         dst_hold((struct dst_entry *) md);
4643         skb_dst_set(skb, (struct dst_entry *) md);
4644
4645         info = &md->u.tun_info;
4646         memset(info, 0, sizeof(*info));
4647         info->mode = IP_TUNNEL_INFO_TX;
4648
4649         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4650         if (flags & BPF_F_DONT_FRAGMENT)
4651                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4652         if (flags & BPF_F_ZERO_CSUM_TX)
4653                 info->key.tun_flags &= ~TUNNEL_CSUM;
4654         if (flags & BPF_F_SEQ_NUMBER)
4655                 info->key.tun_flags |= TUNNEL_SEQ;
4656
4657         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4658         info->key.tos = from->tunnel_tos;
4659         info->key.ttl = from->tunnel_ttl;
4660
4661         if (flags & BPF_F_TUNINFO_IPV6) {
4662                 info->mode |= IP_TUNNEL_INFO_IPV6;
4663                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4664                        sizeof(from->remote_ipv6));
4665                 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4666                        sizeof(from->local_ipv6));
4667                 info->key.label = cpu_to_be32(from->tunnel_label) &
4668                                   IPV6_FLOWLABEL_MASK;
4669         } else {
4670                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4671                 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4672                 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4673         }
4674
4675         return 0;
4676 }
4677
4678 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4679         .func           = bpf_skb_set_tunnel_key,
4680         .gpl_only       = false,
4681         .ret_type       = RET_INTEGER,
4682         .arg1_type      = ARG_PTR_TO_CTX,
4683         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4684         .arg3_type      = ARG_CONST_SIZE,
4685         .arg4_type      = ARG_ANYTHING,
4686 };
4687
4688 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4689            const u8 *, from, u32, size)
4690 {
4691         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4692         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4693
4694         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4695                 return -EINVAL;
4696         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4697                 return -ENOMEM;
4698
4699         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4700
4701         return 0;
4702 }
4703
4704 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4705         .func           = bpf_skb_set_tunnel_opt,
4706         .gpl_only       = false,
4707         .ret_type       = RET_INTEGER,
4708         .arg1_type      = ARG_PTR_TO_CTX,
4709         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4710         .arg3_type      = ARG_CONST_SIZE,
4711 };
4712
4713 static const struct bpf_func_proto *
4714 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4715 {
4716         if (!md_dst) {
4717                 struct metadata_dst __percpu *tmp;
4718
4719                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4720                                                 METADATA_IP_TUNNEL,
4721                                                 GFP_KERNEL);
4722                 if (!tmp)
4723                         return NULL;
4724                 if (cmpxchg(&md_dst, NULL, tmp))
4725                         metadata_dst_free_percpu(tmp);
4726         }
4727
4728         switch (which) {
4729         case BPF_FUNC_skb_set_tunnel_key:
4730                 return &bpf_skb_set_tunnel_key_proto;
4731         case BPF_FUNC_skb_set_tunnel_opt:
4732                 return &bpf_skb_set_tunnel_opt_proto;
4733         default:
4734                 return NULL;
4735         }
4736 }
4737
4738 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4739            u32, idx)
4740 {
4741         struct bpf_array *array = container_of(map, struct bpf_array, map);
4742         struct cgroup *cgrp;
4743         struct sock *sk;
4744
4745         sk = skb_to_full_sk(skb);
4746         if (!sk || !sk_fullsock(sk))
4747                 return -ENOENT;
4748         if (unlikely(idx >= array->map.max_entries))
4749                 return -E2BIG;
4750
4751         cgrp = READ_ONCE(array->ptrs[idx]);
4752         if (unlikely(!cgrp))
4753                 return -EAGAIN;
4754
4755         return sk_under_cgroup_hierarchy(sk, cgrp);
4756 }
4757
4758 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4759         .func           = bpf_skb_under_cgroup,
4760         .gpl_only       = false,
4761         .ret_type       = RET_INTEGER,
4762         .arg1_type      = ARG_PTR_TO_CTX,
4763         .arg2_type      = ARG_CONST_MAP_PTR,
4764         .arg3_type      = ARG_ANYTHING,
4765 };
4766
4767 #ifdef CONFIG_SOCK_CGROUP_DATA
4768 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4769 {
4770         struct cgroup *cgrp;
4771
4772         sk = sk_to_full_sk(sk);
4773         if (!sk || !sk_fullsock(sk))
4774                 return 0;
4775
4776         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4777         return cgroup_id(cgrp);
4778 }
4779
4780 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4781 {
4782         return __bpf_sk_cgroup_id(skb->sk);
4783 }
4784
4785 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4786         .func           = bpf_skb_cgroup_id,
4787         .gpl_only       = false,
4788         .ret_type       = RET_INTEGER,
4789         .arg1_type      = ARG_PTR_TO_CTX,
4790 };
4791
4792 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4793                                               int ancestor_level)
4794 {
4795         struct cgroup *ancestor;
4796         struct cgroup *cgrp;
4797
4798         sk = sk_to_full_sk(sk);
4799         if (!sk || !sk_fullsock(sk))
4800                 return 0;
4801
4802         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4803         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4804         if (!ancestor)
4805                 return 0;
4806
4807         return cgroup_id(ancestor);
4808 }
4809
4810 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4811            ancestor_level)
4812 {
4813         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4814 }
4815
4816 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4817         .func           = bpf_skb_ancestor_cgroup_id,
4818         .gpl_only       = false,
4819         .ret_type       = RET_INTEGER,
4820         .arg1_type      = ARG_PTR_TO_CTX,
4821         .arg2_type      = ARG_ANYTHING,
4822 };
4823
4824 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4825 {
4826         return __bpf_sk_cgroup_id(sk);
4827 }
4828
4829 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4830         .func           = bpf_sk_cgroup_id,
4831         .gpl_only       = false,
4832         .ret_type       = RET_INTEGER,
4833         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4834 };
4835
4836 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4837 {
4838         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4839 }
4840
4841 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4842         .func           = bpf_sk_ancestor_cgroup_id,
4843         .gpl_only       = false,
4844         .ret_type       = RET_INTEGER,
4845         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4846         .arg2_type      = ARG_ANYTHING,
4847 };
4848 #endif
4849
4850 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4851                                   unsigned long off, unsigned long len)
4852 {
4853         struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4854
4855         bpf_xdp_copy_buf(xdp, off, dst, len, false);
4856         return 0;
4857 }
4858
4859 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4860            u64, flags, void *, meta, u64, meta_size)
4861 {
4862         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4863
4864         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4865                 return -EINVAL;
4866
4867         if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4868                 return -EFAULT;
4869
4870         return bpf_event_output(map, flags, meta, meta_size, xdp,
4871                                 xdp_size, bpf_xdp_copy);
4872 }
4873
4874 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4875         .func           = bpf_xdp_event_output,
4876         .gpl_only       = true,
4877         .ret_type       = RET_INTEGER,
4878         .arg1_type      = ARG_PTR_TO_CTX,
4879         .arg2_type      = ARG_CONST_MAP_PTR,
4880         .arg3_type      = ARG_ANYTHING,
4881         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4882         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4883 };
4884
4885 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4886
4887 const struct bpf_func_proto bpf_xdp_output_proto = {
4888         .func           = bpf_xdp_event_output,
4889         .gpl_only       = true,
4890         .ret_type       = RET_INTEGER,
4891         .arg1_type      = ARG_PTR_TO_BTF_ID,
4892         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4893         .arg2_type      = ARG_CONST_MAP_PTR,
4894         .arg3_type      = ARG_ANYTHING,
4895         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4896         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4897 };
4898
4899 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4900 {
4901         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4902 }
4903
4904 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4905         .func           = bpf_get_socket_cookie,
4906         .gpl_only       = false,
4907         .ret_type       = RET_INTEGER,
4908         .arg1_type      = ARG_PTR_TO_CTX,
4909 };
4910
4911 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4912 {
4913         return __sock_gen_cookie(ctx->sk);
4914 }
4915
4916 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4917         .func           = bpf_get_socket_cookie_sock_addr,
4918         .gpl_only       = false,
4919         .ret_type       = RET_INTEGER,
4920         .arg1_type      = ARG_PTR_TO_CTX,
4921 };
4922
4923 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4924 {
4925         return __sock_gen_cookie(ctx);
4926 }
4927
4928 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4929         .func           = bpf_get_socket_cookie_sock,
4930         .gpl_only       = false,
4931         .ret_type       = RET_INTEGER,
4932         .arg1_type      = ARG_PTR_TO_CTX,
4933 };
4934
4935 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4936 {
4937         return sk ? sock_gen_cookie(sk) : 0;
4938 }
4939
4940 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4941         .func           = bpf_get_socket_ptr_cookie,
4942         .gpl_only       = false,
4943         .ret_type       = RET_INTEGER,
4944         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4945 };
4946
4947 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4948 {
4949         return __sock_gen_cookie(ctx->sk);
4950 }
4951
4952 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4953         .func           = bpf_get_socket_cookie_sock_ops,
4954         .gpl_only       = false,
4955         .ret_type       = RET_INTEGER,
4956         .arg1_type      = ARG_PTR_TO_CTX,
4957 };
4958
4959 static u64 __bpf_get_netns_cookie(struct sock *sk)
4960 {
4961         const struct net *net = sk ? sock_net(sk) : &init_net;
4962
4963         return net->net_cookie;
4964 }
4965
4966 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4967 {
4968         return __bpf_get_netns_cookie(ctx);
4969 }
4970
4971 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4972         .func           = bpf_get_netns_cookie_sock,
4973         .gpl_only       = false,
4974         .ret_type       = RET_INTEGER,
4975         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4976 };
4977
4978 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4979 {
4980         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4981 }
4982
4983 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4984         .func           = bpf_get_netns_cookie_sock_addr,
4985         .gpl_only       = false,
4986         .ret_type       = RET_INTEGER,
4987         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4988 };
4989
4990 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4991 {
4992         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4993 }
4994
4995 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4996         .func           = bpf_get_netns_cookie_sock_ops,
4997         .gpl_only       = false,
4998         .ret_type       = RET_INTEGER,
4999         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5000 };
5001
5002 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5003 {
5004         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5005 }
5006
5007 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5008         .func           = bpf_get_netns_cookie_sk_msg,
5009         .gpl_only       = false,
5010         .ret_type       = RET_INTEGER,
5011         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5012 };
5013
5014 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5015 {
5016         struct sock *sk = sk_to_full_sk(skb->sk);
5017         kuid_t kuid;
5018
5019         if (!sk || !sk_fullsock(sk))
5020                 return overflowuid;
5021         kuid = sock_net_uid(sock_net(sk), sk);
5022         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5023 }
5024
5025 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5026         .func           = bpf_get_socket_uid,
5027         .gpl_only       = false,
5028         .ret_type       = RET_INTEGER,
5029         .arg1_type      = ARG_PTR_TO_CTX,
5030 };
5031
5032 static int sol_socket_sockopt(struct sock *sk, int optname,
5033                               char *optval, int *optlen,
5034                               bool getopt)
5035 {
5036         switch (optname) {
5037         case SO_REUSEADDR:
5038         case SO_SNDBUF:
5039         case SO_RCVBUF:
5040         case SO_KEEPALIVE:
5041         case SO_PRIORITY:
5042         case SO_REUSEPORT:
5043         case SO_RCVLOWAT:
5044         case SO_MARK:
5045         case SO_MAX_PACING_RATE:
5046         case SO_BINDTOIFINDEX:
5047         case SO_TXREHASH:
5048                 if (*optlen != sizeof(int))
5049                         return -EINVAL;
5050                 break;
5051         case SO_BINDTODEVICE:
5052                 break;
5053         default:
5054                 return -EINVAL;
5055         }
5056
5057         if (getopt) {
5058                 if (optname == SO_BINDTODEVICE)
5059                         return -EINVAL;
5060                 return sk_getsockopt(sk, SOL_SOCKET, optname,
5061                                      KERNEL_SOCKPTR(optval),
5062                                      KERNEL_SOCKPTR(optlen));
5063         }
5064
5065         return sk_setsockopt(sk, SOL_SOCKET, optname,
5066                              KERNEL_SOCKPTR(optval), *optlen);
5067 }
5068
5069 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5070                                   char *optval, int optlen)
5071 {
5072         struct tcp_sock *tp = tcp_sk(sk);
5073         unsigned long timeout;
5074         int val;
5075
5076         if (optlen != sizeof(int))
5077                 return -EINVAL;
5078
5079         val = *(int *)optval;
5080
5081         /* Only some options are supported */
5082         switch (optname) {
5083         case TCP_BPF_IW:
5084                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5085                         return -EINVAL;
5086                 tcp_snd_cwnd_set(tp, val);
5087                 break;
5088         case TCP_BPF_SNDCWND_CLAMP:
5089                 if (val <= 0)
5090                         return -EINVAL;
5091                 tp->snd_cwnd_clamp = val;
5092                 tp->snd_ssthresh = val;
5093                 break;
5094         case TCP_BPF_DELACK_MAX:
5095                 timeout = usecs_to_jiffies(val);
5096                 if (timeout > TCP_DELACK_MAX ||
5097                     timeout < TCP_TIMEOUT_MIN)
5098                         return -EINVAL;
5099                 inet_csk(sk)->icsk_delack_max = timeout;
5100                 break;
5101         case TCP_BPF_RTO_MIN:
5102                 timeout = usecs_to_jiffies(val);
5103                 if (timeout > TCP_RTO_MIN ||
5104                     timeout < TCP_TIMEOUT_MIN)
5105                         return -EINVAL;
5106                 inet_csk(sk)->icsk_rto_min = timeout;
5107                 break;
5108         default:
5109                 return -EINVAL;
5110         }
5111
5112         return 0;
5113 }
5114
5115 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5116                                       int *optlen, bool getopt)
5117 {
5118         struct tcp_sock *tp;
5119         int ret;
5120
5121         if (*optlen < 2)
5122                 return -EINVAL;
5123
5124         if (getopt) {
5125                 if (!inet_csk(sk)->icsk_ca_ops)
5126                         return -EINVAL;
5127                 /* BPF expects NULL-terminated tcp-cc string */
5128                 optval[--(*optlen)] = '\0';
5129                 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5130                                          KERNEL_SOCKPTR(optval),
5131                                          KERNEL_SOCKPTR(optlen));
5132         }
5133
5134         /* "cdg" is the only cc that alloc a ptr
5135          * in inet_csk_ca area.  The bpf-tcp-cc may
5136          * overwrite this ptr after switching to cdg.
5137          */
5138         if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5139                 return -ENOTSUPP;
5140
5141         /* It stops this looping
5142          *
5143          * .init => bpf_setsockopt(tcp_cc) => .init =>
5144          * bpf_setsockopt(tcp_cc)" => .init => ....
5145          *
5146          * The second bpf_setsockopt(tcp_cc) is not allowed
5147          * in order to break the loop when both .init
5148          * are the same bpf prog.
5149          *
5150          * This applies even the second bpf_setsockopt(tcp_cc)
5151          * does not cause a loop.  This limits only the first
5152          * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5153          * pick a fallback cc (eg. peer does not support ECN)
5154          * and the second '.init' cannot fallback to
5155          * another.
5156          */
5157         tp = tcp_sk(sk);
5158         if (tp->bpf_chg_cc_inprogress)
5159                 return -EBUSY;
5160
5161         tp->bpf_chg_cc_inprogress = 1;
5162         ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5163                                 KERNEL_SOCKPTR(optval), *optlen);
5164         tp->bpf_chg_cc_inprogress = 0;
5165         return ret;
5166 }
5167
5168 static int sol_tcp_sockopt(struct sock *sk, int optname,
5169                            char *optval, int *optlen,
5170                            bool getopt)
5171 {
5172         if (sk->sk_prot->setsockopt != tcp_setsockopt)
5173                 return -EINVAL;
5174
5175         switch (optname) {
5176         case TCP_NODELAY:
5177         case TCP_MAXSEG:
5178         case TCP_KEEPIDLE:
5179         case TCP_KEEPINTVL:
5180         case TCP_KEEPCNT:
5181         case TCP_SYNCNT:
5182         case TCP_WINDOW_CLAMP:
5183         case TCP_THIN_LINEAR_TIMEOUTS:
5184         case TCP_USER_TIMEOUT:
5185         case TCP_NOTSENT_LOWAT:
5186         case TCP_SAVE_SYN:
5187                 if (*optlen != sizeof(int))
5188                         return -EINVAL;
5189                 break;
5190         case TCP_CONGESTION:
5191                 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5192         case TCP_SAVED_SYN:
5193                 if (*optlen < 1)
5194                         return -EINVAL;
5195                 break;
5196         default:
5197                 if (getopt)
5198                         return -EINVAL;
5199                 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5200         }
5201
5202         if (getopt) {
5203                 if (optname == TCP_SAVED_SYN) {
5204                         struct tcp_sock *tp = tcp_sk(sk);
5205
5206                         if (!tp->saved_syn ||
5207                             *optlen > tcp_saved_syn_len(tp->saved_syn))
5208                                 return -EINVAL;
5209                         memcpy(optval, tp->saved_syn->data, *optlen);
5210                         /* It cannot free tp->saved_syn here because it
5211                          * does not know if the user space still needs it.
5212                          */
5213                         return 0;
5214                 }
5215
5216                 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5217                                          KERNEL_SOCKPTR(optval),
5218                                          KERNEL_SOCKPTR(optlen));
5219         }
5220
5221         return do_tcp_setsockopt(sk, SOL_TCP, optname,
5222                                  KERNEL_SOCKPTR(optval), *optlen);
5223 }
5224
5225 static int sol_ip_sockopt(struct sock *sk, int optname,
5226                           char *optval, int *optlen,
5227                           bool getopt)
5228 {
5229         if (sk->sk_family != AF_INET)
5230                 return -EINVAL;
5231
5232         switch (optname) {
5233         case IP_TOS:
5234                 if (*optlen != sizeof(int))
5235                         return -EINVAL;
5236                 break;
5237         default:
5238                 return -EINVAL;
5239         }
5240
5241         if (getopt)
5242                 return do_ip_getsockopt(sk, SOL_IP, optname,
5243                                         KERNEL_SOCKPTR(optval),
5244                                         KERNEL_SOCKPTR(optlen));
5245
5246         return do_ip_setsockopt(sk, SOL_IP, optname,
5247                                 KERNEL_SOCKPTR(optval), *optlen);
5248 }
5249
5250 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5251                             char *optval, int *optlen,
5252                             bool getopt)
5253 {
5254         if (sk->sk_family != AF_INET6)
5255                 return -EINVAL;
5256
5257         switch (optname) {
5258         case IPV6_TCLASS:
5259         case IPV6_AUTOFLOWLABEL:
5260                 if (*optlen != sizeof(int))
5261                         return -EINVAL;
5262                 break;
5263         default:
5264                 return -EINVAL;
5265         }
5266
5267         if (getopt)
5268                 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5269                                                       KERNEL_SOCKPTR(optval),
5270                                                       KERNEL_SOCKPTR(optlen));
5271
5272         return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5273                                               KERNEL_SOCKPTR(optval), *optlen);
5274 }
5275
5276 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5277                             char *optval, int optlen)
5278 {
5279         if (!sk_fullsock(sk))
5280                 return -EINVAL;
5281
5282         if (level == SOL_SOCKET)
5283                 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5284         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5285                 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5286         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5287                 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5288         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5289                 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5290
5291         return -EINVAL;
5292 }
5293
5294 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5295                            char *optval, int optlen)
5296 {
5297         if (sk_fullsock(sk))
5298                 sock_owned_by_me(sk);
5299         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5300 }
5301
5302 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5303                             char *optval, int optlen)
5304 {
5305         int err, saved_optlen = optlen;
5306
5307         if (!sk_fullsock(sk)) {
5308                 err = -EINVAL;
5309                 goto done;
5310         }
5311
5312         if (level == SOL_SOCKET)
5313                 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5314         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5315                 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5316         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5317                 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5318         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5319                 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5320         else
5321                 err = -EINVAL;
5322
5323 done:
5324         if (err)
5325                 optlen = 0;
5326         if (optlen < saved_optlen)
5327                 memset(optval + optlen, 0, saved_optlen - optlen);
5328         return err;
5329 }
5330
5331 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5332                            char *optval, int optlen)
5333 {
5334         if (sk_fullsock(sk))
5335                 sock_owned_by_me(sk);
5336         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5337 }
5338
5339 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5340            int, optname, char *, optval, int, optlen)
5341 {
5342         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5343 }
5344
5345 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5346         .func           = bpf_sk_setsockopt,
5347         .gpl_only       = false,
5348         .ret_type       = RET_INTEGER,
5349         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5350         .arg2_type      = ARG_ANYTHING,
5351         .arg3_type      = ARG_ANYTHING,
5352         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5353         .arg5_type      = ARG_CONST_SIZE,
5354 };
5355
5356 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5357            int, optname, char *, optval, int, optlen)
5358 {
5359         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5360 }
5361
5362 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5363         .func           = bpf_sk_getsockopt,
5364         .gpl_only       = false,
5365         .ret_type       = RET_INTEGER,
5366         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5367         .arg2_type      = ARG_ANYTHING,
5368         .arg3_type      = ARG_ANYTHING,
5369         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5370         .arg5_type      = ARG_CONST_SIZE,
5371 };
5372
5373 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5374            int, optname, char *, optval, int, optlen)
5375 {
5376         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5377 }
5378
5379 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5380         .func           = bpf_unlocked_sk_setsockopt,
5381         .gpl_only       = false,
5382         .ret_type       = RET_INTEGER,
5383         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5384         .arg2_type      = ARG_ANYTHING,
5385         .arg3_type      = ARG_ANYTHING,
5386         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5387         .arg5_type      = ARG_CONST_SIZE,
5388 };
5389
5390 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5391            int, optname, char *, optval, int, optlen)
5392 {
5393         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5394 }
5395
5396 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5397         .func           = bpf_unlocked_sk_getsockopt,
5398         .gpl_only       = false,
5399         .ret_type       = RET_INTEGER,
5400         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5401         .arg2_type      = ARG_ANYTHING,
5402         .arg3_type      = ARG_ANYTHING,
5403         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5404         .arg5_type      = ARG_CONST_SIZE,
5405 };
5406
5407 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5408            int, level, int, optname, char *, optval, int, optlen)
5409 {
5410         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5411 }
5412
5413 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5414         .func           = bpf_sock_addr_setsockopt,
5415         .gpl_only       = false,
5416         .ret_type       = RET_INTEGER,
5417         .arg1_type      = ARG_PTR_TO_CTX,
5418         .arg2_type      = ARG_ANYTHING,
5419         .arg3_type      = ARG_ANYTHING,
5420         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5421         .arg5_type      = ARG_CONST_SIZE,
5422 };
5423
5424 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5425            int, level, int, optname, char *, optval, int, optlen)
5426 {
5427         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5428 }
5429
5430 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5431         .func           = bpf_sock_addr_getsockopt,
5432         .gpl_only       = false,
5433         .ret_type       = RET_INTEGER,
5434         .arg1_type      = ARG_PTR_TO_CTX,
5435         .arg2_type      = ARG_ANYTHING,
5436         .arg3_type      = ARG_ANYTHING,
5437         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5438         .arg5_type      = ARG_CONST_SIZE,
5439 };
5440
5441 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5442            int, level, int, optname, char *, optval, int, optlen)
5443 {
5444         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5445 }
5446
5447 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5448         .func           = bpf_sock_ops_setsockopt,
5449         .gpl_only       = false,
5450         .ret_type       = RET_INTEGER,
5451         .arg1_type      = ARG_PTR_TO_CTX,
5452         .arg2_type      = ARG_ANYTHING,
5453         .arg3_type      = ARG_ANYTHING,
5454         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5455         .arg5_type      = ARG_CONST_SIZE,
5456 };
5457
5458 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5459                                 int optname, const u8 **start)
5460 {
5461         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5462         const u8 *hdr_start;
5463         int ret;
5464
5465         if (syn_skb) {
5466                 /* sk is a request_sock here */
5467
5468                 if (optname == TCP_BPF_SYN) {
5469                         hdr_start = syn_skb->data;
5470                         ret = tcp_hdrlen(syn_skb);
5471                 } else if (optname == TCP_BPF_SYN_IP) {
5472                         hdr_start = skb_network_header(syn_skb);
5473                         ret = skb_network_header_len(syn_skb) +
5474                                 tcp_hdrlen(syn_skb);
5475                 } else {
5476                         /* optname == TCP_BPF_SYN_MAC */
5477                         hdr_start = skb_mac_header(syn_skb);
5478                         ret = skb_mac_header_len(syn_skb) +
5479                                 skb_network_header_len(syn_skb) +
5480                                 tcp_hdrlen(syn_skb);
5481                 }
5482         } else {
5483                 struct sock *sk = bpf_sock->sk;
5484                 struct saved_syn *saved_syn;
5485
5486                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5487                         /* synack retransmit. bpf_sock->syn_skb will
5488                          * not be available.  It has to resort to
5489                          * saved_syn (if it is saved).
5490                          */
5491                         saved_syn = inet_reqsk(sk)->saved_syn;
5492                 else
5493                         saved_syn = tcp_sk(sk)->saved_syn;
5494
5495                 if (!saved_syn)
5496                         return -ENOENT;
5497
5498                 if (optname == TCP_BPF_SYN) {
5499                         hdr_start = saved_syn->data +
5500                                 saved_syn->mac_hdrlen +
5501                                 saved_syn->network_hdrlen;
5502                         ret = saved_syn->tcp_hdrlen;
5503                 } else if (optname == TCP_BPF_SYN_IP) {
5504                         hdr_start = saved_syn->data +
5505                                 saved_syn->mac_hdrlen;
5506                         ret = saved_syn->network_hdrlen +
5507                                 saved_syn->tcp_hdrlen;
5508                 } else {
5509                         /* optname == TCP_BPF_SYN_MAC */
5510
5511                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5512                         if (!saved_syn->mac_hdrlen)
5513                                 return -ENOENT;
5514
5515                         hdr_start = saved_syn->data;
5516                         ret = saved_syn->mac_hdrlen +
5517                                 saved_syn->network_hdrlen +
5518                                 saved_syn->tcp_hdrlen;
5519                 }
5520         }
5521
5522         *start = hdr_start;
5523         return ret;
5524 }
5525
5526 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5527            int, level, int, optname, char *, optval, int, optlen)
5528 {
5529         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5530             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5531                 int ret, copy_len = 0;
5532                 const u8 *start;
5533
5534                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5535                 if (ret > 0) {
5536                         copy_len = ret;
5537                         if (optlen < copy_len) {
5538                                 copy_len = optlen;
5539                                 ret = -ENOSPC;
5540                         }
5541
5542                         memcpy(optval, start, copy_len);
5543                 }
5544
5545                 /* Zero out unused buffer at the end */
5546                 memset(optval + copy_len, 0, optlen - copy_len);
5547
5548                 return ret;
5549         }
5550
5551         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5552 }
5553
5554 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5555         .func           = bpf_sock_ops_getsockopt,
5556         .gpl_only       = false,
5557         .ret_type       = RET_INTEGER,
5558         .arg1_type      = ARG_PTR_TO_CTX,
5559         .arg2_type      = ARG_ANYTHING,
5560         .arg3_type      = ARG_ANYTHING,
5561         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5562         .arg5_type      = ARG_CONST_SIZE,
5563 };
5564
5565 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5566            int, argval)
5567 {
5568         struct sock *sk = bpf_sock->sk;
5569         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5570
5571         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5572                 return -EINVAL;
5573
5574         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5575
5576         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5577 }
5578
5579 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5580         .func           = bpf_sock_ops_cb_flags_set,
5581         .gpl_only       = false,
5582         .ret_type       = RET_INTEGER,
5583         .arg1_type      = ARG_PTR_TO_CTX,
5584         .arg2_type      = ARG_ANYTHING,
5585 };
5586
5587 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5588 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5589
5590 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5591            int, addr_len)
5592 {
5593 #ifdef CONFIG_INET
5594         struct sock *sk = ctx->sk;
5595         u32 flags = BIND_FROM_BPF;
5596         int err;
5597
5598         err = -EINVAL;
5599         if (addr_len < offsetofend(struct sockaddr, sa_family))
5600                 return err;
5601         if (addr->sa_family == AF_INET) {
5602                 if (addr_len < sizeof(struct sockaddr_in))
5603                         return err;
5604                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5605                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5606                 return __inet_bind(sk, addr, addr_len, flags);
5607 #if IS_ENABLED(CONFIG_IPV6)
5608         } else if (addr->sa_family == AF_INET6) {
5609                 if (addr_len < SIN6_LEN_RFC2133)
5610                         return err;
5611                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5612                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5613                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5614                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5615                  */
5616                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5617 #endif /* CONFIG_IPV6 */
5618         }
5619 #endif /* CONFIG_INET */
5620
5621         return -EAFNOSUPPORT;
5622 }
5623
5624 static const struct bpf_func_proto bpf_bind_proto = {
5625         .func           = bpf_bind,
5626         .gpl_only       = false,
5627         .ret_type       = RET_INTEGER,
5628         .arg1_type      = ARG_PTR_TO_CTX,
5629         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5630         .arg3_type      = ARG_CONST_SIZE,
5631 };
5632
5633 #ifdef CONFIG_XFRM
5634
5635 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5636     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5637
5638 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5639 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5640
5641 #endif
5642
5643 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5644            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5645 {
5646         const struct sec_path *sp = skb_sec_path(skb);
5647         const struct xfrm_state *x;
5648
5649         if (!sp || unlikely(index >= sp->len || flags))
5650                 goto err_clear;
5651
5652         x = sp->xvec[index];
5653
5654         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5655                 goto err_clear;
5656
5657         to->reqid = x->props.reqid;
5658         to->spi = x->id.spi;
5659         to->family = x->props.family;
5660         to->ext = 0;
5661
5662         if (to->family == AF_INET6) {
5663                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5664                        sizeof(to->remote_ipv6));
5665         } else {
5666                 to->remote_ipv4 = x->props.saddr.a4;
5667                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5668         }
5669
5670         return 0;
5671 err_clear:
5672         memset(to, 0, size);
5673         return -EINVAL;
5674 }
5675
5676 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5677         .func           = bpf_skb_get_xfrm_state,
5678         .gpl_only       = false,
5679         .ret_type       = RET_INTEGER,
5680         .arg1_type      = ARG_PTR_TO_CTX,
5681         .arg2_type      = ARG_ANYTHING,
5682         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5683         .arg4_type      = ARG_CONST_SIZE,
5684         .arg5_type      = ARG_ANYTHING,
5685 };
5686 #endif
5687
5688 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5689 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5690                                   const struct neighbour *neigh,
5691                                   const struct net_device *dev, u32 mtu)
5692 {
5693         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5694         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5695         params->h_vlan_TCI = 0;
5696         params->h_vlan_proto = 0;
5697         if (mtu)
5698                 params->mtu_result = mtu; /* union with tot_len */
5699
5700         return 0;
5701 }
5702 #endif
5703
5704 #if IS_ENABLED(CONFIG_INET)
5705 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5706                                u32 flags, bool check_mtu)
5707 {
5708         struct fib_nh_common *nhc;
5709         struct in_device *in_dev;
5710         struct neighbour *neigh;
5711         struct net_device *dev;
5712         struct fib_result res;
5713         struct flowi4 fl4;
5714         u32 mtu = 0;
5715         int err;
5716
5717         dev = dev_get_by_index_rcu(net, params->ifindex);
5718         if (unlikely(!dev))
5719                 return -ENODEV;
5720
5721         /* verify forwarding is enabled on this interface */
5722         in_dev = __in_dev_get_rcu(dev);
5723         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5724                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5725
5726         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5727                 fl4.flowi4_iif = 1;
5728                 fl4.flowi4_oif = params->ifindex;
5729         } else {
5730                 fl4.flowi4_iif = params->ifindex;
5731                 fl4.flowi4_oif = 0;
5732         }
5733         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5734         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5735         fl4.flowi4_flags = 0;
5736
5737         fl4.flowi4_proto = params->l4_protocol;
5738         fl4.daddr = params->ipv4_dst;
5739         fl4.saddr = params->ipv4_src;
5740         fl4.fl4_sport = params->sport;
5741         fl4.fl4_dport = params->dport;
5742         fl4.flowi4_multipath_hash = 0;
5743
5744         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5745                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5746                 struct fib_table *tb;
5747
5748                 tb = fib_get_table(net, tbid);
5749                 if (unlikely(!tb))
5750                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5751
5752                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5753         } else {
5754                 fl4.flowi4_mark = 0;
5755                 fl4.flowi4_secid = 0;
5756                 fl4.flowi4_tun_key.tun_id = 0;
5757                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5758
5759                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5760         }
5761
5762         if (err) {
5763                 /* map fib lookup errors to RTN_ type */
5764                 if (err == -EINVAL)
5765                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5766                 if (err == -EHOSTUNREACH)
5767                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5768                 if (err == -EACCES)
5769                         return BPF_FIB_LKUP_RET_PROHIBIT;
5770
5771                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5772         }
5773
5774         if (res.type != RTN_UNICAST)
5775                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5776
5777         if (fib_info_num_path(res.fi) > 1)
5778                 fib_select_path(net, &res, &fl4, NULL);
5779
5780         if (check_mtu) {
5781                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5782                 if (params->tot_len > mtu) {
5783                         params->mtu_result = mtu; /* union with tot_len */
5784                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5785                 }
5786         }
5787
5788         nhc = res.nhc;
5789
5790         /* do not handle lwt encaps right now */
5791         if (nhc->nhc_lwtstate)
5792                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5793
5794         dev = nhc->nhc_dev;
5795
5796         params->rt_metric = res.fi->fib_priority;
5797         params->ifindex = dev->ifindex;
5798
5799         /* xdp and cls_bpf programs are run in RCU-bh so
5800          * rcu_read_lock_bh is not needed here
5801          */
5802         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5803                 if (nhc->nhc_gw_family)
5804                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5805
5806                 neigh = __ipv4_neigh_lookup_noref(dev,
5807                                                  (__force u32)params->ipv4_dst);
5808         } else {
5809                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5810
5811                 params->family = AF_INET6;
5812                 *dst = nhc->nhc_gw.ipv6;
5813                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5814         }
5815
5816         if (!neigh)
5817                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5818
5819         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5820 }
5821 #endif
5822
5823 #if IS_ENABLED(CONFIG_IPV6)
5824 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5825                                u32 flags, bool check_mtu)
5826 {
5827         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5828         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5829         struct fib6_result res = {};
5830         struct neighbour *neigh;
5831         struct net_device *dev;
5832         struct inet6_dev *idev;
5833         struct flowi6 fl6;
5834         int strict = 0;
5835         int oif, err;
5836         u32 mtu = 0;
5837
5838         /* link local addresses are never forwarded */
5839         if (rt6_need_strict(dst) || rt6_need_strict(src))
5840                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5841
5842         dev = dev_get_by_index_rcu(net, params->ifindex);
5843         if (unlikely(!dev))
5844                 return -ENODEV;
5845
5846         idev = __in6_dev_get_safely(dev);
5847         if (unlikely(!idev || !idev->cnf.forwarding))
5848                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5849
5850         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5851                 fl6.flowi6_iif = 1;
5852                 oif = fl6.flowi6_oif = params->ifindex;
5853         } else {
5854                 oif = fl6.flowi6_iif = params->ifindex;
5855                 fl6.flowi6_oif = 0;
5856                 strict = RT6_LOOKUP_F_HAS_SADDR;
5857         }
5858         fl6.flowlabel = params->flowinfo;
5859         fl6.flowi6_scope = 0;
5860         fl6.flowi6_flags = 0;
5861         fl6.mp_hash = 0;
5862
5863         fl6.flowi6_proto = params->l4_protocol;
5864         fl6.daddr = *dst;
5865         fl6.saddr = *src;
5866         fl6.fl6_sport = params->sport;
5867         fl6.fl6_dport = params->dport;
5868
5869         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5870                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5871                 struct fib6_table *tb;
5872
5873                 tb = ipv6_stub->fib6_get_table(net, tbid);
5874                 if (unlikely(!tb))
5875                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5876
5877                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5878                                                    strict);
5879         } else {
5880                 fl6.flowi6_mark = 0;
5881                 fl6.flowi6_secid = 0;
5882                 fl6.flowi6_tun_key.tun_id = 0;
5883                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5884
5885                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5886         }
5887
5888         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5889                      res.f6i == net->ipv6.fib6_null_entry))
5890                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5891
5892         switch (res.fib6_type) {
5893         /* only unicast is forwarded */
5894         case RTN_UNICAST:
5895                 break;
5896         case RTN_BLACKHOLE:
5897                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5898         case RTN_UNREACHABLE:
5899                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5900         case RTN_PROHIBIT:
5901                 return BPF_FIB_LKUP_RET_PROHIBIT;
5902         default:
5903                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5904         }
5905
5906         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5907                                     fl6.flowi6_oif != 0, NULL, strict);
5908
5909         if (check_mtu) {
5910                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5911                 if (params->tot_len > mtu) {
5912                         params->mtu_result = mtu; /* union with tot_len */
5913                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5914                 }
5915         }
5916
5917         if (res.nh->fib_nh_lws)
5918                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5919
5920         if (res.nh->fib_nh_gw_family)
5921                 *dst = res.nh->fib_nh_gw6;
5922
5923         dev = res.nh->fib_nh_dev;
5924         params->rt_metric = res.f6i->fib6_metric;
5925         params->ifindex = dev->ifindex;
5926
5927         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5928          * not needed here.
5929          */
5930         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5931         if (!neigh)
5932                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5933
5934         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5935 }
5936 #endif
5937
5938 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5939            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5940 {
5941         if (plen < sizeof(*params))
5942                 return -EINVAL;
5943
5944         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5945                 return -EINVAL;
5946
5947         switch (params->family) {
5948 #if IS_ENABLED(CONFIG_INET)
5949         case AF_INET:
5950                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5951                                            flags, true);
5952 #endif
5953 #if IS_ENABLED(CONFIG_IPV6)
5954         case AF_INET6:
5955                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5956                                            flags, true);
5957 #endif
5958         }
5959         return -EAFNOSUPPORT;
5960 }
5961
5962 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5963         .func           = bpf_xdp_fib_lookup,
5964         .gpl_only       = true,
5965         .ret_type       = RET_INTEGER,
5966         .arg1_type      = ARG_PTR_TO_CTX,
5967         .arg2_type      = ARG_PTR_TO_MEM,
5968         .arg3_type      = ARG_CONST_SIZE,
5969         .arg4_type      = ARG_ANYTHING,
5970 };
5971
5972 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5973            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5974 {
5975         struct net *net = dev_net(skb->dev);
5976         int rc = -EAFNOSUPPORT;
5977         bool check_mtu = false;
5978
5979         if (plen < sizeof(*params))
5980                 return -EINVAL;
5981
5982         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5983                 return -EINVAL;
5984
5985         if (params->tot_len)
5986                 check_mtu = true;
5987
5988         switch (params->family) {
5989 #if IS_ENABLED(CONFIG_INET)
5990         case AF_INET:
5991                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5992                 break;
5993 #endif
5994 #if IS_ENABLED(CONFIG_IPV6)
5995         case AF_INET6:
5996                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5997                 break;
5998 #endif
5999         }
6000
6001         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6002                 struct net_device *dev;
6003
6004                 /* When tot_len isn't provided by user, check skb
6005                  * against MTU of FIB lookup resulting net_device
6006                  */
6007                 dev = dev_get_by_index_rcu(net, params->ifindex);
6008                 if (!is_skb_forwardable(dev, skb))
6009                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6010
6011                 params->mtu_result = dev->mtu; /* union with tot_len */
6012         }
6013
6014         return rc;
6015 }
6016
6017 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6018         .func           = bpf_skb_fib_lookup,
6019         .gpl_only       = true,
6020         .ret_type       = RET_INTEGER,
6021         .arg1_type      = ARG_PTR_TO_CTX,
6022         .arg2_type      = ARG_PTR_TO_MEM,
6023         .arg3_type      = ARG_CONST_SIZE,
6024         .arg4_type      = ARG_ANYTHING,
6025 };
6026
6027 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6028                                             u32 ifindex)
6029 {
6030         struct net *netns = dev_net(dev_curr);
6031
6032         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6033         if (ifindex == 0)
6034                 return dev_curr;
6035
6036         return dev_get_by_index_rcu(netns, ifindex);
6037 }
6038
6039 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6040            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6041 {
6042         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6043         struct net_device *dev = skb->dev;
6044         int skb_len, dev_len;
6045         int mtu;
6046
6047         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6048                 return -EINVAL;
6049
6050         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6051                 return -EINVAL;
6052
6053         dev = __dev_via_ifindex(dev, ifindex);
6054         if (unlikely(!dev))
6055                 return -ENODEV;
6056
6057         mtu = READ_ONCE(dev->mtu);
6058
6059         dev_len = mtu + dev->hard_header_len;
6060
6061         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6062         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6063
6064         skb_len += len_diff; /* minus result pass check */
6065         if (skb_len <= dev_len) {
6066                 ret = BPF_MTU_CHK_RET_SUCCESS;
6067                 goto out;
6068         }
6069         /* At this point, skb->len exceed MTU, but as it include length of all
6070          * segments, it can still be below MTU.  The SKB can possibly get
6071          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6072          * must choose if segs are to be MTU checked.
6073          */
6074         if (skb_is_gso(skb)) {
6075                 ret = BPF_MTU_CHK_RET_SUCCESS;
6076
6077                 if (flags & BPF_MTU_CHK_SEGS &&
6078                     !skb_gso_validate_network_len(skb, mtu))
6079                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6080         }
6081 out:
6082         /* BPF verifier guarantees valid pointer */
6083         *mtu_len = mtu;
6084
6085         return ret;
6086 }
6087
6088 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6089            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6090 {
6091         struct net_device *dev = xdp->rxq->dev;
6092         int xdp_len = xdp->data_end - xdp->data;
6093         int ret = BPF_MTU_CHK_RET_SUCCESS;
6094         int mtu, dev_len;
6095
6096         /* XDP variant doesn't support multi-buffer segment check (yet) */
6097         if (unlikely(flags))
6098                 return -EINVAL;
6099
6100         dev = __dev_via_ifindex(dev, ifindex);
6101         if (unlikely(!dev))
6102                 return -ENODEV;
6103
6104         mtu = READ_ONCE(dev->mtu);
6105
6106         /* Add L2-header as dev MTU is L3 size */
6107         dev_len = mtu + dev->hard_header_len;
6108
6109         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6110         if (*mtu_len)
6111                 xdp_len = *mtu_len + dev->hard_header_len;
6112
6113         xdp_len += len_diff; /* minus result pass check */
6114         if (xdp_len > dev_len)
6115                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6116
6117         /* BPF verifier guarantees valid pointer */
6118         *mtu_len = mtu;
6119
6120         return ret;
6121 }
6122
6123 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6124         .func           = bpf_skb_check_mtu,
6125         .gpl_only       = true,
6126         .ret_type       = RET_INTEGER,
6127         .arg1_type      = ARG_PTR_TO_CTX,
6128         .arg2_type      = ARG_ANYTHING,
6129         .arg3_type      = ARG_PTR_TO_INT,
6130         .arg4_type      = ARG_ANYTHING,
6131         .arg5_type      = ARG_ANYTHING,
6132 };
6133
6134 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6135         .func           = bpf_xdp_check_mtu,
6136         .gpl_only       = true,
6137         .ret_type       = RET_INTEGER,
6138         .arg1_type      = ARG_PTR_TO_CTX,
6139         .arg2_type      = ARG_ANYTHING,
6140         .arg3_type      = ARG_PTR_TO_INT,
6141         .arg4_type      = ARG_ANYTHING,
6142         .arg5_type      = ARG_ANYTHING,
6143 };
6144
6145 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6146 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6147 {
6148         int err;
6149         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6150
6151         if (!seg6_validate_srh(srh, len, false))
6152                 return -EINVAL;
6153
6154         switch (type) {
6155         case BPF_LWT_ENCAP_SEG6_INLINE:
6156                 if (skb->protocol != htons(ETH_P_IPV6))
6157                         return -EBADMSG;
6158
6159                 err = seg6_do_srh_inline(skb, srh);
6160                 break;
6161         case BPF_LWT_ENCAP_SEG6:
6162                 skb_reset_inner_headers(skb);
6163                 skb->encapsulation = 1;
6164                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6165                 break;
6166         default:
6167                 return -EINVAL;
6168         }
6169
6170         bpf_compute_data_pointers(skb);
6171         if (err)
6172                 return err;
6173
6174         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6175
6176         return seg6_lookup_nexthop(skb, NULL, 0);
6177 }
6178 #endif /* CONFIG_IPV6_SEG6_BPF */
6179
6180 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6181 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6182                              bool ingress)
6183 {
6184         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6185 }
6186 #endif
6187
6188 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6189            u32, len)
6190 {
6191         switch (type) {
6192 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6193         case BPF_LWT_ENCAP_SEG6:
6194         case BPF_LWT_ENCAP_SEG6_INLINE:
6195                 return bpf_push_seg6_encap(skb, type, hdr, len);
6196 #endif
6197 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6198         case BPF_LWT_ENCAP_IP:
6199                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6200 #endif
6201         default:
6202                 return -EINVAL;
6203         }
6204 }
6205
6206 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6207            void *, hdr, u32, len)
6208 {
6209         switch (type) {
6210 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6211         case BPF_LWT_ENCAP_IP:
6212                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6213 #endif
6214         default:
6215                 return -EINVAL;
6216         }
6217 }
6218
6219 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6220         .func           = bpf_lwt_in_push_encap,
6221         .gpl_only       = false,
6222         .ret_type       = RET_INTEGER,
6223         .arg1_type      = ARG_PTR_TO_CTX,
6224         .arg2_type      = ARG_ANYTHING,
6225         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6226         .arg4_type      = ARG_CONST_SIZE
6227 };
6228
6229 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6230         .func           = bpf_lwt_xmit_push_encap,
6231         .gpl_only       = false,
6232         .ret_type       = RET_INTEGER,
6233         .arg1_type      = ARG_PTR_TO_CTX,
6234         .arg2_type      = ARG_ANYTHING,
6235         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6236         .arg4_type      = ARG_CONST_SIZE
6237 };
6238
6239 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6240 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6241            const void *, from, u32, len)
6242 {
6243         struct seg6_bpf_srh_state *srh_state =
6244                 this_cpu_ptr(&seg6_bpf_srh_states);
6245         struct ipv6_sr_hdr *srh = srh_state->srh;
6246         void *srh_tlvs, *srh_end, *ptr;
6247         int srhoff = 0;
6248
6249         if (srh == NULL)
6250                 return -EINVAL;
6251
6252         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6253         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6254
6255         ptr = skb->data + offset;
6256         if (ptr >= srh_tlvs && ptr + len <= srh_end)
6257                 srh_state->valid = false;
6258         else if (ptr < (void *)&srh->flags ||
6259                  ptr + len > (void *)&srh->segments)
6260                 return -EFAULT;
6261
6262         if (unlikely(bpf_try_make_writable(skb, offset + len)))
6263                 return -EFAULT;
6264         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6265                 return -EINVAL;
6266         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6267
6268         memcpy(skb->data + offset, from, len);
6269         return 0;
6270 }
6271
6272 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6273         .func           = bpf_lwt_seg6_store_bytes,
6274         .gpl_only       = false,
6275         .ret_type       = RET_INTEGER,
6276         .arg1_type      = ARG_PTR_TO_CTX,
6277         .arg2_type      = ARG_ANYTHING,
6278         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6279         .arg4_type      = ARG_CONST_SIZE
6280 };
6281
6282 static void bpf_update_srh_state(struct sk_buff *skb)
6283 {
6284         struct seg6_bpf_srh_state *srh_state =
6285                 this_cpu_ptr(&seg6_bpf_srh_states);
6286         int srhoff = 0;
6287
6288         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6289                 srh_state->srh = NULL;
6290         } else {
6291                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6292                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6293                 srh_state->valid = true;
6294         }
6295 }
6296
6297 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6298            u32, action, void *, param, u32, param_len)
6299 {
6300         struct seg6_bpf_srh_state *srh_state =
6301                 this_cpu_ptr(&seg6_bpf_srh_states);
6302         int hdroff = 0;
6303         int err;
6304
6305         switch (action) {
6306         case SEG6_LOCAL_ACTION_END_X:
6307                 if (!seg6_bpf_has_valid_srh(skb))
6308                         return -EBADMSG;
6309                 if (param_len != sizeof(struct in6_addr))
6310                         return -EINVAL;
6311                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6312         case SEG6_LOCAL_ACTION_END_T:
6313                 if (!seg6_bpf_has_valid_srh(skb))
6314                         return -EBADMSG;
6315                 if (param_len != sizeof(int))
6316                         return -EINVAL;
6317                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6318         case SEG6_LOCAL_ACTION_END_DT6:
6319                 if (!seg6_bpf_has_valid_srh(skb))
6320                         return -EBADMSG;
6321                 if (param_len != sizeof(int))
6322                         return -EINVAL;
6323
6324                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6325                         return -EBADMSG;
6326                 if (!pskb_pull(skb, hdroff))
6327                         return -EBADMSG;
6328
6329                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6330                 skb_reset_network_header(skb);
6331                 skb_reset_transport_header(skb);
6332                 skb->encapsulation = 0;
6333
6334                 bpf_compute_data_pointers(skb);
6335                 bpf_update_srh_state(skb);
6336                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6337         case SEG6_LOCAL_ACTION_END_B6:
6338                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6339                         return -EBADMSG;
6340                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6341                                           param, param_len);
6342                 if (!err)
6343                         bpf_update_srh_state(skb);
6344
6345                 return err;
6346         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6347                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6348                         return -EBADMSG;
6349                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6350                                           param, param_len);
6351                 if (!err)
6352                         bpf_update_srh_state(skb);
6353
6354                 return err;
6355         default:
6356                 return -EINVAL;
6357         }
6358 }
6359
6360 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6361         .func           = bpf_lwt_seg6_action,
6362         .gpl_only       = false,
6363         .ret_type       = RET_INTEGER,
6364         .arg1_type      = ARG_PTR_TO_CTX,
6365         .arg2_type      = ARG_ANYTHING,
6366         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6367         .arg4_type      = ARG_CONST_SIZE
6368 };
6369
6370 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6371            s32, len)
6372 {
6373         struct seg6_bpf_srh_state *srh_state =
6374                 this_cpu_ptr(&seg6_bpf_srh_states);
6375         struct ipv6_sr_hdr *srh = srh_state->srh;
6376         void *srh_end, *srh_tlvs, *ptr;
6377         struct ipv6hdr *hdr;
6378         int srhoff = 0;
6379         int ret;
6380
6381         if (unlikely(srh == NULL))
6382                 return -EINVAL;
6383
6384         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6385                         ((srh->first_segment + 1) << 4));
6386         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6387                         srh_state->hdrlen);
6388         ptr = skb->data + offset;
6389
6390         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6391                 return -EFAULT;
6392         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6393                 return -EFAULT;
6394
6395         if (len > 0) {
6396                 ret = skb_cow_head(skb, len);
6397                 if (unlikely(ret < 0))
6398                         return ret;
6399
6400                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6401         } else {
6402                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6403         }
6404
6405         bpf_compute_data_pointers(skb);
6406         if (unlikely(ret < 0))
6407                 return ret;
6408
6409         hdr = (struct ipv6hdr *)skb->data;
6410         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6411
6412         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6413                 return -EINVAL;
6414         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6415         srh_state->hdrlen += len;
6416         srh_state->valid = false;
6417         return 0;
6418 }
6419
6420 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6421         .func           = bpf_lwt_seg6_adjust_srh,
6422         .gpl_only       = false,
6423         .ret_type       = RET_INTEGER,
6424         .arg1_type      = ARG_PTR_TO_CTX,
6425         .arg2_type      = ARG_ANYTHING,
6426         .arg3_type      = ARG_ANYTHING,
6427 };
6428 #endif /* CONFIG_IPV6_SEG6_BPF */
6429
6430 #ifdef CONFIG_INET
6431 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6432                               int dif, int sdif, u8 family, u8 proto)
6433 {
6434         struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6435         bool refcounted = false;
6436         struct sock *sk = NULL;
6437
6438         if (family == AF_INET) {
6439                 __be32 src4 = tuple->ipv4.saddr;
6440                 __be32 dst4 = tuple->ipv4.daddr;
6441
6442                 if (proto == IPPROTO_TCP)
6443                         sk = __inet_lookup(net, hinfo, NULL, 0,
6444                                            src4, tuple->ipv4.sport,
6445                                            dst4, tuple->ipv4.dport,
6446                                            dif, sdif, &refcounted);
6447                 else
6448                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6449                                                dst4, tuple->ipv4.dport,
6450                                                dif, sdif, net->ipv4.udp_table, NULL);
6451 #if IS_ENABLED(CONFIG_IPV6)
6452         } else {
6453                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6454                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6455
6456                 if (proto == IPPROTO_TCP)
6457                         sk = __inet6_lookup(net, hinfo, NULL, 0,
6458                                             src6, tuple->ipv6.sport,
6459                                             dst6, ntohs(tuple->ipv6.dport),
6460                                             dif, sdif, &refcounted);
6461                 else if (likely(ipv6_bpf_stub))
6462                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6463                                                             src6, tuple->ipv6.sport,
6464                                                             dst6, tuple->ipv6.dport,
6465                                                             dif, sdif,
6466                                                             net->ipv4.udp_table, NULL);
6467 #endif
6468         }
6469
6470         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6471                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6472                 sk = NULL;
6473         }
6474         return sk;
6475 }
6476
6477 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6478  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6479  */
6480 static struct sock *
6481 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6482                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6483                  u64 flags)
6484 {
6485         struct sock *sk = NULL;
6486         struct net *net;
6487         u8 family;
6488         int sdif;
6489
6490         if (len == sizeof(tuple->ipv4))
6491                 family = AF_INET;
6492         else if (len == sizeof(tuple->ipv6))
6493                 family = AF_INET6;
6494         else
6495                 return NULL;
6496
6497         if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6498                 goto out;
6499
6500         if (family == AF_INET)
6501                 sdif = inet_sdif(skb);
6502         else
6503                 sdif = inet6_sdif(skb);
6504
6505         if ((s32)netns_id < 0) {
6506                 net = caller_net;
6507                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6508         } else {
6509                 net = get_net_ns_by_id(caller_net, netns_id);
6510                 if (unlikely(!net))
6511                         goto out;
6512                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6513                 put_net(net);
6514         }
6515
6516 out:
6517         return sk;
6518 }
6519
6520 static struct sock *
6521 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6522                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6523                 u64 flags)
6524 {
6525         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6526                                            ifindex, proto, netns_id, flags);
6527
6528         if (sk) {
6529                 struct sock *sk2 = sk_to_full_sk(sk);
6530
6531                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6532                  * sock refcnt is decremented to prevent a request_sock leak.
6533                  */
6534                 if (!sk_fullsock(sk2))
6535                         sk2 = NULL;
6536                 if (sk2 != sk) {
6537                         sock_gen_put(sk);
6538                         /* Ensure there is no need to bump sk2 refcnt */
6539                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6540                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6541                                 return NULL;
6542                         }
6543                         sk = sk2;
6544                 }
6545         }
6546
6547         return sk;
6548 }
6549
6550 static struct sock *
6551 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6552                u8 proto, u64 netns_id, u64 flags)
6553 {
6554         struct net *caller_net;
6555         int ifindex;
6556
6557         if (skb->dev) {
6558                 caller_net = dev_net(skb->dev);
6559                 ifindex = skb->dev->ifindex;
6560         } else {
6561                 caller_net = sock_net(skb->sk);
6562                 ifindex = 0;
6563         }
6564
6565         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6566                                 netns_id, flags);
6567 }
6568
6569 static struct sock *
6570 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6571               u8 proto, u64 netns_id, u64 flags)
6572 {
6573         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6574                                          flags);
6575
6576         if (sk) {
6577                 struct sock *sk2 = sk_to_full_sk(sk);
6578
6579                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6580                  * sock refcnt is decremented to prevent a request_sock leak.
6581                  */
6582                 if (!sk_fullsock(sk2))
6583                         sk2 = NULL;
6584                 if (sk2 != sk) {
6585                         sock_gen_put(sk);
6586                         /* Ensure there is no need to bump sk2 refcnt */
6587                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6588                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6589                                 return NULL;
6590                         }
6591                         sk = sk2;
6592                 }
6593         }
6594
6595         return sk;
6596 }
6597
6598 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6599            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6600 {
6601         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6602                                              netns_id, flags);
6603 }
6604
6605 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6606         .func           = bpf_skc_lookup_tcp,
6607         .gpl_only       = false,
6608         .pkt_access     = true,
6609         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6610         .arg1_type      = ARG_PTR_TO_CTX,
6611         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6612         .arg3_type      = ARG_CONST_SIZE,
6613         .arg4_type      = ARG_ANYTHING,
6614         .arg5_type      = ARG_ANYTHING,
6615 };
6616
6617 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6618            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6619 {
6620         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6621                                             netns_id, flags);
6622 }
6623
6624 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6625         .func           = bpf_sk_lookup_tcp,
6626         .gpl_only       = false,
6627         .pkt_access     = true,
6628         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6629         .arg1_type      = ARG_PTR_TO_CTX,
6630         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6631         .arg3_type      = ARG_CONST_SIZE,
6632         .arg4_type      = ARG_ANYTHING,
6633         .arg5_type      = ARG_ANYTHING,
6634 };
6635
6636 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6637            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6638 {
6639         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6640                                             netns_id, flags);
6641 }
6642
6643 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6644         .func           = bpf_sk_lookup_udp,
6645         .gpl_only       = false,
6646         .pkt_access     = true,
6647         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6648         .arg1_type      = ARG_PTR_TO_CTX,
6649         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6650         .arg3_type      = ARG_CONST_SIZE,
6651         .arg4_type      = ARG_ANYTHING,
6652         .arg5_type      = ARG_ANYTHING,
6653 };
6654
6655 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6656 {
6657         if (sk && sk_is_refcounted(sk))
6658                 sock_gen_put(sk);
6659         return 0;
6660 }
6661
6662 static const struct bpf_func_proto bpf_sk_release_proto = {
6663         .func           = bpf_sk_release,
6664         .gpl_only       = false,
6665         .ret_type       = RET_INTEGER,
6666         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6667 };
6668
6669 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6670            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6671 {
6672         struct net *caller_net = dev_net(ctx->rxq->dev);
6673         int ifindex = ctx->rxq->dev->ifindex;
6674
6675         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6676                                               ifindex, IPPROTO_UDP, netns_id,
6677                                               flags);
6678 }
6679
6680 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6681         .func           = bpf_xdp_sk_lookup_udp,
6682         .gpl_only       = false,
6683         .pkt_access     = true,
6684         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6685         .arg1_type      = ARG_PTR_TO_CTX,
6686         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6687         .arg3_type      = ARG_CONST_SIZE,
6688         .arg4_type      = ARG_ANYTHING,
6689         .arg5_type      = ARG_ANYTHING,
6690 };
6691
6692 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6693            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6694 {
6695         struct net *caller_net = dev_net(ctx->rxq->dev);
6696         int ifindex = ctx->rxq->dev->ifindex;
6697
6698         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6699                                                ifindex, IPPROTO_TCP, netns_id,
6700                                                flags);
6701 }
6702
6703 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6704         .func           = bpf_xdp_skc_lookup_tcp,
6705         .gpl_only       = false,
6706         .pkt_access     = true,
6707         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6708         .arg1_type      = ARG_PTR_TO_CTX,
6709         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6710         .arg3_type      = ARG_CONST_SIZE,
6711         .arg4_type      = ARG_ANYTHING,
6712         .arg5_type      = ARG_ANYTHING,
6713 };
6714
6715 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6716            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6717 {
6718         struct net *caller_net = dev_net(ctx->rxq->dev);
6719         int ifindex = ctx->rxq->dev->ifindex;
6720
6721         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6722                                               ifindex, IPPROTO_TCP, netns_id,
6723                                               flags);
6724 }
6725
6726 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6727         .func           = bpf_xdp_sk_lookup_tcp,
6728         .gpl_only       = false,
6729         .pkt_access     = true,
6730         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6731         .arg1_type      = ARG_PTR_TO_CTX,
6732         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6733         .arg3_type      = ARG_CONST_SIZE,
6734         .arg4_type      = ARG_ANYTHING,
6735         .arg5_type      = ARG_ANYTHING,
6736 };
6737
6738 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6739            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6740 {
6741         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6742                                                sock_net(ctx->sk), 0,
6743                                                IPPROTO_TCP, netns_id, flags);
6744 }
6745
6746 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6747         .func           = bpf_sock_addr_skc_lookup_tcp,
6748         .gpl_only       = false,
6749         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6750         .arg1_type      = ARG_PTR_TO_CTX,
6751         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6752         .arg3_type      = ARG_CONST_SIZE,
6753         .arg4_type      = ARG_ANYTHING,
6754         .arg5_type      = ARG_ANYTHING,
6755 };
6756
6757 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6758            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6759 {
6760         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6761                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6762                                               netns_id, flags);
6763 }
6764
6765 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6766         .func           = bpf_sock_addr_sk_lookup_tcp,
6767         .gpl_only       = false,
6768         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6769         .arg1_type      = ARG_PTR_TO_CTX,
6770         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6771         .arg3_type      = ARG_CONST_SIZE,
6772         .arg4_type      = ARG_ANYTHING,
6773         .arg5_type      = ARG_ANYTHING,
6774 };
6775
6776 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6777            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6778 {
6779         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6780                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6781                                               netns_id, flags);
6782 }
6783
6784 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6785         .func           = bpf_sock_addr_sk_lookup_udp,
6786         .gpl_only       = false,
6787         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6788         .arg1_type      = ARG_PTR_TO_CTX,
6789         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6790         .arg3_type      = ARG_CONST_SIZE,
6791         .arg4_type      = ARG_ANYTHING,
6792         .arg5_type      = ARG_ANYTHING,
6793 };
6794
6795 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6796                                   struct bpf_insn_access_aux *info)
6797 {
6798         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6799                                           icsk_retransmits))
6800                 return false;
6801
6802         if (off % size != 0)
6803                 return false;
6804
6805         switch (off) {
6806         case offsetof(struct bpf_tcp_sock, bytes_received):
6807         case offsetof(struct bpf_tcp_sock, bytes_acked):
6808                 return size == sizeof(__u64);
6809         default:
6810                 return size == sizeof(__u32);
6811         }
6812 }
6813
6814 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6815                                     const struct bpf_insn *si,
6816                                     struct bpf_insn *insn_buf,
6817                                     struct bpf_prog *prog, u32 *target_size)
6818 {
6819         struct bpf_insn *insn = insn_buf;
6820
6821 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6822         do {                                                            \
6823                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6824                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6825                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6826                                       si->dst_reg, si->src_reg,         \
6827                                       offsetof(struct tcp_sock, FIELD)); \
6828         } while (0)
6829
6830 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6831         do {                                                            \
6832                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6833                                           FIELD) >                      \
6834                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6835                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6836                                         struct inet_connection_sock,    \
6837                                         FIELD),                         \
6838                                       si->dst_reg, si->src_reg,         \
6839                                       offsetof(                         \
6840                                         struct inet_connection_sock,    \
6841                                         FIELD));                        \
6842         } while (0)
6843
6844         if (insn > insn_buf)
6845                 return insn - insn_buf;
6846
6847         switch (si->off) {
6848         case offsetof(struct bpf_tcp_sock, rtt_min):
6849                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6850                              sizeof(struct minmax));
6851                 BUILD_BUG_ON(sizeof(struct minmax) <
6852                              sizeof(struct minmax_sample));
6853
6854                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6855                                       offsetof(struct tcp_sock, rtt_min) +
6856                                       offsetof(struct minmax_sample, v));
6857                 break;
6858         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6859                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6860                 break;
6861         case offsetof(struct bpf_tcp_sock, srtt_us):
6862                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6863                 break;
6864         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6865                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6866                 break;
6867         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6868                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6869                 break;
6870         case offsetof(struct bpf_tcp_sock, snd_nxt):
6871                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6872                 break;
6873         case offsetof(struct bpf_tcp_sock, snd_una):
6874                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6875                 break;
6876         case offsetof(struct bpf_tcp_sock, mss_cache):
6877                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6878                 break;
6879         case offsetof(struct bpf_tcp_sock, ecn_flags):
6880                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6881                 break;
6882         case offsetof(struct bpf_tcp_sock, rate_delivered):
6883                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6884                 break;
6885         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6886                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6887                 break;
6888         case offsetof(struct bpf_tcp_sock, packets_out):
6889                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6890                 break;
6891         case offsetof(struct bpf_tcp_sock, retrans_out):
6892                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6893                 break;
6894         case offsetof(struct bpf_tcp_sock, total_retrans):
6895                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6896                 break;
6897         case offsetof(struct bpf_tcp_sock, segs_in):
6898                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6899                 break;
6900         case offsetof(struct bpf_tcp_sock, data_segs_in):
6901                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6902                 break;
6903         case offsetof(struct bpf_tcp_sock, segs_out):
6904                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6905                 break;
6906         case offsetof(struct bpf_tcp_sock, data_segs_out):
6907                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6908                 break;
6909         case offsetof(struct bpf_tcp_sock, lost_out):
6910                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6911                 break;
6912         case offsetof(struct bpf_tcp_sock, sacked_out):
6913                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6914                 break;
6915         case offsetof(struct bpf_tcp_sock, bytes_received):
6916                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6917                 break;
6918         case offsetof(struct bpf_tcp_sock, bytes_acked):
6919                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6920                 break;
6921         case offsetof(struct bpf_tcp_sock, dsack_dups):
6922                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6923                 break;
6924         case offsetof(struct bpf_tcp_sock, delivered):
6925                 BPF_TCP_SOCK_GET_COMMON(delivered);
6926                 break;
6927         case offsetof(struct bpf_tcp_sock, delivered_ce):
6928                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6929                 break;
6930         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6931                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6932                 break;
6933         }
6934
6935         return insn - insn_buf;
6936 }
6937
6938 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6939 {
6940         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6941                 return (unsigned long)sk;
6942
6943         return (unsigned long)NULL;
6944 }
6945
6946 const struct bpf_func_proto bpf_tcp_sock_proto = {
6947         .func           = bpf_tcp_sock,
6948         .gpl_only       = false,
6949         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6950         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6951 };
6952
6953 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6954 {
6955         sk = sk_to_full_sk(sk);
6956
6957         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6958                 return (unsigned long)sk;
6959
6960         return (unsigned long)NULL;
6961 }
6962
6963 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6964         .func           = bpf_get_listener_sock,
6965         .gpl_only       = false,
6966         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6967         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6968 };
6969
6970 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6971 {
6972         unsigned int iphdr_len;
6973
6974         switch (skb_protocol(skb, true)) {
6975         case cpu_to_be16(ETH_P_IP):
6976                 iphdr_len = sizeof(struct iphdr);
6977                 break;
6978         case cpu_to_be16(ETH_P_IPV6):
6979                 iphdr_len = sizeof(struct ipv6hdr);
6980                 break;
6981         default:
6982                 return 0;
6983         }
6984
6985         if (skb_headlen(skb) < iphdr_len)
6986                 return 0;
6987
6988         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6989                 return 0;
6990
6991         return INET_ECN_set_ce(skb);
6992 }
6993
6994 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6995                                   struct bpf_insn_access_aux *info)
6996 {
6997         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6998                 return false;
6999
7000         if (off % size != 0)
7001                 return false;
7002
7003         switch (off) {
7004         default:
7005                 return size == sizeof(__u32);
7006         }
7007 }
7008
7009 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7010                                     const struct bpf_insn *si,
7011                                     struct bpf_insn *insn_buf,
7012                                     struct bpf_prog *prog, u32 *target_size)
7013 {
7014         struct bpf_insn *insn = insn_buf;
7015
7016 #define BPF_XDP_SOCK_GET(FIELD)                                         \
7017         do {                                                            \
7018                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
7019                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
7020                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7021                                       si->dst_reg, si->src_reg,         \
7022                                       offsetof(struct xdp_sock, FIELD)); \
7023         } while (0)
7024
7025         switch (si->off) {
7026         case offsetof(struct bpf_xdp_sock, queue_id):
7027                 BPF_XDP_SOCK_GET(queue_id);
7028                 break;
7029         }
7030
7031         return insn - insn_buf;
7032 }
7033
7034 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7035         .func           = bpf_skb_ecn_set_ce,
7036         .gpl_only       = false,
7037         .ret_type       = RET_INTEGER,
7038         .arg1_type      = ARG_PTR_TO_CTX,
7039 };
7040
7041 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7042            struct tcphdr *, th, u32, th_len)
7043 {
7044 #ifdef CONFIG_SYN_COOKIES
7045         u32 cookie;
7046         int ret;
7047
7048         if (unlikely(!sk || th_len < sizeof(*th)))
7049                 return -EINVAL;
7050
7051         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7052         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7053                 return -EINVAL;
7054
7055         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7056                 return -EINVAL;
7057
7058         if (!th->ack || th->rst || th->syn)
7059                 return -ENOENT;
7060
7061         if (unlikely(iph_len < sizeof(struct iphdr)))
7062                 return -EINVAL;
7063
7064         if (tcp_synq_no_recent_overflow(sk))
7065                 return -ENOENT;
7066
7067         cookie = ntohl(th->ack_seq) - 1;
7068
7069         /* Both struct iphdr and struct ipv6hdr have the version field at the
7070          * same offset so we can cast to the shorter header (struct iphdr).
7071          */
7072         switch (((struct iphdr *)iph)->version) {
7073         case 4:
7074                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7075                         return -EINVAL;
7076
7077                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7078                 break;
7079
7080 #if IS_BUILTIN(CONFIG_IPV6)
7081         case 6:
7082                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7083                         return -EINVAL;
7084
7085                 if (sk->sk_family != AF_INET6)
7086                         return -EINVAL;
7087
7088                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7089                 break;
7090 #endif /* CONFIG_IPV6 */
7091
7092         default:
7093                 return -EPROTONOSUPPORT;
7094         }
7095
7096         if (ret > 0)
7097                 return 0;
7098
7099         return -ENOENT;
7100 #else
7101         return -ENOTSUPP;
7102 #endif
7103 }
7104
7105 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7106         .func           = bpf_tcp_check_syncookie,
7107         .gpl_only       = true,
7108         .pkt_access     = true,
7109         .ret_type       = RET_INTEGER,
7110         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7111         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7112         .arg3_type      = ARG_CONST_SIZE,
7113         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7114         .arg5_type      = ARG_CONST_SIZE,
7115 };
7116
7117 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7118            struct tcphdr *, th, u32, th_len)
7119 {
7120 #ifdef CONFIG_SYN_COOKIES
7121         u32 cookie;
7122         u16 mss;
7123
7124         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7125                 return -EINVAL;
7126
7127         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7128                 return -EINVAL;
7129
7130         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7131                 return -ENOENT;
7132
7133         if (!th->syn || th->ack || th->fin || th->rst)
7134                 return -EINVAL;
7135
7136         if (unlikely(iph_len < sizeof(struct iphdr)))
7137                 return -EINVAL;
7138
7139         /* Both struct iphdr and struct ipv6hdr have the version field at the
7140          * same offset so we can cast to the shorter header (struct iphdr).
7141          */
7142         switch (((struct iphdr *)iph)->version) {
7143         case 4:
7144                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7145                         return -EINVAL;
7146
7147                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7148                 break;
7149
7150 #if IS_BUILTIN(CONFIG_IPV6)
7151         case 6:
7152                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7153                         return -EINVAL;
7154
7155                 if (sk->sk_family != AF_INET6)
7156                         return -EINVAL;
7157
7158                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7159                 break;
7160 #endif /* CONFIG_IPV6 */
7161
7162         default:
7163                 return -EPROTONOSUPPORT;
7164         }
7165         if (mss == 0)
7166                 return -ENOENT;
7167
7168         return cookie | ((u64)mss << 32);
7169 #else
7170         return -EOPNOTSUPP;
7171 #endif /* CONFIG_SYN_COOKIES */
7172 }
7173
7174 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7175         .func           = bpf_tcp_gen_syncookie,
7176         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
7177         .pkt_access     = true,
7178         .ret_type       = RET_INTEGER,
7179         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7180         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7181         .arg3_type      = ARG_CONST_SIZE,
7182         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7183         .arg5_type      = ARG_CONST_SIZE,
7184 };
7185
7186 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7187 {
7188         if (!sk || flags != 0)
7189                 return -EINVAL;
7190         if (!skb_at_tc_ingress(skb))
7191                 return -EOPNOTSUPP;
7192         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7193                 return -ENETUNREACH;
7194         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7195                 return -ESOCKTNOSUPPORT;
7196         if (sk_is_refcounted(sk) &&
7197             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7198                 return -ENOENT;
7199
7200         skb_orphan(skb);
7201         skb->sk = sk;
7202         skb->destructor = sock_pfree;
7203
7204         return 0;
7205 }
7206
7207 static const struct bpf_func_proto bpf_sk_assign_proto = {
7208         .func           = bpf_sk_assign,
7209         .gpl_only       = false,
7210         .ret_type       = RET_INTEGER,
7211         .arg1_type      = ARG_PTR_TO_CTX,
7212         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7213         .arg3_type      = ARG_ANYTHING,
7214 };
7215
7216 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7217                                     u8 search_kind, const u8 *magic,
7218                                     u8 magic_len, bool *eol)
7219 {
7220         u8 kind, kind_len;
7221
7222         *eol = false;
7223
7224         while (op < opend) {
7225                 kind = op[0];
7226
7227                 if (kind == TCPOPT_EOL) {
7228                         *eol = true;
7229                         return ERR_PTR(-ENOMSG);
7230                 } else if (kind == TCPOPT_NOP) {
7231                         op++;
7232                         continue;
7233                 }
7234
7235                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7236                         /* Something is wrong in the received header.
7237                          * Follow the TCP stack's tcp_parse_options()
7238                          * and just bail here.
7239                          */
7240                         return ERR_PTR(-EFAULT);
7241
7242                 kind_len = op[1];
7243                 if (search_kind == kind) {
7244                         if (!magic_len)
7245                                 return op;
7246
7247                         if (magic_len > kind_len - 2)
7248                                 return ERR_PTR(-ENOMSG);
7249
7250                         if (!memcmp(&op[2], magic, magic_len))
7251                                 return op;
7252                 }
7253
7254                 op += kind_len;
7255         }
7256
7257         return ERR_PTR(-ENOMSG);
7258 }
7259
7260 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7261            void *, search_res, u32, len, u64, flags)
7262 {
7263         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7264         const u8 *op, *opend, *magic, *search = search_res;
7265         u8 search_kind, search_len, copy_len, magic_len;
7266         int ret;
7267
7268         /* 2 byte is the minimal option len except TCPOPT_NOP and
7269          * TCPOPT_EOL which are useless for the bpf prog to learn
7270          * and this helper disallow loading them also.
7271          */
7272         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7273                 return -EINVAL;
7274
7275         search_kind = search[0];
7276         search_len = search[1];
7277
7278         if (search_len > len || search_kind == TCPOPT_NOP ||
7279             search_kind == TCPOPT_EOL)
7280                 return -EINVAL;
7281
7282         if (search_kind == TCPOPT_EXP || search_kind == 253) {
7283                 /* 16 or 32 bit magic.  +2 for kind and kind length */
7284                 if (search_len != 4 && search_len != 6)
7285                         return -EINVAL;
7286                 magic = &search[2];
7287                 magic_len = search_len - 2;
7288         } else {
7289                 if (search_len)
7290                         return -EINVAL;
7291                 magic = NULL;
7292                 magic_len = 0;
7293         }
7294
7295         if (load_syn) {
7296                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7297                 if (ret < 0)
7298                         return ret;
7299
7300                 opend = op + ret;
7301                 op += sizeof(struct tcphdr);
7302         } else {
7303                 if (!bpf_sock->skb ||
7304                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7305                         /* This bpf_sock->op cannot call this helper */
7306                         return -EPERM;
7307
7308                 opend = bpf_sock->skb_data_end;
7309                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7310         }
7311
7312         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7313                                 &eol);
7314         if (IS_ERR(op))
7315                 return PTR_ERR(op);
7316
7317         copy_len = op[1];
7318         ret = copy_len;
7319         if (copy_len > len) {
7320                 ret = -ENOSPC;
7321                 copy_len = len;
7322         }
7323
7324         memcpy(search_res, op, copy_len);
7325         return ret;
7326 }
7327
7328 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7329         .func           = bpf_sock_ops_load_hdr_opt,
7330         .gpl_only       = false,
7331         .ret_type       = RET_INTEGER,
7332         .arg1_type      = ARG_PTR_TO_CTX,
7333         .arg2_type      = ARG_PTR_TO_MEM,
7334         .arg3_type      = ARG_CONST_SIZE,
7335         .arg4_type      = ARG_ANYTHING,
7336 };
7337
7338 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7339            const void *, from, u32, len, u64, flags)
7340 {
7341         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7342         const u8 *op, *new_op, *magic = NULL;
7343         struct sk_buff *skb;
7344         bool eol;
7345
7346         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7347                 return -EPERM;
7348
7349         if (len < 2 || flags)
7350                 return -EINVAL;
7351
7352         new_op = from;
7353         new_kind = new_op[0];
7354         new_kind_len = new_op[1];
7355
7356         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7357             new_kind == TCPOPT_EOL)
7358                 return -EINVAL;
7359
7360         if (new_kind_len > bpf_sock->remaining_opt_len)
7361                 return -ENOSPC;
7362
7363         /* 253 is another experimental kind */
7364         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7365                 if (new_kind_len < 4)
7366                         return -EINVAL;
7367                 /* Match for the 2 byte magic also.
7368                  * RFC 6994: the magic could be 2 or 4 bytes.
7369                  * Hence, matching by 2 byte only is on the
7370                  * conservative side but it is the right
7371                  * thing to do for the 'search-for-duplication'
7372                  * purpose.
7373                  */
7374                 magic = &new_op[2];
7375                 magic_len = 2;
7376         }
7377
7378         /* Check for duplication */
7379         skb = bpf_sock->skb;
7380         op = skb->data + sizeof(struct tcphdr);
7381         opend = bpf_sock->skb_data_end;
7382
7383         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7384                                 &eol);
7385         if (!IS_ERR(op))
7386                 return -EEXIST;
7387
7388         if (PTR_ERR(op) != -ENOMSG)
7389                 return PTR_ERR(op);
7390
7391         if (eol)
7392                 /* The option has been ended.  Treat it as no more
7393                  * header option can be written.
7394                  */
7395                 return -ENOSPC;
7396
7397         /* No duplication found.  Store the header option. */
7398         memcpy(opend, from, new_kind_len);
7399
7400         bpf_sock->remaining_opt_len -= new_kind_len;
7401         bpf_sock->skb_data_end += new_kind_len;
7402
7403         return 0;
7404 }
7405
7406 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7407         .func           = bpf_sock_ops_store_hdr_opt,
7408         .gpl_only       = false,
7409         .ret_type       = RET_INTEGER,
7410         .arg1_type      = ARG_PTR_TO_CTX,
7411         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7412         .arg3_type      = ARG_CONST_SIZE,
7413         .arg4_type      = ARG_ANYTHING,
7414 };
7415
7416 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7417            u32, len, u64, flags)
7418 {
7419         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7420                 return -EPERM;
7421
7422         if (flags || len < 2)
7423                 return -EINVAL;
7424
7425         if (len > bpf_sock->remaining_opt_len)
7426                 return -ENOSPC;
7427
7428         bpf_sock->remaining_opt_len -= len;
7429
7430         return 0;
7431 }
7432
7433 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7434         .func           = bpf_sock_ops_reserve_hdr_opt,
7435         .gpl_only       = false,
7436         .ret_type       = RET_INTEGER,
7437         .arg1_type      = ARG_PTR_TO_CTX,
7438         .arg2_type      = ARG_ANYTHING,
7439         .arg3_type      = ARG_ANYTHING,
7440 };
7441
7442 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7443            u64, tstamp, u32, tstamp_type)
7444 {
7445         /* skb_clear_delivery_time() is done for inet protocol */
7446         if (skb->protocol != htons(ETH_P_IP) &&
7447             skb->protocol != htons(ETH_P_IPV6))
7448                 return -EOPNOTSUPP;
7449
7450         switch (tstamp_type) {
7451         case BPF_SKB_TSTAMP_DELIVERY_MONO:
7452                 if (!tstamp)
7453                         return -EINVAL;
7454                 skb->tstamp = tstamp;
7455                 skb->mono_delivery_time = 1;
7456                 break;
7457         case BPF_SKB_TSTAMP_UNSPEC:
7458                 if (tstamp)
7459                         return -EINVAL;
7460                 skb->tstamp = 0;
7461                 skb->mono_delivery_time = 0;
7462                 break;
7463         default:
7464                 return -EINVAL;
7465         }
7466
7467         return 0;
7468 }
7469
7470 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7471         .func           = bpf_skb_set_tstamp,
7472         .gpl_only       = false,
7473         .ret_type       = RET_INTEGER,
7474         .arg1_type      = ARG_PTR_TO_CTX,
7475         .arg2_type      = ARG_ANYTHING,
7476         .arg3_type      = ARG_ANYTHING,
7477 };
7478
7479 #ifdef CONFIG_SYN_COOKIES
7480 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7481            struct tcphdr *, th, u32, th_len)
7482 {
7483         u32 cookie;
7484         u16 mss;
7485
7486         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7487                 return -EINVAL;
7488
7489         mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7490         cookie = __cookie_v4_init_sequence(iph, th, &mss);
7491
7492         return cookie | ((u64)mss << 32);
7493 }
7494
7495 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7496         .func           = bpf_tcp_raw_gen_syncookie_ipv4,
7497         .gpl_only       = true, /* __cookie_v4_init_sequence() is GPL */
7498         .pkt_access     = true,
7499         .ret_type       = RET_INTEGER,
7500         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7501         .arg1_size      = sizeof(struct iphdr),
7502         .arg2_type      = ARG_PTR_TO_MEM,
7503         .arg3_type      = ARG_CONST_SIZE,
7504 };
7505
7506 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7507            struct tcphdr *, th, u32, th_len)
7508 {
7509 #if IS_BUILTIN(CONFIG_IPV6)
7510         const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7511                 sizeof(struct ipv6hdr);
7512         u32 cookie;
7513         u16 mss;
7514
7515         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7516                 return -EINVAL;
7517
7518         mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7519         cookie = __cookie_v6_init_sequence(iph, th, &mss);
7520
7521         return cookie | ((u64)mss << 32);
7522 #else
7523         return -EPROTONOSUPPORT;
7524 #endif
7525 }
7526
7527 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7528         .func           = bpf_tcp_raw_gen_syncookie_ipv6,
7529         .gpl_only       = true, /* __cookie_v6_init_sequence() is GPL */
7530         .pkt_access     = true,
7531         .ret_type       = RET_INTEGER,
7532         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7533         .arg1_size      = sizeof(struct ipv6hdr),
7534         .arg2_type      = ARG_PTR_TO_MEM,
7535         .arg3_type      = ARG_CONST_SIZE,
7536 };
7537
7538 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7539            struct tcphdr *, th)
7540 {
7541         u32 cookie = ntohl(th->ack_seq) - 1;
7542
7543         if (__cookie_v4_check(iph, th, cookie) > 0)
7544                 return 0;
7545
7546         return -EACCES;
7547 }
7548
7549 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7550         .func           = bpf_tcp_raw_check_syncookie_ipv4,
7551         .gpl_only       = true, /* __cookie_v4_check is GPL */
7552         .pkt_access     = true,
7553         .ret_type       = RET_INTEGER,
7554         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7555         .arg1_size      = sizeof(struct iphdr),
7556         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7557         .arg2_size      = sizeof(struct tcphdr),
7558 };
7559
7560 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7561            struct tcphdr *, th)
7562 {
7563 #if IS_BUILTIN(CONFIG_IPV6)
7564         u32 cookie = ntohl(th->ack_seq) - 1;
7565
7566         if (__cookie_v6_check(iph, th, cookie) > 0)
7567                 return 0;
7568
7569         return -EACCES;
7570 #else
7571         return -EPROTONOSUPPORT;
7572 #endif
7573 }
7574
7575 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7576         .func           = bpf_tcp_raw_check_syncookie_ipv6,
7577         .gpl_only       = true, /* __cookie_v6_check is GPL */
7578         .pkt_access     = true,
7579         .ret_type       = RET_INTEGER,
7580         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7581         .arg1_size      = sizeof(struct ipv6hdr),
7582         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7583         .arg2_size      = sizeof(struct tcphdr),
7584 };
7585 #endif /* CONFIG_SYN_COOKIES */
7586
7587 #endif /* CONFIG_INET */
7588
7589 bool bpf_helper_changes_pkt_data(void *func)
7590 {
7591         if (func == bpf_skb_vlan_push ||
7592             func == bpf_skb_vlan_pop ||
7593             func == bpf_skb_store_bytes ||
7594             func == bpf_skb_change_proto ||
7595             func == bpf_skb_change_head ||
7596             func == sk_skb_change_head ||
7597             func == bpf_skb_change_tail ||
7598             func == sk_skb_change_tail ||
7599             func == bpf_skb_adjust_room ||
7600             func == sk_skb_adjust_room ||
7601             func == bpf_skb_pull_data ||
7602             func == sk_skb_pull_data ||
7603             func == bpf_clone_redirect ||
7604             func == bpf_l3_csum_replace ||
7605             func == bpf_l4_csum_replace ||
7606             func == bpf_xdp_adjust_head ||
7607             func == bpf_xdp_adjust_meta ||
7608             func == bpf_msg_pull_data ||
7609             func == bpf_msg_push_data ||
7610             func == bpf_msg_pop_data ||
7611             func == bpf_xdp_adjust_tail ||
7612 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7613             func == bpf_lwt_seg6_store_bytes ||
7614             func == bpf_lwt_seg6_adjust_srh ||
7615             func == bpf_lwt_seg6_action ||
7616 #endif
7617 #ifdef CONFIG_INET
7618             func == bpf_sock_ops_store_hdr_opt ||
7619 #endif
7620             func == bpf_lwt_in_push_encap ||
7621             func == bpf_lwt_xmit_push_encap)
7622                 return true;
7623
7624         return false;
7625 }
7626
7627 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7628 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7629
7630 static const struct bpf_func_proto *
7631 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7632 {
7633         const struct bpf_func_proto *func_proto;
7634
7635         func_proto = cgroup_common_func_proto(func_id, prog);
7636         if (func_proto)
7637                 return func_proto;
7638
7639         func_proto = cgroup_current_func_proto(func_id, prog);
7640         if (func_proto)
7641                 return func_proto;
7642
7643         switch (func_id) {
7644         case BPF_FUNC_get_socket_cookie:
7645                 return &bpf_get_socket_cookie_sock_proto;
7646         case BPF_FUNC_get_netns_cookie:
7647                 return &bpf_get_netns_cookie_sock_proto;
7648         case BPF_FUNC_perf_event_output:
7649                 return &bpf_event_output_data_proto;
7650         case BPF_FUNC_sk_storage_get:
7651                 return &bpf_sk_storage_get_cg_sock_proto;
7652         case BPF_FUNC_ktime_get_coarse_ns:
7653                 return &bpf_ktime_get_coarse_ns_proto;
7654         default:
7655                 return bpf_base_func_proto(func_id);
7656         }
7657 }
7658
7659 static const struct bpf_func_proto *
7660 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7661 {
7662         const struct bpf_func_proto *func_proto;
7663
7664         func_proto = cgroup_common_func_proto(func_id, prog);
7665         if (func_proto)
7666                 return func_proto;
7667
7668         func_proto = cgroup_current_func_proto(func_id, prog);
7669         if (func_proto)
7670                 return func_proto;
7671
7672         switch (func_id) {
7673         case BPF_FUNC_bind:
7674                 switch (prog->expected_attach_type) {
7675                 case BPF_CGROUP_INET4_CONNECT:
7676                 case BPF_CGROUP_INET6_CONNECT:
7677                         return &bpf_bind_proto;
7678                 default:
7679                         return NULL;
7680                 }
7681         case BPF_FUNC_get_socket_cookie:
7682                 return &bpf_get_socket_cookie_sock_addr_proto;
7683         case BPF_FUNC_get_netns_cookie:
7684                 return &bpf_get_netns_cookie_sock_addr_proto;
7685         case BPF_FUNC_perf_event_output:
7686                 return &bpf_event_output_data_proto;
7687 #ifdef CONFIG_INET
7688         case BPF_FUNC_sk_lookup_tcp:
7689                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7690         case BPF_FUNC_sk_lookup_udp:
7691                 return &bpf_sock_addr_sk_lookup_udp_proto;
7692         case BPF_FUNC_sk_release:
7693                 return &bpf_sk_release_proto;
7694         case BPF_FUNC_skc_lookup_tcp:
7695                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7696 #endif /* CONFIG_INET */
7697         case BPF_FUNC_sk_storage_get:
7698                 return &bpf_sk_storage_get_proto;
7699         case BPF_FUNC_sk_storage_delete:
7700                 return &bpf_sk_storage_delete_proto;
7701         case BPF_FUNC_setsockopt:
7702                 switch (prog->expected_attach_type) {
7703                 case BPF_CGROUP_INET4_BIND:
7704                 case BPF_CGROUP_INET6_BIND:
7705                 case BPF_CGROUP_INET4_CONNECT:
7706                 case BPF_CGROUP_INET6_CONNECT:
7707                 case BPF_CGROUP_UDP4_RECVMSG:
7708                 case BPF_CGROUP_UDP6_RECVMSG:
7709                 case BPF_CGROUP_UDP4_SENDMSG:
7710                 case BPF_CGROUP_UDP6_SENDMSG:
7711                 case BPF_CGROUP_INET4_GETPEERNAME:
7712                 case BPF_CGROUP_INET6_GETPEERNAME:
7713                 case BPF_CGROUP_INET4_GETSOCKNAME:
7714                 case BPF_CGROUP_INET6_GETSOCKNAME:
7715                         return &bpf_sock_addr_setsockopt_proto;
7716                 default:
7717                         return NULL;
7718                 }
7719         case BPF_FUNC_getsockopt:
7720                 switch (prog->expected_attach_type) {
7721                 case BPF_CGROUP_INET4_BIND:
7722                 case BPF_CGROUP_INET6_BIND:
7723                 case BPF_CGROUP_INET4_CONNECT:
7724                 case BPF_CGROUP_INET6_CONNECT:
7725                 case BPF_CGROUP_UDP4_RECVMSG:
7726                 case BPF_CGROUP_UDP6_RECVMSG:
7727                 case BPF_CGROUP_UDP4_SENDMSG:
7728                 case BPF_CGROUP_UDP6_SENDMSG:
7729                 case BPF_CGROUP_INET4_GETPEERNAME:
7730                 case BPF_CGROUP_INET6_GETPEERNAME:
7731                 case BPF_CGROUP_INET4_GETSOCKNAME:
7732                 case BPF_CGROUP_INET6_GETSOCKNAME:
7733                         return &bpf_sock_addr_getsockopt_proto;
7734                 default:
7735                         return NULL;
7736                 }
7737         default:
7738                 return bpf_sk_base_func_proto(func_id);
7739         }
7740 }
7741
7742 static const struct bpf_func_proto *
7743 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7744 {
7745         switch (func_id) {
7746         case BPF_FUNC_skb_load_bytes:
7747                 return &bpf_skb_load_bytes_proto;
7748         case BPF_FUNC_skb_load_bytes_relative:
7749                 return &bpf_skb_load_bytes_relative_proto;
7750         case BPF_FUNC_get_socket_cookie:
7751                 return &bpf_get_socket_cookie_proto;
7752         case BPF_FUNC_get_socket_uid:
7753                 return &bpf_get_socket_uid_proto;
7754         case BPF_FUNC_perf_event_output:
7755                 return &bpf_skb_event_output_proto;
7756         default:
7757                 return bpf_sk_base_func_proto(func_id);
7758         }
7759 }
7760
7761 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7762 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7763
7764 static const struct bpf_func_proto *
7765 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7766 {
7767         const struct bpf_func_proto *func_proto;
7768
7769         func_proto = cgroup_common_func_proto(func_id, prog);
7770         if (func_proto)
7771                 return func_proto;
7772
7773         switch (func_id) {
7774         case BPF_FUNC_sk_fullsock:
7775                 return &bpf_sk_fullsock_proto;
7776         case BPF_FUNC_sk_storage_get:
7777                 return &bpf_sk_storage_get_proto;
7778         case BPF_FUNC_sk_storage_delete:
7779                 return &bpf_sk_storage_delete_proto;
7780         case BPF_FUNC_perf_event_output:
7781                 return &bpf_skb_event_output_proto;
7782 #ifdef CONFIG_SOCK_CGROUP_DATA
7783         case BPF_FUNC_skb_cgroup_id:
7784                 return &bpf_skb_cgroup_id_proto;
7785         case BPF_FUNC_skb_ancestor_cgroup_id:
7786                 return &bpf_skb_ancestor_cgroup_id_proto;
7787         case BPF_FUNC_sk_cgroup_id:
7788                 return &bpf_sk_cgroup_id_proto;
7789         case BPF_FUNC_sk_ancestor_cgroup_id:
7790                 return &bpf_sk_ancestor_cgroup_id_proto;
7791 #endif
7792 #ifdef CONFIG_INET
7793         case BPF_FUNC_sk_lookup_tcp:
7794                 return &bpf_sk_lookup_tcp_proto;
7795         case BPF_FUNC_sk_lookup_udp:
7796                 return &bpf_sk_lookup_udp_proto;
7797         case BPF_FUNC_sk_release:
7798                 return &bpf_sk_release_proto;
7799         case BPF_FUNC_skc_lookup_tcp:
7800                 return &bpf_skc_lookup_tcp_proto;
7801         case BPF_FUNC_tcp_sock:
7802                 return &bpf_tcp_sock_proto;
7803         case BPF_FUNC_get_listener_sock:
7804                 return &bpf_get_listener_sock_proto;
7805         case BPF_FUNC_skb_ecn_set_ce:
7806                 return &bpf_skb_ecn_set_ce_proto;
7807 #endif
7808         default:
7809                 return sk_filter_func_proto(func_id, prog);
7810         }
7811 }
7812
7813 static const struct bpf_func_proto *
7814 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7815 {
7816         switch (func_id) {
7817         case BPF_FUNC_skb_store_bytes:
7818                 return &bpf_skb_store_bytes_proto;
7819         case BPF_FUNC_skb_load_bytes:
7820                 return &bpf_skb_load_bytes_proto;
7821         case BPF_FUNC_skb_load_bytes_relative:
7822                 return &bpf_skb_load_bytes_relative_proto;
7823         case BPF_FUNC_skb_pull_data:
7824                 return &bpf_skb_pull_data_proto;
7825         case BPF_FUNC_csum_diff:
7826                 return &bpf_csum_diff_proto;
7827         case BPF_FUNC_csum_update:
7828                 return &bpf_csum_update_proto;
7829         case BPF_FUNC_csum_level:
7830                 return &bpf_csum_level_proto;
7831         case BPF_FUNC_l3_csum_replace:
7832                 return &bpf_l3_csum_replace_proto;
7833         case BPF_FUNC_l4_csum_replace:
7834                 return &bpf_l4_csum_replace_proto;
7835         case BPF_FUNC_clone_redirect:
7836                 return &bpf_clone_redirect_proto;
7837         case BPF_FUNC_get_cgroup_classid:
7838                 return &bpf_get_cgroup_classid_proto;
7839         case BPF_FUNC_skb_vlan_push:
7840                 return &bpf_skb_vlan_push_proto;
7841         case BPF_FUNC_skb_vlan_pop:
7842                 return &bpf_skb_vlan_pop_proto;
7843         case BPF_FUNC_skb_change_proto:
7844                 return &bpf_skb_change_proto_proto;
7845         case BPF_FUNC_skb_change_type:
7846                 return &bpf_skb_change_type_proto;
7847         case BPF_FUNC_skb_adjust_room:
7848                 return &bpf_skb_adjust_room_proto;
7849         case BPF_FUNC_skb_change_tail:
7850                 return &bpf_skb_change_tail_proto;
7851         case BPF_FUNC_skb_change_head:
7852                 return &bpf_skb_change_head_proto;
7853         case BPF_FUNC_skb_get_tunnel_key:
7854                 return &bpf_skb_get_tunnel_key_proto;
7855         case BPF_FUNC_skb_set_tunnel_key:
7856                 return bpf_get_skb_set_tunnel_proto(func_id);
7857         case BPF_FUNC_skb_get_tunnel_opt:
7858                 return &bpf_skb_get_tunnel_opt_proto;
7859         case BPF_FUNC_skb_set_tunnel_opt:
7860                 return bpf_get_skb_set_tunnel_proto(func_id);
7861         case BPF_FUNC_redirect:
7862                 return &bpf_redirect_proto;
7863         case BPF_FUNC_redirect_neigh:
7864                 return &bpf_redirect_neigh_proto;
7865         case BPF_FUNC_redirect_peer:
7866                 return &bpf_redirect_peer_proto;
7867         case BPF_FUNC_get_route_realm:
7868                 return &bpf_get_route_realm_proto;
7869         case BPF_FUNC_get_hash_recalc:
7870                 return &bpf_get_hash_recalc_proto;
7871         case BPF_FUNC_set_hash_invalid:
7872                 return &bpf_set_hash_invalid_proto;
7873         case BPF_FUNC_set_hash:
7874                 return &bpf_set_hash_proto;
7875         case BPF_FUNC_perf_event_output:
7876                 return &bpf_skb_event_output_proto;
7877         case BPF_FUNC_get_smp_processor_id:
7878                 return &bpf_get_smp_processor_id_proto;
7879         case BPF_FUNC_skb_under_cgroup:
7880                 return &bpf_skb_under_cgroup_proto;
7881         case BPF_FUNC_get_socket_cookie:
7882                 return &bpf_get_socket_cookie_proto;
7883         case BPF_FUNC_get_socket_uid:
7884                 return &bpf_get_socket_uid_proto;
7885         case BPF_FUNC_fib_lookup:
7886                 return &bpf_skb_fib_lookup_proto;
7887         case BPF_FUNC_check_mtu:
7888                 return &bpf_skb_check_mtu_proto;
7889         case BPF_FUNC_sk_fullsock:
7890                 return &bpf_sk_fullsock_proto;
7891         case BPF_FUNC_sk_storage_get:
7892                 return &bpf_sk_storage_get_proto;
7893         case BPF_FUNC_sk_storage_delete:
7894                 return &bpf_sk_storage_delete_proto;
7895 #ifdef CONFIG_XFRM
7896         case BPF_FUNC_skb_get_xfrm_state:
7897                 return &bpf_skb_get_xfrm_state_proto;
7898 #endif
7899 #ifdef CONFIG_CGROUP_NET_CLASSID
7900         case BPF_FUNC_skb_cgroup_classid:
7901                 return &bpf_skb_cgroup_classid_proto;
7902 #endif
7903 #ifdef CONFIG_SOCK_CGROUP_DATA
7904         case BPF_FUNC_skb_cgroup_id:
7905                 return &bpf_skb_cgroup_id_proto;
7906         case BPF_FUNC_skb_ancestor_cgroup_id:
7907                 return &bpf_skb_ancestor_cgroup_id_proto;
7908 #endif
7909 #ifdef CONFIG_INET
7910         case BPF_FUNC_sk_lookup_tcp:
7911                 return &bpf_sk_lookup_tcp_proto;
7912         case BPF_FUNC_sk_lookup_udp:
7913                 return &bpf_sk_lookup_udp_proto;
7914         case BPF_FUNC_sk_release:
7915                 return &bpf_sk_release_proto;
7916         case BPF_FUNC_tcp_sock:
7917                 return &bpf_tcp_sock_proto;
7918         case BPF_FUNC_get_listener_sock:
7919                 return &bpf_get_listener_sock_proto;
7920         case BPF_FUNC_skc_lookup_tcp:
7921                 return &bpf_skc_lookup_tcp_proto;
7922         case BPF_FUNC_tcp_check_syncookie:
7923                 return &bpf_tcp_check_syncookie_proto;
7924         case BPF_FUNC_skb_ecn_set_ce:
7925                 return &bpf_skb_ecn_set_ce_proto;
7926         case BPF_FUNC_tcp_gen_syncookie:
7927                 return &bpf_tcp_gen_syncookie_proto;
7928         case BPF_FUNC_sk_assign:
7929                 return &bpf_sk_assign_proto;
7930         case BPF_FUNC_skb_set_tstamp:
7931                 return &bpf_skb_set_tstamp_proto;
7932 #ifdef CONFIG_SYN_COOKIES
7933         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7934                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7935         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7936                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7937         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7938                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7939         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7940                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7941 #endif
7942 #endif
7943         default:
7944                 return bpf_sk_base_func_proto(func_id);
7945         }
7946 }
7947
7948 static const struct bpf_func_proto *
7949 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7950 {
7951         switch (func_id) {
7952         case BPF_FUNC_perf_event_output:
7953                 return &bpf_xdp_event_output_proto;
7954         case BPF_FUNC_get_smp_processor_id:
7955                 return &bpf_get_smp_processor_id_proto;
7956         case BPF_FUNC_csum_diff:
7957                 return &bpf_csum_diff_proto;
7958         case BPF_FUNC_xdp_adjust_head:
7959                 return &bpf_xdp_adjust_head_proto;
7960         case BPF_FUNC_xdp_adjust_meta:
7961                 return &bpf_xdp_adjust_meta_proto;
7962         case BPF_FUNC_redirect:
7963                 return &bpf_xdp_redirect_proto;
7964         case BPF_FUNC_redirect_map:
7965                 return &bpf_xdp_redirect_map_proto;
7966         case BPF_FUNC_xdp_adjust_tail:
7967                 return &bpf_xdp_adjust_tail_proto;
7968         case BPF_FUNC_xdp_get_buff_len:
7969                 return &bpf_xdp_get_buff_len_proto;
7970         case BPF_FUNC_xdp_load_bytes:
7971                 return &bpf_xdp_load_bytes_proto;
7972         case BPF_FUNC_xdp_store_bytes:
7973                 return &bpf_xdp_store_bytes_proto;
7974         case BPF_FUNC_fib_lookup:
7975                 return &bpf_xdp_fib_lookup_proto;
7976         case BPF_FUNC_check_mtu:
7977                 return &bpf_xdp_check_mtu_proto;
7978 #ifdef CONFIG_INET
7979         case BPF_FUNC_sk_lookup_udp:
7980                 return &bpf_xdp_sk_lookup_udp_proto;
7981         case BPF_FUNC_sk_lookup_tcp:
7982                 return &bpf_xdp_sk_lookup_tcp_proto;
7983         case BPF_FUNC_sk_release:
7984                 return &bpf_sk_release_proto;
7985         case BPF_FUNC_skc_lookup_tcp:
7986                 return &bpf_xdp_skc_lookup_tcp_proto;
7987         case BPF_FUNC_tcp_check_syncookie:
7988                 return &bpf_tcp_check_syncookie_proto;
7989         case BPF_FUNC_tcp_gen_syncookie:
7990                 return &bpf_tcp_gen_syncookie_proto;
7991 #ifdef CONFIG_SYN_COOKIES
7992         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7993                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7994         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7995                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7996         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7997                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7998         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7999                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8000 #endif
8001 #endif
8002         default:
8003                 return bpf_sk_base_func_proto(func_id);
8004         }
8005
8006 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8007         /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8008          * kfuncs are defined in two different modules, and we want to be able
8009          * to use them interchangably with the same BTF type ID. Because modules
8010          * can't de-duplicate BTF IDs between each other, we need the type to be
8011          * referenced in the vmlinux BTF or the verifier will get confused about
8012          * the different types. So we add this dummy type reference which will
8013          * be included in vmlinux BTF, allowing both modules to refer to the
8014          * same type ID.
8015          */
8016         BTF_TYPE_EMIT(struct nf_conn___init);
8017 #endif
8018 }
8019
8020 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8021 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8022
8023 static const struct bpf_func_proto *
8024 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8025 {
8026         const struct bpf_func_proto *func_proto;
8027
8028         func_proto = cgroup_common_func_proto(func_id, prog);
8029         if (func_proto)
8030                 return func_proto;
8031
8032         switch (func_id) {
8033         case BPF_FUNC_setsockopt:
8034                 return &bpf_sock_ops_setsockopt_proto;
8035         case BPF_FUNC_getsockopt:
8036                 return &bpf_sock_ops_getsockopt_proto;
8037         case BPF_FUNC_sock_ops_cb_flags_set:
8038                 return &bpf_sock_ops_cb_flags_set_proto;
8039         case BPF_FUNC_sock_map_update:
8040                 return &bpf_sock_map_update_proto;
8041         case BPF_FUNC_sock_hash_update:
8042                 return &bpf_sock_hash_update_proto;
8043         case BPF_FUNC_get_socket_cookie:
8044                 return &bpf_get_socket_cookie_sock_ops_proto;
8045         case BPF_FUNC_perf_event_output:
8046                 return &bpf_event_output_data_proto;
8047         case BPF_FUNC_sk_storage_get:
8048                 return &bpf_sk_storage_get_proto;
8049         case BPF_FUNC_sk_storage_delete:
8050                 return &bpf_sk_storage_delete_proto;
8051         case BPF_FUNC_get_netns_cookie:
8052                 return &bpf_get_netns_cookie_sock_ops_proto;
8053 #ifdef CONFIG_INET
8054         case BPF_FUNC_load_hdr_opt:
8055                 return &bpf_sock_ops_load_hdr_opt_proto;
8056         case BPF_FUNC_store_hdr_opt:
8057                 return &bpf_sock_ops_store_hdr_opt_proto;
8058         case BPF_FUNC_reserve_hdr_opt:
8059                 return &bpf_sock_ops_reserve_hdr_opt_proto;
8060         case BPF_FUNC_tcp_sock:
8061                 return &bpf_tcp_sock_proto;
8062 #endif /* CONFIG_INET */
8063         default:
8064                 return bpf_sk_base_func_proto(func_id);
8065         }
8066 }
8067
8068 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8069 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8070
8071 static const struct bpf_func_proto *
8072 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8073 {
8074         switch (func_id) {
8075         case BPF_FUNC_msg_redirect_map:
8076                 return &bpf_msg_redirect_map_proto;
8077         case BPF_FUNC_msg_redirect_hash:
8078                 return &bpf_msg_redirect_hash_proto;
8079         case BPF_FUNC_msg_apply_bytes:
8080                 return &bpf_msg_apply_bytes_proto;
8081         case BPF_FUNC_msg_cork_bytes:
8082                 return &bpf_msg_cork_bytes_proto;
8083         case BPF_FUNC_msg_pull_data:
8084                 return &bpf_msg_pull_data_proto;
8085         case BPF_FUNC_msg_push_data:
8086                 return &bpf_msg_push_data_proto;
8087         case BPF_FUNC_msg_pop_data:
8088                 return &bpf_msg_pop_data_proto;
8089         case BPF_FUNC_perf_event_output:
8090                 return &bpf_event_output_data_proto;
8091         case BPF_FUNC_get_current_uid_gid:
8092                 return &bpf_get_current_uid_gid_proto;
8093         case BPF_FUNC_get_current_pid_tgid:
8094                 return &bpf_get_current_pid_tgid_proto;
8095         case BPF_FUNC_sk_storage_get:
8096                 return &bpf_sk_storage_get_proto;
8097         case BPF_FUNC_sk_storage_delete:
8098                 return &bpf_sk_storage_delete_proto;
8099         case BPF_FUNC_get_netns_cookie:
8100                 return &bpf_get_netns_cookie_sk_msg_proto;
8101 #ifdef CONFIG_CGROUPS
8102         case BPF_FUNC_get_current_cgroup_id:
8103                 return &bpf_get_current_cgroup_id_proto;
8104         case BPF_FUNC_get_current_ancestor_cgroup_id:
8105                 return &bpf_get_current_ancestor_cgroup_id_proto;
8106 #endif
8107 #ifdef CONFIG_CGROUP_NET_CLASSID
8108         case BPF_FUNC_get_cgroup_classid:
8109                 return &bpf_get_cgroup_classid_curr_proto;
8110 #endif
8111         default:
8112                 return bpf_sk_base_func_proto(func_id);
8113         }
8114 }
8115
8116 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8117 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8118
8119 static const struct bpf_func_proto *
8120 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8121 {
8122         switch (func_id) {
8123         case BPF_FUNC_skb_store_bytes:
8124                 return &bpf_skb_store_bytes_proto;
8125         case BPF_FUNC_skb_load_bytes:
8126                 return &bpf_skb_load_bytes_proto;
8127         case BPF_FUNC_skb_pull_data:
8128                 return &sk_skb_pull_data_proto;
8129         case BPF_FUNC_skb_change_tail:
8130                 return &sk_skb_change_tail_proto;
8131         case BPF_FUNC_skb_change_head:
8132                 return &sk_skb_change_head_proto;
8133         case BPF_FUNC_skb_adjust_room:
8134                 return &sk_skb_adjust_room_proto;
8135         case BPF_FUNC_get_socket_cookie:
8136                 return &bpf_get_socket_cookie_proto;
8137         case BPF_FUNC_get_socket_uid:
8138                 return &bpf_get_socket_uid_proto;
8139         case BPF_FUNC_sk_redirect_map:
8140                 return &bpf_sk_redirect_map_proto;
8141         case BPF_FUNC_sk_redirect_hash:
8142                 return &bpf_sk_redirect_hash_proto;
8143         case BPF_FUNC_perf_event_output:
8144                 return &bpf_skb_event_output_proto;
8145 #ifdef CONFIG_INET
8146         case BPF_FUNC_sk_lookup_tcp:
8147                 return &bpf_sk_lookup_tcp_proto;
8148         case BPF_FUNC_sk_lookup_udp:
8149                 return &bpf_sk_lookup_udp_proto;
8150         case BPF_FUNC_sk_release:
8151                 return &bpf_sk_release_proto;
8152         case BPF_FUNC_skc_lookup_tcp:
8153                 return &bpf_skc_lookup_tcp_proto;
8154 #endif
8155         default:
8156                 return bpf_sk_base_func_proto(func_id);
8157         }
8158 }
8159
8160 static const struct bpf_func_proto *
8161 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8162 {
8163         switch (func_id) {
8164         case BPF_FUNC_skb_load_bytes:
8165                 return &bpf_flow_dissector_load_bytes_proto;
8166         default:
8167                 return bpf_sk_base_func_proto(func_id);
8168         }
8169 }
8170
8171 static const struct bpf_func_proto *
8172 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8173 {
8174         switch (func_id) {
8175         case BPF_FUNC_skb_load_bytes:
8176                 return &bpf_skb_load_bytes_proto;
8177         case BPF_FUNC_skb_pull_data:
8178                 return &bpf_skb_pull_data_proto;
8179         case BPF_FUNC_csum_diff:
8180                 return &bpf_csum_diff_proto;
8181         case BPF_FUNC_get_cgroup_classid:
8182                 return &bpf_get_cgroup_classid_proto;
8183         case BPF_FUNC_get_route_realm:
8184                 return &bpf_get_route_realm_proto;
8185         case BPF_FUNC_get_hash_recalc:
8186                 return &bpf_get_hash_recalc_proto;
8187         case BPF_FUNC_perf_event_output:
8188                 return &bpf_skb_event_output_proto;
8189         case BPF_FUNC_get_smp_processor_id:
8190                 return &bpf_get_smp_processor_id_proto;
8191         case BPF_FUNC_skb_under_cgroup:
8192                 return &bpf_skb_under_cgroup_proto;
8193         default:
8194                 return bpf_sk_base_func_proto(func_id);
8195         }
8196 }
8197
8198 static const struct bpf_func_proto *
8199 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8200 {
8201         switch (func_id) {
8202         case BPF_FUNC_lwt_push_encap:
8203                 return &bpf_lwt_in_push_encap_proto;
8204         default:
8205                 return lwt_out_func_proto(func_id, prog);
8206         }
8207 }
8208
8209 static const struct bpf_func_proto *
8210 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8211 {
8212         switch (func_id) {
8213         case BPF_FUNC_skb_get_tunnel_key:
8214                 return &bpf_skb_get_tunnel_key_proto;
8215         case BPF_FUNC_skb_set_tunnel_key:
8216                 return bpf_get_skb_set_tunnel_proto(func_id);
8217         case BPF_FUNC_skb_get_tunnel_opt:
8218                 return &bpf_skb_get_tunnel_opt_proto;
8219         case BPF_FUNC_skb_set_tunnel_opt:
8220                 return bpf_get_skb_set_tunnel_proto(func_id);
8221         case BPF_FUNC_redirect:
8222                 return &bpf_redirect_proto;
8223         case BPF_FUNC_clone_redirect:
8224                 return &bpf_clone_redirect_proto;
8225         case BPF_FUNC_skb_change_tail:
8226                 return &bpf_skb_change_tail_proto;
8227         case BPF_FUNC_skb_change_head:
8228                 return &bpf_skb_change_head_proto;
8229         case BPF_FUNC_skb_store_bytes:
8230                 return &bpf_skb_store_bytes_proto;
8231         case BPF_FUNC_csum_update:
8232                 return &bpf_csum_update_proto;
8233         case BPF_FUNC_csum_level:
8234                 return &bpf_csum_level_proto;
8235         case BPF_FUNC_l3_csum_replace:
8236                 return &bpf_l3_csum_replace_proto;
8237         case BPF_FUNC_l4_csum_replace:
8238                 return &bpf_l4_csum_replace_proto;
8239         case BPF_FUNC_set_hash_invalid:
8240                 return &bpf_set_hash_invalid_proto;
8241         case BPF_FUNC_lwt_push_encap:
8242                 return &bpf_lwt_xmit_push_encap_proto;
8243         default:
8244                 return lwt_out_func_proto(func_id, prog);
8245         }
8246 }
8247
8248 static const struct bpf_func_proto *
8249 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8250 {
8251         switch (func_id) {
8252 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8253         case BPF_FUNC_lwt_seg6_store_bytes:
8254                 return &bpf_lwt_seg6_store_bytes_proto;
8255         case BPF_FUNC_lwt_seg6_action:
8256                 return &bpf_lwt_seg6_action_proto;
8257         case BPF_FUNC_lwt_seg6_adjust_srh:
8258                 return &bpf_lwt_seg6_adjust_srh_proto;
8259 #endif
8260         default:
8261                 return lwt_out_func_proto(func_id, prog);
8262         }
8263 }
8264
8265 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8266                                     const struct bpf_prog *prog,
8267                                     struct bpf_insn_access_aux *info)
8268 {
8269         const int size_default = sizeof(__u32);
8270
8271         if (off < 0 || off >= sizeof(struct __sk_buff))
8272                 return false;
8273
8274         /* The verifier guarantees that size > 0. */
8275         if (off % size != 0)
8276                 return false;
8277
8278         switch (off) {
8279         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8280                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8281                         return false;
8282                 break;
8283         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8284         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8285         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8286         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8287         case bpf_ctx_range(struct __sk_buff, data):
8288         case bpf_ctx_range(struct __sk_buff, data_meta):
8289         case bpf_ctx_range(struct __sk_buff, data_end):
8290                 if (size != size_default)
8291                         return false;
8292                 break;
8293         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8294                 return false;
8295         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8296                 if (type == BPF_WRITE || size != sizeof(__u64))
8297                         return false;
8298                 break;
8299         case bpf_ctx_range(struct __sk_buff, tstamp):
8300                 if (size != sizeof(__u64))
8301                         return false;
8302                 break;
8303         case offsetof(struct __sk_buff, sk):
8304                 if (type == BPF_WRITE || size != sizeof(__u64))
8305                         return false;
8306                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8307                 break;
8308         case offsetof(struct __sk_buff, tstamp_type):
8309                 return false;
8310         case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8311                 /* Explicitly prohibit access to padding in __sk_buff. */
8312                 return false;
8313         default:
8314                 /* Only narrow read access allowed for now. */
8315                 if (type == BPF_WRITE) {
8316                         if (size != size_default)
8317                                 return false;
8318                 } else {
8319                         bpf_ctx_record_field_size(info, size_default);
8320                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8321                                 return false;
8322                 }
8323         }
8324
8325         return true;
8326 }
8327
8328 static bool sk_filter_is_valid_access(int off, int size,
8329                                       enum bpf_access_type type,
8330                                       const struct bpf_prog *prog,
8331                                       struct bpf_insn_access_aux *info)
8332 {
8333         switch (off) {
8334         case bpf_ctx_range(struct __sk_buff, tc_classid):
8335         case bpf_ctx_range(struct __sk_buff, data):
8336         case bpf_ctx_range(struct __sk_buff, data_meta):
8337         case bpf_ctx_range(struct __sk_buff, data_end):
8338         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8339         case bpf_ctx_range(struct __sk_buff, tstamp):
8340         case bpf_ctx_range(struct __sk_buff, wire_len):
8341         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8342                 return false;
8343         }
8344
8345         if (type == BPF_WRITE) {
8346                 switch (off) {
8347                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8348                         break;
8349                 default:
8350                         return false;
8351                 }
8352         }
8353
8354         return bpf_skb_is_valid_access(off, size, type, prog, info);
8355 }
8356
8357 static bool cg_skb_is_valid_access(int off, int size,
8358                                    enum bpf_access_type type,
8359                                    const struct bpf_prog *prog,
8360                                    struct bpf_insn_access_aux *info)
8361 {
8362         switch (off) {
8363         case bpf_ctx_range(struct __sk_buff, tc_classid):
8364         case bpf_ctx_range(struct __sk_buff, data_meta):
8365         case bpf_ctx_range(struct __sk_buff, wire_len):
8366                 return false;
8367         case bpf_ctx_range(struct __sk_buff, data):
8368         case bpf_ctx_range(struct __sk_buff, data_end):
8369                 if (!bpf_capable())
8370                         return false;
8371                 break;
8372         }
8373
8374         if (type == BPF_WRITE) {
8375                 switch (off) {
8376                 case bpf_ctx_range(struct __sk_buff, mark):
8377                 case bpf_ctx_range(struct __sk_buff, priority):
8378                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8379                         break;
8380                 case bpf_ctx_range(struct __sk_buff, tstamp):
8381                         if (!bpf_capable())
8382                                 return false;
8383                         break;
8384                 default:
8385                         return false;
8386                 }
8387         }
8388
8389         switch (off) {
8390         case bpf_ctx_range(struct __sk_buff, data):
8391                 info->reg_type = PTR_TO_PACKET;
8392                 break;
8393         case bpf_ctx_range(struct __sk_buff, data_end):
8394                 info->reg_type = PTR_TO_PACKET_END;
8395                 break;
8396         }
8397
8398         return bpf_skb_is_valid_access(off, size, type, prog, info);
8399 }
8400
8401 static bool lwt_is_valid_access(int off, int size,
8402                                 enum bpf_access_type type,
8403                                 const struct bpf_prog *prog,
8404                                 struct bpf_insn_access_aux *info)
8405 {
8406         switch (off) {
8407         case bpf_ctx_range(struct __sk_buff, tc_classid):
8408         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8409         case bpf_ctx_range(struct __sk_buff, data_meta):
8410         case bpf_ctx_range(struct __sk_buff, tstamp):
8411         case bpf_ctx_range(struct __sk_buff, wire_len):
8412         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8413                 return false;
8414         }
8415
8416         if (type == BPF_WRITE) {
8417                 switch (off) {
8418                 case bpf_ctx_range(struct __sk_buff, mark):
8419                 case bpf_ctx_range(struct __sk_buff, priority):
8420                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8421                         break;
8422                 default:
8423                         return false;
8424                 }
8425         }
8426
8427         switch (off) {
8428         case bpf_ctx_range(struct __sk_buff, data):
8429                 info->reg_type = PTR_TO_PACKET;
8430                 break;
8431         case bpf_ctx_range(struct __sk_buff, data_end):
8432                 info->reg_type = PTR_TO_PACKET_END;
8433                 break;
8434         }
8435
8436         return bpf_skb_is_valid_access(off, size, type, prog, info);
8437 }
8438
8439 /* Attach type specific accesses */
8440 static bool __sock_filter_check_attach_type(int off,
8441                                             enum bpf_access_type access_type,
8442                                             enum bpf_attach_type attach_type)
8443 {
8444         switch (off) {
8445         case offsetof(struct bpf_sock, bound_dev_if):
8446         case offsetof(struct bpf_sock, mark):
8447         case offsetof(struct bpf_sock, priority):
8448                 switch (attach_type) {
8449                 case BPF_CGROUP_INET_SOCK_CREATE:
8450                 case BPF_CGROUP_INET_SOCK_RELEASE:
8451                         goto full_access;
8452                 default:
8453                         return false;
8454                 }
8455         case bpf_ctx_range(struct bpf_sock, src_ip4):
8456                 switch (attach_type) {
8457                 case BPF_CGROUP_INET4_POST_BIND:
8458                         goto read_only;
8459                 default:
8460                         return false;
8461                 }
8462         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8463                 switch (attach_type) {
8464                 case BPF_CGROUP_INET6_POST_BIND:
8465                         goto read_only;
8466                 default:
8467                         return false;
8468                 }
8469         case bpf_ctx_range(struct bpf_sock, src_port):
8470                 switch (attach_type) {
8471                 case BPF_CGROUP_INET4_POST_BIND:
8472                 case BPF_CGROUP_INET6_POST_BIND:
8473                         goto read_only;
8474                 default:
8475                         return false;
8476                 }
8477         }
8478 read_only:
8479         return access_type == BPF_READ;
8480 full_access:
8481         return true;
8482 }
8483
8484 bool bpf_sock_common_is_valid_access(int off, int size,
8485                                      enum bpf_access_type type,
8486                                      struct bpf_insn_access_aux *info)
8487 {
8488         switch (off) {
8489         case bpf_ctx_range_till(struct bpf_sock, type, priority):
8490                 return false;
8491         default:
8492                 return bpf_sock_is_valid_access(off, size, type, info);
8493         }
8494 }
8495
8496 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8497                               struct bpf_insn_access_aux *info)
8498 {
8499         const int size_default = sizeof(__u32);
8500         int field_size;
8501
8502         if (off < 0 || off >= sizeof(struct bpf_sock))
8503                 return false;
8504         if (off % size != 0)
8505                 return false;
8506
8507         switch (off) {
8508         case offsetof(struct bpf_sock, state):
8509         case offsetof(struct bpf_sock, family):
8510         case offsetof(struct bpf_sock, type):
8511         case offsetof(struct bpf_sock, protocol):
8512         case offsetof(struct bpf_sock, src_port):
8513         case offsetof(struct bpf_sock, rx_queue_mapping):
8514         case bpf_ctx_range(struct bpf_sock, src_ip4):
8515         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8516         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8517         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8518                 bpf_ctx_record_field_size(info, size_default);
8519                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8520         case bpf_ctx_range(struct bpf_sock, dst_port):
8521                 field_size = size == size_default ?
8522                         size_default : sizeof_field(struct bpf_sock, dst_port);
8523                 bpf_ctx_record_field_size(info, field_size);
8524                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8525         case offsetofend(struct bpf_sock, dst_port) ...
8526              offsetof(struct bpf_sock, dst_ip4) - 1:
8527                 return false;
8528         }
8529
8530         return size == size_default;
8531 }
8532
8533 static bool sock_filter_is_valid_access(int off, int size,
8534                                         enum bpf_access_type type,
8535                                         const struct bpf_prog *prog,
8536                                         struct bpf_insn_access_aux *info)
8537 {
8538         if (!bpf_sock_is_valid_access(off, size, type, info))
8539                 return false;
8540         return __sock_filter_check_attach_type(off, type,
8541                                                prog->expected_attach_type);
8542 }
8543
8544 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8545                              const struct bpf_prog *prog)
8546 {
8547         /* Neither direct read nor direct write requires any preliminary
8548          * action.
8549          */
8550         return 0;
8551 }
8552
8553 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8554                                 const struct bpf_prog *prog, int drop_verdict)
8555 {
8556         struct bpf_insn *insn = insn_buf;
8557
8558         if (!direct_write)
8559                 return 0;
8560
8561         /* if (!skb->cloned)
8562          *       goto start;
8563          *
8564          * (Fast-path, otherwise approximation that we might be
8565          *  a clone, do the rest in helper.)
8566          */
8567         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8568         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8569         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8570
8571         /* ret = bpf_skb_pull_data(skb, 0); */
8572         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8573         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8574         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8575                                BPF_FUNC_skb_pull_data);
8576         /* if (!ret)
8577          *      goto restore;
8578          * return TC_ACT_SHOT;
8579          */
8580         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8581         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8582         *insn++ = BPF_EXIT_INSN();
8583
8584         /* restore: */
8585         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8586         /* start: */
8587         *insn++ = prog->insnsi[0];
8588
8589         return insn - insn_buf;
8590 }
8591
8592 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8593                           struct bpf_insn *insn_buf)
8594 {
8595         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8596         struct bpf_insn *insn = insn_buf;
8597
8598         if (!indirect) {
8599                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8600         } else {
8601                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8602                 if (orig->imm)
8603                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8604         }
8605         /* We're guaranteed here that CTX is in R6. */
8606         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8607
8608         switch (BPF_SIZE(orig->code)) {
8609         case BPF_B:
8610                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8611                 break;
8612         case BPF_H:
8613                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8614                 break;
8615         case BPF_W:
8616                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8617                 break;
8618         }
8619
8620         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8621         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8622         *insn++ = BPF_EXIT_INSN();
8623
8624         return insn - insn_buf;
8625 }
8626
8627 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8628                                const struct bpf_prog *prog)
8629 {
8630         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8631 }
8632
8633 static bool tc_cls_act_is_valid_access(int off, int size,
8634                                        enum bpf_access_type type,
8635                                        const struct bpf_prog *prog,
8636                                        struct bpf_insn_access_aux *info)
8637 {
8638         if (type == BPF_WRITE) {
8639                 switch (off) {
8640                 case bpf_ctx_range(struct __sk_buff, mark):
8641                 case bpf_ctx_range(struct __sk_buff, tc_index):
8642                 case bpf_ctx_range(struct __sk_buff, priority):
8643                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8644                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8645                 case bpf_ctx_range(struct __sk_buff, tstamp):
8646                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8647                         break;
8648                 default:
8649                         return false;
8650                 }
8651         }
8652
8653         switch (off) {
8654         case bpf_ctx_range(struct __sk_buff, data):
8655                 info->reg_type = PTR_TO_PACKET;
8656                 break;
8657         case bpf_ctx_range(struct __sk_buff, data_meta):
8658                 info->reg_type = PTR_TO_PACKET_META;
8659                 break;
8660         case bpf_ctx_range(struct __sk_buff, data_end):
8661                 info->reg_type = PTR_TO_PACKET_END;
8662                 break;
8663         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8664                 return false;
8665         case offsetof(struct __sk_buff, tstamp_type):
8666                 /* The convert_ctx_access() on reading and writing
8667                  * __sk_buff->tstamp depends on whether the bpf prog
8668                  * has used __sk_buff->tstamp_type or not.
8669                  * Thus, we need to set prog->tstamp_type_access
8670                  * earlier during is_valid_access() here.
8671                  */
8672                 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8673                 return size == sizeof(__u8);
8674         }
8675
8676         return bpf_skb_is_valid_access(off, size, type, prog, info);
8677 }
8678
8679 DEFINE_MUTEX(nf_conn_btf_access_lock);
8680 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8681
8682 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8683                               const struct bpf_reg_state *reg,
8684                               int off, int size, enum bpf_access_type atype,
8685                               u32 *next_btf_id, enum bpf_type_flag *flag);
8686 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8687
8688 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8689                                         const struct bpf_reg_state *reg,
8690                                         int off, int size, enum bpf_access_type atype,
8691                                         u32 *next_btf_id, enum bpf_type_flag *flag)
8692 {
8693         int ret = -EACCES;
8694
8695         if (atype == BPF_READ)
8696                 return btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8697
8698         mutex_lock(&nf_conn_btf_access_lock);
8699         if (nfct_btf_struct_access)
8700                 ret = nfct_btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8701         mutex_unlock(&nf_conn_btf_access_lock);
8702
8703         return ret;
8704 }
8705
8706 static bool __is_valid_xdp_access(int off, int size)
8707 {
8708         if (off < 0 || off >= sizeof(struct xdp_md))
8709                 return false;
8710         if (off % size != 0)
8711                 return false;
8712         if (size != sizeof(__u32))
8713                 return false;
8714
8715         return true;
8716 }
8717
8718 static bool xdp_is_valid_access(int off, int size,
8719                                 enum bpf_access_type type,
8720                                 const struct bpf_prog *prog,
8721                                 struct bpf_insn_access_aux *info)
8722 {
8723         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8724                 switch (off) {
8725                 case offsetof(struct xdp_md, egress_ifindex):
8726                         return false;
8727                 }
8728         }
8729
8730         if (type == BPF_WRITE) {
8731                 if (bpf_prog_is_dev_bound(prog->aux)) {
8732                         switch (off) {
8733                         case offsetof(struct xdp_md, rx_queue_index):
8734                                 return __is_valid_xdp_access(off, size);
8735                         }
8736                 }
8737                 return false;
8738         }
8739
8740         switch (off) {
8741         case offsetof(struct xdp_md, data):
8742                 info->reg_type = PTR_TO_PACKET;
8743                 break;
8744         case offsetof(struct xdp_md, data_meta):
8745                 info->reg_type = PTR_TO_PACKET_META;
8746                 break;
8747         case offsetof(struct xdp_md, data_end):
8748                 info->reg_type = PTR_TO_PACKET_END;
8749                 break;
8750         }
8751
8752         return __is_valid_xdp_access(off, size);
8753 }
8754
8755 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8756 {
8757         const u32 act_max = XDP_REDIRECT;
8758
8759         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8760                      act > act_max ? "Illegal" : "Driver unsupported",
8761                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8762 }
8763 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8764
8765 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8766                                  const struct bpf_reg_state *reg,
8767                                  int off, int size, enum bpf_access_type atype,
8768                                  u32 *next_btf_id, enum bpf_type_flag *flag)
8769 {
8770         int ret = -EACCES;
8771
8772         if (atype == BPF_READ)
8773                 return btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8774
8775         mutex_lock(&nf_conn_btf_access_lock);
8776         if (nfct_btf_struct_access)
8777                 ret = nfct_btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8778         mutex_unlock(&nf_conn_btf_access_lock);
8779
8780         return ret;
8781 }
8782
8783 static bool sock_addr_is_valid_access(int off, int size,
8784                                       enum bpf_access_type type,
8785                                       const struct bpf_prog *prog,
8786                                       struct bpf_insn_access_aux *info)
8787 {
8788         const int size_default = sizeof(__u32);
8789
8790         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8791                 return false;
8792         if (off % size != 0)
8793                 return false;
8794
8795         /* Disallow access to IPv6 fields from IPv4 contex and vise
8796          * versa.
8797          */
8798         switch (off) {
8799         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8800                 switch (prog->expected_attach_type) {
8801                 case BPF_CGROUP_INET4_BIND:
8802                 case BPF_CGROUP_INET4_CONNECT:
8803                 case BPF_CGROUP_INET4_GETPEERNAME:
8804                 case BPF_CGROUP_INET4_GETSOCKNAME:
8805                 case BPF_CGROUP_UDP4_SENDMSG:
8806                 case BPF_CGROUP_UDP4_RECVMSG:
8807                         break;
8808                 default:
8809                         return false;
8810                 }
8811                 break;
8812         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8813                 switch (prog->expected_attach_type) {
8814                 case BPF_CGROUP_INET6_BIND:
8815                 case BPF_CGROUP_INET6_CONNECT:
8816                 case BPF_CGROUP_INET6_GETPEERNAME:
8817                 case BPF_CGROUP_INET6_GETSOCKNAME:
8818                 case BPF_CGROUP_UDP6_SENDMSG:
8819                 case BPF_CGROUP_UDP6_RECVMSG:
8820                         break;
8821                 default:
8822                         return false;
8823                 }
8824                 break;
8825         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8826                 switch (prog->expected_attach_type) {
8827                 case BPF_CGROUP_UDP4_SENDMSG:
8828                         break;
8829                 default:
8830                         return false;
8831                 }
8832                 break;
8833         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8834                                 msg_src_ip6[3]):
8835                 switch (prog->expected_attach_type) {
8836                 case BPF_CGROUP_UDP6_SENDMSG:
8837                         break;
8838                 default:
8839                         return false;
8840                 }
8841                 break;
8842         }
8843
8844         switch (off) {
8845         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8846         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8847         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8848         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8849                                 msg_src_ip6[3]):
8850         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8851                 if (type == BPF_READ) {
8852                         bpf_ctx_record_field_size(info, size_default);
8853
8854                         if (bpf_ctx_wide_access_ok(off, size,
8855                                                    struct bpf_sock_addr,
8856                                                    user_ip6))
8857                                 return true;
8858
8859                         if (bpf_ctx_wide_access_ok(off, size,
8860                                                    struct bpf_sock_addr,
8861                                                    msg_src_ip6))
8862                                 return true;
8863
8864                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8865                                 return false;
8866                 } else {
8867                         if (bpf_ctx_wide_access_ok(off, size,
8868                                                    struct bpf_sock_addr,
8869                                                    user_ip6))
8870                                 return true;
8871
8872                         if (bpf_ctx_wide_access_ok(off, size,
8873                                                    struct bpf_sock_addr,
8874                                                    msg_src_ip6))
8875                                 return true;
8876
8877                         if (size != size_default)
8878                                 return false;
8879                 }
8880                 break;
8881         case offsetof(struct bpf_sock_addr, sk):
8882                 if (type != BPF_READ)
8883                         return false;
8884                 if (size != sizeof(__u64))
8885                         return false;
8886                 info->reg_type = PTR_TO_SOCKET;
8887                 break;
8888         default:
8889                 if (type == BPF_READ) {
8890                         if (size != size_default)
8891                                 return false;
8892                 } else {
8893                         return false;
8894                 }
8895         }
8896
8897         return true;
8898 }
8899
8900 static bool sock_ops_is_valid_access(int off, int size,
8901                                      enum bpf_access_type type,
8902                                      const struct bpf_prog *prog,
8903                                      struct bpf_insn_access_aux *info)
8904 {
8905         const int size_default = sizeof(__u32);
8906
8907         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8908                 return false;
8909
8910         /* The verifier guarantees that size > 0. */
8911         if (off % size != 0)
8912                 return false;
8913
8914         if (type == BPF_WRITE) {
8915                 switch (off) {
8916                 case offsetof(struct bpf_sock_ops, reply):
8917                 case offsetof(struct bpf_sock_ops, sk_txhash):
8918                         if (size != size_default)
8919                                 return false;
8920                         break;
8921                 default:
8922                         return false;
8923                 }
8924         } else {
8925                 switch (off) {
8926                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8927                                         bytes_acked):
8928                         if (size != sizeof(__u64))
8929                                 return false;
8930                         break;
8931                 case offsetof(struct bpf_sock_ops, sk):
8932                         if (size != sizeof(__u64))
8933                                 return false;
8934                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8935                         break;
8936                 case offsetof(struct bpf_sock_ops, skb_data):
8937                         if (size != sizeof(__u64))
8938                                 return false;
8939                         info->reg_type = PTR_TO_PACKET;
8940                         break;
8941                 case offsetof(struct bpf_sock_ops, skb_data_end):
8942                         if (size != sizeof(__u64))
8943                                 return false;
8944                         info->reg_type = PTR_TO_PACKET_END;
8945                         break;
8946                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8947                         bpf_ctx_record_field_size(info, size_default);
8948                         return bpf_ctx_narrow_access_ok(off, size,
8949                                                         size_default);
8950                 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
8951                         if (size != sizeof(__u64))
8952                                 return false;
8953                         break;
8954                 default:
8955                         if (size != size_default)
8956                                 return false;
8957                         break;
8958                 }
8959         }
8960
8961         return true;
8962 }
8963
8964 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8965                            const struct bpf_prog *prog)
8966 {
8967         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8968 }
8969
8970 static bool sk_skb_is_valid_access(int off, int size,
8971                                    enum bpf_access_type type,
8972                                    const struct bpf_prog *prog,
8973                                    struct bpf_insn_access_aux *info)
8974 {
8975         switch (off) {
8976         case bpf_ctx_range(struct __sk_buff, tc_classid):
8977         case bpf_ctx_range(struct __sk_buff, data_meta):
8978         case bpf_ctx_range(struct __sk_buff, tstamp):
8979         case bpf_ctx_range(struct __sk_buff, wire_len):
8980         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8981                 return false;
8982         }
8983
8984         if (type == BPF_WRITE) {
8985                 switch (off) {
8986                 case bpf_ctx_range(struct __sk_buff, tc_index):
8987                 case bpf_ctx_range(struct __sk_buff, priority):
8988                         break;
8989                 default:
8990                         return false;
8991                 }
8992         }
8993
8994         switch (off) {
8995         case bpf_ctx_range(struct __sk_buff, mark):
8996                 return false;
8997         case bpf_ctx_range(struct __sk_buff, data):
8998                 info->reg_type = PTR_TO_PACKET;
8999                 break;
9000         case bpf_ctx_range(struct __sk_buff, data_end):
9001                 info->reg_type = PTR_TO_PACKET_END;
9002                 break;
9003         }
9004
9005         return bpf_skb_is_valid_access(off, size, type, prog, info);
9006 }
9007
9008 static bool sk_msg_is_valid_access(int off, int size,
9009                                    enum bpf_access_type type,
9010                                    const struct bpf_prog *prog,
9011                                    struct bpf_insn_access_aux *info)
9012 {
9013         if (type == BPF_WRITE)
9014                 return false;
9015
9016         if (off % size != 0)
9017                 return false;
9018
9019         switch (off) {
9020         case offsetof(struct sk_msg_md, data):
9021                 info->reg_type = PTR_TO_PACKET;
9022                 if (size != sizeof(__u64))
9023                         return false;
9024                 break;
9025         case offsetof(struct sk_msg_md, data_end):
9026                 info->reg_type = PTR_TO_PACKET_END;
9027                 if (size != sizeof(__u64))
9028                         return false;
9029                 break;
9030         case offsetof(struct sk_msg_md, sk):
9031                 if (size != sizeof(__u64))
9032                         return false;
9033                 info->reg_type = PTR_TO_SOCKET;
9034                 break;
9035         case bpf_ctx_range(struct sk_msg_md, family):
9036         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9037         case bpf_ctx_range(struct sk_msg_md, local_ip4):
9038         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9039         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9040         case bpf_ctx_range(struct sk_msg_md, remote_port):
9041         case bpf_ctx_range(struct sk_msg_md, local_port):
9042         case bpf_ctx_range(struct sk_msg_md, size):
9043                 if (size != sizeof(__u32))
9044                         return false;
9045                 break;
9046         default:
9047                 return false;
9048         }
9049         return true;
9050 }
9051
9052 static bool flow_dissector_is_valid_access(int off, int size,
9053                                            enum bpf_access_type type,
9054                                            const struct bpf_prog *prog,
9055                                            struct bpf_insn_access_aux *info)
9056 {
9057         const int size_default = sizeof(__u32);
9058
9059         if (off < 0 || off >= sizeof(struct __sk_buff))
9060                 return false;
9061
9062         if (type == BPF_WRITE)
9063                 return false;
9064
9065         switch (off) {
9066         case bpf_ctx_range(struct __sk_buff, data):
9067                 if (size != size_default)
9068                         return false;
9069                 info->reg_type = PTR_TO_PACKET;
9070                 return true;
9071         case bpf_ctx_range(struct __sk_buff, data_end):
9072                 if (size != size_default)
9073                         return false;
9074                 info->reg_type = PTR_TO_PACKET_END;
9075                 return true;
9076         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9077                 if (size != sizeof(__u64))
9078                         return false;
9079                 info->reg_type = PTR_TO_FLOW_KEYS;
9080                 return true;
9081         default:
9082                 return false;
9083         }
9084 }
9085
9086 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9087                                              const struct bpf_insn *si,
9088                                              struct bpf_insn *insn_buf,
9089                                              struct bpf_prog *prog,
9090                                              u32 *target_size)
9091
9092 {
9093         struct bpf_insn *insn = insn_buf;
9094
9095         switch (si->off) {
9096         case offsetof(struct __sk_buff, data):
9097                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9098                                       si->dst_reg, si->src_reg,
9099                                       offsetof(struct bpf_flow_dissector, data));
9100                 break;
9101
9102         case offsetof(struct __sk_buff, data_end):
9103                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9104                                       si->dst_reg, si->src_reg,
9105                                       offsetof(struct bpf_flow_dissector, data_end));
9106                 break;
9107
9108         case offsetof(struct __sk_buff, flow_keys):
9109                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9110                                       si->dst_reg, si->src_reg,
9111                                       offsetof(struct bpf_flow_dissector, flow_keys));
9112                 break;
9113         }
9114
9115         return insn - insn_buf;
9116 }
9117
9118 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9119                                                      struct bpf_insn *insn)
9120 {
9121         __u8 value_reg = si->dst_reg;
9122         __u8 skb_reg = si->src_reg;
9123         /* AX is needed because src_reg and dst_reg could be the same */
9124         __u8 tmp_reg = BPF_REG_AX;
9125
9126         *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9127                               PKT_VLAN_PRESENT_OFFSET);
9128         *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9129                                 SKB_MONO_DELIVERY_TIME_MASK, 2);
9130         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9131         *insn++ = BPF_JMP_A(1);
9132         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9133
9134         return insn;
9135 }
9136
9137 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9138                                                   struct bpf_insn *insn)
9139 {
9140         /* si->dst_reg = skb_shinfo(SKB); */
9141 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9142         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9143                               BPF_REG_AX, skb_reg,
9144                               offsetof(struct sk_buff, end));
9145         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9146                               dst_reg, skb_reg,
9147                               offsetof(struct sk_buff, head));
9148         *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9149 #else
9150         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9151                               dst_reg, skb_reg,
9152                               offsetof(struct sk_buff, end));
9153 #endif
9154
9155         return insn;
9156 }
9157
9158 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9159                                                 const struct bpf_insn *si,
9160                                                 struct bpf_insn *insn)
9161 {
9162         __u8 value_reg = si->dst_reg;
9163         __u8 skb_reg = si->src_reg;
9164
9165 #ifdef CONFIG_NET_CLS_ACT
9166         /* If the tstamp_type is read,
9167          * the bpf prog is aware the tstamp could have delivery time.
9168          * Thus, read skb->tstamp as is if tstamp_type_access is true.
9169          */
9170         if (!prog->tstamp_type_access) {
9171                 /* AX is needed because src_reg and dst_reg could be the same */
9172                 __u8 tmp_reg = BPF_REG_AX;
9173
9174                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9175                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9176                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9177                 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9178                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9179                 /* skb->tc_at_ingress && skb->mono_delivery_time,
9180                  * read 0 as the (rcv) timestamp.
9181                  */
9182                 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9183                 *insn++ = BPF_JMP_A(1);
9184         }
9185 #endif
9186
9187         *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9188                               offsetof(struct sk_buff, tstamp));
9189         return insn;
9190 }
9191
9192 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9193                                                  const struct bpf_insn *si,
9194                                                  struct bpf_insn *insn)
9195 {
9196         __u8 value_reg = si->src_reg;
9197         __u8 skb_reg = si->dst_reg;
9198
9199 #ifdef CONFIG_NET_CLS_ACT
9200         /* If the tstamp_type is read,
9201          * the bpf prog is aware the tstamp could have delivery time.
9202          * Thus, write skb->tstamp as is if tstamp_type_access is true.
9203          * Otherwise, writing at ingress will have to clear the
9204          * mono_delivery_time bit also.
9205          */
9206         if (!prog->tstamp_type_access) {
9207                 __u8 tmp_reg = BPF_REG_AX;
9208
9209                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9210                 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9211                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9212                 /* goto <store> */
9213                 *insn++ = BPF_JMP_A(2);
9214                 /* <clear>: mono_delivery_time */
9215                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9216                 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9217         }
9218 #endif
9219
9220         /* <store>: skb->tstamp = tstamp */
9221         *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9222                               offsetof(struct sk_buff, tstamp));
9223         return insn;
9224 }
9225
9226 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9227                                   const struct bpf_insn *si,
9228                                   struct bpf_insn *insn_buf,
9229                                   struct bpf_prog *prog, u32 *target_size)
9230 {
9231         struct bpf_insn *insn = insn_buf;
9232         int off;
9233
9234         switch (si->off) {
9235         case offsetof(struct __sk_buff, len):
9236                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9237                                       bpf_target_off(struct sk_buff, len, 4,
9238                                                      target_size));
9239                 break;
9240
9241         case offsetof(struct __sk_buff, protocol):
9242                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9243                                       bpf_target_off(struct sk_buff, protocol, 2,
9244                                                      target_size));
9245                 break;
9246
9247         case offsetof(struct __sk_buff, vlan_proto):
9248                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9249                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
9250                                                      target_size));
9251                 break;
9252
9253         case offsetof(struct __sk_buff, priority):
9254                 if (type == BPF_WRITE)
9255                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9256                                               bpf_target_off(struct sk_buff, priority, 4,
9257                                                              target_size));
9258                 else
9259                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9260                                               bpf_target_off(struct sk_buff, priority, 4,
9261                                                              target_size));
9262                 break;
9263
9264         case offsetof(struct __sk_buff, ingress_ifindex):
9265                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9266                                       bpf_target_off(struct sk_buff, skb_iif, 4,
9267                                                      target_size));
9268                 break;
9269
9270         case offsetof(struct __sk_buff, ifindex):
9271                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9272                                       si->dst_reg, si->src_reg,
9273                                       offsetof(struct sk_buff, dev));
9274                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9275                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9276                                       bpf_target_off(struct net_device, ifindex, 4,
9277                                                      target_size));
9278                 break;
9279
9280         case offsetof(struct __sk_buff, hash):
9281                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9282                                       bpf_target_off(struct sk_buff, hash, 4,
9283                                                      target_size));
9284                 break;
9285
9286         case offsetof(struct __sk_buff, mark):
9287                 if (type == BPF_WRITE)
9288                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9289                                               bpf_target_off(struct sk_buff, mark, 4,
9290                                                              target_size));
9291                 else
9292                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9293                                               bpf_target_off(struct sk_buff, mark, 4,
9294                                                              target_size));
9295                 break;
9296
9297         case offsetof(struct __sk_buff, pkt_type):
9298                 *target_size = 1;
9299                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9300                                       PKT_TYPE_OFFSET);
9301                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9302 #ifdef __BIG_ENDIAN_BITFIELD
9303                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9304 #endif
9305                 break;
9306
9307         case offsetof(struct __sk_buff, queue_mapping):
9308                 if (type == BPF_WRITE) {
9309                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9310                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9311                                               bpf_target_off(struct sk_buff,
9312                                                              queue_mapping,
9313                                                              2, target_size));
9314                 } else {
9315                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9316                                               bpf_target_off(struct sk_buff,
9317                                                              queue_mapping,
9318                                                              2, target_size));
9319                 }
9320                 break;
9321
9322         case offsetof(struct __sk_buff, vlan_present):
9323                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9324                                       bpf_target_off(struct sk_buff,
9325                                                      vlan_all, 4, target_size));
9326                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9327                 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9328                 break;
9329
9330         case offsetof(struct __sk_buff, vlan_tci):
9331                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9332                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
9333                                                      target_size));
9334                 break;
9335
9336         case offsetof(struct __sk_buff, cb[0]) ...
9337              offsetofend(struct __sk_buff, cb[4]) - 1:
9338                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9339                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9340                               offsetof(struct qdisc_skb_cb, data)) %
9341                              sizeof(__u64));
9342
9343                 prog->cb_access = 1;
9344                 off  = si->off;
9345                 off -= offsetof(struct __sk_buff, cb[0]);
9346                 off += offsetof(struct sk_buff, cb);
9347                 off += offsetof(struct qdisc_skb_cb, data);
9348                 if (type == BPF_WRITE)
9349                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9350                                               si->src_reg, off);
9351                 else
9352                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9353                                               si->src_reg, off);
9354                 break;
9355
9356         case offsetof(struct __sk_buff, tc_classid):
9357                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9358
9359                 off  = si->off;
9360                 off -= offsetof(struct __sk_buff, tc_classid);
9361                 off += offsetof(struct sk_buff, cb);
9362                 off += offsetof(struct qdisc_skb_cb, tc_classid);
9363                 *target_size = 2;
9364                 if (type == BPF_WRITE)
9365                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9366                                               si->src_reg, off);
9367                 else
9368                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9369                                               si->src_reg, off);
9370                 break;
9371
9372         case offsetof(struct __sk_buff, data):
9373                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9374                                       si->dst_reg, si->src_reg,
9375                                       offsetof(struct sk_buff, data));
9376                 break;
9377
9378         case offsetof(struct __sk_buff, data_meta):
9379                 off  = si->off;
9380                 off -= offsetof(struct __sk_buff, data_meta);
9381                 off += offsetof(struct sk_buff, cb);
9382                 off += offsetof(struct bpf_skb_data_end, data_meta);
9383                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9384                                       si->src_reg, off);
9385                 break;
9386
9387         case offsetof(struct __sk_buff, data_end):
9388                 off  = si->off;
9389                 off -= offsetof(struct __sk_buff, data_end);
9390                 off += offsetof(struct sk_buff, cb);
9391                 off += offsetof(struct bpf_skb_data_end, data_end);
9392                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9393                                       si->src_reg, off);
9394                 break;
9395
9396         case offsetof(struct __sk_buff, tc_index):
9397 #ifdef CONFIG_NET_SCHED
9398                 if (type == BPF_WRITE)
9399                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9400                                               bpf_target_off(struct sk_buff, tc_index, 2,
9401                                                              target_size));
9402                 else
9403                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9404                                               bpf_target_off(struct sk_buff, tc_index, 2,
9405                                                              target_size));
9406 #else
9407                 *target_size = 2;
9408                 if (type == BPF_WRITE)
9409                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9410                 else
9411                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9412 #endif
9413                 break;
9414
9415         case offsetof(struct __sk_buff, napi_id):
9416 #if defined(CONFIG_NET_RX_BUSY_POLL)
9417                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9418                                       bpf_target_off(struct sk_buff, napi_id, 4,
9419                                                      target_size));
9420                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9421                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9422 #else
9423                 *target_size = 4;
9424                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9425 #endif
9426                 break;
9427         case offsetof(struct __sk_buff, family):
9428                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9429
9430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9431                                       si->dst_reg, si->src_reg,
9432                                       offsetof(struct sk_buff, sk));
9433                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9434                                       bpf_target_off(struct sock_common,
9435                                                      skc_family,
9436                                                      2, target_size));
9437                 break;
9438         case offsetof(struct __sk_buff, remote_ip4):
9439                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9440
9441                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9442                                       si->dst_reg, si->src_reg,
9443                                       offsetof(struct sk_buff, sk));
9444                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9445                                       bpf_target_off(struct sock_common,
9446                                                      skc_daddr,
9447                                                      4, target_size));
9448                 break;
9449         case offsetof(struct __sk_buff, local_ip4):
9450                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9451                                           skc_rcv_saddr) != 4);
9452
9453                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9454                                       si->dst_reg, si->src_reg,
9455                                       offsetof(struct sk_buff, sk));
9456                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9457                                       bpf_target_off(struct sock_common,
9458                                                      skc_rcv_saddr,
9459                                                      4, target_size));
9460                 break;
9461         case offsetof(struct __sk_buff, remote_ip6[0]) ...
9462              offsetof(struct __sk_buff, remote_ip6[3]):
9463 #if IS_ENABLED(CONFIG_IPV6)
9464                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9465                                           skc_v6_daddr.s6_addr32[0]) != 4);
9466
9467                 off = si->off;
9468                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9469
9470                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9471                                       si->dst_reg, si->src_reg,
9472                                       offsetof(struct sk_buff, sk));
9473                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9474                                       offsetof(struct sock_common,
9475                                                skc_v6_daddr.s6_addr32[0]) +
9476                                       off);
9477 #else
9478                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9479 #endif
9480                 break;
9481         case offsetof(struct __sk_buff, local_ip6[0]) ...
9482              offsetof(struct __sk_buff, local_ip6[3]):
9483 #if IS_ENABLED(CONFIG_IPV6)
9484                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9485                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9486
9487                 off = si->off;
9488                 off -= offsetof(struct __sk_buff, local_ip6[0]);
9489
9490                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9491                                       si->dst_reg, si->src_reg,
9492                                       offsetof(struct sk_buff, sk));
9493                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9494                                       offsetof(struct sock_common,
9495                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9496                                       off);
9497 #else
9498                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9499 #endif
9500                 break;
9501
9502         case offsetof(struct __sk_buff, remote_port):
9503                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9504
9505                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9506                                       si->dst_reg, si->src_reg,
9507                                       offsetof(struct sk_buff, sk));
9508                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9509                                       bpf_target_off(struct sock_common,
9510                                                      skc_dport,
9511                                                      2, target_size));
9512 #ifndef __BIG_ENDIAN_BITFIELD
9513                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9514 #endif
9515                 break;
9516
9517         case offsetof(struct __sk_buff, local_port):
9518                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9519
9520                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9521                                       si->dst_reg, si->src_reg,
9522                                       offsetof(struct sk_buff, sk));
9523                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9524                                       bpf_target_off(struct sock_common,
9525                                                      skc_num, 2, target_size));
9526                 break;
9527
9528         case offsetof(struct __sk_buff, tstamp):
9529                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9530
9531                 if (type == BPF_WRITE)
9532                         insn = bpf_convert_tstamp_write(prog, si, insn);
9533                 else
9534                         insn = bpf_convert_tstamp_read(prog, si, insn);
9535                 break;
9536
9537         case offsetof(struct __sk_buff, tstamp_type):
9538                 insn = bpf_convert_tstamp_type_read(si, insn);
9539                 break;
9540
9541         case offsetof(struct __sk_buff, gso_segs):
9542                 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9543                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9544                                       si->dst_reg, si->dst_reg,
9545                                       bpf_target_off(struct skb_shared_info,
9546                                                      gso_segs, 2,
9547                                                      target_size));
9548                 break;
9549         case offsetof(struct __sk_buff, gso_size):
9550                 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9551                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9552                                       si->dst_reg, si->dst_reg,
9553                                       bpf_target_off(struct skb_shared_info,
9554                                                      gso_size, 2,
9555                                                      target_size));
9556                 break;
9557         case offsetof(struct __sk_buff, wire_len):
9558                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9559
9560                 off = si->off;
9561                 off -= offsetof(struct __sk_buff, wire_len);
9562                 off += offsetof(struct sk_buff, cb);
9563                 off += offsetof(struct qdisc_skb_cb, pkt_len);
9564                 *target_size = 4;
9565                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9566                 break;
9567
9568         case offsetof(struct __sk_buff, sk):
9569                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9570                                       si->dst_reg, si->src_reg,
9571                                       offsetof(struct sk_buff, sk));
9572                 break;
9573         case offsetof(struct __sk_buff, hwtstamp):
9574                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9575                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9576
9577                 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9578                 *insn++ = BPF_LDX_MEM(BPF_DW,
9579                                       si->dst_reg, si->dst_reg,
9580                                       bpf_target_off(struct skb_shared_info,
9581                                                      hwtstamps, 8,
9582                                                      target_size));
9583                 break;
9584         }
9585
9586         return insn - insn_buf;
9587 }
9588
9589 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9590                                 const struct bpf_insn *si,
9591                                 struct bpf_insn *insn_buf,
9592                                 struct bpf_prog *prog, u32 *target_size)
9593 {
9594         struct bpf_insn *insn = insn_buf;
9595         int off;
9596
9597         switch (si->off) {
9598         case offsetof(struct bpf_sock, bound_dev_if):
9599                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9600
9601                 if (type == BPF_WRITE)
9602                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9603                                         offsetof(struct sock, sk_bound_dev_if));
9604                 else
9605                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9606                                       offsetof(struct sock, sk_bound_dev_if));
9607                 break;
9608
9609         case offsetof(struct bpf_sock, mark):
9610                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9611
9612                 if (type == BPF_WRITE)
9613                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9614                                         offsetof(struct sock, sk_mark));
9615                 else
9616                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9617                                       offsetof(struct sock, sk_mark));
9618                 break;
9619
9620         case offsetof(struct bpf_sock, priority):
9621                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9622
9623                 if (type == BPF_WRITE)
9624                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9625                                         offsetof(struct sock, sk_priority));
9626                 else
9627                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9628                                       offsetof(struct sock, sk_priority));
9629                 break;
9630
9631         case offsetof(struct bpf_sock, family):
9632                 *insn++ = BPF_LDX_MEM(
9633                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9634                         si->dst_reg, si->src_reg,
9635                         bpf_target_off(struct sock_common,
9636                                        skc_family,
9637                                        sizeof_field(struct sock_common,
9638                                                     skc_family),
9639                                        target_size));
9640                 break;
9641
9642         case offsetof(struct bpf_sock, type):
9643                 *insn++ = BPF_LDX_MEM(
9644                         BPF_FIELD_SIZEOF(struct sock, sk_type),
9645                         si->dst_reg, si->src_reg,
9646                         bpf_target_off(struct sock, sk_type,
9647                                        sizeof_field(struct sock, sk_type),
9648                                        target_size));
9649                 break;
9650
9651         case offsetof(struct bpf_sock, protocol):
9652                 *insn++ = BPF_LDX_MEM(
9653                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9654                         si->dst_reg, si->src_reg,
9655                         bpf_target_off(struct sock, sk_protocol,
9656                                        sizeof_field(struct sock, sk_protocol),
9657                                        target_size));
9658                 break;
9659
9660         case offsetof(struct bpf_sock, src_ip4):
9661                 *insn++ = BPF_LDX_MEM(
9662                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9663                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9664                                        sizeof_field(struct sock_common,
9665                                                     skc_rcv_saddr),
9666                                        target_size));
9667                 break;
9668
9669         case offsetof(struct bpf_sock, dst_ip4):
9670                 *insn++ = BPF_LDX_MEM(
9671                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9672                         bpf_target_off(struct sock_common, skc_daddr,
9673                                        sizeof_field(struct sock_common,
9674                                                     skc_daddr),
9675                                        target_size));
9676                 break;
9677
9678         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9679 #if IS_ENABLED(CONFIG_IPV6)
9680                 off = si->off;
9681                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9682                 *insn++ = BPF_LDX_MEM(
9683                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9684                         bpf_target_off(
9685                                 struct sock_common,
9686                                 skc_v6_rcv_saddr.s6_addr32[0],
9687                                 sizeof_field(struct sock_common,
9688                                              skc_v6_rcv_saddr.s6_addr32[0]),
9689                                 target_size) + off);
9690 #else
9691                 (void)off;
9692                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9693 #endif
9694                 break;
9695
9696         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9697 #if IS_ENABLED(CONFIG_IPV6)
9698                 off = si->off;
9699                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9700                 *insn++ = BPF_LDX_MEM(
9701                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9702                         bpf_target_off(struct sock_common,
9703                                        skc_v6_daddr.s6_addr32[0],
9704                                        sizeof_field(struct sock_common,
9705                                                     skc_v6_daddr.s6_addr32[0]),
9706                                        target_size) + off);
9707 #else
9708                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9709                 *target_size = 4;
9710 #endif
9711                 break;
9712
9713         case offsetof(struct bpf_sock, src_port):
9714                 *insn++ = BPF_LDX_MEM(
9715                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9716                         si->dst_reg, si->src_reg,
9717                         bpf_target_off(struct sock_common, skc_num,
9718                                        sizeof_field(struct sock_common,
9719                                                     skc_num),
9720                                        target_size));
9721                 break;
9722
9723         case offsetof(struct bpf_sock, dst_port):
9724                 *insn++ = BPF_LDX_MEM(
9725                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9726                         si->dst_reg, si->src_reg,
9727                         bpf_target_off(struct sock_common, skc_dport,
9728                                        sizeof_field(struct sock_common,
9729                                                     skc_dport),
9730                                        target_size));
9731                 break;
9732
9733         case offsetof(struct bpf_sock, state):
9734                 *insn++ = BPF_LDX_MEM(
9735                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9736                         si->dst_reg, si->src_reg,
9737                         bpf_target_off(struct sock_common, skc_state,
9738                                        sizeof_field(struct sock_common,
9739                                                     skc_state),
9740                                        target_size));
9741                 break;
9742         case offsetof(struct bpf_sock, rx_queue_mapping):
9743 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9744                 *insn++ = BPF_LDX_MEM(
9745                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9746                         si->dst_reg, si->src_reg,
9747                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9748                                        sizeof_field(struct sock,
9749                                                     sk_rx_queue_mapping),
9750                                        target_size));
9751                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9752                                       1);
9753                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9754 #else
9755                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9756                 *target_size = 2;
9757 #endif
9758                 break;
9759         }
9760
9761         return insn - insn_buf;
9762 }
9763
9764 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9765                                          const struct bpf_insn *si,
9766                                          struct bpf_insn *insn_buf,
9767                                          struct bpf_prog *prog, u32 *target_size)
9768 {
9769         struct bpf_insn *insn = insn_buf;
9770
9771         switch (si->off) {
9772         case offsetof(struct __sk_buff, ifindex):
9773                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9774                                       si->dst_reg, si->src_reg,
9775                                       offsetof(struct sk_buff, dev));
9776                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9777                                       bpf_target_off(struct net_device, ifindex, 4,
9778                                                      target_size));
9779                 break;
9780         default:
9781                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9782                                               target_size);
9783         }
9784
9785         return insn - insn_buf;
9786 }
9787
9788 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9789                                   const struct bpf_insn *si,
9790                                   struct bpf_insn *insn_buf,
9791                                   struct bpf_prog *prog, u32 *target_size)
9792 {
9793         struct bpf_insn *insn = insn_buf;
9794
9795         switch (si->off) {
9796         case offsetof(struct xdp_md, data):
9797                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9798                                       si->dst_reg, si->src_reg,
9799                                       offsetof(struct xdp_buff, data));
9800                 break;
9801         case offsetof(struct xdp_md, data_meta):
9802                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9803                                       si->dst_reg, si->src_reg,
9804                                       offsetof(struct xdp_buff, data_meta));
9805                 break;
9806         case offsetof(struct xdp_md, data_end):
9807                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9808                                       si->dst_reg, si->src_reg,
9809                                       offsetof(struct xdp_buff, data_end));
9810                 break;
9811         case offsetof(struct xdp_md, ingress_ifindex):
9812                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9813                                       si->dst_reg, si->src_reg,
9814                                       offsetof(struct xdp_buff, rxq));
9815                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9816                                       si->dst_reg, si->dst_reg,
9817                                       offsetof(struct xdp_rxq_info, dev));
9818                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9819                                       offsetof(struct net_device, ifindex));
9820                 break;
9821         case offsetof(struct xdp_md, rx_queue_index):
9822                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9823                                       si->dst_reg, si->src_reg,
9824                                       offsetof(struct xdp_buff, rxq));
9825                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9826                                       offsetof(struct xdp_rxq_info,
9827                                                queue_index));
9828                 break;
9829         case offsetof(struct xdp_md, egress_ifindex):
9830                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9831                                       si->dst_reg, si->src_reg,
9832                                       offsetof(struct xdp_buff, txq));
9833                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9834                                       si->dst_reg, si->dst_reg,
9835                                       offsetof(struct xdp_txq_info, dev));
9836                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9837                                       offsetof(struct net_device, ifindex));
9838                 break;
9839         }
9840
9841         return insn - insn_buf;
9842 }
9843
9844 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9845  * context Structure, F is Field in context structure that contains a pointer
9846  * to Nested Structure of type NS that has the field NF.
9847  *
9848  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9849  * sure that SIZE is not greater than actual size of S.F.NF.
9850  *
9851  * If offset OFF is provided, the load happens from that offset relative to
9852  * offset of NF.
9853  */
9854 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9855         do {                                                                   \
9856                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9857                                       si->src_reg, offsetof(S, F));            \
9858                 *insn++ = BPF_LDX_MEM(                                         \
9859                         SIZE, si->dst_reg, si->dst_reg,                        \
9860                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9861                                        target_size)                            \
9862                                 + OFF);                                        \
9863         } while (0)
9864
9865 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9866         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9867                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9868
9869 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9870  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9871  *
9872  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9873  * "register" since two registers available in convert_ctx_access are not
9874  * enough: we can't override neither SRC, since it contains value to store, nor
9875  * DST since it contains pointer to context that may be used by later
9876  * instructions. But we need a temporary place to save pointer to nested
9877  * structure whose field we want to store to.
9878  */
9879 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9880         do {                                                                   \
9881                 int tmp_reg = BPF_REG_9;                                       \
9882                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9883                         --tmp_reg;                                             \
9884                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9885                         --tmp_reg;                                             \
9886                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9887                                       offsetof(S, TF));                        \
9888                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9889                                       si->dst_reg, offsetof(S, F));            \
9890                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9891                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9892                                        target_size)                            \
9893                                 + OFF);                                        \
9894                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9895                                       offsetof(S, TF));                        \
9896         } while (0)
9897
9898 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9899                                                       TF)                      \
9900         do {                                                                   \
9901                 if (type == BPF_WRITE) {                                       \
9902                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9903                                                          OFF, TF);             \
9904                 } else {                                                       \
9905                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9906                                 S, NS, F, NF, SIZE, OFF);  \
9907                 }                                                              \
9908         } while (0)
9909
9910 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9911         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9912                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9913
9914 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9915                                         const struct bpf_insn *si,
9916                                         struct bpf_insn *insn_buf,
9917                                         struct bpf_prog *prog, u32 *target_size)
9918 {
9919         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9920         struct bpf_insn *insn = insn_buf;
9921
9922         switch (si->off) {
9923         case offsetof(struct bpf_sock_addr, user_family):
9924                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9925                                             struct sockaddr, uaddr, sa_family);
9926                 break;
9927
9928         case offsetof(struct bpf_sock_addr, user_ip4):
9929                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9930                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9931                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9932                 break;
9933
9934         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9935                 off = si->off;
9936                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9937                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9938                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9939                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9940                         tmp_reg);
9941                 break;
9942
9943         case offsetof(struct bpf_sock_addr, user_port):
9944                 /* To get port we need to know sa_family first and then treat
9945                  * sockaddr as either sockaddr_in or sockaddr_in6.
9946                  * Though we can simplify since port field has same offset and
9947                  * size in both structures.
9948                  * Here we check this invariant and use just one of the
9949                  * structures if it's true.
9950                  */
9951                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9952                              offsetof(struct sockaddr_in6, sin6_port));
9953                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9954                              sizeof_field(struct sockaddr_in6, sin6_port));
9955                 /* Account for sin6_port being smaller than user_port. */
9956                 port_size = min(port_size, BPF_LDST_BYTES(si));
9957                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9958                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9959                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9960                 break;
9961
9962         case offsetof(struct bpf_sock_addr, family):
9963                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9964                                             struct sock, sk, sk_family);
9965                 break;
9966
9967         case offsetof(struct bpf_sock_addr, type):
9968                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9969                                             struct sock, sk, sk_type);
9970                 break;
9971
9972         case offsetof(struct bpf_sock_addr, protocol):
9973                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9974                                             struct sock, sk, sk_protocol);
9975                 break;
9976
9977         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9978                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9979                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9980                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9981                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9982                 break;
9983
9984         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9985                                 msg_src_ip6[3]):
9986                 off = si->off;
9987                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9988                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9989                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9990                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9991                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9992                 break;
9993         case offsetof(struct bpf_sock_addr, sk):
9994                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9995                                       si->dst_reg, si->src_reg,
9996                                       offsetof(struct bpf_sock_addr_kern, sk));
9997                 break;
9998         }
9999
10000         return insn - insn_buf;
10001 }
10002
10003 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10004                                        const struct bpf_insn *si,
10005                                        struct bpf_insn *insn_buf,
10006                                        struct bpf_prog *prog,
10007                                        u32 *target_size)
10008 {
10009         struct bpf_insn *insn = insn_buf;
10010         int off;
10011
10012 /* Helper macro for adding read access to tcp_sock or sock fields. */
10013 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10014         do {                                                                  \
10015                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10016                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10017                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10018                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10019                         reg--;                                                \
10020                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10021                         reg--;                                                \
10022                 if (si->dst_reg == si->src_reg) {                             \
10023                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10024                                           offsetof(struct bpf_sock_ops_kern,  \
10025                                           temp));                             \
10026                         fullsock_reg = reg;                                   \
10027                         jmp += 2;                                             \
10028                 }                                                             \
10029                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10030                                                 struct bpf_sock_ops_kern,     \
10031                                                 is_fullsock),                 \
10032                                       fullsock_reg, si->src_reg,              \
10033                                       offsetof(struct bpf_sock_ops_kern,      \
10034                                                is_fullsock));                 \
10035                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10036                 if (si->dst_reg == si->src_reg)                               \
10037                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10038                                       offsetof(struct bpf_sock_ops_kern,      \
10039                                       temp));                                 \
10040                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10041                                                 struct bpf_sock_ops_kern, sk),\
10042                                       si->dst_reg, si->src_reg,               \
10043                                       offsetof(struct bpf_sock_ops_kern, sk));\
10044                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
10045                                                        OBJ_FIELD),            \
10046                                       si->dst_reg, si->dst_reg,               \
10047                                       offsetof(OBJ, OBJ_FIELD));              \
10048                 if (si->dst_reg == si->src_reg) {                             \
10049                         *insn++ = BPF_JMP_A(1);                               \
10050                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10051                                       offsetof(struct bpf_sock_ops_kern,      \
10052                                       temp));                                 \
10053                 }                                                             \
10054         } while (0)
10055
10056 #define SOCK_OPS_GET_SK()                                                             \
10057         do {                                                                  \
10058                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10059                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10060                         reg--;                                                \
10061                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10062                         reg--;                                                \
10063                 if (si->dst_reg == si->src_reg) {                             \
10064                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10065                                           offsetof(struct bpf_sock_ops_kern,  \
10066                                           temp));                             \
10067                         fullsock_reg = reg;                                   \
10068                         jmp += 2;                                             \
10069                 }                                                             \
10070                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10071                                                 struct bpf_sock_ops_kern,     \
10072                                                 is_fullsock),                 \
10073                                       fullsock_reg, si->src_reg,              \
10074                                       offsetof(struct bpf_sock_ops_kern,      \
10075                                                is_fullsock));                 \
10076                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10077                 if (si->dst_reg == si->src_reg)                               \
10078                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10079                                       offsetof(struct bpf_sock_ops_kern,      \
10080                                       temp));                                 \
10081                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10082                                                 struct bpf_sock_ops_kern, sk),\
10083                                       si->dst_reg, si->src_reg,               \
10084                                       offsetof(struct bpf_sock_ops_kern, sk));\
10085                 if (si->dst_reg == si->src_reg) {                             \
10086                         *insn++ = BPF_JMP_A(1);                               \
10087                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10088                                       offsetof(struct bpf_sock_ops_kern,      \
10089                                       temp));                                 \
10090                 }                                                             \
10091         } while (0)
10092
10093 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10094                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10095
10096 /* Helper macro for adding write access to tcp_sock or sock fields.
10097  * The macro is called with two registers, dst_reg which contains a pointer
10098  * to ctx (context) and src_reg which contains the value that should be
10099  * stored. However, we need an additional register since we cannot overwrite
10100  * dst_reg because it may be used later in the program.
10101  * Instead we "borrow" one of the other register. We first save its value
10102  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10103  * it at the end of the macro.
10104  */
10105 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10106         do {                                                                  \
10107                 int reg = BPF_REG_9;                                          \
10108                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10109                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10110                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10111                         reg--;                                                \
10112                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10113                         reg--;                                                \
10114                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
10115                                       offsetof(struct bpf_sock_ops_kern,      \
10116                                                temp));                        \
10117                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10118                                                 struct bpf_sock_ops_kern,     \
10119                                                 is_fullsock),                 \
10120                                       reg, si->dst_reg,                       \
10121                                       offsetof(struct bpf_sock_ops_kern,      \
10122                                                is_fullsock));                 \
10123                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
10124                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10125                                                 struct bpf_sock_ops_kern, sk),\
10126                                       reg, si->dst_reg,                       \
10127                                       offsetof(struct bpf_sock_ops_kern, sk));\
10128                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
10129                                       reg, si->src_reg,                       \
10130                                       offsetof(OBJ, OBJ_FIELD));              \
10131                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
10132                                       offsetof(struct bpf_sock_ops_kern,      \
10133                                                temp));                        \
10134         } while (0)
10135
10136 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
10137         do {                                                                  \
10138                 if (TYPE == BPF_WRITE)                                        \
10139                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10140                 else                                                          \
10141                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10142         } while (0)
10143
10144         if (insn > insn_buf)
10145                 return insn - insn_buf;
10146
10147         switch (si->off) {
10148         case offsetof(struct bpf_sock_ops, op):
10149                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10150                                                        op),
10151                                       si->dst_reg, si->src_reg,
10152                                       offsetof(struct bpf_sock_ops_kern, op));
10153                 break;
10154
10155         case offsetof(struct bpf_sock_ops, replylong[0]) ...
10156              offsetof(struct bpf_sock_ops, replylong[3]):
10157                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10158                              sizeof_field(struct bpf_sock_ops_kern, reply));
10159                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10160                              sizeof_field(struct bpf_sock_ops_kern, replylong));
10161                 off = si->off;
10162                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10163                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10164                 if (type == BPF_WRITE)
10165                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10166                                               off);
10167                 else
10168                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10169                                               off);
10170                 break;
10171
10172         case offsetof(struct bpf_sock_ops, family):
10173                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10174
10175                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10176                                               struct bpf_sock_ops_kern, sk),
10177                                       si->dst_reg, si->src_reg,
10178                                       offsetof(struct bpf_sock_ops_kern, sk));
10179                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10180                                       offsetof(struct sock_common, skc_family));
10181                 break;
10182
10183         case offsetof(struct bpf_sock_ops, remote_ip4):
10184                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10185
10186                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10187                                                 struct bpf_sock_ops_kern, sk),
10188                                       si->dst_reg, si->src_reg,
10189                                       offsetof(struct bpf_sock_ops_kern, sk));
10190                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10191                                       offsetof(struct sock_common, skc_daddr));
10192                 break;
10193
10194         case offsetof(struct bpf_sock_ops, local_ip4):
10195                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10196                                           skc_rcv_saddr) != 4);
10197
10198                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10199                                               struct bpf_sock_ops_kern, sk),
10200                                       si->dst_reg, si->src_reg,
10201                                       offsetof(struct bpf_sock_ops_kern, sk));
10202                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10203                                       offsetof(struct sock_common,
10204                                                skc_rcv_saddr));
10205                 break;
10206
10207         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10208              offsetof(struct bpf_sock_ops, remote_ip6[3]):
10209 #if IS_ENABLED(CONFIG_IPV6)
10210                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10211                                           skc_v6_daddr.s6_addr32[0]) != 4);
10212
10213                 off = si->off;
10214                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10215                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10216                                                 struct bpf_sock_ops_kern, sk),
10217                                       si->dst_reg, si->src_reg,
10218                                       offsetof(struct bpf_sock_ops_kern, sk));
10219                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10220                                       offsetof(struct sock_common,
10221                                                skc_v6_daddr.s6_addr32[0]) +
10222                                       off);
10223 #else
10224                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10225 #endif
10226                 break;
10227
10228         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10229              offsetof(struct bpf_sock_ops, local_ip6[3]):
10230 #if IS_ENABLED(CONFIG_IPV6)
10231                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10232                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10233
10234                 off = si->off;
10235                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10236                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10237                                                 struct bpf_sock_ops_kern, sk),
10238                                       si->dst_reg, si->src_reg,
10239                                       offsetof(struct bpf_sock_ops_kern, sk));
10240                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10241                                       offsetof(struct sock_common,
10242                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10243                                       off);
10244 #else
10245                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10246 #endif
10247                 break;
10248
10249         case offsetof(struct bpf_sock_ops, remote_port):
10250                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10251
10252                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10253                                                 struct bpf_sock_ops_kern, sk),
10254                                       si->dst_reg, si->src_reg,
10255                                       offsetof(struct bpf_sock_ops_kern, sk));
10256                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10257                                       offsetof(struct sock_common, skc_dport));
10258 #ifndef __BIG_ENDIAN_BITFIELD
10259                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10260 #endif
10261                 break;
10262
10263         case offsetof(struct bpf_sock_ops, local_port):
10264                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10265
10266                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10267                                                 struct bpf_sock_ops_kern, sk),
10268                                       si->dst_reg, si->src_reg,
10269                                       offsetof(struct bpf_sock_ops_kern, sk));
10270                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10271                                       offsetof(struct sock_common, skc_num));
10272                 break;
10273
10274         case offsetof(struct bpf_sock_ops, is_fullsock):
10275                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10276                                                 struct bpf_sock_ops_kern,
10277                                                 is_fullsock),
10278                                       si->dst_reg, si->src_reg,
10279                                       offsetof(struct bpf_sock_ops_kern,
10280                                                is_fullsock));
10281                 break;
10282
10283         case offsetof(struct bpf_sock_ops, state):
10284                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10285
10286                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10287                                                 struct bpf_sock_ops_kern, sk),
10288                                       si->dst_reg, si->src_reg,
10289                                       offsetof(struct bpf_sock_ops_kern, sk));
10290                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10291                                       offsetof(struct sock_common, skc_state));
10292                 break;
10293
10294         case offsetof(struct bpf_sock_ops, rtt_min):
10295                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10296                              sizeof(struct minmax));
10297                 BUILD_BUG_ON(sizeof(struct minmax) <
10298                              sizeof(struct minmax_sample));
10299
10300                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10301                                                 struct bpf_sock_ops_kern, sk),
10302                                       si->dst_reg, si->src_reg,
10303                                       offsetof(struct bpf_sock_ops_kern, sk));
10304                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10305                                       offsetof(struct tcp_sock, rtt_min) +
10306                                       sizeof_field(struct minmax_sample, t));
10307                 break;
10308
10309         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10310                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10311                                    struct tcp_sock);
10312                 break;
10313
10314         case offsetof(struct bpf_sock_ops, sk_txhash):
10315                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10316                                           struct sock, type);
10317                 break;
10318         case offsetof(struct bpf_sock_ops, snd_cwnd):
10319                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10320                 break;
10321         case offsetof(struct bpf_sock_ops, srtt_us):
10322                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10323                 break;
10324         case offsetof(struct bpf_sock_ops, snd_ssthresh):
10325                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10326                 break;
10327         case offsetof(struct bpf_sock_ops, rcv_nxt):
10328                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10329                 break;
10330         case offsetof(struct bpf_sock_ops, snd_nxt):
10331                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10332                 break;
10333         case offsetof(struct bpf_sock_ops, snd_una):
10334                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10335                 break;
10336         case offsetof(struct bpf_sock_ops, mss_cache):
10337                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10338                 break;
10339         case offsetof(struct bpf_sock_ops, ecn_flags):
10340                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10341                 break;
10342         case offsetof(struct bpf_sock_ops, rate_delivered):
10343                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10344                 break;
10345         case offsetof(struct bpf_sock_ops, rate_interval_us):
10346                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10347                 break;
10348         case offsetof(struct bpf_sock_ops, packets_out):
10349                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10350                 break;
10351         case offsetof(struct bpf_sock_ops, retrans_out):
10352                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10353                 break;
10354         case offsetof(struct bpf_sock_ops, total_retrans):
10355                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10356                 break;
10357         case offsetof(struct bpf_sock_ops, segs_in):
10358                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10359                 break;
10360         case offsetof(struct bpf_sock_ops, data_segs_in):
10361                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10362                 break;
10363         case offsetof(struct bpf_sock_ops, segs_out):
10364                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10365                 break;
10366         case offsetof(struct bpf_sock_ops, data_segs_out):
10367                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10368                 break;
10369         case offsetof(struct bpf_sock_ops, lost_out):
10370                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10371                 break;
10372         case offsetof(struct bpf_sock_ops, sacked_out):
10373                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10374                 break;
10375         case offsetof(struct bpf_sock_ops, bytes_received):
10376                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10377                 break;
10378         case offsetof(struct bpf_sock_ops, bytes_acked):
10379                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10380                 break;
10381         case offsetof(struct bpf_sock_ops, sk):
10382                 SOCK_OPS_GET_SK();
10383                 break;
10384         case offsetof(struct bpf_sock_ops, skb_data_end):
10385                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10386                                                        skb_data_end),
10387                                       si->dst_reg, si->src_reg,
10388                                       offsetof(struct bpf_sock_ops_kern,
10389                                                skb_data_end));
10390                 break;
10391         case offsetof(struct bpf_sock_ops, skb_data):
10392                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10393                                                        skb),
10394                                       si->dst_reg, si->src_reg,
10395                                       offsetof(struct bpf_sock_ops_kern,
10396                                                skb));
10397                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10398                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10399                                       si->dst_reg, si->dst_reg,
10400                                       offsetof(struct sk_buff, data));
10401                 break;
10402         case offsetof(struct bpf_sock_ops, skb_len):
10403                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10404                                                        skb),
10405                                       si->dst_reg, si->src_reg,
10406                                       offsetof(struct bpf_sock_ops_kern,
10407                                                skb));
10408                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10409                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10410                                       si->dst_reg, si->dst_reg,
10411                                       offsetof(struct sk_buff, len));
10412                 break;
10413         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10414                 off = offsetof(struct sk_buff, cb);
10415                 off += offsetof(struct tcp_skb_cb, tcp_flags);
10416                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10417                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10418                                                        skb),
10419                                       si->dst_reg, si->src_reg,
10420                                       offsetof(struct bpf_sock_ops_kern,
10421                                                skb));
10422                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10423                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10424                                                        tcp_flags),
10425                                       si->dst_reg, si->dst_reg, off);
10426                 break;
10427         case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10428                 struct bpf_insn *jmp_on_null_skb;
10429
10430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10431                                                        skb),
10432                                       si->dst_reg, si->src_reg,
10433                                       offsetof(struct bpf_sock_ops_kern,
10434                                                skb));
10435                 /* Reserve one insn to test skb == NULL */
10436                 jmp_on_null_skb = insn++;
10437                 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10438                 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10439                                       bpf_target_off(struct skb_shared_info,
10440                                                      hwtstamps, 8,
10441                                                      target_size));
10442                 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10443                                                insn - jmp_on_null_skb - 1);
10444                 break;
10445         }
10446         }
10447         return insn - insn_buf;
10448 }
10449
10450 /* data_end = skb->data + skb_headlen() */
10451 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10452                                                     struct bpf_insn *insn)
10453 {
10454         int reg;
10455         int temp_reg_off = offsetof(struct sk_buff, cb) +
10456                            offsetof(struct sk_skb_cb, temp_reg);
10457
10458         if (si->src_reg == si->dst_reg) {
10459                 /* We need an extra register, choose and save a register. */
10460                 reg = BPF_REG_9;
10461                 if (si->src_reg == reg || si->dst_reg == reg)
10462                         reg--;
10463                 if (si->src_reg == reg || si->dst_reg == reg)
10464                         reg--;
10465                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10466         } else {
10467                 reg = si->dst_reg;
10468         }
10469
10470         /* reg = skb->data */
10471         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10472                               reg, si->src_reg,
10473                               offsetof(struct sk_buff, data));
10474         /* AX = skb->len */
10475         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10476                               BPF_REG_AX, si->src_reg,
10477                               offsetof(struct sk_buff, len));
10478         /* reg = skb->data + skb->len */
10479         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10480         /* AX = skb->data_len */
10481         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10482                               BPF_REG_AX, si->src_reg,
10483                               offsetof(struct sk_buff, data_len));
10484
10485         /* reg = skb->data + skb->len - skb->data_len */
10486         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10487
10488         if (si->src_reg == si->dst_reg) {
10489                 /* Restore the saved register */
10490                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10491                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10492                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10493         }
10494
10495         return insn;
10496 }
10497
10498 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10499                                      const struct bpf_insn *si,
10500                                      struct bpf_insn *insn_buf,
10501                                      struct bpf_prog *prog, u32 *target_size)
10502 {
10503         struct bpf_insn *insn = insn_buf;
10504         int off;
10505
10506         switch (si->off) {
10507         case offsetof(struct __sk_buff, data_end):
10508                 insn = bpf_convert_data_end_access(si, insn);
10509                 break;
10510         case offsetof(struct __sk_buff, cb[0]) ...
10511              offsetofend(struct __sk_buff, cb[4]) - 1:
10512                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10513                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10514                               offsetof(struct sk_skb_cb, data)) %
10515                              sizeof(__u64));
10516
10517                 prog->cb_access = 1;
10518                 off  = si->off;
10519                 off -= offsetof(struct __sk_buff, cb[0]);
10520                 off += offsetof(struct sk_buff, cb);
10521                 off += offsetof(struct sk_skb_cb, data);
10522                 if (type == BPF_WRITE)
10523                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10524                                               si->src_reg, off);
10525                 else
10526                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10527                                               si->src_reg, off);
10528                 break;
10529
10530
10531         default:
10532                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10533                                               target_size);
10534         }
10535
10536         return insn - insn_buf;
10537 }
10538
10539 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10540                                      const struct bpf_insn *si,
10541                                      struct bpf_insn *insn_buf,
10542                                      struct bpf_prog *prog, u32 *target_size)
10543 {
10544         struct bpf_insn *insn = insn_buf;
10545 #if IS_ENABLED(CONFIG_IPV6)
10546         int off;
10547 #endif
10548
10549         /* convert ctx uses the fact sg element is first in struct */
10550         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10551
10552         switch (si->off) {
10553         case offsetof(struct sk_msg_md, data):
10554                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10555                                       si->dst_reg, si->src_reg,
10556                                       offsetof(struct sk_msg, data));
10557                 break;
10558         case offsetof(struct sk_msg_md, data_end):
10559                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10560                                       si->dst_reg, si->src_reg,
10561                                       offsetof(struct sk_msg, data_end));
10562                 break;
10563         case offsetof(struct sk_msg_md, family):
10564                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10565
10566                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10567                                               struct sk_msg, sk),
10568                                       si->dst_reg, si->src_reg,
10569                                       offsetof(struct sk_msg, sk));
10570                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10571                                       offsetof(struct sock_common, skc_family));
10572                 break;
10573
10574         case offsetof(struct sk_msg_md, remote_ip4):
10575                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10576
10577                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10578                                                 struct sk_msg, sk),
10579                                       si->dst_reg, si->src_reg,
10580                                       offsetof(struct sk_msg, sk));
10581                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10582                                       offsetof(struct sock_common, skc_daddr));
10583                 break;
10584
10585         case offsetof(struct sk_msg_md, local_ip4):
10586                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10587                                           skc_rcv_saddr) != 4);
10588
10589                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10590                                               struct sk_msg, sk),
10591                                       si->dst_reg, si->src_reg,
10592                                       offsetof(struct sk_msg, sk));
10593                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10594                                       offsetof(struct sock_common,
10595                                                skc_rcv_saddr));
10596                 break;
10597
10598         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10599              offsetof(struct sk_msg_md, remote_ip6[3]):
10600 #if IS_ENABLED(CONFIG_IPV6)
10601                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10602                                           skc_v6_daddr.s6_addr32[0]) != 4);
10603
10604                 off = si->off;
10605                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10606                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10607                                                 struct sk_msg, sk),
10608                                       si->dst_reg, si->src_reg,
10609                                       offsetof(struct sk_msg, sk));
10610                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10611                                       offsetof(struct sock_common,
10612                                                skc_v6_daddr.s6_addr32[0]) +
10613                                       off);
10614 #else
10615                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10616 #endif
10617                 break;
10618
10619         case offsetof(struct sk_msg_md, local_ip6[0]) ...
10620              offsetof(struct sk_msg_md, local_ip6[3]):
10621 #if IS_ENABLED(CONFIG_IPV6)
10622                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10623                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10624
10625                 off = si->off;
10626                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10627                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10628                                                 struct sk_msg, sk),
10629                                       si->dst_reg, si->src_reg,
10630                                       offsetof(struct sk_msg, sk));
10631                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10632                                       offsetof(struct sock_common,
10633                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10634                                       off);
10635 #else
10636                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10637 #endif
10638                 break;
10639
10640         case offsetof(struct sk_msg_md, remote_port):
10641                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10642
10643                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10644                                                 struct sk_msg, sk),
10645                                       si->dst_reg, si->src_reg,
10646                                       offsetof(struct sk_msg, sk));
10647                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10648                                       offsetof(struct sock_common, skc_dport));
10649 #ifndef __BIG_ENDIAN_BITFIELD
10650                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10651 #endif
10652                 break;
10653
10654         case offsetof(struct sk_msg_md, local_port):
10655                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10656
10657                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10658                                                 struct sk_msg, sk),
10659                                       si->dst_reg, si->src_reg,
10660                                       offsetof(struct sk_msg, sk));
10661                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10662                                       offsetof(struct sock_common, skc_num));
10663                 break;
10664
10665         case offsetof(struct sk_msg_md, size):
10666                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10667                                       si->dst_reg, si->src_reg,
10668                                       offsetof(struct sk_msg_sg, size));
10669                 break;
10670
10671         case offsetof(struct sk_msg_md, sk):
10672                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10673                                       si->dst_reg, si->src_reg,
10674                                       offsetof(struct sk_msg, sk));
10675                 break;
10676         }
10677
10678         return insn - insn_buf;
10679 }
10680
10681 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10682         .get_func_proto         = sk_filter_func_proto,
10683         .is_valid_access        = sk_filter_is_valid_access,
10684         .convert_ctx_access     = bpf_convert_ctx_access,
10685         .gen_ld_abs             = bpf_gen_ld_abs,
10686 };
10687
10688 const struct bpf_prog_ops sk_filter_prog_ops = {
10689         .test_run               = bpf_prog_test_run_skb,
10690 };
10691
10692 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10693         .get_func_proto         = tc_cls_act_func_proto,
10694         .is_valid_access        = tc_cls_act_is_valid_access,
10695         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10696         .gen_prologue           = tc_cls_act_prologue,
10697         .gen_ld_abs             = bpf_gen_ld_abs,
10698         .btf_struct_access      = tc_cls_act_btf_struct_access,
10699 };
10700
10701 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10702         .test_run               = bpf_prog_test_run_skb,
10703 };
10704
10705 const struct bpf_verifier_ops xdp_verifier_ops = {
10706         .get_func_proto         = xdp_func_proto,
10707         .is_valid_access        = xdp_is_valid_access,
10708         .convert_ctx_access     = xdp_convert_ctx_access,
10709         .gen_prologue           = bpf_noop_prologue,
10710         .btf_struct_access      = xdp_btf_struct_access,
10711 };
10712
10713 const struct bpf_prog_ops xdp_prog_ops = {
10714         .test_run               = bpf_prog_test_run_xdp,
10715 };
10716
10717 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10718         .get_func_proto         = cg_skb_func_proto,
10719         .is_valid_access        = cg_skb_is_valid_access,
10720         .convert_ctx_access     = bpf_convert_ctx_access,
10721 };
10722
10723 const struct bpf_prog_ops cg_skb_prog_ops = {
10724         .test_run               = bpf_prog_test_run_skb,
10725 };
10726
10727 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10728         .get_func_proto         = lwt_in_func_proto,
10729         .is_valid_access        = lwt_is_valid_access,
10730         .convert_ctx_access     = bpf_convert_ctx_access,
10731 };
10732
10733 const struct bpf_prog_ops lwt_in_prog_ops = {
10734         .test_run               = bpf_prog_test_run_skb,
10735 };
10736
10737 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10738         .get_func_proto         = lwt_out_func_proto,
10739         .is_valid_access        = lwt_is_valid_access,
10740         .convert_ctx_access     = bpf_convert_ctx_access,
10741 };
10742
10743 const struct bpf_prog_ops lwt_out_prog_ops = {
10744         .test_run               = bpf_prog_test_run_skb,
10745 };
10746
10747 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10748         .get_func_proto         = lwt_xmit_func_proto,
10749         .is_valid_access        = lwt_is_valid_access,
10750         .convert_ctx_access     = bpf_convert_ctx_access,
10751         .gen_prologue           = tc_cls_act_prologue,
10752 };
10753
10754 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10755         .test_run               = bpf_prog_test_run_skb,
10756 };
10757
10758 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10759         .get_func_proto         = lwt_seg6local_func_proto,
10760         .is_valid_access        = lwt_is_valid_access,
10761         .convert_ctx_access     = bpf_convert_ctx_access,
10762 };
10763
10764 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10765         .test_run               = bpf_prog_test_run_skb,
10766 };
10767
10768 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10769         .get_func_proto         = sock_filter_func_proto,
10770         .is_valid_access        = sock_filter_is_valid_access,
10771         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10772 };
10773
10774 const struct bpf_prog_ops cg_sock_prog_ops = {
10775 };
10776
10777 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10778         .get_func_proto         = sock_addr_func_proto,
10779         .is_valid_access        = sock_addr_is_valid_access,
10780         .convert_ctx_access     = sock_addr_convert_ctx_access,
10781 };
10782
10783 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10784 };
10785
10786 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10787         .get_func_proto         = sock_ops_func_proto,
10788         .is_valid_access        = sock_ops_is_valid_access,
10789         .convert_ctx_access     = sock_ops_convert_ctx_access,
10790 };
10791
10792 const struct bpf_prog_ops sock_ops_prog_ops = {
10793 };
10794
10795 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10796         .get_func_proto         = sk_skb_func_proto,
10797         .is_valid_access        = sk_skb_is_valid_access,
10798         .convert_ctx_access     = sk_skb_convert_ctx_access,
10799         .gen_prologue           = sk_skb_prologue,
10800 };
10801
10802 const struct bpf_prog_ops sk_skb_prog_ops = {
10803 };
10804
10805 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10806         .get_func_proto         = sk_msg_func_proto,
10807         .is_valid_access        = sk_msg_is_valid_access,
10808         .convert_ctx_access     = sk_msg_convert_ctx_access,
10809         .gen_prologue           = bpf_noop_prologue,
10810 };
10811
10812 const struct bpf_prog_ops sk_msg_prog_ops = {
10813 };
10814
10815 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10816         .get_func_proto         = flow_dissector_func_proto,
10817         .is_valid_access        = flow_dissector_is_valid_access,
10818         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10819 };
10820
10821 const struct bpf_prog_ops flow_dissector_prog_ops = {
10822         .test_run               = bpf_prog_test_run_flow_dissector,
10823 };
10824
10825 int sk_detach_filter(struct sock *sk)
10826 {
10827         int ret = -ENOENT;
10828         struct sk_filter *filter;
10829
10830         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10831                 return -EPERM;
10832
10833         filter = rcu_dereference_protected(sk->sk_filter,
10834                                            lockdep_sock_is_held(sk));
10835         if (filter) {
10836                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10837                 sk_filter_uncharge(sk, filter);
10838                 ret = 0;
10839         }
10840
10841         return ret;
10842 }
10843 EXPORT_SYMBOL_GPL(sk_detach_filter);
10844
10845 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10846 {
10847         struct sock_fprog_kern *fprog;
10848         struct sk_filter *filter;
10849         int ret = 0;
10850
10851         sockopt_lock_sock(sk);
10852         filter = rcu_dereference_protected(sk->sk_filter,
10853                                            lockdep_sock_is_held(sk));
10854         if (!filter)
10855                 goto out;
10856
10857         /* We're copying the filter that has been originally attached,
10858          * so no conversion/decode needed anymore. eBPF programs that
10859          * have no original program cannot be dumped through this.
10860          */
10861         ret = -EACCES;
10862         fprog = filter->prog->orig_prog;
10863         if (!fprog)
10864                 goto out;
10865
10866         ret = fprog->len;
10867         if (!len)
10868                 /* User space only enquires number of filter blocks. */
10869                 goto out;
10870
10871         ret = -EINVAL;
10872         if (len < fprog->len)
10873                 goto out;
10874
10875         ret = -EFAULT;
10876         if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10877                 goto out;
10878
10879         /* Instead of bytes, the API requests to return the number
10880          * of filter blocks.
10881          */
10882         ret = fprog->len;
10883 out:
10884         sockopt_release_sock(sk);
10885         return ret;
10886 }
10887
10888 #ifdef CONFIG_INET
10889 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10890                                     struct sock_reuseport *reuse,
10891                                     struct sock *sk, struct sk_buff *skb,
10892                                     struct sock *migrating_sk,
10893                                     u32 hash)
10894 {
10895         reuse_kern->skb = skb;
10896         reuse_kern->sk = sk;
10897         reuse_kern->selected_sk = NULL;
10898         reuse_kern->migrating_sk = migrating_sk;
10899         reuse_kern->data_end = skb->data + skb_headlen(skb);
10900         reuse_kern->hash = hash;
10901         reuse_kern->reuseport_id = reuse->reuseport_id;
10902         reuse_kern->bind_inany = reuse->bind_inany;
10903 }
10904
10905 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10906                                   struct bpf_prog *prog, struct sk_buff *skb,
10907                                   struct sock *migrating_sk,
10908                                   u32 hash)
10909 {
10910         struct sk_reuseport_kern reuse_kern;
10911         enum sk_action action;
10912
10913         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10914         action = bpf_prog_run(prog, &reuse_kern);
10915
10916         if (action == SK_PASS)
10917                 return reuse_kern.selected_sk;
10918         else
10919                 return ERR_PTR(-ECONNREFUSED);
10920 }
10921
10922 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10923            struct bpf_map *, map, void *, key, u32, flags)
10924 {
10925         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10926         struct sock_reuseport *reuse;
10927         struct sock *selected_sk;
10928
10929         selected_sk = map->ops->map_lookup_elem(map, key);
10930         if (!selected_sk)
10931                 return -ENOENT;
10932
10933         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10934         if (!reuse) {
10935                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10936                 if (sk_is_refcounted(selected_sk))
10937                         sock_put(selected_sk);
10938
10939                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10940                  * The only (!reuse) case here is - the sk has already been
10941                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10942                  *
10943                  * Other maps (e.g. sock_map) do not provide this guarantee and
10944                  * the sk may never be in the reuseport group to begin with.
10945                  */
10946                 return is_sockarray ? -ENOENT : -EINVAL;
10947         }
10948
10949         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10950                 struct sock *sk = reuse_kern->sk;
10951
10952                 if (sk->sk_protocol != selected_sk->sk_protocol)
10953                         return -EPROTOTYPE;
10954                 else if (sk->sk_family != selected_sk->sk_family)
10955                         return -EAFNOSUPPORT;
10956
10957                 /* Catch all. Likely bound to a different sockaddr. */
10958                 return -EBADFD;
10959         }
10960
10961         reuse_kern->selected_sk = selected_sk;
10962
10963         return 0;
10964 }
10965
10966 static const struct bpf_func_proto sk_select_reuseport_proto = {
10967         .func           = sk_select_reuseport,
10968         .gpl_only       = false,
10969         .ret_type       = RET_INTEGER,
10970         .arg1_type      = ARG_PTR_TO_CTX,
10971         .arg2_type      = ARG_CONST_MAP_PTR,
10972         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10973         .arg4_type      = ARG_ANYTHING,
10974 };
10975
10976 BPF_CALL_4(sk_reuseport_load_bytes,
10977            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10978            void *, to, u32, len)
10979 {
10980         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10981 }
10982
10983 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10984         .func           = sk_reuseport_load_bytes,
10985         .gpl_only       = false,
10986         .ret_type       = RET_INTEGER,
10987         .arg1_type      = ARG_PTR_TO_CTX,
10988         .arg2_type      = ARG_ANYTHING,
10989         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10990         .arg4_type      = ARG_CONST_SIZE,
10991 };
10992
10993 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10994            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10995            void *, to, u32, len, u32, start_header)
10996 {
10997         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10998                                                len, start_header);
10999 }
11000
11001 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11002         .func           = sk_reuseport_load_bytes_relative,
11003         .gpl_only       = false,
11004         .ret_type       = RET_INTEGER,
11005         .arg1_type      = ARG_PTR_TO_CTX,
11006         .arg2_type      = ARG_ANYTHING,
11007         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
11008         .arg4_type      = ARG_CONST_SIZE,
11009         .arg5_type      = ARG_ANYTHING,
11010 };
11011
11012 static const struct bpf_func_proto *
11013 sk_reuseport_func_proto(enum bpf_func_id func_id,
11014                         const struct bpf_prog *prog)
11015 {
11016         switch (func_id) {
11017         case BPF_FUNC_sk_select_reuseport:
11018                 return &sk_select_reuseport_proto;
11019         case BPF_FUNC_skb_load_bytes:
11020                 return &sk_reuseport_load_bytes_proto;
11021         case BPF_FUNC_skb_load_bytes_relative:
11022                 return &sk_reuseport_load_bytes_relative_proto;
11023         case BPF_FUNC_get_socket_cookie:
11024                 return &bpf_get_socket_ptr_cookie_proto;
11025         case BPF_FUNC_ktime_get_coarse_ns:
11026                 return &bpf_ktime_get_coarse_ns_proto;
11027         default:
11028                 return bpf_base_func_proto(func_id);
11029         }
11030 }
11031
11032 static bool
11033 sk_reuseport_is_valid_access(int off, int size,
11034                              enum bpf_access_type type,
11035                              const struct bpf_prog *prog,
11036                              struct bpf_insn_access_aux *info)
11037 {
11038         const u32 size_default = sizeof(__u32);
11039
11040         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11041             off % size || type != BPF_READ)
11042                 return false;
11043
11044         switch (off) {
11045         case offsetof(struct sk_reuseport_md, data):
11046                 info->reg_type = PTR_TO_PACKET;
11047                 return size == sizeof(__u64);
11048
11049         case offsetof(struct sk_reuseport_md, data_end):
11050                 info->reg_type = PTR_TO_PACKET_END;
11051                 return size == sizeof(__u64);
11052
11053         case offsetof(struct sk_reuseport_md, hash):
11054                 return size == size_default;
11055
11056         case offsetof(struct sk_reuseport_md, sk):
11057                 info->reg_type = PTR_TO_SOCKET;
11058                 return size == sizeof(__u64);
11059
11060         case offsetof(struct sk_reuseport_md, migrating_sk):
11061                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11062                 return size == sizeof(__u64);
11063
11064         /* Fields that allow narrowing */
11065         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11066                 if (size < sizeof_field(struct sk_buff, protocol))
11067                         return false;
11068                 fallthrough;
11069         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11070         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11071         case bpf_ctx_range(struct sk_reuseport_md, len):
11072                 bpf_ctx_record_field_size(info, size_default);
11073                 return bpf_ctx_narrow_access_ok(off, size, size_default);
11074
11075         default:
11076                 return false;
11077         }
11078 }
11079
11080 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
11081         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11082                               si->dst_reg, si->src_reg,                 \
11083                               bpf_target_off(struct sk_reuseport_kern, F, \
11084                                              sizeof_field(struct sk_reuseport_kern, F), \
11085                                              target_size));             \
11086         })
11087
11088 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
11089         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11090                                     struct sk_buff,                     \
11091                                     skb,                                \
11092                                     SKB_FIELD)
11093
11094 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
11095         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11096                                     struct sock,                        \
11097                                     sk,                                 \
11098                                     SK_FIELD)
11099
11100 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11101                                            const struct bpf_insn *si,
11102                                            struct bpf_insn *insn_buf,
11103                                            struct bpf_prog *prog,
11104                                            u32 *target_size)
11105 {
11106         struct bpf_insn *insn = insn_buf;
11107
11108         switch (si->off) {
11109         case offsetof(struct sk_reuseport_md, data):
11110                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11111                 break;
11112
11113         case offsetof(struct sk_reuseport_md, len):
11114                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11115                 break;
11116
11117         case offsetof(struct sk_reuseport_md, eth_protocol):
11118                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11119                 break;
11120
11121         case offsetof(struct sk_reuseport_md, ip_protocol):
11122                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11123                 break;
11124
11125         case offsetof(struct sk_reuseport_md, data_end):
11126                 SK_REUSEPORT_LOAD_FIELD(data_end);
11127                 break;
11128
11129         case offsetof(struct sk_reuseport_md, hash):
11130                 SK_REUSEPORT_LOAD_FIELD(hash);
11131                 break;
11132
11133         case offsetof(struct sk_reuseport_md, bind_inany):
11134                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11135                 break;
11136
11137         case offsetof(struct sk_reuseport_md, sk):
11138                 SK_REUSEPORT_LOAD_FIELD(sk);
11139                 break;
11140
11141         case offsetof(struct sk_reuseport_md, migrating_sk):
11142                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11143                 break;
11144         }
11145
11146         return insn - insn_buf;
11147 }
11148
11149 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11150         .get_func_proto         = sk_reuseport_func_proto,
11151         .is_valid_access        = sk_reuseport_is_valid_access,
11152         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
11153 };
11154
11155 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11156 };
11157
11158 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11159 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11160
11161 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11162            struct sock *, sk, u64, flags)
11163 {
11164         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11165                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11166                 return -EINVAL;
11167         if (unlikely(sk && sk_is_refcounted(sk)))
11168                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11169         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11170                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11171         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11172                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11173
11174         /* Check if socket is suitable for packet L3/L4 protocol */
11175         if (sk && sk->sk_protocol != ctx->protocol)
11176                 return -EPROTOTYPE;
11177         if (sk && sk->sk_family != ctx->family &&
11178             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11179                 return -EAFNOSUPPORT;
11180
11181         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11182                 return -EEXIST;
11183
11184         /* Select socket as lookup result */
11185         ctx->selected_sk = sk;
11186         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11187         return 0;
11188 }
11189
11190 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11191         .func           = bpf_sk_lookup_assign,
11192         .gpl_only       = false,
11193         .ret_type       = RET_INTEGER,
11194         .arg1_type      = ARG_PTR_TO_CTX,
11195         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
11196         .arg3_type      = ARG_ANYTHING,
11197 };
11198
11199 static const struct bpf_func_proto *
11200 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11201 {
11202         switch (func_id) {
11203         case BPF_FUNC_perf_event_output:
11204                 return &bpf_event_output_data_proto;
11205         case BPF_FUNC_sk_assign:
11206                 return &bpf_sk_lookup_assign_proto;
11207         case BPF_FUNC_sk_release:
11208                 return &bpf_sk_release_proto;
11209         default:
11210                 return bpf_sk_base_func_proto(func_id);
11211         }
11212 }
11213
11214 static bool sk_lookup_is_valid_access(int off, int size,
11215                                       enum bpf_access_type type,
11216                                       const struct bpf_prog *prog,
11217                                       struct bpf_insn_access_aux *info)
11218 {
11219         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11220                 return false;
11221         if (off % size != 0)
11222                 return false;
11223         if (type != BPF_READ)
11224                 return false;
11225
11226         switch (off) {
11227         case offsetof(struct bpf_sk_lookup, sk):
11228                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11229                 return size == sizeof(__u64);
11230
11231         case bpf_ctx_range(struct bpf_sk_lookup, family):
11232         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11233         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11234         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11235         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11236         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11237         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11238         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11239                 bpf_ctx_record_field_size(info, sizeof(__u32));
11240                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11241
11242         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11243                 /* Allow 4-byte access to 2-byte field for backward compatibility */
11244                 if (size == sizeof(__u32))
11245                         return true;
11246                 bpf_ctx_record_field_size(info, sizeof(__be16));
11247                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11248
11249         case offsetofend(struct bpf_sk_lookup, remote_port) ...
11250              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11251                 /* Allow access to zero padding for backward compatibility */
11252                 bpf_ctx_record_field_size(info, sizeof(__u16));
11253                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11254
11255         default:
11256                 return false;
11257         }
11258 }
11259
11260 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11261                                         const struct bpf_insn *si,
11262                                         struct bpf_insn *insn_buf,
11263                                         struct bpf_prog *prog,
11264                                         u32 *target_size)
11265 {
11266         struct bpf_insn *insn = insn_buf;
11267
11268         switch (si->off) {
11269         case offsetof(struct bpf_sk_lookup, sk):
11270                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11271                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
11272                 break;
11273
11274         case offsetof(struct bpf_sk_lookup, family):
11275                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11276                                       bpf_target_off(struct bpf_sk_lookup_kern,
11277                                                      family, 2, target_size));
11278                 break;
11279
11280         case offsetof(struct bpf_sk_lookup, protocol):
11281                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11282                                       bpf_target_off(struct bpf_sk_lookup_kern,
11283                                                      protocol, 2, target_size));
11284                 break;
11285
11286         case offsetof(struct bpf_sk_lookup, remote_ip4):
11287                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11288                                       bpf_target_off(struct bpf_sk_lookup_kern,
11289                                                      v4.saddr, 4, target_size));
11290                 break;
11291
11292         case offsetof(struct bpf_sk_lookup, local_ip4):
11293                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11294                                       bpf_target_off(struct bpf_sk_lookup_kern,
11295                                                      v4.daddr, 4, target_size));
11296                 break;
11297
11298         case bpf_ctx_range_till(struct bpf_sk_lookup,
11299                                 remote_ip6[0], remote_ip6[3]): {
11300 #if IS_ENABLED(CONFIG_IPV6)
11301                 int off = si->off;
11302
11303                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11304                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11305                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11306                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11307                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11308                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11309 #else
11310                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11311 #endif
11312                 break;
11313         }
11314         case bpf_ctx_range_till(struct bpf_sk_lookup,
11315                                 local_ip6[0], local_ip6[3]): {
11316 #if IS_ENABLED(CONFIG_IPV6)
11317                 int off = si->off;
11318
11319                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11320                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11321                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11322                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11323                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11324                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11325 #else
11326                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11327 #endif
11328                 break;
11329         }
11330         case offsetof(struct bpf_sk_lookup, remote_port):
11331                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11332                                       bpf_target_off(struct bpf_sk_lookup_kern,
11333                                                      sport, 2, target_size));
11334                 break;
11335
11336         case offsetofend(struct bpf_sk_lookup, remote_port):
11337                 *target_size = 2;
11338                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11339                 break;
11340
11341         case offsetof(struct bpf_sk_lookup, local_port):
11342                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11343                                       bpf_target_off(struct bpf_sk_lookup_kern,
11344                                                      dport, 2, target_size));
11345                 break;
11346
11347         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11348                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11349                                       bpf_target_off(struct bpf_sk_lookup_kern,
11350                                                      ingress_ifindex, 4, target_size));
11351                 break;
11352         }
11353
11354         return insn - insn_buf;
11355 }
11356
11357 const struct bpf_prog_ops sk_lookup_prog_ops = {
11358         .test_run = bpf_prog_test_run_sk_lookup,
11359 };
11360
11361 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11362         .get_func_proto         = sk_lookup_func_proto,
11363         .is_valid_access        = sk_lookup_is_valid_access,
11364         .convert_ctx_access     = sk_lookup_convert_ctx_access,
11365 };
11366
11367 #endif /* CONFIG_INET */
11368
11369 DEFINE_BPF_DISPATCHER(xdp)
11370
11371 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11372 {
11373         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11374 }
11375
11376 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11377 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11378 BTF_SOCK_TYPE_xxx
11379 #undef BTF_SOCK_TYPE
11380
11381 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11382 {
11383         /* tcp6_sock type is not generated in dwarf and hence btf,
11384          * trigger an explicit type generation here.
11385          */
11386         BTF_TYPE_EMIT(struct tcp6_sock);
11387         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11388             sk->sk_family == AF_INET6)
11389                 return (unsigned long)sk;
11390
11391         return (unsigned long)NULL;
11392 }
11393
11394 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11395         .func                   = bpf_skc_to_tcp6_sock,
11396         .gpl_only               = false,
11397         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11398         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11399         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11400 };
11401
11402 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11403 {
11404         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11405                 return (unsigned long)sk;
11406
11407         return (unsigned long)NULL;
11408 }
11409
11410 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11411         .func                   = bpf_skc_to_tcp_sock,
11412         .gpl_only               = false,
11413         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11414         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11415         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11416 };
11417
11418 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11419 {
11420         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11421          * generated if CONFIG_INET=n. Trigger an explicit generation here.
11422          */
11423         BTF_TYPE_EMIT(struct inet_timewait_sock);
11424         BTF_TYPE_EMIT(struct tcp_timewait_sock);
11425
11426 #ifdef CONFIG_INET
11427         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11428                 return (unsigned long)sk;
11429 #endif
11430
11431 #if IS_BUILTIN(CONFIG_IPV6)
11432         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11433                 return (unsigned long)sk;
11434 #endif
11435
11436         return (unsigned long)NULL;
11437 }
11438
11439 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11440         .func                   = bpf_skc_to_tcp_timewait_sock,
11441         .gpl_only               = false,
11442         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11443         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11444         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11445 };
11446
11447 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11448 {
11449 #ifdef CONFIG_INET
11450         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11451                 return (unsigned long)sk;
11452 #endif
11453
11454 #if IS_BUILTIN(CONFIG_IPV6)
11455         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11456                 return (unsigned long)sk;
11457 #endif
11458
11459         return (unsigned long)NULL;
11460 }
11461
11462 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11463         .func                   = bpf_skc_to_tcp_request_sock,
11464         .gpl_only               = false,
11465         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11466         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11467         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11468 };
11469
11470 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11471 {
11472         /* udp6_sock type is not generated in dwarf and hence btf,
11473          * trigger an explicit type generation here.
11474          */
11475         BTF_TYPE_EMIT(struct udp6_sock);
11476         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11477             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11478                 return (unsigned long)sk;
11479
11480         return (unsigned long)NULL;
11481 }
11482
11483 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11484         .func                   = bpf_skc_to_udp6_sock,
11485         .gpl_only               = false,
11486         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11487         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11488         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11489 };
11490
11491 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11492 {
11493         /* unix_sock type is not generated in dwarf and hence btf,
11494          * trigger an explicit type generation here.
11495          */
11496         BTF_TYPE_EMIT(struct unix_sock);
11497         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11498                 return (unsigned long)sk;
11499
11500         return (unsigned long)NULL;
11501 }
11502
11503 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11504         .func                   = bpf_skc_to_unix_sock,
11505         .gpl_only               = false,
11506         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11507         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11508         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11509 };
11510
11511 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11512 {
11513         BTF_TYPE_EMIT(struct mptcp_sock);
11514         return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11515 }
11516
11517 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11518         .func           = bpf_skc_to_mptcp_sock,
11519         .gpl_only       = false,
11520         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11521         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
11522         .ret_btf_id     = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11523 };
11524
11525 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11526 {
11527         return (unsigned long)sock_from_file(file);
11528 }
11529
11530 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11531 BTF_ID(struct, socket)
11532 BTF_ID(struct, file)
11533
11534 const struct bpf_func_proto bpf_sock_from_file_proto = {
11535         .func           = bpf_sock_from_file,
11536         .gpl_only       = false,
11537         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11538         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
11539         .arg1_type      = ARG_PTR_TO_BTF_ID,
11540         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
11541 };
11542
11543 static const struct bpf_func_proto *
11544 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11545 {
11546         const struct bpf_func_proto *func;
11547
11548         switch (func_id) {
11549         case BPF_FUNC_skc_to_tcp6_sock:
11550                 func = &bpf_skc_to_tcp6_sock_proto;
11551                 break;
11552         case BPF_FUNC_skc_to_tcp_sock:
11553                 func = &bpf_skc_to_tcp_sock_proto;
11554                 break;
11555         case BPF_FUNC_skc_to_tcp_timewait_sock:
11556                 func = &bpf_skc_to_tcp_timewait_sock_proto;
11557                 break;
11558         case BPF_FUNC_skc_to_tcp_request_sock:
11559                 func = &bpf_skc_to_tcp_request_sock_proto;
11560                 break;
11561         case BPF_FUNC_skc_to_udp6_sock:
11562                 func = &bpf_skc_to_udp6_sock_proto;
11563                 break;
11564         case BPF_FUNC_skc_to_unix_sock:
11565                 func = &bpf_skc_to_unix_sock_proto;
11566                 break;
11567         case BPF_FUNC_skc_to_mptcp_sock:
11568                 func = &bpf_skc_to_mptcp_sock_proto;
11569                 break;
11570         case BPF_FUNC_ktime_get_coarse_ns:
11571                 return &bpf_ktime_get_coarse_ns_proto;
11572         default:
11573                 return bpf_base_func_proto(func_id);
11574         }
11575
11576         if (!perfmon_capable())
11577                 return NULL;
11578
11579         return func;
11580 }