bpf: Let bpf_warn_invalid_xdp_action() report more info
[linux-2.6-block.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87         if (in_compat_syscall()) {
88                 struct compat_sock_fprog f32;
89
90                 if (len != sizeof(f32))
91                         return -EINVAL;
92                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
93                         return -EFAULT;
94                 memset(dst, 0, sizeof(*dst));
95                 dst->len = f32.len;
96                 dst->filter = compat_ptr(f32.filter);
97         } else {
98                 if (len != sizeof(*dst))
99                         return -EINVAL;
100                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
101                         return -EFAULT;
102         }
103
104         return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107
108 /**
109  *      sk_filter_trim_cap - run a packet through a socket filter
110  *      @sk: sock associated with &sk_buff
111  *      @skb: buffer to filter
112  *      @cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to bpf_prog_run. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123         int err;
124         struct sk_filter *filter;
125
126         /*
127          * If the skb was allocated from pfmemalloc reserves, only
128          * allow SOCK_MEMALLOC sockets to use it as this socket is
129          * helping free memory
130          */
131         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133                 return -ENOMEM;
134         }
135         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136         if (err)
137                 return err;
138
139         err = security_sock_rcv_skb(sk, skb);
140         if (err)
141                 return err;
142
143         rcu_read_lock();
144         filter = rcu_dereference(sk->sk_filter);
145         if (filter) {
146                 struct sock *save_sk = skb->sk;
147                 unsigned int pkt_len;
148
149                 skb->sk = sk;
150                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151                 skb->sk = save_sk;
152                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153         }
154         rcu_read_unlock();
155
156         return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162         return skb_get_poff(skb);
163 }
164
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167         struct nlattr *nla;
168
169         if (skb_is_nonlinear(skb))
170                 return 0;
171
172         if (skb->len < sizeof(struct nlattr))
173                 return 0;
174
175         if (a > skb->len - sizeof(struct nlattr))
176                 return 0;
177
178         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179         if (nla)
180                 return (void *) nla - (void *) skb->data;
181
182         return 0;
183 }
184
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187         struct nlattr *nla;
188
189         if (skb_is_nonlinear(skb))
190                 return 0;
191
192         if (skb->len < sizeof(struct nlattr))
193                 return 0;
194
195         if (a > skb->len - sizeof(struct nlattr))
196                 return 0;
197
198         nla = (struct nlattr *) &skb->data[a];
199         if (nla->nla_len > skb->len - a)
200                 return 0;
201
202         nla = nla_find_nested(nla, x);
203         if (nla)
204                 return (void *) nla - (void *) skb->data;
205
206         return 0;
207 }
208
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210            data, int, headlen, int, offset)
211 {
212         u8 tmp, *ptr;
213         const int len = sizeof(tmp);
214
215         if (offset >= 0) {
216                 if (headlen - offset >= len)
217                         return *(u8 *)(data + offset);
218                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219                         return tmp;
220         } else {
221                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222                 if (likely(ptr))
223                         return *(u8 *)ptr;
224         }
225
226         return -EFAULT;
227 }
228
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230            int, offset)
231 {
232         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233                                          offset);
234 }
235
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237            data, int, headlen, int, offset)
238 {
239         u16 tmp, *ptr;
240         const int len = sizeof(tmp);
241
242         if (offset >= 0) {
243                 if (headlen - offset >= len)
244                         return get_unaligned_be16(data + offset);
245                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246                         return be16_to_cpu(tmp);
247         } else {
248                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249                 if (likely(ptr))
250                         return get_unaligned_be16(ptr);
251         }
252
253         return -EFAULT;
254 }
255
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257            int, offset)
258 {
259         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260                                           offset);
261 }
262
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264            data, int, headlen, int, offset)
265 {
266         u32 tmp, *ptr;
267         const int len = sizeof(tmp);
268
269         if (likely(offset >= 0)) {
270                 if (headlen - offset >= len)
271                         return get_unaligned_be32(data + offset);
272                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273                         return be32_to_cpu(tmp);
274         } else {
275                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276                 if (likely(ptr))
277                         return get_unaligned_be32(ptr);
278         }
279
280         return -EFAULT;
281 }
282
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284            int, offset)
285 {
286         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287                                           offset);
288 }
289
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291                               struct bpf_insn *insn_buf)
292 {
293         struct bpf_insn *insn = insn_buf;
294
295         switch (skb_field) {
296         case SKF_AD_MARK:
297                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298
299                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, mark));
301                 break;
302
303         case SKF_AD_PKTTYPE:
304                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
305                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309                 break;
310
311         case SKF_AD_QUEUE:
312                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313
314                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315                                       offsetof(struct sk_buff, queue_mapping));
316                 break;
317
318         case SKF_AD_VLAN_TAG:
319                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320
321                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323                                       offsetof(struct sk_buff, vlan_tci));
324                 break;
325         case SKF_AD_VLAN_TAG_PRESENT:
326                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
327                 if (PKT_VLAN_PRESENT_BIT)
328                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329                 if (PKT_VLAN_PRESENT_BIT < 7)
330                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331                 break;
332         }
333
334         return insn - insn_buf;
335 }
336
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338                                    struct bpf_insn **insnp)
339 {
340         struct bpf_insn *insn = *insnp;
341         u32 cnt;
342
343         switch (fp->k) {
344         case SKF_AD_OFF + SKF_AD_PROTOCOL:
345                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346
347                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
348                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349                                       offsetof(struct sk_buff, protocol));
350                 /* A = ntohs(A) [emitting a nop or swap16] */
351                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352                 break;
353
354         case SKF_AD_OFF + SKF_AD_PKTTYPE:
355                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356                 insn += cnt - 1;
357                 break;
358
359         case SKF_AD_OFF + SKF_AD_IFINDEX:
360         case SKF_AD_OFF + SKF_AD_HATYPE:
361                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363
364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365                                       BPF_REG_TMP, BPF_REG_CTX,
366                                       offsetof(struct sk_buff, dev));
367                 /* if (tmp != 0) goto pc + 1 */
368                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369                 *insn++ = BPF_EXIT_INSN();
370                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372                                             offsetof(struct net_device, ifindex));
373                 else
374                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, type));
376                 break;
377
378         case SKF_AD_OFF + SKF_AD_MARK:
379                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380                 insn += cnt - 1;
381                 break;
382
383         case SKF_AD_OFF + SKF_AD_RXHASH:
384                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385
386                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387                                     offsetof(struct sk_buff, hash));
388                 break;
389
390         case SKF_AD_OFF + SKF_AD_QUEUE:
391                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392                 insn += cnt - 1;
393                 break;
394
395         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397                                          BPF_REG_A, BPF_REG_CTX, insn);
398                 insn += cnt - 1;
399                 break;
400
401         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403                                          BPF_REG_A, BPF_REG_CTX, insn);
404                 insn += cnt - 1;
405                 break;
406
407         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409
410                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412                                       offsetof(struct sk_buff, vlan_proto));
413                 /* A = ntohs(A) [emitting a nop or swap16] */
414                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415                 break;
416
417         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418         case SKF_AD_OFF + SKF_AD_NLATTR:
419         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420         case SKF_AD_OFF + SKF_AD_CPU:
421         case SKF_AD_OFF + SKF_AD_RANDOM:
422                 /* arg1 = CTX */
423                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424                 /* arg2 = A */
425                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426                 /* arg3 = X */
427                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
429                 switch (fp->k) {
430                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432                         break;
433                 case SKF_AD_OFF + SKF_AD_NLATTR:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_CPU:
440                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_RANDOM:
443                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444                         bpf_user_rnd_init_once();
445                         break;
446                 }
447                 break;
448
449         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450                 /* A ^= X */
451                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452                 break;
453
454         default:
455                 /* This is just a dummy call to avoid letting the compiler
456                  * evict __bpf_call_base() as an optimization. Placed here
457                  * where no-one bothers.
458                  */
459                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460                 return false;
461         }
462
463         *insnp = insn;
464         return true;
465 }
466
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471         bool endian = BPF_SIZE(fp->code) == BPF_H ||
472                       BPF_SIZE(fp->code) == BPF_W;
473         bool indirect = BPF_MODE(fp->code) == BPF_IND;
474         const int ip_align = NET_IP_ALIGN;
475         struct bpf_insn *insn = *insnp;
476         int offset = fp->k;
477
478         if (!indirect &&
479             ((unaligned_ok && offset >= 0) ||
480              (!unaligned_ok && offset >= 0 &&
481               offset + ip_align >= 0 &&
482               offset + ip_align % size == 0))) {
483                 bool ldx_off_ok = offset <= S16_MAX;
484
485                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486                 if (offset)
487                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489                                       size, 2 + endian + (!ldx_off_ok * 2));
490                 if (ldx_off_ok) {
491                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492                                               BPF_REG_D, offset);
493                 } else {
494                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497                                               BPF_REG_TMP, 0);
498                 }
499                 if (endian)
500                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501                 *insn++ = BPF_JMP_A(8);
502         }
503
504         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507         if (!indirect) {
508                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509         } else {
510                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511                 if (fp->k)
512                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513         }
514
515         switch (BPF_SIZE(fp->code)) {
516         case BPF_B:
517                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518                 break;
519         case BPF_H:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521                 break;
522         case BPF_W:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524                 break;
525         default:
526                 return false;
527         }
528
529         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531         *insn   = BPF_EXIT_INSN();
532
533         *insnp = insn;
534         return true;
535 }
536
537 /**
538  *      bpf_convert_filter - convert filter program
539  *      @prog: the user passed filter program
540  *      @len: the length of the user passed filter program
541  *      @new_prog: allocated 'struct bpf_prog' or NULL
542  *      @new_len: pointer to store length of converted program
543  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557                               struct bpf_prog *new_prog, int *new_len,
558                               bool *seen_ld_abs)
559 {
560         int new_flen = 0, pass = 0, target, i, stack_off;
561         struct bpf_insn *new_insn, *first_insn = NULL;
562         struct sock_filter *fp;
563         int *addrs = NULL;
564         u8 bpf_src;
565
566         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568
569         if (len <= 0 || len > BPF_MAXINSNS)
570                 return -EINVAL;
571
572         if (new_prog) {
573                 first_insn = new_prog->insnsi;
574                 addrs = kcalloc(len, sizeof(*addrs),
575                                 GFP_KERNEL | __GFP_NOWARN);
576                 if (!addrs)
577                         return -ENOMEM;
578         }
579
580 do_pass:
581         new_insn = first_insn;
582         fp = prog;
583
584         /* Classic BPF related prologue emission. */
585         if (new_prog) {
586                 /* Classic BPF expects A and X to be reset first. These need
587                  * to be guaranteed to be the first two instructions.
588                  */
589                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591
592                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
593                  * In eBPF case it's done by the compiler, here we need to
594                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595                  */
596                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597                 if (*seen_ld_abs) {
598                         /* For packet access in classic BPF, cache skb->data
599                          * in callee-saved BPF R8 and skb->len - skb->data_len
600                          * (headlen) in BPF R9. Since classic BPF is read-only
601                          * on CTX, we only need to cache it once.
602                          */
603                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604                                                   BPF_REG_D, BPF_REG_CTX,
605                                                   offsetof(struct sk_buff, data));
606                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607                                                   offsetof(struct sk_buff, len));
608                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609                                                   offsetof(struct sk_buff, data_len));
610                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611                 }
612         } else {
613                 new_insn += 3;
614         }
615
616         for (i = 0; i < len; fp++, i++) {
617                 struct bpf_insn tmp_insns[32] = { };
618                 struct bpf_insn *insn = tmp_insns;
619
620                 if (addrs)
621                         addrs[i] = new_insn - first_insn;
622
623                 switch (fp->code) {
624                 /* All arithmetic insns and skb loads map as-is. */
625                 case BPF_ALU | BPF_ADD | BPF_X:
626                 case BPF_ALU | BPF_ADD | BPF_K:
627                 case BPF_ALU | BPF_SUB | BPF_X:
628                 case BPF_ALU | BPF_SUB | BPF_K:
629                 case BPF_ALU | BPF_AND | BPF_X:
630                 case BPF_ALU | BPF_AND | BPF_K:
631                 case BPF_ALU | BPF_OR | BPF_X:
632                 case BPF_ALU | BPF_OR | BPF_K:
633                 case BPF_ALU | BPF_LSH | BPF_X:
634                 case BPF_ALU | BPF_LSH | BPF_K:
635                 case BPF_ALU | BPF_RSH | BPF_X:
636                 case BPF_ALU | BPF_RSH | BPF_K:
637                 case BPF_ALU | BPF_XOR | BPF_X:
638                 case BPF_ALU | BPF_XOR | BPF_K:
639                 case BPF_ALU | BPF_MUL | BPF_X:
640                 case BPF_ALU | BPF_MUL | BPF_K:
641                 case BPF_ALU | BPF_DIV | BPF_X:
642                 case BPF_ALU | BPF_DIV | BPF_K:
643                 case BPF_ALU | BPF_MOD | BPF_X:
644                 case BPF_ALU | BPF_MOD | BPF_K:
645                 case BPF_ALU | BPF_NEG:
646                 case BPF_LD | BPF_ABS | BPF_W:
647                 case BPF_LD | BPF_ABS | BPF_H:
648                 case BPF_LD | BPF_ABS | BPF_B:
649                 case BPF_LD | BPF_IND | BPF_W:
650                 case BPF_LD | BPF_IND | BPF_H:
651                 case BPF_LD | BPF_IND | BPF_B:
652                         /* Check for overloaded BPF extension and
653                          * directly convert it if found, otherwise
654                          * just move on with mapping.
655                          */
656                         if (BPF_CLASS(fp->code) == BPF_LD &&
657                             BPF_MODE(fp->code) == BPF_ABS &&
658                             convert_bpf_extensions(fp, &insn))
659                                 break;
660                         if (BPF_CLASS(fp->code) == BPF_LD &&
661                             convert_bpf_ld_abs(fp, &insn)) {
662                                 *seen_ld_abs = true;
663                                 break;
664                         }
665
666                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669                                 /* Error with exception code on div/mod by 0.
670                                  * For cBPF programs, this was always return 0.
671                                  */
672                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674                                 *insn++ = BPF_EXIT_INSN();
675                         }
676
677                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678                         break;
679
680                 /* Jump transformation cannot use BPF block macros
681                  * everywhere as offset calculation and target updates
682                  * require a bit more work than the rest, i.e. jump
683                  * opcodes map as-is, but offsets need adjustment.
684                  */
685
686 #define BPF_EMIT_JMP                                                    \
687         do {                                                            \
688                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
689                 s32 off;                                                \
690                                                                         \
691                 if (target >= len || target < 0)                        \
692                         goto err;                                       \
693                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
694                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
695                 off -= insn - tmp_insns;                                \
696                 /* Reject anything not fitting into insn->off. */       \
697                 if (off < off_min || off > off_max)                     \
698                         goto err;                                       \
699                 insn->off = off;                                        \
700         } while (0)
701
702                 case BPF_JMP | BPF_JA:
703                         target = i + fp->k + 1;
704                         insn->code = fp->code;
705                         BPF_EMIT_JMP;
706                         break;
707
708                 case BPF_JMP | BPF_JEQ | BPF_K:
709                 case BPF_JMP | BPF_JEQ | BPF_X:
710                 case BPF_JMP | BPF_JSET | BPF_K:
711                 case BPF_JMP | BPF_JSET | BPF_X:
712                 case BPF_JMP | BPF_JGT | BPF_K:
713                 case BPF_JMP | BPF_JGT | BPF_X:
714                 case BPF_JMP | BPF_JGE | BPF_K:
715                 case BPF_JMP | BPF_JGE | BPF_X:
716                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717                                 /* BPF immediates are signed, zero extend
718                                  * immediate into tmp register and use it
719                                  * in compare insn.
720                                  */
721                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722
723                                 insn->dst_reg = BPF_REG_A;
724                                 insn->src_reg = BPF_REG_TMP;
725                                 bpf_src = BPF_X;
726                         } else {
727                                 insn->dst_reg = BPF_REG_A;
728                                 insn->imm = fp->k;
729                                 bpf_src = BPF_SRC(fp->code);
730                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731                         }
732
733                         /* Common case where 'jump_false' is next insn. */
734                         if (fp->jf == 0) {
735                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736                                 target = i + fp->jt + 1;
737                                 BPF_EMIT_JMP;
738                                 break;
739                         }
740
741                         /* Convert some jumps when 'jump_true' is next insn. */
742                         if (fp->jt == 0) {
743                                 switch (BPF_OP(fp->code)) {
744                                 case BPF_JEQ:
745                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
746                                         break;
747                                 case BPF_JGT:
748                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
749                                         break;
750                                 case BPF_JGE:
751                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
752                                         break;
753                                 default:
754                                         goto jmp_rest;
755                                 }
756
757                                 target = i + fp->jf + 1;
758                                 BPF_EMIT_JMP;
759                                 break;
760                         }
761 jmp_rest:
762                         /* Other jumps are mapped into two insns: Jxx and JA. */
763                         target = i + fp->jt + 1;
764                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765                         BPF_EMIT_JMP;
766                         insn++;
767
768                         insn->code = BPF_JMP | BPF_JA;
769                         target = i + fp->jf + 1;
770                         BPF_EMIT_JMP;
771                         break;
772
773                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774                 case BPF_LDX | BPF_MSH | BPF_B: {
775                         struct sock_filter tmp = {
776                                 .code   = BPF_LD | BPF_ABS | BPF_B,
777                                 .k      = fp->k,
778                         };
779
780                         *seen_ld_abs = true;
781
782                         /* X = A */
783                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
785                         convert_bpf_ld_abs(&tmp, &insn);
786                         insn++;
787                         /* A &= 0xf */
788                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789                         /* A <<= 2 */
790                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791                         /* tmp = X */
792                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793                         /* X = A */
794                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795                         /* A = tmp */
796                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797                         break;
798                 }
799                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
800                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801                  */
802                 case BPF_RET | BPF_A:
803                 case BPF_RET | BPF_K:
804                         if (BPF_RVAL(fp->code) == BPF_K)
805                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806                                                         0, fp->k);
807                         *insn = BPF_EXIT_INSN();
808                         break;
809
810                 /* Store to stack. */
811                 case BPF_ST:
812                 case BPF_STX:
813                         stack_off = fp->k * 4  + 4;
814                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
816                                             -stack_off);
817                         /* check_load_and_stores() verifies that classic BPF can
818                          * load from stack only after write, so tracking
819                          * stack_depth for ST|STX insns is enough
820                          */
821                         if (new_prog && new_prog->aux->stack_depth < stack_off)
822                                 new_prog->aux->stack_depth = stack_off;
823                         break;
824
825                 /* Load from stack. */
826                 case BPF_LD | BPF_MEM:
827                 case BPF_LDX | BPF_MEM:
828                         stack_off = fp->k * 4  + 4;
829                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831                                             -stack_off);
832                         break;
833
834                 /* A = K or X = K */
835                 case BPF_LD | BPF_IMM:
836                 case BPF_LDX | BPF_IMM:
837                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838                                               BPF_REG_A : BPF_REG_X, fp->k);
839                         break;
840
841                 /* X = A */
842                 case BPF_MISC | BPF_TAX:
843                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844                         break;
845
846                 /* A = X */
847                 case BPF_MISC | BPF_TXA:
848                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849                         break;
850
851                 /* A = skb->len or X = skb->len */
852                 case BPF_LD | BPF_W | BPF_LEN:
853                 case BPF_LDX | BPF_W | BPF_LEN:
854                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856                                             offsetof(struct sk_buff, len));
857                         break;
858
859                 /* Access seccomp_data fields. */
860                 case BPF_LDX | BPF_ABS | BPF_W:
861                         /* A = *(u32 *) (ctx + K) */
862                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863                         break;
864
865                 /* Unknown instruction. */
866                 default:
867                         goto err;
868                 }
869
870                 insn++;
871                 if (new_prog)
872                         memcpy(new_insn, tmp_insns,
873                                sizeof(*insn) * (insn - tmp_insns));
874                 new_insn += insn - tmp_insns;
875         }
876
877         if (!new_prog) {
878                 /* Only calculating new length. */
879                 *new_len = new_insn - first_insn;
880                 if (*seen_ld_abs)
881                         *new_len += 4; /* Prologue bits. */
882                 return 0;
883         }
884
885         pass++;
886         if (new_flen != new_insn - first_insn) {
887                 new_flen = new_insn - first_insn;
888                 if (pass > 2)
889                         goto err;
890                 goto do_pass;
891         }
892
893         kfree(addrs);
894         BUG_ON(*new_len != new_flen);
895         return 0;
896 err:
897         kfree(addrs);
898         return -EINVAL;
899 }
900
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911         int pc, ret = 0;
912
913         BUILD_BUG_ON(BPF_MEMWORDS > 16);
914
915         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916         if (!masks)
917                 return -ENOMEM;
918
919         memset(masks, 0xff, flen * sizeof(*masks));
920
921         for (pc = 0; pc < flen; pc++) {
922                 memvalid &= masks[pc];
923
924                 switch (filter[pc].code) {
925                 case BPF_ST:
926                 case BPF_STX:
927                         memvalid |= (1 << filter[pc].k);
928                         break;
929                 case BPF_LD | BPF_MEM:
930                 case BPF_LDX | BPF_MEM:
931                         if (!(memvalid & (1 << filter[pc].k))) {
932                                 ret = -EINVAL;
933                                 goto error;
934                         }
935                         break;
936                 case BPF_JMP | BPF_JA:
937                         /* A jump must set masks on target */
938                         masks[pc + 1 + filter[pc].k] &= memvalid;
939                         memvalid = ~0;
940                         break;
941                 case BPF_JMP | BPF_JEQ | BPF_K:
942                 case BPF_JMP | BPF_JEQ | BPF_X:
943                 case BPF_JMP | BPF_JGE | BPF_K:
944                 case BPF_JMP | BPF_JGE | BPF_X:
945                 case BPF_JMP | BPF_JGT | BPF_K:
946                 case BPF_JMP | BPF_JGT | BPF_X:
947                 case BPF_JMP | BPF_JSET | BPF_K:
948                 case BPF_JMP | BPF_JSET | BPF_X:
949                         /* A jump must set masks on targets */
950                         masks[pc + 1 + filter[pc].jt] &= memvalid;
951                         masks[pc + 1 + filter[pc].jf] &= memvalid;
952                         memvalid = ~0;
953                         break;
954                 }
955         }
956 error:
957         kfree(masks);
958         return ret;
959 }
960
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963         static const bool codes[] = {
964                 /* 32 bit ALU operations */
965                 [BPF_ALU | BPF_ADD | BPF_K] = true,
966                 [BPF_ALU | BPF_ADD | BPF_X] = true,
967                 [BPF_ALU | BPF_SUB | BPF_K] = true,
968                 [BPF_ALU | BPF_SUB | BPF_X] = true,
969                 [BPF_ALU | BPF_MUL | BPF_K] = true,
970                 [BPF_ALU | BPF_MUL | BPF_X] = true,
971                 [BPF_ALU | BPF_DIV | BPF_K] = true,
972                 [BPF_ALU | BPF_DIV | BPF_X] = true,
973                 [BPF_ALU | BPF_MOD | BPF_K] = true,
974                 [BPF_ALU | BPF_MOD | BPF_X] = true,
975                 [BPF_ALU | BPF_AND | BPF_K] = true,
976                 [BPF_ALU | BPF_AND | BPF_X] = true,
977                 [BPF_ALU | BPF_OR | BPF_K] = true,
978                 [BPF_ALU | BPF_OR | BPF_X] = true,
979                 [BPF_ALU | BPF_XOR | BPF_K] = true,
980                 [BPF_ALU | BPF_XOR | BPF_X] = true,
981                 [BPF_ALU | BPF_LSH | BPF_K] = true,
982                 [BPF_ALU | BPF_LSH | BPF_X] = true,
983                 [BPF_ALU | BPF_RSH | BPF_K] = true,
984                 [BPF_ALU | BPF_RSH | BPF_X] = true,
985                 [BPF_ALU | BPF_NEG] = true,
986                 /* Load instructions */
987                 [BPF_LD | BPF_W | BPF_ABS] = true,
988                 [BPF_LD | BPF_H | BPF_ABS] = true,
989                 [BPF_LD | BPF_B | BPF_ABS] = true,
990                 [BPF_LD | BPF_W | BPF_LEN] = true,
991                 [BPF_LD | BPF_W | BPF_IND] = true,
992                 [BPF_LD | BPF_H | BPF_IND] = true,
993                 [BPF_LD | BPF_B | BPF_IND] = true,
994                 [BPF_LD | BPF_IMM] = true,
995                 [BPF_LD | BPF_MEM] = true,
996                 [BPF_LDX | BPF_W | BPF_LEN] = true,
997                 [BPF_LDX | BPF_B | BPF_MSH] = true,
998                 [BPF_LDX | BPF_IMM] = true,
999                 [BPF_LDX | BPF_MEM] = true,
1000                 /* Store instructions */
1001                 [BPF_ST] = true,
1002                 [BPF_STX] = true,
1003                 /* Misc instructions */
1004                 [BPF_MISC | BPF_TAX] = true,
1005                 [BPF_MISC | BPF_TXA] = true,
1006                 /* Return instructions */
1007                 [BPF_RET | BPF_K] = true,
1008                 [BPF_RET | BPF_A] = true,
1009                 /* Jump instructions */
1010                 [BPF_JMP | BPF_JA] = true,
1011                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1013                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1015                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1017                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1019         };
1020
1021         if (code_to_probe >= ARRAY_SIZE(codes))
1022                 return false;
1023
1024         return codes[code_to_probe];
1025 }
1026
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028                                 unsigned int flen)
1029 {
1030         if (filter == NULL)
1031                 return false;
1032         if (flen == 0 || flen > BPF_MAXINSNS)
1033                 return false;
1034
1035         return true;
1036 }
1037
1038 /**
1039  *      bpf_check_classic - verify socket filter code
1040  *      @filter: filter to verify
1041  *      @flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053                              unsigned int flen)
1054 {
1055         bool anc_found;
1056         int pc;
1057
1058         /* Check the filter code now */
1059         for (pc = 0; pc < flen; pc++) {
1060                 const struct sock_filter *ftest = &filter[pc];
1061
1062                 /* May we actually operate on this code? */
1063                 if (!chk_code_allowed(ftest->code))
1064                         return -EINVAL;
1065
1066                 /* Some instructions need special checks */
1067                 switch (ftest->code) {
1068                 case BPF_ALU | BPF_DIV | BPF_K:
1069                 case BPF_ALU | BPF_MOD | BPF_K:
1070                         /* Check for division by zero */
1071                         if (ftest->k == 0)
1072                                 return -EINVAL;
1073                         break;
1074                 case BPF_ALU | BPF_LSH | BPF_K:
1075                 case BPF_ALU | BPF_RSH | BPF_K:
1076                         if (ftest->k >= 32)
1077                                 return -EINVAL;
1078                         break;
1079                 case BPF_LD | BPF_MEM:
1080                 case BPF_LDX | BPF_MEM:
1081                 case BPF_ST:
1082                 case BPF_STX:
1083                         /* Check for invalid memory addresses */
1084                         if (ftest->k >= BPF_MEMWORDS)
1085                                 return -EINVAL;
1086                         break;
1087                 case BPF_JMP | BPF_JA:
1088                         /* Note, the large ftest->k might cause loops.
1089                          * Compare this with conditional jumps below,
1090                          * where offsets are limited. --ANK (981016)
1091                          */
1092                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1093                                 return -EINVAL;
1094                         break;
1095                 case BPF_JMP | BPF_JEQ | BPF_K:
1096                 case BPF_JMP | BPF_JEQ | BPF_X:
1097                 case BPF_JMP | BPF_JGE | BPF_K:
1098                 case BPF_JMP | BPF_JGE | BPF_X:
1099                 case BPF_JMP | BPF_JGT | BPF_K:
1100                 case BPF_JMP | BPF_JGT | BPF_X:
1101                 case BPF_JMP | BPF_JSET | BPF_K:
1102                 case BPF_JMP | BPF_JSET | BPF_X:
1103                         /* Both conditionals must be safe */
1104                         if (pc + ftest->jt + 1 >= flen ||
1105                             pc + ftest->jf + 1 >= flen)
1106                                 return -EINVAL;
1107                         break;
1108                 case BPF_LD | BPF_W | BPF_ABS:
1109                 case BPF_LD | BPF_H | BPF_ABS:
1110                 case BPF_LD | BPF_B | BPF_ABS:
1111                         anc_found = false;
1112                         if (bpf_anc_helper(ftest) & BPF_ANC)
1113                                 anc_found = true;
1114                         /* Ancillary operation unknown or unsupported */
1115                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116                                 return -EINVAL;
1117                 }
1118         }
1119
1120         /* Last instruction must be a RET code */
1121         switch (filter[flen - 1].code) {
1122         case BPF_RET | BPF_K:
1123         case BPF_RET | BPF_A:
1124                 return check_load_and_stores(filter, flen);
1125         }
1126
1127         return -EINVAL;
1128 }
1129
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131                                       const struct sock_fprog *fprog)
1132 {
1133         unsigned int fsize = bpf_classic_proglen(fprog);
1134         struct sock_fprog_kern *fkprog;
1135
1136         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137         if (!fp->orig_prog)
1138                 return -ENOMEM;
1139
1140         fkprog = fp->orig_prog;
1141         fkprog->len = fprog->len;
1142
1143         fkprog->filter = kmemdup(fp->insns, fsize,
1144                                  GFP_KERNEL | __GFP_NOWARN);
1145         if (!fkprog->filter) {
1146                 kfree(fp->orig_prog);
1147                 return -ENOMEM;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155         struct sock_fprog_kern *fprog = fp->orig_prog;
1156
1157         if (fprog) {
1158                 kfree(fprog->filter);
1159                 kfree(fprog);
1160         }
1161 }
1162
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166                 bpf_prog_put(prog);
1167         } else {
1168                 bpf_release_orig_filter(prog);
1169                 bpf_prog_free(prog);
1170         }
1171 }
1172
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175         __bpf_prog_release(fp->prog);
1176         kfree(fp);
1177 }
1178
1179 /**
1180  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *      @rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186
1187         __sk_filter_release(fp);
1188 }
1189
1190 /**
1191  *      sk_filter_release - release a socket filter
1192  *      @fp: filter to remove
1193  *
1194  *      Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198         if (refcount_dec_and_test(&fp->refcnt))
1199                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204         u32 filter_size = bpf_prog_size(fp->prog->len);
1205
1206         atomic_sub(filter_size, &sk->sk_omem_alloc);
1207         sk_filter_release(fp);
1208 }
1209
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215         u32 filter_size = bpf_prog_size(fp->prog->len);
1216
1217         /* same check as in sock_kmalloc() */
1218         if (filter_size <= sysctl_optmem_max &&
1219             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1220                 atomic_add(filter_size, &sk->sk_omem_alloc);
1221                 return true;
1222         }
1223         return false;
1224 }
1225
1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228         if (!refcount_inc_not_zero(&fp->refcnt))
1229                 return false;
1230
1231         if (!__sk_filter_charge(sk, fp)) {
1232                 sk_filter_release(fp);
1233                 return false;
1234         }
1235         return true;
1236 }
1237
1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240         struct sock_filter *old_prog;
1241         struct bpf_prog *old_fp;
1242         int err, new_len, old_len = fp->len;
1243         bool seen_ld_abs = false;
1244
1245         /* We are free to overwrite insns et al right here as it won't be used at
1246          * this point in time anymore internally after the migration to the eBPF
1247          * instruction representation.
1248          */
1249         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250                      sizeof(struct bpf_insn));
1251
1252         /* Conversion cannot happen on overlapping memory areas,
1253          * so we need to keep the user BPF around until the 2nd
1254          * pass. At this time, the user BPF is stored in fp->insns.
1255          */
1256         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257                            GFP_KERNEL | __GFP_NOWARN);
1258         if (!old_prog) {
1259                 err = -ENOMEM;
1260                 goto out_err;
1261         }
1262
1263         /* 1st pass: calculate the new program length. */
1264         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265                                  &seen_ld_abs);
1266         if (err)
1267                 goto out_err_free;
1268
1269         /* Expand fp for appending the new filter representation. */
1270         old_fp = fp;
1271         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272         if (!fp) {
1273                 /* The old_fp is still around in case we couldn't
1274                  * allocate new memory, so uncharge on that one.
1275                  */
1276                 fp = old_fp;
1277                 err = -ENOMEM;
1278                 goto out_err_free;
1279         }
1280
1281         fp->len = new_len;
1282
1283         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285                                  &seen_ld_abs);
1286         if (err)
1287                 /* 2nd bpf_convert_filter() can fail only if it fails
1288                  * to allocate memory, remapping must succeed. Note,
1289                  * that at this time old_fp has already been released
1290                  * by krealloc().
1291                  */
1292                 goto out_err_free;
1293
1294         fp = bpf_prog_select_runtime(fp, &err);
1295         if (err)
1296                 goto out_err_free;
1297
1298         kfree(old_prog);
1299         return fp;
1300
1301 out_err_free:
1302         kfree(old_prog);
1303 out_err:
1304         __bpf_prog_release(fp);
1305         return ERR_PTR(err);
1306 }
1307
1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309                                            bpf_aux_classic_check_t trans)
1310 {
1311         int err;
1312
1313         fp->bpf_func = NULL;
1314         fp->jited = 0;
1315
1316         err = bpf_check_classic(fp->insns, fp->len);
1317         if (err) {
1318                 __bpf_prog_release(fp);
1319                 return ERR_PTR(err);
1320         }
1321
1322         /* There might be additional checks and transformations
1323          * needed on classic filters, f.e. in case of seccomp.
1324          */
1325         if (trans) {
1326                 err = trans(fp->insns, fp->len);
1327                 if (err) {
1328                         __bpf_prog_release(fp);
1329                         return ERR_PTR(err);
1330                 }
1331         }
1332
1333         /* Probe if we can JIT compile the filter and if so, do
1334          * the compilation of the filter.
1335          */
1336         bpf_jit_compile(fp);
1337
1338         /* JIT compiler couldn't process this filter, so do the eBPF translation
1339          * for the optimized interpreter.
1340          */
1341         if (!fp->jited)
1342                 fp = bpf_migrate_filter(fp);
1343
1344         return fp;
1345 }
1346
1347 /**
1348  *      bpf_prog_create - create an unattached filter
1349  *      @pfp: the unattached filter that is created
1350  *      @fprog: the filter program
1351  *
1352  * Create a filter independent of any socket. We first run some
1353  * sanity checks on it to make sure it does not explode on us later.
1354  * If an error occurs or there is insufficient memory for the filter
1355  * a negative errno code is returned. On success the return is zero.
1356  */
1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359         unsigned int fsize = bpf_classic_proglen(fprog);
1360         struct bpf_prog *fp;
1361
1362         /* Make sure new filter is there and in the right amounts. */
1363         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364                 return -EINVAL;
1365
1366         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367         if (!fp)
1368                 return -ENOMEM;
1369
1370         memcpy(fp->insns, fprog->filter, fsize);
1371
1372         fp->len = fprog->len;
1373         /* Since unattached filters are not copied back to user
1374          * space through sk_get_filter(), we do not need to hold
1375          * a copy here, and can spare us the work.
1376          */
1377         fp->orig_prog = NULL;
1378
1379         /* bpf_prepare_filter() already takes care of freeing
1380          * memory in case something goes wrong.
1381          */
1382         fp = bpf_prepare_filter(fp, NULL);
1383         if (IS_ERR(fp))
1384                 return PTR_ERR(fp);
1385
1386         *pfp = fp;
1387         return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390
1391 /**
1392  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1393  *      @pfp: the unattached filter that is created
1394  *      @fprog: the filter program
1395  *      @trans: post-classic verifier transformation handler
1396  *      @save_orig: save classic BPF program
1397  *
1398  * This function effectively does the same as bpf_prog_create(), only
1399  * that it builds up its insns buffer from user space provided buffer.
1400  * It also allows for passing a bpf_aux_classic_check_t handler.
1401  */
1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403                               bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405         unsigned int fsize = bpf_classic_proglen(fprog);
1406         struct bpf_prog *fp;
1407         int err;
1408
1409         /* Make sure new filter is there and in the right amounts. */
1410         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411                 return -EINVAL;
1412
1413         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414         if (!fp)
1415                 return -ENOMEM;
1416
1417         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418                 __bpf_prog_free(fp);
1419                 return -EFAULT;
1420         }
1421
1422         fp->len = fprog->len;
1423         fp->orig_prog = NULL;
1424
1425         if (save_orig) {
1426                 err = bpf_prog_store_orig_filter(fp, fprog);
1427                 if (err) {
1428                         __bpf_prog_free(fp);
1429                         return -ENOMEM;
1430                 }
1431         }
1432
1433         /* bpf_prepare_filter() already takes care of freeing
1434          * memory in case something goes wrong.
1435          */
1436         fp = bpf_prepare_filter(fp, trans);
1437         if (IS_ERR(fp))
1438                 return PTR_ERR(fp);
1439
1440         *pfp = fp;
1441         return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444
1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447         __bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450
1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453         struct sk_filter *fp, *old_fp;
1454
1455         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456         if (!fp)
1457                 return -ENOMEM;
1458
1459         fp->prog = prog;
1460
1461         if (!__sk_filter_charge(sk, fp)) {
1462                 kfree(fp);
1463                 return -ENOMEM;
1464         }
1465         refcount_set(&fp->refcnt, 1);
1466
1467         old_fp = rcu_dereference_protected(sk->sk_filter,
1468                                            lockdep_sock_is_held(sk));
1469         rcu_assign_pointer(sk->sk_filter, fp);
1470
1471         if (old_fp)
1472                 sk_filter_uncharge(sk, old_fp);
1473
1474         return 0;
1475 }
1476
1477 static
1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480         unsigned int fsize = bpf_classic_proglen(fprog);
1481         struct bpf_prog *prog;
1482         int err;
1483
1484         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485                 return ERR_PTR(-EPERM);
1486
1487         /* Make sure new filter is there and in the right amounts. */
1488         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489                 return ERR_PTR(-EINVAL);
1490
1491         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492         if (!prog)
1493                 return ERR_PTR(-ENOMEM);
1494
1495         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496                 __bpf_prog_free(prog);
1497                 return ERR_PTR(-EFAULT);
1498         }
1499
1500         prog->len = fprog->len;
1501
1502         err = bpf_prog_store_orig_filter(prog, fprog);
1503         if (err) {
1504                 __bpf_prog_free(prog);
1505                 return ERR_PTR(-ENOMEM);
1506         }
1507
1508         /* bpf_prepare_filter() already takes care of freeing
1509          * memory in case something goes wrong.
1510          */
1511         return bpf_prepare_filter(prog, NULL);
1512 }
1513
1514 /**
1515  *      sk_attach_filter - attach a socket filter
1516  *      @fprog: the filter program
1517  *      @sk: the socket to use
1518  *
1519  * Attach the user's filter code. We first run some sanity checks on
1520  * it to make sure it does not explode on us later. If an error
1521  * occurs or there is insufficient memory for the filter a negative
1522  * errno code is returned. On success the return is zero.
1523  */
1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526         struct bpf_prog *prog = __get_filter(fprog, sk);
1527         int err;
1528
1529         if (IS_ERR(prog))
1530                 return PTR_ERR(prog);
1531
1532         err = __sk_attach_prog(prog, sk);
1533         if (err < 0) {
1534                 __bpf_prog_release(prog);
1535                 return err;
1536         }
1537
1538         return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541
1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544         struct bpf_prog *prog = __get_filter(fprog, sk);
1545         int err;
1546
1547         if (IS_ERR(prog))
1548                 return PTR_ERR(prog);
1549
1550         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551                 err = -ENOMEM;
1552         else
1553                 err = reuseport_attach_prog(sk, prog);
1554
1555         if (err)
1556                 __bpf_prog_release(prog);
1557
1558         return err;
1559 }
1560
1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564                 return ERR_PTR(-EPERM);
1565
1566         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568
1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571         struct bpf_prog *prog = __get_bpf(ufd, sk);
1572         int err;
1573
1574         if (IS_ERR(prog))
1575                 return PTR_ERR(prog);
1576
1577         err = __sk_attach_prog(prog, sk);
1578         if (err < 0) {
1579                 bpf_prog_put(prog);
1580                 return err;
1581         }
1582
1583         return 0;
1584 }
1585
1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588         struct bpf_prog *prog;
1589         int err;
1590
1591         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592                 return -EPERM;
1593
1594         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595         if (PTR_ERR(prog) == -EINVAL)
1596                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597         if (IS_ERR(prog))
1598                 return PTR_ERR(prog);
1599
1600         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602                  * bpf prog (e.g. sockmap).  It depends on the
1603                  * limitation imposed by bpf_prog_load().
1604                  * Hence, sysctl_optmem_max is not checked.
1605                  */
1606                 if ((sk->sk_type != SOCK_STREAM &&
1607                      sk->sk_type != SOCK_DGRAM) ||
1608                     (sk->sk_protocol != IPPROTO_UDP &&
1609                      sk->sk_protocol != IPPROTO_TCP) ||
1610                     (sk->sk_family != AF_INET &&
1611                      sk->sk_family != AF_INET6)) {
1612                         err = -ENOTSUPP;
1613                         goto err_prog_put;
1614                 }
1615         } else {
1616                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1617                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618                         err = -ENOMEM;
1619                         goto err_prog_put;
1620                 }
1621         }
1622
1623         err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625         if (err)
1626                 bpf_prog_put(prog);
1627
1628         return err;
1629 }
1630
1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633         if (!prog)
1634                 return;
1635
1636         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637                 bpf_prog_put(prog);
1638         else
1639                 bpf_prog_destroy(prog);
1640 }
1641
1642 struct bpf_scratchpad {
1643         union {
1644                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645                 u8     buff[MAX_BPF_STACK];
1646         };
1647 };
1648
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650
1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652                                           unsigned int write_len)
1653 {
1654         return skb_ensure_writable(skb, write_len);
1655 }
1656
1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658                                         unsigned int write_len)
1659 {
1660         int err = __bpf_try_make_writable(skb, write_len);
1661
1662         bpf_compute_data_pointers(skb);
1663         return err;
1664 }
1665
1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668         return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670
1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673         if (skb_at_tc_ingress(skb))
1674                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676
1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679         if (skb_at_tc_ingress(skb))
1680                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682
1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684            const void *, from, u32, len, u64, flags)
1685 {
1686         void *ptr;
1687
1688         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689                 return -EINVAL;
1690         if (unlikely(offset > 0xffff))
1691                 return -EFAULT;
1692         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693                 return -EFAULT;
1694
1695         ptr = skb->data + offset;
1696         if (flags & BPF_F_RECOMPUTE_CSUM)
1697                 __skb_postpull_rcsum(skb, ptr, len, offset);
1698
1699         memcpy(ptr, from, len);
1700
1701         if (flags & BPF_F_RECOMPUTE_CSUM)
1702                 __skb_postpush_rcsum(skb, ptr, len, offset);
1703         if (flags & BPF_F_INVALIDATE_HASH)
1704                 skb_clear_hash(skb);
1705
1706         return 0;
1707 }
1708
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710         .func           = bpf_skb_store_bytes,
1711         .gpl_only       = false,
1712         .ret_type       = RET_INTEGER,
1713         .arg1_type      = ARG_PTR_TO_CTX,
1714         .arg2_type      = ARG_ANYTHING,
1715         .arg3_type      = ARG_PTR_TO_MEM,
1716         .arg4_type      = ARG_CONST_SIZE,
1717         .arg5_type      = ARG_ANYTHING,
1718 };
1719
1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721            void *, to, u32, len)
1722 {
1723         void *ptr;
1724
1725         if (unlikely(offset > 0xffff))
1726                 goto err_clear;
1727
1728         ptr = skb_header_pointer(skb, offset, len, to);
1729         if (unlikely(!ptr))
1730                 goto err_clear;
1731         if (ptr != to)
1732                 memcpy(to, ptr, len);
1733
1734         return 0;
1735 err_clear:
1736         memset(to, 0, len);
1737         return -EFAULT;
1738 }
1739
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741         .func           = bpf_skb_load_bytes,
1742         .gpl_only       = false,
1743         .ret_type       = RET_INTEGER,
1744         .arg1_type      = ARG_PTR_TO_CTX,
1745         .arg2_type      = ARG_ANYTHING,
1746         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1747         .arg4_type      = ARG_CONST_SIZE,
1748 };
1749
1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751            const struct bpf_flow_dissector *, ctx, u32, offset,
1752            void *, to, u32, len)
1753 {
1754         void *ptr;
1755
1756         if (unlikely(offset > 0xffff))
1757                 goto err_clear;
1758
1759         if (unlikely(!ctx->skb))
1760                 goto err_clear;
1761
1762         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763         if (unlikely(!ptr))
1764                 goto err_clear;
1765         if (ptr != to)
1766                 memcpy(to, ptr, len);
1767
1768         return 0;
1769 err_clear:
1770         memset(to, 0, len);
1771         return -EFAULT;
1772 }
1773
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775         .func           = bpf_flow_dissector_load_bytes,
1776         .gpl_only       = false,
1777         .ret_type       = RET_INTEGER,
1778         .arg1_type      = ARG_PTR_TO_CTX,
1779         .arg2_type      = ARG_ANYTHING,
1780         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1781         .arg4_type      = ARG_CONST_SIZE,
1782 };
1783
1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785            u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787         u8 *end = skb_tail_pointer(skb);
1788         u8 *start, *ptr;
1789
1790         if (unlikely(offset > 0xffff))
1791                 goto err_clear;
1792
1793         switch (start_header) {
1794         case BPF_HDR_START_MAC:
1795                 if (unlikely(!skb_mac_header_was_set(skb)))
1796                         goto err_clear;
1797                 start = skb_mac_header(skb);
1798                 break;
1799         case BPF_HDR_START_NET:
1800                 start = skb_network_header(skb);
1801                 break;
1802         default:
1803                 goto err_clear;
1804         }
1805
1806         ptr = start + offset;
1807
1808         if (likely(ptr + len <= end)) {
1809                 memcpy(to, ptr, len);
1810                 return 0;
1811         }
1812
1813 err_clear:
1814         memset(to, 0, len);
1815         return -EFAULT;
1816 }
1817
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819         .func           = bpf_skb_load_bytes_relative,
1820         .gpl_only       = false,
1821         .ret_type       = RET_INTEGER,
1822         .arg1_type      = ARG_PTR_TO_CTX,
1823         .arg2_type      = ARG_ANYTHING,
1824         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1825         .arg4_type      = ARG_CONST_SIZE,
1826         .arg5_type      = ARG_ANYTHING,
1827 };
1828
1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831         /* Idea is the following: should the needed direct read/write
1832          * test fail during runtime, we can pull in more data and redo
1833          * again, since implicitly, we invalidate previous checks here.
1834          *
1835          * Or, since we know how much we need to make read/writeable,
1836          * this can be done once at the program beginning for direct
1837          * access case. By this we overcome limitations of only current
1838          * headroom being accessible.
1839          */
1840         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844         .func           = bpf_skb_pull_data,
1845         .gpl_only       = false,
1846         .ret_type       = RET_INTEGER,
1847         .arg1_type      = ARG_PTR_TO_CTX,
1848         .arg2_type      = ARG_ANYTHING,
1849 };
1850
1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857         .func           = bpf_sk_fullsock,
1858         .gpl_only       = false,
1859         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1860         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1861 };
1862
1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864                                            unsigned int write_len)
1865 {
1866         return __bpf_try_make_writable(skb, write_len);
1867 }
1868
1869 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1870 {
1871         /* Idea is the following: should the needed direct read/write
1872          * test fail during runtime, we can pull in more data and redo
1873          * again, since implicitly, we invalidate previous checks here.
1874          *
1875          * Or, since we know how much we need to make read/writeable,
1876          * this can be done once at the program beginning for direct
1877          * access case. By this we overcome limitations of only current
1878          * headroom being accessible.
1879          */
1880         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1881 }
1882
1883 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1884         .func           = sk_skb_pull_data,
1885         .gpl_only       = false,
1886         .ret_type       = RET_INTEGER,
1887         .arg1_type      = ARG_PTR_TO_CTX,
1888         .arg2_type      = ARG_ANYTHING,
1889 };
1890
1891 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1892            u64, from, u64, to, u64, flags)
1893 {
1894         __sum16 *ptr;
1895
1896         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1897                 return -EINVAL;
1898         if (unlikely(offset > 0xffff || offset & 1))
1899                 return -EFAULT;
1900         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1901                 return -EFAULT;
1902
1903         ptr = (__sum16 *)(skb->data + offset);
1904         switch (flags & BPF_F_HDR_FIELD_MASK) {
1905         case 0:
1906                 if (unlikely(from != 0))
1907                         return -EINVAL;
1908
1909                 csum_replace_by_diff(ptr, to);
1910                 break;
1911         case 2:
1912                 csum_replace2(ptr, from, to);
1913                 break;
1914         case 4:
1915                 csum_replace4(ptr, from, to);
1916                 break;
1917         default:
1918                 return -EINVAL;
1919         }
1920
1921         return 0;
1922 }
1923
1924 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1925         .func           = bpf_l3_csum_replace,
1926         .gpl_only       = false,
1927         .ret_type       = RET_INTEGER,
1928         .arg1_type      = ARG_PTR_TO_CTX,
1929         .arg2_type      = ARG_ANYTHING,
1930         .arg3_type      = ARG_ANYTHING,
1931         .arg4_type      = ARG_ANYTHING,
1932         .arg5_type      = ARG_ANYTHING,
1933 };
1934
1935 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1936            u64, from, u64, to, u64, flags)
1937 {
1938         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1939         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1940         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1941         __sum16 *ptr;
1942
1943         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1944                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1945                 return -EINVAL;
1946         if (unlikely(offset > 0xffff || offset & 1))
1947                 return -EFAULT;
1948         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1949                 return -EFAULT;
1950
1951         ptr = (__sum16 *)(skb->data + offset);
1952         if (is_mmzero && !do_mforce && !*ptr)
1953                 return 0;
1954
1955         switch (flags & BPF_F_HDR_FIELD_MASK) {
1956         case 0:
1957                 if (unlikely(from != 0))
1958                         return -EINVAL;
1959
1960                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1961                 break;
1962         case 2:
1963                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1964                 break;
1965         case 4:
1966                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1967                 break;
1968         default:
1969                 return -EINVAL;
1970         }
1971
1972         if (is_mmzero && !*ptr)
1973                 *ptr = CSUM_MANGLED_0;
1974         return 0;
1975 }
1976
1977 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1978         .func           = bpf_l4_csum_replace,
1979         .gpl_only       = false,
1980         .ret_type       = RET_INTEGER,
1981         .arg1_type      = ARG_PTR_TO_CTX,
1982         .arg2_type      = ARG_ANYTHING,
1983         .arg3_type      = ARG_ANYTHING,
1984         .arg4_type      = ARG_ANYTHING,
1985         .arg5_type      = ARG_ANYTHING,
1986 };
1987
1988 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1989            __be32 *, to, u32, to_size, __wsum, seed)
1990 {
1991         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1992         u32 diff_size = from_size + to_size;
1993         int i, j = 0;
1994
1995         /* This is quite flexible, some examples:
1996          *
1997          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1998          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1999          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2000          *
2001          * Even for diffing, from_size and to_size don't need to be equal.
2002          */
2003         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2004                      diff_size > sizeof(sp->diff)))
2005                 return -EINVAL;
2006
2007         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2008                 sp->diff[j] = ~from[i];
2009         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2010                 sp->diff[j] = to[i];
2011
2012         return csum_partial(sp->diff, diff_size, seed);
2013 }
2014
2015 static const struct bpf_func_proto bpf_csum_diff_proto = {
2016         .func           = bpf_csum_diff,
2017         .gpl_only       = false,
2018         .pkt_access     = true,
2019         .ret_type       = RET_INTEGER,
2020         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2021         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2022         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2023         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2024         .arg5_type      = ARG_ANYTHING,
2025 };
2026
2027 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2028 {
2029         /* The interface is to be used in combination with bpf_csum_diff()
2030          * for direct packet writes. csum rotation for alignment as well
2031          * as emulating csum_sub() can be done from the eBPF program.
2032          */
2033         if (skb->ip_summed == CHECKSUM_COMPLETE)
2034                 return (skb->csum = csum_add(skb->csum, csum));
2035
2036         return -ENOTSUPP;
2037 }
2038
2039 static const struct bpf_func_proto bpf_csum_update_proto = {
2040         .func           = bpf_csum_update,
2041         .gpl_only       = false,
2042         .ret_type       = RET_INTEGER,
2043         .arg1_type      = ARG_PTR_TO_CTX,
2044         .arg2_type      = ARG_ANYTHING,
2045 };
2046
2047 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2048 {
2049         /* The interface is to be used in combination with bpf_skb_adjust_room()
2050          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2051          * is passed as flags, for example.
2052          */
2053         switch (level) {
2054         case BPF_CSUM_LEVEL_INC:
2055                 __skb_incr_checksum_unnecessary(skb);
2056                 break;
2057         case BPF_CSUM_LEVEL_DEC:
2058                 __skb_decr_checksum_unnecessary(skb);
2059                 break;
2060         case BPF_CSUM_LEVEL_RESET:
2061                 __skb_reset_checksum_unnecessary(skb);
2062                 break;
2063         case BPF_CSUM_LEVEL_QUERY:
2064                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2065                        skb->csum_level : -EACCES;
2066         default:
2067                 return -EINVAL;
2068         }
2069
2070         return 0;
2071 }
2072
2073 static const struct bpf_func_proto bpf_csum_level_proto = {
2074         .func           = bpf_csum_level,
2075         .gpl_only       = false,
2076         .ret_type       = RET_INTEGER,
2077         .arg1_type      = ARG_PTR_TO_CTX,
2078         .arg2_type      = ARG_ANYTHING,
2079 };
2080
2081 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2082 {
2083         return dev_forward_skb_nomtu(dev, skb);
2084 }
2085
2086 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2087                                       struct sk_buff *skb)
2088 {
2089         int ret = ____dev_forward_skb(dev, skb, false);
2090
2091         if (likely(!ret)) {
2092                 skb->dev = dev;
2093                 ret = netif_rx(skb);
2094         }
2095
2096         return ret;
2097 }
2098
2099 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2100 {
2101         int ret;
2102
2103         if (dev_xmit_recursion()) {
2104                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2105                 kfree_skb(skb);
2106                 return -ENETDOWN;
2107         }
2108
2109         skb->dev = dev;
2110         skb->tstamp = 0;
2111
2112         dev_xmit_recursion_inc();
2113         ret = dev_queue_xmit(skb);
2114         dev_xmit_recursion_dec();
2115
2116         return ret;
2117 }
2118
2119 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2120                                  u32 flags)
2121 {
2122         unsigned int mlen = skb_network_offset(skb);
2123
2124         if (mlen) {
2125                 __skb_pull(skb, mlen);
2126
2127                 /* At ingress, the mac header has already been pulled once.
2128                  * At egress, skb_pospull_rcsum has to be done in case that
2129                  * the skb is originated from ingress (i.e. a forwarded skb)
2130                  * to ensure that rcsum starts at net header.
2131                  */
2132                 if (!skb_at_tc_ingress(skb))
2133                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2134         }
2135         skb_pop_mac_header(skb);
2136         skb_reset_mac_len(skb);
2137         return flags & BPF_F_INGRESS ?
2138                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2139 }
2140
2141 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2142                                  u32 flags)
2143 {
2144         /* Verify that a link layer header is carried */
2145         if (unlikely(skb->mac_header >= skb->network_header)) {
2146                 kfree_skb(skb);
2147                 return -ERANGE;
2148         }
2149
2150         bpf_push_mac_rcsum(skb);
2151         return flags & BPF_F_INGRESS ?
2152                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2153 }
2154
2155 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2156                           u32 flags)
2157 {
2158         if (dev_is_mac_header_xmit(dev))
2159                 return __bpf_redirect_common(skb, dev, flags);
2160         else
2161                 return __bpf_redirect_no_mac(skb, dev, flags);
2162 }
2163
2164 #if IS_ENABLED(CONFIG_IPV6)
2165 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2166                             struct net_device *dev, struct bpf_nh_params *nh)
2167 {
2168         u32 hh_len = LL_RESERVED_SPACE(dev);
2169         const struct in6_addr *nexthop;
2170         struct dst_entry *dst = NULL;
2171         struct neighbour *neigh;
2172
2173         if (dev_xmit_recursion()) {
2174                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2175                 goto out_drop;
2176         }
2177
2178         skb->dev = dev;
2179         skb->tstamp = 0;
2180
2181         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2182                 skb = skb_expand_head(skb, hh_len);
2183                 if (!skb)
2184                         return -ENOMEM;
2185         }
2186
2187         rcu_read_lock_bh();
2188         if (!nh) {
2189                 dst = skb_dst(skb);
2190                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2191                                       &ipv6_hdr(skb)->daddr);
2192         } else {
2193                 nexthop = &nh->ipv6_nh;
2194         }
2195         neigh = ip_neigh_gw6(dev, nexthop);
2196         if (likely(!IS_ERR(neigh))) {
2197                 int ret;
2198
2199                 sock_confirm_neigh(skb, neigh);
2200                 dev_xmit_recursion_inc();
2201                 ret = neigh_output(neigh, skb, false);
2202                 dev_xmit_recursion_dec();
2203                 rcu_read_unlock_bh();
2204                 return ret;
2205         }
2206         rcu_read_unlock_bh();
2207         if (dst)
2208                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2209 out_drop:
2210         kfree_skb(skb);
2211         return -ENETDOWN;
2212 }
2213
2214 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2215                                    struct bpf_nh_params *nh)
2216 {
2217         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2218         struct net *net = dev_net(dev);
2219         int err, ret = NET_XMIT_DROP;
2220
2221         if (!nh) {
2222                 struct dst_entry *dst;
2223                 struct flowi6 fl6 = {
2224                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2225                         .flowi6_mark  = skb->mark,
2226                         .flowlabel    = ip6_flowinfo(ip6h),
2227                         .flowi6_oif   = dev->ifindex,
2228                         .flowi6_proto = ip6h->nexthdr,
2229                         .daddr        = ip6h->daddr,
2230                         .saddr        = ip6h->saddr,
2231                 };
2232
2233                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2234                 if (IS_ERR(dst))
2235                         goto out_drop;
2236
2237                 skb_dst_set(skb, dst);
2238         } else if (nh->nh_family != AF_INET6) {
2239                 goto out_drop;
2240         }
2241
2242         err = bpf_out_neigh_v6(net, skb, dev, nh);
2243         if (unlikely(net_xmit_eval(err)))
2244                 dev->stats.tx_errors++;
2245         else
2246                 ret = NET_XMIT_SUCCESS;
2247         goto out_xmit;
2248 out_drop:
2249         dev->stats.tx_errors++;
2250         kfree_skb(skb);
2251 out_xmit:
2252         return ret;
2253 }
2254 #else
2255 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2256                                    struct bpf_nh_params *nh)
2257 {
2258         kfree_skb(skb);
2259         return NET_XMIT_DROP;
2260 }
2261 #endif /* CONFIG_IPV6 */
2262
2263 #if IS_ENABLED(CONFIG_INET)
2264 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2265                             struct net_device *dev, struct bpf_nh_params *nh)
2266 {
2267         u32 hh_len = LL_RESERVED_SPACE(dev);
2268         struct neighbour *neigh;
2269         bool is_v6gw = false;
2270
2271         if (dev_xmit_recursion()) {
2272                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2273                 goto out_drop;
2274         }
2275
2276         skb->dev = dev;
2277         skb->tstamp = 0;
2278
2279         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2280                 skb = skb_expand_head(skb, hh_len);
2281                 if (!skb)
2282                         return -ENOMEM;
2283         }
2284
2285         rcu_read_lock_bh();
2286         if (!nh) {
2287                 struct dst_entry *dst = skb_dst(skb);
2288                 struct rtable *rt = container_of(dst, struct rtable, dst);
2289
2290                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2291         } else if (nh->nh_family == AF_INET6) {
2292                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2293                 is_v6gw = true;
2294         } else if (nh->nh_family == AF_INET) {
2295                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2296         } else {
2297                 rcu_read_unlock_bh();
2298                 goto out_drop;
2299         }
2300
2301         if (likely(!IS_ERR(neigh))) {
2302                 int ret;
2303
2304                 sock_confirm_neigh(skb, neigh);
2305                 dev_xmit_recursion_inc();
2306                 ret = neigh_output(neigh, skb, is_v6gw);
2307                 dev_xmit_recursion_dec();
2308                 rcu_read_unlock_bh();
2309                 return ret;
2310         }
2311         rcu_read_unlock_bh();
2312 out_drop:
2313         kfree_skb(skb);
2314         return -ENETDOWN;
2315 }
2316
2317 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2318                                    struct bpf_nh_params *nh)
2319 {
2320         const struct iphdr *ip4h = ip_hdr(skb);
2321         struct net *net = dev_net(dev);
2322         int err, ret = NET_XMIT_DROP;
2323
2324         if (!nh) {
2325                 struct flowi4 fl4 = {
2326                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2327                         .flowi4_mark  = skb->mark,
2328                         .flowi4_tos   = RT_TOS(ip4h->tos),
2329                         .flowi4_oif   = dev->ifindex,
2330                         .flowi4_proto = ip4h->protocol,
2331                         .daddr        = ip4h->daddr,
2332                         .saddr        = ip4h->saddr,
2333                 };
2334                 struct rtable *rt;
2335
2336                 rt = ip_route_output_flow(net, &fl4, NULL);
2337                 if (IS_ERR(rt))
2338                         goto out_drop;
2339                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2340                         ip_rt_put(rt);
2341                         goto out_drop;
2342                 }
2343
2344                 skb_dst_set(skb, &rt->dst);
2345         }
2346
2347         err = bpf_out_neigh_v4(net, skb, dev, nh);
2348         if (unlikely(net_xmit_eval(err)))
2349                 dev->stats.tx_errors++;
2350         else
2351                 ret = NET_XMIT_SUCCESS;
2352         goto out_xmit;
2353 out_drop:
2354         dev->stats.tx_errors++;
2355         kfree_skb(skb);
2356 out_xmit:
2357         return ret;
2358 }
2359 #else
2360 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2361                                    struct bpf_nh_params *nh)
2362 {
2363         kfree_skb(skb);
2364         return NET_XMIT_DROP;
2365 }
2366 #endif /* CONFIG_INET */
2367
2368 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2369                                 struct bpf_nh_params *nh)
2370 {
2371         struct ethhdr *ethh = eth_hdr(skb);
2372
2373         if (unlikely(skb->mac_header >= skb->network_header))
2374                 goto out;
2375         bpf_push_mac_rcsum(skb);
2376         if (is_multicast_ether_addr(ethh->h_dest))
2377                 goto out;
2378
2379         skb_pull(skb, sizeof(*ethh));
2380         skb_unset_mac_header(skb);
2381         skb_reset_network_header(skb);
2382
2383         if (skb->protocol == htons(ETH_P_IP))
2384                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2385         else if (skb->protocol == htons(ETH_P_IPV6))
2386                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2387 out:
2388         kfree_skb(skb);
2389         return -ENOTSUPP;
2390 }
2391
2392 /* Internal, non-exposed redirect flags. */
2393 enum {
2394         BPF_F_NEIGH     = (1ULL << 1),
2395         BPF_F_PEER      = (1ULL << 2),
2396         BPF_F_NEXTHOP   = (1ULL << 3),
2397 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2398 };
2399
2400 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2401 {
2402         struct net_device *dev;
2403         struct sk_buff *clone;
2404         int ret;
2405
2406         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2407                 return -EINVAL;
2408
2409         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2410         if (unlikely(!dev))
2411                 return -EINVAL;
2412
2413         clone = skb_clone(skb, GFP_ATOMIC);
2414         if (unlikely(!clone))
2415                 return -ENOMEM;
2416
2417         /* For direct write, we need to keep the invariant that the skbs
2418          * we're dealing with need to be uncloned. Should uncloning fail
2419          * here, we need to free the just generated clone to unclone once
2420          * again.
2421          */
2422         ret = bpf_try_make_head_writable(skb);
2423         if (unlikely(ret)) {
2424                 kfree_skb(clone);
2425                 return -ENOMEM;
2426         }
2427
2428         return __bpf_redirect(clone, dev, flags);
2429 }
2430
2431 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2432         .func           = bpf_clone_redirect,
2433         .gpl_only       = false,
2434         .ret_type       = RET_INTEGER,
2435         .arg1_type      = ARG_PTR_TO_CTX,
2436         .arg2_type      = ARG_ANYTHING,
2437         .arg3_type      = ARG_ANYTHING,
2438 };
2439
2440 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2441 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2442
2443 int skb_do_redirect(struct sk_buff *skb)
2444 {
2445         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2446         struct net *net = dev_net(skb->dev);
2447         struct net_device *dev;
2448         u32 flags = ri->flags;
2449
2450         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2451         ri->tgt_index = 0;
2452         ri->flags = 0;
2453         if (unlikely(!dev))
2454                 goto out_drop;
2455         if (flags & BPF_F_PEER) {
2456                 const struct net_device_ops *ops = dev->netdev_ops;
2457
2458                 if (unlikely(!ops->ndo_get_peer_dev ||
2459                              !skb_at_tc_ingress(skb)))
2460                         goto out_drop;
2461                 dev = ops->ndo_get_peer_dev(dev);
2462                 if (unlikely(!dev ||
2463                              !(dev->flags & IFF_UP) ||
2464                              net_eq(net, dev_net(dev))))
2465                         goto out_drop;
2466                 skb->dev = dev;
2467                 return -EAGAIN;
2468         }
2469         return flags & BPF_F_NEIGH ?
2470                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2471                                     &ri->nh : NULL) :
2472                __bpf_redirect(skb, dev, flags);
2473 out_drop:
2474         kfree_skb(skb);
2475         return -EINVAL;
2476 }
2477
2478 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2479 {
2480         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2481
2482         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2483                 return TC_ACT_SHOT;
2484
2485         ri->flags = flags;
2486         ri->tgt_index = ifindex;
2487
2488         return TC_ACT_REDIRECT;
2489 }
2490
2491 static const struct bpf_func_proto bpf_redirect_proto = {
2492         .func           = bpf_redirect,
2493         .gpl_only       = false,
2494         .ret_type       = RET_INTEGER,
2495         .arg1_type      = ARG_ANYTHING,
2496         .arg2_type      = ARG_ANYTHING,
2497 };
2498
2499 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2500 {
2501         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2502
2503         if (unlikely(flags))
2504                 return TC_ACT_SHOT;
2505
2506         ri->flags = BPF_F_PEER;
2507         ri->tgt_index = ifindex;
2508
2509         return TC_ACT_REDIRECT;
2510 }
2511
2512 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2513         .func           = bpf_redirect_peer,
2514         .gpl_only       = false,
2515         .ret_type       = RET_INTEGER,
2516         .arg1_type      = ARG_ANYTHING,
2517         .arg2_type      = ARG_ANYTHING,
2518 };
2519
2520 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2521            int, plen, u64, flags)
2522 {
2523         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2524
2525         if (unlikely((plen && plen < sizeof(*params)) || flags))
2526                 return TC_ACT_SHOT;
2527
2528         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2529         ri->tgt_index = ifindex;
2530
2531         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2532         if (plen)
2533                 memcpy(&ri->nh, params, sizeof(ri->nh));
2534
2535         return TC_ACT_REDIRECT;
2536 }
2537
2538 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2539         .func           = bpf_redirect_neigh,
2540         .gpl_only       = false,
2541         .ret_type       = RET_INTEGER,
2542         .arg1_type      = ARG_ANYTHING,
2543         .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2544         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2545         .arg4_type      = ARG_ANYTHING,
2546 };
2547
2548 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2549 {
2550         msg->apply_bytes = bytes;
2551         return 0;
2552 }
2553
2554 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2555         .func           = bpf_msg_apply_bytes,
2556         .gpl_only       = false,
2557         .ret_type       = RET_INTEGER,
2558         .arg1_type      = ARG_PTR_TO_CTX,
2559         .arg2_type      = ARG_ANYTHING,
2560 };
2561
2562 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2563 {
2564         msg->cork_bytes = bytes;
2565         return 0;
2566 }
2567
2568 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2569         .func           = bpf_msg_cork_bytes,
2570         .gpl_only       = false,
2571         .ret_type       = RET_INTEGER,
2572         .arg1_type      = ARG_PTR_TO_CTX,
2573         .arg2_type      = ARG_ANYTHING,
2574 };
2575
2576 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2577            u32, end, u64, flags)
2578 {
2579         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2580         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2581         struct scatterlist *sge;
2582         u8 *raw, *to, *from;
2583         struct page *page;
2584
2585         if (unlikely(flags || end <= start))
2586                 return -EINVAL;
2587
2588         /* First find the starting scatterlist element */
2589         i = msg->sg.start;
2590         do {
2591                 offset += len;
2592                 len = sk_msg_elem(msg, i)->length;
2593                 if (start < offset + len)
2594                         break;
2595                 sk_msg_iter_var_next(i);
2596         } while (i != msg->sg.end);
2597
2598         if (unlikely(start >= offset + len))
2599                 return -EINVAL;
2600
2601         first_sge = i;
2602         /* The start may point into the sg element so we need to also
2603          * account for the headroom.
2604          */
2605         bytes_sg_total = start - offset + bytes;
2606         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2607                 goto out;
2608
2609         /* At this point we need to linearize multiple scatterlist
2610          * elements or a single shared page. Either way we need to
2611          * copy into a linear buffer exclusively owned by BPF. Then
2612          * place the buffer in the scatterlist and fixup the original
2613          * entries by removing the entries now in the linear buffer
2614          * and shifting the remaining entries. For now we do not try
2615          * to copy partial entries to avoid complexity of running out
2616          * of sg_entry slots. The downside is reading a single byte
2617          * will copy the entire sg entry.
2618          */
2619         do {
2620                 copy += sk_msg_elem(msg, i)->length;
2621                 sk_msg_iter_var_next(i);
2622                 if (bytes_sg_total <= copy)
2623                         break;
2624         } while (i != msg->sg.end);
2625         last_sge = i;
2626
2627         if (unlikely(bytes_sg_total > copy))
2628                 return -EINVAL;
2629
2630         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2631                            get_order(copy));
2632         if (unlikely(!page))
2633                 return -ENOMEM;
2634
2635         raw = page_address(page);
2636         i = first_sge;
2637         do {
2638                 sge = sk_msg_elem(msg, i);
2639                 from = sg_virt(sge);
2640                 len = sge->length;
2641                 to = raw + poffset;
2642
2643                 memcpy(to, from, len);
2644                 poffset += len;
2645                 sge->length = 0;
2646                 put_page(sg_page(sge));
2647
2648                 sk_msg_iter_var_next(i);
2649         } while (i != last_sge);
2650
2651         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2652
2653         /* To repair sg ring we need to shift entries. If we only
2654          * had a single entry though we can just replace it and
2655          * be done. Otherwise walk the ring and shift the entries.
2656          */
2657         WARN_ON_ONCE(last_sge == first_sge);
2658         shift = last_sge > first_sge ?
2659                 last_sge - first_sge - 1 :
2660                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2661         if (!shift)
2662                 goto out;
2663
2664         i = first_sge;
2665         sk_msg_iter_var_next(i);
2666         do {
2667                 u32 move_from;
2668
2669                 if (i + shift >= NR_MSG_FRAG_IDS)
2670                         move_from = i + shift - NR_MSG_FRAG_IDS;
2671                 else
2672                         move_from = i + shift;
2673                 if (move_from == msg->sg.end)
2674                         break;
2675
2676                 msg->sg.data[i] = msg->sg.data[move_from];
2677                 msg->sg.data[move_from].length = 0;
2678                 msg->sg.data[move_from].page_link = 0;
2679                 msg->sg.data[move_from].offset = 0;
2680                 sk_msg_iter_var_next(i);
2681         } while (1);
2682
2683         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2684                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2685                       msg->sg.end - shift;
2686 out:
2687         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2688         msg->data_end = msg->data + bytes;
2689         return 0;
2690 }
2691
2692 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2693         .func           = bpf_msg_pull_data,
2694         .gpl_only       = false,
2695         .ret_type       = RET_INTEGER,
2696         .arg1_type      = ARG_PTR_TO_CTX,
2697         .arg2_type      = ARG_ANYTHING,
2698         .arg3_type      = ARG_ANYTHING,
2699         .arg4_type      = ARG_ANYTHING,
2700 };
2701
2702 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2703            u32, len, u64, flags)
2704 {
2705         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2706         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2707         u8 *raw, *to, *from;
2708         struct page *page;
2709
2710         if (unlikely(flags))
2711                 return -EINVAL;
2712
2713         /* First find the starting scatterlist element */
2714         i = msg->sg.start;
2715         do {
2716                 offset += l;
2717                 l = sk_msg_elem(msg, i)->length;
2718
2719                 if (start < offset + l)
2720                         break;
2721                 sk_msg_iter_var_next(i);
2722         } while (i != msg->sg.end);
2723
2724         if (start >= offset + l)
2725                 return -EINVAL;
2726
2727         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2728
2729         /* If no space available will fallback to copy, we need at
2730          * least one scatterlist elem available to push data into
2731          * when start aligns to the beginning of an element or two
2732          * when it falls inside an element. We handle the start equals
2733          * offset case because its the common case for inserting a
2734          * header.
2735          */
2736         if (!space || (space == 1 && start != offset))
2737                 copy = msg->sg.data[i].length;
2738
2739         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2740                            get_order(copy + len));
2741         if (unlikely(!page))
2742                 return -ENOMEM;
2743
2744         if (copy) {
2745                 int front, back;
2746
2747                 raw = page_address(page);
2748
2749                 psge = sk_msg_elem(msg, i);
2750                 front = start - offset;
2751                 back = psge->length - front;
2752                 from = sg_virt(psge);
2753
2754                 if (front)
2755                         memcpy(raw, from, front);
2756
2757                 if (back) {
2758                         from += front;
2759                         to = raw + front + len;
2760
2761                         memcpy(to, from, back);
2762                 }
2763
2764                 put_page(sg_page(psge));
2765         } else if (start - offset) {
2766                 psge = sk_msg_elem(msg, i);
2767                 rsge = sk_msg_elem_cpy(msg, i);
2768
2769                 psge->length = start - offset;
2770                 rsge.length -= psge->length;
2771                 rsge.offset += start;
2772
2773                 sk_msg_iter_var_next(i);
2774                 sg_unmark_end(psge);
2775                 sg_unmark_end(&rsge);
2776                 sk_msg_iter_next(msg, end);
2777         }
2778
2779         /* Slot(s) to place newly allocated data */
2780         new = i;
2781
2782         /* Shift one or two slots as needed */
2783         if (!copy) {
2784                 sge = sk_msg_elem_cpy(msg, i);
2785
2786                 sk_msg_iter_var_next(i);
2787                 sg_unmark_end(&sge);
2788                 sk_msg_iter_next(msg, end);
2789
2790                 nsge = sk_msg_elem_cpy(msg, i);
2791                 if (rsge.length) {
2792                         sk_msg_iter_var_next(i);
2793                         nnsge = sk_msg_elem_cpy(msg, i);
2794                 }
2795
2796                 while (i != msg->sg.end) {
2797                         msg->sg.data[i] = sge;
2798                         sge = nsge;
2799                         sk_msg_iter_var_next(i);
2800                         if (rsge.length) {
2801                                 nsge = nnsge;
2802                                 nnsge = sk_msg_elem_cpy(msg, i);
2803                         } else {
2804                                 nsge = sk_msg_elem_cpy(msg, i);
2805                         }
2806                 }
2807         }
2808
2809         /* Place newly allocated data buffer */
2810         sk_mem_charge(msg->sk, len);
2811         msg->sg.size += len;
2812         __clear_bit(new, &msg->sg.copy);
2813         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2814         if (rsge.length) {
2815                 get_page(sg_page(&rsge));
2816                 sk_msg_iter_var_next(new);
2817                 msg->sg.data[new] = rsge;
2818         }
2819
2820         sk_msg_compute_data_pointers(msg);
2821         return 0;
2822 }
2823
2824 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2825         .func           = bpf_msg_push_data,
2826         .gpl_only       = false,
2827         .ret_type       = RET_INTEGER,
2828         .arg1_type      = ARG_PTR_TO_CTX,
2829         .arg2_type      = ARG_ANYTHING,
2830         .arg3_type      = ARG_ANYTHING,
2831         .arg4_type      = ARG_ANYTHING,
2832 };
2833
2834 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2835 {
2836         int prev;
2837
2838         do {
2839                 prev = i;
2840                 sk_msg_iter_var_next(i);
2841                 msg->sg.data[prev] = msg->sg.data[i];
2842         } while (i != msg->sg.end);
2843
2844         sk_msg_iter_prev(msg, end);
2845 }
2846
2847 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2848 {
2849         struct scatterlist tmp, sge;
2850
2851         sk_msg_iter_next(msg, end);
2852         sge = sk_msg_elem_cpy(msg, i);
2853         sk_msg_iter_var_next(i);
2854         tmp = sk_msg_elem_cpy(msg, i);
2855
2856         while (i != msg->sg.end) {
2857                 msg->sg.data[i] = sge;
2858                 sk_msg_iter_var_next(i);
2859                 sge = tmp;
2860                 tmp = sk_msg_elem_cpy(msg, i);
2861         }
2862 }
2863
2864 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2865            u32, len, u64, flags)
2866 {
2867         u32 i = 0, l = 0, space, offset = 0;
2868         u64 last = start + len;
2869         int pop;
2870
2871         if (unlikely(flags))
2872                 return -EINVAL;
2873
2874         /* First find the starting scatterlist element */
2875         i = msg->sg.start;
2876         do {
2877                 offset += l;
2878                 l = sk_msg_elem(msg, i)->length;
2879
2880                 if (start < offset + l)
2881                         break;
2882                 sk_msg_iter_var_next(i);
2883         } while (i != msg->sg.end);
2884
2885         /* Bounds checks: start and pop must be inside message */
2886         if (start >= offset + l || last >= msg->sg.size)
2887                 return -EINVAL;
2888
2889         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2890
2891         pop = len;
2892         /* --------------| offset
2893          * -| start      |-------- len -------|
2894          *
2895          *  |----- a ----|-------- pop -------|----- b ----|
2896          *  |______________________________________________| length
2897          *
2898          *
2899          * a:   region at front of scatter element to save
2900          * b:   region at back of scatter element to save when length > A + pop
2901          * pop: region to pop from element, same as input 'pop' here will be
2902          *      decremented below per iteration.
2903          *
2904          * Two top-level cases to handle when start != offset, first B is non
2905          * zero and second B is zero corresponding to when a pop includes more
2906          * than one element.
2907          *
2908          * Then if B is non-zero AND there is no space allocate space and
2909          * compact A, B regions into page. If there is space shift ring to
2910          * the rigth free'ing the next element in ring to place B, leaving
2911          * A untouched except to reduce length.
2912          */
2913         if (start != offset) {
2914                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2915                 int a = start;
2916                 int b = sge->length - pop - a;
2917
2918                 sk_msg_iter_var_next(i);
2919
2920                 if (pop < sge->length - a) {
2921                         if (space) {
2922                                 sge->length = a;
2923                                 sk_msg_shift_right(msg, i);
2924                                 nsge = sk_msg_elem(msg, i);
2925                                 get_page(sg_page(sge));
2926                                 sg_set_page(nsge,
2927                                             sg_page(sge),
2928                                             b, sge->offset + pop + a);
2929                         } else {
2930                                 struct page *page, *orig;
2931                                 u8 *to, *from;
2932
2933                                 page = alloc_pages(__GFP_NOWARN |
2934                                                    __GFP_COMP   | GFP_ATOMIC,
2935                                                    get_order(a + b));
2936                                 if (unlikely(!page))
2937                                         return -ENOMEM;
2938
2939                                 sge->length = a;
2940                                 orig = sg_page(sge);
2941                                 from = sg_virt(sge);
2942                                 to = page_address(page);
2943                                 memcpy(to, from, a);
2944                                 memcpy(to + a, from + a + pop, b);
2945                                 sg_set_page(sge, page, a + b, 0);
2946                                 put_page(orig);
2947                         }
2948                         pop = 0;
2949                 } else if (pop >= sge->length - a) {
2950                         pop -= (sge->length - a);
2951                         sge->length = a;
2952                 }
2953         }
2954
2955         /* From above the current layout _must_ be as follows,
2956          *
2957          * -| offset
2958          * -| start
2959          *
2960          *  |---- pop ---|---------------- b ------------|
2961          *  |____________________________________________| length
2962          *
2963          * Offset and start of the current msg elem are equal because in the
2964          * previous case we handled offset != start and either consumed the
2965          * entire element and advanced to the next element OR pop == 0.
2966          *
2967          * Two cases to handle here are first pop is less than the length
2968          * leaving some remainder b above. Simply adjust the element's layout
2969          * in this case. Or pop >= length of the element so that b = 0. In this
2970          * case advance to next element decrementing pop.
2971          */
2972         while (pop) {
2973                 struct scatterlist *sge = sk_msg_elem(msg, i);
2974
2975                 if (pop < sge->length) {
2976                         sge->length -= pop;
2977                         sge->offset += pop;
2978                         pop = 0;
2979                 } else {
2980                         pop -= sge->length;
2981                         sk_msg_shift_left(msg, i);
2982                 }
2983                 sk_msg_iter_var_next(i);
2984         }
2985
2986         sk_mem_uncharge(msg->sk, len - pop);
2987         msg->sg.size -= (len - pop);
2988         sk_msg_compute_data_pointers(msg);
2989         return 0;
2990 }
2991
2992 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2993         .func           = bpf_msg_pop_data,
2994         .gpl_only       = false,
2995         .ret_type       = RET_INTEGER,
2996         .arg1_type      = ARG_PTR_TO_CTX,
2997         .arg2_type      = ARG_ANYTHING,
2998         .arg3_type      = ARG_ANYTHING,
2999         .arg4_type      = ARG_ANYTHING,
3000 };
3001
3002 #ifdef CONFIG_CGROUP_NET_CLASSID
3003 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3004 {
3005         return __task_get_classid(current);
3006 }
3007
3008 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3009         .func           = bpf_get_cgroup_classid_curr,
3010         .gpl_only       = false,
3011         .ret_type       = RET_INTEGER,
3012 };
3013
3014 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3015 {
3016         struct sock *sk = skb_to_full_sk(skb);
3017
3018         if (!sk || !sk_fullsock(sk))
3019                 return 0;
3020
3021         return sock_cgroup_classid(&sk->sk_cgrp_data);
3022 }
3023
3024 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3025         .func           = bpf_skb_cgroup_classid,
3026         .gpl_only       = false,
3027         .ret_type       = RET_INTEGER,
3028         .arg1_type      = ARG_PTR_TO_CTX,
3029 };
3030 #endif
3031
3032 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3033 {
3034         return task_get_classid(skb);
3035 }
3036
3037 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3038         .func           = bpf_get_cgroup_classid,
3039         .gpl_only       = false,
3040         .ret_type       = RET_INTEGER,
3041         .arg1_type      = ARG_PTR_TO_CTX,
3042 };
3043
3044 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3045 {
3046         return dst_tclassid(skb);
3047 }
3048
3049 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3050         .func           = bpf_get_route_realm,
3051         .gpl_only       = false,
3052         .ret_type       = RET_INTEGER,
3053         .arg1_type      = ARG_PTR_TO_CTX,
3054 };
3055
3056 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3057 {
3058         /* If skb_clear_hash() was called due to mangling, we can
3059          * trigger SW recalculation here. Later access to hash
3060          * can then use the inline skb->hash via context directly
3061          * instead of calling this helper again.
3062          */
3063         return skb_get_hash(skb);
3064 }
3065
3066 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3067         .func           = bpf_get_hash_recalc,
3068         .gpl_only       = false,
3069         .ret_type       = RET_INTEGER,
3070         .arg1_type      = ARG_PTR_TO_CTX,
3071 };
3072
3073 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3074 {
3075         /* After all direct packet write, this can be used once for
3076          * triggering a lazy recalc on next skb_get_hash() invocation.
3077          */
3078         skb_clear_hash(skb);
3079         return 0;
3080 }
3081
3082 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3083         .func           = bpf_set_hash_invalid,
3084         .gpl_only       = false,
3085         .ret_type       = RET_INTEGER,
3086         .arg1_type      = ARG_PTR_TO_CTX,
3087 };
3088
3089 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3090 {
3091         /* Set user specified hash as L4(+), so that it gets returned
3092          * on skb_get_hash() call unless BPF prog later on triggers a
3093          * skb_clear_hash().
3094          */
3095         __skb_set_sw_hash(skb, hash, true);
3096         return 0;
3097 }
3098
3099 static const struct bpf_func_proto bpf_set_hash_proto = {
3100         .func           = bpf_set_hash,
3101         .gpl_only       = false,
3102         .ret_type       = RET_INTEGER,
3103         .arg1_type      = ARG_PTR_TO_CTX,
3104         .arg2_type      = ARG_ANYTHING,
3105 };
3106
3107 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3108            u16, vlan_tci)
3109 {
3110         int ret;
3111
3112         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3113                      vlan_proto != htons(ETH_P_8021AD)))
3114                 vlan_proto = htons(ETH_P_8021Q);
3115
3116         bpf_push_mac_rcsum(skb);
3117         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3118         bpf_pull_mac_rcsum(skb);
3119
3120         bpf_compute_data_pointers(skb);
3121         return ret;
3122 }
3123
3124 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3125         .func           = bpf_skb_vlan_push,
3126         .gpl_only       = false,
3127         .ret_type       = RET_INTEGER,
3128         .arg1_type      = ARG_PTR_TO_CTX,
3129         .arg2_type      = ARG_ANYTHING,
3130         .arg3_type      = ARG_ANYTHING,
3131 };
3132
3133 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3134 {
3135         int ret;
3136
3137         bpf_push_mac_rcsum(skb);
3138         ret = skb_vlan_pop(skb);
3139         bpf_pull_mac_rcsum(skb);
3140
3141         bpf_compute_data_pointers(skb);
3142         return ret;
3143 }
3144
3145 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3146         .func           = bpf_skb_vlan_pop,
3147         .gpl_only       = false,
3148         .ret_type       = RET_INTEGER,
3149         .arg1_type      = ARG_PTR_TO_CTX,
3150 };
3151
3152 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3153 {
3154         /* Caller already did skb_cow() with len as headroom,
3155          * so no need to do it here.
3156          */
3157         skb_push(skb, len);
3158         memmove(skb->data, skb->data + len, off);
3159         memset(skb->data + off, 0, len);
3160
3161         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3162          * needed here as it does not change the skb->csum
3163          * result for checksum complete when summing over
3164          * zeroed blocks.
3165          */
3166         return 0;
3167 }
3168
3169 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3170 {
3171         /* skb_ensure_writable() is not needed here, as we're
3172          * already working on an uncloned skb.
3173          */
3174         if (unlikely(!pskb_may_pull(skb, off + len)))
3175                 return -ENOMEM;
3176
3177         skb_postpull_rcsum(skb, skb->data + off, len);
3178         memmove(skb->data + len, skb->data, off);
3179         __skb_pull(skb, len);
3180
3181         return 0;
3182 }
3183
3184 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3185 {
3186         bool trans_same = skb->transport_header == skb->network_header;
3187         int ret;
3188
3189         /* There's no need for __skb_push()/__skb_pull() pair to
3190          * get to the start of the mac header as we're guaranteed
3191          * to always start from here under eBPF.
3192          */
3193         ret = bpf_skb_generic_push(skb, off, len);
3194         if (likely(!ret)) {
3195                 skb->mac_header -= len;
3196                 skb->network_header -= len;
3197                 if (trans_same)
3198                         skb->transport_header = skb->network_header;
3199         }
3200
3201         return ret;
3202 }
3203
3204 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3205 {
3206         bool trans_same = skb->transport_header == skb->network_header;
3207         int ret;
3208
3209         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3210         ret = bpf_skb_generic_pop(skb, off, len);
3211         if (likely(!ret)) {
3212                 skb->mac_header += len;
3213                 skb->network_header += len;
3214                 if (trans_same)
3215                         skb->transport_header = skb->network_header;
3216         }
3217
3218         return ret;
3219 }
3220
3221 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3222 {
3223         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3224         u32 off = skb_mac_header_len(skb);
3225         int ret;
3226
3227         ret = skb_cow(skb, len_diff);
3228         if (unlikely(ret < 0))
3229                 return ret;
3230
3231         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3232         if (unlikely(ret < 0))
3233                 return ret;
3234
3235         if (skb_is_gso(skb)) {
3236                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3237
3238                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3239                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3240                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3241                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3242                 }
3243         }
3244
3245         skb->protocol = htons(ETH_P_IPV6);
3246         skb_clear_hash(skb);
3247
3248         return 0;
3249 }
3250
3251 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3252 {
3253         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3254         u32 off = skb_mac_header_len(skb);
3255         int ret;
3256
3257         ret = skb_unclone(skb, GFP_ATOMIC);
3258         if (unlikely(ret < 0))
3259                 return ret;
3260
3261         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3262         if (unlikely(ret < 0))
3263                 return ret;
3264
3265         if (skb_is_gso(skb)) {
3266                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3267
3268                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3269                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3270                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3271                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3272                 }
3273         }
3274
3275         skb->protocol = htons(ETH_P_IP);
3276         skb_clear_hash(skb);
3277
3278         return 0;
3279 }
3280
3281 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3282 {
3283         __be16 from_proto = skb->protocol;
3284
3285         if (from_proto == htons(ETH_P_IP) &&
3286               to_proto == htons(ETH_P_IPV6))
3287                 return bpf_skb_proto_4_to_6(skb);
3288
3289         if (from_proto == htons(ETH_P_IPV6) &&
3290               to_proto == htons(ETH_P_IP))
3291                 return bpf_skb_proto_6_to_4(skb);
3292
3293         return -ENOTSUPP;
3294 }
3295
3296 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3297            u64, flags)
3298 {
3299         int ret;
3300
3301         if (unlikely(flags))
3302                 return -EINVAL;
3303
3304         /* General idea is that this helper does the basic groundwork
3305          * needed for changing the protocol, and eBPF program fills the
3306          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3307          * and other helpers, rather than passing a raw buffer here.
3308          *
3309          * The rationale is to keep this minimal and without a need to
3310          * deal with raw packet data. F.e. even if we would pass buffers
3311          * here, the program still needs to call the bpf_lX_csum_replace()
3312          * helpers anyway. Plus, this way we keep also separation of
3313          * concerns, since f.e. bpf_skb_store_bytes() should only take
3314          * care of stores.
3315          *
3316          * Currently, additional options and extension header space are
3317          * not supported, but flags register is reserved so we can adapt
3318          * that. For offloads, we mark packet as dodgy, so that headers
3319          * need to be verified first.
3320          */
3321         ret = bpf_skb_proto_xlat(skb, proto);
3322         bpf_compute_data_pointers(skb);
3323         return ret;
3324 }
3325
3326 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3327         .func           = bpf_skb_change_proto,
3328         .gpl_only       = false,
3329         .ret_type       = RET_INTEGER,
3330         .arg1_type      = ARG_PTR_TO_CTX,
3331         .arg2_type      = ARG_ANYTHING,
3332         .arg3_type      = ARG_ANYTHING,
3333 };
3334
3335 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3336 {
3337         /* We only allow a restricted subset to be changed for now. */
3338         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3339                      !skb_pkt_type_ok(pkt_type)))
3340                 return -EINVAL;
3341
3342         skb->pkt_type = pkt_type;
3343         return 0;
3344 }
3345
3346 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3347         .func           = bpf_skb_change_type,
3348         .gpl_only       = false,
3349         .ret_type       = RET_INTEGER,
3350         .arg1_type      = ARG_PTR_TO_CTX,
3351         .arg2_type      = ARG_ANYTHING,
3352 };
3353
3354 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3355 {
3356         switch (skb->protocol) {
3357         case htons(ETH_P_IP):
3358                 return sizeof(struct iphdr);
3359         case htons(ETH_P_IPV6):
3360                 return sizeof(struct ipv6hdr);
3361         default:
3362                 return ~0U;
3363         }
3364 }
3365
3366 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3367                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3368
3369 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3370                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3371                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3372                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3373                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3374                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3375                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3376
3377 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3378                             u64 flags)
3379 {
3380         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3381         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3382         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3383         unsigned int gso_type = SKB_GSO_DODGY;
3384         int ret;
3385
3386         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3387                 /* udp gso_size delineates datagrams, only allow if fixed */
3388                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3389                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3390                         return -ENOTSUPP;
3391         }
3392
3393         ret = skb_cow_head(skb, len_diff);
3394         if (unlikely(ret < 0))
3395                 return ret;
3396
3397         if (encap) {
3398                 if (skb->protocol != htons(ETH_P_IP) &&
3399                     skb->protocol != htons(ETH_P_IPV6))
3400                         return -ENOTSUPP;
3401
3402                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3403                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3404                         return -EINVAL;
3405
3406                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3407                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3408                         return -EINVAL;
3409
3410                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3411                     inner_mac_len < ETH_HLEN)
3412                         return -EINVAL;
3413
3414                 if (skb->encapsulation)
3415                         return -EALREADY;
3416
3417                 mac_len = skb->network_header - skb->mac_header;
3418                 inner_net = skb->network_header;
3419                 if (inner_mac_len > len_diff)
3420                         return -EINVAL;
3421                 inner_trans = skb->transport_header;
3422         }
3423
3424         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3425         if (unlikely(ret < 0))
3426                 return ret;
3427
3428         if (encap) {
3429                 skb->inner_mac_header = inner_net - inner_mac_len;
3430                 skb->inner_network_header = inner_net;
3431                 skb->inner_transport_header = inner_trans;
3432
3433                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3434                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3435                 else
3436                         skb_set_inner_protocol(skb, skb->protocol);
3437
3438                 skb->encapsulation = 1;
3439                 skb_set_network_header(skb, mac_len);
3440
3441                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3442                         gso_type |= SKB_GSO_UDP_TUNNEL;
3443                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3444                         gso_type |= SKB_GSO_GRE;
3445                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3446                         gso_type |= SKB_GSO_IPXIP6;
3447                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3448                         gso_type |= SKB_GSO_IPXIP4;
3449
3450                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3451                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3452                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3453                                         sizeof(struct ipv6hdr) :
3454                                         sizeof(struct iphdr);
3455
3456                         skb_set_transport_header(skb, mac_len + nh_len);
3457                 }
3458
3459                 /* Match skb->protocol to new outer l3 protocol */
3460                 if (skb->protocol == htons(ETH_P_IP) &&
3461                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3462                         skb->protocol = htons(ETH_P_IPV6);
3463                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3464                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3465                         skb->protocol = htons(ETH_P_IP);
3466         }
3467
3468         if (skb_is_gso(skb)) {
3469                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3470
3471                 /* Due to header grow, MSS needs to be downgraded. */
3472                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3473                         skb_decrease_gso_size(shinfo, len_diff);
3474
3475                 /* Header must be checked, and gso_segs recomputed. */
3476                 shinfo->gso_type |= gso_type;
3477                 shinfo->gso_segs = 0;
3478         }
3479
3480         return 0;
3481 }
3482
3483 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3484                               u64 flags)
3485 {
3486         int ret;
3487
3488         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3489                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3490                 return -EINVAL;
3491
3492         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3493                 /* udp gso_size delineates datagrams, only allow if fixed */
3494                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3495                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3496                         return -ENOTSUPP;
3497         }
3498
3499         ret = skb_unclone(skb, GFP_ATOMIC);
3500         if (unlikely(ret < 0))
3501                 return ret;
3502
3503         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3504         if (unlikely(ret < 0))
3505                 return ret;
3506
3507         if (skb_is_gso(skb)) {
3508                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3509
3510                 /* Due to header shrink, MSS can be upgraded. */
3511                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3512                         skb_increase_gso_size(shinfo, len_diff);
3513
3514                 /* Header must be checked, and gso_segs recomputed. */
3515                 shinfo->gso_type |= SKB_GSO_DODGY;
3516                 shinfo->gso_segs = 0;
3517         }
3518
3519         return 0;
3520 }
3521
3522 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3523
3524 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3525            u32, mode, u64, flags)
3526 {
3527         u32 len_diff_abs = abs(len_diff);
3528         bool shrink = len_diff < 0;
3529         int ret = 0;
3530
3531         if (unlikely(flags || mode))
3532                 return -EINVAL;
3533         if (unlikely(len_diff_abs > 0xfffU))
3534                 return -EFAULT;
3535
3536         if (!shrink) {
3537                 ret = skb_cow(skb, len_diff);
3538                 if (unlikely(ret < 0))
3539                         return ret;
3540                 __skb_push(skb, len_diff_abs);
3541                 memset(skb->data, 0, len_diff_abs);
3542         } else {
3543                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3544                         return -ENOMEM;
3545                 __skb_pull(skb, len_diff_abs);
3546         }
3547         if (tls_sw_has_ctx_rx(skb->sk)) {
3548                 struct strp_msg *rxm = strp_msg(skb);
3549
3550                 rxm->full_len += len_diff;
3551         }
3552         return ret;
3553 }
3554
3555 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3556         .func           = sk_skb_adjust_room,
3557         .gpl_only       = false,
3558         .ret_type       = RET_INTEGER,
3559         .arg1_type      = ARG_PTR_TO_CTX,
3560         .arg2_type      = ARG_ANYTHING,
3561         .arg3_type      = ARG_ANYTHING,
3562         .arg4_type      = ARG_ANYTHING,
3563 };
3564
3565 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3566            u32, mode, u64, flags)
3567 {
3568         u32 len_cur, len_diff_abs = abs(len_diff);
3569         u32 len_min = bpf_skb_net_base_len(skb);
3570         u32 len_max = BPF_SKB_MAX_LEN;
3571         __be16 proto = skb->protocol;
3572         bool shrink = len_diff < 0;
3573         u32 off;
3574         int ret;
3575
3576         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3577                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3578                 return -EINVAL;
3579         if (unlikely(len_diff_abs > 0xfffU))
3580                 return -EFAULT;
3581         if (unlikely(proto != htons(ETH_P_IP) &&
3582                      proto != htons(ETH_P_IPV6)))
3583                 return -ENOTSUPP;
3584
3585         off = skb_mac_header_len(skb);
3586         switch (mode) {
3587         case BPF_ADJ_ROOM_NET:
3588                 off += bpf_skb_net_base_len(skb);
3589                 break;
3590         case BPF_ADJ_ROOM_MAC:
3591                 break;
3592         default:
3593                 return -ENOTSUPP;
3594         }
3595
3596         len_cur = skb->len - skb_network_offset(skb);
3597         if ((shrink && (len_diff_abs >= len_cur ||
3598                         len_cur - len_diff_abs < len_min)) ||
3599             (!shrink && (skb->len + len_diff_abs > len_max &&
3600                          !skb_is_gso(skb))))
3601                 return -ENOTSUPP;
3602
3603         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3604                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3605         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3606                 __skb_reset_checksum_unnecessary(skb);
3607
3608         bpf_compute_data_pointers(skb);
3609         return ret;
3610 }
3611
3612 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3613         .func           = bpf_skb_adjust_room,
3614         .gpl_only       = false,
3615         .ret_type       = RET_INTEGER,
3616         .arg1_type      = ARG_PTR_TO_CTX,
3617         .arg2_type      = ARG_ANYTHING,
3618         .arg3_type      = ARG_ANYTHING,
3619         .arg4_type      = ARG_ANYTHING,
3620 };
3621
3622 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3623 {
3624         u32 min_len = skb_network_offset(skb);
3625
3626         if (skb_transport_header_was_set(skb))
3627                 min_len = skb_transport_offset(skb);
3628         if (skb->ip_summed == CHECKSUM_PARTIAL)
3629                 min_len = skb_checksum_start_offset(skb) +
3630                           skb->csum_offset + sizeof(__sum16);
3631         return min_len;
3632 }
3633
3634 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3635 {
3636         unsigned int old_len = skb->len;
3637         int ret;
3638
3639         ret = __skb_grow_rcsum(skb, new_len);
3640         if (!ret)
3641                 memset(skb->data + old_len, 0, new_len - old_len);
3642         return ret;
3643 }
3644
3645 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3646 {
3647         return __skb_trim_rcsum(skb, new_len);
3648 }
3649
3650 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3651                                         u64 flags)
3652 {
3653         u32 max_len = BPF_SKB_MAX_LEN;
3654         u32 min_len = __bpf_skb_min_len(skb);
3655         int ret;
3656
3657         if (unlikely(flags || new_len > max_len || new_len < min_len))
3658                 return -EINVAL;
3659         if (skb->encapsulation)
3660                 return -ENOTSUPP;
3661
3662         /* The basic idea of this helper is that it's performing the
3663          * needed work to either grow or trim an skb, and eBPF program
3664          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3665          * bpf_lX_csum_replace() and others rather than passing a raw
3666          * buffer here. This one is a slow path helper and intended
3667          * for replies with control messages.
3668          *
3669          * Like in bpf_skb_change_proto(), we want to keep this rather
3670          * minimal and without protocol specifics so that we are able
3671          * to separate concerns as in bpf_skb_store_bytes() should only
3672          * be the one responsible for writing buffers.
3673          *
3674          * It's really expected to be a slow path operation here for
3675          * control message replies, so we're implicitly linearizing,
3676          * uncloning and drop offloads from the skb by this.
3677          */
3678         ret = __bpf_try_make_writable(skb, skb->len);
3679         if (!ret) {
3680                 if (new_len > skb->len)
3681                         ret = bpf_skb_grow_rcsum(skb, new_len);
3682                 else if (new_len < skb->len)
3683                         ret = bpf_skb_trim_rcsum(skb, new_len);
3684                 if (!ret && skb_is_gso(skb))
3685                         skb_gso_reset(skb);
3686         }
3687         return ret;
3688 }
3689
3690 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3691            u64, flags)
3692 {
3693         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3694
3695         bpf_compute_data_pointers(skb);
3696         return ret;
3697 }
3698
3699 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3700         .func           = bpf_skb_change_tail,
3701         .gpl_only       = false,
3702         .ret_type       = RET_INTEGER,
3703         .arg1_type      = ARG_PTR_TO_CTX,
3704         .arg2_type      = ARG_ANYTHING,
3705         .arg3_type      = ARG_ANYTHING,
3706 };
3707
3708 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3709            u64, flags)
3710 {
3711         return __bpf_skb_change_tail(skb, new_len, flags);
3712 }
3713
3714 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3715         .func           = sk_skb_change_tail,
3716         .gpl_only       = false,
3717         .ret_type       = RET_INTEGER,
3718         .arg1_type      = ARG_PTR_TO_CTX,
3719         .arg2_type      = ARG_ANYTHING,
3720         .arg3_type      = ARG_ANYTHING,
3721 };
3722
3723 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3724                                         u64 flags)
3725 {
3726         u32 max_len = BPF_SKB_MAX_LEN;
3727         u32 new_len = skb->len + head_room;
3728         int ret;
3729
3730         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3731                      new_len < skb->len))
3732                 return -EINVAL;
3733
3734         ret = skb_cow(skb, head_room);
3735         if (likely(!ret)) {
3736                 /* Idea for this helper is that we currently only
3737                  * allow to expand on mac header. This means that
3738                  * skb->protocol network header, etc, stay as is.
3739                  * Compared to bpf_skb_change_tail(), we're more
3740                  * flexible due to not needing to linearize or
3741                  * reset GSO. Intention for this helper is to be
3742                  * used by an L3 skb that needs to push mac header
3743                  * for redirection into L2 device.
3744                  */
3745                 __skb_push(skb, head_room);
3746                 memset(skb->data, 0, head_room);
3747                 skb_reset_mac_header(skb);
3748                 skb_reset_mac_len(skb);
3749         }
3750
3751         return ret;
3752 }
3753
3754 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3755            u64, flags)
3756 {
3757         int ret = __bpf_skb_change_head(skb, head_room, flags);
3758
3759         bpf_compute_data_pointers(skb);
3760         return ret;
3761 }
3762
3763 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3764         .func           = bpf_skb_change_head,
3765         .gpl_only       = false,
3766         .ret_type       = RET_INTEGER,
3767         .arg1_type      = ARG_PTR_TO_CTX,
3768         .arg2_type      = ARG_ANYTHING,
3769         .arg3_type      = ARG_ANYTHING,
3770 };
3771
3772 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3773            u64, flags)
3774 {
3775         return __bpf_skb_change_head(skb, head_room, flags);
3776 }
3777
3778 static const struct bpf_func_proto sk_skb_change_head_proto = {
3779         .func           = sk_skb_change_head,
3780         .gpl_only       = false,
3781         .ret_type       = RET_INTEGER,
3782         .arg1_type      = ARG_PTR_TO_CTX,
3783         .arg2_type      = ARG_ANYTHING,
3784         .arg3_type      = ARG_ANYTHING,
3785 };
3786 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3787 {
3788         return xdp_data_meta_unsupported(xdp) ? 0 :
3789                xdp->data - xdp->data_meta;
3790 }
3791
3792 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3793 {
3794         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3795         unsigned long metalen = xdp_get_metalen(xdp);
3796         void *data_start = xdp_frame_end + metalen;
3797         void *data = xdp->data + offset;
3798
3799         if (unlikely(data < data_start ||
3800                      data > xdp->data_end - ETH_HLEN))
3801                 return -EINVAL;
3802
3803         if (metalen)
3804                 memmove(xdp->data_meta + offset,
3805                         xdp->data_meta, metalen);
3806         xdp->data_meta += offset;
3807         xdp->data = data;
3808
3809         return 0;
3810 }
3811
3812 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3813         .func           = bpf_xdp_adjust_head,
3814         .gpl_only       = false,
3815         .ret_type       = RET_INTEGER,
3816         .arg1_type      = ARG_PTR_TO_CTX,
3817         .arg2_type      = ARG_ANYTHING,
3818 };
3819
3820 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3821 {
3822         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3823         void *data_end = xdp->data_end + offset;
3824
3825         /* Notice that xdp_data_hard_end have reserved some tailroom */
3826         if (unlikely(data_end > data_hard_end))
3827                 return -EINVAL;
3828
3829         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3830         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3831                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3832                 return -EINVAL;
3833         }
3834
3835         if (unlikely(data_end < xdp->data + ETH_HLEN))
3836                 return -EINVAL;
3837
3838         /* Clear memory area on grow, can contain uninit kernel memory */
3839         if (offset > 0)
3840                 memset(xdp->data_end, 0, offset);
3841
3842         xdp->data_end = data_end;
3843
3844         return 0;
3845 }
3846
3847 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3848         .func           = bpf_xdp_adjust_tail,
3849         .gpl_only       = false,
3850         .ret_type       = RET_INTEGER,
3851         .arg1_type      = ARG_PTR_TO_CTX,
3852         .arg2_type      = ARG_ANYTHING,
3853 };
3854
3855 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3856 {
3857         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3858         void *meta = xdp->data_meta + offset;
3859         unsigned long metalen = xdp->data - meta;
3860
3861         if (xdp_data_meta_unsupported(xdp))
3862                 return -ENOTSUPP;
3863         if (unlikely(meta < xdp_frame_end ||
3864                      meta > xdp->data))
3865                 return -EINVAL;
3866         if (unlikely(xdp_metalen_invalid(metalen)))
3867                 return -EACCES;
3868
3869         xdp->data_meta = meta;
3870
3871         return 0;
3872 }
3873
3874 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3875         .func           = bpf_xdp_adjust_meta,
3876         .gpl_only       = false,
3877         .ret_type       = RET_INTEGER,
3878         .arg1_type      = ARG_PTR_TO_CTX,
3879         .arg2_type      = ARG_ANYTHING,
3880 };
3881
3882 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3883  * below:
3884  *
3885  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3886  *    of the redirect and store it (along with some other metadata) in a per-CPU
3887  *    struct bpf_redirect_info.
3888  *
3889  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3890  *    call xdp_do_redirect() which will use the information in struct
3891  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3892  *    bulk queue structure.
3893  *
3894  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3895  *    which will flush all the different bulk queues, thus completing the
3896  *    redirect.
3897  *
3898  * Pointers to the map entries will be kept around for this whole sequence of
3899  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3900  * the core code; instead, the RCU protection relies on everything happening
3901  * inside a single NAPI poll sequence, which means it's between a pair of calls
3902  * to local_bh_disable()/local_bh_enable().
3903  *
3904  * The map entries are marked as __rcu and the map code makes sure to
3905  * dereference those pointers with rcu_dereference_check() in a way that works
3906  * for both sections that to hold an rcu_read_lock() and sections that are
3907  * called from NAPI without a separate rcu_read_lock(). The code below does not
3908  * use RCU annotations, but relies on those in the map code.
3909  */
3910 void xdp_do_flush(void)
3911 {
3912         __dev_flush();
3913         __cpu_map_flush();
3914         __xsk_map_flush();
3915 }
3916 EXPORT_SYMBOL_GPL(xdp_do_flush);
3917
3918 void bpf_clear_redirect_map(struct bpf_map *map)
3919 {
3920         struct bpf_redirect_info *ri;
3921         int cpu;
3922
3923         for_each_possible_cpu(cpu) {
3924                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3925                 /* Avoid polluting remote cacheline due to writes if
3926                  * not needed. Once we pass this test, we need the
3927                  * cmpxchg() to make sure it hasn't been changed in
3928                  * the meantime by remote CPU.
3929                  */
3930                 if (unlikely(READ_ONCE(ri->map) == map))
3931                         cmpxchg(&ri->map, map, NULL);
3932         }
3933 }
3934
3935 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
3936 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
3937
3938 u32 xdp_master_redirect(struct xdp_buff *xdp)
3939 {
3940         struct net_device *master, *slave;
3941         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3942
3943         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
3944         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
3945         if (slave && slave != xdp->rxq->dev) {
3946                 /* The target device is different from the receiving device, so
3947                  * redirect it to the new device.
3948                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
3949                  * drivers to unmap the packet from their rx ring.
3950                  */
3951                 ri->tgt_index = slave->ifindex;
3952                 ri->map_id = INT_MAX;
3953                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
3954                 return XDP_REDIRECT;
3955         }
3956         return XDP_TX;
3957 }
3958 EXPORT_SYMBOL_GPL(xdp_master_redirect);
3959
3960 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3961                     struct bpf_prog *xdp_prog)
3962 {
3963         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3964         enum bpf_map_type map_type = ri->map_type;
3965         void *fwd = ri->tgt_value;
3966         u32 map_id = ri->map_id;
3967         struct bpf_map *map;
3968         int err;
3969
3970         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3971         ri->map_type = BPF_MAP_TYPE_UNSPEC;
3972
3973         switch (map_type) {
3974         case BPF_MAP_TYPE_DEVMAP:
3975                 fallthrough;
3976         case BPF_MAP_TYPE_DEVMAP_HASH:
3977                 map = READ_ONCE(ri->map);
3978                 if (unlikely(map)) {
3979                         WRITE_ONCE(ri->map, NULL);
3980                         err = dev_map_enqueue_multi(xdp, dev, map,
3981                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
3982                 } else {
3983                         err = dev_map_enqueue(fwd, xdp, dev);
3984                 }
3985                 break;
3986         case BPF_MAP_TYPE_CPUMAP:
3987                 err = cpu_map_enqueue(fwd, xdp, dev);
3988                 break;
3989         case BPF_MAP_TYPE_XSKMAP:
3990                 err = __xsk_map_redirect(fwd, xdp);
3991                 break;
3992         case BPF_MAP_TYPE_UNSPEC:
3993                 if (map_id == INT_MAX) {
3994                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
3995                         if (unlikely(!fwd)) {
3996                                 err = -EINVAL;
3997                                 break;
3998                         }
3999                         err = dev_xdp_enqueue(fwd, xdp, dev);
4000                         break;
4001                 }
4002                 fallthrough;
4003         default:
4004                 err = -EBADRQC;
4005         }
4006
4007         if (unlikely(err))
4008                 goto err;
4009
4010         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4011         return 0;
4012 err:
4013         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4014         return err;
4015 }
4016 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4017
4018 static int xdp_do_generic_redirect_map(struct net_device *dev,
4019                                        struct sk_buff *skb,
4020                                        struct xdp_buff *xdp,
4021                                        struct bpf_prog *xdp_prog,
4022                                        void *fwd,
4023                                        enum bpf_map_type map_type, u32 map_id)
4024 {
4025         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4026         struct bpf_map *map;
4027         int err;
4028
4029         switch (map_type) {
4030         case BPF_MAP_TYPE_DEVMAP:
4031                 fallthrough;
4032         case BPF_MAP_TYPE_DEVMAP_HASH:
4033                 map = READ_ONCE(ri->map);
4034                 if (unlikely(map)) {
4035                         WRITE_ONCE(ri->map, NULL);
4036                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4037                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4038                 } else {
4039                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4040                 }
4041                 if (unlikely(err))
4042                         goto err;
4043                 break;
4044         case BPF_MAP_TYPE_XSKMAP:
4045                 err = xsk_generic_rcv(fwd, xdp);
4046                 if (err)
4047                         goto err;
4048                 consume_skb(skb);
4049                 break;
4050         case BPF_MAP_TYPE_CPUMAP:
4051                 err = cpu_map_generic_redirect(fwd, skb);
4052                 if (unlikely(err))
4053                         goto err;
4054                 break;
4055         default:
4056                 err = -EBADRQC;
4057                 goto err;
4058         }
4059
4060         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4061         return 0;
4062 err:
4063         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4064         return err;
4065 }
4066
4067 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4068                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4069 {
4070         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4071         enum bpf_map_type map_type = ri->map_type;
4072         void *fwd = ri->tgt_value;
4073         u32 map_id = ri->map_id;
4074         int err;
4075
4076         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4077         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4078
4079         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4080                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4081                 if (unlikely(!fwd)) {
4082                         err = -EINVAL;
4083                         goto err;
4084                 }
4085
4086                 err = xdp_ok_fwd_dev(fwd, skb->len);
4087                 if (unlikely(err))
4088                         goto err;
4089
4090                 skb->dev = fwd;
4091                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4092                 generic_xdp_tx(skb, xdp_prog);
4093                 return 0;
4094         }
4095
4096         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4097 err:
4098         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4099         return err;
4100 }
4101
4102 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4103 {
4104         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4105
4106         if (unlikely(flags))
4107                 return XDP_ABORTED;
4108
4109         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4110          * by map_idr) is used for ifindex based XDP redirect.
4111          */
4112         ri->tgt_index = ifindex;
4113         ri->map_id = INT_MAX;
4114         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4115
4116         return XDP_REDIRECT;
4117 }
4118
4119 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4120         .func           = bpf_xdp_redirect,
4121         .gpl_only       = false,
4122         .ret_type       = RET_INTEGER,
4123         .arg1_type      = ARG_ANYTHING,
4124         .arg2_type      = ARG_ANYTHING,
4125 };
4126
4127 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4128            u64, flags)
4129 {
4130         return map->ops->map_redirect(map, ifindex, flags);
4131 }
4132
4133 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4134         .func           = bpf_xdp_redirect_map,
4135         .gpl_only       = false,
4136         .ret_type       = RET_INTEGER,
4137         .arg1_type      = ARG_CONST_MAP_PTR,
4138         .arg2_type      = ARG_ANYTHING,
4139         .arg3_type      = ARG_ANYTHING,
4140 };
4141
4142 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4143                                   unsigned long off, unsigned long len)
4144 {
4145         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4146
4147         if (unlikely(!ptr))
4148                 return len;
4149         if (ptr != dst_buff)
4150                 memcpy(dst_buff, ptr, len);
4151
4152         return 0;
4153 }
4154
4155 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4156            u64, flags, void *, meta, u64, meta_size)
4157 {
4158         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4159
4160         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4161                 return -EINVAL;
4162         if (unlikely(!skb || skb_size > skb->len))
4163                 return -EFAULT;
4164
4165         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4166                                 bpf_skb_copy);
4167 }
4168
4169 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4170         .func           = bpf_skb_event_output,
4171         .gpl_only       = true,
4172         .ret_type       = RET_INTEGER,
4173         .arg1_type      = ARG_PTR_TO_CTX,
4174         .arg2_type      = ARG_CONST_MAP_PTR,
4175         .arg3_type      = ARG_ANYTHING,
4176         .arg4_type      = ARG_PTR_TO_MEM,
4177         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4178 };
4179
4180 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4181
4182 const struct bpf_func_proto bpf_skb_output_proto = {
4183         .func           = bpf_skb_event_output,
4184         .gpl_only       = true,
4185         .ret_type       = RET_INTEGER,
4186         .arg1_type      = ARG_PTR_TO_BTF_ID,
4187         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4188         .arg2_type      = ARG_CONST_MAP_PTR,
4189         .arg3_type      = ARG_ANYTHING,
4190         .arg4_type      = ARG_PTR_TO_MEM,
4191         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4192 };
4193
4194 static unsigned short bpf_tunnel_key_af(u64 flags)
4195 {
4196         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4197 }
4198
4199 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4200            u32, size, u64, flags)
4201 {
4202         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4203         u8 compat[sizeof(struct bpf_tunnel_key)];
4204         void *to_orig = to;
4205         int err;
4206
4207         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4208                 err = -EINVAL;
4209                 goto err_clear;
4210         }
4211         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4212                 err = -EPROTO;
4213                 goto err_clear;
4214         }
4215         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4216                 err = -EINVAL;
4217                 switch (size) {
4218                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4219                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4220                         goto set_compat;
4221                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4222                         /* Fixup deprecated structure layouts here, so we have
4223                          * a common path later on.
4224                          */
4225                         if (ip_tunnel_info_af(info) != AF_INET)
4226                                 goto err_clear;
4227 set_compat:
4228                         to = (struct bpf_tunnel_key *)compat;
4229                         break;
4230                 default:
4231                         goto err_clear;
4232                 }
4233         }
4234
4235         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4236         to->tunnel_tos = info->key.tos;
4237         to->tunnel_ttl = info->key.ttl;
4238         to->tunnel_ext = 0;
4239
4240         if (flags & BPF_F_TUNINFO_IPV6) {
4241                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4242                        sizeof(to->remote_ipv6));
4243                 to->tunnel_label = be32_to_cpu(info->key.label);
4244         } else {
4245                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4246                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4247                 to->tunnel_label = 0;
4248         }
4249
4250         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4251                 memcpy(to_orig, to, size);
4252
4253         return 0;
4254 err_clear:
4255         memset(to_orig, 0, size);
4256         return err;
4257 }
4258
4259 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4260         .func           = bpf_skb_get_tunnel_key,
4261         .gpl_only       = false,
4262         .ret_type       = RET_INTEGER,
4263         .arg1_type      = ARG_PTR_TO_CTX,
4264         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4265         .arg3_type      = ARG_CONST_SIZE,
4266         .arg4_type      = ARG_ANYTHING,
4267 };
4268
4269 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4270 {
4271         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4272         int err;
4273
4274         if (unlikely(!info ||
4275                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4276                 err = -ENOENT;
4277                 goto err_clear;
4278         }
4279         if (unlikely(size < info->options_len)) {
4280                 err = -ENOMEM;
4281                 goto err_clear;
4282         }
4283
4284         ip_tunnel_info_opts_get(to, info);
4285         if (size > info->options_len)
4286                 memset(to + info->options_len, 0, size - info->options_len);
4287
4288         return info->options_len;
4289 err_clear:
4290         memset(to, 0, size);
4291         return err;
4292 }
4293
4294 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4295         .func           = bpf_skb_get_tunnel_opt,
4296         .gpl_only       = false,
4297         .ret_type       = RET_INTEGER,
4298         .arg1_type      = ARG_PTR_TO_CTX,
4299         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4300         .arg3_type      = ARG_CONST_SIZE,
4301 };
4302
4303 static struct metadata_dst __percpu *md_dst;
4304
4305 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4306            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4307 {
4308         struct metadata_dst *md = this_cpu_ptr(md_dst);
4309         u8 compat[sizeof(struct bpf_tunnel_key)];
4310         struct ip_tunnel_info *info;
4311
4312         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4313                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4314                 return -EINVAL;
4315         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4316                 switch (size) {
4317                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4318                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4319                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4320                         /* Fixup deprecated structure layouts here, so we have
4321                          * a common path later on.
4322                          */
4323                         memcpy(compat, from, size);
4324                         memset(compat + size, 0, sizeof(compat) - size);
4325                         from = (const struct bpf_tunnel_key *) compat;
4326                         break;
4327                 default:
4328                         return -EINVAL;
4329                 }
4330         }
4331         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4332                      from->tunnel_ext))
4333                 return -EINVAL;
4334
4335         skb_dst_drop(skb);
4336         dst_hold((struct dst_entry *) md);
4337         skb_dst_set(skb, (struct dst_entry *) md);
4338
4339         info = &md->u.tun_info;
4340         memset(info, 0, sizeof(*info));
4341         info->mode = IP_TUNNEL_INFO_TX;
4342
4343         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4344         if (flags & BPF_F_DONT_FRAGMENT)
4345                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4346         if (flags & BPF_F_ZERO_CSUM_TX)
4347                 info->key.tun_flags &= ~TUNNEL_CSUM;
4348         if (flags & BPF_F_SEQ_NUMBER)
4349                 info->key.tun_flags |= TUNNEL_SEQ;
4350
4351         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4352         info->key.tos = from->tunnel_tos;
4353         info->key.ttl = from->tunnel_ttl;
4354
4355         if (flags & BPF_F_TUNINFO_IPV6) {
4356                 info->mode |= IP_TUNNEL_INFO_IPV6;
4357                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4358                        sizeof(from->remote_ipv6));
4359                 info->key.label = cpu_to_be32(from->tunnel_label) &
4360                                   IPV6_FLOWLABEL_MASK;
4361         } else {
4362                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4363         }
4364
4365         return 0;
4366 }
4367
4368 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4369         .func           = bpf_skb_set_tunnel_key,
4370         .gpl_only       = false,
4371         .ret_type       = RET_INTEGER,
4372         .arg1_type      = ARG_PTR_TO_CTX,
4373         .arg2_type      = ARG_PTR_TO_MEM,
4374         .arg3_type      = ARG_CONST_SIZE,
4375         .arg4_type      = ARG_ANYTHING,
4376 };
4377
4378 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4379            const u8 *, from, u32, size)
4380 {
4381         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4382         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4383
4384         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4385                 return -EINVAL;
4386         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4387                 return -ENOMEM;
4388
4389         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4390
4391         return 0;
4392 }
4393
4394 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4395         .func           = bpf_skb_set_tunnel_opt,
4396         .gpl_only       = false,
4397         .ret_type       = RET_INTEGER,
4398         .arg1_type      = ARG_PTR_TO_CTX,
4399         .arg2_type      = ARG_PTR_TO_MEM,
4400         .arg3_type      = ARG_CONST_SIZE,
4401 };
4402
4403 static const struct bpf_func_proto *
4404 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4405 {
4406         if (!md_dst) {
4407                 struct metadata_dst __percpu *tmp;
4408
4409                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4410                                                 METADATA_IP_TUNNEL,
4411                                                 GFP_KERNEL);
4412                 if (!tmp)
4413                         return NULL;
4414                 if (cmpxchg(&md_dst, NULL, tmp))
4415                         metadata_dst_free_percpu(tmp);
4416         }
4417
4418         switch (which) {
4419         case BPF_FUNC_skb_set_tunnel_key:
4420                 return &bpf_skb_set_tunnel_key_proto;
4421         case BPF_FUNC_skb_set_tunnel_opt:
4422                 return &bpf_skb_set_tunnel_opt_proto;
4423         default:
4424                 return NULL;
4425         }
4426 }
4427
4428 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4429            u32, idx)
4430 {
4431         struct bpf_array *array = container_of(map, struct bpf_array, map);
4432         struct cgroup *cgrp;
4433         struct sock *sk;
4434
4435         sk = skb_to_full_sk(skb);
4436         if (!sk || !sk_fullsock(sk))
4437                 return -ENOENT;
4438         if (unlikely(idx >= array->map.max_entries))
4439                 return -E2BIG;
4440
4441         cgrp = READ_ONCE(array->ptrs[idx]);
4442         if (unlikely(!cgrp))
4443                 return -EAGAIN;
4444
4445         return sk_under_cgroup_hierarchy(sk, cgrp);
4446 }
4447
4448 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4449         .func           = bpf_skb_under_cgroup,
4450         .gpl_only       = false,
4451         .ret_type       = RET_INTEGER,
4452         .arg1_type      = ARG_PTR_TO_CTX,
4453         .arg2_type      = ARG_CONST_MAP_PTR,
4454         .arg3_type      = ARG_ANYTHING,
4455 };
4456
4457 #ifdef CONFIG_SOCK_CGROUP_DATA
4458 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4459 {
4460         struct cgroup *cgrp;
4461
4462         sk = sk_to_full_sk(sk);
4463         if (!sk || !sk_fullsock(sk))
4464                 return 0;
4465
4466         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4467         return cgroup_id(cgrp);
4468 }
4469
4470 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4471 {
4472         return __bpf_sk_cgroup_id(skb->sk);
4473 }
4474
4475 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4476         .func           = bpf_skb_cgroup_id,
4477         .gpl_only       = false,
4478         .ret_type       = RET_INTEGER,
4479         .arg1_type      = ARG_PTR_TO_CTX,
4480 };
4481
4482 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4483                                               int ancestor_level)
4484 {
4485         struct cgroup *ancestor;
4486         struct cgroup *cgrp;
4487
4488         sk = sk_to_full_sk(sk);
4489         if (!sk || !sk_fullsock(sk))
4490                 return 0;
4491
4492         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4493         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4494         if (!ancestor)
4495                 return 0;
4496
4497         return cgroup_id(ancestor);
4498 }
4499
4500 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4501            ancestor_level)
4502 {
4503         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4504 }
4505
4506 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4507         .func           = bpf_skb_ancestor_cgroup_id,
4508         .gpl_only       = false,
4509         .ret_type       = RET_INTEGER,
4510         .arg1_type      = ARG_PTR_TO_CTX,
4511         .arg2_type      = ARG_ANYTHING,
4512 };
4513
4514 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4515 {
4516         return __bpf_sk_cgroup_id(sk);
4517 }
4518
4519 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4520         .func           = bpf_sk_cgroup_id,
4521         .gpl_only       = false,
4522         .ret_type       = RET_INTEGER,
4523         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4524 };
4525
4526 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4527 {
4528         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4529 }
4530
4531 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4532         .func           = bpf_sk_ancestor_cgroup_id,
4533         .gpl_only       = false,
4534         .ret_type       = RET_INTEGER,
4535         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4536         .arg2_type      = ARG_ANYTHING,
4537 };
4538 #endif
4539
4540 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4541                                   unsigned long off, unsigned long len)
4542 {
4543         memcpy(dst_buff, src_buff + off, len);
4544         return 0;
4545 }
4546
4547 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4548            u64, flags, void *, meta, u64, meta_size)
4549 {
4550         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4551
4552         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4553                 return -EINVAL;
4554         if (unlikely(!xdp ||
4555                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4556                 return -EFAULT;
4557
4558         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4559                                 xdp_size, bpf_xdp_copy);
4560 }
4561
4562 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4563         .func           = bpf_xdp_event_output,
4564         .gpl_only       = true,
4565         .ret_type       = RET_INTEGER,
4566         .arg1_type      = ARG_PTR_TO_CTX,
4567         .arg2_type      = ARG_CONST_MAP_PTR,
4568         .arg3_type      = ARG_ANYTHING,
4569         .arg4_type      = ARG_PTR_TO_MEM,
4570         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4571 };
4572
4573 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4574
4575 const struct bpf_func_proto bpf_xdp_output_proto = {
4576         .func           = bpf_xdp_event_output,
4577         .gpl_only       = true,
4578         .ret_type       = RET_INTEGER,
4579         .arg1_type      = ARG_PTR_TO_BTF_ID,
4580         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4581         .arg2_type      = ARG_CONST_MAP_PTR,
4582         .arg3_type      = ARG_ANYTHING,
4583         .arg4_type      = ARG_PTR_TO_MEM,
4584         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4585 };
4586
4587 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4588 {
4589         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4590 }
4591
4592 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4593         .func           = bpf_get_socket_cookie,
4594         .gpl_only       = false,
4595         .ret_type       = RET_INTEGER,
4596         .arg1_type      = ARG_PTR_TO_CTX,
4597 };
4598
4599 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4600 {
4601         return __sock_gen_cookie(ctx->sk);
4602 }
4603
4604 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4605         .func           = bpf_get_socket_cookie_sock_addr,
4606         .gpl_only       = false,
4607         .ret_type       = RET_INTEGER,
4608         .arg1_type      = ARG_PTR_TO_CTX,
4609 };
4610
4611 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4612 {
4613         return __sock_gen_cookie(ctx);
4614 }
4615
4616 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4617         .func           = bpf_get_socket_cookie_sock,
4618         .gpl_only       = false,
4619         .ret_type       = RET_INTEGER,
4620         .arg1_type      = ARG_PTR_TO_CTX,
4621 };
4622
4623 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4624 {
4625         return sk ? sock_gen_cookie(sk) : 0;
4626 }
4627
4628 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4629         .func           = bpf_get_socket_ptr_cookie,
4630         .gpl_only       = false,
4631         .ret_type       = RET_INTEGER,
4632         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4633 };
4634
4635 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4636 {
4637         return __sock_gen_cookie(ctx->sk);
4638 }
4639
4640 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4641         .func           = bpf_get_socket_cookie_sock_ops,
4642         .gpl_only       = false,
4643         .ret_type       = RET_INTEGER,
4644         .arg1_type      = ARG_PTR_TO_CTX,
4645 };
4646
4647 static u64 __bpf_get_netns_cookie(struct sock *sk)
4648 {
4649         const struct net *net = sk ? sock_net(sk) : &init_net;
4650
4651         return net->net_cookie;
4652 }
4653
4654 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4655 {
4656         return __bpf_get_netns_cookie(ctx);
4657 }
4658
4659 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4660         .func           = bpf_get_netns_cookie_sock,
4661         .gpl_only       = false,
4662         .ret_type       = RET_INTEGER,
4663         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4664 };
4665
4666 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4667 {
4668         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4669 }
4670
4671 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4672         .func           = bpf_get_netns_cookie_sock_addr,
4673         .gpl_only       = false,
4674         .ret_type       = RET_INTEGER,
4675         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4676 };
4677
4678 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4679 {
4680         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4681 }
4682
4683 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4684         .func           = bpf_get_netns_cookie_sock_ops,
4685         .gpl_only       = false,
4686         .ret_type       = RET_INTEGER,
4687         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4688 };
4689
4690 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4691 {
4692         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4693 }
4694
4695 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4696         .func           = bpf_get_netns_cookie_sk_msg,
4697         .gpl_only       = false,
4698         .ret_type       = RET_INTEGER,
4699         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4700 };
4701
4702 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4703 {
4704         struct sock *sk = sk_to_full_sk(skb->sk);
4705         kuid_t kuid;
4706
4707         if (!sk || !sk_fullsock(sk))
4708                 return overflowuid;
4709         kuid = sock_net_uid(sock_net(sk), sk);
4710         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4711 }
4712
4713 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4714         .func           = bpf_get_socket_uid,
4715         .gpl_only       = false,
4716         .ret_type       = RET_INTEGER,
4717         .arg1_type      = ARG_PTR_TO_CTX,
4718 };
4719
4720 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4721                            char *optval, int optlen)
4722 {
4723         char devname[IFNAMSIZ];
4724         int val, valbool;
4725         struct net *net;
4726         int ifindex;
4727         int ret = 0;
4728
4729         if (!sk_fullsock(sk))
4730                 return -EINVAL;
4731
4732         sock_owned_by_me(sk);
4733
4734         if (level == SOL_SOCKET) {
4735                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4736                         return -EINVAL;
4737                 val = *((int *)optval);
4738                 valbool = val ? 1 : 0;
4739
4740                 /* Only some socketops are supported */
4741                 switch (optname) {
4742                 case SO_RCVBUF:
4743                         val = min_t(u32, val, sysctl_rmem_max);
4744                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4745                         WRITE_ONCE(sk->sk_rcvbuf,
4746                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4747                         break;
4748                 case SO_SNDBUF:
4749                         val = min_t(u32, val, sysctl_wmem_max);
4750                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4751                         WRITE_ONCE(sk->sk_sndbuf,
4752                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4753                         break;
4754                 case SO_MAX_PACING_RATE: /* 32bit version */
4755                         if (val != ~0U)
4756                                 cmpxchg(&sk->sk_pacing_status,
4757                                         SK_PACING_NONE,
4758                                         SK_PACING_NEEDED);
4759                         sk->sk_max_pacing_rate = (val == ~0U) ?
4760                                                  ~0UL : (unsigned int)val;
4761                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4762                                                  sk->sk_max_pacing_rate);
4763                         break;
4764                 case SO_PRIORITY:
4765                         sk->sk_priority = val;
4766                         break;
4767                 case SO_RCVLOWAT:
4768                         if (val < 0)
4769                                 val = INT_MAX;
4770                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4771                         break;
4772                 case SO_MARK:
4773                         if (sk->sk_mark != val) {
4774                                 sk->sk_mark = val;
4775                                 sk_dst_reset(sk);
4776                         }
4777                         break;
4778                 case SO_BINDTODEVICE:
4779                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4780                         strncpy(devname, optval, optlen);
4781                         devname[optlen] = 0;
4782
4783                         ifindex = 0;
4784                         if (devname[0] != '\0') {
4785                                 struct net_device *dev;
4786
4787                                 ret = -ENODEV;
4788
4789                                 net = sock_net(sk);
4790                                 dev = dev_get_by_name(net, devname);
4791                                 if (!dev)
4792                                         break;
4793                                 ifindex = dev->ifindex;
4794                                 dev_put(dev);
4795                         }
4796                         fallthrough;
4797                 case SO_BINDTOIFINDEX:
4798                         if (optname == SO_BINDTOIFINDEX)
4799                                 ifindex = val;
4800                         ret = sock_bindtoindex(sk, ifindex, false);
4801                         break;
4802                 case SO_KEEPALIVE:
4803                         if (sk->sk_prot->keepalive)
4804                                 sk->sk_prot->keepalive(sk, valbool);
4805                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4806                         break;
4807                 case SO_REUSEPORT:
4808                         sk->sk_reuseport = valbool;
4809                         break;
4810                 default:
4811                         ret = -EINVAL;
4812                 }
4813 #ifdef CONFIG_INET
4814         } else if (level == SOL_IP) {
4815                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4816                         return -EINVAL;
4817
4818                 val = *((int *)optval);
4819                 /* Only some options are supported */
4820                 switch (optname) {
4821                 case IP_TOS:
4822                         if (val < -1 || val > 0xff) {
4823                                 ret = -EINVAL;
4824                         } else {
4825                                 struct inet_sock *inet = inet_sk(sk);
4826
4827                                 if (val == -1)
4828                                         val = 0;
4829                                 inet->tos = val;
4830                         }
4831                         break;
4832                 default:
4833                         ret = -EINVAL;
4834                 }
4835 #if IS_ENABLED(CONFIG_IPV6)
4836         } else if (level == SOL_IPV6) {
4837                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4838                         return -EINVAL;
4839
4840                 val = *((int *)optval);
4841                 /* Only some options are supported */
4842                 switch (optname) {
4843                 case IPV6_TCLASS:
4844                         if (val < -1 || val > 0xff) {
4845                                 ret = -EINVAL;
4846                         } else {
4847                                 struct ipv6_pinfo *np = inet6_sk(sk);
4848
4849                                 if (val == -1)
4850                                         val = 0;
4851                                 np->tclass = val;
4852                         }
4853                         break;
4854                 default:
4855                         ret = -EINVAL;
4856                 }
4857 #endif
4858         } else if (level == SOL_TCP &&
4859                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4860                 if (optname == TCP_CONGESTION) {
4861                         char name[TCP_CA_NAME_MAX];
4862
4863                         strncpy(name, optval, min_t(long, optlen,
4864                                                     TCP_CA_NAME_MAX-1));
4865                         name[TCP_CA_NAME_MAX-1] = 0;
4866                         ret = tcp_set_congestion_control(sk, name, false, true);
4867                 } else {
4868                         struct inet_connection_sock *icsk = inet_csk(sk);
4869                         struct tcp_sock *tp = tcp_sk(sk);
4870                         unsigned long timeout;
4871
4872                         if (optlen != sizeof(int))
4873                                 return -EINVAL;
4874
4875                         val = *((int *)optval);
4876                         /* Only some options are supported */
4877                         switch (optname) {
4878                         case TCP_BPF_IW:
4879                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4880                                         ret = -EINVAL;
4881                                 else
4882                                         tp->snd_cwnd = val;
4883                                 break;
4884                         case TCP_BPF_SNDCWND_CLAMP:
4885                                 if (val <= 0) {
4886                                         ret = -EINVAL;
4887                                 } else {
4888                                         tp->snd_cwnd_clamp = val;
4889                                         tp->snd_ssthresh = val;
4890                                 }
4891                                 break;
4892                         case TCP_BPF_DELACK_MAX:
4893                                 timeout = usecs_to_jiffies(val);
4894                                 if (timeout > TCP_DELACK_MAX ||
4895                                     timeout < TCP_TIMEOUT_MIN)
4896                                         return -EINVAL;
4897                                 inet_csk(sk)->icsk_delack_max = timeout;
4898                                 break;
4899                         case TCP_BPF_RTO_MIN:
4900                                 timeout = usecs_to_jiffies(val);
4901                                 if (timeout > TCP_RTO_MIN ||
4902                                     timeout < TCP_TIMEOUT_MIN)
4903                                         return -EINVAL;
4904                                 inet_csk(sk)->icsk_rto_min = timeout;
4905                                 break;
4906                         case TCP_SAVE_SYN:
4907                                 if (val < 0 || val > 1)
4908                                         ret = -EINVAL;
4909                                 else
4910                                         tp->save_syn = val;
4911                                 break;
4912                         case TCP_KEEPIDLE:
4913                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4914                                 break;
4915                         case TCP_KEEPINTVL:
4916                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4917                                         ret = -EINVAL;
4918                                 else
4919                                         tp->keepalive_intvl = val * HZ;
4920                                 break;
4921                         case TCP_KEEPCNT:
4922                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4923                                         ret = -EINVAL;
4924                                 else
4925                                         tp->keepalive_probes = val;
4926                                 break;
4927                         case TCP_SYNCNT:
4928                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4929                                         ret = -EINVAL;
4930                                 else
4931                                         icsk->icsk_syn_retries = val;
4932                                 break;
4933                         case TCP_USER_TIMEOUT:
4934                                 if (val < 0)
4935                                         ret = -EINVAL;
4936                                 else
4937                                         icsk->icsk_user_timeout = val;
4938                                 break;
4939                         case TCP_NOTSENT_LOWAT:
4940                                 tp->notsent_lowat = val;
4941                                 sk->sk_write_space(sk);
4942                                 break;
4943                         case TCP_WINDOW_CLAMP:
4944                                 ret = tcp_set_window_clamp(sk, val);
4945                                 break;
4946                         default:
4947                                 ret = -EINVAL;
4948                         }
4949                 }
4950 #endif
4951         } else {
4952                 ret = -EINVAL;
4953         }
4954         return ret;
4955 }
4956
4957 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4958                            char *optval, int optlen)
4959 {
4960         if (!sk_fullsock(sk))
4961                 goto err_clear;
4962
4963         sock_owned_by_me(sk);
4964
4965         if (level == SOL_SOCKET) {
4966                 if (optlen != sizeof(int))
4967                         goto err_clear;
4968
4969                 switch (optname) {
4970                 case SO_MARK:
4971                         *((int *)optval) = sk->sk_mark;
4972                         break;
4973                 case SO_PRIORITY:
4974                         *((int *)optval) = sk->sk_priority;
4975                         break;
4976                 case SO_BINDTOIFINDEX:
4977                         *((int *)optval) = sk->sk_bound_dev_if;
4978                         break;
4979                 case SO_REUSEPORT:
4980                         *((int *)optval) = sk->sk_reuseport;
4981                         break;
4982                 default:
4983                         goto err_clear;
4984                 }
4985 #ifdef CONFIG_INET
4986         } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4987                 struct inet_connection_sock *icsk;
4988                 struct tcp_sock *tp;
4989
4990                 switch (optname) {
4991                 case TCP_CONGESTION:
4992                         icsk = inet_csk(sk);
4993
4994                         if (!icsk->icsk_ca_ops || optlen <= 1)
4995                                 goto err_clear;
4996                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4997                         optval[optlen - 1] = 0;
4998                         break;
4999                 case TCP_SAVED_SYN:
5000                         tp = tcp_sk(sk);
5001
5002                         if (optlen <= 0 || !tp->saved_syn ||
5003                             optlen > tcp_saved_syn_len(tp->saved_syn))
5004                                 goto err_clear;
5005                         memcpy(optval, tp->saved_syn->data, optlen);
5006                         break;
5007                 default:
5008                         goto err_clear;
5009                 }
5010         } else if (level == SOL_IP) {
5011                 struct inet_sock *inet = inet_sk(sk);
5012
5013                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5014                         goto err_clear;
5015
5016                 /* Only some options are supported */
5017                 switch (optname) {
5018                 case IP_TOS:
5019                         *((int *)optval) = (int)inet->tos;
5020                         break;
5021                 default:
5022                         goto err_clear;
5023                 }
5024 #if IS_ENABLED(CONFIG_IPV6)
5025         } else if (level == SOL_IPV6) {
5026                 struct ipv6_pinfo *np = inet6_sk(sk);
5027
5028                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5029                         goto err_clear;
5030
5031                 /* Only some options are supported */
5032                 switch (optname) {
5033                 case IPV6_TCLASS:
5034                         *((int *)optval) = (int)np->tclass;
5035                         break;
5036                 default:
5037                         goto err_clear;
5038                 }
5039 #endif
5040 #endif
5041         } else {
5042                 goto err_clear;
5043         }
5044         return 0;
5045 err_clear:
5046         memset(optval, 0, optlen);
5047         return -EINVAL;
5048 }
5049
5050 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5051            int, optname, char *, optval, int, optlen)
5052 {
5053         if (level == SOL_TCP && optname == TCP_CONGESTION) {
5054                 if (optlen >= sizeof("cdg") - 1 &&
5055                     !strncmp("cdg", optval, optlen))
5056                         return -ENOTSUPP;
5057         }
5058
5059         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5060 }
5061
5062 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5063         .func           = bpf_sk_setsockopt,
5064         .gpl_only       = false,
5065         .ret_type       = RET_INTEGER,
5066         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5067         .arg2_type      = ARG_ANYTHING,
5068         .arg3_type      = ARG_ANYTHING,
5069         .arg4_type      = ARG_PTR_TO_MEM,
5070         .arg5_type      = ARG_CONST_SIZE,
5071 };
5072
5073 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5074            int, optname, char *, optval, int, optlen)
5075 {
5076         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5077 }
5078
5079 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5080         .func           = bpf_sk_getsockopt,
5081         .gpl_only       = false,
5082         .ret_type       = RET_INTEGER,
5083         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5084         .arg2_type      = ARG_ANYTHING,
5085         .arg3_type      = ARG_ANYTHING,
5086         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5087         .arg5_type      = ARG_CONST_SIZE,
5088 };
5089
5090 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5091            int, level, int, optname, char *, optval, int, optlen)
5092 {
5093         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5094 }
5095
5096 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5097         .func           = bpf_sock_addr_setsockopt,
5098         .gpl_only       = false,
5099         .ret_type       = RET_INTEGER,
5100         .arg1_type      = ARG_PTR_TO_CTX,
5101         .arg2_type      = ARG_ANYTHING,
5102         .arg3_type      = ARG_ANYTHING,
5103         .arg4_type      = ARG_PTR_TO_MEM,
5104         .arg5_type      = ARG_CONST_SIZE,
5105 };
5106
5107 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5108            int, level, int, optname, char *, optval, int, optlen)
5109 {
5110         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5111 }
5112
5113 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5114         .func           = bpf_sock_addr_getsockopt,
5115         .gpl_only       = false,
5116         .ret_type       = RET_INTEGER,
5117         .arg1_type      = ARG_PTR_TO_CTX,
5118         .arg2_type      = ARG_ANYTHING,
5119         .arg3_type      = ARG_ANYTHING,
5120         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5121         .arg5_type      = ARG_CONST_SIZE,
5122 };
5123
5124 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5125            int, level, int, optname, char *, optval, int, optlen)
5126 {
5127         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5128 }
5129
5130 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5131         .func           = bpf_sock_ops_setsockopt,
5132         .gpl_only       = false,
5133         .ret_type       = RET_INTEGER,
5134         .arg1_type      = ARG_PTR_TO_CTX,
5135         .arg2_type      = ARG_ANYTHING,
5136         .arg3_type      = ARG_ANYTHING,
5137         .arg4_type      = ARG_PTR_TO_MEM,
5138         .arg5_type      = ARG_CONST_SIZE,
5139 };
5140
5141 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5142                                 int optname, const u8 **start)
5143 {
5144         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5145         const u8 *hdr_start;
5146         int ret;
5147
5148         if (syn_skb) {
5149                 /* sk is a request_sock here */
5150
5151                 if (optname == TCP_BPF_SYN) {
5152                         hdr_start = syn_skb->data;
5153                         ret = tcp_hdrlen(syn_skb);
5154                 } else if (optname == TCP_BPF_SYN_IP) {
5155                         hdr_start = skb_network_header(syn_skb);
5156                         ret = skb_network_header_len(syn_skb) +
5157                                 tcp_hdrlen(syn_skb);
5158                 } else {
5159                         /* optname == TCP_BPF_SYN_MAC */
5160                         hdr_start = skb_mac_header(syn_skb);
5161                         ret = skb_mac_header_len(syn_skb) +
5162                                 skb_network_header_len(syn_skb) +
5163                                 tcp_hdrlen(syn_skb);
5164                 }
5165         } else {
5166                 struct sock *sk = bpf_sock->sk;
5167                 struct saved_syn *saved_syn;
5168
5169                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5170                         /* synack retransmit. bpf_sock->syn_skb will
5171                          * not be available.  It has to resort to
5172                          * saved_syn (if it is saved).
5173                          */
5174                         saved_syn = inet_reqsk(sk)->saved_syn;
5175                 else
5176                         saved_syn = tcp_sk(sk)->saved_syn;
5177
5178                 if (!saved_syn)
5179                         return -ENOENT;
5180
5181                 if (optname == TCP_BPF_SYN) {
5182                         hdr_start = saved_syn->data +
5183                                 saved_syn->mac_hdrlen +
5184                                 saved_syn->network_hdrlen;
5185                         ret = saved_syn->tcp_hdrlen;
5186                 } else if (optname == TCP_BPF_SYN_IP) {
5187                         hdr_start = saved_syn->data +
5188                                 saved_syn->mac_hdrlen;
5189                         ret = saved_syn->network_hdrlen +
5190                                 saved_syn->tcp_hdrlen;
5191                 } else {
5192                         /* optname == TCP_BPF_SYN_MAC */
5193
5194                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5195                         if (!saved_syn->mac_hdrlen)
5196                                 return -ENOENT;
5197
5198                         hdr_start = saved_syn->data;
5199                         ret = saved_syn->mac_hdrlen +
5200                                 saved_syn->network_hdrlen +
5201                                 saved_syn->tcp_hdrlen;
5202                 }
5203         }
5204
5205         *start = hdr_start;
5206         return ret;
5207 }
5208
5209 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5210            int, level, int, optname, char *, optval, int, optlen)
5211 {
5212         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5213             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5214                 int ret, copy_len = 0;
5215                 const u8 *start;
5216
5217                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5218                 if (ret > 0) {
5219                         copy_len = ret;
5220                         if (optlen < copy_len) {
5221                                 copy_len = optlen;
5222                                 ret = -ENOSPC;
5223                         }
5224
5225                         memcpy(optval, start, copy_len);
5226                 }
5227
5228                 /* Zero out unused buffer at the end */
5229                 memset(optval + copy_len, 0, optlen - copy_len);
5230
5231                 return ret;
5232         }
5233
5234         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5235 }
5236
5237 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5238         .func           = bpf_sock_ops_getsockopt,
5239         .gpl_only       = false,
5240         .ret_type       = RET_INTEGER,
5241         .arg1_type      = ARG_PTR_TO_CTX,
5242         .arg2_type      = ARG_ANYTHING,
5243         .arg3_type      = ARG_ANYTHING,
5244         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5245         .arg5_type      = ARG_CONST_SIZE,
5246 };
5247
5248 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5249            int, argval)
5250 {
5251         struct sock *sk = bpf_sock->sk;
5252         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5253
5254         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5255                 return -EINVAL;
5256
5257         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5258
5259         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5260 }
5261
5262 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5263         .func           = bpf_sock_ops_cb_flags_set,
5264         .gpl_only       = false,
5265         .ret_type       = RET_INTEGER,
5266         .arg1_type      = ARG_PTR_TO_CTX,
5267         .arg2_type      = ARG_ANYTHING,
5268 };
5269
5270 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5271 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5272
5273 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5274            int, addr_len)
5275 {
5276 #ifdef CONFIG_INET
5277         struct sock *sk = ctx->sk;
5278         u32 flags = BIND_FROM_BPF;
5279         int err;
5280
5281         err = -EINVAL;
5282         if (addr_len < offsetofend(struct sockaddr, sa_family))
5283                 return err;
5284         if (addr->sa_family == AF_INET) {
5285                 if (addr_len < sizeof(struct sockaddr_in))
5286                         return err;
5287                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5288                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5289                 return __inet_bind(sk, addr, addr_len, flags);
5290 #if IS_ENABLED(CONFIG_IPV6)
5291         } else if (addr->sa_family == AF_INET6) {
5292                 if (addr_len < SIN6_LEN_RFC2133)
5293                         return err;
5294                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5295                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5296                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5297                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5298                  */
5299                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5300 #endif /* CONFIG_IPV6 */
5301         }
5302 #endif /* CONFIG_INET */
5303
5304         return -EAFNOSUPPORT;
5305 }
5306
5307 static const struct bpf_func_proto bpf_bind_proto = {
5308         .func           = bpf_bind,
5309         .gpl_only       = false,
5310         .ret_type       = RET_INTEGER,
5311         .arg1_type      = ARG_PTR_TO_CTX,
5312         .arg2_type      = ARG_PTR_TO_MEM,
5313         .arg3_type      = ARG_CONST_SIZE,
5314 };
5315
5316 #ifdef CONFIG_XFRM
5317 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5318            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5319 {
5320         const struct sec_path *sp = skb_sec_path(skb);
5321         const struct xfrm_state *x;
5322
5323         if (!sp || unlikely(index >= sp->len || flags))
5324                 goto err_clear;
5325
5326         x = sp->xvec[index];
5327
5328         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5329                 goto err_clear;
5330
5331         to->reqid = x->props.reqid;
5332         to->spi = x->id.spi;
5333         to->family = x->props.family;
5334         to->ext = 0;
5335
5336         if (to->family == AF_INET6) {
5337                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5338                        sizeof(to->remote_ipv6));
5339         } else {
5340                 to->remote_ipv4 = x->props.saddr.a4;
5341                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5342         }
5343
5344         return 0;
5345 err_clear:
5346         memset(to, 0, size);
5347         return -EINVAL;
5348 }
5349
5350 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5351         .func           = bpf_skb_get_xfrm_state,
5352         .gpl_only       = false,
5353         .ret_type       = RET_INTEGER,
5354         .arg1_type      = ARG_PTR_TO_CTX,
5355         .arg2_type      = ARG_ANYTHING,
5356         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5357         .arg4_type      = ARG_CONST_SIZE,
5358         .arg5_type      = ARG_ANYTHING,
5359 };
5360 #endif
5361
5362 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5363 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5364                                   const struct neighbour *neigh,
5365                                   const struct net_device *dev, u32 mtu)
5366 {
5367         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5368         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5369         params->h_vlan_TCI = 0;
5370         params->h_vlan_proto = 0;
5371         if (mtu)
5372                 params->mtu_result = mtu; /* union with tot_len */
5373
5374         return 0;
5375 }
5376 #endif
5377
5378 #if IS_ENABLED(CONFIG_INET)
5379 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5380                                u32 flags, bool check_mtu)
5381 {
5382         struct fib_nh_common *nhc;
5383         struct in_device *in_dev;
5384         struct neighbour *neigh;
5385         struct net_device *dev;
5386         struct fib_result res;
5387         struct flowi4 fl4;
5388         u32 mtu = 0;
5389         int err;
5390
5391         dev = dev_get_by_index_rcu(net, params->ifindex);
5392         if (unlikely(!dev))
5393                 return -ENODEV;
5394
5395         /* verify forwarding is enabled on this interface */
5396         in_dev = __in_dev_get_rcu(dev);
5397         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5398                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5399
5400         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5401                 fl4.flowi4_iif = 1;
5402                 fl4.flowi4_oif = params->ifindex;
5403         } else {
5404                 fl4.flowi4_iif = params->ifindex;
5405                 fl4.flowi4_oif = 0;
5406         }
5407         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5408         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5409         fl4.flowi4_flags = 0;
5410
5411         fl4.flowi4_proto = params->l4_protocol;
5412         fl4.daddr = params->ipv4_dst;
5413         fl4.saddr = params->ipv4_src;
5414         fl4.fl4_sport = params->sport;
5415         fl4.fl4_dport = params->dport;
5416         fl4.flowi4_multipath_hash = 0;
5417
5418         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5419                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5420                 struct fib_table *tb;
5421
5422                 tb = fib_get_table(net, tbid);
5423                 if (unlikely(!tb))
5424                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5425
5426                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5427         } else {
5428                 fl4.flowi4_mark = 0;
5429                 fl4.flowi4_secid = 0;
5430                 fl4.flowi4_tun_key.tun_id = 0;
5431                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5432
5433                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5434         }
5435
5436         if (err) {
5437                 /* map fib lookup errors to RTN_ type */
5438                 if (err == -EINVAL)
5439                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5440                 if (err == -EHOSTUNREACH)
5441                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5442                 if (err == -EACCES)
5443                         return BPF_FIB_LKUP_RET_PROHIBIT;
5444
5445                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5446         }
5447
5448         if (res.type != RTN_UNICAST)
5449                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5450
5451         if (fib_info_num_path(res.fi) > 1)
5452                 fib_select_path(net, &res, &fl4, NULL);
5453
5454         if (check_mtu) {
5455                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5456                 if (params->tot_len > mtu) {
5457                         params->mtu_result = mtu; /* union with tot_len */
5458                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5459                 }
5460         }
5461
5462         nhc = res.nhc;
5463
5464         /* do not handle lwt encaps right now */
5465         if (nhc->nhc_lwtstate)
5466                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5467
5468         dev = nhc->nhc_dev;
5469
5470         params->rt_metric = res.fi->fib_priority;
5471         params->ifindex = dev->ifindex;
5472
5473         /* xdp and cls_bpf programs are run in RCU-bh so
5474          * rcu_read_lock_bh is not needed here
5475          */
5476         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5477                 if (nhc->nhc_gw_family)
5478                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5479
5480                 neigh = __ipv4_neigh_lookup_noref(dev,
5481                                                  (__force u32)params->ipv4_dst);
5482         } else {
5483                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5484
5485                 params->family = AF_INET6;
5486                 *dst = nhc->nhc_gw.ipv6;
5487                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5488         }
5489
5490         if (!neigh)
5491                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5492
5493         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5494 }
5495 #endif
5496
5497 #if IS_ENABLED(CONFIG_IPV6)
5498 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5499                                u32 flags, bool check_mtu)
5500 {
5501         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5502         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5503         struct fib6_result res = {};
5504         struct neighbour *neigh;
5505         struct net_device *dev;
5506         struct inet6_dev *idev;
5507         struct flowi6 fl6;
5508         int strict = 0;
5509         int oif, err;
5510         u32 mtu = 0;
5511
5512         /* link local addresses are never forwarded */
5513         if (rt6_need_strict(dst) || rt6_need_strict(src))
5514                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5515
5516         dev = dev_get_by_index_rcu(net, params->ifindex);
5517         if (unlikely(!dev))
5518                 return -ENODEV;
5519
5520         idev = __in6_dev_get_safely(dev);
5521         if (unlikely(!idev || !idev->cnf.forwarding))
5522                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5523
5524         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5525                 fl6.flowi6_iif = 1;
5526                 oif = fl6.flowi6_oif = params->ifindex;
5527         } else {
5528                 oif = fl6.flowi6_iif = params->ifindex;
5529                 fl6.flowi6_oif = 0;
5530                 strict = RT6_LOOKUP_F_HAS_SADDR;
5531         }
5532         fl6.flowlabel = params->flowinfo;
5533         fl6.flowi6_scope = 0;
5534         fl6.flowi6_flags = 0;
5535         fl6.mp_hash = 0;
5536
5537         fl6.flowi6_proto = params->l4_protocol;
5538         fl6.daddr = *dst;
5539         fl6.saddr = *src;
5540         fl6.fl6_sport = params->sport;
5541         fl6.fl6_dport = params->dport;
5542
5543         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5544                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5545                 struct fib6_table *tb;
5546
5547                 tb = ipv6_stub->fib6_get_table(net, tbid);
5548                 if (unlikely(!tb))
5549                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5550
5551                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5552                                                    strict);
5553         } else {
5554                 fl6.flowi6_mark = 0;
5555                 fl6.flowi6_secid = 0;
5556                 fl6.flowi6_tun_key.tun_id = 0;
5557                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5558
5559                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5560         }
5561
5562         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5563                      res.f6i == net->ipv6.fib6_null_entry))
5564                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5565
5566         switch (res.fib6_type) {
5567         /* only unicast is forwarded */
5568         case RTN_UNICAST:
5569                 break;
5570         case RTN_BLACKHOLE:
5571                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5572         case RTN_UNREACHABLE:
5573                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5574         case RTN_PROHIBIT:
5575                 return BPF_FIB_LKUP_RET_PROHIBIT;
5576         default:
5577                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5578         }
5579
5580         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5581                                     fl6.flowi6_oif != 0, NULL, strict);
5582
5583         if (check_mtu) {
5584                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5585                 if (params->tot_len > mtu) {
5586                         params->mtu_result = mtu; /* union with tot_len */
5587                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5588                 }
5589         }
5590
5591         if (res.nh->fib_nh_lws)
5592                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5593
5594         if (res.nh->fib_nh_gw_family)
5595                 *dst = res.nh->fib_nh_gw6;
5596
5597         dev = res.nh->fib_nh_dev;
5598         params->rt_metric = res.f6i->fib6_metric;
5599         params->ifindex = dev->ifindex;
5600
5601         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5602          * not needed here.
5603          */
5604         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5605         if (!neigh)
5606                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5607
5608         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5609 }
5610 #endif
5611
5612 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5613            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5614 {
5615         if (plen < sizeof(*params))
5616                 return -EINVAL;
5617
5618         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5619                 return -EINVAL;
5620
5621         switch (params->family) {
5622 #if IS_ENABLED(CONFIG_INET)
5623         case AF_INET:
5624                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5625                                            flags, true);
5626 #endif
5627 #if IS_ENABLED(CONFIG_IPV6)
5628         case AF_INET6:
5629                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5630                                            flags, true);
5631 #endif
5632         }
5633         return -EAFNOSUPPORT;
5634 }
5635
5636 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5637         .func           = bpf_xdp_fib_lookup,
5638         .gpl_only       = true,
5639         .ret_type       = RET_INTEGER,
5640         .arg1_type      = ARG_PTR_TO_CTX,
5641         .arg2_type      = ARG_PTR_TO_MEM,
5642         .arg3_type      = ARG_CONST_SIZE,
5643         .arg4_type      = ARG_ANYTHING,
5644 };
5645
5646 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5647            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5648 {
5649         struct net *net = dev_net(skb->dev);
5650         int rc = -EAFNOSUPPORT;
5651         bool check_mtu = false;
5652
5653         if (plen < sizeof(*params))
5654                 return -EINVAL;
5655
5656         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5657                 return -EINVAL;
5658
5659         if (params->tot_len)
5660                 check_mtu = true;
5661
5662         switch (params->family) {
5663 #if IS_ENABLED(CONFIG_INET)
5664         case AF_INET:
5665                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5666                 break;
5667 #endif
5668 #if IS_ENABLED(CONFIG_IPV6)
5669         case AF_INET6:
5670                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5671                 break;
5672 #endif
5673         }
5674
5675         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5676                 struct net_device *dev;
5677
5678                 /* When tot_len isn't provided by user, check skb
5679                  * against MTU of FIB lookup resulting net_device
5680                  */
5681                 dev = dev_get_by_index_rcu(net, params->ifindex);
5682                 if (!is_skb_forwardable(dev, skb))
5683                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5684
5685                 params->mtu_result = dev->mtu; /* union with tot_len */
5686         }
5687
5688         return rc;
5689 }
5690
5691 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5692         .func           = bpf_skb_fib_lookup,
5693         .gpl_only       = true,
5694         .ret_type       = RET_INTEGER,
5695         .arg1_type      = ARG_PTR_TO_CTX,
5696         .arg2_type      = ARG_PTR_TO_MEM,
5697         .arg3_type      = ARG_CONST_SIZE,
5698         .arg4_type      = ARG_ANYTHING,
5699 };
5700
5701 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5702                                             u32 ifindex)
5703 {
5704         struct net *netns = dev_net(dev_curr);
5705
5706         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5707         if (ifindex == 0)
5708                 return dev_curr;
5709
5710         return dev_get_by_index_rcu(netns, ifindex);
5711 }
5712
5713 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5714            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5715 {
5716         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5717         struct net_device *dev = skb->dev;
5718         int skb_len, dev_len;
5719         int mtu;
5720
5721         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5722                 return -EINVAL;
5723
5724         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5725                 return -EINVAL;
5726
5727         dev = __dev_via_ifindex(dev, ifindex);
5728         if (unlikely(!dev))
5729                 return -ENODEV;
5730
5731         mtu = READ_ONCE(dev->mtu);
5732
5733         dev_len = mtu + dev->hard_header_len;
5734
5735         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5736         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5737
5738         skb_len += len_diff; /* minus result pass check */
5739         if (skb_len <= dev_len) {
5740                 ret = BPF_MTU_CHK_RET_SUCCESS;
5741                 goto out;
5742         }
5743         /* At this point, skb->len exceed MTU, but as it include length of all
5744          * segments, it can still be below MTU.  The SKB can possibly get
5745          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5746          * must choose if segs are to be MTU checked.
5747          */
5748         if (skb_is_gso(skb)) {
5749                 ret = BPF_MTU_CHK_RET_SUCCESS;
5750
5751                 if (flags & BPF_MTU_CHK_SEGS &&
5752                     !skb_gso_validate_network_len(skb, mtu))
5753                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5754         }
5755 out:
5756         /* BPF verifier guarantees valid pointer */
5757         *mtu_len = mtu;
5758
5759         return ret;
5760 }
5761
5762 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5763            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5764 {
5765         struct net_device *dev = xdp->rxq->dev;
5766         int xdp_len = xdp->data_end - xdp->data;
5767         int ret = BPF_MTU_CHK_RET_SUCCESS;
5768         int mtu, dev_len;
5769
5770         /* XDP variant doesn't support multi-buffer segment check (yet) */
5771         if (unlikely(flags))
5772                 return -EINVAL;
5773
5774         dev = __dev_via_ifindex(dev, ifindex);
5775         if (unlikely(!dev))
5776                 return -ENODEV;
5777
5778         mtu = READ_ONCE(dev->mtu);
5779
5780         /* Add L2-header as dev MTU is L3 size */
5781         dev_len = mtu + dev->hard_header_len;
5782
5783         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5784         if (*mtu_len)
5785                 xdp_len = *mtu_len + dev->hard_header_len;
5786
5787         xdp_len += len_diff; /* minus result pass check */
5788         if (xdp_len > dev_len)
5789                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5790
5791         /* BPF verifier guarantees valid pointer */
5792         *mtu_len = mtu;
5793
5794         return ret;
5795 }
5796
5797 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5798         .func           = bpf_skb_check_mtu,
5799         .gpl_only       = true,
5800         .ret_type       = RET_INTEGER,
5801         .arg1_type      = ARG_PTR_TO_CTX,
5802         .arg2_type      = ARG_ANYTHING,
5803         .arg3_type      = ARG_PTR_TO_INT,
5804         .arg4_type      = ARG_ANYTHING,
5805         .arg5_type      = ARG_ANYTHING,
5806 };
5807
5808 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5809         .func           = bpf_xdp_check_mtu,
5810         .gpl_only       = true,
5811         .ret_type       = RET_INTEGER,
5812         .arg1_type      = ARG_PTR_TO_CTX,
5813         .arg2_type      = ARG_ANYTHING,
5814         .arg3_type      = ARG_PTR_TO_INT,
5815         .arg4_type      = ARG_ANYTHING,
5816         .arg5_type      = ARG_ANYTHING,
5817 };
5818
5819 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5820 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5821 {
5822         int err;
5823         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5824
5825         if (!seg6_validate_srh(srh, len, false))
5826                 return -EINVAL;
5827
5828         switch (type) {
5829         case BPF_LWT_ENCAP_SEG6_INLINE:
5830                 if (skb->protocol != htons(ETH_P_IPV6))
5831                         return -EBADMSG;
5832
5833                 err = seg6_do_srh_inline(skb, srh);
5834                 break;
5835         case BPF_LWT_ENCAP_SEG6:
5836                 skb_reset_inner_headers(skb);
5837                 skb->encapsulation = 1;
5838                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5839                 break;
5840         default:
5841                 return -EINVAL;
5842         }
5843
5844         bpf_compute_data_pointers(skb);
5845         if (err)
5846                 return err;
5847
5848         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5849         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5850
5851         return seg6_lookup_nexthop(skb, NULL, 0);
5852 }
5853 #endif /* CONFIG_IPV6_SEG6_BPF */
5854
5855 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5856 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5857                              bool ingress)
5858 {
5859         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5860 }
5861 #endif
5862
5863 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5864            u32, len)
5865 {
5866         switch (type) {
5867 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5868         case BPF_LWT_ENCAP_SEG6:
5869         case BPF_LWT_ENCAP_SEG6_INLINE:
5870                 return bpf_push_seg6_encap(skb, type, hdr, len);
5871 #endif
5872 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5873         case BPF_LWT_ENCAP_IP:
5874                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5875 #endif
5876         default:
5877                 return -EINVAL;
5878         }
5879 }
5880
5881 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5882            void *, hdr, u32, len)
5883 {
5884         switch (type) {
5885 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5886         case BPF_LWT_ENCAP_IP:
5887                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5888 #endif
5889         default:
5890                 return -EINVAL;
5891         }
5892 }
5893
5894 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5895         .func           = bpf_lwt_in_push_encap,
5896         .gpl_only       = false,
5897         .ret_type       = RET_INTEGER,
5898         .arg1_type      = ARG_PTR_TO_CTX,
5899         .arg2_type      = ARG_ANYTHING,
5900         .arg3_type      = ARG_PTR_TO_MEM,
5901         .arg4_type      = ARG_CONST_SIZE
5902 };
5903
5904 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5905         .func           = bpf_lwt_xmit_push_encap,
5906         .gpl_only       = false,
5907         .ret_type       = RET_INTEGER,
5908         .arg1_type      = ARG_PTR_TO_CTX,
5909         .arg2_type      = ARG_ANYTHING,
5910         .arg3_type      = ARG_PTR_TO_MEM,
5911         .arg4_type      = ARG_CONST_SIZE
5912 };
5913
5914 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5915 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5916            const void *, from, u32, len)
5917 {
5918         struct seg6_bpf_srh_state *srh_state =
5919                 this_cpu_ptr(&seg6_bpf_srh_states);
5920         struct ipv6_sr_hdr *srh = srh_state->srh;
5921         void *srh_tlvs, *srh_end, *ptr;
5922         int srhoff = 0;
5923
5924         if (srh == NULL)
5925                 return -EINVAL;
5926
5927         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5928         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5929
5930         ptr = skb->data + offset;
5931         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5932                 srh_state->valid = false;
5933         else if (ptr < (void *)&srh->flags ||
5934                  ptr + len > (void *)&srh->segments)
5935                 return -EFAULT;
5936
5937         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5938                 return -EFAULT;
5939         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5940                 return -EINVAL;
5941         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5942
5943         memcpy(skb->data + offset, from, len);
5944         return 0;
5945 }
5946
5947 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5948         .func           = bpf_lwt_seg6_store_bytes,
5949         .gpl_only       = false,
5950         .ret_type       = RET_INTEGER,
5951         .arg1_type      = ARG_PTR_TO_CTX,
5952         .arg2_type      = ARG_ANYTHING,
5953         .arg3_type      = ARG_PTR_TO_MEM,
5954         .arg4_type      = ARG_CONST_SIZE
5955 };
5956
5957 static void bpf_update_srh_state(struct sk_buff *skb)
5958 {
5959         struct seg6_bpf_srh_state *srh_state =
5960                 this_cpu_ptr(&seg6_bpf_srh_states);
5961         int srhoff = 0;
5962
5963         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5964                 srh_state->srh = NULL;
5965         } else {
5966                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5967                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5968                 srh_state->valid = true;
5969         }
5970 }
5971
5972 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5973            u32, action, void *, param, u32, param_len)
5974 {
5975         struct seg6_bpf_srh_state *srh_state =
5976                 this_cpu_ptr(&seg6_bpf_srh_states);
5977         int hdroff = 0;
5978         int err;
5979
5980         switch (action) {
5981         case SEG6_LOCAL_ACTION_END_X:
5982                 if (!seg6_bpf_has_valid_srh(skb))
5983                         return -EBADMSG;
5984                 if (param_len != sizeof(struct in6_addr))
5985                         return -EINVAL;
5986                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5987         case SEG6_LOCAL_ACTION_END_T:
5988                 if (!seg6_bpf_has_valid_srh(skb))
5989                         return -EBADMSG;
5990                 if (param_len != sizeof(int))
5991                         return -EINVAL;
5992                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5993         case SEG6_LOCAL_ACTION_END_DT6:
5994                 if (!seg6_bpf_has_valid_srh(skb))
5995                         return -EBADMSG;
5996                 if (param_len != sizeof(int))
5997                         return -EINVAL;
5998
5999                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6000                         return -EBADMSG;
6001                 if (!pskb_pull(skb, hdroff))
6002                         return -EBADMSG;
6003
6004                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6005                 skb_reset_network_header(skb);
6006                 skb_reset_transport_header(skb);
6007                 skb->encapsulation = 0;
6008
6009                 bpf_compute_data_pointers(skb);
6010                 bpf_update_srh_state(skb);
6011                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6012         case SEG6_LOCAL_ACTION_END_B6:
6013                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6014                         return -EBADMSG;
6015                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6016                                           param, param_len);
6017                 if (!err)
6018                         bpf_update_srh_state(skb);
6019
6020                 return err;
6021         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6022                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6023                         return -EBADMSG;
6024                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6025                                           param, param_len);
6026                 if (!err)
6027                         bpf_update_srh_state(skb);
6028
6029                 return err;
6030         default:
6031                 return -EINVAL;
6032         }
6033 }
6034
6035 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6036         .func           = bpf_lwt_seg6_action,
6037         .gpl_only       = false,
6038         .ret_type       = RET_INTEGER,
6039         .arg1_type      = ARG_PTR_TO_CTX,
6040         .arg2_type      = ARG_ANYTHING,
6041         .arg3_type      = ARG_PTR_TO_MEM,
6042         .arg4_type      = ARG_CONST_SIZE
6043 };
6044
6045 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6046            s32, len)
6047 {
6048         struct seg6_bpf_srh_state *srh_state =
6049                 this_cpu_ptr(&seg6_bpf_srh_states);
6050         struct ipv6_sr_hdr *srh = srh_state->srh;
6051         void *srh_end, *srh_tlvs, *ptr;
6052         struct ipv6hdr *hdr;
6053         int srhoff = 0;
6054         int ret;
6055
6056         if (unlikely(srh == NULL))
6057                 return -EINVAL;
6058
6059         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6060                         ((srh->first_segment + 1) << 4));
6061         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6062                         srh_state->hdrlen);
6063         ptr = skb->data + offset;
6064
6065         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6066                 return -EFAULT;
6067         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6068                 return -EFAULT;
6069
6070         if (len > 0) {
6071                 ret = skb_cow_head(skb, len);
6072                 if (unlikely(ret < 0))
6073                         return ret;
6074
6075                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6076         } else {
6077                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6078         }
6079
6080         bpf_compute_data_pointers(skb);
6081         if (unlikely(ret < 0))
6082                 return ret;
6083
6084         hdr = (struct ipv6hdr *)skb->data;
6085         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6086
6087         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6088                 return -EINVAL;
6089         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6090         srh_state->hdrlen += len;
6091         srh_state->valid = false;
6092         return 0;
6093 }
6094
6095 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6096         .func           = bpf_lwt_seg6_adjust_srh,
6097         .gpl_only       = false,
6098         .ret_type       = RET_INTEGER,
6099         .arg1_type      = ARG_PTR_TO_CTX,
6100         .arg2_type      = ARG_ANYTHING,
6101         .arg3_type      = ARG_ANYTHING,
6102 };
6103 #endif /* CONFIG_IPV6_SEG6_BPF */
6104
6105 #ifdef CONFIG_INET
6106 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6107                               int dif, int sdif, u8 family, u8 proto)
6108 {
6109         bool refcounted = false;
6110         struct sock *sk = NULL;
6111
6112         if (family == AF_INET) {
6113                 __be32 src4 = tuple->ipv4.saddr;
6114                 __be32 dst4 = tuple->ipv4.daddr;
6115
6116                 if (proto == IPPROTO_TCP)
6117                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6118                                            src4, tuple->ipv4.sport,
6119                                            dst4, tuple->ipv4.dport,
6120                                            dif, sdif, &refcounted);
6121                 else
6122                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6123                                                dst4, tuple->ipv4.dport,
6124                                                dif, sdif, &udp_table, NULL);
6125 #if IS_ENABLED(CONFIG_IPV6)
6126         } else {
6127                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6128                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6129
6130                 if (proto == IPPROTO_TCP)
6131                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6132                                             src6, tuple->ipv6.sport,
6133                                             dst6, ntohs(tuple->ipv6.dport),
6134                                             dif, sdif, &refcounted);
6135                 else if (likely(ipv6_bpf_stub))
6136                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6137                                                             src6, tuple->ipv6.sport,
6138                                                             dst6, tuple->ipv6.dport,
6139                                                             dif, sdif,
6140                                                             &udp_table, NULL);
6141 #endif
6142         }
6143
6144         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6145                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6146                 sk = NULL;
6147         }
6148         return sk;
6149 }
6150
6151 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6152  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6153  * Returns the socket as an 'unsigned long' to simplify the casting in the
6154  * callers to satisfy BPF_CALL declarations.
6155  */
6156 static struct sock *
6157 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6158                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6159                  u64 flags)
6160 {
6161         struct sock *sk = NULL;
6162         u8 family = AF_UNSPEC;
6163         struct net *net;
6164         int sdif;
6165
6166         if (len == sizeof(tuple->ipv4))
6167                 family = AF_INET;
6168         else if (len == sizeof(tuple->ipv6))
6169                 family = AF_INET6;
6170         else
6171                 return NULL;
6172
6173         if (unlikely(family == AF_UNSPEC || flags ||
6174                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6175                 goto out;
6176
6177         if (family == AF_INET)
6178                 sdif = inet_sdif(skb);
6179         else
6180                 sdif = inet6_sdif(skb);
6181
6182         if ((s32)netns_id < 0) {
6183                 net = caller_net;
6184                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6185         } else {
6186                 net = get_net_ns_by_id(caller_net, netns_id);
6187                 if (unlikely(!net))
6188                         goto out;
6189                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6190                 put_net(net);
6191         }
6192
6193 out:
6194         return sk;
6195 }
6196
6197 static struct sock *
6198 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6199                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6200                 u64 flags)
6201 {
6202         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6203                                            ifindex, proto, netns_id, flags);
6204
6205         if (sk) {
6206                 sk = sk_to_full_sk(sk);
6207                 if (!sk_fullsock(sk)) {
6208                         sock_gen_put(sk);
6209                         return NULL;
6210                 }
6211         }
6212
6213         return sk;
6214 }
6215
6216 static struct sock *
6217 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6218                u8 proto, u64 netns_id, u64 flags)
6219 {
6220         struct net *caller_net;
6221         int ifindex;
6222
6223         if (skb->dev) {
6224                 caller_net = dev_net(skb->dev);
6225                 ifindex = skb->dev->ifindex;
6226         } else {
6227                 caller_net = sock_net(skb->sk);
6228                 ifindex = 0;
6229         }
6230
6231         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6232                                 netns_id, flags);
6233 }
6234
6235 static struct sock *
6236 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6237               u8 proto, u64 netns_id, u64 flags)
6238 {
6239         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6240                                          flags);
6241
6242         if (sk) {
6243                 sk = sk_to_full_sk(sk);
6244                 if (!sk_fullsock(sk)) {
6245                         sock_gen_put(sk);
6246                         return NULL;
6247                 }
6248         }
6249
6250         return sk;
6251 }
6252
6253 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6254            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6255 {
6256         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6257                                              netns_id, flags);
6258 }
6259
6260 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6261         .func           = bpf_skc_lookup_tcp,
6262         .gpl_only       = false,
6263         .pkt_access     = true,
6264         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6265         .arg1_type      = ARG_PTR_TO_CTX,
6266         .arg2_type      = ARG_PTR_TO_MEM,
6267         .arg3_type      = ARG_CONST_SIZE,
6268         .arg4_type      = ARG_ANYTHING,
6269         .arg5_type      = ARG_ANYTHING,
6270 };
6271
6272 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6273            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6274 {
6275         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6276                                             netns_id, flags);
6277 }
6278
6279 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6280         .func           = bpf_sk_lookup_tcp,
6281         .gpl_only       = false,
6282         .pkt_access     = true,
6283         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6284         .arg1_type      = ARG_PTR_TO_CTX,
6285         .arg2_type      = ARG_PTR_TO_MEM,
6286         .arg3_type      = ARG_CONST_SIZE,
6287         .arg4_type      = ARG_ANYTHING,
6288         .arg5_type      = ARG_ANYTHING,
6289 };
6290
6291 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6292            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6293 {
6294         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6295                                             netns_id, flags);
6296 }
6297
6298 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6299         .func           = bpf_sk_lookup_udp,
6300         .gpl_only       = false,
6301         .pkt_access     = true,
6302         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6303         .arg1_type      = ARG_PTR_TO_CTX,
6304         .arg2_type      = ARG_PTR_TO_MEM,
6305         .arg3_type      = ARG_CONST_SIZE,
6306         .arg4_type      = ARG_ANYTHING,
6307         .arg5_type      = ARG_ANYTHING,
6308 };
6309
6310 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6311 {
6312         if (sk && sk_is_refcounted(sk))
6313                 sock_gen_put(sk);
6314         return 0;
6315 }
6316
6317 static const struct bpf_func_proto bpf_sk_release_proto = {
6318         .func           = bpf_sk_release,
6319         .gpl_only       = false,
6320         .ret_type       = RET_INTEGER,
6321         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6322 };
6323
6324 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6325            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6326 {
6327         struct net *caller_net = dev_net(ctx->rxq->dev);
6328         int ifindex = ctx->rxq->dev->ifindex;
6329
6330         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6331                                               ifindex, IPPROTO_UDP, netns_id,
6332                                               flags);
6333 }
6334
6335 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6336         .func           = bpf_xdp_sk_lookup_udp,
6337         .gpl_only       = false,
6338         .pkt_access     = true,
6339         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6340         .arg1_type      = ARG_PTR_TO_CTX,
6341         .arg2_type      = ARG_PTR_TO_MEM,
6342         .arg3_type      = ARG_CONST_SIZE,
6343         .arg4_type      = ARG_ANYTHING,
6344         .arg5_type      = ARG_ANYTHING,
6345 };
6346
6347 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6348            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6349 {
6350         struct net *caller_net = dev_net(ctx->rxq->dev);
6351         int ifindex = ctx->rxq->dev->ifindex;
6352
6353         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6354                                                ifindex, IPPROTO_TCP, netns_id,
6355                                                flags);
6356 }
6357
6358 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6359         .func           = bpf_xdp_skc_lookup_tcp,
6360         .gpl_only       = false,
6361         .pkt_access     = true,
6362         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6363         .arg1_type      = ARG_PTR_TO_CTX,
6364         .arg2_type      = ARG_PTR_TO_MEM,
6365         .arg3_type      = ARG_CONST_SIZE,
6366         .arg4_type      = ARG_ANYTHING,
6367         .arg5_type      = ARG_ANYTHING,
6368 };
6369
6370 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6371            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6372 {
6373         struct net *caller_net = dev_net(ctx->rxq->dev);
6374         int ifindex = ctx->rxq->dev->ifindex;
6375
6376         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6377                                               ifindex, IPPROTO_TCP, netns_id,
6378                                               flags);
6379 }
6380
6381 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6382         .func           = bpf_xdp_sk_lookup_tcp,
6383         .gpl_only       = false,
6384         .pkt_access     = true,
6385         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6386         .arg1_type      = ARG_PTR_TO_CTX,
6387         .arg2_type      = ARG_PTR_TO_MEM,
6388         .arg3_type      = ARG_CONST_SIZE,
6389         .arg4_type      = ARG_ANYTHING,
6390         .arg5_type      = ARG_ANYTHING,
6391 };
6392
6393 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6394            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6395 {
6396         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6397                                                sock_net(ctx->sk), 0,
6398                                                IPPROTO_TCP, netns_id, flags);
6399 }
6400
6401 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6402         .func           = bpf_sock_addr_skc_lookup_tcp,
6403         .gpl_only       = false,
6404         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6405         .arg1_type      = ARG_PTR_TO_CTX,
6406         .arg2_type      = ARG_PTR_TO_MEM,
6407         .arg3_type      = ARG_CONST_SIZE,
6408         .arg4_type      = ARG_ANYTHING,
6409         .arg5_type      = ARG_ANYTHING,
6410 };
6411
6412 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6413            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6414 {
6415         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6416                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6417                                               netns_id, flags);
6418 }
6419
6420 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6421         .func           = bpf_sock_addr_sk_lookup_tcp,
6422         .gpl_only       = false,
6423         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6424         .arg1_type      = ARG_PTR_TO_CTX,
6425         .arg2_type      = ARG_PTR_TO_MEM,
6426         .arg3_type      = ARG_CONST_SIZE,
6427         .arg4_type      = ARG_ANYTHING,
6428         .arg5_type      = ARG_ANYTHING,
6429 };
6430
6431 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6432            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6433 {
6434         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6435                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6436                                               netns_id, flags);
6437 }
6438
6439 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6440         .func           = bpf_sock_addr_sk_lookup_udp,
6441         .gpl_only       = false,
6442         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6443         .arg1_type      = ARG_PTR_TO_CTX,
6444         .arg2_type      = ARG_PTR_TO_MEM,
6445         .arg3_type      = ARG_CONST_SIZE,
6446         .arg4_type      = ARG_ANYTHING,
6447         .arg5_type      = ARG_ANYTHING,
6448 };
6449
6450 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6451                                   struct bpf_insn_access_aux *info)
6452 {
6453         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6454                                           icsk_retransmits))
6455                 return false;
6456
6457         if (off % size != 0)
6458                 return false;
6459
6460         switch (off) {
6461         case offsetof(struct bpf_tcp_sock, bytes_received):
6462         case offsetof(struct bpf_tcp_sock, bytes_acked):
6463                 return size == sizeof(__u64);
6464         default:
6465                 return size == sizeof(__u32);
6466         }
6467 }
6468
6469 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6470                                     const struct bpf_insn *si,
6471                                     struct bpf_insn *insn_buf,
6472                                     struct bpf_prog *prog, u32 *target_size)
6473 {
6474         struct bpf_insn *insn = insn_buf;
6475
6476 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6477         do {                                                            \
6478                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6479                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6480                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6481                                       si->dst_reg, si->src_reg,         \
6482                                       offsetof(struct tcp_sock, FIELD)); \
6483         } while (0)
6484
6485 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6486         do {                                                            \
6487                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6488                                           FIELD) >                      \
6489                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6490                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6491                                         struct inet_connection_sock,    \
6492                                         FIELD),                         \
6493                                       si->dst_reg, si->src_reg,         \
6494                                       offsetof(                         \
6495                                         struct inet_connection_sock,    \
6496                                         FIELD));                        \
6497         } while (0)
6498
6499         if (insn > insn_buf)
6500                 return insn - insn_buf;
6501
6502         switch (si->off) {
6503         case offsetof(struct bpf_tcp_sock, rtt_min):
6504                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6505                              sizeof(struct minmax));
6506                 BUILD_BUG_ON(sizeof(struct minmax) <
6507                              sizeof(struct minmax_sample));
6508
6509                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6510                                       offsetof(struct tcp_sock, rtt_min) +
6511                                       offsetof(struct minmax_sample, v));
6512                 break;
6513         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6514                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6515                 break;
6516         case offsetof(struct bpf_tcp_sock, srtt_us):
6517                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6518                 break;
6519         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6520                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6521                 break;
6522         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6523                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6524                 break;
6525         case offsetof(struct bpf_tcp_sock, snd_nxt):
6526                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6527                 break;
6528         case offsetof(struct bpf_tcp_sock, snd_una):
6529                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6530                 break;
6531         case offsetof(struct bpf_tcp_sock, mss_cache):
6532                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6533                 break;
6534         case offsetof(struct bpf_tcp_sock, ecn_flags):
6535                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6536                 break;
6537         case offsetof(struct bpf_tcp_sock, rate_delivered):
6538                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6539                 break;
6540         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6541                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6542                 break;
6543         case offsetof(struct bpf_tcp_sock, packets_out):
6544                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6545                 break;
6546         case offsetof(struct bpf_tcp_sock, retrans_out):
6547                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6548                 break;
6549         case offsetof(struct bpf_tcp_sock, total_retrans):
6550                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6551                 break;
6552         case offsetof(struct bpf_tcp_sock, segs_in):
6553                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6554                 break;
6555         case offsetof(struct bpf_tcp_sock, data_segs_in):
6556                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6557                 break;
6558         case offsetof(struct bpf_tcp_sock, segs_out):
6559                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6560                 break;
6561         case offsetof(struct bpf_tcp_sock, data_segs_out):
6562                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6563                 break;
6564         case offsetof(struct bpf_tcp_sock, lost_out):
6565                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6566                 break;
6567         case offsetof(struct bpf_tcp_sock, sacked_out):
6568                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6569                 break;
6570         case offsetof(struct bpf_tcp_sock, bytes_received):
6571                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6572                 break;
6573         case offsetof(struct bpf_tcp_sock, bytes_acked):
6574                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6575                 break;
6576         case offsetof(struct bpf_tcp_sock, dsack_dups):
6577                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6578                 break;
6579         case offsetof(struct bpf_tcp_sock, delivered):
6580                 BPF_TCP_SOCK_GET_COMMON(delivered);
6581                 break;
6582         case offsetof(struct bpf_tcp_sock, delivered_ce):
6583                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6584                 break;
6585         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6586                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6587                 break;
6588         }
6589
6590         return insn - insn_buf;
6591 }
6592
6593 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6594 {
6595         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6596                 return (unsigned long)sk;
6597
6598         return (unsigned long)NULL;
6599 }
6600
6601 const struct bpf_func_proto bpf_tcp_sock_proto = {
6602         .func           = bpf_tcp_sock,
6603         .gpl_only       = false,
6604         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6605         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6606 };
6607
6608 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6609 {
6610         sk = sk_to_full_sk(sk);
6611
6612         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6613                 return (unsigned long)sk;
6614
6615         return (unsigned long)NULL;
6616 }
6617
6618 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6619         .func           = bpf_get_listener_sock,
6620         .gpl_only       = false,
6621         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6622         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6623 };
6624
6625 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6626 {
6627         unsigned int iphdr_len;
6628
6629         switch (skb_protocol(skb, true)) {
6630         case cpu_to_be16(ETH_P_IP):
6631                 iphdr_len = sizeof(struct iphdr);
6632                 break;
6633         case cpu_to_be16(ETH_P_IPV6):
6634                 iphdr_len = sizeof(struct ipv6hdr);
6635                 break;
6636         default:
6637                 return 0;
6638         }
6639
6640         if (skb_headlen(skb) < iphdr_len)
6641                 return 0;
6642
6643         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6644                 return 0;
6645
6646         return INET_ECN_set_ce(skb);
6647 }
6648
6649 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6650                                   struct bpf_insn_access_aux *info)
6651 {
6652         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6653                 return false;
6654
6655         if (off % size != 0)
6656                 return false;
6657
6658         switch (off) {
6659         default:
6660                 return size == sizeof(__u32);
6661         }
6662 }
6663
6664 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6665                                     const struct bpf_insn *si,
6666                                     struct bpf_insn *insn_buf,
6667                                     struct bpf_prog *prog, u32 *target_size)
6668 {
6669         struct bpf_insn *insn = insn_buf;
6670
6671 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6672         do {                                                            \
6673                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6674                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6675                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6676                                       si->dst_reg, si->src_reg,         \
6677                                       offsetof(struct xdp_sock, FIELD)); \
6678         } while (0)
6679
6680         switch (si->off) {
6681         case offsetof(struct bpf_xdp_sock, queue_id):
6682                 BPF_XDP_SOCK_GET(queue_id);
6683                 break;
6684         }
6685
6686         return insn - insn_buf;
6687 }
6688
6689 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6690         .func           = bpf_skb_ecn_set_ce,
6691         .gpl_only       = false,
6692         .ret_type       = RET_INTEGER,
6693         .arg1_type      = ARG_PTR_TO_CTX,
6694 };
6695
6696 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6697            struct tcphdr *, th, u32, th_len)
6698 {
6699 #ifdef CONFIG_SYN_COOKIES
6700         u32 cookie;
6701         int ret;
6702
6703         if (unlikely(!sk || th_len < sizeof(*th)))
6704                 return -EINVAL;
6705
6706         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6707         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6708                 return -EINVAL;
6709
6710         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6711                 return -EINVAL;
6712
6713         if (!th->ack || th->rst || th->syn)
6714                 return -ENOENT;
6715
6716         if (tcp_synq_no_recent_overflow(sk))
6717                 return -ENOENT;
6718
6719         cookie = ntohl(th->ack_seq) - 1;
6720
6721         switch (sk->sk_family) {
6722         case AF_INET:
6723                 if (unlikely(iph_len < sizeof(struct iphdr)))
6724                         return -EINVAL;
6725
6726                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6727                 break;
6728
6729 #if IS_BUILTIN(CONFIG_IPV6)
6730         case AF_INET6:
6731                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6732                         return -EINVAL;
6733
6734                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6735                 break;
6736 #endif /* CONFIG_IPV6 */
6737
6738         default:
6739                 return -EPROTONOSUPPORT;
6740         }
6741
6742         if (ret > 0)
6743                 return 0;
6744
6745         return -ENOENT;
6746 #else
6747         return -ENOTSUPP;
6748 #endif
6749 }
6750
6751 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6752         .func           = bpf_tcp_check_syncookie,
6753         .gpl_only       = true,
6754         .pkt_access     = true,
6755         .ret_type       = RET_INTEGER,
6756         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6757         .arg2_type      = ARG_PTR_TO_MEM,
6758         .arg3_type      = ARG_CONST_SIZE,
6759         .arg4_type      = ARG_PTR_TO_MEM,
6760         .arg5_type      = ARG_CONST_SIZE,
6761 };
6762
6763 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6764            struct tcphdr *, th, u32, th_len)
6765 {
6766 #ifdef CONFIG_SYN_COOKIES
6767         u32 cookie;
6768         u16 mss;
6769
6770         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6771                 return -EINVAL;
6772
6773         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6774                 return -EINVAL;
6775
6776         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6777                 return -ENOENT;
6778
6779         if (!th->syn || th->ack || th->fin || th->rst)
6780                 return -EINVAL;
6781
6782         if (unlikely(iph_len < sizeof(struct iphdr)))
6783                 return -EINVAL;
6784
6785         /* Both struct iphdr and struct ipv6hdr have the version field at the
6786          * same offset so we can cast to the shorter header (struct iphdr).
6787          */
6788         switch (((struct iphdr *)iph)->version) {
6789         case 4:
6790                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6791                         return -EINVAL;
6792
6793                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6794                 break;
6795
6796 #if IS_BUILTIN(CONFIG_IPV6)
6797         case 6:
6798                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6799                         return -EINVAL;
6800
6801                 if (sk->sk_family != AF_INET6)
6802                         return -EINVAL;
6803
6804                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6805                 break;
6806 #endif /* CONFIG_IPV6 */
6807
6808         default:
6809                 return -EPROTONOSUPPORT;
6810         }
6811         if (mss == 0)
6812                 return -ENOENT;
6813
6814         return cookie | ((u64)mss << 32);
6815 #else
6816         return -EOPNOTSUPP;
6817 #endif /* CONFIG_SYN_COOKIES */
6818 }
6819
6820 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6821         .func           = bpf_tcp_gen_syncookie,
6822         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6823         .pkt_access     = true,
6824         .ret_type       = RET_INTEGER,
6825         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6826         .arg2_type      = ARG_PTR_TO_MEM,
6827         .arg3_type      = ARG_CONST_SIZE,
6828         .arg4_type      = ARG_PTR_TO_MEM,
6829         .arg5_type      = ARG_CONST_SIZE,
6830 };
6831
6832 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6833 {
6834         if (!sk || flags != 0)
6835                 return -EINVAL;
6836         if (!skb_at_tc_ingress(skb))
6837                 return -EOPNOTSUPP;
6838         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6839                 return -ENETUNREACH;
6840         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6841                 return -ESOCKTNOSUPPORT;
6842         if (sk_is_refcounted(sk) &&
6843             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6844                 return -ENOENT;
6845
6846         skb_orphan(skb);
6847         skb->sk = sk;
6848         skb->destructor = sock_pfree;
6849
6850         return 0;
6851 }
6852
6853 static const struct bpf_func_proto bpf_sk_assign_proto = {
6854         .func           = bpf_sk_assign,
6855         .gpl_only       = false,
6856         .ret_type       = RET_INTEGER,
6857         .arg1_type      = ARG_PTR_TO_CTX,
6858         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6859         .arg3_type      = ARG_ANYTHING,
6860 };
6861
6862 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6863                                     u8 search_kind, const u8 *magic,
6864                                     u8 magic_len, bool *eol)
6865 {
6866         u8 kind, kind_len;
6867
6868         *eol = false;
6869
6870         while (op < opend) {
6871                 kind = op[0];
6872
6873                 if (kind == TCPOPT_EOL) {
6874                         *eol = true;
6875                         return ERR_PTR(-ENOMSG);
6876                 } else if (kind == TCPOPT_NOP) {
6877                         op++;
6878                         continue;
6879                 }
6880
6881                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6882                         /* Something is wrong in the received header.
6883                          * Follow the TCP stack's tcp_parse_options()
6884                          * and just bail here.
6885                          */
6886                         return ERR_PTR(-EFAULT);
6887
6888                 kind_len = op[1];
6889                 if (search_kind == kind) {
6890                         if (!magic_len)
6891                                 return op;
6892
6893                         if (magic_len > kind_len - 2)
6894                                 return ERR_PTR(-ENOMSG);
6895
6896                         if (!memcmp(&op[2], magic, magic_len))
6897                                 return op;
6898                 }
6899
6900                 op += kind_len;
6901         }
6902
6903         return ERR_PTR(-ENOMSG);
6904 }
6905
6906 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6907            void *, search_res, u32, len, u64, flags)
6908 {
6909         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6910         const u8 *op, *opend, *magic, *search = search_res;
6911         u8 search_kind, search_len, copy_len, magic_len;
6912         int ret;
6913
6914         /* 2 byte is the minimal option len except TCPOPT_NOP and
6915          * TCPOPT_EOL which are useless for the bpf prog to learn
6916          * and this helper disallow loading them also.
6917          */
6918         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6919                 return -EINVAL;
6920
6921         search_kind = search[0];
6922         search_len = search[1];
6923
6924         if (search_len > len || search_kind == TCPOPT_NOP ||
6925             search_kind == TCPOPT_EOL)
6926                 return -EINVAL;
6927
6928         if (search_kind == TCPOPT_EXP || search_kind == 253) {
6929                 /* 16 or 32 bit magic.  +2 for kind and kind length */
6930                 if (search_len != 4 && search_len != 6)
6931                         return -EINVAL;
6932                 magic = &search[2];
6933                 magic_len = search_len - 2;
6934         } else {
6935                 if (search_len)
6936                         return -EINVAL;
6937                 magic = NULL;
6938                 magic_len = 0;
6939         }
6940
6941         if (load_syn) {
6942                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6943                 if (ret < 0)
6944                         return ret;
6945
6946                 opend = op + ret;
6947                 op += sizeof(struct tcphdr);
6948         } else {
6949                 if (!bpf_sock->skb ||
6950                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6951                         /* This bpf_sock->op cannot call this helper */
6952                         return -EPERM;
6953
6954                 opend = bpf_sock->skb_data_end;
6955                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6956         }
6957
6958         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6959                                 &eol);
6960         if (IS_ERR(op))
6961                 return PTR_ERR(op);
6962
6963         copy_len = op[1];
6964         ret = copy_len;
6965         if (copy_len > len) {
6966                 ret = -ENOSPC;
6967                 copy_len = len;
6968         }
6969
6970         memcpy(search_res, op, copy_len);
6971         return ret;
6972 }
6973
6974 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6975         .func           = bpf_sock_ops_load_hdr_opt,
6976         .gpl_only       = false,
6977         .ret_type       = RET_INTEGER,
6978         .arg1_type      = ARG_PTR_TO_CTX,
6979         .arg2_type      = ARG_PTR_TO_MEM,
6980         .arg3_type      = ARG_CONST_SIZE,
6981         .arg4_type      = ARG_ANYTHING,
6982 };
6983
6984 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6985            const void *, from, u32, len, u64, flags)
6986 {
6987         u8 new_kind, new_kind_len, magic_len = 0, *opend;
6988         const u8 *op, *new_op, *magic = NULL;
6989         struct sk_buff *skb;
6990         bool eol;
6991
6992         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6993                 return -EPERM;
6994
6995         if (len < 2 || flags)
6996                 return -EINVAL;
6997
6998         new_op = from;
6999         new_kind = new_op[0];
7000         new_kind_len = new_op[1];
7001
7002         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7003             new_kind == TCPOPT_EOL)
7004                 return -EINVAL;
7005
7006         if (new_kind_len > bpf_sock->remaining_opt_len)
7007                 return -ENOSPC;
7008
7009         /* 253 is another experimental kind */
7010         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7011                 if (new_kind_len < 4)
7012                         return -EINVAL;
7013                 /* Match for the 2 byte magic also.
7014                  * RFC 6994: the magic could be 2 or 4 bytes.
7015                  * Hence, matching by 2 byte only is on the
7016                  * conservative side but it is the right
7017                  * thing to do for the 'search-for-duplication'
7018                  * purpose.
7019                  */
7020                 magic = &new_op[2];
7021                 magic_len = 2;
7022         }
7023
7024         /* Check for duplication */
7025         skb = bpf_sock->skb;
7026         op = skb->data + sizeof(struct tcphdr);
7027         opend = bpf_sock->skb_data_end;
7028
7029         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7030                                 &eol);
7031         if (!IS_ERR(op))
7032                 return -EEXIST;
7033
7034         if (PTR_ERR(op) != -ENOMSG)
7035                 return PTR_ERR(op);
7036
7037         if (eol)
7038                 /* The option has been ended.  Treat it as no more
7039                  * header option can be written.
7040                  */
7041                 return -ENOSPC;
7042
7043         /* No duplication found.  Store the header option. */
7044         memcpy(opend, from, new_kind_len);
7045
7046         bpf_sock->remaining_opt_len -= new_kind_len;
7047         bpf_sock->skb_data_end += new_kind_len;
7048
7049         return 0;
7050 }
7051
7052 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7053         .func           = bpf_sock_ops_store_hdr_opt,
7054         .gpl_only       = false,
7055         .ret_type       = RET_INTEGER,
7056         .arg1_type      = ARG_PTR_TO_CTX,
7057         .arg2_type      = ARG_PTR_TO_MEM,
7058         .arg3_type      = ARG_CONST_SIZE,
7059         .arg4_type      = ARG_ANYTHING,
7060 };
7061
7062 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7063            u32, len, u64, flags)
7064 {
7065         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7066                 return -EPERM;
7067
7068         if (flags || len < 2)
7069                 return -EINVAL;
7070
7071         if (len > bpf_sock->remaining_opt_len)
7072                 return -ENOSPC;
7073
7074         bpf_sock->remaining_opt_len -= len;
7075
7076         return 0;
7077 }
7078
7079 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7080         .func           = bpf_sock_ops_reserve_hdr_opt,
7081         .gpl_only       = false,
7082         .ret_type       = RET_INTEGER,
7083         .arg1_type      = ARG_PTR_TO_CTX,
7084         .arg2_type      = ARG_ANYTHING,
7085         .arg3_type      = ARG_ANYTHING,
7086 };
7087
7088 #endif /* CONFIG_INET */
7089
7090 bool bpf_helper_changes_pkt_data(void *func)
7091 {
7092         if (func == bpf_skb_vlan_push ||
7093             func == bpf_skb_vlan_pop ||
7094             func == bpf_skb_store_bytes ||
7095             func == bpf_skb_change_proto ||
7096             func == bpf_skb_change_head ||
7097             func == sk_skb_change_head ||
7098             func == bpf_skb_change_tail ||
7099             func == sk_skb_change_tail ||
7100             func == bpf_skb_adjust_room ||
7101             func == sk_skb_adjust_room ||
7102             func == bpf_skb_pull_data ||
7103             func == sk_skb_pull_data ||
7104             func == bpf_clone_redirect ||
7105             func == bpf_l3_csum_replace ||
7106             func == bpf_l4_csum_replace ||
7107             func == bpf_xdp_adjust_head ||
7108             func == bpf_xdp_adjust_meta ||
7109             func == bpf_msg_pull_data ||
7110             func == bpf_msg_push_data ||
7111             func == bpf_msg_pop_data ||
7112             func == bpf_xdp_adjust_tail ||
7113 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7114             func == bpf_lwt_seg6_store_bytes ||
7115             func == bpf_lwt_seg6_adjust_srh ||
7116             func == bpf_lwt_seg6_action ||
7117 #endif
7118 #ifdef CONFIG_INET
7119             func == bpf_sock_ops_store_hdr_opt ||
7120 #endif
7121             func == bpf_lwt_in_push_encap ||
7122             func == bpf_lwt_xmit_push_encap)
7123                 return true;
7124
7125         return false;
7126 }
7127
7128 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7129 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7130
7131 static const struct bpf_func_proto *
7132 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7133 {
7134         switch (func_id) {
7135         /* inet and inet6 sockets are created in a process
7136          * context so there is always a valid uid/gid
7137          */
7138         case BPF_FUNC_get_current_uid_gid:
7139                 return &bpf_get_current_uid_gid_proto;
7140         case BPF_FUNC_get_local_storage:
7141                 return &bpf_get_local_storage_proto;
7142         case BPF_FUNC_get_socket_cookie:
7143                 return &bpf_get_socket_cookie_sock_proto;
7144         case BPF_FUNC_get_netns_cookie:
7145                 return &bpf_get_netns_cookie_sock_proto;
7146         case BPF_FUNC_perf_event_output:
7147                 return &bpf_event_output_data_proto;
7148         case BPF_FUNC_get_current_pid_tgid:
7149                 return &bpf_get_current_pid_tgid_proto;
7150         case BPF_FUNC_get_current_comm:
7151                 return &bpf_get_current_comm_proto;
7152 #ifdef CONFIG_CGROUPS
7153         case BPF_FUNC_get_current_cgroup_id:
7154                 return &bpf_get_current_cgroup_id_proto;
7155         case BPF_FUNC_get_current_ancestor_cgroup_id:
7156                 return &bpf_get_current_ancestor_cgroup_id_proto;
7157 #endif
7158 #ifdef CONFIG_CGROUP_NET_CLASSID
7159         case BPF_FUNC_get_cgroup_classid:
7160                 return &bpf_get_cgroup_classid_curr_proto;
7161 #endif
7162         case BPF_FUNC_sk_storage_get:
7163                 return &bpf_sk_storage_get_cg_sock_proto;
7164         case BPF_FUNC_ktime_get_coarse_ns:
7165                 return &bpf_ktime_get_coarse_ns_proto;
7166         default:
7167                 return bpf_base_func_proto(func_id);
7168         }
7169 }
7170
7171 static const struct bpf_func_proto *
7172 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7173 {
7174         switch (func_id) {
7175         /* inet and inet6 sockets are created in a process
7176          * context so there is always a valid uid/gid
7177          */
7178         case BPF_FUNC_get_current_uid_gid:
7179                 return &bpf_get_current_uid_gid_proto;
7180         case BPF_FUNC_bind:
7181                 switch (prog->expected_attach_type) {
7182                 case BPF_CGROUP_INET4_CONNECT:
7183                 case BPF_CGROUP_INET6_CONNECT:
7184                         return &bpf_bind_proto;
7185                 default:
7186                         return NULL;
7187                 }
7188         case BPF_FUNC_get_socket_cookie:
7189                 return &bpf_get_socket_cookie_sock_addr_proto;
7190         case BPF_FUNC_get_netns_cookie:
7191                 return &bpf_get_netns_cookie_sock_addr_proto;
7192         case BPF_FUNC_get_local_storage:
7193                 return &bpf_get_local_storage_proto;
7194         case BPF_FUNC_perf_event_output:
7195                 return &bpf_event_output_data_proto;
7196         case BPF_FUNC_get_current_pid_tgid:
7197                 return &bpf_get_current_pid_tgid_proto;
7198         case BPF_FUNC_get_current_comm:
7199                 return &bpf_get_current_comm_proto;
7200 #ifdef CONFIG_CGROUPS
7201         case BPF_FUNC_get_current_cgroup_id:
7202                 return &bpf_get_current_cgroup_id_proto;
7203         case BPF_FUNC_get_current_ancestor_cgroup_id:
7204                 return &bpf_get_current_ancestor_cgroup_id_proto;
7205 #endif
7206 #ifdef CONFIG_CGROUP_NET_CLASSID
7207         case BPF_FUNC_get_cgroup_classid:
7208                 return &bpf_get_cgroup_classid_curr_proto;
7209 #endif
7210 #ifdef CONFIG_INET
7211         case BPF_FUNC_sk_lookup_tcp:
7212                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7213         case BPF_FUNC_sk_lookup_udp:
7214                 return &bpf_sock_addr_sk_lookup_udp_proto;
7215         case BPF_FUNC_sk_release:
7216                 return &bpf_sk_release_proto;
7217         case BPF_FUNC_skc_lookup_tcp:
7218                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7219 #endif /* CONFIG_INET */
7220         case BPF_FUNC_sk_storage_get:
7221                 return &bpf_sk_storage_get_proto;
7222         case BPF_FUNC_sk_storage_delete:
7223                 return &bpf_sk_storage_delete_proto;
7224         case BPF_FUNC_setsockopt:
7225                 switch (prog->expected_attach_type) {
7226                 case BPF_CGROUP_INET4_BIND:
7227                 case BPF_CGROUP_INET6_BIND:
7228                 case BPF_CGROUP_INET4_CONNECT:
7229                 case BPF_CGROUP_INET6_CONNECT:
7230                 case BPF_CGROUP_UDP4_RECVMSG:
7231                 case BPF_CGROUP_UDP6_RECVMSG:
7232                 case BPF_CGROUP_UDP4_SENDMSG:
7233                 case BPF_CGROUP_UDP6_SENDMSG:
7234                 case BPF_CGROUP_INET4_GETPEERNAME:
7235                 case BPF_CGROUP_INET6_GETPEERNAME:
7236                 case BPF_CGROUP_INET4_GETSOCKNAME:
7237                 case BPF_CGROUP_INET6_GETSOCKNAME:
7238                         return &bpf_sock_addr_setsockopt_proto;
7239                 default:
7240                         return NULL;
7241                 }
7242         case BPF_FUNC_getsockopt:
7243                 switch (prog->expected_attach_type) {
7244                 case BPF_CGROUP_INET4_BIND:
7245                 case BPF_CGROUP_INET6_BIND:
7246                 case BPF_CGROUP_INET4_CONNECT:
7247                 case BPF_CGROUP_INET6_CONNECT:
7248                 case BPF_CGROUP_UDP4_RECVMSG:
7249                 case BPF_CGROUP_UDP6_RECVMSG:
7250                 case BPF_CGROUP_UDP4_SENDMSG:
7251                 case BPF_CGROUP_UDP6_SENDMSG:
7252                 case BPF_CGROUP_INET4_GETPEERNAME:
7253                 case BPF_CGROUP_INET6_GETPEERNAME:
7254                 case BPF_CGROUP_INET4_GETSOCKNAME:
7255                 case BPF_CGROUP_INET6_GETSOCKNAME:
7256                         return &bpf_sock_addr_getsockopt_proto;
7257                 default:
7258                         return NULL;
7259                 }
7260         default:
7261                 return bpf_sk_base_func_proto(func_id);
7262         }
7263 }
7264
7265 static const struct bpf_func_proto *
7266 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7267 {
7268         switch (func_id) {
7269         case BPF_FUNC_skb_load_bytes:
7270                 return &bpf_skb_load_bytes_proto;
7271         case BPF_FUNC_skb_load_bytes_relative:
7272                 return &bpf_skb_load_bytes_relative_proto;
7273         case BPF_FUNC_get_socket_cookie:
7274                 return &bpf_get_socket_cookie_proto;
7275         case BPF_FUNC_get_socket_uid:
7276                 return &bpf_get_socket_uid_proto;
7277         case BPF_FUNC_perf_event_output:
7278                 return &bpf_skb_event_output_proto;
7279         default:
7280                 return bpf_sk_base_func_proto(func_id);
7281         }
7282 }
7283
7284 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7285 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7286
7287 static const struct bpf_func_proto *
7288 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7289 {
7290         switch (func_id) {
7291         case BPF_FUNC_get_local_storage:
7292                 return &bpf_get_local_storage_proto;
7293         case BPF_FUNC_sk_fullsock:
7294                 return &bpf_sk_fullsock_proto;
7295         case BPF_FUNC_sk_storage_get:
7296                 return &bpf_sk_storage_get_proto;
7297         case BPF_FUNC_sk_storage_delete:
7298                 return &bpf_sk_storage_delete_proto;
7299         case BPF_FUNC_perf_event_output:
7300                 return &bpf_skb_event_output_proto;
7301 #ifdef CONFIG_SOCK_CGROUP_DATA
7302         case BPF_FUNC_skb_cgroup_id:
7303                 return &bpf_skb_cgroup_id_proto;
7304         case BPF_FUNC_skb_ancestor_cgroup_id:
7305                 return &bpf_skb_ancestor_cgroup_id_proto;
7306         case BPF_FUNC_sk_cgroup_id:
7307                 return &bpf_sk_cgroup_id_proto;
7308         case BPF_FUNC_sk_ancestor_cgroup_id:
7309                 return &bpf_sk_ancestor_cgroup_id_proto;
7310 #endif
7311 #ifdef CONFIG_INET
7312         case BPF_FUNC_sk_lookup_tcp:
7313                 return &bpf_sk_lookup_tcp_proto;
7314         case BPF_FUNC_sk_lookup_udp:
7315                 return &bpf_sk_lookup_udp_proto;
7316         case BPF_FUNC_sk_release:
7317                 return &bpf_sk_release_proto;
7318         case BPF_FUNC_skc_lookup_tcp:
7319                 return &bpf_skc_lookup_tcp_proto;
7320         case BPF_FUNC_tcp_sock:
7321                 return &bpf_tcp_sock_proto;
7322         case BPF_FUNC_get_listener_sock:
7323                 return &bpf_get_listener_sock_proto;
7324         case BPF_FUNC_skb_ecn_set_ce:
7325                 return &bpf_skb_ecn_set_ce_proto;
7326 #endif
7327         default:
7328                 return sk_filter_func_proto(func_id, prog);
7329         }
7330 }
7331
7332 static const struct bpf_func_proto *
7333 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7334 {
7335         switch (func_id) {
7336         case BPF_FUNC_skb_store_bytes:
7337                 return &bpf_skb_store_bytes_proto;
7338         case BPF_FUNC_skb_load_bytes:
7339                 return &bpf_skb_load_bytes_proto;
7340         case BPF_FUNC_skb_load_bytes_relative:
7341                 return &bpf_skb_load_bytes_relative_proto;
7342         case BPF_FUNC_skb_pull_data:
7343                 return &bpf_skb_pull_data_proto;
7344         case BPF_FUNC_csum_diff:
7345                 return &bpf_csum_diff_proto;
7346         case BPF_FUNC_csum_update:
7347                 return &bpf_csum_update_proto;
7348         case BPF_FUNC_csum_level:
7349                 return &bpf_csum_level_proto;
7350         case BPF_FUNC_l3_csum_replace:
7351                 return &bpf_l3_csum_replace_proto;
7352         case BPF_FUNC_l4_csum_replace:
7353                 return &bpf_l4_csum_replace_proto;
7354         case BPF_FUNC_clone_redirect:
7355                 return &bpf_clone_redirect_proto;
7356         case BPF_FUNC_get_cgroup_classid:
7357                 return &bpf_get_cgroup_classid_proto;
7358         case BPF_FUNC_skb_vlan_push:
7359                 return &bpf_skb_vlan_push_proto;
7360         case BPF_FUNC_skb_vlan_pop:
7361                 return &bpf_skb_vlan_pop_proto;
7362         case BPF_FUNC_skb_change_proto:
7363                 return &bpf_skb_change_proto_proto;
7364         case BPF_FUNC_skb_change_type:
7365                 return &bpf_skb_change_type_proto;
7366         case BPF_FUNC_skb_adjust_room:
7367                 return &bpf_skb_adjust_room_proto;
7368         case BPF_FUNC_skb_change_tail:
7369                 return &bpf_skb_change_tail_proto;
7370         case BPF_FUNC_skb_change_head:
7371                 return &bpf_skb_change_head_proto;
7372         case BPF_FUNC_skb_get_tunnel_key:
7373                 return &bpf_skb_get_tunnel_key_proto;
7374         case BPF_FUNC_skb_set_tunnel_key:
7375                 return bpf_get_skb_set_tunnel_proto(func_id);
7376         case BPF_FUNC_skb_get_tunnel_opt:
7377                 return &bpf_skb_get_tunnel_opt_proto;
7378         case BPF_FUNC_skb_set_tunnel_opt:
7379                 return bpf_get_skb_set_tunnel_proto(func_id);
7380         case BPF_FUNC_redirect:
7381                 return &bpf_redirect_proto;
7382         case BPF_FUNC_redirect_neigh:
7383                 return &bpf_redirect_neigh_proto;
7384         case BPF_FUNC_redirect_peer:
7385                 return &bpf_redirect_peer_proto;
7386         case BPF_FUNC_get_route_realm:
7387                 return &bpf_get_route_realm_proto;
7388         case BPF_FUNC_get_hash_recalc:
7389                 return &bpf_get_hash_recalc_proto;
7390         case BPF_FUNC_set_hash_invalid:
7391                 return &bpf_set_hash_invalid_proto;
7392         case BPF_FUNC_set_hash:
7393                 return &bpf_set_hash_proto;
7394         case BPF_FUNC_perf_event_output:
7395                 return &bpf_skb_event_output_proto;
7396         case BPF_FUNC_get_smp_processor_id:
7397                 return &bpf_get_smp_processor_id_proto;
7398         case BPF_FUNC_skb_under_cgroup:
7399                 return &bpf_skb_under_cgroup_proto;
7400         case BPF_FUNC_get_socket_cookie:
7401                 return &bpf_get_socket_cookie_proto;
7402         case BPF_FUNC_get_socket_uid:
7403                 return &bpf_get_socket_uid_proto;
7404         case BPF_FUNC_fib_lookup:
7405                 return &bpf_skb_fib_lookup_proto;
7406         case BPF_FUNC_check_mtu:
7407                 return &bpf_skb_check_mtu_proto;
7408         case BPF_FUNC_sk_fullsock:
7409                 return &bpf_sk_fullsock_proto;
7410         case BPF_FUNC_sk_storage_get:
7411                 return &bpf_sk_storage_get_proto;
7412         case BPF_FUNC_sk_storage_delete:
7413                 return &bpf_sk_storage_delete_proto;
7414 #ifdef CONFIG_XFRM
7415         case BPF_FUNC_skb_get_xfrm_state:
7416                 return &bpf_skb_get_xfrm_state_proto;
7417 #endif
7418 #ifdef CONFIG_CGROUP_NET_CLASSID
7419         case BPF_FUNC_skb_cgroup_classid:
7420                 return &bpf_skb_cgroup_classid_proto;
7421 #endif
7422 #ifdef CONFIG_SOCK_CGROUP_DATA
7423         case BPF_FUNC_skb_cgroup_id:
7424                 return &bpf_skb_cgroup_id_proto;
7425         case BPF_FUNC_skb_ancestor_cgroup_id:
7426                 return &bpf_skb_ancestor_cgroup_id_proto;
7427 #endif
7428 #ifdef CONFIG_INET
7429         case BPF_FUNC_sk_lookup_tcp:
7430                 return &bpf_sk_lookup_tcp_proto;
7431         case BPF_FUNC_sk_lookup_udp:
7432                 return &bpf_sk_lookup_udp_proto;
7433         case BPF_FUNC_sk_release:
7434                 return &bpf_sk_release_proto;
7435         case BPF_FUNC_tcp_sock:
7436                 return &bpf_tcp_sock_proto;
7437         case BPF_FUNC_get_listener_sock:
7438                 return &bpf_get_listener_sock_proto;
7439         case BPF_FUNC_skc_lookup_tcp:
7440                 return &bpf_skc_lookup_tcp_proto;
7441         case BPF_FUNC_tcp_check_syncookie:
7442                 return &bpf_tcp_check_syncookie_proto;
7443         case BPF_FUNC_skb_ecn_set_ce:
7444                 return &bpf_skb_ecn_set_ce_proto;
7445         case BPF_FUNC_tcp_gen_syncookie:
7446                 return &bpf_tcp_gen_syncookie_proto;
7447         case BPF_FUNC_sk_assign:
7448                 return &bpf_sk_assign_proto;
7449 #endif
7450         default:
7451                 return bpf_sk_base_func_proto(func_id);
7452         }
7453 }
7454
7455 static const struct bpf_func_proto *
7456 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7457 {
7458         switch (func_id) {
7459         case BPF_FUNC_perf_event_output:
7460                 return &bpf_xdp_event_output_proto;
7461         case BPF_FUNC_get_smp_processor_id:
7462                 return &bpf_get_smp_processor_id_proto;
7463         case BPF_FUNC_csum_diff:
7464                 return &bpf_csum_diff_proto;
7465         case BPF_FUNC_xdp_adjust_head:
7466                 return &bpf_xdp_adjust_head_proto;
7467         case BPF_FUNC_xdp_adjust_meta:
7468                 return &bpf_xdp_adjust_meta_proto;
7469         case BPF_FUNC_redirect:
7470                 return &bpf_xdp_redirect_proto;
7471         case BPF_FUNC_redirect_map:
7472                 return &bpf_xdp_redirect_map_proto;
7473         case BPF_FUNC_xdp_adjust_tail:
7474                 return &bpf_xdp_adjust_tail_proto;
7475         case BPF_FUNC_fib_lookup:
7476                 return &bpf_xdp_fib_lookup_proto;
7477         case BPF_FUNC_check_mtu:
7478                 return &bpf_xdp_check_mtu_proto;
7479 #ifdef CONFIG_INET
7480         case BPF_FUNC_sk_lookup_udp:
7481                 return &bpf_xdp_sk_lookup_udp_proto;
7482         case BPF_FUNC_sk_lookup_tcp:
7483                 return &bpf_xdp_sk_lookup_tcp_proto;
7484         case BPF_FUNC_sk_release:
7485                 return &bpf_sk_release_proto;
7486         case BPF_FUNC_skc_lookup_tcp:
7487                 return &bpf_xdp_skc_lookup_tcp_proto;
7488         case BPF_FUNC_tcp_check_syncookie:
7489                 return &bpf_tcp_check_syncookie_proto;
7490         case BPF_FUNC_tcp_gen_syncookie:
7491                 return &bpf_tcp_gen_syncookie_proto;
7492 #endif
7493         default:
7494                 return bpf_sk_base_func_proto(func_id);
7495         }
7496 }
7497
7498 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7499 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7500
7501 static const struct bpf_func_proto *
7502 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7503 {
7504         switch (func_id) {
7505         case BPF_FUNC_setsockopt:
7506                 return &bpf_sock_ops_setsockopt_proto;
7507         case BPF_FUNC_getsockopt:
7508                 return &bpf_sock_ops_getsockopt_proto;
7509         case BPF_FUNC_sock_ops_cb_flags_set:
7510                 return &bpf_sock_ops_cb_flags_set_proto;
7511         case BPF_FUNC_sock_map_update:
7512                 return &bpf_sock_map_update_proto;
7513         case BPF_FUNC_sock_hash_update:
7514                 return &bpf_sock_hash_update_proto;
7515         case BPF_FUNC_get_socket_cookie:
7516                 return &bpf_get_socket_cookie_sock_ops_proto;
7517         case BPF_FUNC_get_local_storage:
7518                 return &bpf_get_local_storage_proto;
7519         case BPF_FUNC_perf_event_output:
7520                 return &bpf_event_output_data_proto;
7521         case BPF_FUNC_sk_storage_get:
7522                 return &bpf_sk_storage_get_proto;
7523         case BPF_FUNC_sk_storage_delete:
7524                 return &bpf_sk_storage_delete_proto;
7525         case BPF_FUNC_get_netns_cookie:
7526                 return &bpf_get_netns_cookie_sock_ops_proto;
7527 #ifdef CONFIG_INET
7528         case BPF_FUNC_load_hdr_opt:
7529                 return &bpf_sock_ops_load_hdr_opt_proto;
7530         case BPF_FUNC_store_hdr_opt:
7531                 return &bpf_sock_ops_store_hdr_opt_proto;
7532         case BPF_FUNC_reserve_hdr_opt:
7533                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7534         case BPF_FUNC_tcp_sock:
7535                 return &bpf_tcp_sock_proto;
7536 #endif /* CONFIG_INET */
7537         default:
7538                 return bpf_sk_base_func_proto(func_id);
7539         }
7540 }
7541
7542 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7543 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7544
7545 static const struct bpf_func_proto *
7546 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7547 {
7548         switch (func_id) {
7549         case BPF_FUNC_msg_redirect_map:
7550                 return &bpf_msg_redirect_map_proto;
7551         case BPF_FUNC_msg_redirect_hash:
7552                 return &bpf_msg_redirect_hash_proto;
7553         case BPF_FUNC_msg_apply_bytes:
7554                 return &bpf_msg_apply_bytes_proto;
7555         case BPF_FUNC_msg_cork_bytes:
7556                 return &bpf_msg_cork_bytes_proto;
7557         case BPF_FUNC_msg_pull_data:
7558                 return &bpf_msg_pull_data_proto;
7559         case BPF_FUNC_msg_push_data:
7560                 return &bpf_msg_push_data_proto;
7561         case BPF_FUNC_msg_pop_data:
7562                 return &bpf_msg_pop_data_proto;
7563         case BPF_FUNC_perf_event_output:
7564                 return &bpf_event_output_data_proto;
7565         case BPF_FUNC_get_current_uid_gid:
7566                 return &bpf_get_current_uid_gid_proto;
7567         case BPF_FUNC_get_current_pid_tgid:
7568                 return &bpf_get_current_pid_tgid_proto;
7569         case BPF_FUNC_sk_storage_get:
7570                 return &bpf_sk_storage_get_proto;
7571         case BPF_FUNC_sk_storage_delete:
7572                 return &bpf_sk_storage_delete_proto;
7573         case BPF_FUNC_get_netns_cookie:
7574                 return &bpf_get_netns_cookie_sk_msg_proto;
7575 #ifdef CONFIG_CGROUPS
7576         case BPF_FUNC_get_current_cgroup_id:
7577                 return &bpf_get_current_cgroup_id_proto;
7578         case BPF_FUNC_get_current_ancestor_cgroup_id:
7579                 return &bpf_get_current_ancestor_cgroup_id_proto;
7580 #endif
7581 #ifdef CONFIG_CGROUP_NET_CLASSID
7582         case BPF_FUNC_get_cgroup_classid:
7583                 return &bpf_get_cgroup_classid_curr_proto;
7584 #endif
7585         default:
7586                 return bpf_sk_base_func_proto(func_id);
7587         }
7588 }
7589
7590 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7591 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7592
7593 static const struct bpf_func_proto *
7594 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7595 {
7596         switch (func_id) {
7597         case BPF_FUNC_skb_store_bytes:
7598                 return &bpf_skb_store_bytes_proto;
7599         case BPF_FUNC_skb_load_bytes:
7600                 return &bpf_skb_load_bytes_proto;
7601         case BPF_FUNC_skb_pull_data:
7602                 return &sk_skb_pull_data_proto;
7603         case BPF_FUNC_skb_change_tail:
7604                 return &sk_skb_change_tail_proto;
7605         case BPF_FUNC_skb_change_head:
7606                 return &sk_skb_change_head_proto;
7607         case BPF_FUNC_skb_adjust_room:
7608                 return &sk_skb_adjust_room_proto;
7609         case BPF_FUNC_get_socket_cookie:
7610                 return &bpf_get_socket_cookie_proto;
7611         case BPF_FUNC_get_socket_uid:
7612                 return &bpf_get_socket_uid_proto;
7613         case BPF_FUNC_sk_redirect_map:
7614                 return &bpf_sk_redirect_map_proto;
7615         case BPF_FUNC_sk_redirect_hash:
7616                 return &bpf_sk_redirect_hash_proto;
7617         case BPF_FUNC_perf_event_output:
7618                 return &bpf_skb_event_output_proto;
7619 #ifdef CONFIG_INET
7620         case BPF_FUNC_sk_lookup_tcp:
7621                 return &bpf_sk_lookup_tcp_proto;
7622         case BPF_FUNC_sk_lookup_udp:
7623                 return &bpf_sk_lookup_udp_proto;
7624         case BPF_FUNC_sk_release:
7625                 return &bpf_sk_release_proto;
7626         case BPF_FUNC_skc_lookup_tcp:
7627                 return &bpf_skc_lookup_tcp_proto;
7628 #endif
7629         default:
7630                 return bpf_sk_base_func_proto(func_id);
7631         }
7632 }
7633
7634 static const struct bpf_func_proto *
7635 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7636 {
7637         switch (func_id) {
7638         case BPF_FUNC_skb_load_bytes:
7639                 return &bpf_flow_dissector_load_bytes_proto;
7640         default:
7641                 return bpf_sk_base_func_proto(func_id);
7642         }
7643 }
7644
7645 static const struct bpf_func_proto *
7646 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7647 {
7648         switch (func_id) {
7649         case BPF_FUNC_skb_load_bytes:
7650                 return &bpf_skb_load_bytes_proto;
7651         case BPF_FUNC_skb_pull_data:
7652                 return &bpf_skb_pull_data_proto;
7653         case BPF_FUNC_csum_diff:
7654                 return &bpf_csum_diff_proto;
7655         case BPF_FUNC_get_cgroup_classid:
7656                 return &bpf_get_cgroup_classid_proto;
7657         case BPF_FUNC_get_route_realm:
7658                 return &bpf_get_route_realm_proto;
7659         case BPF_FUNC_get_hash_recalc:
7660                 return &bpf_get_hash_recalc_proto;
7661         case BPF_FUNC_perf_event_output:
7662                 return &bpf_skb_event_output_proto;
7663         case BPF_FUNC_get_smp_processor_id:
7664                 return &bpf_get_smp_processor_id_proto;
7665         case BPF_FUNC_skb_under_cgroup:
7666                 return &bpf_skb_under_cgroup_proto;
7667         default:
7668                 return bpf_sk_base_func_proto(func_id);
7669         }
7670 }
7671
7672 static const struct bpf_func_proto *
7673 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7674 {
7675         switch (func_id) {
7676         case BPF_FUNC_lwt_push_encap:
7677                 return &bpf_lwt_in_push_encap_proto;
7678         default:
7679                 return lwt_out_func_proto(func_id, prog);
7680         }
7681 }
7682
7683 static const struct bpf_func_proto *
7684 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7685 {
7686         switch (func_id) {
7687         case BPF_FUNC_skb_get_tunnel_key:
7688                 return &bpf_skb_get_tunnel_key_proto;
7689         case BPF_FUNC_skb_set_tunnel_key:
7690                 return bpf_get_skb_set_tunnel_proto(func_id);
7691         case BPF_FUNC_skb_get_tunnel_opt:
7692                 return &bpf_skb_get_tunnel_opt_proto;
7693         case BPF_FUNC_skb_set_tunnel_opt:
7694                 return bpf_get_skb_set_tunnel_proto(func_id);
7695         case BPF_FUNC_redirect:
7696                 return &bpf_redirect_proto;
7697         case BPF_FUNC_clone_redirect:
7698                 return &bpf_clone_redirect_proto;
7699         case BPF_FUNC_skb_change_tail:
7700                 return &bpf_skb_change_tail_proto;
7701         case BPF_FUNC_skb_change_head:
7702                 return &bpf_skb_change_head_proto;
7703         case BPF_FUNC_skb_store_bytes:
7704                 return &bpf_skb_store_bytes_proto;
7705         case BPF_FUNC_csum_update:
7706                 return &bpf_csum_update_proto;
7707         case BPF_FUNC_csum_level:
7708                 return &bpf_csum_level_proto;
7709         case BPF_FUNC_l3_csum_replace:
7710                 return &bpf_l3_csum_replace_proto;
7711         case BPF_FUNC_l4_csum_replace:
7712                 return &bpf_l4_csum_replace_proto;
7713         case BPF_FUNC_set_hash_invalid:
7714                 return &bpf_set_hash_invalid_proto;
7715         case BPF_FUNC_lwt_push_encap:
7716                 return &bpf_lwt_xmit_push_encap_proto;
7717         default:
7718                 return lwt_out_func_proto(func_id, prog);
7719         }
7720 }
7721
7722 static const struct bpf_func_proto *
7723 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7724 {
7725         switch (func_id) {
7726 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7727         case BPF_FUNC_lwt_seg6_store_bytes:
7728                 return &bpf_lwt_seg6_store_bytes_proto;
7729         case BPF_FUNC_lwt_seg6_action:
7730                 return &bpf_lwt_seg6_action_proto;
7731         case BPF_FUNC_lwt_seg6_adjust_srh:
7732                 return &bpf_lwt_seg6_adjust_srh_proto;
7733 #endif
7734         default:
7735                 return lwt_out_func_proto(func_id, prog);
7736         }
7737 }
7738
7739 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7740                                     const struct bpf_prog *prog,
7741                                     struct bpf_insn_access_aux *info)
7742 {
7743         const int size_default = sizeof(__u32);
7744
7745         if (off < 0 || off >= sizeof(struct __sk_buff))
7746                 return false;
7747
7748         /* The verifier guarantees that size > 0. */
7749         if (off % size != 0)
7750                 return false;
7751
7752         switch (off) {
7753         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7754                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7755                         return false;
7756                 break;
7757         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7758         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7759         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7760         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7761         case bpf_ctx_range(struct __sk_buff, data):
7762         case bpf_ctx_range(struct __sk_buff, data_meta):
7763         case bpf_ctx_range(struct __sk_buff, data_end):
7764                 if (size != size_default)
7765                         return false;
7766                 break;
7767         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7768                 return false;
7769         case bpf_ctx_range(struct __sk_buff, hwtstamp):
7770                 if (type == BPF_WRITE || size != sizeof(__u64))
7771                         return false;
7772                 break;
7773         case bpf_ctx_range(struct __sk_buff, tstamp):
7774                 if (size != sizeof(__u64))
7775                         return false;
7776                 break;
7777         case offsetof(struct __sk_buff, sk):
7778                 if (type == BPF_WRITE || size != sizeof(__u64))
7779                         return false;
7780                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7781                 break;
7782         case offsetofend(struct __sk_buff, gso_size) ... offsetof(struct __sk_buff, hwtstamp) - 1:
7783                 /* Explicitly prohibit access to padding in __sk_buff. */
7784                 return false;
7785         default:
7786                 /* Only narrow read access allowed for now. */
7787                 if (type == BPF_WRITE) {
7788                         if (size != size_default)
7789                                 return false;
7790                 } else {
7791                         bpf_ctx_record_field_size(info, size_default);
7792                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7793                                 return false;
7794                 }
7795         }
7796
7797         return true;
7798 }
7799
7800 static bool sk_filter_is_valid_access(int off, int size,
7801                                       enum bpf_access_type type,
7802                                       const struct bpf_prog *prog,
7803                                       struct bpf_insn_access_aux *info)
7804 {
7805         switch (off) {
7806         case bpf_ctx_range(struct __sk_buff, tc_classid):
7807         case bpf_ctx_range(struct __sk_buff, data):
7808         case bpf_ctx_range(struct __sk_buff, data_meta):
7809         case bpf_ctx_range(struct __sk_buff, data_end):
7810         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7811         case bpf_ctx_range(struct __sk_buff, tstamp):
7812         case bpf_ctx_range(struct __sk_buff, wire_len):
7813         case bpf_ctx_range(struct __sk_buff, hwtstamp):
7814                 return false;
7815         }
7816
7817         if (type == BPF_WRITE) {
7818                 switch (off) {
7819                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7820                         break;
7821                 default:
7822                         return false;
7823                 }
7824         }
7825
7826         return bpf_skb_is_valid_access(off, size, type, prog, info);
7827 }
7828
7829 static bool cg_skb_is_valid_access(int off, int size,
7830                                    enum bpf_access_type type,
7831                                    const struct bpf_prog *prog,
7832                                    struct bpf_insn_access_aux *info)
7833 {
7834         switch (off) {
7835         case bpf_ctx_range(struct __sk_buff, tc_classid):
7836         case bpf_ctx_range(struct __sk_buff, data_meta):
7837         case bpf_ctx_range(struct __sk_buff, wire_len):
7838                 return false;
7839         case bpf_ctx_range(struct __sk_buff, data):
7840         case bpf_ctx_range(struct __sk_buff, data_end):
7841                 if (!bpf_capable())
7842                         return false;
7843                 break;
7844         }
7845
7846         if (type == BPF_WRITE) {
7847                 switch (off) {
7848                 case bpf_ctx_range(struct __sk_buff, mark):
7849                 case bpf_ctx_range(struct __sk_buff, priority):
7850                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7851                         break;
7852                 case bpf_ctx_range(struct __sk_buff, tstamp):
7853                         if (!bpf_capable())
7854                                 return false;
7855                         break;
7856                 default:
7857                         return false;
7858                 }
7859         }
7860
7861         switch (off) {
7862         case bpf_ctx_range(struct __sk_buff, data):
7863                 info->reg_type = PTR_TO_PACKET;
7864                 break;
7865         case bpf_ctx_range(struct __sk_buff, data_end):
7866                 info->reg_type = PTR_TO_PACKET_END;
7867                 break;
7868         }
7869
7870         return bpf_skb_is_valid_access(off, size, type, prog, info);
7871 }
7872
7873 static bool lwt_is_valid_access(int off, int size,
7874                                 enum bpf_access_type type,
7875                                 const struct bpf_prog *prog,
7876                                 struct bpf_insn_access_aux *info)
7877 {
7878         switch (off) {
7879         case bpf_ctx_range(struct __sk_buff, tc_classid):
7880         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7881         case bpf_ctx_range(struct __sk_buff, data_meta):
7882         case bpf_ctx_range(struct __sk_buff, tstamp):
7883         case bpf_ctx_range(struct __sk_buff, wire_len):
7884         case bpf_ctx_range(struct __sk_buff, hwtstamp):
7885                 return false;
7886         }
7887
7888         if (type == BPF_WRITE) {
7889                 switch (off) {
7890                 case bpf_ctx_range(struct __sk_buff, mark):
7891                 case bpf_ctx_range(struct __sk_buff, priority):
7892                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7893                         break;
7894                 default:
7895                         return false;
7896                 }
7897         }
7898
7899         switch (off) {
7900         case bpf_ctx_range(struct __sk_buff, data):
7901                 info->reg_type = PTR_TO_PACKET;
7902                 break;
7903         case bpf_ctx_range(struct __sk_buff, data_end):
7904                 info->reg_type = PTR_TO_PACKET_END;
7905                 break;
7906         }
7907
7908         return bpf_skb_is_valid_access(off, size, type, prog, info);
7909 }
7910
7911 /* Attach type specific accesses */
7912 static bool __sock_filter_check_attach_type(int off,
7913                                             enum bpf_access_type access_type,
7914                                             enum bpf_attach_type attach_type)
7915 {
7916         switch (off) {
7917         case offsetof(struct bpf_sock, bound_dev_if):
7918         case offsetof(struct bpf_sock, mark):
7919         case offsetof(struct bpf_sock, priority):
7920                 switch (attach_type) {
7921                 case BPF_CGROUP_INET_SOCK_CREATE:
7922                 case BPF_CGROUP_INET_SOCK_RELEASE:
7923                         goto full_access;
7924                 default:
7925                         return false;
7926                 }
7927         case bpf_ctx_range(struct bpf_sock, src_ip4):
7928                 switch (attach_type) {
7929                 case BPF_CGROUP_INET4_POST_BIND:
7930                         goto read_only;
7931                 default:
7932                         return false;
7933                 }
7934         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7935                 switch (attach_type) {
7936                 case BPF_CGROUP_INET6_POST_BIND:
7937                         goto read_only;
7938                 default:
7939                         return false;
7940                 }
7941         case bpf_ctx_range(struct bpf_sock, src_port):
7942                 switch (attach_type) {
7943                 case BPF_CGROUP_INET4_POST_BIND:
7944                 case BPF_CGROUP_INET6_POST_BIND:
7945                         goto read_only;
7946                 default:
7947                         return false;
7948                 }
7949         }
7950 read_only:
7951         return access_type == BPF_READ;
7952 full_access:
7953         return true;
7954 }
7955
7956 bool bpf_sock_common_is_valid_access(int off, int size,
7957                                      enum bpf_access_type type,
7958                                      struct bpf_insn_access_aux *info)
7959 {
7960         switch (off) {
7961         case bpf_ctx_range_till(struct bpf_sock, type, priority):
7962                 return false;
7963         default:
7964                 return bpf_sock_is_valid_access(off, size, type, info);
7965         }
7966 }
7967
7968 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7969                               struct bpf_insn_access_aux *info)
7970 {
7971         const int size_default = sizeof(__u32);
7972
7973         if (off < 0 || off >= sizeof(struct bpf_sock))
7974                 return false;
7975         if (off % size != 0)
7976                 return false;
7977
7978         switch (off) {
7979         case offsetof(struct bpf_sock, state):
7980         case offsetof(struct bpf_sock, family):
7981         case offsetof(struct bpf_sock, type):
7982         case offsetof(struct bpf_sock, protocol):
7983         case offsetof(struct bpf_sock, dst_port):
7984         case offsetof(struct bpf_sock, src_port):
7985         case offsetof(struct bpf_sock, rx_queue_mapping):
7986         case bpf_ctx_range(struct bpf_sock, src_ip4):
7987         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7988         case bpf_ctx_range(struct bpf_sock, dst_ip4):
7989         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7990                 bpf_ctx_record_field_size(info, size_default);
7991                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7992         }
7993
7994         return size == size_default;
7995 }
7996
7997 static bool sock_filter_is_valid_access(int off, int size,
7998                                         enum bpf_access_type type,
7999                                         const struct bpf_prog *prog,
8000                                         struct bpf_insn_access_aux *info)
8001 {
8002         if (!bpf_sock_is_valid_access(off, size, type, info))
8003                 return false;
8004         return __sock_filter_check_attach_type(off, type,
8005                                                prog->expected_attach_type);
8006 }
8007
8008 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8009                              const struct bpf_prog *prog)
8010 {
8011         /* Neither direct read nor direct write requires any preliminary
8012          * action.
8013          */
8014         return 0;
8015 }
8016
8017 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8018                                 const struct bpf_prog *prog, int drop_verdict)
8019 {
8020         struct bpf_insn *insn = insn_buf;
8021
8022         if (!direct_write)
8023                 return 0;
8024
8025         /* if (!skb->cloned)
8026          *       goto start;
8027          *
8028          * (Fast-path, otherwise approximation that we might be
8029          *  a clone, do the rest in helper.)
8030          */
8031         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8032         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8033         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8034
8035         /* ret = bpf_skb_pull_data(skb, 0); */
8036         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8037         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8038         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8039                                BPF_FUNC_skb_pull_data);
8040         /* if (!ret)
8041          *      goto restore;
8042          * return TC_ACT_SHOT;
8043          */
8044         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8045         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8046         *insn++ = BPF_EXIT_INSN();
8047
8048         /* restore: */
8049         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8050         /* start: */
8051         *insn++ = prog->insnsi[0];
8052
8053         return insn - insn_buf;
8054 }
8055
8056 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8057                           struct bpf_insn *insn_buf)
8058 {
8059         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8060         struct bpf_insn *insn = insn_buf;
8061
8062         if (!indirect) {
8063                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8064         } else {
8065                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8066                 if (orig->imm)
8067                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8068         }
8069         /* We're guaranteed here that CTX is in R6. */
8070         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8071
8072         switch (BPF_SIZE(orig->code)) {
8073         case BPF_B:
8074                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8075                 break;
8076         case BPF_H:
8077                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8078                 break;
8079         case BPF_W:
8080                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8081                 break;
8082         }
8083
8084         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8085         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8086         *insn++ = BPF_EXIT_INSN();
8087
8088         return insn - insn_buf;
8089 }
8090
8091 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8092                                const struct bpf_prog *prog)
8093 {
8094         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8095 }
8096
8097 static bool tc_cls_act_is_valid_access(int off, int size,
8098                                        enum bpf_access_type type,
8099                                        const struct bpf_prog *prog,
8100                                        struct bpf_insn_access_aux *info)
8101 {
8102         if (type == BPF_WRITE) {
8103                 switch (off) {
8104                 case bpf_ctx_range(struct __sk_buff, mark):
8105                 case bpf_ctx_range(struct __sk_buff, tc_index):
8106                 case bpf_ctx_range(struct __sk_buff, priority):
8107                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8108                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8109                 case bpf_ctx_range(struct __sk_buff, tstamp):
8110                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8111                         break;
8112                 default:
8113                         return false;
8114                 }
8115         }
8116
8117         switch (off) {
8118         case bpf_ctx_range(struct __sk_buff, data):
8119                 info->reg_type = PTR_TO_PACKET;
8120                 break;
8121         case bpf_ctx_range(struct __sk_buff, data_meta):
8122                 info->reg_type = PTR_TO_PACKET_META;
8123                 break;
8124         case bpf_ctx_range(struct __sk_buff, data_end):
8125                 info->reg_type = PTR_TO_PACKET_END;
8126                 break;
8127         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8128                 return false;
8129         }
8130
8131         return bpf_skb_is_valid_access(off, size, type, prog, info);
8132 }
8133
8134 static bool __is_valid_xdp_access(int off, int size)
8135 {
8136         if (off < 0 || off >= sizeof(struct xdp_md))
8137                 return false;
8138         if (off % size != 0)
8139                 return false;
8140         if (size != sizeof(__u32))
8141                 return false;
8142
8143         return true;
8144 }
8145
8146 static bool xdp_is_valid_access(int off, int size,
8147                                 enum bpf_access_type type,
8148                                 const struct bpf_prog *prog,
8149                                 struct bpf_insn_access_aux *info)
8150 {
8151         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8152                 switch (off) {
8153                 case offsetof(struct xdp_md, egress_ifindex):
8154                         return false;
8155                 }
8156         }
8157
8158         if (type == BPF_WRITE) {
8159                 if (bpf_prog_is_dev_bound(prog->aux)) {
8160                         switch (off) {
8161                         case offsetof(struct xdp_md, rx_queue_index):
8162                                 return __is_valid_xdp_access(off, size);
8163                         }
8164                 }
8165                 return false;
8166         }
8167
8168         switch (off) {
8169         case offsetof(struct xdp_md, data):
8170                 info->reg_type = PTR_TO_PACKET;
8171                 break;
8172         case offsetof(struct xdp_md, data_meta):
8173                 info->reg_type = PTR_TO_PACKET_META;
8174                 break;
8175         case offsetof(struct xdp_md, data_end):
8176                 info->reg_type = PTR_TO_PACKET_END;
8177                 break;
8178         }
8179
8180         return __is_valid_xdp_access(off, size);
8181 }
8182
8183 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8184 {
8185         const u32 act_max = XDP_REDIRECT;
8186
8187         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8188                      act > act_max ? "Illegal" : "Driver unsupported",
8189                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8190 }
8191 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8192
8193 static bool sock_addr_is_valid_access(int off, int size,
8194                                       enum bpf_access_type type,
8195                                       const struct bpf_prog *prog,
8196                                       struct bpf_insn_access_aux *info)
8197 {
8198         const int size_default = sizeof(__u32);
8199
8200         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8201                 return false;
8202         if (off % size != 0)
8203                 return false;
8204
8205         /* Disallow access to IPv6 fields from IPv4 contex and vise
8206          * versa.
8207          */
8208         switch (off) {
8209         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8210                 switch (prog->expected_attach_type) {
8211                 case BPF_CGROUP_INET4_BIND:
8212                 case BPF_CGROUP_INET4_CONNECT:
8213                 case BPF_CGROUP_INET4_GETPEERNAME:
8214                 case BPF_CGROUP_INET4_GETSOCKNAME:
8215                 case BPF_CGROUP_UDP4_SENDMSG:
8216                 case BPF_CGROUP_UDP4_RECVMSG:
8217                         break;
8218                 default:
8219                         return false;
8220                 }
8221                 break;
8222         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8223                 switch (prog->expected_attach_type) {
8224                 case BPF_CGROUP_INET6_BIND:
8225                 case BPF_CGROUP_INET6_CONNECT:
8226                 case BPF_CGROUP_INET6_GETPEERNAME:
8227                 case BPF_CGROUP_INET6_GETSOCKNAME:
8228                 case BPF_CGROUP_UDP6_SENDMSG:
8229                 case BPF_CGROUP_UDP6_RECVMSG:
8230                         break;
8231                 default:
8232                         return false;
8233                 }
8234                 break;
8235         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8236                 switch (prog->expected_attach_type) {
8237                 case BPF_CGROUP_UDP4_SENDMSG:
8238                         break;
8239                 default:
8240                         return false;
8241                 }
8242                 break;
8243         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8244                                 msg_src_ip6[3]):
8245                 switch (prog->expected_attach_type) {
8246                 case BPF_CGROUP_UDP6_SENDMSG:
8247                         break;
8248                 default:
8249                         return false;
8250                 }
8251                 break;
8252         }
8253
8254         switch (off) {
8255         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8256         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8257         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8258         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8259                                 msg_src_ip6[3]):
8260         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8261                 if (type == BPF_READ) {
8262                         bpf_ctx_record_field_size(info, size_default);
8263
8264                         if (bpf_ctx_wide_access_ok(off, size,
8265                                                    struct bpf_sock_addr,
8266                                                    user_ip6))
8267                                 return true;
8268
8269                         if (bpf_ctx_wide_access_ok(off, size,
8270                                                    struct bpf_sock_addr,
8271                                                    msg_src_ip6))
8272                                 return true;
8273
8274                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8275                                 return false;
8276                 } else {
8277                         if (bpf_ctx_wide_access_ok(off, size,
8278                                                    struct bpf_sock_addr,
8279                                                    user_ip6))
8280                                 return true;
8281
8282                         if (bpf_ctx_wide_access_ok(off, size,
8283                                                    struct bpf_sock_addr,
8284                                                    msg_src_ip6))
8285                                 return true;
8286
8287                         if (size != size_default)
8288                                 return false;
8289                 }
8290                 break;
8291         case offsetof(struct bpf_sock_addr, sk):
8292                 if (type != BPF_READ)
8293                         return false;
8294                 if (size != sizeof(__u64))
8295                         return false;
8296                 info->reg_type = PTR_TO_SOCKET;
8297                 break;
8298         default:
8299                 if (type == BPF_READ) {
8300                         if (size != size_default)
8301                                 return false;
8302                 } else {
8303                         return false;
8304                 }
8305         }
8306
8307         return true;
8308 }
8309
8310 static bool sock_ops_is_valid_access(int off, int size,
8311                                      enum bpf_access_type type,
8312                                      const struct bpf_prog *prog,
8313                                      struct bpf_insn_access_aux *info)
8314 {
8315         const int size_default = sizeof(__u32);
8316
8317         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8318                 return false;
8319
8320         /* The verifier guarantees that size > 0. */
8321         if (off % size != 0)
8322                 return false;
8323
8324         if (type == BPF_WRITE) {
8325                 switch (off) {
8326                 case offsetof(struct bpf_sock_ops, reply):
8327                 case offsetof(struct bpf_sock_ops, sk_txhash):
8328                         if (size != size_default)
8329                                 return false;
8330                         break;
8331                 default:
8332                         return false;
8333                 }
8334         } else {
8335                 switch (off) {
8336                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8337                                         bytes_acked):
8338                         if (size != sizeof(__u64))
8339                                 return false;
8340                         break;
8341                 case offsetof(struct bpf_sock_ops, sk):
8342                         if (size != sizeof(__u64))
8343                                 return false;
8344                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8345                         break;
8346                 case offsetof(struct bpf_sock_ops, skb_data):
8347                         if (size != sizeof(__u64))
8348                                 return false;
8349                         info->reg_type = PTR_TO_PACKET;
8350                         break;
8351                 case offsetof(struct bpf_sock_ops, skb_data_end):
8352                         if (size != sizeof(__u64))
8353                                 return false;
8354                         info->reg_type = PTR_TO_PACKET_END;
8355                         break;
8356                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8357                         bpf_ctx_record_field_size(info, size_default);
8358                         return bpf_ctx_narrow_access_ok(off, size,
8359                                                         size_default);
8360                 default:
8361                         if (size != size_default)
8362                                 return false;
8363                         break;
8364                 }
8365         }
8366
8367         return true;
8368 }
8369
8370 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8371                            const struct bpf_prog *prog)
8372 {
8373         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8374 }
8375
8376 static bool sk_skb_is_valid_access(int off, int size,
8377                                    enum bpf_access_type type,
8378                                    const struct bpf_prog *prog,
8379                                    struct bpf_insn_access_aux *info)
8380 {
8381         switch (off) {
8382         case bpf_ctx_range(struct __sk_buff, tc_classid):
8383         case bpf_ctx_range(struct __sk_buff, data_meta):
8384         case bpf_ctx_range(struct __sk_buff, tstamp):
8385         case bpf_ctx_range(struct __sk_buff, wire_len):
8386         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8387                 return false;
8388         }
8389
8390         if (type == BPF_WRITE) {
8391                 switch (off) {
8392                 case bpf_ctx_range(struct __sk_buff, tc_index):
8393                 case bpf_ctx_range(struct __sk_buff, priority):
8394                         break;
8395                 default:
8396                         return false;
8397                 }
8398         }
8399
8400         switch (off) {
8401         case bpf_ctx_range(struct __sk_buff, mark):
8402                 return false;
8403         case bpf_ctx_range(struct __sk_buff, data):
8404                 info->reg_type = PTR_TO_PACKET;
8405                 break;
8406         case bpf_ctx_range(struct __sk_buff, data_end):
8407                 info->reg_type = PTR_TO_PACKET_END;
8408                 break;
8409         }
8410
8411         return bpf_skb_is_valid_access(off, size, type, prog, info);
8412 }
8413
8414 static bool sk_msg_is_valid_access(int off, int size,
8415                                    enum bpf_access_type type,
8416                                    const struct bpf_prog *prog,
8417                                    struct bpf_insn_access_aux *info)
8418 {
8419         if (type == BPF_WRITE)
8420                 return false;
8421
8422         if (off % size != 0)
8423                 return false;
8424
8425         switch (off) {
8426         case offsetof(struct sk_msg_md, data):
8427                 info->reg_type = PTR_TO_PACKET;
8428                 if (size != sizeof(__u64))
8429                         return false;
8430                 break;
8431         case offsetof(struct sk_msg_md, data_end):
8432                 info->reg_type = PTR_TO_PACKET_END;
8433                 if (size != sizeof(__u64))
8434                         return false;
8435                 break;
8436         case offsetof(struct sk_msg_md, sk):
8437                 if (size != sizeof(__u64))
8438                         return false;
8439                 info->reg_type = PTR_TO_SOCKET;
8440                 break;
8441         case bpf_ctx_range(struct sk_msg_md, family):
8442         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8443         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8444         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8445         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8446         case bpf_ctx_range(struct sk_msg_md, remote_port):
8447         case bpf_ctx_range(struct sk_msg_md, local_port):
8448         case bpf_ctx_range(struct sk_msg_md, size):
8449                 if (size != sizeof(__u32))
8450                         return false;
8451                 break;
8452         default:
8453                 return false;
8454         }
8455         return true;
8456 }
8457
8458 static bool flow_dissector_is_valid_access(int off, int size,
8459                                            enum bpf_access_type type,
8460                                            const struct bpf_prog *prog,
8461                                            struct bpf_insn_access_aux *info)
8462 {
8463         const int size_default = sizeof(__u32);
8464
8465         if (off < 0 || off >= sizeof(struct __sk_buff))
8466                 return false;
8467
8468         if (type == BPF_WRITE)
8469                 return false;
8470
8471         switch (off) {
8472         case bpf_ctx_range(struct __sk_buff, data):
8473                 if (size != size_default)
8474                         return false;
8475                 info->reg_type = PTR_TO_PACKET;
8476                 return true;
8477         case bpf_ctx_range(struct __sk_buff, data_end):
8478                 if (size != size_default)
8479                         return false;
8480                 info->reg_type = PTR_TO_PACKET_END;
8481                 return true;
8482         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8483                 if (size != sizeof(__u64))
8484                         return false;
8485                 info->reg_type = PTR_TO_FLOW_KEYS;
8486                 return true;
8487         default:
8488                 return false;
8489         }
8490 }
8491
8492 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8493                                              const struct bpf_insn *si,
8494                                              struct bpf_insn *insn_buf,
8495                                              struct bpf_prog *prog,
8496                                              u32 *target_size)
8497
8498 {
8499         struct bpf_insn *insn = insn_buf;
8500
8501         switch (si->off) {
8502         case offsetof(struct __sk_buff, data):
8503                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8504                                       si->dst_reg, si->src_reg,
8505                                       offsetof(struct bpf_flow_dissector, data));
8506                 break;
8507
8508         case offsetof(struct __sk_buff, data_end):
8509                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8510                                       si->dst_reg, si->src_reg,
8511                                       offsetof(struct bpf_flow_dissector, data_end));
8512                 break;
8513
8514         case offsetof(struct __sk_buff, flow_keys):
8515                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8516                                       si->dst_reg, si->src_reg,
8517                                       offsetof(struct bpf_flow_dissector, flow_keys));
8518                 break;
8519         }
8520
8521         return insn - insn_buf;
8522 }
8523
8524 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8525                                                   struct bpf_insn *insn)
8526 {
8527         /* si->dst_reg = skb_shinfo(SKB); */
8528 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8529         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8530                               BPF_REG_AX, si->src_reg,
8531                               offsetof(struct sk_buff, end));
8532         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8533                               si->dst_reg, si->src_reg,
8534                               offsetof(struct sk_buff, head));
8535         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8536 #else
8537         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8538                               si->dst_reg, si->src_reg,
8539                               offsetof(struct sk_buff, end));
8540 #endif
8541
8542         return insn;
8543 }
8544
8545 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8546                                   const struct bpf_insn *si,
8547                                   struct bpf_insn *insn_buf,
8548                                   struct bpf_prog *prog, u32 *target_size)
8549 {
8550         struct bpf_insn *insn = insn_buf;
8551         int off;
8552
8553         switch (si->off) {
8554         case offsetof(struct __sk_buff, len):
8555                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8556                                       bpf_target_off(struct sk_buff, len, 4,
8557                                                      target_size));
8558                 break;
8559
8560         case offsetof(struct __sk_buff, protocol):
8561                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8562                                       bpf_target_off(struct sk_buff, protocol, 2,
8563                                                      target_size));
8564                 break;
8565
8566         case offsetof(struct __sk_buff, vlan_proto):
8567                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8568                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
8569                                                      target_size));
8570                 break;
8571
8572         case offsetof(struct __sk_buff, priority):
8573                 if (type == BPF_WRITE)
8574                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8575                                               bpf_target_off(struct sk_buff, priority, 4,
8576                                                              target_size));
8577                 else
8578                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8579                                               bpf_target_off(struct sk_buff, priority, 4,
8580                                                              target_size));
8581                 break;
8582
8583         case offsetof(struct __sk_buff, ingress_ifindex):
8584                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8585                                       bpf_target_off(struct sk_buff, skb_iif, 4,
8586                                                      target_size));
8587                 break;
8588
8589         case offsetof(struct __sk_buff, ifindex):
8590                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8591                                       si->dst_reg, si->src_reg,
8592                                       offsetof(struct sk_buff, dev));
8593                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8594                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8595                                       bpf_target_off(struct net_device, ifindex, 4,
8596                                                      target_size));
8597                 break;
8598
8599         case offsetof(struct __sk_buff, hash):
8600                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8601                                       bpf_target_off(struct sk_buff, hash, 4,
8602                                                      target_size));
8603                 break;
8604
8605         case offsetof(struct __sk_buff, mark):
8606                 if (type == BPF_WRITE)
8607                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8608                                               bpf_target_off(struct sk_buff, mark, 4,
8609                                                              target_size));
8610                 else
8611                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8612                                               bpf_target_off(struct sk_buff, mark, 4,
8613                                                              target_size));
8614                 break;
8615
8616         case offsetof(struct __sk_buff, pkt_type):
8617                 *target_size = 1;
8618                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8619                                       PKT_TYPE_OFFSET);
8620                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8621 #ifdef __BIG_ENDIAN_BITFIELD
8622                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8623 #endif
8624                 break;
8625
8626         case offsetof(struct __sk_buff, queue_mapping):
8627                 if (type == BPF_WRITE) {
8628                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8629                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8630                                               bpf_target_off(struct sk_buff,
8631                                                              queue_mapping,
8632                                                              2, target_size));
8633                 } else {
8634                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8635                                               bpf_target_off(struct sk_buff,
8636                                                              queue_mapping,
8637                                                              2, target_size));
8638                 }
8639                 break;
8640
8641         case offsetof(struct __sk_buff, vlan_present):
8642                 *target_size = 1;
8643                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8644                                       PKT_VLAN_PRESENT_OFFSET);
8645                 if (PKT_VLAN_PRESENT_BIT)
8646                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8647                 if (PKT_VLAN_PRESENT_BIT < 7)
8648                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8649                 break;
8650
8651         case offsetof(struct __sk_buff, vlan_tci):
8652                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8653                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
8654                                                      target_size));
8655                 break;
8656
8657         case offsetof(struct __sk_buff, cb[0]) ...
8658              offsetofend(struct __sk_buff, cb[4]) - 1:
8659                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8660                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8661                               offsetof(struct qdisc_skb_cb, data)) %
8662                              sizeof(__u64));
8663
8664                 prog->cb_access = 1;
8665                 off  = si->off;
8666                 off -= offsetof(struct __sk_buff, cb[0]);
8667                 off += offsetof(struct sk_buff, cb);
8668                 off += offsetof(struct qdisc_skb_cb, data);
8669                 if (type == BPF_WRITE)
8670                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8671                                               si->src_reg, off);
8672                 else
8673                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8674                                               si->src_reg, off);
8675                 break;
8676
8677         case offsetof(struct __sk_buff, tc_classid):
8678                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8679
8680                 off  = si->off;
8681                 off -= offsetof(struct __sk_buff, tc_classid);
8682                 off += offsetof(struct sk_buff, cb);
8683                 off += offsetof(struct qdisc_skb_cb, tc_classid);
8684                 *target_size = 2;
8685                 if (type == BPF_WRITE)
8686                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8687                                               si->src_reg, off);
8688                 else
8689                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8690                                               si->src_reg, off);
8691                 break;
8692
8693         case offsetof(struct __sk_buff, data):
8694                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8695                                       si->dst_reg, si->src_reg,
8696                                       offsetof(struct sk_buff, data));
8697                 break;
8698
8699         case offsetof(struct __sk_buff, data_meta):
8700                 off  = si->off;
8701                 off -= offsetof(struct __sk_buff, data_meta);
8702                 off += offsetof(struct sk_buff, cb);
8703                 off += offsetof(struct bpf_skb_data_end, data_meta);
8704                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8705                                       si->src_reg, off);
8706                 break;
8707
8708         case offsetof(struct __sk_buff, data_end):
8709                 off  = si->off;
8710                 off -= offsetof(struct __sk_buff, data_end);
8711                 off += offsetof(struct sk_buff, cb);
8712                 off += offsetof(struct bpf_skb_data_end, data_end);
8713                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8714                                       si->src_reg, off);
8715                 break;
8716
8717         case offsetof(struct __sk_buff, tc_index):
8718 #ifdef CONFIG_NET_SCHED
8719                 if (type == BPF_WRITE)
8720                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8721                                               bpf_target_off(struct sk_buff, tc_index, 2,
8722                                                              target_size));
8723                 else
8724                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8725                                               bpf_target_off(struct sk_buff, tc_index, 2,
8726                                                              target_size));
8727 #else
8728                 *target_size = 2;
8729                 if (type == BPF_WRITE)
8730                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8731                 else
8732                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8733 #endif
8734                 break;
8735
8736         case offsetof(struct __sk_buff, napi_id):
8737 #if defined(CONFIG_NET_RX_BUSY_POLL)
8738                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8739                                       bpf_target_off(struct sk_buff, napi_id, 4,
8740                                                      target_size));
8741                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8742                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8743 #else
8744                 *target_size = 4;
8745                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8746 #endif
8747                 break;
8748         case offsetof(struct __sk_buff, family):
8749                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8750
8751                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8752                                       si->dst_reg, si->src_reg,
8753                                       offsetof(struct sk_buff, sk));
8754                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8755                                       bpf_target_off(struct sock_common,
8756                                                      skc_family,
8757                                                      2, target_size));
8758                 break;
8759         case offsetof(struct __sk_buff, remote_ip4):
8760                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8761
8762                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8763                                       si->dst_reg, si->src_reg,
8764                                       offsetof(struct sk_buff, sk));
8765                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8766                                       bpf_target_off(struct sock_common,
8767                                                      skc_daddr,
8768                                                      4, target_size));
8769                 break;
8770         case offsetof(struct __sk_buff, local_ip4):
8771                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8772                                           skc_rcv_saddr) != 4);
8773
8774                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8775                                       si->dst_reg, si->src_reg,
8776                                       offsetof(struct sk_buff, sk));
8777                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8778                                       bpf_target_off(struct sock_common,
8779                                                      skc_rcv_saddr,
8780                                                      4, target_size));
8781                 break;
8782         case offsetof(struct __sk_buff, remote_ip6[0]) ...
8783              offsetof(struct __sk_buff, remote_ip6[3]):
8784 #if IS_ENABLED(CONFIG_IPV6)
8785                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8786                                           skc_v6_daddr.s6_addr32[0]) != 4);
8787
8788                 off = si->off;
8789                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8790
8791                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8792                                       si->dst_reg, si->src_reg,
8793                                       offsetof(struct sk_buff, sk));
8794                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8795                                       offsetof(struct sock_common,
8796                                                skc_v6_daddr.s6_addr32[0]) +
8797                                       off);
8798 #else
8799                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8800 #endif
8801                 break;
8802         case offsetof(struct __sk_buff, local_ip6[0]) ...
8803              offsetof(struct __sk_buff, local_ip6[3]):
8804 #if IS_ENABLED(CONFIG_IPV6)
8805                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8806                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8807
8808                 off = si->off;
8809                 off -= offsetof(struct __sk_buff, local_ip6[0]);
8810
8811                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8812                                       si->dst_reg, si->src_reg,
8813                                       offsetof(struct sk_buff, sk));
8814                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8815                                       offsetof(struct sock_common,
8816                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8817                                       off);
8818 #else
8819                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8820 #endif
8821                 break;
8822
8823         case offsetof(struct __sk_buff, remote_port):
8824                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8825
8826                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8827                                       si->dst_reg, si->src_reg,
8828                                       offsetof(struct sk_buff, sk));
8829                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8830                                       bpf_target_off(struct sock_common,
8831                                                      skc_dport,
8832                                                      2, target_size));
8833 #ifndef __BIG_ENDIAN_BITFIELD
8834                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8835 #endif
8836                 break;
8837
8838         case offsetof(struct __sk_buff, local_port):
8839                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8840
8841                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8842                                       si->dst_reg, si->src_reg,
8843                                       offsetof(struct sk_buff, sk));
8844                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8845                                       bpf_target_off(struct sock_common,
8846                                                      skc_num, 2, target_size));
8847                 break;
8848
8849         case offsetof(struct __sk_buff, tstamp):
8850                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8851
8852                 if (type == BPF_WRITE)
8853                         *insn++ = BPF_STX_MEM(BPF_DW,
8854                                               si->dst_reg, si->src_reg,
8855                                               bpf_target_off(struct sk_buff,
8856                                                              tstamp, 8,
8857                                                              target_size));
8858                 else
8859                         *insn++ = BPF_LDX_MEM(BPF_DW,
8860                                               si->dst_reg, si->src_reg,
8861                                               bpf_target_off(struct sk_buff,
8862                                                              tstamp, 8,
8863                                                              target_size));
8864                 break;
8865
8866         case offsetof(struct __sk_buff, gso_segs):
8867                 insn = bpf_convert_shinfo_access(si, insn);
8868                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8869                                       si->dst_reg, si->dst_reg,
8870                                       bpf_target_off(struct skb_shared_info,
8871                                                      gso_segs, 2,
8872                                                      target_size));
8873                 break;
8874         case offsetof(struct __sk_buff, gso_size):
8875                 insn = bpf_convert_shinfo_access(si, insn);
8876                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8877                                       si->dst_reg, si->dst_reg,
8878                                       bpf_target_off(struct skb_shared_info,
8879                                                      gso_size, 2,
8880                                                      target_size));
8881                 break;
8882         case offsetof(struct __sk_buff, wire_len):
8883                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8884
8885                 off = si->off;
8886                 off -= offsetof(struct __sk_buff, wire_len);
8887                 off += offsetof(struct sk_buff, cb);
8888                 off += offsetof(struct qdisc_skb_cb, pkt_len);
8889                 *target_size = 4;
8890                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8891                 break;
8892
8893         case offsetof(struct __sk_buff, sk):
8894                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8895                                       si->dst_reg, si->src_reg,
8896                                       offsetof(struct sk_buff, sk));
8897                 break;
8898         case offsetof(struct __sk_buff, hwtstamp):
8899                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
8900                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
8901
8902                 insn = bpf_convert_shinfo_access(si, insn);
8903                 *insn++ = BPF_LDX_MEM(BPF_DW,
8904                                       si->dst_reg, si->dst_reg,
8905                                       bpf_target_off(struct skb_shared_info,
8906                                                      hwtstamps, 8,
8907                                                      target_size));
8908                 break;
8909         }
8910
8911         return insn - insn_buf;
8912 }
8913
8914 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8915                                 const struct bpf_insn *si,
8916                                 struct bpf_insn *insn_buf,
8917                                 struct bpf_prog *prog, u32 *target_size)
8918 {
8919         struct bpf_insn *insn = insn_buf;
8920         int off;
8921
8922         switch (si->off) {
8923         case offsetof(struct bpf_sock, bound_dev_if):
8924                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8925
8926                 if (type == BPF_WRITE)
8927                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8928                                         offsetof(struct sock, sk_bound_dev_if));
8929                 else
8930                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8931                                       offsetof(struct sock, sk_bound_dev_if));
8932                 break;
8933
8934         case offsetof(struct bpf_sock, mark):
8935                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8936
8937                 if (type == BPF_WRITE)
8938                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8939                                         offsetof(struct sock, sk_mark));
8940                 else
8941                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8942                                       offsetof(struct sock, sk_mark));
8943                 break;
8944
8945         case offsetof(struct bpf_sock, priority):
8946                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8947
8948                 if (type == BPF_WRITE)
8949                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8950                                         offsetof(struct sock, sk_priority));
8951                 else
8952                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8953                                       offsetof(struct sock, sk_priority));
8954                 break;
8955
8956         case offsetof(struct bpf_sock, family):
8957                 *insn++ = BPF_LDX_MEM(
8958                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8959                         si->dst_reg, si->src_reg,
8960                         bpf_target_off(struct sock_common,
8961                                        skc_family,
8962                                        sizeof_field(struct sock_common,
8963                                                     skc_family),
8964                                        target_size));
8965                 break;
8966
8967         case offsetof(struct bpf_sock, type):
8968                 *insn++ = BPF_LDX_MEM(
8969                         BPF_FIELD_SIZEOF(struct sock, sk_type),
8970                         si->dst_reg, si->src_reg,
8971                         bpf_target_off(struct sock, sk_type,
8972                                        sizeof_field(struct sock, sk_type),
8973                                        target_size));
8974                 break;
8975
8976         case offsetof(struct bpf_sock, protocol):
8977                 *insn++ = BPF_LDX_MEM(
8978                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8979                         si->dst_reg, si->src_reg,
8980                         bpf_target_off(struct sock, sk_protocol,
8981                                        sizeof_field(struct sock, sk_protocol),
8982                                        target_size));
8983                 break;
8984
8985         case offsetof(struct bpf_sock, src_ip4):
8986                 *insn++ = BPF_LDX_MEM(
8987                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8988                         bpf_target_off(struct sock_common, skc_rcv_saddr,
8989                                        sizeof_field(struct sock_common,
8990                                                     skc_rcv_saddr),
8991                                        target_size));
8992                 break;
8993
8994         case offsetof(struct bpf_sock, dst_ip4):
8995                 *insn++ = BPF_LDX_MEM(
8996                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8997                         bpf_target_off(struct sock_common, skc_daddr,
8998                                        sizeof_field(struct sock_common,
8999                                                     skc_daddr),
9000                                        target_size));
9001                 break;
9002
9003         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9004 #if IS_ENABLED(CONFIG_IPV6)
9005                 off = si->off;
9006                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9007                 *insn++ = BPF_LDX_MEM(
9008                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9009                         bpf_target_off(
9010                                 struct sock_common,
9011                                 skc_v6_rcv_saddr.s6_addr32[0],
9012                                 sizeof_field(struct sock_common,
9013                                              skc_v6_rcv_saddr.s6_addr32[0]),
9014                                 target_size) + off);
9015 #else
9016                 (void)off;
9017                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9018 #endif
9019                 break;
9020
9021         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9022 #if IS_ENABLED(CONFIG_IPV6)
9023                 off = si->off;
9024                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9025                 *insn++ = BPF_LDX_MEM(
9026                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9027                         bpf_target_off(struct sock_common,
9028                                        skc_v6_daddr.s6_addr32[0],
9029                                        sizeof_field(struct sock_common,
9030                                                     skc_v6_daddr.s6_addr32[0]),
9031                                        target_size) + off);
9032 #else
9033                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9034                 *target_size = 4;
9035 #endif
9036                 break;
9037
9038         case offsetof(struct bpf_sock, src_port):
9039                 *insn++ = BPF_LDX_MEM(
9040                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9041                         si->dst_reg, si->src_reg,
9042                         bpf_target_off(struct sock_common, skc_num,
9043                                        sizeof_field(struct sock_common,
9044                                                     skc_num),
9045                                        target_size));
9046                 break;
9047
9048         case offsetof(struct bpf_sock, dst_port):
9049                 *insn++ = BPF_LDX_MEM(
9050                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9051                         si->dst_reg, si->src_reg,
9052                         bpf_target_off(struct sock_common, skc_dport,
9053                                        sizeof_field(struct sock_common,
9054                                                     skc_dport),
9055                                        target_size));
9056                 break;
9057
9058         case offsetof(struct bpf_sock, state):
9059                 *insn++ = BPF_LDX_MEM(
9060                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9061                         si->dst_reg, si->src_reg,
9062                         bpf_target_off(struct sock_common, skc_state,
9063                                        sizeof_field(struct sock_common,
9064                                                     skc_state),
9065                                        target_size));
9066                 break;
9067         case offsetof(struct bpf_sock, rx_queue_mapping):
9068 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9069                 *insn++ = BPF_LDX_MEM(
9070                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9071                         si->dst_reg, si->src_reg,
9072                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9073                                        sizeof_field(struct sock,
9074                                                     sk_rx_queue_mapping),
9075                                        target_size));
9076                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9077                                       1);
9078                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9079 #else
9080                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9081                 *target_size = 2;
9082 #endif
9083                 break;
9084         }
9085
9086         return insn - insn_buf;
9087 }
9088
9089 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9090                                          const struct bpf_insn *si,
9091                                          struct bpf_insn *insn_buf,
9092                                          struct bpf_prog *prog, u32 *target_size)
9093 {
9094         struct bpf_insn *insn = insn_buf;
9095
9096         switch (si->off) {
9097         case offsetof(struct __sk_buff, ifindex):
9098                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9099                                       si->dst_reg, si->src_reg,
9100                                       offsetof(struct sk_buff, dev));
9101                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9102                                       bpf_target_off(struct net_device, ifindex, 4,
9103                                                      target_size));
9104                 break;
9105         default:
9106                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9107                                               target_size);
9108         }
9109
9110         return insn - insn_buf;
9111 }
9112
9113 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9114                                   const struct bpf_insn *si,
9115                                   struct bpf_insn *insn_buf,
9116                                   struct bpf_prog *prog, u32 *target_size)
9117 {
9118         struct bpf_insn *insn = insn_buf;
9119
9120         switch (si->off) {
9121         case offsetof(struct xdp_md, data):
9122                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9123                                       si->dst_reg, si->src_reg,
9124                                       offsetof(struct xdp_buff, data));
9125                 break;
9126         case offsetof(struct xdp_md, data_meta):
9127                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9128                                       si->dst_reg, si->src_reg,
9129                                       offsetof(struct xdp_buff, data_meta));
9130                 break;
9131         case offsetof(struct xdp_md, data_end):
9132                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9133                                       si->dst_reg, si->src_reg,
9134                                       offsetof(struct xdp_buff, data_end));
9135                 break;
9136         case offsetof(struct xdp_md, ingress_ifindex):
9137                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9138                                       si->dst_reg, si->src_reg,
9139                                       offsetof(struct xdp_buff, rxq));
9140                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9141                                       si->dst_reg, si->dst_reg,
9142                                       offsetof(struct xdp_rxq_info, dev));
9143                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9144                                       offsetof(struct net_device, ifindex));
9145                 break;
9146         case offsetof(struct xdp_md, rx_queue_index):
9147                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9148                                       si->dst_reg, si->src_reg,
9149                                       offsetof(struct xdp_buff, rxq));
9150                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9151                                       offsetof(struct xdp_rxq_info,
9152                                                queue_index));
9153                 break;
9154         case offsetof(struct xdp_md, egress_ifindex):
9155                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9156                                       si->dst_reg, si->src_reg,
9157                                       offsetof(struct xdp_buff, txq));
9158                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9159                                       si->dst_reg, si->dst_reg,
9160                                       offsetof(struct xdp_txq_info, dev));
9161                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9162                                       offsetof(struct net_device, ifindex));
9163                 break;
9164         }
9165
9166         return insn - insn_buf;
9167 }
9168
9169 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9170  * context Structure, F is Field in context structure that contains a pointer
9171  * to Nested Structure of type NS that has the field NF.
9172  *
9173  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9174  * sure that SIZE is not greater than actual size of S.F.NF.
9175  *
9176  * If offset OFF is provided, the load happens from that offset relative to
9177  * offset of NF.
9178  */
9179 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9180         do {                                                                   \
9181                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9182                                       si->src_reg, offsetof(S, F));            \
9183                 *insn++ = BPF_LDX_MEM(                                         \
9184                         SIZE, si->dst_reg, si->dst_reg,                        \
9185                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9186                                        target_size)                            \
9187                                 + OFF);                                        \
9188         } while (0)
9189
9190 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9191         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9192                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9193
9194 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9195  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9196  *
9197  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9198  * "register" since two registers available in convert_ctx_access are not
9199  * enough: we can't override neither SRC, since it contains value to store, nor
9200  * DST since it contains pointer to context that may be used by later
9201  * instructions. But we need a temporary place to save pointer to nested
9202  * structure whose field we want to store to.
9203  */
9204 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9205         do {                                                                   \
9206                 int tmp_reg = BPF_REG_9;                                       \
9207                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9208                         --tmp_reg;                                             \
9209                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9210                         --tmp_reg;                                             \
9211                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9212                                       offsetof(S, TF));                        \
9213                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9214                                       si->dst_reg, offsetof(S, F));            \
9215                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9216                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9217                                        target_size)                            \
9218                                 + OFF);                                        \
9219                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9220                                       offsetof(S, TF));                        \
9221         } while (0)
9222
9223 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9224                                                       TF)                      \
9225         do {                                                                   \
9226                 if (type == BPF_WRITE) {                                       \
9227                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9228                                                          OFF, TF);             \
9229                 } else {                                                       \
9230                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9231                                 S, NS, F, NF, SIZE, OFF);  \
9232                 }                                                              \
9233         } while (0)
9234
9235 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9236         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9237                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9238
9239 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9240                                         const struct bpf_insn *si,
9241                                         struct bpf_insn *insn_buf,
9242                                         struct bpf_prog *prog, u32 *target_size)
9243 {
9244         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9245         struct bpf_insn *insn = insn_buf;
9246
9247         switch (si->off) {
9248         case offsetof(struct bpf_sock_addr, user_family):
9249                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9250                                             struct sockaddr, uaddr, sa_family);
9251                 break;
9252
9253         case offsetof(struct bpf_sock_addr, user_ip4):
9254                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9255                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9256                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9257                 break;
9258
9259         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9260                 off = si->off;
9261                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9262                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9263                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9264                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9265                         tmp_reg);
9266                 break;
9267
9268         case offsetof(struct bpf_sock_addr, user_port):
9269                 /* To get port we need to know sa_family first and then treat
9270                  * sockaddr as either sockaddr_in or sockaddr_in6.
9271                  * Though we can simplify since port field has same offset and
9272                  * size in both structures.
9273                  * Here we check this invariant and use just one of the
9274                  * structures if it's true.
9275                  */
9276                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9277                              offsetof(struct sockaddr_in6, sin6_port));
9278                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9279                              sizeof_field(struct sockaddr_in6, sin6_port));
9280                 /* Account for sin6_port being smaller than user_port. */
9281                 port_size = min(port_size, BPF_LDST_BYTES(si));
9282                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9283                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9284                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9285                 break;
9286
9287         case offsetof(struct bpf_sock_addr, family):
9288                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9289                                             struct sock, sk, sk_family);
9290                 break;
9291
9292         case offsetof(struct bpf_sock_addr, type):
9293                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9294                                             struct sock, sk, sk_type);
9295                 break;
9296
9297         case offsetof(struct bpf_sock_addr, protocol):
9298                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9299                                             struct sock, sk, sk_protocol);
9300                 break;
9301
9302         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9303                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9304                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9305                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9306                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9307                 break;
9308
9309         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9310                                 msg_src_ip6[3]):
9311                 off = si->off;
9312                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9313                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9314                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9315                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9316                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9317                 break;
9318         case offsetof(struct bpf_sock_addr, sk):
9319                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9320                                       si->dst_reg, si->src_reg,
9321                                       offsetof(struct bpf_sock_addr_kern, sk));
9322                 break;
9323         }
9324
9325         return insn - insn_buf;
9326 }
9327
9328 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9329                                        const struct bpf_insn *si,
9330                                        struct bpf_insn *insn_buf,
9331                                        struct bpf_prog *prog,
9332                                        u32 *target_size)
9333 {
9334         struct bpf_insn *insn = insn_buf;
9335         int off;
9336
9337 /* Helper macro for adding read access to tcp_sock or sock fields. */
9338 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9339         do {                                                                  \
9340                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9341                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9342                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9343                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9344                         reg--;                                                \
9345                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9346                         reg--;                                                \
9347                 if (si->dst_reg == si->src_reg) {                             \
9348                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9349                                           offsetof(struct bpf_sock_ops_kern,  \
9350                                           temp));                             \
9351                         fullsock_reg = reg;                                   \
9352                         jmp += 2;                                             \
9353                 }                                                             \
9354                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9355                                                 struct bpf_sock_ops_kern,     \
9356                                                 is_fullsock),                 \
9357                                       fullsock_reg, si->src_reg,              \
9358                                       offsetof(struct bpf_sock_ops_kern,      \
9359                                                is_fullsock));                 \
9360                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9361                 if (si->dst_reg == si->src_reg)                               \
9362                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9363                                       offsetof(struct bpf_sock_ops_kern,      \
9364                                       temp));                                 \
9365                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9366                                                 struct bpf_sock_ops_kern, sk),\
9367                                       si->dst_reg, si->src_reg,               \
9368                                       offsetof(struct bpf_sock_ops_kern, sk));\
9369                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9370                                                        OBJ_FIELD),            \
9371                                       si->dst_reg, si->dst_reg,               \
9372                                       offsetof(OBJ, OBJ_FIELD));              \
9373                 if (si->dst_reg == si->src_reg) {                             \
9374                         *insn++ = BPF_JMP_A(1);                               \
9375                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9376                                       offsetof(struct bpf_sock_ops_kern,      \
9377                                       temp));                                 \
9378                 }                                                             \
9379         } while (0)
9380
9381 #define SOCK_OPS_GET_SK()                                                             \
9382         do {                                                                  \
9383                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9384                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9385                         reg--;                                                \
9386                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9387                         reg--;                                                \
9388                 if (si->dst_reg == si->src_reg) {                             \
9389                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9390                                           offsetof(struct bpf_sock_ops_kern,  \
9391                                           temp));                             \
9392                         fullsock_reg = reg;                                   \
9393                         jmp += 2;                                             \
9394                 }                                                             \
9395                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9396                                                 struct bpf_sock_ops_kern,     \
9397                                                 is_fullsock),                 \
9398                                       fullsock_reg, si->src_reg,              \
9399                                       offsetof(struct bpf_sock_ops_kern,      \
9400                                                is_fullsock));                 \
9401                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9402                 if (si->dst_reg == si->src_reg)                               \
9403                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9404                                       offsetof(struct bpf_sock_ops_kern,      \
9405                                       temp));                                 \
9406                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9407                                                 struct bpf_sock_ops_kern, sk),\
9408                                       si->dst_reg, si->src_reg,               \
9409                                       offsetof(struct bpf_sock_ops_kern, sk));\
9410                 if (si->dst_reg == si->src_reg) {                             \
9411                         *insn++ = BPF_JMP_A(1);                               \
9412                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9413                                       offsetof(struct bpf_sock_ops_kern,      \
9414                                       temp));                                 \
9415                 }                                                             \
9416         } while (0)
9417
9418 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9419                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9420
9421 /* Helper macro for adding write access to tcp_sock or sock fields.
9422  * The macro is called with two registers, dst_reg which contains a pointer
9423  * to ctx (context) and src_reg which contains the value that should be
9424  * stored. However, we need an additional register since we cannot overwrite
9425  * dst_reg because it may be used later in the program.
9426  * Instead we "borrow" one of the other register. We first save its value
9427  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9428  * it at the end of the macro.
9429  */
9430 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9431         do {                                                                  \
9432                 int reg = BPF_REG_9;                                          \
9433                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9434                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9435                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9436                         reg--;                                                \
9437                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9438                         reg--;                                                \
9439                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9440                                       offsetof(struct bpf_sock_ops_kern,      \
9441                                                temp));                        \
9442                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9443                                                 struct bpf_sock_ops_kern,     \
9444                                                 is_fullsock),                 \
9445                                       reg, si->dst_reg,                       \
9446                                       offsetof(struct bpf_sock_ops_kern,      \
9447                                                is_fullsock));                 \
9448                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9449                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9450                                                 struct bpf_sock_ops_kern, sk),\
9451                                       reg, si->dst_reg,                       \
9452                                       offsetof(struct bpf_sock_ops_kern, sk));\
9453                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9454                                       reg, si->src_reg,                       \
9455                                       offsetof(OBJ, OBJ_FIELD));              \
9456                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9457                                       offsetof(struct bpf_sock_ops_kern,      \
9458                                                temp));                        \
9459         } while (0)
9460
9461 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9462         do {                                                                  \
9463                 if (TYPE == BPF_WRITE)                                        \
9464                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9465                 else                                                          \
9466                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9467         } while (0)
9468
9469         if (insn > insn_buf)
9470                 return insn - insn_buf;
9471
9472         switch (si->off) {
9473         case offsetof(struct bpf_sock_ops, op):
9474                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9475                                                        op),
9476                                       si->dst_reg, si->src_reg,
9477                                       offsetof(struct bpf_sock_ops_kern, op));
9478                 break;
9479
9480         case offsetof(struct bpf_sock_ops, replylong[0]) ...
9481              offsetof(struct bpf_sock_ops, replylong[3]):
9482                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9483                              sizeof_field(struct bpf_sock_ops_kern, reply));
9484                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9485                              sizeof_field(struct bpf_sock_ops_kern, replylong));
9486                 off = si->off;
9487                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9488                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9489                 if (type == BPF_WRITE)
9490                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9491                                               off);
9492                 else
9493                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9494                                               off);
9495                 break;
9496
9497         case offsetof(struct bpf_sock_ops, family):
9498                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9499
9500                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9501                                               struct bpf_sock_ops_kern, sk),
9502                                       si->dst_reg, si->src_reg,
9503                                       offsetof(struct bpf_sock_ops_kern, sk));
9504                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9505                                       offsetof(struct sock_common, skc_family));
9506                 break;
9507
9508         case offsetof(struct bpf_sock_ops, remote_ip4):
9509                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9510
9511                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9512                                                 struct bpf_sock_ops_kern, sk),
9513                                       si->dst_reg, si->src_reg,
9514                                       offsetof(struct bpf_sock_ops_kern, sk));
9515                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9516                                       offsetof(struct sock_common, skc_daddr));
9517                 break;
9518
9519         case offsetof(struct bpf_sock_ops, local_ip4):
9520                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9521                                           skc_rcv_saddr) != 4);
9522
9523                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9524                                               struct bpf_sock_ops_kern, sk),
9525                                       si->dst_reg, si->src_reg,
9526                                       offsetof(struct bpf_sock_ops_kern, sk));
9527                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9528                                       offsetof(struct sock_common,
9529                                                skc_rcv_saddr));
9530                 break;
9531
9532         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9533              offsetof(struct bpf_sock_ops, remote_ip6[3]):
9534 #if IS_ENABLED(CONFIG_IPV6)
9535                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9536                                           skc_v6_daddr.s6_addr32[0]) != 4);
9537
9538                 off = si->off;
9539                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9540                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9541                                                 struct bpf_sock_ops_kern, sk),
9542                                       si->dst_reg, si->src_reg,
9543                                       offsetof(struct bpf_sock_ops_kern, sk));
9544                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9545                                       offsetof(struct sock_common,
9546                                                skc_v6_daddr.s6_addr32[0]) +
9547                                       off);
9548 #else
9549                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9550 #endif
9551                 break;
9552
9553         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9554              offsetof(struct bpf_sock_ops, local_ip6[3]):
9555 #if IS_ENABLED(CONFIG_IPV6)
9556                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9557                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9558
9559                 off = si->off;
9560                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9561                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9562                                                 struct bpf_sock_ops_kern, sk),
9563                                       si->dst_reg, si->src_reg,
9564                                       offsetof(struct bpf_sock_ops_kern, sk));
9565                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9566                                       offsetof(struct sock_common,
9567                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9568                                       off);
9569 #else
9570                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9571 #endif
9572                 break;
9573
9574         case offsetof(struct bpf_sock_ops, remote_port):
9575                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9576
9577                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9578                                                 struct bpf_sock_ops_kern, sk),
9579                                       si->dst_reg, si->src_reg,
9580                                       offsetof(struct bpf_sock_ops_kern, sk));
9581                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9582                                       offsetof(struct sock_common, skc_dport));
9583 #ifndef __BIG_ENDIAN_BITFIELD
9584                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9585 #endif
9586                 break;
9587
9588         case offsetof(struct bpf_sock_ops, local_port):
9589                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9590
9591                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9592                                                 struct bpf_sock_ops_kern, sk),
9593                                       si->dst_reg, si->src_reg,
9594                                       offsetof(struct bpf_sock_ops_kern, sk));
9595                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9596                                       offsetof(struct sock_common, skc_num));
9597                 break;
9598
9599         case offsetof(struct bpf_sock_ops, is_fullsock):
9600                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9601                                                 struct bpf_sock_ops_kern,
9602                                                 is_fullsock),
9603                                       si->dst_reg, si->src_reg,
9604                                       offsetof(struct bpf_sock_ops_kern,
9605                                                is_fullsock));
9606                 break;
9607
9608         case offsetof(struct bpf_sock_ops, state):
9609                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9610
9611                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9612                                                 struct bpf_sock_ops_kern, sk),
9613                                       si->dst_reg, si->src_reg,
9614                                       offsetof(struct bpf_sock_ops_kern, sk));
9615                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9616                                       offsetof(struct sock_common, skc_state));
9617                 break;
9618
9619         case offsetof(struct bpf_sock_ops, rtt_min):
9620                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9621                              sizeof(struct minmax));
9622                 BUILD_BUG_ON(sizeof(struct minmax) <
9623                              sizeof(struct minmax_sample));
9624
9625                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9626                                                 struct bpf_sock_ops_kern, sk),
9627                                       si->dst_reg, si->src_reg,
9628                                       offsetof(struct bpf_sock_ops_kern, sk));
9629                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9630                                       offsetof(struct tcp_sock, rtt_min) +
9631                                       sizeof_field(struct minmax_sample, t));
9632                 break;
9633
9634         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9635                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9636                                    struct tcp_sock);
9637                 break;
9638
9639         case offsetof(struct bpf_sock_ops, sk_txhash):
9640                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9641                                           struct sock, type);
9642                 break;
9643         case offsetof(struct bpf_sock_ops, snd_cwnd):
9644                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9645                 break;
9646         case offsetof(struct bpf_sock_ops, srtt_us):
9647                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9648                 break;
9649         case offsetof(struct bpf_sock_ops, snd_ssthresh):
9650                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9651                 break;
9652         case offsetof(struct bpf_sock_ops, rcv_nxt):
9653                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9654                 break;
9655         case offsetof(struct bpf_sock_ops, snd_nxt):
9656                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9657                 break;
9658         case offsetof(struct bpf_sock_ops, snd_una):
9659                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9660                 break;
9661         case offsetof(struct bpf_sock_ops, mss_cache):
9662                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9663                 break;
9664         case offsetof(struct bpf_sock_ops, ecn_flags):
9665                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9666                 break;
9667         case offsetof(struct bpf_sock_ops, rate_delivered):
9668                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9669                 break;
9670         case offsetof(struct bpf_sock_ops, rate_interval_us):
9671                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9672                 break;
9673         case offsetof(struct bpf_sock_ops, packets_out):
9674                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9675                 break;
9676         case offsetof(struct bpf_sock_ops, retrans_out):
9677                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9678                 break;
9679         case offsetof(struct bpf_sock_ops, total_retrans):
9680                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9681                 break;
9682         case offsetof(struct bpf_sock_ops, segs_in):
9683                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9684                 break;
9685         case offsetof(struct bpf_sock_ops, data_segs_in):
9686                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9687                 break;
9688         case offsetof(struct bpf_sock_ops, segs_out):
9689                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9690                 break;
9691         case offsetof(struct bpf_sock_ops, data_segs_out):
9692                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9693                 break;
9694         case offsetof(struct bpf_sock_ops, lost_out):
9695                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9696                 break;
9697         case offsetof(struct bpf_sock_ops, sacked_out):
9698                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9699                 break;
9700         case offsetof(struct bpf_sock_ops, bytes_received):
9701                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9702                 break;
9703         case offsetof(struct bpf_sock_ops, bytes_acked):
9704                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9705                 break;
9706         case offsetof(struct bpf_sock_ops, sk):
9707                 SOCK_OPS_GET_SK();
9708                 break;
9709         case offsetof(struct bpf_sock_ops, skb_data_end):
9710                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9711                                                        skb_data_end),
9712                                       si->dst_reg, si->src_reg,
9713                                       offsetof(struct bpf_sock_ops_kern,
9714                                                skb_data_end));
9715                 break;
9716         case offsetof(struct bpf_sock_ops, skb_data):
9717                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9718                                                        skb),
9719                                       si->dst_reg, si->src_reg,
9720                                       offsetof(struct bpf_sock_ops_kern,
9721                                                skb));
9722                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9723                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9724                                       si->dst_reg, si->dst_reg,
9725                                       offsetof(struct sk_buff, data));
9726                 break;
9727         case offsetof(struct bpf_sock_ops, skb_len):
9728                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9729                                                        skb),
9730                                       si->dst_reg, si->src_reg,
9731                                       offsetof(struct bpf_sock_ops_kern,
9732                                                skb));
9733                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9734                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9735                                       si->dst_reg, si->dst_reg,
9736                                       offsetof(struct sk_buff, len));
9737                 break;
9738         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9739                 off = offsetof(struct sk_buff, cb);
9740                 off += offsetof(struct tcp_skb_cb, tcp_flags);
9741                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9742                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9743                                                        skb),
9744                                       si->dst_reg, si->src_reg,
9745                                       offsetof(struct bpf_sock_ops_kern,
9746                                                skb));
9747                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9748                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9749                                                        tcp_flags),
9750                                       si->dst_reg, si->dst_reg, off);
9751                 break;
9752         }
9753         return insn - insn_buf;
9754 }
9755
9756 /* data_end = skb->data + skb_headlen() */
9757 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9758                                                     struct bpf_insn *insn)
9759 {
9760         int reg;
9761         int temp_reg_off = offsetof(struct sk_buff, cb) +
9762                            offsetof(struct sk_skb_cb, temp_reg);
9763
9764         if (si->src_reg == si->dst_reg) {
9765                 /* We need an extra register, choose and save a register. */
9766                 reg = BPF_REG_9;
9767                 if (si->src_reg == reg || si->dst_reg == reg)
9768                         reg--;
9769                 if (si->src_reg == reg || si->dst_reg == reg)
9770                         reg--;
9771                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
9772         } else {
9773                 reg = si->dst_reg;
9774         }
9775
9776         /* reg = skb->data */
9777         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9778                               reg, si->src_reg,
9779                               offsetof(struct sk_buff, data));
9780         /* AX = skb->len */
9781         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9782                               BPF_REG_AX, si->src_reg,
9783                               offsetof(struct sk_buff, len));
9784         /* reg = skb->data + skb->len */
9785         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
9786         /* AX = skb->data_len */
9787         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9788                               BPF_REG_AX, si->src_reg,
9789                               offsetof(struct sk_buff, data_len));
9790
9791         /* reg = skb->data + skb->len - skb->data_len */
9792         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
9793
9794         if (si->src_reg == si->dst_reg) {
9795                 /* Restore the saved register */
9796                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
9797                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
9798                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
9799         }
9800
9801         return insn;
9802 }
9803
9804 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9805                                      const struct bpf_insn *si,
9806                                      struct bpf_insn *insn_buf,
9807                                      struct bpf_prog *prog, u32 *target_size)
9808 {
9809         struct bpf_insn *insn = insn_buf;
9810         int off;
9811
9812         switch (si->off) {
9813         case offsetof(struct __sk_buff, data_end):
9814                 insn = bpf_convert_data_end_access(si, insn);
9815                 break;
9816         case offsetof(struct __sk_buff, cb[0]) ...
9817              offsetofend(struct __sk_buff, cb[4]) - 1:
9818                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
9819                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9820                               offsetof(struct sk_skb_cb, data)) %
9821                              sizeof(__u64));
9822
9823                 prog->cb_access = 1;
9824                 off  = si->off;
9825                 off -= offsetof(struct __sk_buff, cb[0]);
9826                 off += offsetof(struct sk_buff, cb);
9827                 off += offsetof(struct sk_skb_cb, data);
9828                 if (type == BPF_WRITE)
9829                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9830                                               si->src_reg, off);
9831                 else
9832                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9833                                               si->src_reg, off);
9834                 break;
9835
9836
9837         default:
9838                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9839                                               target_size);
9840         }
9841
9842         return insn - insn_buf;
9843 }
9844
9845 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9846                                      const struct bpf_insn *si,
9847                                      struct bpf_insn *insn_buf,
9848                                      struct bpf_prog *prog, u32 *target_size)
9849 {
9850         struct bpf_insn *insn = insn_buf;
9851 #if IS_ENABLED(CONFIG_IPV6)
9852         int off;
9853 #endif
9854
9855         /* convert ctx uses the fact sg element is first in struct */
9856         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9857
9858         switch (si->off) {
9859         case offsetof(struct sk_msg_md, data):
9860                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9861                                       si->dst_reg, si->src_reg,
9862                                       offsetof(struct sk_msg, data));
9863                 break;
9864         case offsetof(struct sk_msg_md, data_end):
9865                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9866                                       si->dst_reg, si->src_reg,
9867                                       offsetof(struct sk_msg, data_end));
9868                 break;
9869         case offsetof(struct sk_msg_md, family):
9870                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9871
9872                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9873                                               struct sk_msg, sk),
9874                                       si->dst_reg, si->src_reg,
9875                                       offsetof(struct sk_msg, sk));
9876                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9877                                       offsetof(struct sock_common, skc_family));
9878                 break;
9879
9880         case offsetof(struct sk_msg_md, remote_ip4):
9881                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9882
9883                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9884                                                 struct sk_msg, sk),
9885                                       si->dst_reg, si->src_reg,
9886                                       offsetof(struct sk_msg, sk));
9887                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9888                                       offsetof(struct sock_common, skc_daddr));
9889                 break;
9890
9891         case offsetof(struct sk_msg_md, local_ip4):
9892                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9893                                           skc_rcv_saddr) != 4);
9894
9895                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9896                                               struct sk_msg, sk),
9897                                       si->dst_reg, si->src_reg,
9898                                       offsetof(struct sk_msg, sk));
9899                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9900                                       offsetof(struct sock_common,
9901                                                skc_rcv_saddr));
9902                 break;
9903
9904         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9905              offsetof(struct sk_msg_md, remote_ip6[3]):
9906 #if IS_ENABLED(CONFIG_IPV6)
9907                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9908                                           skc_v6_daddr.s6_addr32[0]) != 4);
9909
9910                 off = si->off;
9911                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9912                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9913                                                 struct sk_msg, sk),
9914                                       si->dst_reg, si->src_reg,
9915                                       offsetof(struct sk_msg, sk));
9916                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9917                                       offsetof(struct sock_common,
9918                                                skc_v6_daddr.s6_addr32[0]) +
9919                                       off);
9920 #else
9921                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9922 #endif
9923                 break;
9924
9925         case offsetof(struct sk_msg_md, local_ip6[0]) ...
9926              offsetof(struct sk_msg_md, local_ip6[3]):
9927 #if IS_ENABLED(CONFIG_IPV6)
9928                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9929                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9930
9931                 off = si->off;
9932                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9933                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9934                                                 struct sk_msg, sk),
9935                                       si->dst_reg, si->src_reg,
9936                                       offsetof(struct sk_msg, sk));
9937                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9938                                       offsetof(struct sock_common,
9939                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9940                                       off);
9941 #else
9942                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9943 #endif
9944                 break;
9945
9946         case offsetof(struct sk_msg_md, remote_port):
9947                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9948
9949                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9950                                                 struct sk_msg, sk),
9951                                       si->dst_reg, si->src_reg,
9952                                       offsetof(struct sk_msg, sk));
9953                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9954                                       offsetof(struct sock_common, skc_dport));
9955 #ifndef __BIG_ENDIAN_BITFIELD
9956                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9957 #endif
9958                 break;
9959
9960         case offsetof(struct sk_msg_md, local_port):
9961                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9962
9963                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9964                                                 struct sk_msg, sk),
9965                                       si->dst_reg, si->src_reg,
9966                                       offsetof(struct sk_msg, sk));
9967                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9968                                       offsetof(struct sock_common, skc_num));
9969                 break;
9970
9971         case offsetof(struct sk_msg_md, size):
9972                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9973                                       si->dst_reg, si->src_reg,
9974                                       offsetof(struct sk_msg_sg, size));
9975                 break;
9976
9977         case offsetof(struct sk_msg_md, sk):
9978                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9979                                       si->dst_reg, si->src_reg,
9980                                       offsetof(struct sk_msg, sk));
9981                 break;
9982         }
9983
9984         return insn - insn_buf;
9985 }
9986
9987 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9988         .get_func_proto         = sk_filter_func_proto,
9989         .is_valid_access        = sk_filter_is_valid_access,
9990         .convert_ctx_access     = bpf_convert_ctx_access,
9991         .gen_ld_abs             = bpf_gen_ld_abs,
9992 };
9993
9994 const struct bpf_prog_ops sk_filter_prog_ops = {
9995         .test_run               = bpf_prog_test_run_skb,
9996 };
9997
9998 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9999         .get_func_proto         = tc_cls_act_func_proto,
10000         .is_valid_access        = tc_cls_act_is_valid_access,
10001         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10002         .gen_prologue           = tc_cls_act_prologue,
10003         .gen_ld_abs             = bpf_gen_ld_abs,
10004         .check_kfunc_call       = bpf_prog_test_check_kfunc_call,
10005 };
10006
10007 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10008         .test_run               = bpf_prog_test_run_skb,
10009 };
10010
10011 const struct bpf_verifier_ops xdp_verifier_ops = {
10012         .get_func_proto         = xdp_func_proto,
10013         .is_valid_access        = xdp_is_valid_access,
10014         .convert_ctx_access     = xdp_convert_ctx_access,
10015         .gen_prologue           = bpf_noop_prologue,
10016 };
10017
10018 const struct bpf_prog_ops xdp_prog_ops = {
10019         .test_run               = bpf_prog_test_run_xdp,
10020 };
10021
10022 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10023         .get_func_proto         = cg_skb_func_proto,
10024         .is_valid_access        = cg_skb_is_valid_access,
10025         .convert_ctx_access     = bpf_convert_ctx_access,
10026 };
10027
10028 const struct bpf_prog_ops cg_skb_prog_ops = {
10029         .test_run               = bpf_prog_test_run_skb,
10030 };
10031
10032 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10033         .get_func_proto         = lwt_in_func_proto,
10034         .is_valid_access        = lwt_is_valid_access,
10035         .convert_ctx_access     = bpf_convert_ctx_access,
10036 };
10037
10038 const struct bpf_prog_ops lwt_in_prog_ops = {
10039         .test_run               = bpf_prog_test_run_skb,
10040 };
10041
10042 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10043         .get_func_proto         = lwt_out_func_proto,
10044         .is_valid_access        = lwt_is_valid_access,
10045         .convert_ctx_access     = bpf_convert_ctx_access,
10046 };
10047
10048 const struct bpf_prog_ops lwt_out_prog_ops = {
10049         .test_run               = bpf_prog_test_run_skb,
10050 };
10051
10052 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10053         .get_func_proto         = lwt_xmit_func_proto,
10054         .is_valid_access        = lwt_is_valid_access,
10055         .convert_ctx_access     = bpf_convert_ctx_access,
10056         .gen_prologue           = tc_cls_act_prologue,
10057 };
10058
10059 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10060         .test_run               = bpf_prog_test_run_skb,
10061 };
10062
10063 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10064         .get_func_proto         = lwt_seg6local_func_proto,
10065         .is_valid_access        = lwt_is_valid_access,
10066         .convert_ctx_access     = bpf_convert_ctx_access,
10067 };
10068
10069 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10070         .test_run               = bpf_prog_test_run_skb,
10071 };
10072
10073 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10074         .get_func_proto         = sock_filter_func_proto,
10075         .is_valid_access        = sock_filter_is_valid_access,
10076         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10077 };
10078
10079 const struct bpf_prog_ops cg_sock_prog_ops = {
10080 };
10081
10082 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10083         .get_func_proto         = sock_addr_func_proto,
10084         .is_valid_access        = sock_addr_is_valid_access,
10085         .convert_ctx_access     = sock_addr_convert_ctx_access,
10086 };
10087
10088 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10089 };
10090
10091 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10092         .get_func_proto         = sock_ops_func_proto,
10093         .is_valid_access        = sock_ops_is_valid_access,
10094         .convert_ctx_access     = sock_ops_convert_ctx_access,
10095 };
10096
10097 const struct bpf_prog_ops sock_ops_prog_ops = {
10098 };
10099
10100 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10101         .get_func_proto         = sk_skb_func_proto,
10102         .is_valid_access        = sk_skb_is_valid_access,
10103         .convert_ctx_access     = sk_skb_convert_ctx_access,
10104         .gen_prologue           = sk_skb_prologue,
10105 };
10106
10107 const struct bpf_prog_ops sk_skb_prog_ops = {
10108 };
10109
10110 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10111         .get_func_proto         = sk_msg_func_proto,
10112         .is_valid_access        = sk_msg_is_valid_access,
10113         .convert_ctx_access     = sk_msg_convert_ctx_access,
10114         .gen_prologue           = bpf_noop_prologue,
10115 };
10116
10117 const struct bpf_prog_ops sk_msg_prog_ops = {
10118 };
10119
10120 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10121         .get_func_proto         = flow_dissector_func_proto,
10122         .is_valid_access        = flow_dissector_is_valid_access,
10123         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10124 };
10125
10126 const struct bpf_prog_ops flow_dissector_prog_ops = {
10127         .test_run               = bpf_prog_test_run_flow_dissector,
10128 };
10129
10130 int sk_detach_filter(struct sock *sk)
10131 {
10132         int ret = -ENOENT;
10133         struct sk_filter *filter;
10134
10135         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10136                 return -EPERM;
10137
10138         filter = rcu_dereference_protected(sk->sk_filter,
10139                                            lockdep_sock_is_held(sk));
10140         if (filter) {
10141                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10142                 sk_filter_uncharge(sk, filter);
10143                 ret = 0;
10144         }
10145
10146         return ret;
10147 }
10148 EXPORT_SYMBOL_GPL(sk_detach_filter);
10149
10150 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10151                   unsigned int len)
10152 {
10153         struct sock_fprog_kern *fprog;
10154         struct sk_filter *filter;
10155         int ret = 0;
10156
10157         lock_sock(sk);
10158         filter = rcu_dereference_protected(sk->sk_filter,
10159                                            lockdep_sock_is_held(sk));
10160         if (!filter)
10161                 goto out;
10162
10163         /* We're copying the filter that has been originally attached,
10164          * so no conversion/decode needed anymore. eBPF programs that
10165          * have no original program cannot be dumped through this.
10166          */
10167         ret = -EACCES;
10168         fprog = filter->prog->orig_prog;
10169         if (!fprog)
10170                 goto out;
10171
10172         ret = fprog->len;
10173         if (!len)
10174                 /* User space only enquires number of filter blocks. */
10175                 goto out;
10176
10177         ret = -EINVAL;
10178         if (len < fprog->len)
10179                 goto out;
10180
10181         ret = -EFAULT;
10182         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10183                 goto out;
10184
10185         /* Instead of bytes, the API requests to return the number
10186          * of filter blocks.
10187          */
10188         ret = fprog->len;
10189 out:
10190         release_sock(sk);
10191         return ret;
10192 }
10193
10194 #ifdef CONFIG_INET
10195 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10196                                     struct sock_reuseport *reuse,
10197                                     struct sock *sk, struct sk_buff *skb,
10198                                     struct sock *migrating_sk,
10199                                     u32 hash)
10200 {
10201         reuse_kern->skb = skb;
10202         reuse_kern->sk = sk;
10203         reuse_kern->selected_sk = NULL;
10204         reuse_kern->migrating_sk = migrating_sk;
10205         reuse_kern->data_end = skb->data + skb_headlen(skb);
10206         reuse_kern->hash = hash;
10207         reuse_kern->reuseport_id = reuse->reuseport_id;
10208         reuse_kern->bind_inany = reuse->bind_inany;
10209 }
10210
10211 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10212                                   struct bpf_prog *prog, struct sk_buff *skb,
10213                                   struct sock *migrating_sk,
10214                                   u32 hash)
10215 {
10216         struct sk_reuseport_kern reuse_kern;
10217         enum sk_action action;
10218
10219         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10220         action = bpf_prog_run(prog, &reuse_kern);
10221
10222         if (action == SK_PASS)
10223                 return reuse_kern.selected_sk;
10224         else
10225                 return ERR_PTR(-ECONNREFUSED);
10226 }
10227
10228 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10229            struct bpf_map *, map, void *, key, u32, flags)
10230 {
10231         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10232         struct sock_reuseport *reuse;
10233         struct sock *selected_sk;
10234
10235         selected_sk = map->ops->map_lookup_elem(map, key);
10236         if (!selected_sk)
10237                 return -ENOENT;
10238
10239         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10240         if (!reuse) {
10241                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10242                 if (sk_is_refcounted(selected_sk))
10243                         sock_put(selected_sk);
10244
10245                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10246                  * The only (!reuse) case here is - the sk has already been
10247                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10248                  *
10249                  * Other maps (e.g. sock_map) do not provide this guarantee and
10250                  * the sk may never be in the reuseport group to begin with.
10251                  */
10252                 return is_sockarray ? -ENOENT : -EINVAL;
10253         }
10254
10255         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10256                 struct sock *sk = reuse_kern->sk;
10257
10258                 if (sk->sk_protocol != selected_sk->sk_protocol)
10259                         return -EPROTOTYPE;
10260                 else if (sk->sk_family != selected_sk->sk_family)
10261                         return -EAFNOSUPPORT;
10262
10263                 /* Catch all. Likely bound to a different sockaddr. */
10264                 return -EBADFD;
10265         }
10266
10267         reuse_kern->selected_sk = selected_sk;
10268
10269         return 0;
10270 }
10271
10272 static const struct bpf_func_proto sk_select_reuseport_proto = {
10273         .func           = sk_select_reuseport,
10274         .gpl_only       = false,
10275         .ret_type       = RET_INTEGER,
10276         .arg1_type      = ARG_PTR_TO_CTX,
10277         .arg2_type      = ARG_CONST_MAP_PTR,
10278         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10279         .arg4_type      = ARG_ANYTHING,
10280 };
10281
10282 BPF_CALL_4(sk_reuseport_load_bytes,
10283            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10284            void *, to, u32, len)
10285 {
10286         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10287 }
10288
10289 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10290         .func           = sk_reuseport_load_bytes,
10291         .gpl_only       = false,
10292         .ret_type       = RET_INTEGER,
10293         .arg1_type      = ARG_PTR_TO_CTX,
10294         .arg2_type      = ARG_ANYTHING,
10295         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10296         .arg4_type      = ARG_CONST_SIZE,
10297 };
10298
10299 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10300            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10301            void *, to, u32, len, u32, start_header)
10302 {
10303         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10304                                                len, start_header);
10305 }
10306
10307 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10308         .func           = sk_reuseport_load_bytes_relative,
10309         .gpl_only       = false,
10310         .ret_type       = RET_INTEGER,
10311         .arg1_type      = ARG_PTR_TO_CTX,
10312         .arg2_type      = ARG_ANYTHING,
10313         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10314         .arg4_type      = ARG_CONST_SIZE,
10315         .arg5_type      = ARG_ANYTHING,
10316 };
10317
10318 static const struct bpf_func_proto *
10319 sk_reuseport_func_proto(enum bpf_func_id func_id,
10320                         const struct bpf_prog *prog)
10321 {
10322         switch (func_id) {
10323         case BPF_FUNC_sk_select_reuseport:
10324                 return &sk_select_reuseport_proto;
10325         case BPF_FUNC_skb_load_bytes:
10326                 return &sk_reuseport_load_bytes_proto;
10327         case BPF_FUNC_skb_load_bytes_relative:
10328                 return &sk_reuseport_load_bytes_relative_proto;
10329         case BPF_FUNC_get_socket_cookie:
10330                 return &bpf_get_socket_ptr_cookie_proto;
10331         case BPF_FUNC_ktime_get_coarse_ns:
10332                 return &bpf_ktime_get_coarse_ns_proto;
10333         default:
10334                 return bpf_base_func_proto(func_id);
10335         }
10336 }
10337
10338 static bool
10339 sk_reuseport_is_valid_access(int off, int size,
10340                              enum bpf_access_type type,
10341                              const struct bpf_prog *prog,
10342                              struct bpf_insn_access_aux *info)
10343 {
10344         const u32 size_default = sizeof(__u32);
10345
10346         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10347             off % size || type != BPF_READ)
10348                 return false;
10349
10350         switch (off) {
10351         case offsetof(struct sk_reuseport_md, data):
10352                 info->reg_type = PTR_TO_PACKET;
10353                 return size == sizeof(__u64);
10354
10355         case offsetof(struct sk_reuseport_md, data_end):
10356                 info->reg_type = PTR_TO_PACKET_END;
10357                 return size == sizeof(__u64);
10358
10359         case offsetof(struct sk_reuseport_md, hash):
10360                 return size == size_default;
10361
10362         case offsetof(struct sk_reuseport_md, sk):
10363                 info->reg_type = PTR_TO_SOCKET;
10364                 return size == sizeof(__u64);
10365
10366         case offsetof(struct sk_reuseport_md, migrating_sk):
10367                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10368                 return size == sizeof(__u64);
10369
10370         /* Fields that allow narrowing */
10371         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10372                 if (size < sizeof_field(struct sk_buff, protocol))
10373                         return false;
10374                 fallthrough;
10375         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10376         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10377         case bpf_ctx_range(struct sk_reuseport_md, len):
10378                 bpf_ctx_record_field_size(info, size_default);
10379                 return bpf_ctx_narrow_access_ok(off, size, size_default);
10380
10381         default:
10382                 return false;
10383         }
10384 }
10385
10386 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10387         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10388                               si->dst_reg, si->src_reg,                 \
10389                               bpf_target_off(struct sk_reuseport_kern, F, \
10390                                              sizeof_field(struct sk_reuseport_kern, F), \
10391                                              target_size));             \
10392         })
10393
10394 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10395         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10396                                     struct sk_buff,                     \
10397                                     skb,                                \
10398                                     SKB_FIELD)
10399
10400 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10401         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10402                                     struct sock,                        \
10403                                     sk,                                 \
10404                                     SK_FIELD)
10405
10406 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10407                                            const struct bpf_insn *si,
10408                                            struct bpf_insn *insn_buf,
10409                                            struct bpf_prog *prog,
10410                                            u32 *target_size)
10411 {
10412         struct bpf_insn *insn = insn_buf;
10413
10414         switch (si->off) {
10415         case offsetof(struct sk_reuseport_md, data):
10416                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10417                 break;
10418
10419         case offsetof(struct sk_reuseport_md, len):
10420                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10421                 break;
10422
10423         case offsetof(struct sk_reuseport_md, eth_protocol):
10424                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10425                 break;
10426
10427         case offsetof(struct sk_reuseport_md, ip_protocol):
10428                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10429                 break;
10430
10431         case offsetof(struct sk_reuseport_md, data_end):
10432                 SK_REUSEPORT_LOAD_FIELD(data_end);
10433                 break;
10434
10435         case offsetof(struct sk_reuseport_md, hash):
10436                 SK_REUSEPORT_LOAD_FIELD(hash);
10437                 break;
10438
10439         case offsetof(struct sk_reuseport_md, bind_inany):
10440                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10441                 break;
10442
10443         case offsetof(struct sk_reuseport_md, sk):
10444                 SK_REUSEPORT_LOAD_FIELD(sk);
10445                 break;
10446
10447         case offsetof(struct sk_reuseport_md, migrating_sk):
10448                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10449                 break;
10450         }
10451
10452         return insn - insn_buf;
10453 }
10454
10455 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10456         .get_func_proto         = sk_reuseport_func_proto,
10457         .is_valid_access        = sk_reuseport_is_valid_access,
10458         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10459 };
10460
10461 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10462 };
10463
10464 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10465 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10466
10467 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10468            struct sock *, sk, u64, flags)
10469 {
10470         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10471                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10472                 return -EINVAL;
10473         if (unlikely(sk && sk_is_refcounted(sk)))
10474                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10475         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
10476                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
10477         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
10478                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
10479
10480         /* Check if socket is suitable for packet L3/L4 protocol */
10481         if (sk && sk->sk_protocol != ctx->protocol)
10482                 return -EPROTOTYPE;
10483         if (sk && sk->sk_family != ctx->family &&
10484             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10485                 return -EAFNOSUPPORT;
10486
10487         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10488                 return -EEXIST;
10489
10490         /* Select socket as lookup result */
10491         ctx->selected_sk = sk;
10492         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10493         return 0;
10494 }
10495
10496 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10497         .func           = bpf_sk_lookup_assign,
10498         .gpl_only       = false,
10499         .ret_type       = RET_INTEGER,
10500         .arg1_type      = ARG_PTR_TO_CTX,
10501         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10502         .arg3_type      = ARG_ANYTHING,
10503 };
10504
10505 static const struct bpf_func_proto *
10506 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10507 {
10508         switch (func_id) {
10509         case BPF_FUNC_perf_event_output:
10510                 return &bpf_event_output_data_proto;
10511         case BPF_FUNC_sk_assign:
10512                 return &bpf_sk_lookup_assign_proto;
10513         case BPF_FUNC_sk_release:
10514                 return &bpf_sk_release_proto;
10515         default:
10516                 return bpf_sk_base_func_proto(func_id);
10517         }
10518 }
10519
10520 static bool sk_lookup_is_valid_access(int off, int size,
10521                                       enum bpf_access_type type,
10522                                       const struct bpf_prog *prog,
10523                                       struct bpf_insn_access_aux *info)
10524 {
10525         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10526                 return false;
10527         if (off % size != 0)
10528                 return false;
10529         if (type != BPF_READ)
10530                 return false;
10531
10532         switch (off) {
10533         case offsetof(struct bpf_sk_lookup, sk):
10534                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10535                 return size == sizeof(__u64);
10536
10537         case bpf_ctx_range(struct bpf_sk_lookup, family):
10538         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10539         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10540         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10541         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10542         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10543         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10544         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10545         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
10546                 bpf_ctx_record_field_size(info, sizeof(__u32));
10547                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10548
10549         default:
10550                 return false;
10551         }
10552 }
10553
10554 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10555                                         const struct bpf_insn *si,
10556                                         struct bpf_insn *insn_buf,
10557                                         struct bpf_prog *prog,
10558                                         u32 *target_size)
10559 {
10560         struct bpf_insn *insn = insn_buf;
10561
10562         switch (si->off) {
10563         case offsetof(struct bpf_sk_lookup, sk):
10564                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10565                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
10566                 break;
10567
10568         case offsetof(struct bpf_sk_lookup, family):
10569                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10570                                       bpf_target_off(struct bpf_sk_lookup_kern,
10571                                                      family, 2, target_size));
10572                 break;
10573
10574         case offsetof(struct bpf_sk_lookup, protocol):
10575                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10576                                       bpf_target_off(struct bpf_sk_lookup_kern,
10577                                                      protocol, 2, target_size));
10578                 break;
10579
10580         case offsetof(struct bpf_sk_lookup, remote_ip4):
10581                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10582                                       bpf_target_off(struct bpf_sk_lookup_kern,
10583                                                      v4.saddr, 4, target_size));
10584                 break;
10585
10586         case offsetof(struct bpf_sk_lookup, local_ip4):
10587                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10588                                       bpf_target_off(struct bpf_sk_lookup_kern,
10589                                                      v4.daddr, 4, target_size));
10590                 break;
10591
10592         case bpf_ctx_range_till(struct bpf_sk_lookup,
10593                                 remote_ip6[0], remote_ip6[3]): {
10594 #if IS_ENABLED(CONFIG_IPV6)
10595                 int off = si->off;
10596
10597                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10598                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10599                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10600                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10601                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10602                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10603 #else
10604                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10605 #endif
10606                 break;
10607         }
10608         case bpf_ctx_range_till(struct bpf_sk_lookup,
10609                                 local_ip6[0], local_ip6[3]): {
10610 #if IS_ENABLED(CONFIG_IPV6)
10611                 int off = si->off;
10612
10613                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10614                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10615                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10616                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10617                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10618                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10619 #else
10620                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10621 #endif
10622                 break;
10623         }
10624         case offsetof(struct bpf_sk_lookup, remote_port):
10625                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10626                                       bpf_target_off(struct bpf_sk_lookup_kern,
10627                                                      sport, 2, target_size));
10628                 break;
10629
10630         case offsetof(struct bpf_sk_lookup, local_port):
10631                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10632                                       bpf_target_off(struct bpf_sk_lookup_kern,
10633                                                      dport, 2, target_size));
10634                 break;
10635
10636         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
10637                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10638                                       bpf_target_off(struct bpf_sk_lookup_kern,
10639                                                      ingress_ifindex, 4, target_size));
10640                 break;
10641         }
10642
10643         return insn - insn_buf;
10644 }
10645
10646 const struct bpf_prog_ops sk_lookup_prog_ops = {
10647         .test_run = bpf_prog_test_run_sk_lookup,
10648 };
10649
10650 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10651         .get_func_proto         = sk_lookup_func_proto,
10652         .is_valid_access        = sk_lookup_is_valid_access,
10653         .convert_ctx_access     = sk_lookup_convert_ctx_access,
10654 };
10655
10656 #endif /* CONFIG_INET */
10657
10658 DEFINE_BPF_DISPATCHER(xdp)
10659
10660 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10661 {
10662         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10663 }
10664
10665 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
10666 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10667 BTF_SOCK_TYPE_xxx
10668 #undef BTF_SOCK_TYPE
10669
10670 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10671 {
10672         /* tcp6_sock type is not generated in dwarf and hence btf,
10673          * trigger an explicit type generation here.
10674          */
10675         BTF_TYPE_EMIT(struct tcp6_sock);
10676         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10677             sk->sk_family == AF_INET6)
10678                 return (unsigned long)sk;
10679
10680         return (unsigned long)NULL;
10681 }
10682
10683 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10684         .func                   = bpf_skc_to_tcp6_sock,
10685         .gpl_only               = false,
10686         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10687         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10688         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10689 };
10690
10691 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10692 {
10693         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10694                 return (unsigned long)sk;
10695
10696         return (unsigned long)NULL;
10697 }
10698
10699 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10700         .func                   = bpf_skc_to_tcp_sock,
10701         .gpl_only               = false,
10702         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10703         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10704         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10705 };
10706
10707 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10708 {
10709         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10710          * generated if CONFIG_INET=n. Trigger an explicit generation here.
10711          */
10712         BTF_TYPE_EMIT(struct inet_timewait_sock);
10713         BTF_TYPE_EMIT(struct tcp_timewait_sock);
10714
10715 #ifdef CONFIG_INET
10716         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10717                 return (unsigned long)sk;
10718 #endif
10719
10720 #if IS_BUILTIN(CONFIG_IPV6)
10721         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10722                 return (unsigned long)sk;
10723 #endif
10724
10725         return (unsigned long)NULL;
10726 }
10727
10728 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10729         .func                   = bpf_skc_to_tcp_timewait_sock,
10730         .gpl_only               = false,
10731         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10732         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10733         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10734 };
10735
10736 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10737 {
10738 #ifdef CONFIG_INET
10739         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10740                 return (unsigned long)sk;
10741 #endif
10742
10743 #if IS_BUILTIN(CONFIG_IPV6)
10744         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10745                 return (unsigned long)sk;
10746 #endif
10747
10748         return (unsigned long)NULL;
10749 }
10750
10751 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10752         .func                   = bpf_skc_to_tcp_request_sock,
10753         .gpl_only               = false,
10754         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10755         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10756         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10757 };
10758
10759 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10760 {
10761         /* udp6_sock type is not generated in dwarf and hence btf,
10762          * trigger an explicit type generation here.
10763          */
10764         BTF_TYPE_EMIT(struct udp6_sock);
10765         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10766             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10767                 return (unsigned long)sk;
10768
10769         return (unsigned long)NULL;
10770 }
10771
10772 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10773         .func                   = bpf_skc_to_udp6_sock,
10774         .gpl_only               = false,
10775         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10776         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10777         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10778 };
10779
10780 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
10781 {
10782         /* unix_sock type is not generated in dwarf and hence btf,
10783          * trigger an explicit type generation here.
10784          */
10785         BTF_TYPE_EMIT(struct unix_sock);
10786         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
10787                 return (unsigned long)sk;
10788
10789         return (unsigned long)NULL;
10790 }
10791
10792 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
10793         .func                   = bpf_skc_to_unix_sock,
10794         .gpl_only               = false,
10795         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10796         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10797         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
10798 };
10799
10800 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10801 {
10802         return (unsigned long)sock_from_file(file);
10803 }
10804
10805 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10806 BTF_ID(struct, socket)
10807 BTF_ID(struct, file)
10808
10809 const struct bpf_func_proto bpf_sock_from_file_proto = {
10810         .func           = bpf_sock_from_file,
10811         .gpl_only       = false,
10812         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
10813         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
10814         .arg1_type      = ARG_PTR_TO_BTF_ID,
10815         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
10816 };
10817
10818 static const struct bpf_func_proto *
10819 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10820 {
10821         const struct bpf_func_proto *func;
10822
10823         switch (func_id) {
10824         case BPF_FUNC_skc_to_tcp6_sock:
10825                 func = &bpf_skc_to_tcp6_sock_proto;
10826                 break;
10827         case BPF_FUNC_skc_to_tcp_sock:
10828                 func = &bpf_skc_to_tcp_sock_proto;
10829                 break;
10830         case BPF_FUNC_skc_to_tcp_timewait_sock:
10831                 func = &bpf_skc_to_tcp_timewait_sock_proto;
10832                 break;
10833         case BPF_FUNC_skc_to_tcp_request_sock:
10834                 func = &bpf_skc_to_tcp_request_sock_proto;
10835                 break;
10836         case BPF_FUNC_skc_to_udp6_sock:
10837                 func = &bpf_skc_to_udp6_sock_proto;
10838                 break;
10839         case BPF_FUNC_skc_to_unix_sock:
10840                 func = &bpf_skc_to_unix_sock_proto;
10841                 break;
10842         case BPF_FUNC_ktime_get_coarse_ns:
10843                 return &bpf_ktime_get_coarse_ns_proto;
10844         default:
10845                 return bpf_base_func_proto(func_id);
10846         }
10847
10848         if (!perfmon_capable())
10849                 return NULL;
10850
10851         return func;
10852 }