xdp: Simplify __bpf_tx_xdp_map()
[linux-2.6-block.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55 #include <net/busy_poll.h>
56 #include <net/tcp.h>
57 #include <net/xfrm.h>
58 #include <net/udp.h>
59 #include <linux/bpf_trace.h>
60 #include <net/xdp_sock.h>
61 #include <linux/inetdevice.h>
62 #include <net/inet_hashtables.h>
63 #include <net/inet6_hashtables.h>
64 #include <net/ip_fib.h>
65 #include <net/nexthop.h>
66 #include <net/flow.h>
67 #include <net/arp.h>
68 #include <net/ipv6.h>
69 #include <net/net_namespace.h>
70 #include <linux/seg6_local.h>
71 #include <net/seg6.h>
72 #include <net/seg6_local.h>
73 #include <net/lwtunnel.h>
74 #include <net/ipv6_stubs.h>
75 #include <net/bpf_sk_storage.h>
76
77 /**
78  *      sk_filter_trim_cap - run a packet through a socket filter
79  *      @sk: sock associated with &sk_buff
80  *      @skb: buffer to filter
81  *      @cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92         int err;
93         struct sk_filter *filter;
94
95         /*
96          * If the skb was allocated from pfmemalloc reserves, only
97          * allow SOCK_MEMALLOC sockets to use it as this socket is
98          * helping free memory
99          */
100         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102                 return -ENOMEM;
103         }
104         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105         if (err)
106                 return err;
107
108         err = security_sock_rcv_skb(sk, skb);
109         if (err)
110                 return err;
111
112         rcu_read_lock();
113         filter = rcu_dereference(sk->sk_filter);
114         if (filter) {
115                 struct sock *save_sk = skb->sk;
116                 unsigned int pkt_len;
117
118                 skb->sk = sk;
119                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120                 skb->sk = save_sk;
121                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122         }
123         rcu_read_unlock();
124
125         return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128
129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131         return skb_get_poff(skb);
132 }
133
134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136         struct nlattr *nla;
137
138         if (skb_is_nonlinear(skb))
139                 return 0;
140
141         if (skb->len < sizeof(struct nlattr))
142                 return 0;
143
144         if (a > skb->len - sizeof(struct nlattr))
145                 return 0;
146
147         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148         if (nla)
149                 return (void *) nla - (void *) skb->data;
150
151         return 0;
152 }
153
154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156         struct nlattr *nla;
157
158         if (skb_is_nonlinear(skb))
159                 return 0;
160
161         if (skb->len < sizeof(struct nlattr))
162                 return 0;
163
164         if (a > skb->len - sizeof(struct nlattr))
165                 return 0;
166
167         nla = (struct nlattr *) &skb->data[a];
168         if (nla->nla_len > skb->len - a)
169                 return 0;
170
171         nla = nla_find_nested(nla, x);
172         if (nla)
173                 return (void *) nla - (void *) skb->data;
174
175         return 0;
176 }
177
178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179            data, int, headlen, int, offset)
180 {
181         u8 tmp, *ptr;
182         const int len = sizeof(tmp);
183
184         if (offset >= 0) {
185                 if (headlen - offset >= len)
186                         return *(u8 *)(data + offset);
187                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188                         return tmp;
189         } else {
190                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191                 if (likely(ptr))
192                         return *(u8 *)ptr;
193         }
194
195         return -EFAULT;
196 }
197
198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199            int, offset)
200 {
201         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202                                          offset);
203 }
204
205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206            data, int, headlen, int, offset)
207 {
208         u16 tmp, *ptr;
209         const int len = sizeof(tmp);
210
211         if (offset >= 0) {
212                 if (headlen - offset >= len)
213                         return get_unaligned_be16(data + offset);
214                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215                         return be16_to_cpu(tmp);
216         } else {
217                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218                 if (likely(ptr))
219                         return get_unaligned_be16(ptr);
220         }
221
222         return -EFAULT;
223 }
224
225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226            int, offset)
227 {
228         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229                                           offset);
230 }
231
232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233            data, int, headlen, int, offset)
234 {
235         u32 tmp, *ptr;
236         const int len = sizeof(tmp);
237
238         if (likely(offset >= 0)) {
239                 if (headlen - offset >= len)
240                         return get_unaligned_be32(data + offset);
241                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242                         return be32_to_cpu(tmp);
243         } else {
244                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245                 if (likely(ptr))
246                         return get_unaligned_be32(ptr);
247         }
248
249         return -EFAULT;
250 }
251
252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253            int, offset)
254 {
255         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256                                           offset);
257 }
258
259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261         return raw_smp_processor_id();
262 }
263
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265         .func           = bpf_get_raw_cpu_id,
266         .gpl_only       = false,
267         .ret_type       = RET_INTEGER,
268 };
269
270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271                               struct bpf_insn *insn_buf)
272 {
273         struct bpf_insn *insn = insn_buf;
274
275         switch (skb_field) {
276         case SKF_AD_MARK:
277                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
278
279                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280                                       offsetof(struct sk_buff, mark));
281                 break;
282
283         case SKF_AD_PKTTYPE:
284                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289                 break;
290
291         case SKF_AD_QUEUE:
292                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
293
294                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295                                       offsetof(struct sk_buff, queue_mapping));
296                 break;
297
298         case SKF_AD_VLAN_TAG:
299                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
300
301                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303                                       offsetof(struct sk_buff, vlan_tci));
304                 break;
305         case SKF_AD_VLAN_TAG_PRESENT:
306                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307                 if (PKT_VLAN_PRESENT_BIT)
308                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309                 if (PKT_VLAN_PRESENT_BIT < 7)
310                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311                 break;
312         }
313
314         return insn - insn_buf;
315 }
316
317 static bool convert_bpf_extensions(struct sock_filter *fp,
318                                    struct bpf_insn **insnp)
319 {
320         struct bpf_insn *insn = *insnp;
321         u32 cnt;
322
323         switch (fp->k) {
324         case SKF_AD_OFF + SKF_AD_PROTOCOL:
325                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
326
327                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
328                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329                                       offsetof(struct sk_buff, protocol));
330                 /* A = ntohs(A) [emitting a nop or swap16] */
331                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332                 break;
333
334         case SKF_AD_OFF + SKF_AD_PKTTYPE:
335                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336                 insn += cnt - 1;
337                 break;
338
339         case SKF_AD_OFF + SKF_AD_IFINDEX:
340         case SKF_AD_OFF + SKF_AD_HATYPE:
341                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
342                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
343
344                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345                                       BPF_REG_TMP, BPF_REG_CTX,
346                                       offsetof(struct sk_buff, dev));
347                 /* if (tmp != 0) goto pc + 1 */
348                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349                 *insn++ = BPF_EXIT_INSN();
350                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352                                             offsetof(struct net_device, ifindex));
353                 else
354                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355                                             offsetof(struct net_device, type));
356                 break;
357
358         case SKF_AD_OFF + SKF_AD_MARK:
359                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360                 insn += cnt - 1;
361                 break;
362
363         case SKF_AD_OFF + SKF_AD_RXHASH:
364                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
365
366                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367                                     offsetof(struct sk_buff, hash));
368                 break;
369
370         case SKF_AD_OFF + SKF_AD_QUEUE:
371                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372                 insn += cnt - 1;
373                 break;
374
375         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377                                          BPF_REG_A, BPF_REG_CTX, insn);
378                 insn += cnt - 1;
379                 break;
380
381         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383                                          BPF_REG_A, BPF_REG_CTX, insn);
384                 insn += cnt - 1;
385                 break;
386
387         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
389
390                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392                                       offsetof(struct sk_buff, vlan_proto));
393                 /* A = ntohs(A) [emitting a nop or swap16] */
394                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395                 break;
396
397         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398         case SKF_AD_OFF + SKF_AD_NLATTR:
399         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400         case SKF_AD_OFF + SKF_AD_CPU:
401         case SKF_AD_OFF + SKF_AD_RANDOM:
402                 /* arg1 = CTX */
403                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404                 /* arg2 = A */
405                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406                 /* arg3 = X */
407                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
409                 switch (fp->k) {
410                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412                         break;
413                 case SKF_AD_OFF + SKF_AD_NLATTR:
414                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415                         break;
416                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418                         break;
419                 case SKF_AD_OFF + SKF_AD_CPU:
420                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421                         break;
422                 case SKF_AD_OFF + SKF_AD_RANDOM:
423                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424                         bpf_user_rnd_init_once();
425                         break;
426                 }
427                 break;
428
429         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430                 /* A ^= X */
431                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432                 break;
433
434         default:
435                 /* This is just a dummy call to avoid letting the compiler
436                  * evict __bpf_call_base() as an optimization. Placed here
437                  * where no-one bothers.
438                  */
439                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440                 return false;
441         }
442
443         *insnp = insn;
444         return true;
445 }
446
447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451         bool endian = BPF_SIZE(fp->code) == BPF_H ||
452                       BPF_SIZE(fp->code) == BPF_W;
453         bool indirect = BPF_MODE(fp->code) == BPF_IND;
454         const int ip_align = NET_IP_ALIGN;
455         struct bpf_insn *insn = *insnp;
456         int offset = fp->k;
457
458         if (!indirect &&
459             ((unaligned_ok && offset >= 0) ||
460              (!unaligned_ok && offset >= 0 &&
461               offset + ip_align >= 0 &&
462               offset + ip_align % size == 0))) {
463                 bool ldx_off_ok = offset <= S16_MAX;
464
465                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466                 if (offset)
467                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469                                       size, 2 + endian + (!ldx_off_ok * 2));
470                 if (ldx_off_ok) {
471                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472                                               BPF_REG_D, offset);
473                 } else {
474                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477                                               BPF_REG_TMP, 0);
478                 }
479                 if (endian)
480                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481                 *insn++ = BPF_JMP_A(8);
482         }
483
484         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487         if (!indirect) {
488                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489         } else {
490                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491                 if (fp->k)
492                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493         }
494
495         switch (BPF_SIZE(fp->code)) {
496         case BPF_B:
497                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498                 break;
499         case BPF_H:
500                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501                 break;
502         case BPF_W:
503                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504                 break;
505         default:
506                 return false;
507         }
508
509         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511         *insn   = BPF_EXIT_INSN();
512
513         *insnp = insn;
514         return true;
515 }
516
517 /**
518  *      bpf_convert_filter - convert filter program
519  *      @prog: the user passed filter program
520  *      @len: the length of the user passed filter program
521  *      @new_prog: allocated 'struct bpf_prog' or NULL
522  *      @new_len: pointer to store length of converted program
523  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
524  *
525  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526  * style extended BPF (eBPF).
527  * Conversion workflow:
528  *
529  * 1) First pass for calculating the new program length:
530  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531  *
532  * 2) 2nd pass to remap in two passes: 1st pass finds new
533  *    jump offsets, 2nd pass remapping:
534  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535  */
536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537                               struct bpf_prog *new_prog, int *new_len,
538                               bool *seen_ld_abs)
539 {
540         int new_flen = 0, pass = 0, target, i, stack_off;
541         struct bpf_insn *new_insn, *first_insn = NULL;
542         struct sock_filter *fp;
543         int *addrs = NULL;
544         u8 bpf_src;
545
546         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548
549         if (len <= 0 || len > BPF_MAXINSNS)
550                 return -EINVAL;
551
552         if (new_prog) {
553                 first_insn = new_prog->insnsi;
554                 addrs = kcalloc(len, sizeof(*addrs),
555                                 GFP_KERNEL | __GFP_NOWARN);
556                 if (!addrs)
557                         return -ENOMEM;
558         }
559
560 do_pass:
561         new_insn = first_insn;
562         fp = prog;
563
564         /* Classic BPF related prologue emission. */
565         if (new_prog) {
566                 /* Classic BPF expects A and X to be reset first. These need
567                  * to be guaranteed to be the first two instructions.
568                  */
569                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571
572                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
573                  * In eBPF case it's done by the compiler, here we need to
574                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575                  */
576                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577                 if (*seen_ld_abs) {
578                         /* For packet access in classic BPF, cache skb->data
579                          * in callee-saved BPF R8 and skb->len - skb->data_len
580                          * (headlen) in BPF R9. Since classic BPF is read-only
581                          * on CTX, we only need to cache it once.
582                          */
583                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584                                                   BPF_REG_D, BPF_REG_CTX,
585                                                   offsetof(struct sk_buff, data));
586                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587                                                   offsetof(struct sk_buff, len));
588                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589                                                   offsetof(struct sk_buff, data_len));
590                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591                 }
592         } else {
593                 new_insn += 3;
594         }
595
596         for (i = 0; i < len; fp++, i++) {
597                 struct bpf_insn tmp_insns[32] = { };
598                 struct bpf_insn *insn = tmp_insns;
599
600                 if (addrs)
601                         addrs[i] = new_insn - first_insn;
602
603                 switch (fp->code) {
604                 /* All arithmetic insns and skb loads map as-is. */
605                 case BPF_ALU | BPF_ADD | BPF_X:
606                 case BPF_ALU | BPF_ADD | BPF_K:
607                 case BPF_ALU | BPF_SUB | BPF_X:
608                 case BPF_ALU | BPF_SUB | BPF_K:
609                 case BPF_ALU | BPF_AND | BPF_X:
610                 case BPF_ALU | BPF_AND | BPF_K:
611                 case BPF_ALU | BPF_OR | BPF_X:
612                 case BPF_ALU | BPF_OR | BPF_K:
613                 case BPF_ALU | BPF_LSH | BPF_X:
614                 case BPF_ALU | BPF_LSH | BPF_K:
615                 case BPF_ALU | BPF_RSH | BPF_X:
616                 case BPF_ALU | BPF_RSH | BPF_K:
617                 case BPF_ALU | BPF_XOR | BPF_X:
618                 case BPF_ALU | BPF_XOR | BPF_K:
619                 case BPF_ALU | BPF_MUL | BPF_X:
620                 case BPF_ALU | BPF_MUL | BPF_K:
621                 case BPF_ALU | BPF_DIV | BPF_X:
622                 case BPF_ALU | BPF_DIV | BPF_K:
623                 case BPF_ALU | BPF_MOD | BPF_X:
624                 case BPF_ALU | BPF_MOD | BPF_K:
625                 case BPF_ALU | BPF_NEG:
626                 case BPF_LD | BPF_ABS | BPF_W:
627                 case BPF_LD | BPF_ABS | BPF_H:
628                 case BPF_LD | BPF_ABS | BPF_B:
629                 case BPF_LD | BPF_IND | BPF_W:
630                 case BPF_LD | BPF_IND | BPF_H:
631                 case BPF_LD | BPF_IND | BPF_B:
632                         /* Check for overloaded BPF extension and
633                          * directly convert it if found, otherwise
634                          * just move on with mapping.
635                          */
636                         if (BPF_CLASS(fp->code) == BPF_LD &&
637                             BPF_MODE(fp->code) == BPF_ABS &&
638                             convert_bpf_extensions(fp, &insn))
639                                 break;
640                         if (BPF_CLASS(fp->code) == BPF_LD &&
641                             convert_bpf_ld_abs(fp, &insn)) {
642                                 *seen_ld_abs = true;
643                                 break;
644                         }
645
646                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649                                 /* Error with exception code on div/mod by 0.
650                                  * For cBPF programs, this was always return 0.
651                                  */
652                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654                                 *insn++ = BPF_EXIT_INSN();
655                         }
656
657                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658                         break;
659
660                 /* Jump transformation cannot use BPF block macros
661                  * everywhere as offset calculation and target updates
662                  * require a bit more work than the rest, i.e. jump
663                  * opcodes map as-is, but offsets need adjustment.
664                  */
665
666 #define BPF_EMIT_JMP                                                    \
667         do {                                                            \
668                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
669                 s32 off;                                                \
670                                                                         \
671                 if (target >= len || target < 0)                        \
672                         goto err;                                       \
673                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
674                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
675                 off -= insn - tmp_insns;                                \
676                 /* Reject anything not fitting into insn->off. */       \
677                 if (off < off_min || off > off_max)                     \
678                         goto err;                                       \
679                 insn->off = off;                                        \
680         } while (0)
681
682                 case BPF_JMP | BPF_JA:
683                         target = i + fp->k + 1;
684                         insn->code = fp->code;
685                         BPF_EMIT_JMP;
686                         break;
687
688                 case BPF_JMP | BPF_JEQ | BPF_K:
689                 case BPF_JMP | BPF_JEQ | BPF_X:
690                 case BPF_JMP | BPF_JSET | BPF_K:
691                 case BPF_JMP | BPF_JSET | BPF_X:
692                 case BPF_JMP | BPF_JGT | BPF_K:
693                 case BPF_JMP | BPF_JGT | BPF_X:
694                 case BPF_JMP | BPF_JGE | BPF_K:
695                 case BPF_JMP | BPF_JGE | BPF_X:
696                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697                                 /* BPF immediates are signed, zero extend
698                                  * immediate into tmp register and use it
699                                  * in compare insn.
700                                  */
701                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702
703                                 insn->dst_reg = BPF_REG_A;
704                                 insn->src_reg = BPF_REG_TMP;
705                                 bpf_src = BPF_X;
706                         } else {
707                                 insn->dst_reg = BPF_REG_A;
708                                 insn->imm = fp->k;
709                                 bpf_src = BPF_SRC(fp->code);
710                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711                         }
712
713                         /* Common case where 'jump_false' is next insn. */
714                         if (fp->jf == 0) {
715                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716                                 target = i + fp->jt + 1;
717                                 BPF_EMIT_JMP;
718                                 break;
719                         }
720
721                         /* Convert some jumps when 'jump_true' is next insn. */
722                         if (fp->jt == 0) {
723                                 switch (BPF_OP(fp->code)) {
724                                 case BPF_JEQ:
725                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
726                                         break;
727                                 case BPF_JGT:
728                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
729                                         break;
730                                 case BPF_JGE:
731                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
732                                         break;
733                                 default:
734                                         goto jmp_rest;
735                                 }
736
737                                 target = i + fp->jf + 1;
738                                 BPF_EMIT_JMP;
739                                 break;
740                         }
741 jmp_rest:
742                         /* Other jumps are mapped into two insns: Jxx and JA. */
743                         target = i + fp->jt + 1;
744                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745                         BPF_EMIT_JMP;
746                         insn++;
747
748                         insn->code = BPF_JMP | BPF_JA;
749                         target = i + fp->jf + 1;
750                         BPF_EMIT_JMP;
751                         break;
752
753                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754                 case BPF_LDX | BPF_MSH | BPF_B: {
755                         struct sock_filter tmp = {
756                                 .code   = BPF_LD | BPF_ABS | BPF_B,
757                                 .k      = fp->k,
758                         };
759
760                         *seen_ld_abs = true;
761
762                         /* X = A */
763                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
765                         convert_bpf_ld_abs(&tmp, &insn);
766                         insn++;
767                         /* A &= 0xf */
768                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769                         /* A <<= 2 */
770                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771                         /* tmp = X */
772                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773                         /* X = A */
774                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775                         /* A = tmp */
776                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777                         break;
778                 }
779                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
780                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781                  */
782                 case BPF_RET | BPF_A:
783                 case BPF_RET | BPF_K:
784                         if (BPF_RVAL(fp->code) == BPF_K)
785                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786                                                         0, fp->k);
787                         *insn = BPF_EXIT_INSN();
788                         break;
789
790                 /* Store to stack. */
791                 case BPF_ST:
792                 case BPF_STX:
793                         stack_off = fp->k * 4  + 4;
794                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
796                                             -stack_off);
797                         /* check_load_and_stores() verifies that classic BPF can
798                          * load from stack only after write, so tracking
799                          * stack_depth for ST|STX insns is enough
800                          */
801                         if (new_prog && new_prog->aux->stack_depth < stack_off)
802                                 new_prog->aux->stack_depth = stack_off;
803                         break;
804
805                 /* Load from stack. */
806                 case BPF_LD | BPF_MEM:
807                 case BPF_LDX | BPF_MEM:
808                         stack_off = fp->k * 4  + 4;
809                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
810                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811                                             -stack_off);
812                         break;
813
814                 /* A = K or X = K */
815                 case BPF_LD | BPF_IMM:
816                 case BPF_LDX | BPF_IMM:
817                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818                                               BPF_REG_A : BPF_REG_X, fp->k);
819                         break;
820
821                 /* X = A */
822                 case BPF_MISC | BPF_TAX:
823                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824                         break;
825
826                 /* A = X */
827                 case BPF_MISC | BPF_TXA:
828                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829                         break;
830
831                 /* A = skb->len or X = skb->len */
832                 case BPF_LD | BPF_W | BPF_LEN:
833                 case BPF_LDX | BPF_W | BPF_LEN:
834                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836                                             offsetof(struct sk_buff, len));
837                         break;
838
839                 /* Access seccomp_data fields. */
840                 case BPF_LDX | BPF_ABS | BPF_W:
841                         /* A = *(u32 *) (ctx + K) */
842                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843                         break;
844
845                 /* Unknown instruction. */
846                 default:
847                         goto err;
848                 }
849
850                 insn++;
851                 if (new_prog)
852                         memcpy(new_insn, tmp_insns,
853                                sizeof(*insn) * (insn - tmp_insns));
854                 new_insn += insn - tmp_insns;
855         }
856
857         if (!new_prog) {
858                 /* Only calculating new length. */
859                 *new_len = new_insn - first_insn;
860                 if (*seen_ld_abs)
861                         *new_len += 4; /* Prologue bits. */
862                 return 0;
863         }
864
865         pass++;
866         if (new_flen != new_insn - first_insn) {
867                 new_flen = new_insn - first_insn;
868                 if (pass > 2)
869                         goto err;
870                 goto do_pass;
871         }
872
873         kfree(addrs);
874         BUG_ON(*new_len != new_flen);
875         return 0;
876 err:
877         kfree(addrs);
878         return -EINVAL;
879 }
880
881 /* Security:
882  *
883  * As we dont want to clear mem[] array for each packet going through
884  * __bpf_prog_run(), we check that filter loaded by user never try to read
885  * a cell if not previously written, and we check all branches to be sure
886  * a malicious user doesn't try to abuse us.
887  */
888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891         int pc, ret = 0;
892
893         BUILD_BUG_ON(BPF_MEMWORDS > 16);
894
895         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896         if (!masks)
897                 return -ENOMEM;
898
899         memset(masks, 0xff, flen * sizeof(*masks));
900
901         for (pc = 0; pc < flen; pc++) {
902                 memvalid &= masks[pc];
903
904                 switch (filter[pc].code) {
905                 case BPF_ST:
906                 case BPF_STX:
907                         memvalid |= (1 << filter[pc].k);
908                         break;
909                 case BPF_LD | BPF_MEM:
910                 case BPF_LDX | BPF_MEM:
911                         if (!(memvalid & (1 << filter[pc].k))) {
912                                 ret = -EINVAL;
913                                 goto error;
914                         }
915                         break;
916                 case BPF_JMP | BPF_JA:
917                         /* A jump must set masks on target */
918                         masks[pc + 1 + filter[pc].k] &= memvalid;
919                         memvalid = ~0;
920                         break;
921                 case BPF_JMP | BPF_JEQ | BPF_K:
922                 case BPF_JMP | BPF_JEQ | BPF_X:
923                 case BPF_JMP | BPF_JGE | BPF_K:
924                 case BPF_JMP | BPF_JGE | BPF_X:
925                 case BPF_JMP | BPF_JGT | BPF_K:
926                 case BPF_JMP | BPF_JGT | BPF_X:
927                 case BPF_JMP | BPF_JSET | BPF_K:
928                 case BPF_JMP | BPF_JSET | BPF_X:
929                         /* A jump must set masks on targets */
930                         masks[pc + 1 + filter[pc].jt] &= memvalid;
931                         masks[pc + 1 + filter[pc].jf] &= memvalid;
932                         memvalid = ~0;
933                         break;
934                 }
935         }
936 error:
937         kfree(masks);
938         return ret;
939 }
940
941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943         static const bool codes[] = {
944                 /* 32 bit ALU operations */
945                 [BPF_ALU | BPF_ADD | BPF_K] = true,
946                 [BPF_ALU | BPF_ADD | BPF_X] = true,
947                 [BPF_ALU | BPF_SUB | BPF_K] = true,
948                 [BPF_ALU | BPF_SUB | BPF_X] = true,
949                 [BPF_ALU | BPF_MUL | BPF_K] = true,
950                 [BPF_ALU | BPF_MUL | BPF_X] = true,
951                 [BPF_ALU | BPF_DIV | BPF_K] = true,
952                 [BPF_ALU | BPF_DIV | BPF_X] = true,
953                 [BPF_ALU | BPF_MOD | BPF_K] = true,
954                 [BPF_ALU | BPF_MOD | BPF_X] = true,
955                 [BPF_ALU | BPF_AND | BPF_K] = true,
956                 [BPF_ALU | BPF_AND | BPF_X] = true,
957                 [BPF_ALU | BPF_OR | BPF_K] = true,
958                 [BPF_ALU | BPF_OR | BPF_X] = true,
959                 [BPF_ALU | BPF_XOR | BPF_K] = true,
960                 [BPF_ALU | BPF_XOR | BPF_X] = true,
961                 [BPF_ALU | BPF_LSH | BPF_K] = true,
962                 [BPF_ALU | BPF_LSH | BPF_X] = true,
963                 [BPF_ALU | BPF_RSH | BPF_K] = true,
964                 [BPF_ALU | BPF_RSH | BPF_X] = true,
965                 [BPF_ALU | BPF_NEG] = true,
966                 /* Load instructions */
967                 [BPF_LD | BPF_W | BPF_ABS] = true,
968                 [BPF_LD | BPF_H | BPF_ABS] = true,
969                 [BPF_LD | BPF_B | BPF_ABS] = true,
970                 [BPF_LD | BPF_W | BPF_LEN] = true,
971                 [BPF_LD | BPF_W | BPF_IND] = true,
972                 [BPF_LD | BPF_H | BPF_IND] = true,
973                 [BPF_LD | BPF_B | BPF_IND] = true,
974                 [BPF_LD | BPF_IMM] = true,
975                 [BPF_LD | BPF_MEM] = true,
976                 [BPF_LDX | BPF_W | BPF_LEN] = true,
977                 [BPF_LDX | BPF_B | BPF_MSH] = true,
978                 [BPF_LDX | BPF_IMM] = true,
979                 [BPF_LDX | BPF_MEM] = true,
980                 /* Store instructions */
981                 [BPF_ST] = true,
982                 [BPF_STX] = true,
983                 /* Misc instructions */
984                 [BPF_MISC | BPF_TAX] = true,
985                 [BPF_MISC | BPF_TXA] = true,
986                 /* Return instructions */
987                 [BPF_RET | BPF_K] = true,
988                 [BPF_RET | BPF_A] = true,
989                 /* Jump instructions */
990                 [BPF_JMP | BPF_JA] = true,
991                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
992                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
993                 [BPF_JMP | BPF_JGE | BPF_K] = true,
994                 [BPF_JMP | BPF_JGE | BPF_X] = true,
995                 [BPF_JMP | BPF_JGT | BPF_K] = true,
996                 [BPF_JMP | BPF_JGT | BPF_X] = true,
997                 [BPF_JMP | BPF_JSET | BPF_K] = true,
998                 [BPF_JMP | BPF_JSET | BPF_X] = true,
999         };
1000
1001         if (code_to_probe >= ARRAY_SIZE(codes))
1002                 return false;
1003
1004         return codes[code_to_probe];
1005 }
1006
1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008                                 unsigned int flen)
1009 {
1010         if (filter == NULL)
1011                 return false;
1012         if (flen == 0 || flen > BPF_MAXINSNS)
1013                 return false;
1014
1015         return true;
1016 }
1017
1018 /**
1019  *      bpf_check_classic - verify socket filter code
1020  *      @filter: filter to verify
1021  *      @flen: length of filter
1022  *
1023  * Check the user's filter code. If we let some ugly
1024  * filter code slip through kaboom! The filter must contain
1025  * no references or jumps that are out of range, no illegal
1026  * instructions, and must end with a RET instruction.
1027  *
1028  * All jumps are forward as they are not signed.
1029  *
1030  * Returns 0 if the rule set is legal or -EINVAL if not.
1031  */
1032 static int bpf_check_classic(const struct sock_filter *filter,
1033                              unsigned int flen)
1034 {
1035         bool anc_found;
1036         int pc;
1037
1038         /* Check the filter code now */
1039         for (pc = 0; pc < flen; pc++) {
1040                 const struct sock_filter *ftest = &filter[pc];
1041
1042                 /* May we actually operate on this code? */
1043                 if (!chk_code_allowed(ftest->code))
1044                         return -EINVAL;
1045
1046                 /* Some instructions need special checks */
1047                 switch (ftest->code) {
1048                 case BPF_ALU | BPF_DIV | BPF_K:
1049                 case BPF_ALU | BPF_MOD | BPF_K:
1050                         /* Check for division by zero */
1051                         if (ftest->k == 0)
1052                                 return -EINVAL;
1053                         break;
1054                 case BPF_ALU | BPF_LSH | BPF_K:
1055                 case BPF_ALU | BPF_RSH | BPF_K:
1056                         if (ftest->k >= 32)
1057                                 return -EINVAL;
1058                         break;
1059                 case BPF_LD | BPF_MEM:
1060                 case BPF_LDX | BPF_MEM:
1061                 case BPF_ST:
1062                 case BPF_STX:
1063                         /* Check for invalid memory addresses */
1064                         if (ftest->k >= BPF_MEMWORDS)
1065                                 return -EINVAL;
1066                         break;
1067                 case BPF_JMP | BPF_JA:
1068                         /* Note, the large ftest->k might cause loops.
1069                          * Compare this with conditional jumps below,
1070                          * where offsets are limited. --ANK (981016)
1071                          */
1072                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1073                                 return -EINVAL;
1074                         break;
1075                 case BPF_JMP | BPF_JEQ | BPF_K:
1076                 case BPF_JMP | BPF_JEQ | BPF_X:
1077                 case BPF_JMP | BPF_JGE | BPF_K:
1078                 case BPF_JMP | BPF_JGE | BPF_X:
1079                 case BPF_JMP | BPF_JGT | BPF_K:
1080                 case BPF_JMP | BPF_JGT | BPF_X:
1081                 case BPF_JMP | BPF_JSET | BPF_K:
1082                 case BPF_JMP | BPF_JSET | BPF_X:
1083                         /* Both conditionals must be safe */
1084                         if (pc + ftest->jt + 1 >= flen ||
1085                             pc + ftest->jf + 1 >= flen)
1086                                 return -EINVAL;
1087                         break;
1088                 case BPF_LD | BPF_W | BPF_ABS:
1089                 case BPF_LD | BPF_H | BPF_ABS:
1090                 case BPF_LD | BPF_B | BPF_ABS:
1091                         anc_found = false;
1092                         if (bpf_anc_helper(ftest) & BPF_ANC)
1093                                 anc_found = true;
1094                         /* Ancillary operation unknown or unsupported */
1095                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096                                 return -EINVAL;
1097                 }
1098         }
1099
1100         /* Last instruction must be a RET code */
1101         switch (filter[flen - 1].code) {
1102         case BPF_RET | BPF_K:
1103         case BPF_RET | BPF_A:
1104                 return check_load_and_stores(filter, flen);
1105         }
1106
1107         return -EINVAL;
1108 }
1109
1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111                                       const struct sock_fprog *fprog)
1112 {
1113         unsigned int fsize = bpf_classic_proglen(fprog);
1114         struct sock_fprog_kern *fkprog;
1115
1116         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117         if (!fp->orig_prog)
1118                 return -ENOMEM;
1119
1120         fkprog = fp->orig_prog;
1121         fkprog->len = fprog->len;
1122
1123         fkprog->filter = kmemdup(fp->insns, fsize,
1124                                  GFP_KERNEL | __GFP_NOWARN);
1125         if (!fkprog->filter) {
1126                 kfree(fp->orig_prog);
1127                 return -ENOMEM;
1128         }
1129
1130         return 0;
1131 }
1132
1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135         struct sock_fprog_kern *fprog = fp->orig_prog;
1136
1137         if (fprog) {
1138                 kfree(fprog->filter);
1139                 kfree(fprog);
1140         }
1141 }
1142
1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146                 bpf_prog_put(prog);
1147         } else {
1148                 bpf_release_orig_filter(prog);
1149                 bpf_prog_free(prog);
1150         }
1151 }
1152
1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155         __bpf_prog_release(fp->prog);
1156         kfree(fp);
1157 }
1158
1159 /**
1160  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1161  *      @rcu: rcu_head that contains the sk_filter to free
1162  */
1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166
1167         __sk_filter_release(fp);
1168 }
1169
1170 /**
1171  *      sk_filter_release - release a socket filter
1172  *      @fp: filter to remove
1173  *
1174  *      Remove a filter from a socket and release its resources.
1175  */
1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178         if (refcount_dec_and_test(&fp->refcnt))
1179                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181
1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184         u32 filter_size = bpf_prog_size(fp->prog->len);
1185
1186         atomic_sub(filter_size, &sk->sk_omem_alloc);
1187         sk_filter_release(fp);
1188 }
1189
1190 /* try to charge the socket memory if there is space available
1191  * return true on success
1192  */
1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195         u32 filter_size = bpf_prog_size(fp->prog->len);
1196
1197         /* same check as in sock_kmalloc() */
1198         if (filter_size <= sysctl_optmem_max &&
1199             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200                 atomic_add(filter_size, &sk->sk_omem_alloc);
1201                 return true;
1202         }
1203         return false;
1204 }
1205
1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208         if (!refcount_inc_not_zero(&fp->refcnt))
1209                 return false;
1210
1211         if (!__sk_filter_charge(sk, fp)) {
1212                 sk_filter_release(fp);
1213                 return false;
1214         }
1215         return true;
1216 }
1217
1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220         struct sock_filter *old_prog;
1221         struct bpf_prog *old_fp;
1222         int err, new_len, old_len = fp->len;
1223         bool seen_ld_abs = false;
1224
1225         /* We are free to overwrite insns et al right here as it
1226          * won't be used at this point in time anymore internally
1227          * after the migration to the internal BPF instruction
1228          * representation.
1229          */
1230         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231                      sizeof(struct bpf_insn));
1232
1233         /* Conversion cannot happen on overlapping memory areas,
1234          * so we need to keep the user BPF around until the 2nd
1235          * pass. At this time, the user BPF is stored in fp->insns.
1236          */
1237         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238                            GFP_KERNEL | __GFP_NOWARN);
1239         if (!old_prog) {
1240                 err = -ENOMEM;
1241                 goto out_err;
1242         }
1243
1244         /* 1st pass: calculate the new program length. */
1245         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246                                  &seen_ld_abs);
1247         if (err)
1248                 goto out_err_free;
1249
1250         /* Expand fp for appending the new filter representation. */
1251         old_fp = fp;
1252         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253         if (!fp) {
1254                 /* The old_fp is still around in case we couldn't
1255                  * allocate new memory, so uncharge on that one.
1256                  */
1257                 fp = old_fp;
1258                 err = -ENOMEM;
1259                 goto out_err_free;
1260         }
1261
1262         fp->len = new_len;
1263
1264         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 /* 2nd bpf_convert_filter() can fail only if it fails
1269                  * to allocate memory, remapping must succeed. Note,
1270                  * that at this time old_fp has already been released
1271                  * by krealloc().
1272                  */
1273                 goto out_err_free;
1274
1275         fp = bpf_prog_select_runtime(fp, &err);
1276         if (err)
1277                 goto out_err_free;
1278
1279         kfree(old_prog);
1280         return fp;
1281
1282 out_err_free:
1283         kfree(old_prog);
1284 out_err:
1285         __bpf_prog_release(fp);
1286         return ERR_PTR(err);
1287 }
1288
1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290                                            bpf_aux_classic_check_t trans)
1291 {
1292         int err;
1293
1294         fp->bpf_func = NULL;
1295         fp->jited = 0;
1296
1297         err = bpf_check_classic(fp->insns, fp->len);
1298         if (err) {
1299                 __bpf_prog_release(fp);
1300                 return ERR_PTR(err);
1301         }
1302
1303         /* There might be additional checks and transformations
1304          * needed on classic filters, f.e. in case of seccomp.
1305          */
1306         if (trans) {
1307                 err = trans(fp->insns, fp->len);
1308                 if (err) {
1309                         __bpf_prog_release(fp);
1310                         return ERR_PTR(err);
1311                 }
1312         }
1313
1314         /* Probe if we can JIT compile the filter and if so, do
1315          * the compilation of the filter.
1316          */
1317         bpf_jit_compile(fp);
1318
1319         /* JIT compiler couldn't process this filter, so do the
1320          * internal BPF translation for the optimized interpreter.
1321          */
1322         if (!fp->jited)
1323                 fp = bpf_migrate_filter(fp);
1324
1325         return fp;
1326 }
1327
1328 /**
1329  *      bpf_prog_create - create an unattached filter
1330  *      @pfp: the unattached filter that is created
1331  *      @fprog: the filter program
1332  *
1333  * Create a filter independent of any socket. We first run some
1334  * sanity checks on it to make sure it does not explode on us later.
1335  * If an error occurs or there is insufficient memory for the filter
1336  * a negative errno code is returned. On success the return is zero.
1337  */
1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340         unsigned int fsize = bpf_classic_proglen(fprog);
1341         struct bpf_prog *fp;
1342
1343         /* Make sure new filter is there and in the right amounts. */
1344         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345                 return -EINVAL;
1346
1347         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348         if (!fp)
1349                 return -ENOMEM;
1350
1351         memcpy(fp->insns, fprog->filter, fsize);
1352
1353         fp->len = fprog->len;
1354         /* Since unattached filters are not copied back to user
1355          * space through sk_get_filter(), we do not need to hold
1356          * a copy here, and can spare us the work.
1357          */
1358         fp->orig_prog = NULL;
1359
1360         /* bpf_prepare_filter() already takes care of freeing
1361          * memory in case something goes wrong.
1362          */
1363         fp = bpf_prepare_filter(fp, NULL);
1364         if (IS_ERR(fp))
1365                 return PTR_ERR(fp);
1366
1367         *pfp = fp;
1368         return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371
1372 /**
1373  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1374  *      @pfp: the unattached filter that is created
1375  *      @fprog: the filter program
1376  *      @trans: post-classic verifier transformation handler
1377  *      @save_orig: save classic BPF program
1378  *
1379  * This function effectively does the same as bpf_prog_create(), only
1380  * that it builds up its insns buffer from user space provided buffer.
1381  * It also allows for passing a bpf_aux_classic_check_t handler.
1382  */
1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384                               bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386         unsigned int fsize = bpf_classic_proglen(fprog);
1387         struct bpf_prog *fp;
1388         int err;
1389
1390         /* Make sure new filter is there and in the right amounts. */
1391         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392                 return -EINVAL;
1393
1394         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395         if (!fp)
1396                 return -ENOMEM;
1397
1398         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399                 __bpf_prog_free(fp);
1400                 return -EFAULT;
1401         }
1402
1403         fp->len = fprog->len;
1404         fp->orig_prog = NULL;
1405
1406         if (save_orig) {
1407                 err = bpf_prog_store_orig_filter(fp, fprog);
1408                 if (err) {
1409                         __bpf_prog_free(fp);
1410                         return -ENOMEM;
1411                 }
1412         }
1413
1414         /* bpf_prepare_filter() already takes care of freeing
1415          * memory in case something goes wrong.
1416          */
1417         fp = bpf_prepare_filter(fp, trans);
1418         if (IS_ERR(fp))
1419                 return PTR_ERR(fp);
1420
1421         *pfp = fp;
1422         return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425
1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428         __bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431
1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434         struct sk_filter *fp, *old_fp;
1435
1436         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437         if (!fp)
1438                 return -ENOMEM;
1439
1440         fp->prog = prog;
1441
1442         if (!__sk_filter_charge(sk, fp)) {
1443                 kfree(fp);
1444                 return -ENOMEM;
1445         }
1446         refcount_set(&fp->refcnt, 1);
1447
1448         old_fp = rcu_dereference_protected(sk->sk_filter,
1449                                            lockdep_sock_is_held(sk));
1450         rcu_assign_pointer(sk->sk_filter, fp);
1451
1452         if (old_fp)
1453                 sk_filter_uncharge(sk, old_fp);
1454
1455         return 0;
1456 }
1457
1458 static
1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461         unsigned int fsize = bpf_classic_proglen(fprog);
1462         struct bpf_prog *prog;
1463         int err;
1464
1465         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466                 return ERR_PTR(-EPERM);
1467
1468         /* Make sure new filter is there and in the right amounts. */
1469         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470                 return ERR_PTR(-EINVAL);
1471
1472         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473         if (!prog)
1474                 return ERR_PTR(-ENOMEM);
1475
1476         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477                 __bpf_prog_free(prog);
1478                 return ERR_PTR(-EFAULT);
1479         }
1480
1481         prog->len = fprog->len;
1482
1483         err = bpf_prog_store_orig_filter(prog, fprog);
1484         if (err) {
1485                 __bpf_prog_free(prog);
1486                 return ERR_PTR(-ENOMEM);
1487         }
1488
1489         /* bpf_prepare_filter() already takes care of freeing
1490          * memory in case something goes wrong.
1491          */
1492         return bpf_prepare_filter(prog, NULL);
1493 }
1494
1495 /**
1496  *      sk_attach_filter - attach a socket filter
1497  *      @fprog: the filter program
1498  *      @sk: the socket to use
1499  *
1500  * Attach the user's filter code. We first run some sanity checks on
1501  * it to make sure it does not explode on us later. If an error
1502  * occurs or there is insufficient memory for the filter a negative
1503  * errno code is returned. On success the return is zero.
1504  */
1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507         struct bpf_prog *prog = __get_filter(fprog, sk);
1508         int err;
1509
1510         if (IS_ERR(prog))
1511                 return PTR_ERR(prog);
1512
1513         err = __sk_attach_prog(prog, sk);
1514         if (err < 0) {
1515                 __bpf_prog_release(prog);
1516                 return err;
1517         }
1518
1519         return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522
1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525         struct bpf_prog *prog = __get_filter(fprog, sk);
1526         int err;
1527
1528         if (IS_ERR(prog))
1529                 return PTR_ERR(prog);
1530
1531         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532                 err = -ENOMEM;
1533         else
1534                 err = reuseport_attach_prog(sk, prog);
1535
1536         if (err)
1537                 __bpf_prog_release(prog);
1538
1539         return err;
1540 }
1541
1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545                 return ERR_PTR(-EPERM);
1546
1547         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549
1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552         struct bpf_prog *prog = __get_bpf(ufd, sk);
1553         int err;
1554
1555         if (IS_ERR(prog))
1556                 return PTR_ERR(prog);
1557
1558         err = __sk_attach_prog(prog, sk);
1559         if (err < 0) {
1560                 bpf_prog_put(prog);
1561                 return err;
1562         }
1563
1564         return 0;
1565 }
1566
1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569         struct bpf_prog *prog;
1570         int err;
1571
1572         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573                 return -EPERM;
1574
1575         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576         if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1577                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578         if (IS_ERR(prog))
1579                 return PTR_ERR(prog);
1580
1581         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583                  * bpf prog (e.g. sockmap).  It depends on the
1584                  * limitation imposed by bpf_prog_load().
1585                  * Hence, sysctl_optmem_max is not checked.
1586                  */
1587                 if ((sk->sk_type != SOCK_STREAM &&
1588                      sk->sk_type != SOCK_DGRAM) ||
1589                     (sk->sk_protocol != IPPROTO_UDP &&
1590                      sk->sk_protocol != IPPROTO_TCP) ||
1591                     (sk->sk_family != AF_INET &&
1592                      sk->sk_family != AF_INET6)) {
1593                         err = -ENOTSUPP;
1594                         goto err_prog_put;
1595                 }
1596         } else {
1597                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1598                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599                         err = -ENOMEM;
1600                         goto err_prog_put;
1601                 }
1602         }
1603
1604         err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606         if (err)
1607                 bpf_prog_put(prog);
1608
1609         return err;
1610 }
1611
1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614         if (!prog)
1615                 return;
1616
1617         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618                 bpf_prog_put(prog);
1619         else
1620                 bpf_prog_destroy(prog);
1621 }
1622
1623 struct bpf_scratchpad {
1624         union {
1625                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626                 u8     buff[MAX_BPF_STACK];
1627         };
1628 };
1629
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631
1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633                                           unsigned int write_len)
1634 {
1635         return skb_ensure_writable(skb, write_len);
1636 }
1637
1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639                                         unsigned int write_len)
1640 {
1641         int err = __bpf_try_make_writable(skb, write_len);
1642
1643         bpf_compute_data_pointers(skb);
1644         return err;
1645 }
1646
1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649         return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651
1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654         if (skb_at_tc_ingress(skb))
1655                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657
1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660         if (skb_at_tc_ingress(skb))
1661                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663
1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665            const void *, from, u32, len, u64, flags)
1666 {
1667         void *ptr;
1668
1669         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670                 return -EINVAL;
1671         if (unlikely(offset > 0xffff))
1672                 return -EFAULT;
1673         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674                 return -EFAULT;
1675
1676         ptr = skb->data + offset;
1677         if (flags & BPF_F_RECOMPUTE_CSUM)
1678                 __skb_postpull_rcsum(skb, ptr, len, offset);
1679
1680         memcpy(ptr, from, len);
1681
1682         if (flags & BPF_F_RECOMPUTE_CSUM)
1683                 __skb_postpush_rcsum(skb, ptr, len, offset);
1684         if (flags & BPF_F_INVALIDATE_HASH)
1685                 skb_clear_hash(skb);
1686
1687         return 0;
1688 }
1689
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691         .func           = bpf_skb_store_bytes,
1692         .gpl_only       = false,
1693         .ret_type       = RET_INTEGER,
1694         .arg1_type      = ARG_PTR_TO_CTX,
1695         .arg2_type      = ARG_ANYTHING,
1696         .arg3_type      = ARG_PTR_TO_MEM,
1697         .arg4_type      = ARG_CONST_SIZE,
1698         .arg5_type      = ARG_ANYTHING,
1699 };
1700
1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702            void *, to, u32, len)
1703 {
1704         void *ptr;
1705
1706         if (unlikely(offset > 0xffff))
1707                 goto err_clear;
1708
1709         ptr = skb_header_pointer(skb, offset, len, to);
1710         if (unlikely(!ptr))
1711                 goto err_clear;
1712         if (ptr != to)
1713                 memcpy(to, ptr, len);
1714
1715         return 0;
1716 err_clear:
1717         memset(to, 0, len);
1718         return -EFAULT;
1719 }
1720
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722         .func           = bpf_skb_load_bytes,
1723         .gpl_only       = false,
1724         .ret_type       = RET_INTEGER,
1725         .arg1_type      = ARG_PTR_TO_CTX,
1726         .arg2_type      = ARG_ANYTHING,
1727         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1728         .arg4_type      = ARG_CONST_SIZE,
1729 };
1730
1731 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732            const struct bpf_flow_dissector *, ctx, u32, offset,
1733            void *, to, u32, len)
1734 {
1735         void *ptr;
1736
1737         if (unlikely(offset > 0xffff))
1738                 goto err_clear;
1739
1740         if (unlikely(!ctx->skb))
1741                 goto err_clear;
1742
1743         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744         if (unlikely(!ptr))
1745                 goto err_clear;
1746         if (ptr != to)
1747                 memcpy(to, ptr, len);
1748
1749         return 0;
1750 err_clear:
1751         memset(to, 0, len);
1752         return -EFAULT;
1753 }
1754
1755 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756         .func           = bpf_flow_dissector_load_bytes,
1757         .gpl_only       = false,
1758         .ret_type       = RET_INTEGER,
1759         .arg1_type      = ARG_PTR_TO_CTX,
1760         .arg2_type      = ARG_ANYTHING,
1761         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1762         .arg4_type      = ARG_CONST_SIZE,
1763 };
1764
1765 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766            u32, offset, void *, to, u32, len, u32, start_header)
1767 {
1768         u8 *end = skb_tail_pointer(skb);
1769         u8 *net = skb_network_header(skb);
1770         u8 *mac = skb_mac_header(skb);
1771         u8 *ptr;
1772
1773         if (unlikely(offset > 0xffff || len > (end - mac)))
1774                 goto err_clear;
1775
1776         switch (start_header) {
1777         case BPF_HDR_START_MAC:
1778                 ptr = mac + offset;
1779                 break;
1780         case BPF_HDR_START_NET:
1781                 ptr = net + offset;
1782                 break;
1783         default:
1784                 goto err_clear;
1785         }
1786
1787         if (likely(ptr >= mac && ptr + len <= end)) {
1788                 memcpy(to, ptr, len);
1789                 return 0;
1790         }
1791
1792 err_clear:
1793         memset(to, 0, len);
1794         return -EFAULT;
1795 }
1796
1797 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798         .func           = bpf_skb_load_bytes_relative,
1799         .gpl_only       = false,
1800         .ret_type       = RET_INTEGER,
1801         .arg1_type      = ARG_PTR_TO_CTX,
1802         .arg2_type      = ARG_ANYTHING,
1803         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1804         .arg4_type      = ARG_CONST_SIZE,
1805         .arg5_type      = ARG_ANYTHING,
1806 };
1807
1808 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809 {
1810         /* Idea is the following: should the needed direct read/write
1811          * test fail during runtime, we can pull in more data and redo
1812          * again, since implicitly, we invalidate previous checks here.
1813          *
1814          * Or, since we know how much we need to make read/writeable,
1815          * this can be done once at the program beginning for direct
1816          * access case. By this we overcome limitations of only current
1817          * headroom being accessible.
1818          */
1819         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823         .func           = bpf_skb_pull_data,
1824         .gpl_only       = false,
1825         .ret_type       = RET_INTEGER,
1826         .arg1_type      = ARG_PTR_TO_CTX,
1827         .arg2_type      = ARG_ANYTHING,
1828 };
1829
1830 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831 {
1832         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833 }
1834
1835 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836         .func           = bpf_sk_fullsock,
1837         .gpl_only       = false,
1838         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1839         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1840 };
1841
1842 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843                                            unsigned int write_len)
1844 {
1845         int err = __bpf_try_make_writable(skb, write_len);
1846
1847         bpf_compute_data_end_sk_skb(skb);
1848         return err;
1849 }
1850
1851 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853         /* Idea is the following: should the needed direct read/write
1854          * test fail during runtime, we can pull in more data and redo
1855          * again, since implicitly, we invalidate previous checks here.
1856          *
1857          * Or, since we know how much we need to make read/writeable,
1858          * this can be done once at the program beginning for direct
1859          * access case. By this we overcome limitations of only current
1860          * headroom being accessible.
1861          */
1862         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864
1865 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866         .func           = sk_skb_pull_data,
1867         .gpl_only       = false,
1868         .ret_type       = RET_INTEGER,
1869         .arg1_type      = ARG_PTR_TO_CTX,
1870         .arg2_type      = ARG_ANYTHING,
1871 };
1872
1873 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874            u64, from, u64, to, u64, flags)
1875 {
1876         __sum16 *ptr;
1877
1878         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879                 return -EINVAL;
1880         if (unlikely(offset > 0xffff || offset & 1))
1881                 return -EFAULT;
1882         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883                 return -EFAULT;
1884
1885         ptr = (__sum16 *)(skb->data + offset);
1886         switch (flags & BPF_F_HDR_FIELD_MASK) {
1887         case 0:
1888                 if (unlikely(from != 0))
1889                         return -EINVAL;
1890
1891                 csum_replace_by_diff(ptr, to);
1892                 break;
1893         case 2:
1894                 csum_replace2(ptr, from, to);
1895                 break;
1896         case 4:
1897                 csum_replace4(ptr, from, to);
1898                 break;
1899         default:
1900                 return -EINVAL;
1901         }
1902
1903         return 0;
1904 }
1905
1906 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907         .func           = bpf_l3_csum_replace,
1908         .gpl_only       = false,
1909         .ret_type       = RET_INTEGER,
1910         .arg1_type      = ARG_PTR_TO_CTX,
1911         .arg2_type      = ARG_ANYTHING,
1912         .arg3_type      = ARG_ANYTHING,
1913         .arg4_type      = ARG_ANYTHING,
1914         .arg5_type      = ARG_ANYTHING,
1915 };
1916
1917 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918            u64, from, u64, to, u64, flags)
1919 {
1920         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923         __sum16 *ptr;
1924
1925         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927                 return -EINVAL;
1928         if (unlikely(offset > 0xffff || offset & 1))
1929                 return -EFAULT;
1930         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931                 return -EFAULT;
1932
1933         ptr = (__sum16 *)(skb->data + offset);
1934         if (is_mmzero && !do_mforce && !*ptr)
1935                 return 0;
1936
1937         switch (flags & BPF_F_HDR_FIELD_MASK) {
1938         case 0:
1939                 if (unlikely(from != 0))
1940                         return -EINVAL;
1941
1942                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943                 break;
1944         case 2:
1945                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946                 break;
1947         case 4:
1948                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949                 break;
1950         default:
1951                 return -EINVAL;
1952         }
1953
1954         if (is_mmzero && !*ptr)
1955                 *ptr = CSUM_MANGLED_0;
1956         return 0;
1957 }
1958
1959 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960         .func           = bpf_l4_csum_replace,
1961         .gpl_only       = false,
1962         .ret_type       = RET_INTEGER,
1963         .arg1_type      = ARG_PTR_TO_CTX,
1964         .arg2_type      = ARG_ANYTHING,
1965         .arg3_type      = ARG_ANYTHING,
1966         .arg4_type      = ARG_ANYTHING,
1967         .arg5_type      = ARG_ANYTHING,
1968 };
1969
1970 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971            __be32 *, to, u32, to_size, __wsum, seed)
1972 {
1973         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974         u32 diff_size = from_size + to_size;
1975         int i, j = 0;
1976
1977         /* This is quite flexible, some examples:
1978          *
1979          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1980          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1981          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1982          *
1983          * Even for diffing, from_size and to_size don't need to be equal.
1984          */
1985         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986                      diff_size > sizeof(sp->diff)))
1987                 return -EINVAL;
1988
1989         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990                 sp->diff[j] = ~from[i];
1991         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1992                 sp->diff[j] = to[i];
1993
1994         return csum_partial(sp->diff, diff_size, seed);
1995 }
1996
1997 static const struct bpf_func_proto bpf_csum_diff_proto = {
1998         .func           = bpf_csum_diff,
1999         .gpl_only       = false,
2000         .pkt_access     = true,
2001         .ret_type       = RET_INTEGER,
2002         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2003         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2004         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2005         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2006         .arg5_type      = ARG_ANYTHING,
2007 };
2008
2009 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010 {
2011         /* The interface is to be used in combination with bpf_csum_diff()
2012          * for direct packet writes. csum rotation for alignment as well
2013          * as emulating csum_sub() can be done from the eBPF program.
2014          */
2015         if (skb->ip_summed == CHECKSUM_COMPLETE)
2016                 return (skb->csum = csum_add(skb->csum, csum));
2017
2018         return -ENOTSUPP;
2019 }
2020
2021 static const struct bpf_func_proto bpf_csum_update_proto = {
2022         .func           = bpf_csum_update,
2023         .gpl_only       = false,
2024         .ret_type       = RET_INTEGER,
2025         .arg1_type      = ARG_PTR_TO_CTX,
2026         .arg2_type      = ARG_ANYTHING,
2027 };
2028
2029 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030 {
2031         return dev_forward_skb(dev, skb);
2032 }
2033
2034 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035                                       struct sk_buff *skb)
2036 {
2037         int ret = ____dev_forward_skb(dev, skb);
2038
2039         if (likely(!ret)) {
2040                 skb->dev = dev;
2041                 ret = netif_rx(skb);
2042         }
2043
2044         return ret;
2045 }
2046
2047 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048 {
2049         int ret;
2050
2051         if (dev_xmit_recursion()) {
2052                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053                 kfree_skb(skb);
2054                 return -ENETDOWN;
2055         }
2056
2057         skb->dev = dev;
2058
2059         dev_xmit_recursion_inc();
2060         ret = dev_queue_xmit(skb);
2061         dev_xmit_recursion_dec();
2062
2063         return ret;
2064 }
2065
2066 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2067                                  u32 flags)
2068 {
2069         unsigned int mlen = skb_network_offset(skb);
2070
2071         if (mlen) {
2072                 __skb_pull(skb, mlen);
2073
2074                 /* At ingress, the mac header has already been pulled once.
2075                  * At egress, skb_pospull_rcsum has to be done in case that
2076                  * the skb is originated from ingress (i.e. a forwarded skb)
2077                  * to ensure that rcsum starts at net header.
2078                  */
2079                 if (!skb_at_tc_ingress(skb))
2080                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2081         }
2082         skb_pop_mac_header(skb);
2083         skb_reset_mac_len(skb);
2084         return flags & BPF_F_INGRESS ?
2085                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2086 }
2087
2088 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2089                                  u32 flags)
2090 {
2091         /* Verify that a link layer header is carried */
2092         if (unlikely(skb->mac_header >= skb->network_header)) {
2093                 kfree_skb(skb);
2094                 return -ERANGE;
2095         }
2096
2097         bpf_push_mac_rcsum(skb);
2098         return flags & BPF_F_INGRESS ?
2099                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2100 }
2101
2102 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2103                           u32 flags)
2104 {
2105         if (dev_is_mac_header_xmit(dev))
2106                 return __bpf_redirect_common(skb, dev, flags);
2107         else
2108                 return __bpf_redirect_no_mac(skb, dev, flags);
2109 }
2110
2111 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2112 {
2113         struct net_device *dev;
2114         struct sk_buff *clone;
2115         int ret;
2116
2117         if (unlikely(flags & ~(BPF_F_INGRESS)))
2118                 return -EINVAL;
2119
2120         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2121         if (unlikely(!dev))
2122                 return -EINVAL;
2123
2124         clone = skb_clone(skb, GFP_ATOMIC);
2125         if (unlikely(!clone))
2126                 return -ENOMEM;
2127
2128         /* For direct write, we need to keep the invariant that the skbs
2129          * we're dealing with need to be uncloned. Should uncloning fail
2130          * here, we need to free the just generated clone to unclone once
2131          * again.
2132          */
2133         ret = bpf_try_make_head_writable(skb);
2134         if (unlikely(ret)) {
2135                 kfree_skb(clone);
2136                 return -ENOMEM;
2137         }
2138
2139         return __bpf_redirect(clone, dev, flags);
2140 }
2141
2142 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2143         .func           = bpf_clone_redirect,
2144         .gpl_only       = false,
2145         .ret_type       = RET_INTEGER,
2146         .arg1_type      = ARG_PTR_TO_CTX,
2147         .arg2_type      = ARG_ANYTHING,
2148         .arg3_type      = ARG_ANYTHING,
2149 };
2150
2151 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2152 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2153
2154 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2155 {
2156         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2157
2158         if (unlikely(flags & ~(BPF_F_INGRESS)))
2159                 return TC_ACT_SHOT;
2160
2161         ri->flags = flags;
2162         ri->tgt_index = ifindex;
2163
2164         return TC_ACT_REDIRECT;
2165 }
2166
2167 int skb_do_redirect(struct sk_buff *skb)
2168 {
2169         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2170         struct net_device *dev;
2171
2172         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2173         ri->tgt_index = 0;
2174         if (unlikely(!dev)) {
2175                 kfree_skb(skb);
2176                 return -EINVAL;
2177         }
2178
2179         return __bpf_redirect(skb, dev, ri->flags);
2180 }
2181
2182 static const struct bpf_func_proto bpf_redirect_proto = {
2183         .func           = bpf_redirect,
2184         .gpl_only       = false,
2185         .ret_type       = RET_INTEGER,
2186         .arg1_type      = ARG_ANYTHING,
2187         .arg2_type      = ARG_ANYTHING,
2188 };
2189
2190 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2191 {
2192         msg->apply_bytes = bytes;
2193         return 0;
2194 }
2195
2196 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2197         .func           = bpf_msg_apply_bytes,
2198         .gpl_only       = false,
2199         .ret_type       = RET_INTEGER,
2200         .arg1_type      = ARG_PTR_TO_CTX,
2201         .arg2_type      = ARG_ANYTHING,
2202 };
2203
2204 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2205 {
2206         msg->cork_bytes = bytes;
2207         return 0;
2208 }
2209
2210 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2211         .func           = bpf_msg_cork_bytes,
2212         .gpl_only       = false,
2213         .ret_type       = RET_INTEGER,
2214         .arg1_type      = ARG_PTR_TO_CTX,
2215         .arg2_type      = ARG_ANYTHING,
2216 };
2217
2218 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2219            u32, end, u64, flags)
2220 {
2221         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2222         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2223         struct scatterlist *sge;
2224         u8 *raw, *to, *from;
2225         struct page *page;
2226
2227         if (unlikely(flags || end <= start))
2228                 return -EINVAL;
2229
2230         /* First find the starting scatterlist element */
2231         i = msg->sg.start;
2232         do {
2233                 len = sk_msg_elem(msg, i)->length;
2234                 if (start < offset + len)
2235                         break;
2236                 offset += len;
2237                 sk_msg_iter_var_next(i);
2238         } while (i != msg->sg.end);
2239
2240         if (unlikely(start >= offset + len))
2241                 return -EINVAL;
2242
2243         first_sge = i;
2244         /* The start may point into the sg element so we need to also
2245          * account for the headroom.
2246          */
2247         bytes_sg_total = start - offset + bytes;
2248         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2249                 goto out;
2250
2251         /* At this point we need to linearize multiple scatterlist
2252          * elements or a single shared page. Either way we need to
2253          * copy into a linear buffer exclusively owned by BPF. Then
2254          * place the buffer in the scatterlist and fixup the original
2255          * entries by removing the entries now in the linear buffer
2256          * and shifting the remaining entries. For now we do not try
2257          * to copy partial entries to avoid complexity of running out
2258          * of sg_entry slots. The downside is reading a single byte
2259          * will copy the entire sg entry.
2260          */
2261         do {
2262                 copy += sk_msg_elem(msg, i)->length;
2263                 sk_msg_iter_var_next(i);
2264                 if (bytes_sg_total <= copy)
2265                         break;
2266         } while (i != msg->sg.end);
2267         last_sge = i;
2268
2269         if (unlikely(bytes_sg_total > copy))
2270                 return -EINVAL;
2271
2272         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2273                            get_order(copy));
2274         if (unlikely(!page))
2275                 return -ENOMEM;
2276
2277         raw = page_address(page);
2278         i = first_sge;
2279         do {
2280                 sge = sk_msg_elem(msg, i);
2281                 from = sg_virt(sge);
2282                 len = sge->length;
2283                 to = raw + poffset;
2284
2285                 memcpy(to, from, len);
2286                 poffset += len;
2287                 sge->length = 0;
2288                 put_page(sg_page(sge));
2289
2290                 sk_msg_iter_var_next(i);
2291         } while (i != last_sge);
2292
2293         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2294
2295         /* To repair sg ring we need to shift entries. If we only
2296          * had a single entry though we can just replace it and
2297          * be done. Otherwise walk the ring and shift the entries.
2298          */
2299         WARN_ON_ONCE(last_sge == first_sge);
2300         shift = last_sge > first_sge ?
2301                 last_sge - first_sge - 1 :
2302                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2303         if (!shift)
2304                 goto out;
2305
2306         i = first_sge;
2307         sk_msg_iter_var_next(i);
2308         do {
2309                 u32 move_from;
2310
2311                 if (i + shift >= NR_MSG_FRAG_IDS)
2312                         move_from = i + shift - NR_MSG_FRAG_IDS;
2313                 else
2314                         move_from = i + shift;
2315                 if (move_from == msg->sg.end)
2316                         break;
2317
2318                 msg->sg.data[i] = msg->sg.data[move_from];
2319                 msg->sg.data[move_from].length = 0;
2320                 msg->sg.data[move_from].page_link = 0;
2321                 msg->sg.data[move_from].offset = 0;
2322                 sk_msg_iter_var_next(i);
2323         } while (1);
2324
2325         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2326                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2327                       msg->sg.end - shift;
2328 out:
2329         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2330         msg->data_end = msg->data + bytes;
2331         return 0;
2332 }
2333
2334 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2335         .func           = bpf_msg_pull_data,
2336         .gpl_only       = false,
2337         .ret_type       = RET_INTEGER,
2338         .arg1_type      = ARG_PTR_TO_CTX,
2339         .arg2_type      = ARG_ANYTHING,
2340         .arg3_type      = ARG_ANYTHING,
2341         .arg4_type      = ARG_ANYTHING,
2342 };
2343
2344 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2345            u32, len, u64, flags)
2346 {
2347         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2348         u32 new, i = 0, l, space, copy = 0, offset = 0;
2349         u8 *raw, *to, *from;
2350         struct page *page;
2351
2352         if (unlikely(flags))
2353                 return -EINVAL;
2354
2355         /* First find the starting scatterlist element */
2356         i = msg->sg.start;
2357         do {
2358                 l = sk_msg_elem(msg, i)->length;
2359
2360                 if (start < offset + l)
2361                         break;
2362                 offset += l;
2363                 sk_msg_iter_var_next(i);
2364         } while (i != msg->sg.end);
2365
2366         if (start >= offset + l)
2367                 return -EINVAL;
2368
2369         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2370
2371         /* If no space available will fallback to copy, we need at
2372          * least one scatterlist elem available to push data into
2373          * when start aligns to the beginning of an element or two
2374          * when it falls inside an element. We handle the start equals
2375          * offset case because its the common case for inserting a
2376          * header.
2377          */
2378         if (!space || (space == 1 && start != offset))
2379                 copy = msg->sg.data[i].length;
2380
2381         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2382                            get_order(copy + len));
2383         if (unlikely(!page))
2384                 return -ENOMEM;
2385
2386         if (copy) {
2387                 int front, back;
2388
2389                 raw = page_address(page);
2390
2391                 psge = sk_msg_elem(msg, i);
2392                 front = start - offset;
2393                 back = psge->length - front;
2394                 from = sg_virt(psge);
2395
2396                 if (front)
2397                         memcpy(raw, from, front);
2398
2399                 if (back) {
2400                         from += front;
2401                         to = raw + front + len;
2402
2403                         memcpy(to, from, back);
2404                 }
2405
2406                 put_page(sg_page(psge));
2407         } else if (start - offset) {
2408                 psge = sk_msg_elem(msg, i);
2409                 rsge = sk_msg_elem_cpy(msg, i);
2410
2411                 psge->length = start - offset;
2412                 rsge.length -= psge->length;
2413                 rsge.offset += start;
2414
2415                 sk_msg_iter_var_next(i);
2416                 sg_unmark_end(psge);
2417                 sk_msg_iter_next(msg, end);
2418         }
2419
2420         /* Slot(s) to place newly allocated data */
2421         new = i;
2422
2423         /* Shift one or two slots as needed */
2424         if (!copy) {
2425                 sge = sk_msg_elem_cpy(msg, i);
2426
2427                 sk_msg_iter_var_next(i);
2428                 sg_unmark_end(&sge);
2429                 sk_msg_iter_next(msg, end);
2430
2431                 nsge = sk_msg_elem_cpy(msg, i);
2432                 if (rsge.length) {
2433                         sk_msg_iter_var_next(i);
2434                         nnsge = sk_msg_elem_cpy(msg, i);
2435                 }
2436
2437                 while (i != msg->sg.end) {
2438                         msg->sg.data[i] = sge;
2439                         sge = nsge;
2440                         sk_msg_iter_var_next(i);
2441                         if (rsge.length) {
2442                                 nsge = nnsge;
2443                                 nnsge = sk_msg_elem_cpy(msg, i);
2444                         } else {
2445                                 nsge = sk_msg_elem_cpy(msg, i);
2446                         }
2447                 }
2448         }
2449
2450         /* Place newly allocated data buffer */
2451         sk_mem_charge(msg->sk, len);
2452         msg->sg.size += len;
2453         __clear_bit(new, &msg->sg.copy);
2454         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2455         if (rsge.length) {
2456                 get_page(sg_page(&rsge));
2457                 sk_msg_iter_var_next(new);
2458                 msg->sg.data[new] = rsge;
2459         }
2460
2461         sk_msg_compute_data_pointers(msg);
2462         return 0;
2463 }
2464
2465 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2466         .func           = bpf_msg_push_data,
2467         .gpl_only       = false,
2468         .ret_type       = RET_INTEGER,
2469         .arg1_type      = ARG_PTR_TO_CTX,
2470         .arg2_type      = ARG_ANYTHING,
2471         .arg3_type      = ARG_ANYTHING,
2472         .arg4_type      = ARG_ANYTHING,
2473 };
2474
2475 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2476 {
2477         int prev;
2478
2479         do {
2480                 prev = i;
2481                 sk_msg_iter_var_next(i);
2482                 msg->sg.data[prev] = msg->sg.data[i];
2483         } while (i != msg->sg.end);
2484
2485         sk_msg_iter_prev(msg, end);
2486 }
2487
2488 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2489 {
2490         struct scatterlist tmp, sge;
2491
2492         sk_msg_iter_next(msg, end);
2493         sge = sk_msg_elem_cpy(msg, i);
2494         sk_msg_iter_var_next(i);
2495         tmp = sk_msg_elem_cpy(msg, i);
2496
2497         while (i != msg->sg.end) {
2498                 msg->sg.data[i] = sge;
2499                 sk_msg_iter_var_next(i);
2500                 sge = tmp;
2501                 tmp = sk_msg_elem_cpy(msg, i);
2502         }
2503 }
2504
2505 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2506            u32, len, u64, flags)
2507 {
2508         u32 i = 0, l, space, offset = 0;
2509         u64 last = start + len;
2510         int pop;
2511
2512         if (unlikely(flags))
2513                 return -EINVAL;
2514
2515         /* First find the starting scatterlist element */
2516         i = msg->sg.start;
2517         do {
2518                 l = sk_msg_elem(msg, i)->length;
2519
2520                 if (start < offset + l)
2521                         break;
2522                 offset += l;
2523                 sk_msg_iter_var_next(i);
2524         } while (i != msg->sg.end);
2525
2526         /* Bounds checks: start and pop must be inside message */
2527         if (start >= offset + l || last >= msg->sg.size)
2528                 return -EINVAL;
2529
2530         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2531
2532         pop = len;
2533         /* --------------| offset
2534          * -| start      |-------- len -------|
2535          *
2536          *  |----- a ----|-------- pop -------|----- b ----|
2537          *  |______________________________________________| length
2538          *
2539          *
2540          * a:   region at front of scatter element to save
2541          * b:   region at back of scatter element to save when length > A + pop
2542          * pop: region to pop from element, same as input 'pop' here will be
2543          *      decremented below per iteration.
2544          *
2545          * Two top-level cases to handle when start != offset, first B is non
2546          * zero and second B is zero corresponding to when a pop includes more
2547          * than one element.
2548          *
2549          * Then if B is non-zero AND there is no space allocate space and
2550          * compact A, B regions into page. If there is space shift ring to
2551          * the rigth free'ing the next element in ring to place B, leaving
2552          * A untouched except to reduce length.
2553          */
2554         if (start != offset) {
2555                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2556                 int a = start;
2557                 int b = sge->length - pop - a;
2558
2559                 sk_msg_iter_var_next(i);
2560
2561                 if (pop < sge->length - a) {
2562                         if (space) {
2563                                 sge->length = a;
2564                                 sk_msg_shift_right(msg, i);
2565                                 nsge = sk_msg_elem(msg, i);
2566                                 get_page(sg_page(sge));
2567                                 sg_set_page(nsge,
2568                                             sg_page(sge),
2569                                             b, sge->offset + pop + a);
2570                         } else {
2571                                 struct page *page, *orig;
2572                                 u8 *to, *from;
2573
2574                                 page = alloc_pages(__GFP_NOWARN |
2575                                                    __GFP_COMP   | GFP_ATOMIC,
2576                                                    get_order(a + b));
2577                                 if (unlikely(!page))
2578                                         return -ENOMEM;
2579
2580                                 sge->length = a;
2581                                 orig = sg_page(sge);
2582                                 from = sg_virt(sge);
2583                                 to = page_address(page);
2584                                 memcpy(to, from, a);
2585                                 memcpy(to + a, from + a + pop, b);
2586                                 sg_set_page(sge, page, a + b, 0);
2587                                 put_page(orig);
2588                         }
2589                         pop = 0;
2590                 } else if (pop >= sge->length - a) {
2591                         sge->length = a;
2592                         pop -= (sge->length - a);
2593                 }
2594         }
2595
2596         /* From above the current layout _must_ be as follows,
2597          *
2598          * -| offset
2599          * -| start
2600          *
2601          *  |---- pop ---|---------------- b ------------|
2602          *  |____________________________________________| length
2603          *
2604          * Offset and start of the current msg elem are equal because in the
2605          * previous case we handled offset != start and either consumed the
2606          * entire element and advanced to the next element OR pop == 0.
2607          *
2608          * Two cases to handle here are first pop is less than the length
2609          * leaving some remainder b above. Simply adjust the element's layout
2610          * in this case. Or pop >= length of the element so that b = 0. In this
2611          * case advance to next element decrementing pop.
2612          */
2613         while (pop) {
2614                 struct scatterlist *sge = sk_msg_elem(msg, i);
2615
2616                 if (pop < sge->length) {
2617                         sge->length -= pop;
2618                         sge->offset += pop;
2619                         pop = 0;
2620                 } else {
2621                         pop -= sge->length;
2622                         sk_msg_shift_left(msg, i);
2623                 }
2624                 sk_msg_iter_var_next(i);
2625         }
2626
2627         sk_mem_uncharge(msg->sk, len - pop);
2628         msg->sg.size -= (len - pop);
2629         sk_msg_compute_data_pointers(msg);
2630         return 0;
2631 }
2632
2633 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2634         .func           = bpf_msg_pop_data,
2635         .gpl_only       = false,
2636         .ret_type       = RET_INTEGER,
2637         .arg1_type      = ARG_PTR_TO_CTX,
2638         .arg2_type      = ARG_ANYTHING,
2639         .arg3_type      = ARG_ANYTHING,
2640         .arg4_type      = ARG_ANYTHING,
2641 };
2642
2643 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2644 {
2645         return task_get_classid(skb);
2646 }
2647
2648 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2649         .func           = bpf_get_cgroup_classid,
2650         .gpl_only       = false,
2651         .ret_type       = RET_INTEGER,
2652         .arg1_type      = ARG_PTR_TO_CTX,
2653 };
2654
2655 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2656 {
2657         return dst_tclassid(skb);
2658 }
2659
2660 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2661         .func           = bpf_get_route_realm,
2662         .gpl_only       = false,
2663         .ret_type       = RET_INTEGER,
2664         .arg1_type      = ARG_PTR_TO_CTX,
2665 };
2666
2667 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2668 {
2669         /* If skb_clear_hash() was called due to mangling, we can
2670          * trigger SW recalculation here. Later access to hash
2671          * can then use the inline skb->hash via context directly
2672          * instead of calling this helper again.
2673          */
2674         return skb_get_hash(skb);
2675 }
2676
2677 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2678         .func           = bpf_get_hash_recalc,
2679         .gpl_only       = false,
2680         .ret_type       = RET_INTEGER,
2681         .arg1_type      = ARG_PTR_TO_CTX,
2682 };
2683
2684 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2685 {
2686         /* After all direct packet write, this can be used once for
2687          * triggering a lazy recalc on next skb_get_hash() invocation.
2688          */
2689         skb_clear_hash(skb);
2690         return 0;
2691 }
2692
2693 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2694         .func           = bpf_set_hash_invalid,
2695         .gpl_only       = false,
2696         .ret_type       = RET_INTEGER,
2697         .arg1_type      = ARG_PTR_TO_CTX,
2698 };
2699
2700 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2701 {
2702         /* Set user specified hash as L4(+), so that it gets returned
2703          * on skb_get_hash() call unless BPF prog later on triggers a
2704          * skb_clear_hash().
2705          */
2706         __skb_set_sw_hash(skb, hash, true);
2707         return 0;
2708 }
2709
2710 static const struct bpf_func_proto bpf_set_hash_proto = {
2711         .func           = bpf_set_hash,
2712         .gpl_only       = false,
2713         .ret_type       = RET_INTEGER,
2714         .arg1_type      = ARG_PTR_TO_CTX,
2715         .arg2_type      = ARG_ANYTHING,
2716 };
2717
2718 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2719            u16, vlan_tci)
2720 {
2721         int ret;
2722
2723         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2724                      vlan_proto != htons(ETH_P_8021AD)))
2725                 vlan_proto = htons(ETH_P_8021Q);
2726
2727         bpf_push_mac_rcsum(skb);
2728         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2729         bpf_pull_mac_rcsum(skb);
2730
2731         bpf_compute_data_pointers(skb);
2732         return ret;
2733 }
2734
2735 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2736         .func           = bpf_skb_vlan_push,
2737         .gpl_only       = false,
2738         .ret_type       = RET_INTEGER,
2739         .arg1_type      = ARG_PTR_TO_CTX,
2740         .arg2_type      = ARG_ANYTHING,
2741         .arg3_type      = ARG_ANYTHING,
2742 };
2743
2744 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2745 {
2746         int ret;
2747
2748         bpf_push_mac_rcsum(skb);
2749         ret = skb_vlan_pop(skb);
2750         bpf_pull_mac_rcsum(skb);
2751
2752         bpf_compute_data_pointers(skb);
2753         return ret;
2754 }
2755
2756 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2757         .func           = bpf_skb_vlan_pop,
2758         .gpl_only       = false,
2759         .ret_type       = RET_INTEGER,
2760         .arg1_type      = ARG_PTR_TO_CTX,
2761 };
2762
2763 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2764 {
2765         /* Caller already did skb_cow() with len as headroom,
2766          * so no need to do it here.
2767          */
2768         skb_push(skb, len);
2769         memmove(skb->data, skb->data + len, off);
2770         memset(skb->data + off, 0, len);
2771
2772         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2773          * needed here as it does not change the skb->csum
2774          * result for checksum complete when summing over
2775          * zeroed blocks.
2776          */
2777         return 0;
2778 }
2779
2780 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2781 {
2782         /* skb_ensure_writable() is not needed here, as we're
2783          * already working on an uncloned skb.
2784          */
2785         if (unlikely(!pskb_may_pull(skb, off + len)))
2786                 return -ENOMEM;
2787
2788         skb_postpull_rcsum(skb, skb->data + off, len);
2789         memmove(skb->data + len, skb->data, off);
2790         __skb_pull(skb, len);
2791
2792         return 0;
2793 }
2794
2795 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2796 {
2797         bool trans_same = skb->transport_header == skb->network_header;
2798         int ret;
2799
2800         /* There's no need for __skb_push()/__skb_pull() pair to
2801          * get to the start of the mac header as we're guaranteed
2802          * to always start from here under eBPF.
2803          */
2804         ret = bpf_skb_generic_push(skb, off, len);
2805         if (likely(!ret)) {
2806                 skb->mac_header -= len;
2807                 skb->network_header -= len;
2808                 if (trans_same)
2809                         skb->transport_header = skb->network_header;
2810         }
2811
2812         return ret;
2813 }
2814
2815 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2816 {
2817         bool trans_same = skb->transport_header == skb->network_header;
2818         int ret;
2819
2820         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2821         ret = bpf_skb_generic_pop(skb, off, len);
2822         if (likely(!ret)) {
2823                 skb->mac_header += len;
2824                 skb->network_header += len;
2825                 if (trans_same)
2826                         skb->transport_header = skb->network_header;
2827         }
2828
2829         return ret;
2830 }
2831
2832 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2833 {
2834         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2835         u32 off = skb_mac_header_len(skb);
2836         int ret;
2837
2838         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2839                 return -ENOTSUPP;
2840
2841         ret = skb_cow(skb, len_diff);
2842         if (unlikely(ret < 0))
2843                 return ret;
2844
2845         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2846         if (unlikely(ret < 0))
2847                 return ret;
2848
2849         if (skb_is_gso(skb)) {
2850                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2851
2852                 /* SKB_GSO_TCPV4 needs to be changed into
2853                  * SKB_GSO_TCPV6.
2854                  */
2855                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2856                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2857                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2858                 }
2859
2860                 /* Due to IPv6 header, MSS needs to be downgraded. */
2861                 skb_decrease_gso_size(shinfo, len_diff);
2862                 /* Header must be checked, and gso_segs recomputed. */
2863                 shinfo->gso_type |= SKB_GSO_DODGY;
2864                 shinfo->gso_segs = 0;
2865         }
2866
2867         skb->protocol = htons(ETH_P_IPV6);
2868         skb_clear_hash(skb);
2869
2870         return 0;
2871 }
2872
2873 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2874 {
2875         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2876         u32 off = skb_mac_header_len(skb);
2877         int ret;
2878
2879         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2880                 return -ENOTSUPP;
2881
2882         ret = skb_unclone(skb, GFP_ATOMIC);
2883         if (unlikely(ret < 0))
2884                 return ret;
2885
2886         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2887         if (unlikely(ret < 0))
2888                 return ret;
2889
2890         if (skb_is_gso(skb)) {
2891                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2892
2893                 /* SKB_GSO_TCPV6 needs to be changed into
2894                  * SKB_GSO_TCPV4.
2895                  */
2896                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2897                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2898                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2899                 }
2900
2901                 /* Due to IPv4 header, MSS can be upgraded. */
2902                 skb_increase_gso_size(shinfo, len_diff);
2903                 /* Header must be checked, and gso_segs recomputed. */
2904                 shinfo->gso_type |= SKB_GSO_DODGY;
2905                 shinfo->gso_segs = 0;
2906         }
2907
2908         skb->protocol = htons(ETH_P_IP);
2909         skb_clear_hash(skb);
2910
2911         return 0;
2912 }
2913
2914 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2915 {
2916         __be16 from_proto = skb->protocol;
2917
2918         if (from_proto == htons(ETH_P_IP) &&
2919               to_proto == htons(ETH_P_IPV6))
2920                 return bpf_skb_proto_4_to_6(skb);
2921
2922         if (from_proto == htons(ETH_P_IPV6) &&
2923               to_proto == htons(ETH_P_IP))
2924                 return bpf_skb_proto_6_to_4(skb);
2925
2926         return -ENOTSUPP;
2927 }
2928
2929 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2930            u64, flags)
2931 {
2932         int ret;
2933
2934         if (unlikely(flags))
2935                 return -EINVAL;
2936
2937         /* General idea is that this helper does the basic groundwork
2938          * needed for changing the protocol, and eBPF program fills the
2939          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2940          * and other helpers, rather than passing a raw buffer here.
2941          *
2942          * The rationale is to keep this minimal and without a need to
2943          * deal with raw packet data. F.e. even if we would pass buffers
2944          * here, the program still needs to call the bpf_lX_csum_replace()
2945          * helpers anyway. Plus, this way we keep also separation of
2946          * concerns, since f.e. bpf_skb_store_bytes() should only take
2947          * care of stores.
2948          *
2949          * Currently, additional options and extension header space are
2950          * not supported, but flags register is reserved so we can adapt
2951          * that. For offloads, we mark packet as dodgy, so that headers
2952          * need to be verified first.
2953          */
2954         ret = bpf_skb_proto_xlat(skb, proto);
2955         bpf_compute_data_pointers(skb);
2956         return ret;
2957 }
2958
2959 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2960         .func           = bpf_skb_change_proto,
2961         .gpl_only       = false,
2962         .ret_type       = RET_INTEGER,
2963         .arg1_type      = ARG_PTR_TO_CTX,
2964         .arg2_type      = ARG_ANYTHING,
2965         .arg3_type      = ARG_ANYTHING,
2966 };
2967
2968 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2969 {
2970         /* We only allow a restricted subset to be changed for now. */
2971         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2972                      !skb_pkt_type_ok(pkt_type)))
2973                 return -EINVAL;
2974
2975         skb->pkt_type = pkt_type;
2976         return 0;
2977 }
2978
2979 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2980         .func           = bpf_skb_change_type,
2981         .gpl_only       = false,
2982         .ret_type       = RET_INTEGER,
2983         .arg1_type      = ARG_PTR_TO_CTX,
2984         .arg2_type      = ARG_ANYTHING,
2985 };
2986
2987 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2988 {
2989         switch (skb->protocol) {
2990         case htons(ETH_P_IP):
2991                 return sizeof(struct iphdr);
2992         case htons(ETH_P_IPV6):
2993                 return sizeof(struct ipv6hdr);
2994         default:
2995                 return ~0U;
2996         }
2997 }
2998
2999 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3000                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3001
3002 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3003                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3004                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3005                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3006                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3007                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3008
3009 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3010                             u64 flags)
3011 {
3012         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3013         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3014         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3015         unsigned int gso_type = SKB_GSO_DODGY;
3016         int ret;
3017
3018         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3019                 /* udp gso_size delineates datagrams, only allow if fixed */
3020                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3021                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3022                         return -ENOTSUPP;
3023         }
3024
3025         ret = skb_cow_head(skb, len_diff);
3026         if (unlikely(ret < 0))
3027                 return ret;
3028
3029         if (encap) {
3030                 if (skb->protocol != htons(ETH_P_IP) &&
3031                     skb->protocol != htons(ETH_P_IPV6))
3032                         return -ENOTSUPP;
3033
3034                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3035                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3036                         return -EINVAL;
3037
3038                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3039                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3040                         return -EINVAL;
3041
3042                 if (skb->encapsulation)
3043                         return -EALREADY;
3044
3045                 mac_len = skb->network_header - skb->mac_header;
3046                 inner_net = skb->network_header;
3047                 if (inner_mac_len > len_diff)
3048                         return -EINVAL;
3049                 inner_trans = skb->transport_header;
3050         }
3051
3052         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3053         if (unlikely(ret < 0))
3054                 return ret;
3055
3056         if (encap) {
3057                 skb->inner_mac_header = inner_net - inner_mac_len;
3058                 skb->inner_network_header = inner_net;
3059                 skb->inner_transport_header = inner_trans;
3060                 skb_set_inner_protocol(skb, skb->protocol);
3061
3062                 skb->encapsulation = 1;
3063                 skb_set_network_header(skb, mac_len);
3064
3065                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3066                         gso_type |= SKB_GSO_UDP_TUNNEL;
3067                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3068                         gso_type |= SKB_GSO_GRE;
3069                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3070                         gso_type |= SKB_GSO_IPXIP6;
3071                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3072                         gso_type |= SKB_GSO_IPXIP4;
3073
3074                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3075                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3076                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3077                                         sizeof(struct ipv6hdr) :
3078                                         sizeof(struct iphdr);
3079
3080                         skb_set_transport_header(skb, mac_len + nh_len);
3081                 }
3082
3083                 /* Match skb->protocol to new outer l3 protocol */
3084                 if (skb->protocol == htons(ETH_P_IP) &&
3085                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3086                         skb->protocol = htons(ETH_P_IPV6);
3087                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3088                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3089                         skb->protocol = htons(ETH_P_IP);
3090         }
3091
3092         if (skb_is_gso(skb)) {
3093                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3094
3095                 /* Due to header grow, MSS needs to be downgraded. */
3096                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3097                         skb_decrease_gso_size(shinfo, len_diff);
3098
3099                 /* Header must be checked, and gso_segs recomputed. */
3100                 shinfo->gso_type |= gso_type;
3101                 shinfo->gso_segs = 0;
3102         }
3103
3104         return 0;
3105 }
3106
3107 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3108                               u64 flags)
3109 {
3110         int ret;
3111
3112         if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3113                 return -EINVAL;
3114
3115         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3116                 /* udp gso_size delineates datagrams, only allow if fixed */
3117                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3118                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3119                         return -ENOTSUPP;
3120         }
3121
3122         ret = skb_unclone(skb, GFP_ATOMIC);
3123         if (unlikely(ret < 0))
3124                 return ret;
3125
3126         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3127         if (unlikely(ret < 0))
3128                 return ret;
3129
3130         if (skb_is_gso(skb)) {
3131                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3132
3133                 /* Due to header shrink, MSS can be upgraded. */
3134                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3135                         skb_increase_gso_size(shinfo, len_diff);
3136
3137                 /* Header must be checked, and gso_segs recomputed. */
3138                 shinfo->gso_type |= SKB_GSO_DODGY;
3139                 shinfo->gso_segs = 0;
3140         }
3141
3142         return 0;
3143 }
3144
3145 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3146 {
3147         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3148                           SKB_MAX_ALLOC;
3149 }
3150
3151 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3152            u32, mode, u64, flags)
3153 {
3154         u32 len_cur, len_diff_abs = abs(len_diff);
3155         u32 len_min = bpf_skb_net_base_len(skb);
3156         u32 len_max = __bpf_skb_max_len(skb);
3157         __be16 proto = skb->protocol;
3158         bool shrink = len_diff < 0;
3159         u32 off;
3160         int ret;
3161
3162         if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3163                 return -EINVAL;
3164         if (unlikely(len_diff_abs > 0xfffU))
3165                 return -EFAULT;
3166         if (unlikely(proto != htons(ETH_P_IP) &&
3167                      proto != htons(ETH_P_IPV6)))
3168                 return -ENOTSUPP;
3169
3170         off = skb_mac_header_len(skb);
3171         switch (mode) {
3172         case BPF_ADJ_ROOM_NET:
3173                 off += bpf_skb_net_base_len(skb);
3174                 break;
3175         case BPF_ADJ_ROOM_MAC:
3176                 break;
3177         default:
3178                 return -ENOTSUPP;
3179         }
3180
3181         len_cur = skb->len - skb_network_offset(skb);
3182         if ((shrink && (len_diff_abs >= len_cur ||
3183                         len_cur - len_diff_abs < len_min)) ||
3184             (!shrink && (skb->len + len_diff_abs > len_max &&
3185                          !skb_is_gso(skb))))
3186                 return -ENOTSUPP;
3187
3188         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3189                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3190
3191         bpf_compute_data_pointers(skb);
3192         return ret;
3193 }
3194
3195 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3196         .func           = bpf_skb_adjust_room,
3197         .gpl_only       = false,
3198         .ret_type       = RET_INTEGER,
3199         .arg1_type      = ARG_PTR_TO_CTX,
3200         .arg2_type      = ARG_ANYTHING,
3201         .arg3_type      = ARG_ANYTHING,
3202         .arg4_type      = ARG_ANYTHING,
3203 };
3204
3205 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3206 {
3207         u32 min_len = skb_network_offset(skb);
3208
3209         if (skb_transport_header_was_set(skb))
3210                 min_len = skb_transport_offset(skb);
3211         if (skb->ip_summed == CHECKSUM_PARTIAL)
3212                 min_len = skb_checksum_start_offset(skb) +
3213                           skb->csum_offset + sizeof(__sum16);
3214         return min_len;
3215 }
3216
3217 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3218 {
3219         unsigned int old_len = skb->len;
3220         int ret;
3221
3222         ret = __skb_grow_rcsum(skb, new_len);
3223         if (!ret)
3224                 memset(skb->data + old_len, 0, new_len - old_len);
3225         return ret;
3226 }
3227
3228 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3229 {
3230         return __skb_trim_rcsum(skb, new_len);
3231 }
3232
3233 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3234                                         u64 flags)
3235 {
3236         u32 max_len = __bpf_skb_max_len(skb);
3237         u32 min_len = __bpf_skb_min_len(skb);
3238         int ret;
3239
3240         if (unlikely(flags || new_len > max_len || new_len < min_len))
3241                 return -EINVAL;
3242         if (skb->encapsulation)
3243                 return -ENOTSUPP;
3244
3245         /* The basic idea of this helper is that it's performing the
3246          * needed work to either grow or trim an skb, and eBPF program
3247          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3248          * bpf_lX_csum_replace() and others rather than passing a raw
3249          * buffer here. This one is a slow path helper and intended
3250          * for replies with control messages.
3251          *
3252          * Like in bpf_skb_change_proto(), we want to keep this rather
3253          * minimal and without protocol specifics so that we are able
3254          * to separate concerns as in bpf_skb_store_bytes() should only
3255          * be the one responsible for writing buffers.
3256          *
3257          * It's really expected to be a slow path operation here for
3258          * control message replies, so we're implicitly linearizing,
3259          * uncloning and drop offloads from the skb by this.
3260          */
3261         ret = __bpf_try_make_writable(skb, skb->len);
3262         if (!ret) {
3263                 if (new_len > skb->len)
3264                         ret = bpf_skb_grow_rcsum(skb, new_len);
3265                 else if (new_len < skb->len)
3266                         ret = bpf_skb_trim_rcsum(skb, new_len);
3267                 if (!ret && skb_is_gso(skb))
3268                         skb_gso_reset(skb);
3269         }
3270         return ret;
3271 }
3272
3273 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3274            u64, flags)
3275 {
3276         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3277
3278         bpf_compute_data_pointers(skb);
3279         return ret;
3280 }
3281
3282 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3283         .func           = bpf_skb_change_tail,
3284         .gpl_only       = false,
3285         .ret_type       = RET_INTEGER,
3286         .arg1_type      = ARG_PTR_TO_CTX,
3287         .arg2_type      = ARG_ANYTHING,
3288         .arg3_type      = ARG_ANYTHING,
3289 };
3290
3291 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3292            u64, flags)
3293 {
3294         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3295
3296         bpf_compute_data_end_sk_skb(skb);
3297         return ret;
3298 }
3299
3300 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3301         .func           = sk_skb_change_tail,
3302         .gpl_only       = false,
3303         .ret_type       = RET_INTEGER,
3304         .arg1_type      = ARG_PTR_TO_CTX,
3305         .arg2_type      = ARG_ANYTHING,
3306         .arg3_type      = ARG_ANYTHING,
3307 };
3308
3309 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3310                                         u64 flags)
3311 {
3312         u32 max_len = __bpf_skb_max_len(skb);
3313         u32 new_len = skb->len + head_room;
3314         int ret;
3315
3316         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3317                      new_len < skb->len))
3318                 return -EINVAL;
3319
3320         ret = skb_cow(skb, head_room);
3321         if (likely(!ret)) {
3322                 /* Idea for this helper is that we currently only
3323                  * allow to expand on mac header. This means that
3324                  * skb->protocol network header, etc, stay as is.
3325                  * Compared to bpf_skb_change_tail(), we're more
3326                  * flexible due to not needing to linearize or
3327                  * reset GSO. Intention for this helper is to be
3328                  * used by an L3 skb that needs to push mac header
3329                  * for redirection into L2 device.
3330                  */
3331                 __skb_push(skb, head_room);
3332                 memset(skb->data, 0, head_room);
3333                 skb_reset_mac_header(skb);
3334         }
3335
3336         return ret;
3337 }
3338
3339 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3340            u64, flags)
3341 {
3342         int ret = __bpf_skb_change_head(skb, head_room, flags);
3343
3344         bpf_compute_data_pointers(skb);
3345         return ret;
3346 }
3347
3348 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3349         .func           = bpf_skb_change_head,
3350         .gpl_only       = false,
3351         .ret_type       = RET_INTEGER,
3352         .arg1_type      = ARG_PTR_TO_CTX,
3353         .arg2_type      = ARG_ANYTHING,
3354         .arg3_type      = ARG_ANYTHING,
3355 };
3356
3357 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3358            u64, flags)
3359 {
3360         int ret = __bpf_skb_change_head(skb, head_room, flags);
3361
3362         bpf_compute_data_end_sk_skb(skb);
3363         return ret;
3364 }
3365
3366 static const struct bpf_func_proto sk_skb_change_head_proto = {
3367         .func           = sk_skb_change_head,
3368         .gpl_only       = false,
3369         .ret_type       = RET_INTEGER,
3370         .arg1_type      = ARG_PTR_TO_CTX,
3371         .arg2_type      = ARG_ANYTHING,
3372         .arg3_type      = ARG_ANYTHING,
3373 };
3374 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3375 {
3376         return xdp_data_meta_unsupported(xdp) ? 0 :
3377                xdp->data - xdp->data_meta;
3378 }
3379
3380 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3381 {
3382         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3383         unsigned long metalen = xdp_get_metalen(xdp);
3384         void *data_start = xdp_frame_end + metalen;
3385         void *data = xdp->data + offset;
3386
3387         if (unlikely(data < data_start ||
3388                      data > xdp->data_end - ETH_HLEN))
3389                 return -EINVAL;
3390
3391         if (metalen)
3392                 memmove(xdp->data_meta + offset,
3393                         xdp->data_meta, metalen);
3394         xdp->data_meta += offset;
3395         xdp->data = data;
3396
3397         return 0;
3398 }
3399
3400 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3401         .func           = bpf_xdp_adjust_head,
3402         .gpl_only       = false,
3403         .ret_type       = RET_INTEGER,
3404         .arg1_type      = ARG_PTR_TO_CTX,
3405         .arg2_type      = ARG_ANYTHING,
3406 };
3407
3408 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3409 {
3410         void *data_end = xdp->data_end + offset;
3411
3412         /* only shrinking is allowed for now. */
3413         if (unlikely(offset >= 0))
3414                 return -EINVAL;
3415
3416         if (unlikely(data_end < xdp->data + ETH_HLEN))
3417                 return -EINVAL;
3418
3419         xdp->data_end = data_end;
3420
3421         return 0;
3422 }
3423
3424 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3425         .func           = bpf_xdp_adjust_tail,
3426         .gpl_only       = false,
3427         .ret_type       = RET_INTEGER,
3428         .arg1_type      = ARG_PTR_TO_CTX,
3429         .arg2_type      = ARG_ANYTHING,
3430 };
3431
3432 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3433 {
3434         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3435         void *meta = xdp->data_meta + offset;
3436         unsigned long metalen = xdp->data - meta;
3437
3438         if (xdp_data_meta_unsupported(xdp))
3439                 return -ENOTSUPP;
3440         if (unlikely(meta < xdp_frame_end ||
3441                      meta > xdp->data))
3442                 return -EINVAL;
3443         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3444                      (metalen > 32)))
3445                 return -EACCES;
3446
3447         xdp->data_meta = meta;
3448
3449         return 0;
3450 }
3451
3452 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3453         .func           = bpf_xdp_adjust_meta,
3454         .gpl_only       = false,
3455         .ret_type       = RET_INTEGER,
3456         .arg1_type      = ARG_PTR_TO_CTX,
3457         .arg2_type      = ARG_ANYTHING,
3458 };
3459
3460 static int __bpf_tx_xdp(struct net_device *dev,
3461                         struct bpf_map *map,
3462                         struct xdp_buff *xdp,
3463                         u32 index)
3464 {
3465         struct xdp_frame *xdpf;
3466         int err, sent;
3467
3468         if (!dev->netdev_ops->ndo_xdp_xmit) {
3469                 return -EOPNOTSUPP;
3470         }
3471
3472         err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3473         if (unlikely(err))
3474                 return err;
3475
3476         xdpf = convert_to_xdp_frame(xdp);
3477         if (unlikely(!xdpf))
3478                 return -EOVERFLOW;
3479
3480         sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3481         if (sent <= 0)
3482                 return sent;
3483         return 0;
3484 }
3485
3486 static noinline int
3487 xdp_do_redirect_slow(struct net_device *dev, struct xdp_buff *xdp,
3488                      struct bpf_prog *xdp_prog, struct bpf_redirect_info *ri)
3489 {
3490         struct net_device *fwd;
3491         u32 index = ri->tgt_index;
3492         int err;
3493
3494         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3495         ri->tgt_index = 0;
3496         if (unlikely(!fwd)) {
3497                 err = -EINVAL;
3498                 goto err;
3499         }
3500
3501         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3502         if (unlikely(err))
3503                 goto err;
3504
3505         _trace_xdp_redirect(dev, xdp_prog, index);
3506         return 0;
3507 err:
3508         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3509         return err;
3510 }
3511
3512 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3513                             struct bpf_map *map, struct xdp_buff *xdp)
3514 {
3515         switch (map->map_type) {
3516         case BPF_MAP_TYPE_DEVMAP:
3517         case BPF_MAP_TYPE_DEVMAP_HASH:
3518                 return dev_map_enqueue(fwd, xdp, dev_rx);
3519         case BPF_MAP_TYPE_CPUMAP:
3520                 return cpu_map_enqueue(fwd, xdp, dev_rx);
3521         case BPF_MAP_TYPE_XSKMAP:
3522                 return __xsk_map_redirect(fwd, xdp);
3523         default:
3524                 break;
3525         }
3526         return 0;
3527 }
3528
3529 void xdp_do_flush_map(void)
3530 {
3531         __dev_map_flush();
3532         __cpu_map_flush();
3533         __xsk_map_flush();
3534 }
3535 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3536
3537 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3538 {
3539         switch (map->map_type) {
3540         case BPF_MAP_TYPE_DEVMAP:
3541                 return __dev_map_lookup_elem(map, index);
3542         case BPF_MAP_TYPE_DEVMAP_HASH:
3543                 return __dev_map_hash_lookup_elem(map, index);
3544         case BPF_MAP_TYPE_CPUMAP:
3545                 return __cpu_map_lookup_elem(map, index);
3546         case BPF_MAP_TYPE_XSKMAP:
3547                 return __xsk_map_lookup_elem(map, index);
3548         default:
3549                 return NULL;
3550         }
3551 }
3552
3553 void bpf_clear_redirect_map(struct bpf_map *map)
3554 {
3555         struct bpf_redirect_info *ri;
3556         int cpu;
3557
3558         for_each_possible_cpu(cpu) {
3559                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3560                 /* Avoid polluting remote cacheline due to writes if
3561                  * not needed. Once we pass this test, we need the
3562                  * cmpxchg() to make sure it hasn't been changed in
3563                  * the meantime by remote CPU.
3564                  */
3565                 if (unlikely(READ_ONCE(ri->map) == map))
3566                         cmpxchg(&ri->map, map, NULL);
3567         }
3568 }
3569
3570 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3571                                struct bpf_prog *xdp_prog, struct bpf_map *map,
3572                                struct bpf_redirect_info *ri)
3573 {
3574         u32 index = ri->tgt_index;
3575         void *fwd = ri->tgt_value;
3576         int err;
3577
3578         ri->tgt_index = 0;
3579         ri->tgt_value = NULL;
3580         WRITE_ONCE(ri->map, NULL);
3581
3582         err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3583         if (unlikely(err))
3584                 goto err;
3585
3586         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3587         return 0;
3588 err:
3589         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3590         return err;
3591 }
3592
3593 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3594                     struct bpf_prog *xdp_prog)
3595 {
3596         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3597         struct bpf_map *map = READ_ONCE(ri->map);
3598
3599         if (likely(map))
3600                 return xdp_do_redirect_map(dev, xdp, xdp_prog, map, ri);
3601
3602         return xdp_do_redirect_slow(dev, xdp, xdp_prog, ri);
3603 }
3604 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3605
3606 static int xdp_do_generic_redirect_map(struct net_device *dev,
3607                                        struct sk_buff *skb,
3608                                        struct xdp_buff *xdp,
3609                                        struct bpf_prog *xdp_prog,
3610                                        struct bpf_map *map)
3611 {
3612         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3613         u32 index = ri->tgt_index;
3614         void *fwd = ri->tgt_value;
3615         int err = 0;
3616
3617         ri->tgt_index = 0;
3618         ri->tgt_value = NULL;
3619         WRITE_ONCE(ri->map, NULL);
3620
3621         if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3622             map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3623                 struct bpf_dtab_netdev *dst = fwd;
3624
3625                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3626                 if (unlikely(err))
3627                         goto err;
3628         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3629                 struct xdp_sock *xs = fwd;
3630
3631                 err = xsk_generic_rcv(xs, xdp);
3632                 if (err)
3633                         goto err;
3634                 consume_skb(skb);
3635         } else {
3636                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3637                 err = -EBADRQC;
3638                 goto err;
3639         }
3640
3641         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3642         return 0;
3643 err:
3644         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3645         return err;
3646 }
3647
3648 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3649                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3650 {
3651         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3652         struct bpf_map *map = READ_ONCE(ri->map);
3653         u32 index = ri->tgt_index;
3654         struct net_device *fwd;
3655         int err = 0;
3656
3657         if (map)
3658                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3659                                                    map);
3660         ri->tgt_index = 0;
3661         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3662         if (unlikely(!fwd)) {
3663                 err = -EINVAL;
3664                 goto err;
3665         }
3666
3667         err = xdp_ok_fwd_dev(fwd, skb->len);
3668         if (unlikely(err))
3669                 goto err;
3670
3671         skb->dev = fwd;
3672         _trace_xdp_redirect(dev, xdp_prog, index);
3673         generic_xdp_tx(skb, xdp_prog);
3674         return 0;
3675 err:
3676         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3677         return err;
3678 }
3679 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3680
3681 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3682 {
3683         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3684
3685         if (unlikely(flags))
3686                 return XDP_ABORTED;
3687
3688         ri->flags = flags;
3689         ri->tgt_index = ifindex;
3690         ri->tgt_value = NULL;
3691         WRITE_ONCE(ri->map, NULL);
3692
3693         return XDP_REDIRECT;
3694 }
3695
3696 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3697         .func           = bpf_xdp_redirect,
3698         .gpl_only       = false,
3699         .ret_type       = RET_INTEGER,
3700         .arg1_type      = ARG_ANYTHING,
3701         .arg2_type      = ARG_ANYTHING,
3702 };
3703
3704 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3705            u64, flags)
3706 {
3707         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3708
3709         /* Lower bits of the flags are used as return code on lookup failure */
3710         if (unlikely(flags > XDP_TX))
3711                 return XDP_ABORTED;
3712
3713         ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3714         if (unlikely(!ri->tgt_value)) {
3715                 /* If the lookup fails we want to clear out the state in the
3716                  * redirect_info struct completely, so that if an eBPF program
3717                  * performs multiple lookups, the last one always takes
3718                  * precedence.
3719                  */
3720                 WRITE_ONCE(ri->map, NULL);
3721                 return flags;
3722         }
3723
3724         ri->flags = flags;
3725         ri->tgt_index = ifindex;
3726         WRITE_ONCE(ri->map, map);
3727
3728         return XDP_REDIRECT;
3729 }
3730
3731 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3732         .func           = bpf_xdp_redirect_map,
3733         .gpl_only       = false,
3734         .ret_type       = RET_INTEGER,
3735         .arg1_type      = ARG_CONST_MAP_PTR,
3736         .arg2_type      = ARG_ANYTHING,
3737         .arg3_type      = ARG_ANYTHING,
3738 };
3739
3740 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3741                                   unsigned long off, unsigned long len)
3742 {
3743         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3744
3745         if (unlikely(!ptr))
3746                 return len;
3747         if (ptr != dst_buff)
3748                 memcpy(dst_buff, ptr, len);
3749
3750         return 0;
3751 }
3752
3753 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3754            u64, flags, void *, meta, u64, meta_size)
3755 {
3756         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3757
3758         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3759                 return -EINVAL;
3760         if (unlikely(!skb || skb_size > skb->len))
3761                 return -EFAULT;
3762
3763         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3764                                 bpf_skb_copy);
3765 }
3766
3767 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3768         .func           = bpf_skb_event_output,
3769         .gpl_only       = true,
3770         .ret_type       = RET_INTEGER,
3771         .arg1_type      = ARG_PTR_TO_CTX,
3772         .arg2_type      = ARG_CONST_MAP_PTR,
3773         .arg3_type      = ARG_ANYTHING,
3774         .arg4_type      = ARG_PTR_TO_MEM,
3775         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3776 };
3777
3778 static int bpf_skb_output_btf_ids[5];
3779 const struct bpf_func_proto bpf_skb_output_proto = {
3780         .func           = bpf_skb_event_output,
3781         .gpl_only       = true,
3782         .ret_type       = RET_INTEGER,
3783         .arg1_type      = ARG_PTR_TO_BTF_ID,
3784         .arg2_type      = ARG_CONST_MAP_PTR,
3785         .arg3_type      = ARG_ANYTHING,
3786         .arg4_type      = ARG_PTR_TO_MEM,
3787         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3788         .btf_id         = bpf_skb_output_btf_ids,
3789 };
3790
3791 static unsigned short bpf_tunnel_key_af(u64 flags)
3792 {
3793         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3794 }
3795
3796 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3797            u32, size, u64, flags)
3798 {
3799         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3800         u8 compat[sizeof(struct bpf_tunnel_key)];
3801         void *to_orig = to;
3802         int err;
3803
3804         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3805                 err = -EINVAL;
3806                 goto err_clear;
3807         }
3808         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3809                 err = -EPROTO;
3810                 goto err_clear;
3811         }
3812         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3813                 err = -EINVAL;
3814                 switch (size) {
3815                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3816                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3817                         goto set_compat;
3818                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3819                         /* Fixup deprecated structure layouts here, so we have
3820                          * a common path later on.
3821                          */
3822                         if (ip_tunnel_info_af(info) != AF_INET)
3823                                 goto err_clear;
3824 set_compat:
3825                         to = (struct bpf_tunnel_key *)compat;
3826                         break;
3827                 default:
3828                         goto err_clear;
3829                 }
3830         }
3831
3832         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3833         to->tunnel_tos = info->key.tos;
3834         to->tunnel_ttl = info->key.ttl;
3835         to->tunnel_ext = 0;
3836
3837         if (flags & BPF_F_TUNINFO_IPV6) {
3838                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3839                        sizeof(to->remote_ipv6));
3840                 to->tunnel_label = be32_to_cpu(info->key.label);
3841         } else {
3842                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3843                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3844                 to->tunnel_label = 0;
3845         }
3846
3847         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3848                 memcpy(to_orig, to, size);
3849
3850         return 0;
3851 err_clear:
3852         memset(to_orig, 0, size);
3853         return err;
3854 }
3855
3856 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3857         .func           = bpf_skb_get_tunnel_key,
3858         .gpl_only       = false,
3859         .ret_type       = RET_INTEGER,
3860         .arg1_type      = ARG_PTR_TO_CTX,
3861         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3862         .arg3_type      = ARG_CONST_SIZE,
3863         .arg4_type      = ARG_ANYTHING,
3864 };
3865
3866 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3867 {
3868         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3869         int err;
3870
3871         if (unlikely(!info ||
3872                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3873                 err = -ENOENT;
3874                 goto err_clear;
3875         }
3876         if (unlikely(size < info->options_len)) {
3877                 err = -ENOMEM;
3878                 goto err_clear;
3879         }
3880
3881         ip_tunnel_info_opts_get(to, info);
3882         if (size > info->options_len)
3883                 memset(to + info->options_len, 0, size - info->options_len);
3884
3885         return info->options_len;
3886 err_clear:
3887         memset(to, 0, size);
3888         return err;
3889 }
3890
3891 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3892         .func           = bpf_skb_get_tunnel_opt,
3893         .gpl_only       = false,
3894         .ret_type       = RET_INTEGER,
3895         .arg1_type      = ARG_PTR_TO_CTX,
3896         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3897         .arg3_type      = ARG_CONST_SIZE,
3898 };
3899
3900 static struct metadata_dst __percpu *md_dst;
3901
3902 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3903            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3904 {
3905         struct metadata_dst *md = this_cpu_ptr(md_dst);
3906         u8 compat[sizeof(struct bpf_tunnel_key)];
3907         struct ip_tunnel_info *info;
3908
3909         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3910                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3911                 return -EINVAL;
3912         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3913                 switch (size) {
3914                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3915                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3916                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3917                         /* Fixup deprecated structure layouts here, so we have
3918                          * a common path later on.
3919                          */
3920                         memcpy(compat, from, size);
3921                         memset(compat + size, 0, sizeof(compat) - size);
3922                         from = (const struct bpf_tunnel_key *) compat;
3923                         break;
3924                 default:
3925                         return -EINVAL;
3926                 }
3927         }
3928         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3929                      from->tunnel_ext))
3930                 return -EINVAL;
3931
3932         skb_dst_drop(skb);
3933         dst_hold((struct dst_entry *) md);
3934         skb_dst_set(skb, (struct dst_entry *) md);
3935
3936         info = &md->u.tun_info;
3937         memset(info, 0, sizeof(*info));
3938         info->mode = IP_TUNNEL_INFO_TX;
3939
3940         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3941         if (flags & BPF_F_DONT_FRAGMENT)
3942                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3943         if (flags & BPF_F_ZERO_CSUM_TX)
3944                 info->key.tun_flags &= ~TUNNEL_CSUM;
3945         if (flags & BPF_F_SEQ_NUMBER)
3946                 info->key.tun_flags |= TUNNEL_SEQ;
3947
3948         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3949         info->key.tos = from->tunnel_tos;
3950         info->key.ttl = from->tunnel_ttl;
3951
3952         if (flags & BPF_F_TUNINFO_IPV6) {
3953                 info->mode |= IP_TUNNEL_INFO_IPV6;
3954                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3955                        sizeof(from->remote_ipv6));
3956                 info->key.label = cpu_to_be32(from->tunnel_label) &
3957                                   IPV6_FLOWLABEL_MASK;
3958         } else {
3959                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3960         }
3961
3962         return 0;
3963 }
3964
3965 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3966         .func           = bpf_skb_set_tunnel_key,
3967         .gpl_only       = false,
3968         .ret_type       = RET_INTEGER,
3969         .arg1_type      = ARG_PTR_TO_CTX,
3970         .arg2_type      = ARG_PTR_TO_MEM,
3971         .arg3_type      = ARG_CONST_SIZE,
3972         .arg4_type      = ARG_ANYTHING,
3973 };
3974
3975 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3976            const u8 *, from, u32, size)
3977 {
3978         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3979         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3980
3981         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3982                 return -EINVAL;
3983         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3984                 return -ENOMEM;
3985
3986         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3987
3988         return 0;
3989 }
3990
3991 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3992         .func           = bpf_skb_set_tunnel_opt,
3993         .gpl_only       = false,
3994         .ret_type       = RET_INTEGER,
3995         .arg1_type      = ARG_PTR_TO_CTX,
3996         .arg2_type      = ARG_PTR_TO_MEM,
3997         .arg3_type      = ARG_CONST_SIZE,
3998 };
3999
4000 static const struct bpf_func_proto *
4001 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4002 {
4003         if (!md_dst) {
4004                 struct metadata_dst __percpu *tmp;
4005
4006                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4007                                                 METADATA_IP_TUNNEL,
4008                                                 GFP_KERNEL);
4009                 if (!tmp)
4010                         return NULL;
4011                 if (cmpxchg(&md_dst, NULL, tmp))
4012                         metadata_dst_free_percpu(tmp);
4013         }
4014
4015         switch (which) {
4016         case BPF_FUNC_skb_set_tunnel_key:
4017                 return &bpf_skb_set_tunnel_key_proto;
4018         case BPF_FUNC_skb_set_tunnel_opt:
4019                 return &bpf_skb_set_tunnel_opt_proto;
4020         default:
4021                 return NULL;
4022         }
4023 }
4024
4025 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4026            u32, idx)
4027 {
4028         struct bpf_array *array = container_of(map, struct bpf_array, map);
4029         struct cgroup *cgrp;
4030         struct sock *sk;
4031
4032         sk = skb_to_full_sk(skb);
4033         if (!sk || !sk_fullsock(sk))
4034                 return -ENOENT;
4035         if (unlikely(idx >= array->map.max_entries))
4036                 return -E2BIG;
4037
4038         cgrp = READ_ONCE(array->ptrs[idx]);
4039         if (unlikely(!cgrp))
4040                 return -EAGAIN;
4041
4042         return sk_under_cgroup_hierarchy(sk, cgrp);
4043 }
4044
4045 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4046         .func           = bpf_skb_under_cgroup,
4047         .gpl_only       = false,
4048         .ret_type       = RET_INTEGER,
4049         .arg1_type      = ARG_PTR_TO_CTX,
4050         .arg2_type      = ARG_CONST_MAP_PTR,
4051         .arg3_type      = ARG_ANYTHING,
4052 };
4053
4054 #ifdef CONFIG_SOCK_CGROUP_DATA
4055 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4056 {
4057         struct sock *sk = skb_to_full_sk(skb);
4058         struct cgroup *cgrp;
4059
4060         if (!sk || !sk_fullsock(sk))
4061                 return 0;
4062
4063         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4064         return cgroup_id(cgrp);
4065 }
4066
4067 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4068         .func           = bpf_skb_cgroup_id,
4069         .gpl_only       = false,
4070         .ret_type       = RET_INTEGER,
4071         .arg1_type      = ARG_PTR_TO_CTX,
4072 };
4073
4074 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4075            ancestor_level)
4076 {
4077         struct sock *sk = skb_to_full_sk(skb);
4078         struct cgroup *ancestor;
4079         struct cgroup *cgrp;
4080
4081         if (!sk || !sk_fullsock(sk))
4082                 return 0;
4083
4084         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4085         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4086         if (!ancestor)
4087                 return 0;
4088
4089         return cgroup_id(ancestor);
4090 }
4091
4092 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4093         .func           = bpf_skb_ancestor_cgroup_id,
4094         .gpl_only       = false,
4095         .ret_type       = RET_INTEGER,
4096         .arg1_type      = ARG_PTR_TO_CTX,
4097         .arg2_type      = ARG_ANYTHING,
4098 };
4099 #endif
4100
4101 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4102                                   unsigned long off, unsigned long len)
4103 {
4104         memcpy(dst_buff, src_buff + off, len);
4105         return 0;
4106 }
4107
4108 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4109            u64, flags, void *, meta, u64, meta_size)
4110 {
4111         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4112
4113         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4114                 return -EINVAL;
4115         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4116                 return -EFAULT;
4117
4118         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4119                                 xdp_size, bpf_xdp_copy);
4120 }
4121
4122 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4123         .func           = bpf_xdp_event_output,
4124         .gpl_only       = true,
4125         .ret_type       = RET_INTEGER,
4126         .arg1_type      = ARG_PTR_TO_CTX,
4127         .arg2_type      = ARG_CONST_MAP_PTR,
4128         .arg3_type      = ARG_ANYTHING,
4129         .arg4_type      = ARG_PTR_TO_MEM,
4130         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4131 };
4132
4133 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4134 {
4135         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4136 }
4137
4138 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4139         .func           = bpf_get_socket_cookie,
4140         .gpl_only       = false,
4141         .ret_type       = RET_INTEGER,
4142         .arg1_type      = ARG_PTR_TO_CTX,
4143 };
4144
4145 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4146 {
4147         return sock_gen_cookie(ctx->sk);
4148 }
4149
4150 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4151         .func           = bpf_get_socket_cookie_sock_addr,
4152         .gpl_only       = false,
4153         .ret_type       = RET_INTEGER,
4154         .arg1_type      = ARG_PTR_TO_CTX,
4155 };
4156
4157 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4158 {
4159         return sock_gen_cookie(ctx->sk);
4160 }
4161
4162 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4163         .func           = bpf_get_socket_cookie_sock_ops,
4164         .gpl_only       = false,
4165         .ret_type       = RET_INTEGER,
4166         .arg1_type      = ARG_PTR_TO_CTX,
4167 };
4168
4169 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4170 {
4171         struct sock *sk = sk_to_full_sk(skb->sk);
4172         kuid_t kuid;
4173
4174         if (!sk || !sk_fullsock(sk))
4175                 return overflowuid;
4176         kuid = sock_net_uid(sock_net(sk), sk);
4177         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4178 }
4179
4180 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4181         .func           = bpf_get_socket_uid,
4182         .gpl_only       = false,
4183         .ret_type       = RET_INTEGER,
4184         .arg1_type      = ARG_PTR_TO_CTX,
4185 };
4186
4187 BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4188            struct bpf_map *, map, u64, flags, void *, data, u64, size)
4189 {
4190         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4191                 return -EINVAL;
4192
4193         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4194 }
4195
4196 static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4197         .func           = bpf_sockopt_event_output,
4198         .gpl_only       = true,
4199         .ret_type       = RET_INTEGER,
4200         .arg1_type      = ARG_PTR_TO_CTX,
4201         .arg2_type      = ARG_CONST_MAP_PTR,
4202         .arg3_type      = ARG_ANYTHING,
4203         .arg4_type      = ARG_PTR_TO_MEM,
4204         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4205 };
4206
4207 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4208            int, level, int, optname, char *, optval, int, optlen)
4209 {
4210         struct sock *sk = bpf_sock->sk;
4211         int ret = 0;
4212         int val;
4213
4214         if (!sk_fullsock(sk))
4215                 return -EINVAL;
4216
4217         if (level == SOL_SOCKET) {
4218                 if (optlen != sizeof(int))
4219                         return -EINVAL;
4220                 val = *((int *)optval);
4221
4222                 /* Only some socketops are supported */
4223                 switch (optname) {
4224                 case SO_RCVBUF:
4225                         val = min_t(u32, val, sysctl_rmem_max);
4226                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4227                         WRITE_ONCE(sk->sk_rcvbuf,
4228                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4229                         break;
4230                 case SO_SNDBUF:
4231                         val = min_t(u32, val, sysctl_wmem_max);
4232                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4233                         WRITE_ONCE(sk->sk_sndbuf,
4234                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4235                         break;
4236                 case SO_MAX_PACING_RATE: /* 32bit version */
4237                         if (val != ~0U)
4238                                 cmpxchg(&sk->sk_pacing_status,
4239                                         SK_PACING_NONE,
4240                                         SK_PACING_NEEDED);
4241                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4242                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4243                                                  sk->sk_max_pacing_rate);
4244                         break;
4245                 case SO_PRIORITY:
4246                         sk->sk_priority = val;
4247                         break;
4248                 case SO_RCVLOWAT:
4249                         if (val < 0)
4250                                 val = INT_MAX;
4251                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4252                         break;
4253                 case SO_MARK:
4254                         if (sk->sk_mark != val) {
4255                                 sk->sk_mark = val;
4256                                 sk_dst_reset(sk);
4257                         }
4258                         break;
4259                 default:
4260                         ret = -EINVAL;
4261                 }
4262 #ifdef CONFIG_INET
4263         } else if (level == SOL_IP) {
4264                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4265                         return -EINVAL;
4266
4267                 val = *((int *)optval);
4268                 /* Only some options are supported */
4269                 switch (optname) {
4270                 case IP_TOS:
4271                         if (val < -1 || val > 0xff) {
4272                                 ret = -EINVAL;
4273                         } else {
4274                                 struct inet_sock *inet = inet_sk(sk);
4275
4276                                 if (val == -1)
4277                                         val = 0;
4278                                 inet->tos = val;
4279                         }
4280                         break;
4281                 default:
4282                         ret = -EINVAL;
4283                 }
4284 #if IS_ENABLED(CONFIG_IPV6)
4285         } else if (level == SOL_IPV6) {
4286                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4287                         return -EINVAL;
4288
4289                 val = *((int *)optval);
4290                 /* Only some options are supported */
4291                 switch (optname) {
4292                 case IPV6_TCLASS:
4293                         if (val < -1 || val > 0xff) {
4294                                 ret = -EINVAL;
4295                         } else {
4296                                 struct ipv6_pinfo *np = inet6_sk(sk);
4297
4298                                 if (val == -1)
4299                                         val = 0;
4300                                 np->tclass = val;
4301                         }
4302                         break;
4303                 default:
4304                         ret = -EINVAL;
4305                 }
4306 #endif
4307         } else if (level == SOL_TCP &&
4308                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4309                 if (optname == TCP_CONGESTION) {
4310                         char name[TCP_CA_NAME_MAX];
4311                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4312
4313                         strncpy(name, optval, min_t(long, optlen,
4314                                                     TCP_CA_NAME_MAX-1));
4315                         name[TCP_CA_NAME_MAX-1] = 0;
4316                         ret = tcp_set_congestion_control(sk, name, false,
4317                                                          reinit, true);
4318                 } else {
4319                         struct tcp_sock *tp = tcp_sk(sk);
4320
4321                         if (optlen != sizeof(int))
4322                                 return -EINVAL;
4323
4324                         val = *((int *)optval);
4325                         /* Only some options are supported */
4326                         switch (optname) {
4327                         case TCP_BPF_IW:
4328                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4329                                         ret = -EINVAL;
4330                                 else
4331                                         tp->snd_cwnd = val;
4332                                 break;
4333                         case TCP_BPF_SNDCWND_CLAMP:
4334                                 if (val <= 0) {
4335                                         ret = -EINVAL;
4336                                 } else {
4337                                         tp->snd_cwnd_clamp = val;
4338                                         tp->snd_ssthresh = val;
4339                                 }
4340                                 break;
4341                         case TCP_SAVE_SYN:
4342                                 if (val < 0 || val > 1)
4343                                         ret = -EINVAL;
4344                                 else
4345                                         tp->save_syn = val;
4346                                 break;
4347                         default:
4348                                 ret = -EINVAL;
4349                         }
4350                 }
4351 #endif
4352         } else {
4353                 ret = -EINVAL;
4354         }
4355         return ret;
4356 }
4357
4358 static const struct bpf_func_proto bpf_setsockopt_proto = {
4359         .func           = bpf_setsockopt,
4360         .gpl_only       = false,
4361         .ret_type       = RET_INTEGER,
4362         .arg1_type      = ARG_PTR_TO_CTX,
4363         .arg2_type      = ARG_ANYTHING,
4364         .arg3_type      = ARG_ANYTHING,
4365         .arg4_type      = ARG_PTR_TO_MEM,
4366         .arg5_type      = ARG_CONST_SIZE,
4367 };
4368
4369 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4370            int, level, int, optname, char *, optval, int, optlen)
4371 {
4372         struct sock *sk = bpf_sock->sk;
4373
4374         if (!sk_fullsock(sk))
4375                 goto err_clear;
4376 #ifdef CONFIG_INET
4377         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4378                 struct inet_connection_sock *icsk;
4379                 struct tcp_sock *tp;
4380
4381                 switch (optname) {
4382                 case TCP_CONGESTION:
4383                         icsk = inet_csk(sk);
4384
4385                         if (!icsk->icsk_ca_ops || optlen <= 1)
4386                                 goto err_clear;
4387                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4388                         optval[optlen - 1] = 0;
4389                         break;
4390                 case TCP_SAVED_SYN:
4391                         tp = tcp_sk(sk);
4392
4393                         if (optlen <= 0 || !tp->saved_syn ||
4394                             optlen > tp->saved_syn[0])
4395                                 goto err_clear;
4396                         memcpy(optval, tp->saved_syn + 1, optlen);
4397                         break;
4398                 default:
4399                         goto err_clear;
4400                 }
4401         } else if (level == SOL_IP) {
4402                 struct inet_sock *inet = inet_sk(sk);
4403
4404                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4405                         goto err_clear;
4406
4407                 /* Only some options are supported */
4408                 switch (optname) {
4409                 case IP_TOS:
4410                         *((int *)optval) = (int)inet->tos;
4411                         break;
4412                 default:
4413                         goto err_clear;
4414                 }
4415 #if IS_ENABLED(CONFIG_IPV6)
4416         } else if (level == SOL_IPV6) {
4417                 struct ipv6_pinfo *np = inet6_sk(sk);
4418
4419                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4420                         goto err_clear;
4421
4422                 /* Only some options are supported */
4423                 switch (optname) {
4424                 case IPV6_TCLASS:
4425                         *((int *)optval) = (int)np->tclass;
4426                         break;
4427                 default:
4428                         goto err_clear;
4429                 }
4430 #endif
4431         } else {
4432                 goto err_clear;
4433         }
4434         return 0;
4435 #endif
4436 err_clear:
4437         memset(optval, 0, optlen);
4438         return -EINVAL;
4439 }
4440
4441 static const struct bpf_func_proto bpf_getsockopt_proto = {
4442         .func           = bpf_getsockopt,
4443         .gpl_only       = false,
4444         .ret_type       = RET_INTEGER,
4445         .arg1_type      = ARG_PTR_TO_CTX,
4446         .arg2_type      = ARG_ANYTHING,
4447         .arg3_type      = ARG_ANYTHING,
4448         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4449         .arg5_type      = ARG_CONST_SIZE,
4450 };
4451
4452 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4453            int, argval)
4454 {
4455         struct sock *sk = bpf_sock->sk;
4456         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4457
4458         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4459                 return -EINVAL;
4460
4461         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4462
4463         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4464 }
4465
4466 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4467         .func           = bpf_sock_ops_cb_flags_set,
4468         .gpl_only       = false,
4469         .ret_type       = RET_INTEGER,
4470         .arg1_type      = ARG_PTR_TO_CTX,
4471         .arg2_type      = ARG_ANYTHING,
4472 };
4473
4474 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4475 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4476
4477 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4478            int, addr_len)
4479 {
4480 #ifdef CONFIG_INET
4481         struct sock *sk = ctx->sk;
4482         int err;
4483
4484         /* Binding to port can be expensive so it's prohibited in the helper.
4485          * Only binding to IP is supported.
4486          */
4487         err = -EINVAL;
4488         if (addr_len < offsetofend(struct sockaddr, sa_family))
4489                 return err;
4490         if (addr->sa_family == AF_INET) {
4491                 if (addr_len < sizeof(struct sockaddr_in))
4492                         return err;
4493                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4494                         return err;
4495                 return __inet_bind(sk, addr, addr_len, true, false);
4496 #if IS_ENABLED(CONFIG_IPV6)
4497         } else if (addr->sa_family == AF_INET6) {
4498                 if (addr_len < SIN6_LEN_RFC2133)
4499                         return err;
4500                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4501                         return err;
4502                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4503                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4504                  */
4505                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4506 #endif /* CONFIG_IPV6 */
4507         }
4508 #endif /* CONFIG_INET */
4509
4510         return -EAFNOSUPPORT;
4511 }
4512
4513 static const struct bpf_func_proto bpf_bind_proto = {
4514         .func           = bpf_bind,
4515         .gpl_only       = false,
4516         .ret_type       = RET_INTEGER,
4517         .arg1_type      = ARG_PTR_TO_CTX,
4518         .arg2_type      = ARG_PTR_TO_MEM,
4519         .arg3_type      = ARG_CONST_SIZE,
4520 };
4521
4522 #ifdef CONFIG_XFRM
4523 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4524            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4525 {
4526         const struct sec_path *sp = skb_sec_path(skb);
4527         const struct xfrm_state *x;
4528
4529         if (!sp || unlikely(index >= sp->len || flags))
4530                 goto err_clear;
4531
4532         x = sp->xvec[index];
4533
4534         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4535                 goto err_clear;
4536
4537         to->reqid = x->props.reqid;
4538         to->spi = x->id.spi;
4539         to->family = x->props.family;
4540         to->ext = 0;
4541
4542         if (to->family == AF_INET6) {
4543                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4544                        sizeof(to->remote_ipv6));
4545         } else {
4546                 to->remote_ipv4 = x->props.saddr.a4;
4547                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4548         }
4549
4550         return 0;
4551 err_clear:
4552         memset(to, 0, size);
4553         return -EINVAL;
4554 }
4555
4556 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4557         .func           = bpf_skb_get_xfrm_state,
4558         .gpl_only       = false,
4559         .ret_type       = RET_INTEGER,
4560         .arg1_type      = ARG_PTR_TO_CTX,
4561         .arg2_type      = ARG_ANYTHING,
4562         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4563         .arg4_type      = ARG_CONST_SIZE,
4564         .arg5_type      = ARG_ANYTHING,
4565 };
4566 #endif
4567
4568 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4569 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4570                                   const struct neighbour *neigh,
4571                                   const struct net_device *dev)
4572 {
4573         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4574         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4575         params->h_vlan_TCI = 0;
4576         params->h_vlan_proto = 0;
4577         params->ifindex = dev->ifindex;
4578
4579         return 0;
4580 }
4581 #endif
4582
4583 #if IS_ENABLED(CONFIG_INET)
4584 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4585                                u32 flags, bool check_mtu)
4586 {
4587         struct fib_nh_common *nhc;
4588         struct in_device *in_dev;
4589         struct neighbour *neigh;
4590         struct net_device *dev;
4591         struct fib_result res;
4592         struct flowi4 fl4;
4593         int err;
4594         u32 mtu;
4595
4596         dev = dev_get_by_index_rcu(net, params->ifindex);
4597         if (unlikely(!dev))
4598                 return -ENODEV;
4599
4600         /* verify forwarding is enabled on this interface */
4601         in_dev = __in_dev_get_rcu(dev);
4602         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4603                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4604
4605         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4606                 fl4.flowi4_iif = 1;
4607                 fl4.flowi4_oif = params->ifindex;
4608         } else {
4609                 fl4.flowi4_iif = params->ifindex;
4610                 fl4.flowi4_oif = 0;
4611         }
4612         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4613         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4614         fl4.flowi4_flags = 0;
4615
4616         fl4.flowi4_proto = params->l4_protocol;
4617         fl4.daddr = params->ipv4_dst;
4618         fl4.saddr = params->ipv4_src;
4619         fl4.fl4_sport = params->sport;
4620         fl4.fl4_dport = params->dport;
4621
4622         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4623                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4624                 struct fib_table *tb;
4625
4626                 tb = fib_get_table(net, tbid);
4627                 if (unlikely(!tb))
4628                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4629
4630                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4631         } else {
4632                 fl4.flowi4_mark = 0;
4633                 fl4.flowi4_secid = 0;
4634                 fl4.flowi4_tun_key.tun_id = 0;
4635                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4636
4637                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4638         }
4639
4640         if (err) {
4641                 /* map fib lookup errors to RTN_ type */
4642                 if (err == -EINVAL)
4643                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4644                 if (err == -EHOSTUNREACH)
4645                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4646                 if (err == -EACCES)
4647                         return BPF_FIB_LKUP_RET_PROHIBIT;
4648
4649                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4650         }
4651
4652         if (res.type != RTN_UNICAST)
4653                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4654
4655         if (fib_info_num_path(res.fi) > 1)
4656                 fib_select_path(net, &res, &fl4, NULL);
4657
4658         if (check_mtu) {
4659                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4660                 if (params->tot_len > mtu)
4661                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4662         }
4663
4664         nhc = res.nhc;
4665
4666         /* do not handle lwt encaps right now */
4667         if (nhc->nhc_lwtstate)
4668                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4669
4670         dev = nhc->nhc_dev;
4671
4672         params->rt_metric = res.fi->fib_priority;
4673
4674         /* xdp and cls_bpf programs are run in RCU-bh so
4675          * rcu_read_lock_bh is not needed here
4676          */
4677         if (likely(nhc->nhc_gw_family != AF_INET6)) {
4678                 if (nhc->nhc_gw_family)
4679                         params->ipv4_dst = nhc->nhc_gw.ipv4;
4680
4681                 neigh = __ipv4_neigh_lookup_noref(dev,
4682                                                  (__force u32)params->ipv4_dst);
4683         } else {
4684                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4685
4686                 params->family = AF_INET6;
4687                 *dst = nhc->nhc_gw.ipv6;
4688                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4689         }
4690
4691         if (!neigh)
4692                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4693
4694         return bpf_fib_set_fwd_params(params, neigh, dev);
4695 }
4696 #endif
4697
4698 #if IS_ENABLED(CONFIG_IPV6)
4699 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4700                                u32 flags, bool check_mtu)
4701 {
4702         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4703         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4704         struct fib6_result res = {};
4705         struct neighbour *neigh;
4706         struct net_device *dev;
4707         struct inet6_dev *idev;
4708         struct flowi6 fl6;
4709         int strict = 0;
4710         int oif, err;
4711         u32 mtu;
4712
4713         /* link local addresses are never forwarded */
4714         if (rt6_need_strict(dst) || rt6_need_strict(src))
4715                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4716
4717         dev = dev_get_by_index_rcu(net, params->ifindex);
4718         if (unlikely(!dev))
4719                 return -ENODEV;
4720
4721         idev = __in6_dev_get_safely(dev);
4722         if (unlikely(!idev || !idev->cnf.forwarding))
4723                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4724
4725         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4726                 fl6.flowi6_iif = 1;
4727                 oif = fl6.flowi6_oif = params->ifindex;
4728         } else {
4729                 oif = fl6.flowi6_iif = params->ifindex;
4730                 fl6.flowi6_oif = 0;
4731                 strict = RT6_LOOKUP_F_HAS_SADDR;
4732         }
4733         fl6.flowlabel = params->flowinfo;
4734         fl6.flowi6_scope = 0;
4735         fl6.flowi6_flags = 0;
4736         fl6.mp_hash = 0;
4737
4738         fl6.flowi6_proto = params->l4_protocol;
4739         fl6.daddr = *dst;
4740         fl6.saddr = *src;
4741         fl6.fl6_sport = params->sport;
4742         fl6.fl6_dport = params->dport;
4743
4744         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4745                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4746                 struct fib6_table *tb;
4747
4748                 tb = ipv6_stub->fib6_get_table(net, tbid);
4749                 if (unlikely(!tb))
4750                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4751
4752                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4753                                                    strict);
4754         } else {
4755                 fl6.flowi6_mark = 0;
4756                 fl6.flowi6_secid = 0;
4757                 fl6.flowi6_tun_key.tun_id = 0;
4758                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4759
4760                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4761         }
4762
4763         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4764                      res.f6i == net->ipv6.fib6_null_entry))
4765                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4766
4767         switch (res.fib6_type) {
4768         /* only unicast is forwarded */
4769         case RTN_UNICAST:
4770                 break;
4771         case RTN_BLACKHOLE:
4772                 return BPF_FIB_LKUP_RET_BLACKHOLE;
4773         case RTN_UNREACHABLE:
4774                 return BPF_FIB_LKUP_RET_UNREACHABLE;
4775         case RTN_PROHIBIT:
4776                 return BPF_FIB_LKUP_RET_PROHIBIT;
4777         default:
4778                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4779         }
4780
4781         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4782                                     fl6.flowi6_oif != 0, NULL, strict);
4783
4784         if (check_mtu) {
4785                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4786                 if (params->tot_len > mtu)
4787                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4788         }
4789
4790         if (res.nh->fib_nh_lws)
4791                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4792
4793         if (res.nh->fib_nh_gw_family)
4794                 *dst = res.nh->fib_nh_gw6;
4795
4796         dev = res.nh->fib_nh_dev;
4797         params->rt_metric = res.f6i->fib6_metric;
4798
4799         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4800          * not needed here.
4801          */
4802         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4803         if (!neigh)
4804                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4805
4806         return bpf_fib_set_fwd_params(params, neigh, dev);
4807 }
4808 #endif
4809
4810 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4811            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4812 {
4813         if (plen < sizeof(*params))
4814                 return -EINVAL;
4815
4816         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4817                 return -EINVAL;
4818
4819         switch (params->family) {
4820 #if IS_ENABLED(CONFIG_INET)
4821         case AF_INET:
4822                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4823                                            flags, true);
4824 #endif
4825 #if IS_ENABLED(CONFIG_IPV6)
4826         case AF_INET6:
4827                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4828                                            flags, true);
4829 #endif
4830         }
4831         return -EAFNOSUPPORT;
4832 }
4833
4834 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4835         .func           = bpf_xdp_fib_lookup,
4836         .gpl_only       = true,
4837         .ret_type       = RET_INTEGER,
4838         .arg1_type      = ARG_PTR_TO_CTX,
4839         .arg2_type      = ARG_PTR_TO_MEM,
4840         .arg3_type      = ARG_CONST_SIZE,
4841         .arg4_type      = ARG_ANYTHING,
4842 };
4843
4844 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4845            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4846 {
4847         struct net *net = dev_net(skb->dev);
4848         int rc = -EAFNOSUPPORT;
4849
4850         if (plen < sizeof(*params))
4851                 return -EINVAL;
4852
4853         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4854                 return -EINVAL;
4855
4856         switch (params->family) {
4857 #if IS_ENABLED(CONFIG_INET)
4858         case AF_INET:
4859                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4860                 break;
4861 #endif
4862 #if IS_ENABLED(CONFIG_IPV6)
4863         case AF_INET6:
4864                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4865                 break;
4866 #endif
4867         }
4868
4869         if (!rc) {
4870                 struct net_device *dev;
4871
4872                 dev = dev_get_by_index_rcu(net, params->ifindex);
4873                 if (!is_skb_forwardable(dev, skb))
4874                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4875         }
4876
4877         return rc;
4878 }
4879
4880 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4881         .func           = bpf_skb_fib_lookup,
4882         .gpl_only       = true,
4883         .ret_type       = RET_INTEGER,
4884         .arg1_type      = ARG_PTR_TO_CTX,
4885         .arg2_type      = ARG_PTR_TO_MEM,
4886         .arg3_type      = ARG_CONST_SIZE,
4887         .arg4_type      = ARG_ANYTHING,
4888 };
4889
4890 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4891 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4892 {
4893         int err;
4894         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4895
4896         if (!seg6_validate_srh(srh, len))
4897                 return -EINVAL;
4898
4899         switch (type) {
4900         case BPF_LWT_ENCAP_SEG6_INLINE:
4901                 if (skb->protocol != htons(ETH_P_IPV6))
4902                         return -EBADMSG;
4903
4904                 err = seg6_do_srh_inline(skb, srh);
4905                 break;
4906         case BPF_LWT_ENCAP_SEG6:
4907                 skb_reset_inner_headers(skb);
4908                 skb->encapsulation = 1;
4909                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4910                 break;
4911         default:
4912                 return -EINVAL;
4913         }
4914
4915         bpf_compute_data_pointers(skb);
4916         if (err)
4917                 return err;
4918
4919         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4920         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4921
4922         return seg6_lookup_nexthop(skb, NULL, 0);
4923 }
4924 #endif /* CONFIG_IPV6_SEG6_BPF */
4925
4926 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4927 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4928                              bool ingress)
4929 {
4930         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4931 }
4932 #endif
4933
4934 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4935            u32, len)
4936 {
4937         switch (type) {
4938 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4939         case BPF_LWT_ENCAP_SEG6:
4940         case BPF_LWT_ENCAP_SEG6_INLINE:
4941                 return bpf_push_seg6_encap(skb, type, hdr, len);
4942 #endif
4943 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4944         case BPF_LWT_ENCAP_IP:
4945                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4946 #endif
4947         default:
4948                 return -EINVAL;
4949         }
4950 }
4951
4952 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4953            void *, hdr, u32, len)
4954 {
4955         switch (type) {
4956 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4957         case BPF_LWT_ENCAP_IP:
4958                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
4959 #endif
4960         default:
4961                 return -EINVAL;
4962         }
4963 }
4964
4965 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
4966         .func           = bpf_lwt_in_push_encap,
4967         .gpl_only       = false,
4968         .ret_type       = RET_INTEGER,
4969         .arg1_type      = ARG_PTR_TO_CTX,
4970         .arg2_type      = ARG_ANYTHING,
4971         .arg3_type      = ARG_PTR_TO_MEM,
4972         .arg4_type      = ARG_CONST_SIZE
4973 };
4974
4975 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
4976         .func           = bpf_lwt_xmit_push_encap,
4977         .gpl_only       = false,
4978         .ret_type       = RET_INTEGER,
4979         .arg1_type      = ARG_PTR_TO_CTX,
4980         .arg2_type      = ARG_ANYTHING,
4981         .arg3_type      = ARG_PTR_TO_MEM,
4982         .arg4_type      = ARG_CONST_SIZE
4983 };
4984
4985 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4986 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4987            const void *, from, u32, len)
4988 {
4989         struct seg6_bpf_srh_state *srh_state =
4990                 this_cpu_ptr(&seg6_bpf_srh_states);
4991         struct ipv6_sr_hdr *srh = srh_state->srh;
4992         void *srh_tlvs, *srh_end, *ptr;
4993         int srhoff = 0;
4994
4995         if (srh == NULL)
4996                 return -EINVAL;
4997
4998         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4999         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5000
5001         ptr = skb->data + offset;
5002         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5003                 srh_state->valid = false;
5004         else if (ptr < (void *)&srh->flags ||
5005                  ptr + len > (void *)&srh->segments)
5006                 return -EFAULT;
5007
5008         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5009                 return -EFAULT;
5010         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5011                 return -EINVAL;
5012         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5013
5014         memcpy(skb->data + offset, from, len);
5015         return 0;
5016 }
5017
5018 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5019         .func           = bpf_lwt_seg6_store_bytes,
5020         .gpl_only       = false,
5021         .ret_type       = RET_INTEGER,
5022         .arg1_type      = ARG_PTR_TO_CTX,
5023         .arg2_type      = ARG_ANYTHING,
5024         .arg3_type      = ARG_PTR_TO_MEM,
5025         .arg4_type      = ARG_CONST_SIZE
5026 };
5027
5028 static void bpf_update_srh_state(struct sk_buff *skb)
5029 {
5030         struct seg6_bpf_srh_state *srh_state =
5031                 this_cpu_ptr(&seg6_bpf_srh_states);
5032         int srhoff = 0;
5033
5034         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5035                 srh_state->srh = NULL;
5036         } else {
5037                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5038                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5039                 srh_state->valid = true;
5040         }
5041 }
5042
5043 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5044            u32, action, void *, param, u32, param_len)
5045 {
5046         struct seg6_bpf_srh_state *srh_state =
5047                 this_cpu_ptr(&seg6_bpf_srh_states);
5048         int hdroff = 0;
5049         int err;
5050
5051         switch (action) {
5052         case SEG6_LOCAL_ACTION_END_X:
5053                 if (!seg6_bpf_has_valid_srh(skb))
5054                         return -EBADMSG;
5055                 if (param_len != sizeof(struct in6_addr))
5056                         return -EINVAL;
5057                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5058         case SEG6_LOCAL_ACTION_END_T:
5059                 if (!seg6_bpf_has_valid_srh(skb))
5060                         return -EBADMSG;
5061                 if (param_len != sizeof(int))
5062                         return -EINVAL;
5063                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5064         case SEG6_LOCAL_ACTION_END_DT6:
5065                 if (!seg6_bpf_has_valid_srh(skb))
5066                         return -EBADMSG;
5067                 if (param_len != sizeof(int))
5068                         return -EINVAL;
5069
5070                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5071                         return -EBADMSG;
5072                 if (!pskb_pull(skb, hdroff))
5073                         return -EBADMSG;
5074
5075                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5076                 skb_reset_network_header(skb);
5077                 skb_reset_transport_header(skb);
5078                 skb->encapsulation = 0;
5079
5080                 bpf_compute_data_pointers(skb);
5081                 bpf_update_srh_state(skb);
5082                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5083         case SEG6_LOCAL_ACTION_END_B6:
5084                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5085                         return -EBADMSG;
5086                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5087                                           param, param_len);
5088                 if (!err)
5089                         bpf_update_srh_state(skb);
5090
5091                 return err;
5092         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5093                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5094                         return -EBADMSG;
5095                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5096                                           param, param_len);
5097                 if (!err)
5098                         bpf_update_srh_state(skb);
5099
5100                 return err;
5101         default:
5102                 return -EINVAL;
5103         }
5104 }
5105
5106 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5107         .func           = bpf_lwt_seg6_action,
5108         .gpl_only       = false,
5109         .ret_type       = RET_INTEGER,
5110         .arg1_type      = ARG_PTR_TO_CTX,
5111         .arg2_type      = ARG_ANYTHING,
5112         .arg3_type      = ARG_PTR_TO_MEM,
5113         .arg4_type      = ARG_CONST_SIZE
5114 };
5115
5116 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5117            s32, len)
5118 {
5119         struct seg6_bpf_srh_state *srh_state =
5120                 this_cpu_ptr(&seg6_bpf_srh_states);
5121         struct ipv6_sr_hdr *srh = srh_state->srh;
5122         void *srh_end, *srh_tlvs, *ptr;
5123         struct ipv6hdr *hdr;
5124         int srhoff = 0;
5125         int ret;
5126
5127         if (unlikely(srh == NULL))
5128                 return -EINVAL;
5129
5130         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5131                         ((srh->first_segment + 1) << 4));
5132         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5133                         srh_state->hdrlen);
5134         ptr = skb->data + offset;
5135
5136         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5137                 return -EFAULT;
5138         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5139                 return -EFAULT;
5140
5141         if (len > 0) {
5142                 ret = skb_cow_head(skb, len);
5143                 if (unlikely(ret < 0))
5144                         return ret;
5145
5146                 ret = bpf_skb_net_hdr_push(skb, offset, len);
5147         } else {
5148                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5149         }
5150
5151         bpf_compute_data_pointers(skb);
5152         if (unlikely(ret < 0))
5153                 return ret;
5154
5155         hdr = (struct ipv6hdr *)skb->data;
5156         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5157
5158         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5159                 return -EINVAL;
5160         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5161         srh_state->hdrlen += len;
5162         srh_state->valid = false;
5163         return 0;
5164 }
5165
5166 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5167         .func           = bpf_lwt_seg6_adjust_srh,
5168         .gpl_only       = false,
5169         .ret_type       = RET_INTEGER,
5170         .arg1_type      = ARG_PTR_TO_CTX,
5171         .arg2_type      = ARG_ANYTHING,
5172         .arg3_type      = ARG_ANYTHING,
5173 };
5174 #endif /* CONFIG_IPV6_SEG6_BPF */
5175
5176 #ifdef CONFIG_INET
5177 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5178                               int dif, int sdif, u8 family, u8 proto)
5179 {
5180         bool refcounted = false;
5181         struct sock *sk = NULL;
5182
5183         if (family == AF_INET) {
5184                 __be32 src4 = tuple->ipv4.saddr;
5185                 __be32 dst4 = tuple->ipv4.daddr;
5186
5187                 if (proto == IPPROTO_TCP)
5188                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5189                                            src4, tuple->ipv4.sport,
5190                                            dst4, tuple->ipv4.dport,
5191                                            dif, sdif, &refcounted);
5192                 else
5193                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5194                                                dst4, tuple->ipv4.dport,
5195                                                dif, sdif, &udp_table, NULL);
5196 #if IS_ENABLED(CONFIG_IPV6)
5197         } else {
5198                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5199                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5200
5201                 if (proto == IPPROTO_TCP)
5202                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5203                                             src6, tuple->ipv6.sport,
5204                                             dst6, ntohs(tuple->ipv6.dport),
5205                                             dif, sdif, &refcounted);
5206                 else if (likely(ipv6_bpf_stub))
5207                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5208                                                             src6, tuple->ipv6.sport,
5209                                                             dst6, tuple->ipv6.dport,
5210                                                             dif, sdif,
5211                                                             &udp_table, NULL);
5212 #endif
5213         }
5214
5215         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5216                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5217                 sk = NULL;
5218         }
5219         return sk;
5220 }
5221
5222 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5223  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5224  * Returns the socket as an 'unsigned long' to simplify the casting in the
5225  * callers to satisfy BPF_CALL declarations.
5226  */
5227 static struct sock *
5228 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5229                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5230                  u64 flags)
5231 {
5232         struct sock *sk = NULL;
5233         u8 family = AF_UNSPEC;
5234         struct net *net;
5235         int sdif;
5236
5237         if (len == sizeof(tuple->ipv4))
5238                 family = AF_INET;
5239         else if (len == sizeof(tuple->ipv6))
5240                 family = AF_INET6;
5241         else
5242                 return NULL;
5243
5244         if (unlikely(family == AF_UNSPEC || flags ||
5245                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5246                 goto out;
5247
5248         if (family == AF_INET)
5249                 sdif = inet_sdif(skb);
5250         else
5251                 sdif = inet6_sdif(skb);
5252
5253         if ((s32)netns_id < 0) {
5254                 net = caller_net;
5255                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5256         } else {
5257                 net = get_net_ns_by_id(caller_net, netns_id);
5258                 if (unlikely(!net))
5259                         goto out;
5260                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5261                 put_net(net);
5262         }
5263
5264 out:
5265         return sk;
5266 }
5267
5268 static struct sock *
5269 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5270                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5271                 u64 flags)
5272 {
5273         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5274                                            ifindex, proto, netns_id, flags);
5275
5276         if (sk) {
5277                 sk = sk_to_full_sk(sk);
5278                 if (!sk_fullsock(sk)) {
5279                         if (!sock_flag(sk, SOCK_RCU_FREE))
5280                                 sock_gen_put(sk);
5281                         return NULL;
5282                 }
5283         }
5284
5285         return sk;
5286 }
5287
5288 static struct sock *
5289 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5290                u8 proto, u64 netns_id, u64 flags)
5291 {
5292         struct net *caller_net;
5293         int ifindex;
5294
5295         if (skb->dev) {
5296                 caller_net = dev_net(skb->dev);
5297                 ifindex = skb->dev->ifindex;
5298         } else {
5299                 caller_net = sock_net(skb->sk);
5300                 ifindex = 0;
5301         }
5302
5303         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5304                                 netns_id, flags);
5305 }
5306
5307 static struct sock *
5308 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5309               u8 proto, u64 netns_id, u64 flags)
5310 {
5311         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5312                                          flags);
5313
5314         if (sk) {
5315                 sk = sk_to_full_sk(sk);
5316                 if (!sk_fullsock(sk)) {
5317                         if (!sock_flag(sk, SOCK_RCU_FREE))
5318                                 sock_gen_put(sk);
5319                         return NULL;
5320                 }
5321         }
5322
5323         return sk;
5324 }
5325
5326 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5327            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5328 {
5329         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5330                                              netns_id, flags);
5331 }
5332
5333 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5334         .func           = bpf_skc_lookup_tcp,
5335         .gpl_only       = false,
5336         .pkt_access     = true,
5337         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5338         .arg1_type      = ARG_PTR_TO_CTX,
5339         .arg2_type      = ARG_PTR_TO_MEM,
5340         .arg3_type      = ARG_CONST_SIZE,
5341         .arg4_type      = ARG_ANYTHING,
5342         .arg5_type      = ARG_ANYTHING,
5343 };
5344
5345 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5346            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5347 {
5348         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5349                                             netns_id, flags);
5350 }
5351
5352 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5353         .func           = bpf_sk_lookup_tcp,
5354         .gpl_only       = false,
5355         .pkt_access     = true,
5356         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5357         .arg1_type      = ARG_PTR_TO_CTX,
5358         .arg2_type      = ARG_PTR_TO_MEM,
5359         .arg3_type      = ARG_CONST_SIZE,
5360         .arg4_type      = ARG_ANYTHING,
5361         .arg5_type      = ARG_ANYTHING,
5362 };
5363
5364 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5365            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5366 {
5367         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5368                                             netns_id, flags);
5369 }
5370
5371 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5372         .func           = bpf_sk_lookup_udp,
5373         .gpl_only       = false,
5374         .pkt_access     = true,
5375         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5376         .arg1_type      = ARG_PTR_TO_CTX,
5377         .arg2_type      = ARG_PTR_TO_MEM,
5378         .arg3_type      = ARG_CONST_SIZE,
5379         .arg4_type      = ARG_ANYTHING,
5380         .arg5_type      = ARG_ANYTHING,
5381 };
5382
5383 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5384 {
5385         if (!sock_flag(sk, SOCK_RCU_FREE))
5386                 sock_gen_put(sk);
5387         return 0;
5388 }
5389
5390 static const struct bpf_func_proto bpf_sk_release_proto = {
5391         .func           = bpf_sk_release,
5392         .gpl_only       = false,
5393         .ret_type       = RET_INTEGER,
5394         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5395 };
5396
5397 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5398            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5399 {
5400         struct net *caller_net = dev_net(ctx->rxq->dev);
5401         int ifindex = ctx->rxq->dev->ifindex;
5402
5403         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5404                                               ifindex, IPPROTO_UDP, netns_id,
5405                                               flags);
5406 }
5407
5408 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5409         .func           = bpf_xdp_sk_lookup_udp,
5410         .gpl_only       = false,
5411         .pkt_access     = true,
5412         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5413         .arg1_type      = ARG_PTR_TO_CTX,
5414         .arg2_type      = ARG_PTR_TO_MEM,
5415         .arg3_type      = ARG_CONST_SIZE,
5416         .arg4_type      = ARG_ANYTHING,
5417         .arg5_type      = ARG_ANYTHING,
5418 };
5419
5420 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5421            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5422 {
5423         struct net *caller_net = dev_net(ctx->rxq->dev);
5424         int ifindex = ctx->rxq->dev->ifindex;
5425
5426         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5427                                                ifindex, IPPROTO_TCP, netns_id,
5428                                                flags);
5429 }
5430
5431 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5432         .func           = bpf_xdp_skc_lookup_tcp,
5433         .gpl_only       = false,
5434         .pkt_access     = true,
5435         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5436         .arg1_type      = ARG_PTR_TO_CTX,
5437         .arg2_type      = ARG_PTR_TO_MEM,
5438         .arg3_type      = ARG_CONST_SIZE,
5439         .arg4_type      = ARG_ANYTHING,
5440         .arg5_type      = ARG_ANYTHING,
5441 };
5442
5443 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5444            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5445 {
5446         struct net *caller_net = dev_net(ctx->rxq->dev);
5447         int ifindex = ctx->rxq->dev->ifindex;
5448
5449         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5450                                               ifindex, IPPROTO_TCP, netns_id,
5451                                               flags);
5452 }
5453
5454 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5455         .func           = bpf_xdp_sk_lookup_tcp,
5456         .gpl_only       = false,
5457         .pkt_access     = true,
5458         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5459         .arg1_type      = ARG_PTR_TO_CTX,
5460         .arg2_type      = ARG_PTR_TO_MEM,
5461         .arg3_type      = ARG_CONST_SIZE,
5462         .arg4_type      = ARG_ANYTHING,
5463         .arg5_type      = ARG_ANYTHING,
5464 };
5465
5466 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5467            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5468 {
5469         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5470                                                sock_net(ctx->sk), 0,
5471                                                IPPROTO_TCP, netns_id, flags);
5472 }
5473
5474 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5475         .func           = bpf_sock_addr_skc_lookup_tcp,
5476         .gpl_only       = false,
5477         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5478         .arg1_type      = ARG_PTR_TO_CTX,
5479         .arg2_type      = ARG_PTR_TO_MEM,
5480         .arg3_type      = ARG_CONST_SIZE,
5481         .arg4_type      = ARG_ANYTHING,
5482         .arg5_type      = ARG_ANYTHING,
5483 };
5484
5485 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5486            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5487 {
5488         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5489                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
5490                                               netns_id, flags);
5491 }
5492
5493 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5494         .func           = bpf_sock_addr_sk_lookup_tcp,
5495         .gpl_only       = false,
5496         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5497         .arg1_type      = ARG_PTR_TO_CTX,
5498         .arg2_type      = ARG_PTR_TO_MEM,
5499         .arg3_type      = ARG_CONST_SIZE,
5500         .arg4_type      = ARG_ANYTHING,
5501         .arg5_type      = ARG_ANYTHING,
5502 };
5503
5504 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5505            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5506 {
5507         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5508                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
5509                                               netns_id, flags);
5510 }
5511
5512 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5513         .func           = bpf_sock_addr_sk_lookup_udp,
5514         .gpl_only       = false,
5515         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5516         .arg1_type      = ARG_PTR_TO_CTX,
5517         .arg2_type      = ARG_PTR_TO_MEM,
5518         .arg3_type      = ARG_CONST_SIZE,
5519         .arg4_type      = ARG_ANYTHING,
5520         .arg5_type      = ARG_ANYTHING,
5521 };
5522
5523 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5524                                   struct bpf_insn_access_aux *info)
5525 {
5526         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5527                                           icsk_retransmits))
5528                 return false;
5529
5530         if (off % size != 0)
5531                 return false;
5532
5533         switch (off) {
5534         case offsetof(struct bpf_tcp_sock, bytes_received):
5535         case offsetof(struct bpf_tcp_sock, bytes_acked):
5536                 return size == sizeof(__u64);
5537         default:
5538                 return size == sizeof(__u32);
5539         }
5540 }
5541
5542 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5543                                     const struct bpf_insn *si,
5544                                     struct bpf_insn *insn_buf,
5545                                     struct bpf_prog *prog, u32 *target_size)
5546 {
5547         struct bpf_insn *insn = insn_buf;
5548
5549 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
5550         do {                                                            \
5551                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, FIELD) >     \
5552                              FIELD_SIZEOF(struct bpf_tcp_sock, FIELD)); \
5553                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5554                                       si->dst_reg, si->src_reg,         \
5555                                       offsetof(struct tcp_sock, FIELD)); \
5556         } while (0)
5557
5558 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
5559         do {                                                            \
5560                 BUILD_BUG_ON(FIELD_SIZEOF(struct inet_connection_sock,  \
5561                                           FIELD) >                      \
5562                              FIELD_SIZEOF(struct bpf_tcp_sock, FIELD)); \
5563                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
5564                                         struct inet_connection_sock,    \
5565                                         FIELD),                         \
5566                                       si->dst_reg, si->src_reg,         \
5567                                       offsetof(                         \
5568                                         struct inet_connection_sock,    \
5569                                         FIELD));                        \
5570         } while (0)
5571
5572         if (insn > insn_buf)
5573                 return insn - insn_buf;
5574
5575         switch (si->off) {
5576         case offsetof(struct bpf_tcp_sock, rtt_min):
5577                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
5578                              sizeof(struct minmax));
5579                 BUILD_BUG_ON(sizeof(struct minmax) <
5580                              sizeof(struct minmax_sample));
5581
5582                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5583                                       offsetof(struct tcp_sock, rtt_min) +
5584                                       offsetof(struct minmax_sample, v));
5585                 break;
5586         case offsetof(struct bpf_tcp_sock, snd_cwnd):
5587                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5588                 break;
5589         case offsetof(struct bpf_tcp_sock, srtt_us):
5590                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
5591                 break;
5592         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5593                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5594                 break;
5595         case offsetof(struct bpf_tcp_sock, rcv_nxt):
5596                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5597                 break;
5598         case offsetof(struct bpf_tcp_sock, snd_nxt):
5599                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5600                 break;
5601         case offsetof(struct bpf_tcp_sock, snd_una):
5602                 BPF_TCP_SOCK_GET_COMMON(snd_una);
5603                 break;
5604         case offsetof(struct bpf_tcp_sock, mss_cache):
5605                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
5606                 break;
5607         case offsetof(struct bpf_tcp_sock, ecn_flags):
5608                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5609                 break;
5610         case offsetof(struct bpf_tcp_sock, rate_delivered):
5611                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5612                 break;
5613         case offsetof(struct bpf_tcp_sock, rate_interval_us):
5614                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5615                 break;
5616         case offsetof(struct bpf_tcp_sock, packets_out):
5617                 BPF_TCP_SOCK_GET_COMMON(packets_out);
5618                 break;
5619         case offsetof(struct bpf_tcp_sock, retrans_out):
5620                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
5621                 break;
5622         case offsetof(struct bpf_tcp_sock, total_retrans):
5623                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
5624                 break;
5625         case offsetof(struct bpf_tcp_sock, segs_in):
5626                 BPF_TCP_SOCK_GET_COMMON(segs_in);
5627                 break;
5628         case offsetof(struct bpf_tcp_sock, data_segs_in):
5629                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5630                 break;
5631         case offsetof(struct bpf_tcp_sock, segs_out):
5632                 BPF_TCP_SOCK_GET_COMMON(segs_out);
5633                 break;
5634         case offsetof(struct bpf_tcp_sock, data_segs_out):
5635                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5636                 break;
5637         case offsetof(struct bpf_tcp_sock, lost_out):
5638                 BPF_TCP_SOCK_GET_COMMON(lost_out);
5639                 break;
5640         case offsetof(struct bpf_tcp_sock, sacked_out):
5641                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
5642                 break;
5643         case offsetof(struct bpf_tcp_sock, bytes_received):
5644                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
5645                 break;
5646         case offsetof(struct bpf_tcp_sock, bytes_acked):
5647                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5648                 break;
5649         case offsetof(struct bpf_tcp_sock, dsack_dups):
5650                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5651                 break;
5652         case offsetof(struct bpf_tcp_sock, delivered):
5653                 BPF_TCP_SOCK_GET_COMMON(delivered);
5654                 break;
5655         case offsetof(struct bpf_tcp_sock, delivered_ce):
5656                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5657                 break;
5658         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5659                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5660                 break;
5661         }
5662
5663         return insn - insn_buf;
5664 }
5665
5666 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5667 {
5668         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5669                 return (unsigned long)sk;
5670
5671         return (unsigned long)NULL;
5672 }
5673
5674 const struct bpf_func_proto bpf_tcp_sock_proto = {
5675         .func           = bpf_tcp_sock,
5676         .gpl_only       = false,
5677         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
5678         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5679 };
5680
5681 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5682 {
5683         sk = sk_to_full_sk(sk);
5684
5685         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5686                 return (unsigned long)sk;
5687
5688         return (unsigned long)NULL;
5689 }
5690
5691 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5692         .func           = bpf_get_listener_sock,
5693         .gpl_only       = false,
5694         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5695         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5696 };
5697
5698 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5699 {
5700         unsigned int iphdr_len;
5701
5702         if (skb->protocol == cpu_to_be16(ETH_P_IP))
5703                 iphdr_len = sizeof(struct iphdr);
5704         else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5705                 iphdr_len = sizeof(struct ipv6hdr);
5706         else
5707                 return 0;
5708
5709         if (skb_headlen(skb) < iphdr_len)
5710                 return 0;
5711
5712         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5713                 return 0;
5714
5715         return INET_ECN_set_ce(skb);
5716 }
5717
5718 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5719                                   struct bpf_insn_access_aux *info)
5720 {
5721         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5722                 return false;
5723
5724         if (off % size != 0)
5725                 return false;
5726
5727         switch (off) {
5728         default:
5729                 return size == sizeof(__u32);
5730         }
5731 }
5732
5733 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5734                                     const struct bpf_insn *si,
5735                                     struct bpf_insn *insn_buf,
5736                                     struct bpf_prog *prog, u32 *target_size)
5737 {
5738         struct bpf_insn *insn = insn_buf;
5739
5740 #define BPF_XDP_SOCK_GET(FIELD)                                         \
5741         do {                                                            \
5742                 BUILD_BUG_ON(FIELD_SIZEOF(struct xdp_sock, FIELD) >     \
5743                              FIELD_SIZEOF(struct bpf_xdp_sock, FIELD)); \
5744                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5745                                       si->dst_reg, si->src_reg,         \
5746                                       offsetof(struct xdp_sock, FIELD)); \
5747         } while (0)
5748
5749         switch (si->off) {
5750         case offsetof(struct bpf_xdp_sock, queue_id):
5751                 BPF_XDP_SOCK_GET(queue_id);
5752                 break;
5753         }
5754
5755         return insn - insn_buf;
5756 }
5757
5758 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5759         .func           = bpf_skb_ecn_set_ce,
5760         .gpl_only       = false,
5761         .ret_type       = RET_INTEGER,
5762         .arg1_type      = ARG_PTR_TO_CTX,
5763 };
5764
5765 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5766            struct tcphdr *, th, u32, th_len)
5767 {
5768 #ifdef CONFIG_SYN_COOKIES
5769         u32 cookie;
5770         int ret;
5771
5772         if (unlikely(th_len < sizeof(*th)))
5773                 return -EINVAL;
5774
5775         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5776         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5777                 return -EINVAL;
5778
5779         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5780                 return -EINVAL;
5781
5782         if (!th->ack || th->rst || th->syn)
5783                 return -ENOENT;
5784
5785         if (tcp_synq_no_recent_overflow(sk))
5786                 return -ENOENT;
5787
5788         cookie = ntohl(th->ack_seq) - 1;
5789
5790         switch (sk->sk_family) {
5791         case AF_INET:
5792                 if (unlikely(iph_len < sizeof(struct iphdr)))
5793                         return -EINVAL;
5794
5795                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5796                 break;
5797
5798 #if IS_BUILTIN(CONFIG_IPV6)
5799         case AF_INET6:
5800                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5801                         return -EINVAL;
5802
5803                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5804                 break;
5805 #endif /* CONFIG_IPV6 */
5806
5807         default:
5808                 return -EPROTONOSUPPORT;
5809         }
5810
5811         if (ret > 0)
5812                 return 0;
5813
5814         return -ENOENT;
5815 #else
5816         return -ENOTSUPP;
5817 #endif
5818 }
5819
5820 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5821         .func           = bpf_tcp_check_syncookie,
5822         .gpl_only       = true,
5823         .pkt_access     = true,
5824         .ret_type       = RET_INTEGER,
5825         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5826         .arg2_type      = ARG_PTR_TO_MEM,
5827         .arg3_type      = ARG_CONST_SIZE,
5828         .arg4_type      = ARG_PTR_TO_MEM,
5829         .arg5_type      = ARG_CONST_SIZE,
5830 };
5831
5832 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5833            struct tcphdr *, th, u32, th_len)
5834 {
5835 #ifdef CONFIG_SYN_COOKIES
5836         u32 cookie;
5837         u16 mss;
5838
5839         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5840                 return -EINVAL;
5841
5842         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5843                 return -EINVAL;
5844
5845         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5846                 return -ENOENT;
5847
5848         if (!th->syn || th->ack || th->fin || th->rst)
5849                 return -EINVAL;
5850
5851         if (unlikely(iph_len < sizeof(struct iphdr)))
5852                 return -EINVAL;
5853
5854         /* Both struct iphdr and struct ipv6hdr have the version field at the
5855          * same offset so we can cast to the shorter header (struct iphdr).
5856          */
5857         switch (((struct iphdr *)iph)->version) {
5858         case 4:
5859                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
5860                         return -EINVAL;
5861
5862                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
5863                 break;
5864
5865 #if IS_BUILTIN(CONFIG_IPV6)
5866         case 6:
5867                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5868                         return -EINVAL;
5869
5870                 if (sk->sk_family != AF_INET6)
5871                         return -EINVAL;
5872
5873                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
5874                 break;
5875 #endif /* CONFIG_IPV6 */
5876
5877         default:
5878                 return -EPROTONOSUPPORT;
5879         }
5880         if (mss == 0)
5881                 return -ENOENT;
5882
5883         return cookie | ((u64)mss << 32);
5884 #else
5885         return -EOPNOTSUPP;
5886 #endif /* CONFIG_SYN_COOKIES */
5887 }
5888
5889 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
5890         .func           = bpf_tcp_gen_syncookie,
5891         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
5892         .pkt_access     = true,
5893         .ret_type       = RET_INTEGER,
5894         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5895         .arg2_type      = ARG_PTR_TO_MEM,
5896         .arg3_type      = ARG_CONST_SIZE,
5897         .arg4_type      = ARG_PTR_TO_MEM,
5898         .arg5_type      = ARG_CONST_SIZE,
5899 };
5900
5901 #endif /* CONFIG_INET */
5902
5903 bool bpf_helper_changes_pkt_data(void *func)
5904 {
5905         if (func == bpf_skb_vlan_push ||
5906             func == bpf_skb_vlan_pop ||
5907             func == bpf_skb_store_bytes ||
5908             func == bpf_skb_change_proto ||
5909             func == bpf_skb_change_head ||
5910             func == sk_skb_change_head ||
5911             func == bpf_skb_change_tail ||
5912             func == sk_skb_change_tail ||
5913             func == bpf_skb_adjust_room ||
5914             func == bpf_skb_pull_data ||
5915             func == sk_skb_pull_data ||
5916             func == bpf_clone_redirect ||
5917             func == bpf_l3_csum_replace ||
5918             func == bpf_l4_csum_replace ||
5919             func == bpf_xdp_adjust_head ||
5920             func == bpf_xdp_adjust_meta ||
5921             func == bpf_msg_pull_data ||
5922             func == bpf_msg_push_data ||
5923             func == bpf_msg_pop_data ||
5924             func == bpf_xdp_adjust_tail ||
5925 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5926             func == bpf_lwt_seg6_store_bytes ||
5927             func == bpf_lwt_seg6_adjust_srh ||
5928             func == bpf_lwt_seg6_action ||
5929 #endif
5930             func == bpf_lwt_in_push_encap ||
5931             func == bpf_lwt_xmit_push_encap)
5932                 return true;
5933
5934         return false;
5935 }
5936
5937 static const struct bpf_func_proto *
5938 bpf_base_func_proto(enum bpf_func_id func_id)
5939 {
5940         switch (func_id) {
5941         case BPF_FUNC_map_lookup_elem:
5942                 return &bpf_map_lookup_elem_proto;
5943         case BPF_FUNC_map_update_elem:
5944                 return &bpf_map_update_elem_proto;
5945         case BPF_FUNC_map_delete_elem:
5946                 return &bpf_map_delete_elem_proto;
5947         case BPF_FUNC_map_push_elem:
5948                 return &bpf_map_push_elem_proto;
5949         case BPF_FUNC_map_pop_elem:
5950                 return &bpf_map_pop_elem_proto;
5951         case BPF_FUNC_map_peek_elem:
5952                 return &bpf_map_peek_elem_proto;
5953         case BPF_FUNC_get_prandom_u32:
5954                 return &bpf_get_prandom_u32_proto;
5955         case BPF_FUNC_get_smp_processor_id:
5956                 return &bpf_get_raw_smp_processor_id_proto;
5957         case BPF_FUNC_get_numa_node_id:
5958                 return &bpf_get_numa_node_id_proto;
5959         case BPF_FUNC_tail_call:
5960                 return &bpf_tail_call_proto;
5961         case BPF_FUNC_ktime_get_ns:
5962                 return &bpf_ktime_get_ns_proto;
5963         default:
5964                 break;
5965         }
5966
5967         if (!capable(CAP_SYS_ADMIN))
5968                 return NULL;
5969
5970         switch (func_id) {
5971         case BPF_FUNC_spin_lock:
5972                 return &bpf_spin_lock_proto;
5973         case BPF_FUNC_spin_unlock:
5974                 return &bpf_spin_unlock_proto;
5975         case BPF_FUNC_trace_printk:
5976                 return bpf_get_trace_printk_proto();
5977         default:
5978                 return NULL;
5979         }
5980 }
5981
5982 static const struct bpf_func_proto *
5983 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5984 {
5985         switch (func_id) {
5986         /* inet and inet6 sockets are created in a process
5987          * context so there is always a valid uid/gid
5988          */
5989         case BPF_FUNC_get_current_uid_gid:
5990                 return &bpf_get_current_uid_gid_proto;
5991         case BPF_FUNC_get_local_storage:
5992                 return &bpf_get_local_storage_proto;
5993         default:
5994                 return bpf_base_func_proto(func_id);
5995         }
5996 }
5997
5998 static const struct bpf_func_proto *
5999 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6000 {
6001         switch (func_id) {
6002         /* inet and inet6 sockets are created in a process
6003          * context so there is always a valid uid/gid
6004          */
6005         case BPF_FUNC_get_current_uid_gid:
6006                 return &bpf_get_current_uid_gid_proto;
6007         case BPF_FUNC_bind:
6008                 switch (prog->expected_attach_type) {
6009                 case BPF_CGROUP_INET4_CONNECT:
6010                 case BPF_CGROUP_INET6_CONNECT:
6011                         return &bpf_bind_proto;
6012                 default:
6013                         return NULL;
6014                 }
6015         case BPF_FUNC_get_socket_cookie:
6016                 return &bpf_get_socket_cookie_sock_addr_proto;
6017         case BPF_FUNC_get_local_storage:
6018                 return &bpf_get_local_storage_proto;
6019 #ifdef CONFIG_INET
6020         case BPF_FUNC_sk_lookup_tcp:
6021                 return &bpf_sock_addr_sk_lookup_tcp_proto;
6022         case BPF_FUNC_sk_lookup_udp:
6023                 return &bpf_sock_addr_sk_lookup_udp_proto;
6024         case BPF_FUNC_sk_release:
6025                 return &bpf_sk_release_proto;
6026         case BPF_FUNC_skc_lookup_tcp:
6027                 return &bpf_sock_addr_skc_lookup_tcp_proto;
6028 #endif /* CONFIG_INET */
6029         case BPF_FUNC_sk_storage_get:
6030                 return &bpf_sk_storage_get_proto;
6031         case BPF_FUNC_sk_storage_delete:
6032                 return &bpf_sk_storage_delete_proto;
6033         default:
6034                 return bpf_base_func_proto(func_id);
6035         }
6036 }
6037
6038 static const struct bpf_func_proto *
6039 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6040 {
6041         switch (func_id) {
6042         case BPF_FUNC_skb_load_bytes:
6043                 return &bpf_skb_load_bytes_proto;
6044         case BPF_FUNC_skb_load_bytes_relative:
6045                 return &bpf_skb_load_bytes_relative_proto;
6046         case BPF_FUNC_get_socket_cookie:
6047                 return &bpf_get_socket_cookie_proto;
6048         case BPF_FUNC_get_socket_uid:
6049                 return &bpf_get_socket_uid_proto;
6050         case BPF_FUNC_perf_event_output:
6051                 return &bpf_skb_event_output_proto;
6052         default:
6053                 return bpf_base_func_proto(func_id);
6054         }
6055 }
6056
6057 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6058 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6059
6060 static const struct bpf_func_proto *
6061 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6062 {
6063         switch (func_id) {
6064         case BPF_FUNC_get_local_storage:
6065                 return &bpf_get_local_storage_proto;
6066         case BPF_FUNC_sk_fullsock:
6067                 return &bpf_sk_fullsock_proto;
6068         case BPF_FUNC_sk_storage_get:
6069                 return &bpf_sk_storage_get_proto;
6070         case BPF_FUNC_sk_storage_delete:
6071                 return &bpf_sk_storage_delete_proto;
6072         case BPF_FUNC_perf_event_output:
6073                 return &bpf_skb_event_output_proto;
6074 #ifdef CONFIG_SOCK_CGROUP_DATA
6075         case BPF_FUNC_skb_cgroup_id:
6076                 return &bpf_skb_cgroup_id_proto;
6077 #endif
6078 #ifdef CONFIG_INET
6079         case BPF_FUNC_tcp_sock:
6080                 return &bpf_tcp_sock_proto;
6081         case BPF_FUNC_get_listener_sock:
6082                 return &bpf_get_listener_sock_proto;
6083         case BPF_FUNC_skb_ecn_set_ce:
6084                 return &bpf_skb_ecn_set_ce_proto;
6085 #endif
6086         default:
6087                 return sk_filter_func_proto(func_id, prog);
6088         }
6089 }
6090
6091 static const struct bpf_func_proto *
6092 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6093 {
6094         switch (func_id) {
6095         case BPF_FUNC_skb_store_bytes:
6096                 return &bpf_skb_store_bytes_proto;
6097         case BPF_FUNC_skb_load_bytes:
6098                 return &bpf_skb_load_bytes_proto;
6099         case BPF_FUNC_skb_load_bytes_relative:
6100                 return &bpf_skb_load_bytes_relative_proto;
6101         case BPF_FUNC_skb_pull_data:
6102                 return &bpf_skb_pull_data_proto;
6103         case BPF_FUNC_csum_diff:
6104                 return &bpf_csum_diff_proto;
6105         case BPF_FUNC_csum_update:
6106                 return &bpf_csum_update_proto;
6107         case BPF_FUNC_l3_csum_replace:
6108                 return &bpf_l3_csum_replace_proto;
6109         case BPF_FUNC_l4_csum_replace:
6110                 return &bpf_l4_csum_replace_proto;
6111         case BPF_FUNC_clone_redirect:
6112                 return &bpf_clone_redirect_proto;
6113         case BPF_FUNC_get_cgroup_classid:
6114                 return &bpf_get_cgroup_classid_proto;
6115         case BPF_FUNC_skb_vlan_push:
6116                 return &bpf_skb_vlan_push_proto;
6117         case BPF_FUNC_skb_vlan_pop:
6118                 return &bpf_skb_vlan_pop_proto;
6119         case BPF_FUNC_skb_change_proto:
6120                 return &bpf_skb_change_proto_proto;
6121         case BPF_FUNC_skb_change_type:
6122                 return &bpf_skb_change_type_proto;
6123         case BPF_FUNC_skb_adjust_room:
6124                 return &bpf_skb_adjust_room_proto;
6125         case BPF_FUNC_skb_change_tail:
6126                 return &bpf_skb_change_tail_proto;
6127         case BPF_FUNC_skb_get_tunnel_key:
6128                 return &bpf_skb_get_tunnel_key_proto;
6129         case BPF_FUNC_skb_set_tunnel_key:
6130                 return bpf_get_skb_set_tunnel_proto(func_id);
6131         case BPF_FUNC_skb_get_tunnel_opt:
6132                 return &bpf_skb_get_tunnel_opt_proto;
6133         case BPF_FUNC_skb_set_tunnel_opt:
6134                 return bpf_get_skb_set_tunnel_proto(func_id);
6135         case BPF_FUNC_redirect:
6136                 return &bpf_redirect_proto;
6137         case BPF_FUNC_get_route_realm:
6138                 return &bpf_get_route_realm_proto;
6139         case BPF_FUNC_get_hash_recalc:
6140                 return &bpf_get_hash_recalc_proto;
6141         case BPF_FUNC_set_hash_invalid:
6142                 return &bpf_set_hash_invalid_proto;
6143         case BPF_FUNC_set_hash:
6144                 return &bpf_set_hash_proto;
6145         case BPF_FUNC_perf_event_output:
6146                 return &bpf_skb_event_output_proto;
6147         case BPF_FUNC_get_smp_processor_id:
6148                 return &bpf_get_smp_processor_id_proto;
6149         case BPF_FUNC_skb_under_cgroup:
6150                 return &bpf_skb_under_cgroup_proto;
6151         case BPF_FUNC_get_socket_cookie:
6152                 return &bpf_get_socket_cookie_proto;
6153         case BPF_FUNC_get_socket_uid:
6154                 return &bpf_get_socket_uid_proto;
6155         case BPF_FUNC_fib_lookup:
6156                 return &bpf_skb_fib_lookup_proto;
6157         case BPF_FUNC_sk_fullsock:
6158                 return &bpf_sk_fullsock_proto;
6159         case BPF_FUNC_sk_storage_get:
6160                 return &bpf_sk_storage_get_proto;
6161         case BPF_FUNC_sk_storage_delete:
6162                 return &bpf_sk_storage_delete_proto;
6163 #ifdef CONFIG_XFRM
6164         case BPF_FUNC_skb_get_xfrm_state:
6165                 return &bpf_skb_get_xfrm_state_proto;
6166 #endif
6167 #ifdef CONFIG_SOCK_CGROUP_DATA
6168         case BPF_FUNC_skb_cgroup_id:
6169                 return &bpf_skb_cgroup_id_proto;
6170         case BPF_FUNC_skb_ancestor_cgroup_id:
6171                 return &bpf_skb_ancestor_cgroup_id_proto;
6172 #endif
6173 #ifdef CONFIG_INET
6174         case BPF_FUNC_sk_lookup_tcp:
6175                 return &bpf_sk_lookup_tcp_proto;
6176         case BPF_FUNC_sk_lookup_udp:
6177                 return &bpf_sk_lookup_udp_proto;
6178         case BPF_FUNC_sk_release:
6179                 return &bpf_sk_release_proto;
6180         case BPF_FUNC_tcp_sock:
6181                 return &bpf_tcp_sock_proto;
6182         case BPF_FUNC_get_listener_sock:
6183                 return &bpf_get_listener_sock_proto;
6184         case BPF_FUNC_skc_lookup_tcp:
6185                 return &bpf_skc_lookup_tcp_proto;
6186         case BPF_FUNC_tcp_check_syncookie:
6187                 return &bpf_tcp_check_syncookie_proto;
6188         case BPF_FUNC_skb_ecn_set_ce:
6189                 return &bpf_skb_ecn_set_ce_proto;
6190         case BPF_FUNC_tcp_gen_syncookie:
6191                 return &bpf_tcp_gen_syncookie_proto;
6192 #endif
6193         default:
6194                 return bpf_base_func_proto(func_id);
6195         }
6196 }
6197
6198 static const struct bpf_func_proto *
6199 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6200 {
6201         switch (func_id) {
6202         case BPF_FUNC_perf_event_output:
6203                 return &bpf_xdp_event_output_proto;
6204         case BPF_FUNC_get_smp_processor_id:
6205                 return &bpf_get_smp_processor_id_proto;
6206         case BPF_FUNC_csum_diff:
6207                 return &bpf_csum_diff_proto;
6208         case BPF_FUNC_xdp_adjust_head:
6209                 return &bpf_xdp_adjust_head_proto;
6210         case BPF_FUNC_xdp_adjust_meta:
6211                 return &bpf_xdp_adjust_meta_proto;
6212         case BPF_FUNC_redirect:
6213                 return &bpf_xdp_redirect_proto;
6214         case BPF_FUNC_redirect_map:
6215                 return &bpf_xdp_redirect_map_proto;
6216         case BPF_FUNC_xdp_adjust_tail:
6217                 return &bpf_xdp_adjust_tail_proto;
6218         case BPF_FUNC_fib_lookup:
6219                 return &bpf_xdp_fib_lookup_proto;
6220 #ifdef CONFIG_INET
6221         case BPF_FUNC_sk_lookup_udp:
6222                 return &bpf_xdp_sk_lookup_udp_proto;
6223         case BPF_FUNC_sk_lookup_tcp:
6224                 return &bpf_xdp_sk_lookup_tcp_proto;
6225         case BPF_FUNC_sk_release:
6226                 return &bpf_sk_release_proto;
6227         case BPF_FUNC_skc_lookup_tcp:
6228                 return &bpf_xdp_skc_lookup_tcp_proto;
6229         case BPF_FUNC_tcp_check_syncookie:
6230                 return &bpf_tcp_check_syncookie_proto;
6231         case BPF_FUNC_tcp_gen_syncookie:
6232                 return &bpf_tcp_gen_syncookie_proto;
6233 #endif
6234         default:
6235                 return bpf_base_func_proto(func_id);
6236         }
6237 }
6238
6239 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6240 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6241
6242 static const struct bpf_func_proto *
6243 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6244 {
6245         switch (func_id) {
6246         case BPF_FUNC_setsockopt:
6247                 return &bpf_setsockopt_proto;
6248         case BPF_FUNC_getsockopt:
6249                 return &bpf_getsockopt_proto;
6250         case BPF_FUNC_sock_ops_cb_flags_set:
6251                 return &bpf_sock_ops_cb_flags_set_proto;
6252         case BPF_FUNC_sock_map_update:
6253                 return &bpf_sock_map_update_proto;
6254         case BPF_FUNC_sock_hash_update:
6255                 return &bpf_sock_hash_update_proto;
6256         case BPF_FUNC_get_socket_cookie:
6257                 return &bpf_get_socket_cookie_sock_ops_proto;
6258         case BPF_FUNC_get_local_storage:
6259                 return &bpf_get_local_storage_proto;
6260         case BPF_FUNC_perf_event_output:
6261                 return &bpf_sockopt_event_output_proto;
6262         case BPF_FUNC_sk_storage_get:
6263                 return &bpf_sk_storage_get_proto;
6264         case BPF_FUNC_sk_storage_delete:
6265                 return &bpf_sk_storage_delete_proto;
6266 #ifdef CONFIG_INET
6267         case BPF_FUNC_tcp_sock:
6268                 return &bpf_tcp_sock_proto;
6269 #endif /* CONFIG_INET */
6270         default:
6271                 return bpf_base_func_proto(func_id);
6272         }
6273 }
6274
6275 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6276 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6277
6278 static const struct bpf_func_proto *
6279 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6280 {
6281         switch (func_id) {
6282         case BPF_FUNC_msg_redirect_map:
6283                 return &bpf_msg_redirect_map_proto;
6284         case BPF_FUNC_msg_redirect_hash:
6285                 return &bpf_msg_redirect_hash_proto;
6286         case BPF_FUNC_msg_apply_bytes:
6287                 return &bpf_msg_apply_bytes_proto;
6288         case BPF_FUNC_msg_cork_bytes:
6289                 return &bpf_msg_cork_bytes_proto;
6290         case BPF_FUNC_msg_pull_data:
6291                 return &bpf_msg_pull_data_proto;
6292         case BPF_FUNC_msg_push_data:
6293                 return &bpf_msg_push_data_proto;
6294         case BPF_FUNC_msg_pop_data:
6295                 return &bpf_msg_pop_data_proto;
6296         default:
6297                 return bpf_base_func_proto(func_id);
6298         }
6299 }
6300
6301 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6302 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6303
6304 static const struct bpf_func_proto *
6305 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6306 {
6307         switch (func_id) {
6308         case BPF_FUNC_skb_store_bytes:
6309                 return &bpf_skb_store_bytes_proto;
6310         case BPF_FUNC_skb_load_bytes:
6311                 return &bpf_skb_load_bytes_proto;
6312         case BPF_FUNC_skb_pull_data:
6313                 return &sk_skb_pull_data_proto;
6314         case BPF_FUNC_skb_change_tail:
6315                 return &sk_skb_change_tail_proto;
6316         case BPF_FUNC_skb_change_head:
6317                 return &sk_skb_change_head_proto;
6318         case BPF_FUNC_get_socket_cookie:
6319                 return &bpf_get_socket_cookie_proto;
6320         case BPF_FUNC_get_socket_uid:
6321                 return &bpf_get_socket_uid_proto;
6322         case BPF_FUNC_sk_redirect_map:
6323                 return &bpf_sk_redirect_map_proto;
6324         case BPF_FUNC_sk_redirect_hash:
6325                 return &bpf_sk_redirect_hash_proto;
6326         case BPF_FUNC_perf_event_output:
6327                 return &bpf_skb_event_output_proto;
6328 #ifdef CONFIG_INET
6329         case BPF_FUNC_sk_lookup_tcp:
6330                 return &bpf_sk_lookup_tcp_proto;
6331         case BPF_FUNC_sk_lookup_udp:
6332                 return &bpf_sk_lookup_udp_proto;
6333         case BPF_FUNC_sk_release:
6334                 return &bpf_sk_release_proto;
6335         case BPF_FUNC_skc_lookup_tcp:
6336                 return &bpf_skc_lookup_tcp_proto;
6337 #endif
6338         default:
6339                 return bpf_base_func_proto(func_id);
6340         }
6341 }
6342
6343 static const struct bpf_func_proto *
6344 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6345 {
6346         switch (func_id) {
6347         case BPF_FUNC_skb_load_bytes:
6348                 return &bpf_flow_dissector_load_bytes_proto;
6349         default:
6350                 return bpf_base_func_proto(func_id);
6351         }
6352 }
6353
6354 static const struct bpf_func_proto *
6355 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6356 {
6357         switch (func_id) {
6358         case BPF_FUNC_skb_load_bytes:
6359                 return &bpf_skb_load_bytes_proto;
6360         case BPF_FUNC_skb_pull_data:
6361                 return &bpf_skb_pull_data_proto;
6362         case BPF_FUNC_csum_diff:
6363                 return &bpf_csum_diff_proto;
6364         case BPF_FUNC_get_cgroup_classid:
6365                 return &bpf_get_cgroup_classid_proto;
6366         case BPF_FUNC_get_route_realm:
6367                 return &bpf_get_route_realm_proto;
6368         case BPF_FUNC_get_hash_recalc:
6369                 return &bpf_get_hash_recalc_proto;
6370         case BPF_FUNC_perf_event_output:
6371                 return &bpf_skb_event_output_proto;
6372         case BPF_FUNC_get_smp_processor_id:
6373                 return &bpf_get_smp_processor_id_proto;
6374         case BPF_FUNC_skb_under_cgroup:
6375                 return &bpf_skb_under_cgroup_proto;
6376         default:
6377                 return bpf_base_func_proto(func_id);
6378         }
6379 }
6380
6381 static const struct bpf_func_proto *
6382 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6383 {
6384         switch (func_id) {
6385         case BPF_FUNC_lwt_push_encap:
6386                 return &bpf_lwt_in_push_encap_proto;
6387         default:
6388                 return lwt_out_func_proto(func_id, prog);
6389         }
6390 }
6391
6392 static const struct bpf_func_proto *
6393 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6394 {
6395         switch (func_id) {
6396         case BPF_FUNC_skb_get_tunnel_key:
6397                 return &bpf_skb_get_tunnel_key_proto;
6398         case BPF_FUNC_skb_set_tunnel_key:
6399                 return bpf_get_skb_set_tunnel_proto(func_id);
6400         case BPF_FUNC_skb_get_tunnel_opt:
6401                 return &bpf_skb_get_tunnel_opt_proto;
6402         case BPF_FUNC_skb_set_tunnel_opt:
6403                 return bpf_get_skb_set_tunnel_proto(func_id);
6404         case BPF_FUNC_redirect:
6405                 return &bpf_redirect_proto;
6406         case BPF_FUNC_clone_redirect:
6407                 return &bpf_clone_redirect_proto;
6408         case BPF_FUNC_skb_change_tail:
6409                 return &bpf_skb_change_tail_proto;
6410         case BPF_FUNC_skb_change_head:
6411                 return &bpf_skb_change_head_proto;
6412         case BPF_FUNC_skb_store_bytes:
6413                 return &bpf_skb_store_bytes_proto;
6414         case BPF_FUNC_csum_update:
6415                 return &bpf_csum_update_proto;
6416         case BPF_FUNC_l3_csum_replace:
6417                 return &bpf_l3_csum_replace_proto;
6418         case BPF_FUNC_l4_csum_replace:
6419                 return &bpf_l4_csum_replace_proto;
6420         case BPF_FUNC_set_hash_invalid:
6421                 return &bpf_set_hash_invalid_proto;
6422         case BPF_FUNC_lwt_push_encap:
6423                 return &bpf_lwt_xmit_push_encap_proto;
6424         default:
6425                 return lwt_out_func_proto(func_id, prog);
6426         }
6427 }
6428
6429 static const struct bpf_func_proto *
6430 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6431 {
6432         switch (func_id) {
6433 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6434         case BPF_FUNC_lwt_seg6_store_bytes:
6435                 return &bpf_lwt_seg6_store_bytes_proto;
6436         case BPF_FUNC_lwt_seg6_action:
6437                 return &bpf_lwt_seg6_action_proto;
6438         case BPF_FUNC_lwt_seg6_adjust_srh:
6439                 return &bpf_lwt_seg6_adjust_srh_proto;
6440 #endif
6441         default:
6442                 return lwt_out_func_proto(func_id, prog);
6443         }
6444 }
6445
6446 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6447                                     const struct bpf_prog *prog,
6448                                     struct bpf_insn_access_aux *info)
6449 {
6450         const int size_default = sizeof(__u32);
6451
6452         if (off < 0 || off >= sizeof(struct __sk_buff))
6453                 return false;
6454
6455         /* The verifier guarantees that size > 0. */
6456         if (off % size != 0)
6457                 return false;
6458
6459         switch (off) {
6460         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6461                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
6462                         return false;
6463                 break;
6464         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6465         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6466         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6467         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6468         case bpf_ctx_range(struct __sk_buff, data):
6469         case bpf_ctx_range(struct __sk_buff, data_meta):
6470         case bpf_ctx_range(struct __sk_buff, data_end):
6471                 if (size != size_default)
6472                         return false;
6473                 break;
6474         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6475                 return false;
6476         case bpf_ctx_range(struct __sk_buff, tstamp):
6477                 if (size != sizeof(__u64))
6478                         return false;
6479                 break;
6480         case offsetof(struct __sk_buff, sk):
6481                 if (type == BPF_WRITE || size != sizeof(__u64))
6482                         return false;
6483                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6484                 break;
6485         default:
6486                 /* Only narrow read access allowed for now. */
6487                 if (type == BPF_WRITE) {
6488                         if (size != size_default)
6489                                 return false;
6490                 } else {
6491                         bpf_ctx_record_field_size(info, size_default);
6492                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6493                                 return false;
6494                 }
6495         }
6496
6497         return true;
6498 }
6499
6500 static bool sk_filter_is_valid_access(int off, int size,
6501                                       enum bpf_access_type type,
6502                                       const struct bpf_prog *prog,
6503                                       struct bpf_insn_access_aux *info)
6504 {
6505         switch (off) {
6506         case bpf_ctx_range(struct __sk_buff, tc_classid):
6507         case bpf_ctx_range(struct __sk_buff, data):
6508         case bpf_ctx_range(struct __sk_buff, data_meta):
6509         case bpf_ctx_range(struct __sk_buff, data_end):
6510         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6511         case bpf_ctx_range(struct __sk_buff, tstamp):
6512         case bpf_ctx_range(struct __sk_buff, wire_len):
6513                 return false;
6514         }
6515
6516         if (type == BPF_WRITE) {
6517                 switch (off) {
6518                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6519                         break;
6520                 default:
6521                         return false;
6522                 }
6523         }
6524
6525         return bpf_skb_is_valid_access(off, size, type, prog, info);
6526 }
6527
6528 static bool cg_skb_is_valid_access(int off, int size,
6529                                    enum bpf_access_type type,
6530                                    const struct bpf_prog *prog,
6531                                    struct bpf_insn_access_aux *info)
6532 {
6533         switch (off) {
6534         case bpf_ctx_range(struct __sk_buff, tc_classid):
6535         case bpf_ctx_range(struct __sk_buff, data_meta):
6536         case bpf_ctx_range(struct __sk_buff, wire_len):
6537                 return false;
6538         case bpf_ctx_range(struct __sk_buff, data):
6539         case bpf_ctx_range(struct __sk_buff, data_end):
6540                 if (!capable(CAP_SYS_ADMIN))
6541                         return false;
6542                 break;
6543         }
6544
6545         if (type == BPF_WRITE) {
6546                 switch (off) {
6547                 case bpf_ctx_range(struct __sk_buff, mark):
6548                 case bpf_ctx_range(struct __sk_buff, priority):
6549                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6550                         break;
6551                 case bpf_ctx_range(struct __sk_buff, tstamp):
6552                         if (!capable(CAP_SYS_ADMIN))
6553                                 return false;
6554                         break;
6555                 default:
6556                         return false;
6557                 }
6558         }
6559
6560         switch (off) {
6561         case bpf_ctx_range(struct __sk_buff, data):
6562                 info->reg_type = PTR_TO_PACKET;
6563                 break;
6564         case bpf_ctx_range(struct __sk_buff, data_end):
6565                 info->reg_type = PTR_TO_PACKET_END;
6566                 break;
6567         }
6568
6569         return bpf_skb_is_valid_access(off, size, type, prog, info);
6570 }
6571
6572 static bool lwt_is_valid_access(int off, int size,
6573                                 enum bpf_access_type type,
6574                                 const struct bpf_prog *prog,
6575                                 struct bpf_insn_access_aux *info)
6576 {
6577         switch (off) {
6578         case bpf_ctx_range(struct __sk_buff, tc_classid):
6579         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6580         case bpf_ctx_range(struct __sk_buff, data_meta):
6581         case bpf_ctx_range(struct __sk_buff, tstamp):
6582         case bpf_ctx_range(struct __sk_buff, wire_len):
6583                 return false;
6584         }
6585
6586         if (type == BPF_WRITE) {
6587                 switch (off) {
6588                 case bpf_ctx_range(struct __sk_buff, mark):
6589                 case bpf_ctx_range(struct __sk_buff, priority):
6590                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6591                         break;
6592                 default:
6593                         return false;
6594                 }
6595         }
6596
6597         switch (off) {
6598         case bpf_ctx_range(struct __sk_buff, data):
6599                 info->reg_type = PTR_TO_PACKET;
6600                 break;
6601         case bpf_ctx_range(struct __sk_buff, data_end):
6602                 info->reg_type = PTR_TO_PACKET_END;
6603                 break;
6604         }
6605
6606         return bpf_skb_is_valid_access(off, size, type, prog, info);
6607 }
6608
6609 /* Attach type specific accesses */
6610 static bool __sock_filter_check_attach_type(int off,
6611                                             enum bpf_access_type access_type,
6612                                             enum bpf_attach_type attach_type)
6613 {
6614         switch (off) {
6615         case offsetof(struct bpf_sock, bound_dev_if):
6616         case offsetof(struct bpf_sock, mark):
6617         case offsetof(struct bpf_sock, priority):
6618                 switch (attach_type) {
6619                 case BPF_CGROUP_INET_SOCK_CREATE:
6620                         goto full_access;
6621                 default:
6622                         return false;
6623                 }
6624         case bpf_ctx_range(struct bpf_sock, src_ip4):
6625                 switch (attach_type) {
6626                 case BPF_CGROUP_INET4_POST_BIND:
6627                         goto read_only;
6628                 default:
6629                         return false;
6630                 }
6631         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6632                 switch (attach_type) {
6633                 case BPF_CGROUP_INET6_POST_BIND:
6634                         goto read_only;
6635                 default:
6636                         return false;
6637                 }
6638         case bpf_ctx_range(struct bpf_sock, src_port):
6639                 switch (attach_type) {
6640                 case BPF_CGROUP_INET4_POST_BIND:
6641                 case BPF_CGROUP_INET6_POST_BIND:
6642                         goto read_only;
6643                 default:
6644                         return false;
6645                 }
6646         }
6647 read_only:
6648         return access_type == BPF_READ;
6649 full_access:
6650         return true;
6651 }
6652
6653 bool bpf_sock_common_is_valid_access(int off, int size,
6654                                      enum bpf_access_type type,
6655                                      struct bpf_insn_access_aux *info)
6656 {
6657         switch (off) {
6658         case bpf_ctx_range_till(struct bpf_sock, type, priority):
6659                 return false;
6660         default:
6661                 return bpf_sock_is_valid_access(off, size, type, info);
6662         }
6663 }
6664
6665 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6666                               struct bpf_insn_access_aux *info)
6667 {
6668         const int size_default = sizeof(__u32);
6669
6670         if (off < 0 || off >= sizeof(struct bpf_sock))
6671                 return false;
6672         if (off % size != 0)
6673                 return false;
6674
6675         switch (off) {
6676         case offsetof(struct bpf_sock, state):
6677         case offsetof(struct bpf_sock, family):
6678         case offsetof(struct bpf_sock, type):
6679         case offsetof(struct bpf_sock, protocol):
6680         case offsetof(struct bpf_sock, dst_port):
6681         case offsetof(struct bpf_sock, src_port):
6682         case bpf_ctx_range(struct bpf_sock, src_ip4):
6683         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6684         case bpf_ctx_range(struct bpf_sock, dst_ip4):
6685         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6686                 bpf_ctx_record_field_size(info, size_default);
6687                 return bpf_ctx_narrow_access_ok(off, size, size_default);
6688         }
6689
6690         return size == size_default;
6691 }
6692
6693 static bool sock_filter_is_valid_access(int off, int size,
6694                                         enum bpf_access_type type,
6695                                         const struct bpf_prog *prog,
6696                                         struct bpf_insn_access_aux *info)
6697 {
6698         if (!bpf_sock_is_valid_access(off, size, type, info))
6699                 return false;
6700         return __sock_filter_check_attach_type(off, type,
6701                                                prog->expected_attach_type);
6702 }
6703
6704 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6705                              const struct bpf_prog *prog)
6706 {
6707         /* Neither direct read nor direct write requires any preliminary
6708          * action.
6709          */
6710         return 0;
6711 }
6712
6713 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6714                                 const struct bpf_prog *prog, int drop_verdict)
6715 {
6716         struct bpf_insn *insn = insn_buf;
6717
6718         if (!direct_write)
6719                 return 0;
6720
6721         /* if (!skb->cloned)
6722          *       goto start;
6723          *
6724          * (Fast-path, otherwise approximation that we might be
6725          *  a clone, do the rest in helper.)
6726          */
6727         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6728         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6729         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6730
6731         /* ret = bpf_skb_pull_data(skb, 0); */
6732         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6733         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6734         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6735                                BPF_FUNC_skb_pull_data);
6736         /* if (!ret)
6737          *      goto restore;
6738          * return TC_ACT_SHOT;
6739          */
6740         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6741         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6742         *insn++ = BPF_EXIT_INSN();
6743
6744         /* restore: */
6745         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6746         /* start: */
6747         *insn++ = prog->insnsi[0];
6748
6749         return insn - insn_buf;
6750 }
6751
6752 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6753                           struct bpf_insn *insn_buf)
6754 {
6755         bool indirect = BPF_MODE(orig->code) == BPF_IND;
6756         struct bpf_insn *insn = insn_buf;
6757
6758         /* We're guaranteed here that CTX is in R6. */
6759         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6760         if (!indirect) {
6761                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6762         } else {
6763                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6764                 if (orig->imm)
6765                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6766         }
6767
6768         switch (BPF_SIZE(orig->code)) {
6769         case BPF_B:
6770                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6771                 break;
6772         case BPF_H:
6773                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6774                 break;
6775         case BPF_W:
6776                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6777                 break;
6778         }
6779
6780         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6781         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6782         *insn++ = BPF_EXIT_INSN();
6783
6784         return insn - insn_buf;
6785 }
6786
6787 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6788                                const struct bpf_prog *prog)
6789 {
6790         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6791 }
6792
6793 static bool tc_cls_act_is_valid_access(int off, int size,
6794                                        enum bpf_access_type type,
6795                                        const struct bpf_prog *prog,
6796                                        struct bpf_insn_access_aux *info)
6797 {
6798         if (type == BPF_WRITE) {
6799                 switch (off) {
6800                 case bpf_ctx_range(struct __sk_buff, mark):
6801                 case bpf_ctx_range(struct __sk_buff, tc_index):
6802                 case bpf_ctx_range(struct __sk_buff, priority):
6803                 case bpf_ctx_range(struct __sk_buff, tc_classid):
6804                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6805                 case bpf_ctx_range(struct __sk_buff, tstamp):
6806                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
6807                         break;
6808                 default:
6809                         return false;
6810                 }
6811         }
6812
6813         switch (off) {
6814         case bpf_ctx_range(struct __sk_buff, data):
6815                 info->reg_type = PTR_TO_PACKET;
6816                 break;
6817         case bpf_ctx_range(struct __sk_buff, data_meta):
6818                 info->reg_type = PTR_TO_PACKET_META;
6819                 break;
6820         case bpf_ctx_range(struct __sk_buff, data_end):
6821                 info->reg_type = PTR_TO_PACKET_END;
6822                 break;
6823         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6824                 return false;
6825         }
6826
6827         return bpf_skb_is_valid_access(off, size, type, prog, info);
6828 }
6829
6830 static bool __is_valid_xdp_access(int off, int size)
6831 {
6832         if (off < 0 || off >= sizeof(struct xdp_md))
6833                 return false;
6834         if (off % size != 0)
6835                 return false;
6836         if (size != sizeof(__u32))
6837                 return false;
6838
6839         return true;
6840 }
6841
6842 static bool xdp_is_valid_access(int off, int size,
6843                                 enum bpf_access_type type,
6844                                 const struct bpf_prog *prog,
6845                                 struct bpf_insn_access_aux *info)
6846 {
6847         if (type == BPF_WRITE) {
6848                 if (bpf_prog_is_dev_bound(prog->aux)) {
6849                         switch (off) {
6850                         case offsetof(struct xdp_md, rx_queue_index):
6851                                 return __is_valid_xdp_access(off, size);
6852                         }
6853                 }
6854                 return false;
6855         }
6856
6857         switch (off) {
6858         case offsetof(struct xdp_md, data):
6859                 info->reg_type = PTR_TO_PACKET;
6860                 break;
6861         case offsetof(struct xdp_md, data_meta):
6862                 info->reg_type = PTR_TO_PACKET_META;
6863                 break;
6864         case offsetof(struct xdp_md, data_end):
6865                 info->reg_type = PTR_TO_PACKET_END;
6866                 break;
6867         }
6868
6869         return __is_valid_xdp_access(off, size);
6870 }
6871
6872 void bpf_warn_invalid_xdp_action(u32 act)
6873 {
6874         const u32 act_max = XDP_REDIRECT;
6875
6876         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6877                   act > act_max ? "Illegal" : "Driver unsupported",
6878                   act);
6879 }
6880 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6881
6882 static bool sock_addr_is_valid_access(int off, int size,
6883                                       enum bpf_access_type type,
6884                                       const struct bpf_prog *prog,
6885                                       struct bpf_insn_access_aux *info)
6886 {
6887         const int size_default = sizeof(__u32);
6888
6889         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6890                 return false;
6891         if (off % size != 0)
6892                 return false;
6893
6894         /* Disallow access to IPv6 fields from IPv4 contex and vise
6895          * versa.
6896          */
6897         switch (off) {
6898         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6899                 switch (prog->expected_attach_type) {
6900                 case BPF_CGROUP_INET4_BIND:
6901                 case BPF_CGROUP_INET4_CONNECT:
6902                 case BPF_CGROUP_UDP4_SENDMSG:
6903                 case BPF_CGROUP_UDP4_RECVMSG:
6904                         break;
6905                 default:
6906                         return false;
6907                 }
6908                 break;
6909         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6910                 switch (prog->expected_attach_type) {
6911                 case BPF_CGROUP_INET6_BIND:
6912                 case BPF_CGROUP_INET6_CONNECT:
6913                 case BPF_CGROUP_UDP6_SENDMSG:
6914                 case BPF_CGROUP_UDP6_RECVMSG:
6915                         break;
6916                 default:
6917                         return false;
6918                 }
6919                 break;
6920         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6921                 switch (prog->expected_attach_type) {
6922                 case BPF_CGROUP_UDP4_SENDMSG:
6923                         break;
6924                 default:
6925                         return false;
6926                 }
6927                 break;
6928         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6929                                 msg_src_ip6[3]):
6930                 switch (prog->expected_attach_type) {
6931                 case BPF_CGROUP_UDP6_SENDMSG:
6932                         break;
6933                 default:
6934                         return false;
6935                 }
6936                 break;
6937         }
6938
6939         switch (off) {
6940         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6941         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6942         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6943         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6944                                 msg_src_ip6[3]):
6945                 if (type == BPF_READ) {
6946                         bpf_ctx_record_field_size(info, size_default);
6947
6948                         if (bpf_ctx_wide_access_ok(off, size,
6949                                                    struct bpf_sock_addr,
6950                                                    user_ip6))
6951                                 return true;
6952
6953                         if (bpf_ctx_wide_access_ok(off, size,
6954                                                    struct bpf_sock_addr,
6955                                                    msg_src_ip6))
6956                                 return true;
6957
6958                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6959                                 return false;
6960                 } else {
6961                         if (bpf_ctx_wide_access_ok(off, size,
6962                                                    struct bpf_sock_addr,
6963                                                    user_ip6))
6964                                 return true;
6965
6966                         if (bpf_ctx_wide_access_ok(off, size,
6967                                                    struct bpf_sock_addr,
6968                                                    msg_src_ip6))
6969                                 return true;
6970
6971                         if (size != size_default)
6972                                 return false;
6973                 }
6974                 break;
6975         case bpf_ctx_range(struct bpf_sock_addr, user_port):
6976                 if (size != size_default)
6977                         return false;
6978                 break;
6979         case offsetof(struct bpf_sock_addr, sk):
6980                 if (type != BPF_READ)
6981                         return false;
6982                 if (size != sizeof(__u64))
6983                         return false;
6984                 info->reg_type = PTR_TO_SOCKET;
6985                 break;
6986         default:
6987                 if (type == BPF_READ) {
6988                         if (size != size_default)
6989                                 return false;
6990                 } else {
6991                         return false;
6992                 }
6993         }
6994
6995         return true;
6996 }
6997
6998 static bool sock_ops_is_valid_access(int off, int size,
6999                                      enum bpf_access_type type,
7000                                      const struct bpf_prog *prog,
7001                                      struct bpf_insn_access_aux *info)
7002 {
7003         const int size_default = sizeof(__u32);
7004
7005         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7006                 return false;
7007
7008         /* The verifier guarantees that size > 0. */
7009         if (off % size != 0)
7010                 return false;
7011
7012         if (type == BPF_WRITE) {
7013                 switch (off) {
7014                 case offsetof(struct bpf_sock_ops, reply):
7015                 case offsetof(struct bpf_sock_ops, sk_txhash):
7016                         if (size != size_default)
7017                                 return false;
7018                         break;
7019                 default:
7020                         return false;
7021                 }
7022         } else {
7023                 switch (off) {
7024                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7025                                         bytes_acked):
7026                         if (size != sizeof(__u64))
7027                                 return false;
7028                         break;
7029                 case offsetof(struct bpf_sock_ops, sk):
7030                         if (size != sizeof(__u64))
7031                                 return false;
7032                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
7033                         break;
7034                 default:
7035                         if (size != size_default)
7036                                 return false;
7037                         break;
7038                 }
7039         }
7040
7041         return true;
7042 }
7043
7044 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7045                            const struct bpf_prog *prog)
7046 {
7047         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7048 }
7049
7050 static bool sk_skb_is_valid_access(int off, int size,
7051                                    enum bpf_access_type type,
7052                                    const struct bpf_prog *prog,
7053                                    struct bpf_insn_access_aux *info)
7054 {
7055         switch (off) {
7056         case bpf_ctx_range(struct __sk_buff, tc_classid):
7057         case bpf_ctx_range(struct __sk_buff, data_meta):
7058         case bpf_ctx_range(struct __sk_buff, tstamp):
7059         case bpf_ctx_range(struct __sk_buff, wire_len):
7060                 return false;
7061         }
7062
7063         if (type == BPF_WRITE) {
7064                 switch (off) {
7065                 case bpf_ctx_range(struct __sk_buff, tc_index):
7066                 case bpf_ctx_range(struct __sk_buff, priority):
7067                         break;
7068                 default:
7069                         return false;
7070                 }
7071         }
7072
7073         switch (off) {
7074         case bpf_ctx_range(struct __sk_buff, mark):
7075                 return false;
7076         case bpf_ctx_range(struct __sk_buff, data):
7077                 info->reg_type = PTR_TO_PACKET;
7078                 break;
7079         case bpf_ctx_range(struct __sk_buff, data_end):
7080                 info->reg_type = PTR_TO_PACKET_END;
7081                 break;
7082         }
7083
7084         return bpf_skb_is_valid_access(off, size, type, prog, info);
7085 }
7086
7087 static bool sk_msg_is_valid_access(int off, int size,
7088                                    enum bpf_access_type type,
7089                                    const struct bpf_prog *prog,
7090                                    struct bpf_insn_access_aux *info)
7091 {
7092         if (type == BPF_WRITE)
7093                 return false;
7094
7095         if (off % size != 0)
7096                 return false;
7097
7098         switch (off) {
7099         case offsetof(struct sk_msg_md, data):
7100                 info->reg_type = PTR_TO_PACKET;
7101                 if (size != sizeof(__u64))
7102                         return false;
7103                 break;
7104         case offsetof(struct sk_msg_md, data_end):
7105                 info->reg_type = PTR_TO_PACKET_END;
7106                 if (size != sizeof(__u64))
7107                         return false;
7108                 break;
7109         case bpf_ctx_range(struct sk_msg_md, family):
7110         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7111         case bpf_ctx_range(struct sk_msg_md, local_ip4):
7112         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7113         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7114         case bpf_ctx_range(struct sk_msg_md, remote_port):
7115         case bpf_ctx_range(struct sk_msg_md, local_port):
7116         case bpf_ctx_range(struct sk_msg_md, size):
7117                 if (size != sizeof(__u32))
7118                         return false;
7119                 break;
7120         default:
7121                 return false;
7122         }
7123         return true;
7124 }
7125
7126 static bool flow_dissector_is_valid_access(int off, int size,
7127                                            enum bpf_access_type type,
7128                                            const struct bpf_prog *prog,
7129                                            struct bpf_insn_access_aux *info)
7130 {
7131         const int size_default = sizeof(__u32);
7132
7133         if (off < 0 || off >= sizeof(struct __sk_buff))
7134                 return false;
7135
7136         if (type == BPF_WRITE)
7137                 return false;
7138
7139         switch (off) {
7140         case bpf_ctx_range(struct __sk_buff, data):
7141                 if (size != size_default)
7142                         return false;
7143                 info->reg_type = PTR_TO_PACKET;
7144                 return true;
7145         case bpf_ctx_range(struct __sk_buff, data_end):
7146                 if (size != size_default)
7147                         return false;
7148                 info->reg_type = PTR_TO_PACKET_END;
7149                 return true;
7150         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7151                 if (size != sizeof(__u64))
7152                         return false;
7153                 info->reg_type = PTR_TO_FLOW_KEYS;
7154                 return true;
7155         default:
7156                 return false;
7157         }
7158 }
7159
7160 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7161                                              const struct bpf_insn *si,
7162                                              struct bpf_insn *insn_buf,
7163                                              struct bpf_prog *prog,
7164                                              u32 *target_size)
7165
7166 {
7167         struct bpf_insn *insn = insn_buf;
7168
7169         switch (si->off) {
7170         case offsetof(struct __sk_buff, data):
7171                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7172                                       si->dst_reg, si->src_reg,
7173                                       offsetof(struct bpf_flow_dissector, data));
7174                 break;
7175
7176         case offsetof(struct __sk_buff, data_end):
7177                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7178                                       si->dst_reg, si->src_reg,
7179                                       offsetof(struct bpf_flow_dissector, data_end));
7180                 break;
7181
7182         case offsetof(struct __sk_buff, flow_keys):
7183                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7184                                       si->dst_reg, si->src_reg,
7185                                       offsetof(struct bpf_flow_dissector, flow_keys));
7186                 break;
7187         }
7188
7189         return insn - insn_buf;
7190 }
7191
7192 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7193                                   const struct bpf_insn *si,
7194                                   struct bpf_insn *insn_buf,
7195                                   struct bpf_prog *prog, u32 *target_size)
7196 {
7197         struct bpf_insn *insn = insn_buf;
7198         int off;
7199
7200         switch (si->off) {
7201         case offsetof(struct __sk_buff, len):
7202                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7203                                       bpf_target_off(struct sk_buff, len, 4,
7204                                                      target_size));
7205                 break;
7206
7207         case offsetof(struct __sk_buff, protocol):
7208                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7209                                       bpf_target_off(struct sk_buff, protocol, 2,
7210                                                      target_size));
7211                 break;
7212
7213         case offsetof(struct __sk_buff, vlan_proto):
7214                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7215                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
7216                                                      target_size));
7217                 break;
7218
7219         case offsetof(struct __sk_buff, priority):
7220                 if (type == BPF_WRITE)
7221                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7222                                               bpf_target_off(struct sk_buff, priority, 4,
7223                                                              target_size));
7224                 else
7225                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7226                                               bpf_target_off(struct sk_buff, priority, 4,
7227                                                              target_size));
7228                 break;
7229
7230         case offsetof(struct __sk_buff, ingress_ifindex):
7231                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7232                                       bpf_target_off(struct sk_buff, skb_iif, 4,
7233                                                      target_size));
7234                 break;
7235
7236         case offsetof(struct __sk_buff, ifindex):
7237                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7238                                       si->dst_reg, si->src_reg,
7239                                       offsetof(struct sk_buff, dev));
7240                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7241                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7242                                       bpf_target_off(struct net_device, ifindex, 4,
7243                                                      target_size));
7244                 break;
7245
7246         case offsetof(struct __sk_buff, hash):
7247                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7248                                       bpf_target_off(struct sk_buff, hash, 4,
7249                                                      target_size));
7250                 break;
7251
7252         case offsetof(struct __sk_buff, mark):
7253                 if (type == BPF_WRITE)
7254                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7255                                               bpf_target_off(struct sk_buff, mark, 4,
7256                                                              target_size));
7257                 else
7258                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7259                                               bpf_target_off(struct sk_buff, mark, 4,
7260                                                              target_size));
7261                 break;
7262
7263         case offsetof(struct __sk_buff, pkt_type):
7264                 *target_size = 1;
7265                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7266                                       PKT_TYPE_OFFSET());
7267                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7268 #ifdef __BIG_ENDIAN_BITFIELD
7269                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7270 #endif
7271                 break;
7272
7273         case offsetof(struct __sk_buff, queue_mapping):
7274                 if (type == BPF_WRITE) {
7275                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7276                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7277                                               bpf_target_off(struct sk_buff,
7278                                                              queue_mapping,
7279                                                              2, target_size));
7280                 } else {
7281                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7282                                               bpf_target_off(struct sk_buff,
7283                                                              queue_mapping,
7284                                                              2, target_size));
7285                 }
7286                 break;
7287
7288         case offsetof(struct __sk_buff, vlan_present):
7289                 *target_size = 1;
7290                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7291                                       PKT_VLAN_PRESENT_OFFSET());
7292                 if (PKT_VLAN_PRESENT_BIT)
7293                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7294                 if (PKT_VLAN_PRESENT_BIT < 7)
7295                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7296                 break;
7297
7298         case offsetof(struct __sk_buff, vlan_tci):
7299                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7300                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
7301                                                      target_size));
7302                 break;
7303
7304         case offsetof(struct __sk_buff, cb[0]) ...
7305              offsetofend(struct __sk_buff, cb[4]) - 1:
7306                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
7307                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7308                               offsetof(struct qdisc_skb_cb, data)) %
7309                              sizeof(__u64));
7310
7311                 prog->cb_access = 1;
7312                 off  = si->off;
7313                 off -= offsetof(struct __sk_buff, cb[0]);
7314                 off += offsetof(struct sk_buff, cb);
7315                 off += offsetof(struct qdisc_skb_cb, data);
7316                 if (type == BPF_WRITE)
7317                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7318                                               si->src_reg, off);
7319                 else
7320                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7321                                               si->src_reg, off);
7322                 break;
7323
7324         case offsetof(struct __sk_buff, tc_classid):
7325                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
7326
7327                 off  = si->off;
7328                 off -= offsetof(struct __sk_buff, tc_classid);
7329                 off += offsetof(struct sk_buff, cb);
7330                 off += offsetof(struct qdisc_skb_cb, tc_classid);
7331                 *target_size = 2;
7332                 if (type == BPF_WRITE)
7333                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7334                                               si->src_reg, off);
7335                 else
7336                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7337                                               si->src_reg, off);
7338                 break;
7339
7340         case offsetof(struct __sk_buff, data):
7341                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7342                                       si->dst_reg, si->src_reg,
7343                                       offsetof(struct sk_buff, data));
7344                 break;
7345
7346         case offsetof(struct __sk_buff, data_meta):
7347                 off  = si->off;
7348                 off -= offsetof(struct __sk_buff, data_meta);
7349                 off += offsetof(struct sk_buff, cb);
7350                 off += offsetof(struct bpf_skb_data_end, data_meta);
7351                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7352                                       si->src_reg, off);
7353                 break;
7354
7355         case offsetof(struct __sk_buff, data_end):
7356                 off  = si->off;
7357                 off -= offsetof(struct __sk_buff, data_end);
7358                 off += offsetof(struct sk_buff, cb);
7359                 off += offsetof(struct bpf_skb_data_end, data_end);
7360                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7361                                       si->src_reg, off);
7362                 break;
7363
7364         case offsetof(struct __sk_buff, tc_index):
7365 #ifdef CONFIG_NET_SCHED
7366                 if (type == BPF_WRITE)
7367                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7368                                               bpf_target_off(struct sk_buff, tc_index, 2,
7369                                                              target_size));
7370                 else
7371                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7372                                               bpf_target_off(struct sk_buff, tc_index, 2,
7373                                                              target_size));
7374 #else
7375                 *target_size = 2;
7376                 if (type == BPF_WRITE)
7377                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7378                 else
7379                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7380 #endif
7381                 break;
7382
7383         case offsetof(struct __sk_buff, napi_id):
7384 #if defined(CONFIG_NET_RX_BUSY_POLL)
7385                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7386                                       bpf_target_off(struct sk_buff, napi_id, 4,
7387                                                      target_size));
7388                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7389                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7390 #else
7391                 *target_size = 4;
7392                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7393 #endif
7394                 break;
7395         case offsetof(struct __sk_buff, family):
7396                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7397
7398                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7399                                       si->dst_reg, si->src_reg,
7400                                       offsetof(struct sk_buff, sk));
7401                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7402                                       bpf_target_off(struct sock_common,
7403                                                      skc_family,
7404                                                      2, target_size));
7405                 break;
7406         case offsetof(struct __sk_buff, remote_ip4):
7407                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7408
7409                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7410                                       si->dst_reg, si->src_reg,
7411                                       offsetof(struct sk_buff, sk));
7412                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7413                                       bpf_target_off(struct sock_common,
7414                                                      skc_daddr,
7415                                                      4, target_size));
7416                 break;
7417         case offsetof(struct __sk_buff, local_ip4):
7418                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7419                                           skc_rcv_saddr) != 4);
7420
7421                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7422                                       si->dst_reg, si->src_reg,
7423                                       offsetof(struct sk_buff, sk));
7424                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7425                                       bpf_target_off(struct sock_common,
7426                                                      skc_rcv_saddr,
7427                                                      4, target_size));
7428                 break;
7429         case offsetof(struct __sk_buff, remote_ip6[0]) ...
7430              offsetof(struct __sk_buff, remote_ip6[3]):
7431 #if IS_ENABLED(CONFIG_IPV6)
7432                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7433                                           skc_v6_daddr.s6_addr32[0]) != 4);
7434
7435                 off = si->off;
7436                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
7437
7438                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7439                                       si->dst_reg, si->src_reg,
7440                                       offsetof(struct sk_buff, sk));
7441                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7442                                       offsetof(struct sock_common,
7443                                                skc_v6_daddr.s6_addr32[0]) +
7444                                       off);
7445 #else
7446                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7447 #endif
7448                 break;
7449         case offsetof(struct __sk_buff, local_ip6[0]) ...
7450              offsetof(struct __sk_buff, local_ip6[3]):
7451 #if IS_ENABLED(CONFIG_IPV6)
7452                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7453                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7454
7455                 off = si->off;
7456                 off -= offsetof(struct __sk_buff, local_ip6[0]);
7457
7458                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7459                                       si->dst_reg, si->src_reg,
7460                                       offsetof(struct sk_buff, sk));
7461                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7462                                       offsetof(struct sock_common,
7463                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7464                                       off);
7465 #else
7466                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7467 #endif
7468                 break;
7469
7470         case offsetof(struct __sk_buff, remote_port):
7471                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7472
7473                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7474                                       si->dst_reg, si->src_reg,
7475                                       offsetof(struct sk_buff, sk));
7476                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7477                                       bpf_target_off(struct sock_common,
7478                                                      skc_dport,
7479                                                      2, target_size));
7480 #ifndef __BIG_ENDIAN_BITFIELD
7481                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7482 #endif
7483                 break;
7484
7485         case offsetof(struct __sk_buff, local_port):
7486                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7487
7488                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7489                                       si->dst_reg, si->src_reg,
7490                                       offsetof(struct sk_buff, sk));
7491                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7492                                       bpf_target_off(struct sock_common,
7493                                                      skc_num, 2, target_size));
7494                 break;
7495
7496         case offsetof(struct __sk_buff, tstamp):
7497                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tstamp) != 8);
7498
7499                 if (type == BPF_WRITE)
7500                         *insn++ = BPF_STX_MEM(BPF_DW,
7501                                               si->dst_reg, si->src_reg,
7502                                               bpf_target_off(struct sk_buff,
7503                                                              tstamp, 8,
7504                                                              target_size));
7505                 else
7506                         *insn++ = BPF_LDX_MEM(BPF_DW,
7507                                               si->dst_reg, si->src_reg,
7508                                               bpf_target_off(struct sk_buff,
7509                                                              tstamp, 8,
7510                                                              target_size));
7511                 break;
7512
7513         case offsetof(struct __sk_buff, gso_segs):
7514                 /* si->dst_reg = skb_shinfo(SKB); */
7515 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7516                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7517                                       BPF_REG_AX, si->src_reg,
7518                                       offsetof(struct sk_buff, end));
7519                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7520                                       si->dst_reg, si->src_reg,
7521                                       offsetof(struct sk_buff, head));
7522                 *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7523 #else
7524                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7525                                       si->dst_reg, si->src_reg,
7526                                       offsetof(struct sk_buff, end));
7527 #endif
7528                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7529                                       si->dst_reg, si->dst_reg,
7530                                       bpf_target_off(struct skb_shared_info,
7531                                                      gso_segs, 2,
7532                                                      target_size));
7533                 break;
7534         case offsetof(struct __sk_buff, wire_len):
7535                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, pkt_len) != 4);
7536
7537                 off = si->off;
7538                 off -= offsetof(struct __sk_buff, wire_len);
7539                 off += offsetof(struct sk_buff, cb);
7540                 off += offsetof(struct qdisc_skb_cb, pkt_len);
7541                 *target_size = 4;
7542                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7543                 break;
7544
7545         case offsetof(struct __sk_buff, sk):
7546                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7547                                       si->dst_reg, si->src_reg,
7548                                       offsetof(struct sk_buff, sk));
7549                 break;
7550         }
7551
7552         return insn - insn_buf;
7553 }
7554
7555 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7556                                 const struct bpf_insn *si,
7557                                 struct bpf_insn *insn_buf,
7558                                 struct bpf_prog *prog, u32 *target_size)
7559 {
7560         struct bpf_insn *insn = insn_buf;
7561         int off;
7562
7563         switch (si->off) {
7564         case offsetof(struct bpf_sock, bound_dev_if):
7565                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
7566
7567                 if (type == BPF_WRITE)
7568                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7569                                         offsetof(struct sock, sk_bound_dev_if));
7570                 else
7571                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7572                                       offsetof(struct sock, sk_bound_dev_if));
7573                 break;
7574
7575         case offsetof(struct bpf_sock, mark):
7576                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
7577
7578                 if (type == BPF_WRITE)
7579                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7580                                         offsetof(struct sock, sk_mark));
7581                 else
7582                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7583                                       offsetof(struct sock, sk_mark));
7584                 break;
7585
7586         case offsetof(struct bpf_sock, priority):
7587                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
7588
7589                 if (type == BPF_WRITE)
7590                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7591                                         offsetof(struct sock, sk_priority));
7592                 else
7593                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7594                                       offsetof(struct sock, sk_priority));
7595                 break;
7596
7597         case offsetof(struct bpf_sock, family):
7598                 *insn++ = BPF_LDX_MEM(
7599                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7600                         si->dst_reg, si->src_reg,
7601                         bpf_target_off(struct sock_common,
7602                                        skc_family,
7603                                        FIELD_SIZEOF(struct sock_common,
7604                                                     skc_family),
7605                                        target_size));
7606                 break;
7607
7608         case offsetof(struct bpf_sock, type):
7609                 BUILD_BUG_ON(HWEIGHT32(SK_FL_TYPE_MASK) != BITS_PER_BYTE * 2);
7610                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7611                                       offsetof(struct sock, __sk_flags_offset));
7612                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7613                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7614                 *target_size = 2;
7615                 break;
7616
7617         case offsetof(struct bpf_sock, protocol):
7618                 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7619                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7620                                       offsetof(struct sock, __sk_flags_offset));
7621                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7622                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
7623                 *target_size = 1;
7624                 break;
7625
7626         case offsetof(struct bpf_sock, src_ip4):
7627                 *insn++ = BPF_LDX_MEM(
7628                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7629                         bpf_target_off(struct sock_common, skc_rcv_saddr,
7630                                        FIELD_SIZEOF(struct sock_common,
7631                                                     skc_rcv_saddr),
7632                                        target_size));
7633                 break;
7634
7635         case offsetof(struct bpf_sock, dst_ip4):
7636                 *insn++ = BPF_LDX_MEM(
7637                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7638                         bpf_target_off(struct sock_common, skc_daddr,
7639                                        FIELD_SIZEOF(struct sock_common,
7640                                                     skc_daddr),
7641                                        target_size));
7642                 break;
7643
7644         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7645 #if IS_ENABLED(CONFIG_IPV6)
7646                 off = si->off;
7647                 off -= offsetof(struct bpf_sock, src_ip6[0]);
7648                 *insn++ = BPF_LDX_MEM(
7649                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7650                         bpf_target_off(
7651                                 struct sock_common,
7652                                 skc_v6_rcv_saddr.s6_addr32[0],
7653                                 FIELD_SIZEOF(struct sock_common,
7654                                              skc_v6_rcv_saddr.s6_addr32[0]),
7655                                 target_size) + off);
7656 #else
7657                 (void)off;
7658                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7659 #endif
7660                 break;
7661
7662         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7663 #if IS_ENABLED(CONFIG_IPV6)
7664                 off = si->off;
7665                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
7666                 *insn++ = BPF_LDX_MEM(
7667                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7668                         bpf_target_off(struct sock_common,
7669                                        skc_v6_daddr.s6_addr32[0],
7670                                        FIELD_SIZEOF(struct sock_common,
7671                                                     skc_v6_daddr.s6_addr32[0]),
7672                                        target_size) + off);
7673 #else
7674                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7675                 *target_size = 4;
7676 #endif
7677                 break;
7678
7679         case offsetof(struct bpf_sock, src_port):
7680                 *insn++ = BPF_LDX_MEM(
7681                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7682                         si->dst_reg, si->src_reg,
7683                         bpf_target_off(struct sock_common, skc_num,
7684                                        FIELD_SIZEOF(struct sock_common,
7685                                                     skc_num),
7686                                        target_size));
7687                 break;
7688
7689         case offsetof(struct bpf_sock, dst_port):
7690                 *insn++ = BPF_LDX_MEM(
7691                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7692                         si->dst_reg, si->src_reg,
7693                         bpf_target_off(struct sock_common, skc_dport,
7694                                        FIELD_SIZEOF(struct sock_common,
7695                                                     skc_dport),
7696                                        target_size));
7697                 break;
7698
7699         case offsetof(struct bpf_sock, state):
7700                 *insn++ = BPF_LDX_MEM(
7701                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7702                         si->dst_reg, si->src_reg,
7703                         bpf_target_off(struct sock_common, skc_state,
7704                                        FIELD_SIZEOF(struct sock_common,
7705                                                     skc_state),
7706                                        target_size));
7707                 break;
7708         }
7709
7710         return insn - insn_buf;
7711 }
7712
7713 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7714                                          const struct bpf_insn *si,
7715                                          struct bpf_insn *insn_buf,
7716                                          struct bpf_prog *prog, u32 *target_size)
7717 {
7718         struct bpf_insn *insn = insn_buf;
7719
7720         switch (si->off) {
7721         case offsetof(struct __sk_buff, ifindex):
7722                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7723                                       si->dst_reg, si->src_reg,
7724                                       offsetof(struct sk_buff, dev));
7725                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7726                                       bpf_target_off(struct net_device, ifindex, 4,
7727                                                      target_size));
7728                 break;
7729         default:
7730                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
7731                                               target_size);
7732         }
7733
7734         return insn - insn_buf;
7735 }
7736
7737 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7738                                   const struct bpf_insn *si,
7739                                   struct bpf_insn *insn_buf,
7740                                   struct bpf_prog *prog, u32 *target_size)
7741 {
7742         struct bpf_insn *insn = insn_buf;
7743
7744         switch (si->off) {
7745         case offsetof(struct xdp_md, data):
7746                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7747                                       si->dst_reg, si->src_reg,
7748                                       offsetof(struct xdp_buff, data));
7749                 break;
7750         case offsetof(struct xdp_md, data_meta):
7751                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7752                                       si->dst_reg, si->src_reg,
7753                                       offsetof(struct xdp_buff, data_meta));
7754                 break;
7755         case offsetof(struct xdp_md, data_end):
7756                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7757                                       si->dst_reg, si->src_reg,
7758                                       offsetof(struct xdp_buff, data_end));
7759                 break;
7760         case offsetof(struct xdp_md, ingress_ifindex):
7761                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7762                                       si->dst_reg, si->src_reg,
7763                                       offsetof(struct xdp_buff, rxq));
7764                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7765                                       si->dst_reg, si->dst_reg,
7766                                       offsetof(struct xdp_rxq_info, dev));
7767                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7768                                       offsetof(struct net_device, ifindex));
7769                 break;
7770         case offsetof(struct xdp_md, rx_queue_index):
7771                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7772                                       si->dst_reg, si->src_reg,
7773                                       offsetof(struct xdp_buff, rxq));
7774                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7775                                       offsetof(struct xdp_rxq_info,
7776                                                queue_index));
7777                 break;
7778         }
7779
7780         return insn - insn_buf;
7781 }
7782
7783 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7784  * context Structure, F is Field in context structure that contains a pointer
7785  * to Nested Structure of type NS that has the field NF.
7786  *
7787  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7788  * sure that SIZE is not greater than actual size of S.F.NF.
7789  *
7790  * If offset OFF is provided, the load happens from that offset relative to
7791  * offset of NF.
7792  */
7793 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
7794         do {                                                                   \
7795                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7796                                       si->src_reg, offsetof(S, F));            \
7797                 *insn++ = BPF_LDX_MEM(                                         \
7798                         SIZE, si->dst_reg, si->dst_reg,                        \
7799                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
7800                                        target_size)                            \
7801                                 + OFF);                                        \
7802         } while (0)
7803
7804 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
7805         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
7806                                              BPF_FIELD_SIZEOF(NS, NF), 0)
7807
7808 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7809  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7810  *
7811  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7812  * "register" since two registers available in convert_ctx_access are not
7813  * enough: we can't override neither SRC, since it contains value to store, nor
7814  * DST since it contains pointer to context that may be used by later
7815  * instructions. But we need a temporary place to save pointer to nested
7816  * structure whose field we want to store to.
7817  */
7818 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
7819         do {                                                                   \
7820                 int tmp_reg = BPF_REG_9;                                       \
7821                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7822                         --tmp_reg;                                             \
7823                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7824                         --tmp_reg;                                             \
7825                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
7826                                       offsetof(S, TF));                        \
7827                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
7828                                       si->dst_reg, offsetof(S, F));            \
7829                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
7830                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
7831                                        target_size)                            \
7832                                 + OFF);                                        \
7833                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
7834                                       offsetof(S, TF));                        \
7835         } while (0)
7836
7837 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7838                                                       TF)                      \
7839         do {                                                                   \
7840                 if (type == BPF_WRITE) {                                       \
7841                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
7842                                                          OFF, TF);             \
7843                 } else {                                                       \
7844                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
7845                                 S, NS, F, NF, SIZE, OFF);  \
7846                 }                                                              \
7847         } while (0)
7848
7849 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
7850         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
7851                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7852
7853 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7854                                         const struct bpf_insn *si,
7855                                         struct bpf_insn *insn_buf,
7856                                         struct bpf_prog *prog, u32 *target_size)
7857 {
7858         struct bpf_insn *insn = insn_buf;
7859         int off;
7860
7861         switch (si->off) {
7862         case offsetof(struct bpf_sock_addr, user_family):
7863                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7864                                             struct sockaddr, uaddr, sa_family);
7865                 break;
7866
7867         case offsetof(struct bpf_sock_addr, user_ip4):
7868                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7869                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7870                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7871                 break;
7872
7873         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7874                 off = si->off;
7875                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7876                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7877                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7878                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7879                         tmp_reg);
7880                 break;
7881
7882         case offsetof(struct bpf_sock_addr, user_port):
7883                 /* To get port we need to know sa_family first and then treat
7884                  * sockaddr as either sockaddr_in or sockaddr_in6.
7885                  * Though we can simplify since port field has same offset and
7886                  * size in both structures.
7887                  * Here we check this invariant and use just one of the
7888                  * structures if it's true.
7889                  */
7890                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7891                              offsetof(struct sockaddr_in6, sin6_port));
7892                 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
7893                              FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
7894                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7895                                                      struct sockaddr_in6, uaddr,
7896                                                      sin6_port, tmp_reg);
7897                 break;
7898
7899         case offsetof(struct bpf_sock_addr, family):
7900                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7901                                             struct sock, sk, sk_family);
7902                 break;
7903
7904         case offsetof(struct bpf_sock_addr, type):
7905                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7906                         struct bpf_sock_addr_kern, struct sock, sk,
7907                         __sk_flags_offset, BPF_W, 0);
7908                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7909                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7910                 break;
7911
7912         case offsetof(struct bpf_sock_addr, protocol):
7913                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7914                         struct bpf_sock_addr_kern, struct sock, sk,
7915                         __sk_flags_offset, BPF_W, 0);
7916                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7917                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7918                                         SK_FL_PROTO_SHIFT);
7919                 break;
7920
7921         case offsetof(struct bpf_sock_addr, msg_src_ip4):
7922                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
7923                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7924                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7925                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7926                 break;
7927
7928         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7929                                 msg_src_ip6[3]):
7930                 off = si->off;
7931                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7932                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7933                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7934                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7935                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7936                 break;
7937         case offsetof(struct bpf_sock_addr, sk):
7938                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
7939                                       si->dst_reg, si->src_reg,
7940                                       offsetof(struct bpf_sock_addr_kern, sk));
7941                 break;
7942         }
7943
7944         return insn - insn_buf;
7945 }
7946
7947 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7948                                        const struct bpf_insn *si,
7949                                        struct bpf_insn *insn_buf,
7950                                        struct bpf_prog *prog,
7951                                        u32 *target_size)
7952 {
7953         struct bpf_insn *insn = insn_buf;
7954         int off;
7955
7956 /* Helper macro for adding read access to tcp_sock or sock fields. */
7957 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7958         do {                                                                  \
7959                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7960                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7961                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7962                                                 struct bpf_sock_ops_kern,     \
7963                                                 is_fullsock),                 \
7964                                       si->dst_reg, si->src_reg,               \
7965                                       offsetof(struct bpf_sock_ops_kern,      \
7966                                                is_fullsock));                 \
7967                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
7968                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7969                                                 struct bpf_sock_ops_kern, sk),\
7970                                       si->dst_reg, si->src_reg,               \
7971                                       offsetof(struct bpf_sock_ops_kern, sk));\
7972                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
7973                                                        OBJ_FIELD),            \
7974                                       si->dst_reg, si->dst_reg,               \
7975                                       offsetof(OBJ, OBJ_FIELD));              \
7976         } while (0)
7977
7978 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
7979                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
7980
7981 /* Helper macro for adding write access to tcp_sock or sock fields.
7982  * The macro is called with two registers, dst_reg which contains a pointer
7983  * to ctx (context) and src_reg which contains the value that should be
7984  * stored. However, we need an additional register since we cannot overwrite
7985  * dst_reg because it may be used later in the program.
7986  * Instead we "borrow" one of the other register. We first save its value
7987  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
7988  * it at the end of the macro.
7989  */
7990 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7991         do {                                                                  \
7992                 int reg = BPF_REG_9;                                          \
7993                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7994                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7995                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7996                         reg--;                                                \
7997                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7998                         reg--;                                                \
7999                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
8000                                       offsetof(struct bpf_sock_ops_kern,      \
8001                                                temp));                        \
8002                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8003                                                 struct bpf_sock_ops_kern,     \
8004                                                 is_fullsock),                 \
8005                                       reg, si->dst_reg,                       \
8006                                       offsetof(struct bpf_sock_ops_kern,      \
8007                                                is_fullsock));                 \
8008                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
8009                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8010                                                 struct bpf_sock_ops_kern, sk),\
8011                                       reg, si->dst_reg,                       \
8012                                       offsetof(struct bpf_sock_ops_kern, sk));\
8013                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
8014                                       reg, si->src_reg,                       \
8015                                       offsetof(OBJ, OBJ_FIELD));              \
8016                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
8017                                       offsetof(struct bpf_sock_ops_kern,      \
8018                                                temp));                        \
8019         } while (0)
8020
8021 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
8022         do {                                                                  \
8023                 if (TYPE == BPF_WRITE)                                        \
8024                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8025                 else                                                          \
8026                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8027         } while (0)
8028
8029         if (insn > insn_buf)
8030                 return insn - insn_buf;
8031
8032         switch (si->off) {
8033         case offsetof(struct bpf_sock_ops, op) ...
8034              offsetof(struct bpf_sock_ops, replylong[3]):
8035                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
8036                              FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
8037                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
8038                              FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
8039                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
8040                              FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
8041                 off = si->off;
8042                 off -= offsetof(struct bpf_sock_ops, op);
8043                 off += offsetof(struct bpf_sock_ops_kern, op);
8044                 if (type == BPF_WRITE)
8045                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8046                                               off);
8047                 else
8048                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8049                                               off);
8050                 break;
8051
8052         case offsetof(struct bpf_sock_ops, family):
8053                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
8054
8055                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8056                                               struct bpf_sock_ops_kern, sk),
8057                                       si->dst_reg, si->src_reg,
8058                                       offsetof(struct bpf_sock_ops_kern, sk));
8059                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8060                                       offsetof(struct sock_common, skc_family));
8061                 break;
8062
8063         case offsetof(struct bpf_sock_ops, remote_ip4):
8064                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
8065
8066                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8067                                                 struct bpf_sock_ops_kern, sk),
8068                                       si->dst_reg, si->src_reg,
8069                                       offsetof(struct bpf_sock_ops_kern, sk));
8070                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8071                                       offsetof(struct sock_common, skc_daddr));
8072                 break;
8073
8074         case offsetof(struct bpf_sock_ops, local_ip4):
8075                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8076                                           skc_rcv_saddr) != 4);
8077
8078                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8079                                               struct bpf_sock_ops_kern, sk),
8080                                       si->dst_reg, si->src_reg,
8081                                       offsetof(struct bpf_sock_ops_kern, sk));
8082                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8083                                       offsetof(struct sock_common,
8084                                                skc_rcv_saddr));
8085                 break;
8086
8087         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8088              offsetof(struct bpf_sock_ops, remote_ip6[3]):
8089 #if IS_ENABLED(CONFIG_IPV6)
8090                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8091                                           skc_v6_daddr.s6_addr32[0]) != 4);
8092
8093                 off = si->off;
8094                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8095                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8096                                                 struct bpf_sock_ops_kern, sk),
8097                                       si->dst_reg, si->src_reg,
8098                                       offsetof(struct bpf_sock_ops_kern, sk));
8099                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8100                                       offsetof(struct sock_common,
8101                                                skc_v6_daddr.s6_addr32[0]) +
8102                                       off);
8103 #else
8104                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8105 #endif
8106                 break;
8107
8108         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8109              offsetof(struct bpf_sock_ops, local_ip6[3]):
8110 #if IS_ENABLED(CONFIG_IPV6)
8111                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8112                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8113
8114                 off = si->off;
8115                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8116                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8117                                                 struct bpf_sock_ops_kern, sk),
8118                                       si->dst_reg, si->src_reg,
8119                                       offsetof(struct bpf_sock_ops_kern, sk));
8120                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8121                                       offsetof(struct sock_common,
8122                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8123                                       off);
8124 #else
8125                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8126 #endif
8127                 break;
8128
8129         case offsetof(struct bpf_sock_ops, remote_port):
8130                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
8131
8132                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8133                                                 struct bpf_sock_ops_kern, sk),
8134                                       si->dst_reg, si->src_reg,
8135                                       offsetof(struct bpf_sock_ops_kern, sk));
8136                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8137                                       offsetof(struct sock_common, skc_dport));
8138 #ifndef __BIG_ENDIAN_BITFIELD
8139                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8140 #endif
8141                 break;
8142
8143         case offsetof(struct bpf_sock_ops, local_port):
8144                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
8145
8146                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8147                                                 struct bpf_sock_ops_kern, sk),
8148                                       si->dst_reg, si->src_reg,
8149                                       offsetof(struct bpf_sock_ops_kern, sk));
8150                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8151                                       offsetof(struct sock_common, skc_num));
8152                 break;
8153
8154         case offsetof(struct bpf_sock_ops, is_fullsock):
8155                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8156                                                 struct bpf_sock_ops_kern,
8157                                                 is_fullsock),
8158                                       si->dst_reg, si->src_reg,
8159                                       offsetof(struct bpf_sock_ops_kern,
8160                                                is_fullsock));
8161                 break;
8162
8163         case offsetof(struct bpf_sock_ops, state):
8164                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
8165
8166                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8167                                                 struct bpf_sock_ops_kern, sk),
8168                                       si->dst_reg, si->src_reg,
8169                                       offsetof(struct bpf_sock_ops_kern, sk));
8170                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8171                                       offsetof(struct sock_common, skc_state));
8172                 break;
8173
8174         case offsetof(struct bpf_sock_ops, rtt_min):
8175                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
8176                              sizeof(struct minmax));
8177                 BUILD_BUG_ON(sizeof(struct minmax) <
8178                              sizeof(struct minmax_sample));
8179
8180                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8181                                                 struct bpf_sock_ops_kern, sk),
8182                                       si->dst_reg, si->src_reg,
8183                                       offsetof(struct bpf_sock_ops_kern, sk));
8184                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8185                                       offsetof(struct tcp_sock, rtt_min) +
8186                                       FIELD_SIZEOF(struct minmax_sample, t));
8187                 break;
8188
8189         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8190                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8191                                    struct tcp_sock);
8192                 break;
8193
8194         case offsetof(struct bpf_sock_ops, sk_txhash):
8195                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8196                                           struct sock, type);
8197                 break;
8198         case offsetof(struct bpf_sock_ops, snd_cwnd):
8199                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8200                 break;
8201         case offsetof(struct bpf_sock_ops, srtt_us):
8202                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8203                 break;
8204         case offsetof(struct bpf_sock_ops, snd_ssthresh):
8205                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8206                 break;
8207         case offsetof(struct bpf_sock_ops, rcv_nxt):
8208                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8209                 break;
8210         case offsetof(struct bpf_sock_ops, snd_nxt):
8211                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8212                 break;
8213         case offsetof(struct bpf_sock_ops, snd_una):
8214                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8215                 break;
8216         case offsetof(struct bpf_sock_ops, mss_cache):
8217                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8218                 break;
8219         case offsetof(struct bpf_sock_ops, ecn_flags):
8220                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8221                 break;
8222         case offsetof(struct bpf_sock_ops, rate_delivered):
8223                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8224                 break;
8225         case offsetof(struct bpf_sock_ops, rate_interval_us):
8226                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8227                 break;
8228         case offsetof(struct bpf_sock_ops, packets_out):
8229                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8230                 break;
8231         case offsetof(struct bpf_sock_ops, retrans_out):
8232                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8233                 break;
8234         case offsetof(struct bpf_sock_ops, total_retrans):
8235                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8236                 break;
8237         case offsetof(struct bpf_sock_ops, segs_in):
8238                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8239                 break;
8240         case offsetof(struct bpf_sock_ops, data_segs_in):
8241                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8242                 break;
8243         case offsetof(struct bpf_sock_ops, segs_out):
8244                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8245                 break;
8246         case offsetof(struct bpf_sock_ops, data_segs_out):
8247                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8248                 break;
8249         case offsetof(struct bpf_sock_ops, lost_out):
8250                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8251                 break;
8252         case offsetof(struct bpf_sock_ops, sacked_out):
8253                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8254                 break;
8255         case offsetof(struct bpf_sock_ops, bytes_received):
8256                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8257                 break;
8258         case offsetof(struct bpf_sock_ops, bytes_acked):
8259                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8260                 break;
8261         case offsetof(struct bpf_sock_ops, sk):
8262                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8263                                                 struct bpf_sock_ops_kern,
8264                                                 is_fullsock),
8265                                       si->dst_reg, si->src_reg,
8266                                       offsetof(struct bpf_sock_ops_kern,
8267                                                is_fullsock));
8268                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8269                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8270                                                 struct bpf_sock_ops_kern, sk),
8271                                       si->dst_reg, si->src_reg,
8272                                       offsetof(struct bpf_sock_ops_kern, sk));
8273                 break;
8274         }
8275         return insn - insn_buf;
8276 }
8277
8278 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8279                                      const struct bpf_insn *si,
8280                                      struct bpf_insn *insn_buf,
8281                                      struct bpf_prog *prog, u32 *target_size)
8282 {
8283         struct bpf_insn *insn = insn_buf;
8284         int off;
8285
8286         switch (si->off) {
8287         case offsetof(struct __sk_buff, data_end):
8288                 off  = si->off;
8289                 off -= offsetof(struct __sk_buff, data_end);
8290                 off += offsetof(struct sk_buff, cb);
8291                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
8292                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8293                                       si->src_reg, off);
8294                 break;
8295         default:
8296                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8297                                               target_size);
8298         }
8299
8300         return insn - insn_buf;
8301 }
8302
8303 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8304                                      const struct bpf_insn *si,
8305                                      struct bpf_insn *insn_buf,
8306                                      struct bpf_prog *prog, u32 *target_size)
8307 {
8308         struct bpf_insn *insn = insn_buf;
8309 #if IS_ENABLED(CONFIG_IPV6)
8310         int off;
8311 #endif
8312
8313         /* convert ctx uses the fact sg element is first in struct */
8314         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8315
8316         switch (si->off) {
8317         case offsetof(struct sk_msg_md, data):
8318                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8319                                       si->dst_reg, si->src_reg,
8320                                       offsetof(struct sk_msg, data));
8321                 break;
8322         case offsetof(struct sk_msg_md, data_end):
8323                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8324                                       si->dst_reg, si->src_reg,
8325                                       offsetof(struct sk_msg, data_end));
8326                 break;
8327         case offsetof(struct sk_msg_md, family):
8328                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
8329
8330                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8331                                               struct sk_msg, sk),
8332                                       si->dst_reg, si->src_reg,
8333                                       offsetof(struct sk_msg, sk));
8334                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8335                                       offsetof(struct sock_common, skc_family));
8336                 break;
8337
8338         case offsetof(struct sk_msg_md, remote_ip4):
8339                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
8340
8341                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8342                                                 struct sk_msg, sk),
8343                                       si->dst_reg, si->src_reg,
8344                                       offsetof(struct sk_msg, sk));
8345                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8346                                       offsetof(struct sock_common, skc_daddr));
8347                 break;
8348
8349         case offsetof(struct sk_msg_md, local_ip4):
8350                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8351                                           skc_rcv_saddr) != 4);
8352
8353                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8354                                               struct sk_msg, sk),
8355                                       si->dst_reg, si->src_reg,
8356                                       offsetof(struct sk_msg, sk));
8357                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8358                                       offsetof(struct sock_common,
8359                                                skc_rcv_saddr));
8360                 break;
8361
8362         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8363              offsetof(struct sk_msg_md, remote_ip6[3]):
8364 #if IS_ENABLED(CONFIG_IPV6)
8365                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8366                                           skc_v6_daddr.s6_addr32[0]) != 4);
8367
8368                 off = si->off;
8369                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8370                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8371                                                 struct sk_msg, sk),
8372                                       si->dst_reg, si->src_reg,
8373                                       offsetof(struct sk_msg, sk));
8374                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8375                                       offsetof(struct sock_common,
8376                                                skc_v6_daddr.s6_addr32[0]) +
8377                                       off);
8378 #else
8379                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8380 #endif
8381                 break;
8382
8383         case offsetof(struct sk_msg_md, local_ip6[0]) ...
8384              offsetof(struct sk_msg_md, local_ip6[3]):
8385 #if IS_ENABLED(CONFIG_IPV6)
8386                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8387                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8388
8389                 off = si->off;
8390                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
8391                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8392                                                 struct sk_msg, sk),
8393                                       si->dst_reg, si->src_reg,
8394                                       offsetof(struct sk_msg, sk));
8395                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8396                                       offsetof(struct sock_common,
8397                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8398                                       off);
8399 #else
8400                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8401 #endif
8402                 break;
8403
8404         case offsetof(struct sk_msg_md, remote_port):
8405                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
8406
8407                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8408                                                 struct sk_msg, sk),
8409                                       si->dst_reg, si->src_reg,
8410                                       offsetof(struct sk_msg, sk));
8411                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8412                                       offsetof(struct sock_common, skc_dport));
8413 #ifndef __BIG_ENDIAN_BITFIELD
8414                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8415 #endif
8416                 break;
8417
8418         case offsetof(struct sk_msg_md, local_port):
8419                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
8420
8421                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8422                                                 struct sk_msg, sk),
8423                                       si->dst_reg, si->src_reg,
8424                                       offsetof(struct sk_msg, sk));
8425                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8426                                       offsetof(struct sock_common, skc_num));
8427                 break;
8428
8429         case offsetof(struct sk_msg_md, size):
8430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8431                                       si->dst_reg, si->src_reg,
8432                                       offsetof(struct sk_msg_sg, size));
8433                 break;
8434         }
8435
8436         return insn - insn_buf;
8437 }
8438
8439 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8440         .get_func_proto         = sk_filter_func_proto,
8441         .is_valid_access        = sk_filter_is_valid_access,
8442         .convert_ctx_access     = bpf_convert_ctx_access,
8443         .gen_ld_abs             = bpf_gen_ld_abs,
8444 };
8445
8446 const struct bpf_prog_ops sk_filter_prog_ops = {
8447         .test_run               = bpf_prog_test_run_skb,
8448 };
8449
8450 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8451         .get_func_proto         = tc_cls_act_func_proto,
8452         .is_valid_access        = tc_cls_act_is_valid_access,
8453         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
8454         .gen_prologue           = tc_cls_act_prologue,
8455         .gen_ld_abs             = bpf_gen_ld_abs,
8456 };
8457
8458 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8459         .test_run               = bpf_prog_test_run_skb,
8460 };
8461
8462 const struct bpf_verifier_ops xdp_verifier_ops = {
8463         .get_func_proto         = xdp_func_proto,
8464         .is_valid_access        = xdp_is_valid_access,
8465         .convert_ctx_access     = xdp_convert_ctx_access,
8466         .gen_prologue           = bpf_noop_prologue,
8467 };
8468
8469 const struct bpf_prog_ops xdp_prog_ops = {
8470         .test_run               = bpf_prog_test_run_xdp,
8471 };
8472
8473 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8474         .get_func_proto         = cg_skb_func_proto,
8475         .is_valid_access        = cg_skb_is_valid_access,
8476         .convert_ctx_access     = bpf_convert_ctx_access,
8477 };
8478
8479 const struct bpf_prog_ops cg_skb_prog_ops = {
8480         .test_run               = bpf_prog_test_run_skb,
8481 };
8482
8483 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8484         .get_func_proto         = lwt_in_func_proto,
8485         .is_valid_access        = lwt_is_valid_access,
8486         .convert_ctx_access     = bpf_convert_ctx_access,
8487 };
8488
8489 const struct bpf_prog_ops lwt_in_prog_ops = {
8490         .test_run               = bpf_prog_test_run_skb,
8491 };
8492
8493 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8494         .get_func_proto         = lwt_out_func_proto,
8495         .is_valid_access        = lwt_is_valid_access,
8496         .convert_ctx_access     = bpf_convert_ctx_access,
8497 };
8498
8499 const struct bpf_prog_ops lwt_out_prog_ops = {
8500         .test_run               = bpf_prog_test_run_skb,
8501 };
8502
8503 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8504         .get_func_proto         = lwt_xmit_func_proto,
8505         .is_valid_access        = lwt_is_valid_access,
8506         .convert_ctx_access     = bpf_convert_ctx_access,
8507         .gen_prologue           = tc_cls_act_prologue,
8508 };
8509
8510 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8511         .test_run               = bpf_prog_test_run_skb,
8512 };
8513
8514 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8515         .get_func_proto         = lwt_seg6local_func_proto,
8516         .is_valid_access        = lwt_is_valid_access,
8517         .convert_ctx_access     = bpf_convert_ctx_access,
8518 };
8519
8520 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8521         .test_run               = bpf_prog_test_run_skb,
8522 };
8523
8524 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8525         .get_func_proto         = sock_filter_func_proto,
8526         .is_valid_access        = sock_filter_is_valid_access,
8527         .convert_ctx_access     = bpf_sock_convert_ctx_access,
8528 };
8529
8530 const struct bpf_prog_ops cg_sock_prog_ops = {
8531 };
8532
8533 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8534         .get_func_proto         = sock_addr_func_proto,
8535         .is_valid_access        = sock_addr_is_valid_access,
8536         .convert_ctx_access     = sock_addr_convert_ctx_access,
8537 };
8538
8539 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8540 };
8541
8542 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8543         .get_func_proto         = sock_ops_func_proto,
8544         .is_valid_access        = sock_ops_is_valid_access,
8545         .convert_ctx_access     = sock_ops_convert_ctx_access,
8546 };
8547
8548 const struct bpf_prog_ops sock_ops_prog_ops = {
8549 };
8550
8551 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8552         .get_func_proto         = sk_skb_func_proto,
8553         .is_valid_access        = sk_skb_is_valid_access,
8554         .convert_ctx_access     = sk_skb_convert_ctx_access,
8555         .gen_prologue           = sk_skb_prologue,
8556 };
8557
8558 const struct bpf_prog_ops sk_skb_prog_ops = {
8559 };
8560
8561 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8562         .get_func_proto         = sk_msg_func_proto,
8563         .is_valid_access        = sk_msg_is_valid_access,
8564         .convert_ctx_access     = sk_msg_convert_ctx_access,
8565         .gen_prologue           = bpf_noop_prologue,
8566 };
8567
8568 const struct bpf_prog_ops sk_msg_prog_ops = {
8569 };
8570
8571 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8572         .get_func_proto         = flow_dissector_func_proto,
8573         .is_valid_access        = flow_dissector_is_valid_access,
8574         .convert_ctx_access     = flow_dissector_convert_ctx_access,
8575 };
8576
8577 const struct bpf_prog_ops flow_dissector_prog_ops = {
8578         .test_run               = bpf_prog_test_run_flow_dissector,
8579 };
8580
8581 int sk_detach_filter(struct sock *sk)
8582 {
8583         int ret = -ENOENT;
8584         struct sk_filter *filter;
8585
8586         if (sock_flag(sk, SOCK_FILTER_LOCKED))
8587                 return -EPERM;
8588
8589         filter = rcu_dereference_protected(sk->sk_filter,
8590                                            lockdep_sock_is_held(sk));
8591         if (filter) {
8592                 RCU_INIT_POINTER(sk->sk_filter, NULL);
8593                 sk_filter_uncharge(sk, filter);
8594                 ret = 0;
8595         }
8596
8597         return ret;
8598 }
8599 EXPORT_SYMBOL_GPL(sk_detach_filter);
8600
8601 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8602                   unsigned int len)
8603 {
8604         struct sock_fprog_kern *fprog;
8605         struct sk_filter *filter;
8606         int ret = 0;
8607
8608         lock_sock(sk);
8609         filter = rcu_dereference_protected(sk->sk_filter,
8610                                            lockdep_sock_is_held(sk));
8611         if (!filter)
8612                 goto out;
8613
8614         /* We're copying the filter that has been originally attached,
8615          * so no conversion/decode needed anymore. eBPF programs that
8616          * have no original program cannot be dumped through this.
8617          */
8618         ret = -EACCES;
8619         fprog = filter->prog->orig_prog;
8620         if (!fprog)
8621                 goto out;
8622
8623         ret = fprog->len;
8624         if (!len)
8625                 /* User space only enquires number of filter blocks. */
8626                 goto out;
8627
8628         ret = -EINVAL;
8629         if (len < fprog->len)
8630                 goto out;
8631
8632         ret = -EFAULT;
8633         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8634                 goto out;
8635
8636         /* Instead of bytes, the API requests to return the number
8637          * of filter blocks.
8638          */
8639         ret = fprog->len;
8640 out:
8641         release_sock(sk);
8642         return ret;
8643 }
8644
8645 #ifdef CONFIG_INET
8646 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8647                                     struct sock_reuseport *reuse,
8648                                     struct sock *sk, struct sk_buff *skb,
8649                                     u32 hash)
8650 {
8651         reuse_kern->skb = skb;
8652         reuse_kern->sk = sk;
8653         reuse_kern->selected_sk = NULL;
8654         reuse_kern->data_end = skb->data + skb_headlen(skb);
8655         reuse_kern->hash = hash;
8656         reuse_kern->reuseport_id = reuse->reuseport_id;
8657         reuse_kern->bind_inany = reuse->bind_inany;
8658 }
8659
8660 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8661                                   struct bpf_prog *prog, struct sk_buff *skb,
8662                                   u32 hash)
8663 {
8664         struct sk_reuseport_kern reuse_kern;
8665         enum sk_action action;
8666
8667         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8668         action = BPF_PROG_RUN(prog, &reuse_kern);
8669
8670         if (action == SK_PASS)
8671                 return reuse_kern.selected_sk;
8672         else
8673                 return ERR_PTR(-ECONNREFUSED);
8674 }
8675
8676 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8677            struct bpf_map *, map, void *, key, u32, flags)
8678 {
8679         struct sock_reuseport *reuse;
8680         struct sock *selected_sk;
8681
8682         selected_sk = map->ops->map_lookup_elem(map, key);
8683         if (!selected_sk)
8684                 return -ENOENT;
8685
8686         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8687         if (!reuse)
8688                 /* selected_sk is unhashed (e.g. by close()) after the
8689                  * above map_lookup_elem().  Treat selected_sk has already
8690                  * been removed from the map.
8691                  */
8692                 return -ENOENT;
8693
8694         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8695                 struct sock *sk;
8696
8697                 if (unlikely(!reuse_kern->reuseport_id))
8698                         /* There is a small race between adding the
8699                          * sk to the map and setting the
8700                          * reuse_kern->reuseport_id.
8701                          * Treat it as the sk has not been added to
8702                          * the bpf map yet.
8703                          */
8704                         return -ENOENT;
8705
8706                 sk = reuse_kern->sk;
8707                 if (sk->sk_protocol != selected_sk->sk_protocol)
8708                         return -EPROTOTYPE;
8709                 else if (sk->sk_family != selected_sk->sk_family)
8710                         return -EAFNOSUPPORT;
8711
8712                 /* Catch all. Likely bound to a different sockaddr. */
8713                 return -EBADFD;
8714         }
8715
8716         reuse_kern->selected_sk = selected_sk;
8717
8718         return 0;
8719 }
8720
8721 static const struct bpf_func_proto sk_select_reuseport_proto = {
8722         .func           = sk_select_reuseport,
8723         .gpl_only       = false,
8724         .ret_type       = RET_INTEGER,
8725         .arg1_type      = ARG_PTR_TO_CTX,
8726         .arg2_type      = ARG_CONST_MAP_PTR,
8727         .arg3_type      = ARG_PTR_TO_MAP_KEY,
8728         .arg4_type      = ARG_ANYTHING,
8729 };
8730
8731 BPF_CALL_4(sk_reuseport_load_bytes,
8732            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8733            void *, to, u32, len)
8734 {
8735         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8736 }
8737
8738 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8739         .func           = sk_reuseport_load_bytes,
8740         .gpl_only       = false,
8741         .ret_type       = RET_INTEGER,
8742         .arg1_type      = ARG_PTR_TO_CTX,
8743         .arg2_type      = ARG_ANYTHING,
8744         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8745         .arg4_type      = ARG_CONST_SIZE,
8746 };
8747
8748 BPF_CALL_5(sk_reuseport_load_bytes_relative,
8749            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8750            void *, to, u32, len, u32, start_header)
8751 {
8752         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8753                                                len, start_header);
8754 }
8755
8756 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8757         .func           = sk_reuseport_load_bytes_relative,
8758         .gpl_only       = false,
8759         .ret_type       = RET_INTEGER,
8760         .arg1_type      = ARG_PTR_TO_CTX,
8761         .arg2_type      = ARG_ANYTHING,
8762         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8763         .arg4_type      = ARG_CONST_SIZE,
8764         .arg5_type      = ARG_ANYTHING,
8765 };
8766
8767 static const struct bpf_func_proto *
8768 sk_reuseport_func_proto(enum bpf_func_id func_id,
8769                         const struct bpf_prog *prog)
8770 {
8771         switch (func_id) {
8772         case BPF_FUNC_sk_select_reuseport:
8773                 return &sk_select_reuseport_proto;
8774         case BPF_FUNC_skb_load_bytes:
8775                 return &sk_reuseport_load_bytes_proto;
8776         case BPF_FUNC_skb_load_bytes_relative:
8777                 return &sk_reuseport_load_bytes_relative_proto;
8778         default:
8779                 return bpf_base_func_proto(func_id);
8780         }
8781 }
8782
8783 static bool
8784 sk_reuseport_is_valid_access(int off, int size,
8785                              enum bpf_access_type type,
8786                              const struct bpf_prog *prog,
8787                              struct bpf_insn_access_aux *info)
8788 {
8789         const u32 size_default = sizeof(__u32);
8790
8791         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8792             off % size || type != BPF_READ)
8793                 return false;
8794
8795         switch (off) {
8796         case offsetof(struct sk_reuseport_md, data):
8797                 info->reg_type = PTR_TO_PACKET;
8798                 return size == sizeof(__u64);
8799
8800         case offsetof(struct sk_reuseport_md, data_end):
8801                 info->reg_type = PTR_TO_PACKET_END;
8802                 return size == sizeof(__u64);
8803
8804         case offsetof(struct sk_reuseport_md, hash):
8805                 return size == size_default;
8806
8807         /* Fields that allow narrowing */
8808         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
8809                 if (size < FIELD_SIZEOF(struct sk_buff, protocol))
8810                         return false;
8811                 /* fall through */
8812         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
8813         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
8814         case bpf_ctx_range(struct sk_reuseport_md, len):
8815                 bpf_ctx_record_field_size(info, size_default);
8816                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8817
8818         default:
8819                 return false;
8820         }
8821 }
8822
8823 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
8824         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8825                               si->dst_reg, si->src_reg,                 \
8826                               bpf_target_off(struct sk_reuseport_kern, F, \
8827                                              FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8828                                              target_size));             \
8829         })
8830
8831 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
8832         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
8833                                     struct sk_buff,                     \
8834                                     skb,                                \
8835                                     SKB_FIELD)
8836
8837 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
8838         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,  \
8839                                              struct sock,               \
8840                                              sk,                        \
8841                                              SK_FIELD, BPF_SIZE, EXTRA_OFF)
8842
8843 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8844                                            const struct bpf_insn *si,
8845                                            struct bpf_insn *insn_buf,
8846                                            struct bpf_prog *prog,
8847                                            u32 *target_size)
8848 {
8849         struct bpf_insn *insn = insn_buf;
8850
8851         switch (si->off) {
8852         case offsetof(struct sk_reuseport_md, data):
8853                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
8854                 break;
8855
8856         case offsetof(struct sk_reuseport_md, len):
8857                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
8858                 break;
8859
8860         case offsetof(struct sk_reuseport_md, eth_protocol):
8861                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8862                 break;
8863
8864         case offsetof(struct sk_reuseport_md, ip_protocol):
8865                 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
8866                 SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
8867                                                     BPF_W, 0);
8868                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
8869                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
8870                                         SK_FL_PROTO_SHIFT);
8871                 /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
8872                  * aware.  No further narrowing or masking is needed.
8873                  */
8874                 *target_size = 1;
8875                 break;
8876
8877         case offsetof(struct sk_reuseport_md, data_end):
8878                 SK_REUSEPORT_LOAD_FIELD(data_end);
8879                 break;
8880
8881         case offsetof(struct sk_reuseport_md, hash):
8882                 SK_REUSEPORT_LOAD_FIELD(hash);
8883                 break;
8884
8885         case offsetof(struct sk_reuseport_md, bind_inany):
8886                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
8887                 break;
8888         }
8889
8890         return insn - insn_buf;
8891 }
8892
8893 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8894         .get_func_proto         = sk_reuseport_func_proto,
8895         .is_valid_access        = sk_reuseport_is_valid_access,
8896         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
8897 };
8898
8899 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8900 };
8901 #endif /* CONFIG_INET */
8902
8903 DEFINE_BPF_DISPATCHER(bpf_dispatcher_xdp)
8904
8905 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
8906 {
8907         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(bpf_dispatcher_xdp),
8908                                    prev_prog, prog);
8909 }