regmap: Fix unused warning
[linux-2.6-block.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148
149 #include "net-sysfs.h"
150
151 /* Instead of increasing this, you should create a hash table. */
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct net_device *dev,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strlen(name) >= IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         p = strnchr(name, IFNAMSIZ-1, '%');
1066         if (p) {
1067                 /*
1068                  * Verify the string as this thing may have come from
1069                  * the user.  There must be either one "%d" and no other "%"
1070                  * characters.
1071                  */
1072                 if (p[1] != 'd' || strchr(p + 2, '%'))
1073                         return -EINVAL;
1074
1075                 /* Use one page as a bit array of possible slots */
1076                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077                 if (!inuse)
1078                         return -ENOMEM;
1079
1080                 for_each_netdev(net, d) {
1081                         if (!sscanf(d->name, name, &i))
1082                                 continue;
1083                         if (i < 0 || i >= max_netdevices)
1084                                 continue;
1085
1086                         /*  avoid cases where sscanf is not exact inverse of printf */
1087                         snprintf(buf, IFNAMSIZ, name, i);
1088                         if (!strncmp(buf, d->name, IFNAMSIZ))
1089                                 set_bit(i, inuse);
1090                 }
1091
1092                 i = find_first_zero_bit(inuse, max_netdevices);
1093                 free_page((unsigned long) inuse);
1094         }
1095
1096         if (buf != name)
1097                 snprintf(buf, IFNAMSIZ, name, i);
1098         if (!__dev_get_by_name(net, buf))
1099                 return i;
1100
1101         /* It is possible to run out of possible slots
1102          * when the name is long and there isn't enough space left
1103          * for the digits, or if all bits are used.
1104          */
1105         return -ENFILE;
1106 }
1107
1108 /**
1109  *      dev_alloc_name - allocate a name for a device
1110  *      @dev: device
1111  *      @name: name format string
1112  *
1113  *      Passed a format string - eg "lt%d" it will try and find a suitable
1114  *      id. It scans list of devices to build up a free map, then chooses
1115  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1116  *      while allocating the name and adding the device in order to avoid
1117  *      duplicates.
1118  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1119  *      Returns the number of the unit assigned or a negative errno code.
1120  */
1121
1122 int dev_alloc_name(struct net_device *dev, const char *name)
1123 {
1124         char buf[IFNAMSIZ];
1125         struct net *net;
1126         int ret;
1127
1128         BUG_ON(!dev_net(dev));
1129         net = dev_net(dev);
1130         ret = __dev_alloc_name(net, name, buf);
1131         if (ret >= 0)
1132                 strlcpy(dev->name, buf, IFNAMSIZ);
1133         return ret;
1134 }
1135 EXPORT_SYMBOL(dev_alloc_name);
1136
1137 static int dev_alloc_name_ns(struct net *net,
1138                              struct net_device *dev,
1139                              const char *name)
1140 {
1141         char buf[IFNAMSIZ];
1142         int ret;
1143
1144         ret = __dev_alloc_name(net, name, buf);
1145         if (ret >= 0)
1146                 strlcpy(dev->name, buf, IFNAMSIZ);
1147         return ret;
1148 }
1149
1150 static int dev_get_valid_name(struct net *net,
1151                               struct net_device *dev,
1152                               const char *name)
1153 {
1154         BUG_ON(!net);
1155
1156         if (!dev_valid_name(name))
1157                 return -EINVAL;
1158
1159         if (strchr(name, '%'))
1160                 return dev_alloc_name_ns(net, dev, name);
1161         else if (__dev_get_by_name(net, name))
1162                 return -EEXIST;
1163         else if (dev->name != name)
1164                 strlcpy(dev->name, name, IFNAMSIZ);
1165
1166         return 0;
1167 }
1168
1169 /**
1170  *      dev_change_name - change name of a device
1171  *      @dev: device
1172  *      @newname: name (or format string) must be at least IFNAMSIZ
1173  *
1174  *      Change name of a device, can pass format strings "eth%d".
1175  *      for wildcarding.
1176  */
1177 int dev_change_name(struct net_device *dev, const char *newname)
1178 {
1179         unsigned char old_assign_type;
1180         char oldname[IFNAMSIZ];
1181         int err = 0;
1182         int ret;
1183         struct net *net;
1184
1185         ASSERT_RTNL();
1186         BUG_ON(!dev_net(dev));
1187
1188         net = dev_net(dev);
1189         if (dev->flags & IFF_UP)
1190                 return -EBUSY;
1191
1192         write_seqcount_begin(&devnet_rename_seq);
1193
1194         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1195                 write_seqcount_end(&devnet_rename_seq);
1196                 return 0;
1197         }
1198
1199         memcpy(oldname, dev->name, IFNAMSIZ);
1200
1201         err = dev_get_valid_name(net, dev, newname);
1202         if (err < 0) {
1203                 write_seqcount_end(&devnet_rename_seq);
1204                 return err;
1205         }
1206
1207         if (oldname[0] && !strchr(oldname, '%'))
1208                 netdev_info(dev, "renamed from %s\n", oldname);
1209
1210         old_assign_type = dev->name_assign_type;
1211         dev->name_assign_type = NET_NAME_RENAMED;
1212
1213 rollback:
1214         ret = device_rename(&dev->dev, dev->name);
1215         if (ret) {
1216                 memcpy(dev->name, oldname, IFNAMSIZ);
1217                 dev->name_assign_type = old_assign_type;
1218                 write_seqcount_end(&devnet_rename_seq);
1219                 return ret;
1220         }
1221
1222         write_seqcount_end(&devnet_rename_seq);
1223
1224         netdev_adjacent_rename_links(dev, oldname);
1225
1226         write_lock_bh(&dev_base_lock);
1227         hlist_del_rcu(&dev->name_hlist);
1228         write_unlock_bh(&dev_base_lock);
1229
1230         synchronize_rcu();
1231
1232         write_lock_bh(&dev_base_lock);
1233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1234         write_unlock_bh(&dev_base_lock);
1235
1236         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1237         ret = notifier_to_errno(ret);
1238
1239         if (ret) {
1240                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1241                 if (err >= 0) {
1242                         err = ret;
1243                         write_seqcount_begin(&devnet_rename_seq);
1244                         memcpy(dev->name, oldname, IFNAMSIZ);
1245                         memcpy(oldname, newname, IFNAMSIZ);
1246                         dev->name_assign_type = old_assign_type;
1247                         old_assign_type = NET_NAME_RENAMED;
1248                         goto rollback;
1249                 } else {
1250                         pr_err("%s: name change rollback failed: %d\n",
1251                                dev->name, ret);
1252                 }
1253         }
1254
1255         return err;
1256 }
1257
1258 /**
1259  *      dev_set_alias - change ifalias of a device
1260  *      @dev: device
1261  *      @alias: name up to IFALIASZ
1262  *      @len: limit of bytes to copy from info
1263  *
1264  *      Set ifalias for a device,
1265  */
1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267 {
1268         char *new_ifalias;
1269
1270         ASSERT_RTNL();
1271
1272         if (len >= IFALIASZ)
1273                 return -EINVAL;
1274
1275         if (!len) {
1276                 kfree(dev->ifalias);
1277                 dev->ifalias = NULL;
1278                 return 0;
1279         }
1280
1281         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1282         if (!new_ifalias)
1283                 return -ENOMEM;
1284         dev->ifalias = new_ifalias;
1285         memcpy(dev->ifalias, alias, len);
1286         dev->ifalias[len] = 0;
1287
1288         return len;
1289 }
1290
1291
1292 /**
1293  *      netdev_features_change - device changes features
1294  *      @dev: device to cause notification
1295  *
1296  *      Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303
1304 /**
1305  *      netdev_state_change - device changes state
1306  *      @dev: device to cause notification
1307  *
1308  *      Called to indicate a device has changed state. This function calls
1309  *      the notifier chains for netdev_chain and sends a NEWLINK message
1310  *      to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314         if (dev->flags & IFF_UP) {
1315                 struct netdev_notifier_change_info change_info;
1316
1317                 change_info.flags_changed = 0;
1318                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1319                                               &change_info.info);
1320                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1321         }
1322 }
1323 EXPORT_SYMBOL(netdev_state_change);
1324
1325 /**
1326  * netdev_notify_peers - notify network peers about existence of @dev
1327  * @dev: network device
1328  *
1329  * Generate traffic such that interested network peers are aware of
1330  * @dev, such as by generating a gratuitous ARP. This may be used when
1331  * a device wants to inform the rest of the network about some sort of
1332  * reconfiguration such as a failover event or virtual machine
1333  * migration.
1334  */
1335 void netdev_notify_peers(struct net_device *dev)
1336 {
1337         rtnl_lock();
1338         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340         rtnl_unlock();
1341 }
1342 EXPORT_SYMBOL(netdev_notify_peers);
1343
1344 static int __dev_open(struct net_device *dev)
1345 {
1346         const struct net_device_ops *ops = dev->netdev_ops;
1347         int ret;
1348
1349         ASSERT_RTNL();
1350
1351         if (!netif_device_present(dev))
1352                 return -ENODEV;
1353
1354         /* Block netpoll from trying to do any rx path servicing.
1355          * If we don't do this there is a chance ndo_poll_controller
1356          * or ndo_poll may be running while we open the device
1357          */
1358         netpoll_poll_disable(dev);
1359
1360         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1361         ret = notifier_to_errno(ret);
1362         if (ret)
1363                 return ret;
1364
1365         set_bit(__LINK_STATE_START, &dev->state);
1366
1367         if (ops->ndo_validate_addr)
1368                 ret = ops->ndo_validate_addr(dev);
1369
1370         if (!ret && ops->ndo_open)
1371                 ret = ops->ndo_open(dev);
1372
1373         netpoll_poll_enable(dev);
1374
1375         if (ret)
1376                 clear_bit(__LINK_STATE_START, &dev->state);
1377         else {
1378                 dev->flags |= IFF_UP;
1379                 dev_set_rx_mode(dev);
1380                 dev_activate(dev);
1381                 add_device_randomness(dev->dev_addr, dev->addr_len);
1382         }
1383
1384         return ret;
1385 }
1386
1387 /**
1388  *      dev_open        - prepare an interface for use.
1389  *      @dev:   device to open
1390  *
1391  *      Takes a device from down to up state. The device's private open
1392  *      function is invoked and then the multicast lists are loaded. Finally
1393  *      the device is moved into the up state and a %NETDEV_UP message is
1394  *      sent to the netdev notifier chain.
1395  *
1396  *      Calling this function on an active interface is a nop. On a failure
1397  *      a negative errno code is returned.
1398  */
1399 int dev_open(struct net_device *dev)
1400 {
1401         int ret;
1402
1403         if (dev->flags & IFF_UP)
1404                 return 0;
1405
1406         ret = __dev_open(dev);
1407         if (ret < 0)
1408                 return ret;
1409
1410         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1411         call_netdevice_notifiers(NETDEV_UP, dev);
1412
1413         return ret;
1414 }
1415 EXPORT_SYMBOL(dev_open);
1416
1417 static void __dev_close_many(struct list_head *head)
1418 {
1419         struct net_device *dev;
1420
1421         ASSERT_RTNL();
1422         might_sleep();
1423
1424         list_for_each_entry(dev, head, close_list) {
1425                 /* Temporarily disable netpoll until the interface is down */
1426                 netpoll_poll_disable(dev);
1427
1428                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1429
1430                 clear_bit(__LINK_STATE_START, &dev->state);
1431
1432                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1433                  * can be even on different cpu. So just clear netif_running().
1434                  *
1435                  * dev->stop() will invoke napi_disable() on all of it's
1436                  * napi_struct instances on this device.
1437                  */
1438                 smp_mb__after_atomic(); /* Commit netif_running(). */
1439         }
1440
1441         dev_deactivate_many(head);
1442
1443         list_for_each_entry(dev, head, close_list) {
1444                 const struct net_device_ops *ops = dev->netdev_ops;
1445
1446                 /*
1447                  *      Call the device specific close. This cannot fail.
1448                  *      Only if device is UP
1449                  *
1450                  *      We allow it to be called even after a DETACH hot-plug
1451                  *      event.
1452                  */
1453                 if (ops->ndo_stop)
1454                         ops->ndo_stop(dev);
1455
1456                 dev->flags &= ~IFF_UP;
1457                 netpoll_poll_enable(dev);
1458         }
1459 }
1460
1461 static void __dev_close(struct net_device *dev)
1462 {
1463         LIST_HEAD(single);
1464
1465         list_add(&dev->close_list, &single);
1466         __dev_close_many(&single);
1467         list_del(&single);
1468 }
1469
1470 void dev_close_many(struct list_head *head, bool unlink)
1471 {
1472         struct net_device *dev, *tmp;
1473
1474         /* Remove the devices that don't need to be closed */
1475         list_for_each_entry_safe(dev, tmp, head, close_list)
1476                 if (!(dev->flags & IFF_UP))
1477                         list_del_init(&dev->close_list);
1478
1479         __dev_close_many(head);
1480
1481         list_for_each_entry_safe(dev, tmp, head, close_list) {
1482                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1483                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1484                 if (unlink)
1485                         list_del_init(&dev->close_list);
1486         }
1487 }
1488 EXPORT_SYMBOL(dev_close_many);
1489
1490 /**
1491  *      dev_close - shutdown an interface.
1492  *      @dev: device to shutdown
1493  *
1494  *      This function moves an active device into down state. A
1495  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1496  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1497  *      chain.
1498  */
1499 void dev_close(struct net_device *dev)
1500 {
1501         if (dev->flags & IFF_UP) {
1502                 LIST_HEAD(single);
1503
1504                 list_add(&dev->close_list, &single);
1505                 dev_close_many(&single, true);
1506                 list_del(&single);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close);
1510
1511
1512 /**
1513  *      dev_disable_lro - disable Large Receive Offload on a device
1514  *      @dev: device
1515  *
1516  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1517  *      called under RTNL.  This is needed if received packets may be
1518  *      forwarded to another interface.
1519  */
1520 void dev_disable_lro(struct net_device *dev)
1521 {
1522         struct net_device *lower_dev;
1523         struct list_head *iter;
1524
1525         dev->wanted_features &= ~NETIF_F_LRO;
1526         netdev_update_features(dev);
1527
1528         if (unlikely(dev->features & NETIF_F_LRO))
1529                 netdev_WARN(dev, "failed to disable LRO!\n");
1530
1531         netdev_for_each_lower_dev(dev, lower_dev, iter)
1532                 dev_disable_lro(lower_dev);
1533 }
1534 EXPORT_SYMBOL(dev_disable_lro);
1535
1536 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1537                                    struct net_device *dev)
1538 {
1539         struct netdev_notifier_info info;
1540
1541         netdev_notifier_info_init(&info, dev);
1542         return nb->notifier_call(nb, val, &info);
1543 }
1544
1545 static int dev_boot_phase = 1;
1546
1547 /**
1548  * register_netdevice_notifier - register a network notifier block
1549  * @nb: notifier
1550  *
1551  * Register a notifier to be called when network device events occur.
1552  * The notifier passed is linked into the kernel structures and must
1553  * not be reused until it has been unregistered. A negative errno code
1554  * is returned on a failure.
1555  *
1556  * When registered all registration and up events are replayed
1557  * to the new notifier to allow device to have a race free
1558  * view of the network device list.
1559  */
1560
1561 int register_netdevice_notifier(struct notifier_block *nb)
1562 {
1563         struct net_device *dev;
1564         struct net_device *last;
1565         struct net *net;
1566         int err;
1567
1568         rtnl_lock();
1569         err = raw_notifier_chain_register(&netdev_chain, nb);
1570         if (err)
1571                 goto unlock;
1572         if (dev_boot_phase)
1573                 goto unlock;
1574         for_each_net(net) {
1575                 for_each_netdev(net, dev) {
1576                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1577                         err = notifier_to_errno(err);
1578                         if (err)
1579                                 goto rollback;
1580
1581                         if (!(dev->flags & IFF_UP))
1582                                 continue;
1583
1584                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1585                 }
1586         }
1587
1588 unlock:
1589         rtnl_unlock();
1590         return err;
1591
1592 rollback:
1593         last = dev;
1594         for_each_net(net) {
1595                 for_each_netdev(net, dev) {
1596                         if (dev == last)
1597                                 goto outroll;
1598
1599                         if (dev->flags & IFF_UP) {
1600                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1601                                                         dev);
1602                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1603                         }
1604                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1605                 }
1606         }
1607
1608 outroll:
1609         raw_notifier_chain_unregister(&netdev_chain, nb);
1610         goto unlock;
1611 }
1612 EXPORT_SYMBOL(register_netdevice_notifier);
1613
1614 /**
1615  * unregister_netdevice_notifier - unregister a network notifier block
1616  * @nb: notifier
1617  *
1618  * Unregister a notifier previously registered by
1619  * register_netdevice_notifier(). The notifier is unlinked into the
1620  * kernel structures and may then be reused. A negative errno code
1621  * is returned on a failure.
1622  *
1623  * After unregistering unregister and down device events are synthesized
1624  * for all devices on the device list to the removed notifier to remove
1625  * the need for special case cleanup code.
1626  */
1627
1628 int unregister_netdevice_notifier(struct notifier_block *nb)
1629 {
1630         struct net_device *dev;
1631         struct net *net;
1632         int err;
1633
1634         rtnl_lock();
1635         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1636         if (err)
1637                 goto unlock;
1638
1639         for_each_net(net) {
1640                 for_each_netdev(net, dev) {
1641                         if (dev->flags & IFF_UP) {
1642                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643                                                         dev);
1644                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1645                         }
1646                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1647                 }
1648         }
1649 unlock:
1650         rtnl_unlock();
1651         return err;
1652 }
1653 EXPORT_SYMBOL(unregister_netdevice_notifier);
1654
1655 /**
1656  *      call_netdevice_notifiers_info - call all network notifier blocks
1657  *      @val: value passed unmodified to notifier function
1658  *      @dev: net_device pointer passed unmodified to notifier function
1659  *      @info: notifier information data
1660  *
1661  *      Call all network notifier blocks.  Parameters and return value
1662  *      are as for raw_notifier_call_chain().
1663  */
1664
1665 static int call_netdevice_notifiers_info(unsigned long val,
1666                                          struct net_device *dev,
1667                                          struct netdev_notifier_info *info)
1668 {
1669         ASSERT_RTNL();
1670         netdev_notifier_info_init(info, dev);
1671         return raw_notifier_call_chain(&netdev_chain, val, info);
1672 }
1673
1674 /**
1675  *      call_netdevice_notifiers - call all network notifier blocks
1676  *      @val: value passed unmodified to notifier function
1677  *      @dev: net_device pointer passed unmodified to notifier function
1678  *
1679  *      Call all network notifier blocks.  Parameters and return value
1680  *      are as for raw_notifier_call_chain().
1681  */
1682
1683 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1684 {
1685         struct netdev_notifier_info info;
1686
1687         return call_netdevice_notifiers_info(val, dev, &info);
1688 }
1689 EXPORT_SYMBOL(call_netdevice_notifiers);
1690
1691 #ifdef CONFIG_NET_INGRESS
1692 static struct static_key ingress_needed __read_mostly;
1693
1694 void net_inc_ingress_queue(void)
1695 {
1696         static_key_slow_inc(&ingress_needed);
1697 }
1698 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1699
1700 void net_dec_ingress_queue(void)
1701 {
1702         static_key_slow_dec(&ingress_needed);
1703 }
1704 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1705 #endif
1706
1707 #ifdef CONFIG_NET_EGRESS
1708 static struct static_key egress_needed __read_mostly;
1709
1710 void net_inc_egress_queue(void)
1711 {
1712         static_key_slow_inc(&egress_needed);
1713 }
1714 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1715
1716 void net_dec_egress_queue(void)
1717 {
1718         static_key_slow_dec(&egress_needed);
1719 }
1720 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1721 #endif
1722
1723 static struct static_key netstamp_needed __read_mostly;
1724 #ifdef HAVE_JUMP_LABEL
1725 static atomic_t netstamp_needed_deferred;
1726 static atomic_t netstamp_wanted;
1727 static void netstamp_clear(struct work_struct *work)
1728 {
1729         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1730         int wanted;
1731
1732         wanted = atomic_add_return(deferred, &netstamp_wanted);
1733         if (wanted > 0)
1734                 static_key_enable(&netstamp_needed);
1735         else
1736                 static_key_disable(&netstamp_needed);
1737 }
1738 static DECLARE_WORK(netstamp_work, netstamp_clear);
1739 #endif
1740
1741 void net_enable_timestamp(void)
1742 {
1743 #ifdef HAVE_JUMP_LABEL
1744         int wanted;
1745
1746         while (1) {
1747                 wanted = atomic_read(&netstamp_wanted);
1748                 if (wanted <= 0)
1749                         break;
1750                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1751                         return;
1752         }
1753         atomic_inc(&netstamp_needed_deferred);
1754         schedule_work(&netstamp_work);
1755 #else
1756         static_key_slow_inc(&netstamp_needed);
1757 #endif
1758 }
1759 EXPORT_SYMBOL(net_enable_timestamp);
1760
1761 void net_disable_timestamp(void)
1762 {
1763 #ifdef HAVE_JUMP_LABEL
1764         int wanted;
1765
1766         while (1) {
1767                 wanted = atomic_read(&netstamp_wanted);
1768                 if (wanted <= 1)
1769                         break;
1770                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1771                         return;
1772         }
1773         atomic_dec(&netstamp_needed_deferred);
1774         schedule_work(&netstamp_work);
1775 #else
1776         static_key_slow_dec(&netstamp_needed);
1777 #endif
1778 }
1779 EXPORT_SYMBOL(net_disable_timestamp);
1780
1781 static inline void net_timestamp_set(struct sk_buff *skb)
1782 {
1783         skb->tstamp = 0;
1784         if (static_key_false(&netstamp_needed))
1785                 __net_timestamp(skb);
1786 }
1787
1788 #define net_timestamp_check(COND, SKB)                  \
1789         if (static_key_false(&netstamp_needed)) {               \
1790                 if ((COND) && !(SKB)->tstamp)   \
1791                         __net_timestamp(SKB);           \
1792         }                                               \
1793
1794 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1795 {
1796         unsigned int len;
1797
1798         if (!(dev->flags & IFF_UP))
1799                 return false;
1800
1801         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1802         if (skb->len <= len)
1803                 return true;
1804
1805         /* if TSO is enabled, we don't care about the length as the packet
1806          * could be forwarded without being segmented before
1807          */
1808         if (skb_is_gso(skb))
1809                 return true;
1810
1811         return false;
1812 }
1813 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1814
1815 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1816 {
1817         int ret = ____dev_forward_skb(dev, skb);
1818
1819         if (likely(!ret)) {
1820                 skb->protocol = eth_type_trans(skb, dev);
1821                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1822         }
1823
1824         return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1827
1828 /**
1829  * dev_forward_skb - loopback an skb to another netif
1830  *
1831  * @dev: destination network device
1832  * @skb: buffer to forward
1833  *
1834  * return values:
1835  *      NET_RX_SUCCESS  (no congestion)
1836  *      NET_RX_DROP     (packet was dropped, but freed)
1837  *
1838  * dev_forward_skb can be used for injecting an skb from the
1839  * start_xmit function of one device into the receive queue
1840  * of another device.
1841  *
1842  * The receiving device may be in another namespace, so
1843  * we have to clear all information in the skb that could
1844  * impact namespace isolation.
1845  */
1846 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1847 {
1848         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1849 }
1850 EXPORT_SYMBOL_GPL(dev_forward_skb);
1851
1852 static inline int deliver_skb(struct sk_buff *skb,
1853                               struct packet_type *pt_prev,
1854                               struct net_device *orig_dev)
1855 {
1856         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1857                 return -ENOMEM;
1858         refcount_inc(&skb->users);
1859         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1860 }
1861
1862 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1863                                           struct packet_type **pt,
1864                                           struct net_device *orig_dev,
1865                                           __be16 type,
1866                                           struct list_head *ptype_list)
1867 {
1868         struct packet_type *ptype, *pt_prev = *pt;
1869
1870         list_for_each_entry_rcu(ptype, ptype_list, list) {
1871                 if (ptype->type != type)
1872                         continue;
1873                 if (pt_prev)
1874                         deliver_skb(skb, pt_prev, orig_dev);
1875                 pt_prev = ptype;
1876         }
1877         *pt = pt_prev;
1878 }
1879
1880 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1881 {
1882         if (!ptype->af_packet_priv || !skb->sk)
1883                 return false;
1884
1885         if (ptype->id_match)
1886                 return ptype->id_match(ptype, skb->sk);
1887         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1888                 return true;
1889
1890         return false;
1891 }
1892
1893 /*
1894  *      Support routine. Sends outgoing frames to any network
1895  *      taps currently in use.
1896  */
1897
1898 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1899 {
1900         struct packet_type *ptype;
1901         struct sk_buff *skb2 = NULL;
1902         struct packet_type *pt_prev = NULL;
1903         struct list_head *ptype_list = &ptype_all;
1904
1905         rcu_read_lock();
1906 again:
1907         list_for_each_entry_rcu(ptype, ptype_list, list) {
1908                 /* Never send packets back to the socket
1909                  * they originated from - MvS (miquels@drinkel.ow.org)
1910                  */
1911                 if (skb_loop_sk(ptype, skb))
1912                         continue;
1913
1914                 if (pt_prev) {
1915                         deliver_skb(skb2, pt_prev, skb->dev);
1916                         pt_prev = ptype;
1917                         continue;
1918                 }
1919
1920                 /* need to clone skb, done only once */
1921                 skb2 = skb_clone(skb, GFP_ATOMIC);
1922                 if (!skb2)
1923                         goto out_unlock;
1924
1925                 net_timestamp_set(skb2);
1926
1927                 /* skb->nh should be correctly
1928                  * set by sender, so that the second statement is
1929                  * just protection against buggy protocols.
1930                  */
1931                 skb_reset_mac_header(skb2);
1932
1933                 if (skb_network_header(skb2) < skb2->data ||
1934                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1935                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1936                                              ntohs(skb2->protocol),
1937                                              dev->name);
1938                         skb_reset_network_header(skb2);
1939                 }
1940
1941                 skb2->transport_header = skb2->network_header;
1942                 skb2->pkt_type = PACKET_OUTGOING;
1943                 pt_prev = ptype;
1944         }
1945
1946         if (ptype_list == &ptype_all) {
1947                 ptype_list = &dev->ptype_all;
1948                 goto again;
1949         }
1950 out_unlock:
1951         if (pt_prev)
1952                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1953         rcu_read_unlock();
1954 }
1955 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1956
1957 /**
1958  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1959  * @dev: Network device
1960  * @txq: number of queues available
1961  *
1962  * If real_num_tx_queues is changed the tc mappings may no longer be
1963  * valid. To resolve this verify the tc mapping remains valid and if
1964  * not NULL the mapping. With no priorities mapping to this
1965  * offset/count pair it will no longer be used. In the worst case TC0
1966  * is invalid nothing can be done so disable priority mappings. If is
1967  * expected that drivers will fix this mapping if they can before
1968  * calling netif_set_real_num_tx_queues.
1969  */
1970 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1971 {
1972         int i;
1973         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1974
1975         /* If TC0 is invalidated disable TC mapping */
1976         if (tc->offset + tc->count > txq) {
1977                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1978                 dev->num_tc = 0;
1979                 return;
1980         }
1981
1982         /* Invalidated prio to tc mappings set to TC0 */
1983         for (i = 1; i < TC_BITMASK + 1; i++) {
1984                 int q = netdev_get_prio_tc_map(dev, i);
1985
1986                 tc = &dev->tc_to_txq[q];
1987                 if (tc->offset + tc->count > txq) {
1988                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1989                                 i, q);
1990                         netdev_set_prio_tc_map(dev, i, 0);
1991                 }
1992         }
1993 }
1994
1995 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1996 {
1997         if (dev->num_tc) {
1998                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1999                 int i;
2000
2001                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2002                         if ((txq - tc->offset) < tc->count)
2003                                 return i;
2004                 }
2005
2006                 return -1;
2007         }
2008
2009         return 0;
2010 }
2011
2012 #ifdef CONFIG_XPS
2013 static DEFINE_MUTEX(xps_map_mutex);
2014 #define xmap_dereference(P)             \
2015         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2016
2017 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2018                              int tci, u16 index)
2019 {
2020         struct xps_map *map = NULL;
2021         int pos;
2022
2023         if (dev_maps)
2024                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2025         if (!map)
2026                 return false;
2027
2028         for (pos = map->len; pos--;) {
2029                 if (map->queues[pos] != index)
2030                         continue;
2031
2032                 if (map->len > 1) {
2033                         map->queues[pos] = map->queues[--map->len];
2034                         break;
2035                 }
2036
2037                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2038                 kfree_rcu(map, rcu);
2039                 return false;
2040         }
2041
2042         return true;
2043 }
2044
2045 static bool remove_xps_queue_cpu(struct net_device *dev,
2046                                  struct xps_dev_maps *dev_maps,
2047                                  int cpu, u16 offset, u16 count)
2048 {
2049         int num_tc = dev->num_tc ? : 1;
2050         bool active = false;
2051         int tci;
2052
2053         for (tci = cpu * num_tc; num_tc--; tci++) {
2054                 int i, j;
2055
2056                 for (i = count, j = offset; i--; j++) {
2057                         if (!remove_xps_queue(dev_maps, cpu, j))
2058                                 break;
2059                 }
2060
2061                 active |= i < 0;
2062         }
2063
2064         return active;
2065 }
2066
2067 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2068                                    u16 count)
2069 {
2070         struct xps_dev_maps *dev_maps;
2071         int cpu, i;
2072         bool active = false;
2073
2074         mutex_lock(&xps_map_mutex);
2075         dev_maps = xmap_dereference(dev->xps_maps);
2076
2077         if (!dev_maps)
2078                 goto out_no_maps;
2079
2080         for_each_possible_cpu(cpu)
2081                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2082                                                offset, count);
2083
2084         if (!active) {
2085                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2086                 kfree_rcu(dev_maps, rcu);
2087         }
2088
2089         for (i = offset + (count - 1); count--; i--)
2090                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2091                                              NUMA_NO_NODE);
2092
2093 out_no_maps:
2094         mutex_unlock(&xps_map_mutex);
2095 }
2096
2097 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2098 {
2099         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2100 }
2101
2102 static struct xps_map *expand_xps_map(struct xps_map *map,
2103                                       int cpu, u16 index)
2104 {
2105         struct xps_map *new_map;
2106         int alloc_len = XPS_MIN_MAP_ALLOC;
2107         int i, pos;
2108
2109         for (pos = 0; map && pos < map->len; pos++) {
2110                 if (map->queues[pos] != index)
2111                         continue;
2112                 return map;
2113         }
2114
2115         /* Need to add queue to this CPU's existing map */
2116         if (map) {
2117                 if (pos < map->alloc_len)
2118                         return map;
2119
2120                 alloc_len = map->alloc_len * 2;
2121         }
2122
2123         /* Need to allocate new map to store queue on this CPU's map */
2124         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2125                                cpu_to_node(cpu));
2126         if (!new_map)
2127                 return NULL;
2128
2129         for (i = 0; i < pos; i++)
2130                 new_map->queues[i] = map->queues[i];
2131         new_map->alloc_len = alloc_len;
2132         new_map->len = pos;
2133
2134         return new_map;
2135 }
2136
2137 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2138                         u16 index)
2139 {
2140         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2141         int i, cpu, tci, numa_node_id = -2;
2142         int maps_sz, num_tc = 1, tc = 0;
2143         struct xps_map *map, *new_map;
2144         bool active = false;
2145
2146         if (dev->num_tc) {
2147                 num_tc = dev->num_tc;
2148                 tc = netdev_txq_to_tc(dev, index);
2149                 if (tc < 0)
2150                         return -EINVAL;
2151         }
2152
2153         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2154         if (maps_sz < L1_CACHE_BYTES)
2155                 maps_sz = L1_CACHE_BYTES;
2156
2157         mutex_lock(&xps_map_mutex);
2158
2159         dev_maps = xmap_dereference(dev->xps_maps);
2160
2161         /* allocate memory for queue storage */
2162         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2163                 if (!new_dev_maps)
2164                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2165                 if (!new_dev_maps) {
2166                         mutex_unlock(&xps_map_mutex);
2167                         return -ENOMEM;
2168                 }
2169
2170                 tci = cpu * num_tc + tc;
2171                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2172                                  NULL;
2173
2174                 map = expand_xps_map(map, cpu, index);
2175                 if (!map)
2176                         goto error;
2177
2178                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2179         }
2180
2181         if (!new_dev_maps)
2182                 goto out_no_new_maps;
2183
2184         for_each_possible_cpu(cpu) {
2185                 /* copy maps belonging to foreign traffic classes */
2186                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2187                         /* fill in the new device map from the old device map */
2188                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2189                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2190                 }
2191
2192                 /* We need to explicitly update tci as prevous loop
2193                  * could break out early if dev_maps is NULL.
2194                  */
2195                 tci = cpu * num_tc + tc;
2196
2197                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2198                         /* add queue to CPU maps */
2199                         int pos = 0;
2200
2201                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2202                         while ((pos < map->len) && (map->queues[pos] != index))
2203                                 pos++;
2204
2205                         if (pos == map->len)
2206                                 map->queues[map->len++] = index;
2207 #ifdef CONFIG_NUMA
2208                         if (numa_node_id == -2)
2209                                 numa_node_id = cpu_to_node(cpu);
2210                         else if (numa_node_id != cpu_to_node(cpu))
2211                                 numa_node_id = -1;
2212 #endif
2213                 } else if (dev_maps) {
2214                         /* fill in the new device map from the old device map */
2215                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2216                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2217                 }
2218
2219                 /* copy maps belonging to foreign traffic classes */
2220                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2221                         /* fill in the new device map from the old device map */
2222                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2223                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2224                 }
2225         }
2226
2227         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2228
2229         /* Cleanup old maps */
2230         if (!dev_maps)
2231                 goto out_no_old_maps;
2232
2233         for_each_possible_cpu(cpu) {
2234                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2235                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2236                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2237                         if (map && map != new_map)
2238                                 kfree_rcu(map, rcu);
2239                 }
2240         }
2241
2242         kfree_rcu(dev_maps, rcu);
2243
2244 out_no_old_maps:
2245         dev_maps = new_dev_maps;
2246         active = true;
2247
2248 out_no_new_maps:
2249         /* update Tx queue numa node */
2250         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2251                                      (numa_node_id >= 0) ? numa_node_id :
2252                                      NUMA_NO_NODE);
2253
2254         if (!dev_maps)
2255                 goto out_no_maps;
2256
2257         /* removes queue from unused CPUs */
2258         for_each_possible_cpu(cpu) {
2259                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2260                         active |= remove_xps_queue(dev_maps, tci, index);
2261                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2262                         active |= remove_xps_queue(dev_maps, tci, index);
2263                 for (i = num_tc - tc, tci++; --i; tci++)
2264                         active |= remove_xps_queue(dev_maps, tci, index);
2265         }
2266
2267         /* free map if not active */
2268         if (!active) {
2269                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2270                 kfree_rcu(dev_maps, rcu);
2271         }
2272
2273 out_no_maps:
2274         mutex_unlock(&xps_map_mutex);
2275
2276         return 0;
2277 error:
2278         /* remove any maps that we added */
2279         for_each_possible_cpu(cpu) {
2280                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2281                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2282                         map = dev_maps ?
2283                               xmap_dereference(dev_maps->cpu_map[tci]) :
2284                               NULL;
2285                         if (new_map && new_map != map)
2286                                 kfree(new_map);
2287                 }
2288         }
2289
2290         mutex_unlock(&xps_map_mutex);
2291
2292         kfree(new_dev_maps);
2293         return -ENOMEM;
2294 }
2295 EXPORT_SYMBOL(netif_set_xps_queue);
2296
2297 #endif
2298 void netdev_reset_tc(struct net_device *dev)
2299 {
2300 #ifdef CONFIG_XPS
2301         netif_reset_xps_queues_gt(dev, 0);
2302 #endif
2303         dev->num_tc = 0;
2304         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2305         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2306 }
2307 EXPORT_SYMBOL(netdev_reset_tc);
2308
2309 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2310 {
2311         if (tc >= dev->num_tc)
2312                 return -EINVAL;
2313
2314 #ifdef CONFIG_XPS
2315         netif_reset_xps_queues(dev, offset, count);
2316 #endif
2317         dev->tc_to_txq[tc].count = count;
2318         dev->tc_to_txq[tc].offset = offset;
2319         return 0;
2320 }
2321 EXPORT_SYMBOL(netdev_set_tc_queue);
2322
2323 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2324 {
2325         if (num_tc > TC_MAX_QUEUE)
2326                 return -EINVAL;
2327
2328 #ifdef CONFIG_XPS
2329         netif_reset_xps_queues_gt(dev, 0);
2330 #endif
2331         dev->num_tc = num_tc;
2332         return 0;
2333 }
2334 EXPORT_SYMBOL(netdev_set_num_tc);
2335
2336 /*
2337  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2338  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2339  */
2340 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2341 {
2342         int rc;
2343
2344         if (txq < 1 || txq > dev->num_tx_queues)
2345                 return -EINVAL;
2346
2347         if (dev->reg_state == NETREG_REGISTERED ||
2348             dev->reg_state == NETREG_UNREGISTERING) {
2349                 ASSERT_RTNL();
2350
2351                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2352                                                   txq);
2353                 if (rc)
2354                         return rc;
2355
2356                 if (dev->num_tc)
2357                         netif_setup_tc(dev, txq);
2358
2359                 if (txq < dev->real_num_tx_queues) {
2360                         qdisc_reset_all_tx_gt(dev, txq);
2361 #ifdef CONFIG_XPS
2362                         netif_reset_xps_queues_gt(dev, txq);
2363 #endif
2364                 }
2365         }
2366
2367         dev->real_num_tx_queues = txq;
2368         return 0;
2369 }
2370 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2371
2372 #ifdef CONFIG_SYSFS
2373 /**
2374  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2375  *      @dev: Network device
2376  *      @rxq: Actual number of RX queues
2377  *
2378  *      This must be called either with the rtnl_lock held or before
2379  *      registration of the net device.  Returns 0 on success, or a
2380  *      negative error code.  If called before registration, it always
2381  *      succeeds.
2382  */
2383 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2384 {
2385         int rc;
2386
2387         if (rxq < 1 || rxq > dev->num_rx_queues)
2388                 return -EINVAL;
2389
2390         if (dev->reg_state == NETREG_REGISTERED) {
2391                 ASSERT_RTNL();
2392
2393                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2394                                                   rxq);
2395                 if (rc)
2396                         return rc;
2397         }
2398
2399         dev->real_num_rx_queues = rxq;
2400         return 0;
2401 }
2402 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2403 #endif
2404
2405 /**
2406  * netif_get_num_default_rss_queues - default number of RSS queues
2407  *
2408  * This routine should set an upper limit on the number of RSS queues
2409  * used by default by multiqueue devices.
2410  */
2411 int netif_get_num_default_rss_queues(void)
2412 {
2413         return is_kdump_kernel() ?
2414                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2415 }
2416 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2417
2418 static void __netif_reschedule(struct Qdisc *q)
2419 {
2420         struct softnet_data *sd;
2421         unsigned long flags;
2422
2423         local_irq_save(flags);
2424         sd = this_cpu_ptr(&softnet_data);
2425         q->next_sched = NULL;
2426         *sd->output_queue_tailp = q;
2427         sd->output_queue_tailp = &q->next_sched;
2428         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2429         local_irq_restore(flags);
2430 }
2431
2432 void __netif_schedule(struct Qdisc *q)
2433 {
2434         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2435                 __netif_reschedule(q);
2436 }
2437 EXPORT_SYMBOL(__netif_schedule);
2438
2439 struct dev_kfree_skb_cb {
2440         enum skb_free_reason reason;
2441 };
2442
2443 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2444 {
2445         return (struct dev_kfree_skb_cb *)skb->cb;
2446 }
2447
2448 void netif_schedule_queue(struct netdev_queue *txq)
2449 {
2450         rcu_read_lock();
2451         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2452                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2453
2454                 __netif_schedule(q);
2455         }
2456         rcu_read_unlock();
2457 }
2458 EXPORT_SYMBOL(netif_schedule_queue);
2459
2460 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2461 {
2462         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2463                 struct Qdisc *q;
2464
2465                 rcu_read_lock();
2466                 q = rcu_dereference(dev_queue->qdisc);
2467                 __netif_schedule(q);
2468                 rcu_read_unlock();
2469         }
2470 }
2471 EXPORT_SYMBOL(netif_tx_wake_queue);
2472
2473 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2474 {
2475         unsigned long flags;
2476
2477         if (unlikely(!skb))
2478                 return;
2479
2480         if (likely(refcount_read(&skb->users) == 1)) {
2481                 smp_rmb();
2482                 refcount_set(&skb->users, 0);
2483         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2484                 return;
2485         }
2486         get_kfree_skb_cb(skb)->reason = reason;
2487         local_irq_save(flags);
2488         skb->next = __this_cpu_read(softnet_data.completion_queue);
2489         __this_cpu_write(softnet_data.completion_queue, skb);
2490         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2491         local_irq_restore(flags);
2492 }
2493 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2494
2495 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2496 {
2497         if (in_irq() || irqs_disabled())
2498                 __dev_kfree_skb_irq(skb, reason);
2499         else
2500                 dev_kfree_skb(skb);
2501 }
2502 EXPORT_SYMBOL(__dev_kfree_skb_any);
2503
2504
2505 /**
2506  * netif_device_detach - mark device as removed
2507  * @dev: network device
2508  *
2509  * Mark device as removed from system and therefore no longer available.
2510  */
2511 void netif_device_detach(struct net_device *dev)
2512 {
2513         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2514             netif_running(dev)) {
2515                 netif_tx_stop_all_queues(dev);
2516         }
2517 }
2518 EXPORT_SYMBOL(netif_device_detach);
2519
2520 /**
2521  * netif_device_attach - mark device as attached
2522  * @dev: network device
2523  *
2524  * Mark device as attached from system and restart if needed.
2525  */
2526 void netif_device_attach(struct net_device *dev)
2527 {
2528         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2529             netif_running(dev)) {
2530                 netif_tx_wake_all_queues(dev);
2531                 __netdev_watchdog_up(dev);
2532         }
2533 }
2534 EXPORT_SYMBOL(netif_device_attach);
2535
2536 /*
2537  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2538  * to be used as a distribution range.
2539  */
2540 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2541                   unsigned int num_tx_queues)
2542 {
2543         u32 hash;
2544         u16 qoffset = 0;
2545         u16 qcount = num_tx_queues;
2546
2547         if (skb_rx_queue_recorded(skb)) {
2548                 hash = skb_get_rx_queue(skb);
2549                 while (unlikely(hash >= num_tx_queues))
2550                         hash -= num_tx_queues;
2551                 return hash;
2552         }
2553
2554         if (dev->num_tc) {
2555                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2556
2557                 qoffset = dev->tc_to_txq[tc].offset;
2558                 qcount = dev->tc_to_txq[tc].count;
2559         }
2560
2561         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2562 }
2563 EXPORT_SYMBOL(__skb_tx_hash);
2564
2565 static void skb_warn_bad_offload(const struct sk_buff *skb)
2566 {
2567         static const netdev_features_t null_features;
2568         struct net_device *dev = skb->dev;
2569         const char *name = "";
2570
2571         if (!net_ratelimit())
2572                 return;
2573
2574         if (dev) {
2575                 if (dev->dev.parent)
2576                         name = dev_driver_string(dev->dev.parent);
2577                 else
2578                         name = netdev_name(dev);
2579         }
2580         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2581              "gso_type=%d ip_summed=%d\n",
2582              name, dev ? &dev->features : &null_features,
2583              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2584              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2585              skb_shinfo(skb)->gso_type, skb->ip_summed);
2586 }
2587
2588 /*
2589  * Invalidate hardware checksum when packet is to be mangled, and
2590  * complete checksum manually on outgoing path.
2591  */
2592 int skb_checksum_help(struct sk_buff *skb)
2593 {
2594         __wsum csum;
2595         int ret = 0, offset;
2596
2597         if (skb->ip_summed == CHECKSUM_COMPLETE)
2598                 goto out_set_summed;
2599
2600         if (unlikely(skb_shinfo(skb)->gso_size)) {
2601                 skb_warn_bad_offload(skb);
2602                 return -EINVAL;
2603         }
2604
2605         /* Before computing a checksum, we should make sure no frag could
2606          * be modified by an external entity : checksum could be wrong.
2607          */
2608         if (skb_has_shared_frag(skb)) {
2609                 ret = __skb_linearize(skb);
2610                 if (ret)
2611                         goto out;
2612         }
2613
2614         offset = skb_checksum_start_offset(skb);
2615         BUG_ON(offset >= skb_headlen(skb));
2616         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2617
2618         offset += skb->csum_offset;
2619         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2620
2621         if (skb_cloned(skb) &&
2622             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2623                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2624                 if (ret)
2625                         goto out;
2626         }
2627
2628         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2629 out_set_summed:
2630         skb->ip_summed = CHECKSUM_NONE;
2631 out:
2632         return ret;
2633 }
2634 EXPORT_SYMBOL(skb_checksum_help);
2635
2636 int skb_crc32c_csum_help(struct sk_buff *skb)
2637 {
2638         __le32 crc32c_csum;
2639         int ret = 0, offset, start;
2640
2641         if (skb->ip_summed != CHECKSUM_PARTIAL)
2642                 goto out;
2643
2644         if (unlikely(skb_is_gso(skb)))
2645                 goto out;
2646
2647         /* Before computing a checksum, we should make sure no frag could
2648          * be modified by an external entity : checksum could be wrong.
2649          */
2650         if (unlikely(skb_has_shared_frag(skb))) {
2651                 ret = __skb_linearize(skb);
2652                 if (ret)
2653                         goto out;
2654         }
2655         start = skb_checksum_start_offset(skb);
2656         offset = start + offsetof(struct sctphdr, checksum);
2657         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2658                 ret = -EINVAL;
2659                 goto out;
2660         }
2661         if (skb_cloned(skb) &&
2662             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2663                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2664                 if (ret)
2665                         goto out;
2666         }
2667         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2668                                                   skb->len - start, ~(__u32)0,
2669                                                   crc32c_csum_stub));
2670         *(__le32 *)(skb->data + offset) = crc32c_csum;
2671         skb->ip_summed = CHECKSUM_NONE;
2672         skb->csum_not_inet = 0;
2673 out:
2674         return ret;
2675 }
2676
2677 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2678 {
2679         __be16 type = skb->protocol;
2680
2681         /* Tunnel gso handlers can set protocol to ethernet. */
2682         if (type == htons(ETH_P_TEB)) {
2683                 struct ethhdr *eth;
2684
2685                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2686                         return 0;
2687
2688                 eth = (struct ethhdr *)skb_mac_header(skb);
2689                 type = eth->h_proto;
2690         }
2691
2692         return __vlan_get_protocol(skb, type, depth);
2693 }
2694
2695 /**
2696  *      skb_mac_gso_segment - mac layer segmentation handler.
2697  *      @skb: buffer to segment
2698  *      @features: features for the output path (see dev->features)
2699  */
2700 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2701                                     netdev_features_t features)
2702 {
2703         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2704         struct packet_offload *ptype;
2705         int vlan_depth = skb->mac_len;
2706         __be16 type = skb_network_protocol(skb, &vlan_depth);
2707
2708         if (unlikely(!type))
2709                 return ERR_PTR(-EINVAL);
2710
2711         __skb_pull(skb, vlan_depth);
2712
2713         rcu_read_lock();
2714         list_for_each_entry_rcu(ptype, &offload_base, list) {
2715                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2716                         segs = ptype->callbacks.gso_segment(skb, features);
2717                         break;
2718                 }
2719         }
2720         rcu_read_unlock();
2721
2722         __skb_push(skb, skb->data - skb_mac_header(skb));
2723
2724         return segs;
2725 }
2726 EXPORT_SYMBOL(skb_mac_gso_segment);
2727
2728
2729 /* openvswitch calls this on rx path, so we need a different check.
2730  */
2731 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2732 {
2733         if (tx_path)
2734                 return skb->ip_summed != CHECKSUM_PARTIAL;
2735
2736         return skb->ip_summed == CHECKSUM_NONE;
2737 }
2738
2739 /**
2740  *      __skb_gso_segment - Perform segmentation on skb.
2741  *      @skb: buffer to segment
2742  *      @features: features for the output path (see dev->features)
2743  *      @tx_path: whether it is called in TX path
2744  *
2745  *      This function segments the given skb and returns a list of segments.
2746  *
2747  *      It may return NULL if the skb requires no segmentation.  This is
2748  *      only possible when GSO is used for verifying header integrity.
2749  *
2750  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2751  */
2752 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2753                                   netdev_features_t features, bool tx_path)
2754 {
2755         struct sk_buff *segs;
2756
2757         if (unlikely(skb_needs_check(skb, tx_path))) {
2758                 int err;
2759
2760                 /* We're going to init ->check field in TCP or UDP header */
2761                 err = skb_cow_head(skb, 0);
2762                 if (err < 0)
2763                         return ERR_PTR(err);
2764         }
2765
2766         /* Only report GSO partial support if it will enable us to
2767          * support segmentation on this frame without needing additional
2768          * work.
2769          */
2770         if (features & NETIF_F_GSO_PARTIAL) {
2771                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2772                 struct net_device *dev = skb->dev;
2773
2774                 partial_features |= dev->features & dev->gso_partial_features;
2775                 if (!skb_gso_ok(skb, features | partial_features))
2776                         features &= ~NETIF_F_GSO_PARTIAL;
2777         }
2778
2779         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2780                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2781
2782         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2783         SKB_GSO_CB(skb)->encap_level = 0;
2784
2785         skb_reset_mac_header(skb);
2786         skb_reset_mac_len(skb);
2787
2788         segs = skb_mac_gso_segment(skb, features);
2789
2790         if (unlikely(skb_needs_check(skb, tx_path)))
2791                 skb_warn_bad_offload(skb);
2792
2793         return segs;
2794 }
2795 EXPORT_SYMBOL(__skb_gso_segment);
2796
2797 /* Take action when hardware reception checksum errors are detected. */
2798 #ifdef CONFIG_BUG
2799 void netdev_rx_csum_fault(struct net_device *dev)
2800 {
2801         if (net_ratelimit()) {
2802                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2803                 dump_stack();
2804         }
2805 }
2806 EXPORT_SYMBOL(netdev_rx_csum_fault);
2807 #endif
2808
2809 /* Actually, we should eliminate this check as soon as we know, that:
2810  * 1. IOMMU is present and allows to map all the memory.
2811  * 2. No high memory really exists on this machine.
2812  */
2813
2814 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2815 {
2816 #ifdef CONFIG_HIGHMEM
2817         int i;
2818
2819         if (!(dev->features & NETIF_F_HIGHDMA)) {
2820                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2821                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2822
2823                         if (PageHighMem(skb_frag_page(frag)))
2824                                 return 1;
2825                 }
2826         }
2827
2828         if (PCI_DMA_BUS_IS_PHYS) {
2829                 struct device *pdev = dev->dev.parent;
2830
2831                 if (!pdev)
2832                         return 0;
2833                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2834                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2835                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2836
2837                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2838                                 return 1;
2839                 }
2840         }
2841 #endif
2842         return 0;
2843 }
2844
2845 /* If MPLS offload request, verify we are testing hardware MPLS features
2846  * instead of standard features for the netdev.
2847  */
2848 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2849 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2850                                            netdev_features_t features,
2851                                            __be16 type)
2852 {
2853         if (eth_p_mpls(type))
2854                 features &= skb->dev->mpls_features;
2855
2856         return features;
2857 }
2858 #else
2859 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2860                                            netdev_features_t features,
2861                                            __be16 type)
2862 {
2863         return features;
2864 }
2865 #endif
2866
2867 static netdev_features_t harmonize_features(struct sk_buff *skb,
2868         netdev_features_t features)
2869 {
2870         int tmp;
2871         __be16 type;
2872
2873         type = skb_network_protocol(skb, &tmp);
2874         features = net_mpls_features(skb, features, type);
2875
2876         if (skb->ip_summed != CHECKSUM_NONE &&
2877             !can_checksum_protocol(features, type)) {
2878                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2879         }
2880         if (illegal_highdma(skb->dev, skb))
2881                 features &= ~NETIF_F_SG;
2882
2883         return features;
2884 }
2885
2886 netdev_features_t passthru_features_check(struct sk_buff *skb,
2887                                           struct net_device *dev,
2888                                           netdev_features_t features)
2889 {
2890         return features;
2891 }
2892 EXPORT_SYMBOL(passthru_features_check);
2893
2894 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2895                                              struct net_device *dev,
2896                                              netdev_features_t features)
2897 {
2898         return vlan_features_check(skb, features);
2899 }
2900
2901 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2902                                             struct net_device *dev,
2903                                             netdev_features_t features)
2904 {
2905         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2906
2907         if (gso_segs > dev->gso_max_segs)
2908                 return features & ~NETIF_F_GSO_MASK;
2909
2910         /* Support for GSO partial features requires software
2911          * intervention before we can actually process the packets
2912          * so we need to strip support for any partial features now
2913          * and we can pull them back in after we have partially
2914          * segmented the frame.
2915          */
2916         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2917                 features &= ~dev->gso_partial_features;
2918
2919         /* Make sure to clear the IPv4 ID mangling feature if the
2920          * IPv4 header has the potential to be fragmented.
2921          */
2922         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2923                 struct iphdr *iph = skb->encapsulation ?
2924                                     inner_ip_hdr(skb) : ip_hdr(skb);
2925
2926                 if (!(iph->frag_off & htons(IP_DF)))
2927                         features &= ~NETIF_F_TSO_MANGLEID;
2928         }
2929
2930         return features;
2931 }
2932
2933 netdev_features_t netif_skb_features(struct sk_buff *skb)
2934 {
2935         struct net_device *dev = skb->dev;
2936         netdev_features_t features = dev->features;
2937
2938         if (skb_is_gso(skb))
2939                 features = gso_features_check(skb, dev, features);
2940
2941         /* If encapsulation offload request, verify we are testing
2942          * hardware encapsulation features instead of standard
2943          * features for the netdev
2944          */
2945         if (skb->encapsulation)
2946                 features &= dev->hw_enc_features;
2947
2948         if (skb_vlan_tagged(skb))
2949                 features = netdev_intersect_features(features,
2950                                                      dev->vlan_features |
2951                                                      NETIF_F_HW_VLAN_CTAG_TX |
2952                                                      NETIF_F_HW_VLAN_STAG_TX);
2953
2954         if (dev->netdev_ops->ndo_features_check)
2955                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2956                                                                 features);
2957         else
2958                 features &= dflt_features_check(skb, dev, features);
2959
2960         return harmonize_features(skb, features);
2961 }
2962 EXPORT_SYMBOL(netif_skb_features);
2963
2964 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2965                     struct netdev_queue *txq, bool more)
2966 {
2967         unsigned int len;
2968         int rc;
2969
2970         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2971                 dev_queue_xmit_nit(skb, dev);
2972
2973         len = skb->len;
2974         trace_net_dev_start_xmit(skb, dev);
2975         rc = netdev_start_xmit(skb, dev, txq, more);
2976         trace_net_dev_xmit(skb, rc, dev, len);
2977
2978         return rc;
2979 }
2980
2981 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2982                                     struct netdev_queue *txq, int *ret)
2983 {
2984         struct sk_buff *skb = first;
2985         int rc = NETDEV_TX_OK;
2986
2987         while (skb) {
2988                 struct sk_buff *next = skb->next;
2989
2990                 skb->next = NULL;
2991                 rc = xmit_one(skb, dev, txq, next != NULL);
2992                 if (unlikely(!dev_xmit_complete(rc))) {
2993                         skb->next = next;
2994                         goto out;
2995                 }
2996
2997                 skb = next;
2998                 if (netif_xmit_stopped(txq) && skb) {
2999                         rc = NETDEV_TX_BUSY;
3000                         break;
3001                 }
3002         }
3003
3004 out:
3005         *ret = rc;
3006         return skb;
3007 }
3008
3009 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3010                                           netdev_features_t features)
3011 {
3012         if (skb_vlan_tag_present(skb) &&
3013             !vlan_hw_offload_capable(features, skb->vlan_proto))
3014                 skb = __vlan_hwaccel_push_inside(skb);
3015         return skb;
3016 }
3017
3018 int skb_csum_hwoffload_help(struct sk_buff *skb,
3019                             const netdev_features_t features)
3020 {
3021         if (unlikely(skb->csum_not_inet))
3022                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3023                         skb_crc32c_csum_help(skb);
3024
3025         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3026 }
3027 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3028
3029 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3030 {
3031         netdev_features_t features;
3032
3033         features = netif_skb_features(skb);
3034         skb = validate_xmit_vlan(skb, features);
3035         if (unlikely(!skb))
3036                 goto out_null;
3037
3038         if (netif_needs_gso(skb, features)) {
3039                 struct sk_buff *segs;
3040
3041                 segs = skb_gso_segment(skb, features);
3042                 if (IS_ERR(segs)) {
3043                         goto out_kfree_skb;
3044                 } else if (segs) {
3045                         consume_skb(skb);
3046                         skb = segs;
3047                 }
3048         } else {
3049                 if (skb_needs_linearize(skb, features) &&
3050                     __skb_linearize(skb))
3051                         goto out_kfree_skb;
3052
3053                 if (validate_xmit_xfrm(skb, features))
3054                         goto out_kfree_skb;
3055
3056                 /* If packet is not checksummed and device does not
3057                  * support checksumming for this protocol, complete
3058                  * checksumming here.
3059                  */
3060                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3061                         if (skb->encapsulation)
3062                                 skb_set_inner_transport_header(skb,
3063                                                                skb_checksum_start_offset(skb));
3064                         else
3065                                 skb_set_transport_header(skb,
3066                                                          skb_checksum_start_offset(skb));
3067                         if (skb_csum_hwoffload_help(skb, features))
3068                                 goto out_kfree_skb;
3069                 }
3070         }
3071
3072         return skb;
3073
3074 out_kfree_skb:
3075         kfree_skb(skb);
3076 out_null:
3077         atomic_long_inc(&dev->tx_dropped);
3078         return NULL;
3079 }
3080
3081 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3082 {
3083         struct sk_buff *next, *head = NULL, *tail;
3084
3085         for (; skb != NULL; skb = next) {
3086                 next = skb->next;
3087                 skb->next = NULL;
3088
3089                 /* in case skb wont be segmented, point to itself */
3090                 skb->prev = skb;
3091
3092                 skb = validate_xmit_skb(skb, dev);
3093                 if (!skb)
3094                         continue;
3095
3096                 if (!head)
3097                         head = skb;
3098                 else
3099                         tail->next = skb;
3100                 /* If skb was segmented, skb->prev points to
3101                  * the last segment. If not, it still contains skb.
3102                  */
3103                 tail = skb->prev;
3104         }
3105         return head;
3106 }
3107 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3108
3109 static void qdisc_pkt_len_init(struct sk_buff *skb)
3110 {
3111         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3112
3113         qdisc_skb_cb(skb)->pkt_len = skb->len;
3114
3115         /* To get more precise estimation of bytes sent on wire,
3116          * we add to pkt_len the headers size of all segments
3117          */
3118         if (shinfo->gso_size)  {
3119                 unsigned int hdr_len;
3120                 u16 gso_segs = shinfo->gso_segs;
3121
3122                 /* mac layer + network layer */
3123                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3124
3125                 /* + transport layer */
3126                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3127                         hdr_len += tcp_hdrlen(skb);
3128                 else
3129                         hdr_len += sizeof(struct udphdr);
3130
3131                 if (shinfo->gso_type & SKB_GSO_DODGY)
3132                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3133                                                 shinfo->gso_size);
3134
3135                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3136         }
3137 }
3138
3139 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3140                                  struct net_device *dev,
3141                                  struct netdev_queue *txq)
3142 {
3143         spinlock_t *root_lock = qdisc_lock(q);
3144         struct sk_buff *to_free = NULL;
3145         bool contended;
3146         int rc;
3147
3148         qdisc_calculate_pkt_len(skb, q);
3149         /*
3150          * Heuristic to force contended enqueues to serialize on a
3151          * separate lock before trying to get qdisc main lock.
3152          * This permits qdisc->running owner to get the lock more
3153          * often and dequeue packets faster.
3154          */
3155         contended = qdisc_is_running(q);
3156         if (unlikely(contended))
3157                 spin_lock(&q->busylock);
3158
3159         spin_lock(root_lock);
3160         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3161                 __qdisc_drop(skb, &to_free);
3162                 rc = NET_XMIT_DROP;
3163         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3164                    qdisc_run_begin(q)) {
3165                 /*
3166                  * This is a work-conserving queue; there are no old skbs
3167                  * waiting to be sent out; and the qdisc is not running -
3168                  * xmit the skb directly.
3169                  */
3170
3171                 qdisc_bstats_update(q, skb);
3172
3173                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3174                         if (unlikely(contended)) {
3175                                 spin_unlock(&q->busylock);
3176                                 contended = false;
3177                         }
3178                         __qdisc_run(q);
3179                 } else
3180                         qdisc_run_end(q);
3181
3182                 rc = NET_XMIT_SUCCESS;
3183         } else {
3184                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3185                 if (qdisc_run_begin(q)) {
3186                         if (unlikely(contended)) {
3187                                 spin_unlock(&q->busylock);
3188                                 contended = false;
3189                         }
3190                         __qdisc_run(q);
3191                 }
3192         }
3193         spin_unlock(root_lock);
3194         if (unlikely(to_free))
3195                 kfree_skb_list(to_free);
3196         if (unlikely(contended))
3197                 spin_unlock(&q->busylock);
3198         return rc;
3199 }
3200
3201 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3202 static void skb_update_prio(struct sk_buff *skb)
3203 {
3204         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3205
3206         if (!skb->priority && skb->sk && map) {
3207                 unsigned int prioidx =
3208                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3209
3210                 if (prioidx < map->priomap_len)
3211                         skb->priority = map->priomap[prioidx];
3212         }
3213 }
3214 #else
3215 #define skb_update_prio(skb)
3216 #endif
3217
3218 DEFINE_PER_CPU(int, xmit_recursion);
3219 EXPORT_SYMBOL(xmit_recursion);
3220
3221 /**
3222  *      dev_loopback_xmit - loop back @skb
3223  *      @net: network namespace this loopback is happening in
3224  *      @sk:  sk needed to be a netfilter okfn
3225  *      @skb: buffer to transmit
3226  */
3227 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3228 {
3229         skb_reset_mac_header(skb);
3230         __skb_pull(skb, skb_network_offset(skb));
3231         skb->pkt_type = PACKET_LOOPBACK;
3232         skb->ip_summed = CHECKSUM_UNNECESSARY;
3233         WARN_ON(!skb_dst(skb));
3234         skb_dst_force(skb);
3235         netif_rx_ni(skb);
3236         return 0;
3237 }
3238 EXPORT_SYMBOL(dev_loopback_xmit);
3239
3240 #ifdef CONFIG_NET_EGRESS
3241 static struct sk_buff *
3242 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3243 {
3244         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3245         struct tcf_result cl_res;
3246
3247         if (!cl)
3248                 return skb;
3249
3250         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3251         qdisc_bstats_cpu_update(cl->q, skb);
3252
3253         switch (tcf_classify(skb, cl, &cl_res, false)) {
3254         case TC_ACT_OK:
3255         case TC_ACT_RECLASSIFY:
3256                 skb->tc_index = TC_H_MIN(cl_res.classid);
3257                 break;
3258         case TC_ACT_SHOT:
3259                 qdisc_qstats_cpu_drop(cl->q);
3260                 *ret = NET_XMIT_DROP;
3261                 kfree_skb(skb);
3262                 return NULL;
3263         case TC_ACT_STOLEN:
3264         case TC_ACT_QUEUED:
3265         case TC_ACT_TRAP:
3266                 *ret = NET_XMIT_SUCCESS;
3267                 consume_skb(skb);
3268                 return NULL;
3269         case TC_ACT_REDIRECT:
3270                 /* No need to push/pop skb's mac_header here on egress! */
3271                 skb_do_redirect(skb);
3272                 *ret = NET_XMIT_SUCCESS;
3273                 return NULL;
3274         default:
3275                 break;
3276         }
3277
3278         return skb;
3279 }
3280 #endif /* CONFIG_NET_EGRESS */
3281
3282 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3283 {
3284 #ifdef CONFIG_XPS
3285         struct xps_dev_maps *dev_maps;
3286         struct xps_map *map;
3287         int queue_index = -1;
3288
3289         rcu_read_lock();
3290         dev_maps = rcu_dereference(dev->xps_maps);
3291         if (dev_maps) {
3292                 unsigned int tci = skb->sender_cpu - 1;
3293
3294                 if (dev->num_tc) {
3295                         tci *= dev->num_tc;
3296                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3297                 }
3298
3299                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3300                 if (map) {
3301                         if (map->len == 1)
3302                                 queue_index = map->queues[0];
3303                         else
3304                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3305                                                                            map->len)];
3306                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3307                                 queue_index = -1;
3308                 }
3309         }
3310         rcu_read_unlock();
3311
3312         return queue_index;
3313 #else
3314         return -1;
3315 #endif
3316 }
3317
3318 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3319 {
3320         struct sock *sk = skb->sk;
3321         int queue_index = sk_tx_queue_get(sk);
3322
3323         if (queue_index < 0 || skb->ooo_okay ||
3324             queue_index >= dev->real_num_tx_queues) {
3325                 int new_index = get_xps_queue(dev, skb);
3326
3327                 if (new_index < 0)
3328                         new_index = skb_tx_hash(dev, skb);
3329
3330                 if (queue_index != new_index && sk &&
3331                     sk_fullsock(sk) &&
3332                     rcu_access_pointer(sk->sk_dst_cache))
3333                         sk_tx_queue_set(sk, new_index);
3334
3335                 queue_index = new_index;
3336         }
3337
3338         return queue_index;
3339 }
3340
3341 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3342                                     struct sk_buff *skb,
3343                                     void *accel_priv)
3344 {
3345         int queue_index = 0;
3346
3347 #ifdef CONFIG_XPS
3348         u32 sender_cpu = skb->sender_cpu - 1;
3349
3350         if (sender_cpu >= (u32)NR_CPUS)
3351                 skb->sender_cpu = raw_smp_processor_id() + 1;
3352 #endif
3353
3354         if (dev->real_num_tx_queues != 1) {
3355                 const struct net_device_ops *ops = dev->netdev_ops;
3356
3357                 if (ops->ndo_select_queue)
3358                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3359                                                             __netdev_pick_tx);
3360                 else
3361                         queue_index = __netdev_pick_tx(dev, skb);
3362
3363                 if (!accel_priv)
3364                         queue_index = netdev_cap_txqueue(dev, queue_index);
3365         }
3366
3367         skb_set_queue_mapping(skb, queue_index);
3368         return netdev_get_tx_queue(dev, queue_index);
3369 }
3370
3371 /**
3372  *      __dev_queue_xmit - transmit a buffer
3373  *      @skb: buffer to transmit
3374  *      @accel_priv: private data used for L2 forwarding offload
3375  *
3376  *      Queue a buffer for transmission to a network device. The caller must
3377  *      have set the device and priority and built the buffer before calling
3378  *      this function. The function can be called from an interrupt.
3379  *
3380  *      A negative errno code is returned on a failure. A success does not
3381  *      guarantee the frame will be transmitted as it may be dropped due
3382  *      to congestion or traffic shaping.
3383  *
3384  * -----------------------------------------------------------------------------------
3385  *      I notice this method can also return errors from the queue disciplines,
3386  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3387  *      be positive.
3388  *
3389  *      Regardless of the return value, the skb is consumed, so it is currently
3390  *      difficult to retry a send to this method.  (You can bump the ref count
3391  *      before sending to hold a reference for retry if you are careful.)
3392  *
3393  *      When calling this method, interrupts MUST be enabled.  This is because
3394  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3395  *          --BLG
3396  */
3397 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3398 {
3399         struct net_device *dev = skb->dev;
3400         struct netdev_queue *txq;
3401         struct Qdisc *q;
3402         int rc = -ENOMEM;
3403
3404         skb_reset_mac_header(skb);
3405
3406         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3407                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3408
3409         /* Disable soft irqs for various locks below. Also
3410          * stops preemption for RCU.
3411          */
3412         rcu_read_lock_bh();
3413
3414         skb_update_prio(skb);
3415
3416         qdisc_pkt_len_init(skb);
3417 #ifdef CONFIG_NET_CLS_ACT
3418         skb->tc_at_ingress = 0;
3419 # ifdef CONFIG_NET_EGRESS
3420         if (static_key_false(&egress_needed)) {
3421                 skb = sch_handle_egress(skb, &rc, dev);
3422                 if (!skb)
3423                         goto out;
3424         }
3425 # endif
3426 #endif
3427         /* If device/qdisc don't need skb->dst, release it right now while
3428          * its hot in this cpu cache.
3429          */
3430         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3431                 skb_dst_drop(skb);
3432         else
3433                 skb_dst_force(skb);
3434
3435         txq = netdev_pick_tx(dev, skb, accel_priv);
3436         q = rcu_dereference_bh(txq->qdisc);
3437
3438         trace_net_dev_queue(skb);
3439         if (q->enqueue) {
3440                 rc = __dev_xmit_skb(skb, q, dev, txq);
3441                 goto out;
3442         }
3443
3444         /* The device has no queue. Common case for software devices:
3445          * loopback, all the sorts of tunnels...
3446
3447          * Really, it is unlikely that netif_tx_lock protection is necessary
3448          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3449          * counters.)
3450          * However, it is possible, that they rely on protection
3451          * made by us here.
3452
3453          * Check this and shot the lock. It is not prone from deadlocks.
3454          *Either shot noqueue qdisc, it is even simpler 8)
3455          */
3456         if (dev->flags & IFF_UP) {
3457                 int cpu = smp_processor_id(); /* ok because BHs are off */
3458
3459                 if (txq->xmit_lock_owner != cpu) {
3460                         if (unlikely(__this_cpu_read(xmit_recursion) >
3461                                      XMIT_RECURSION_LIMIT))
3462                                 goto recursion_alert;
3463
3464                         skb = validate_xmit_skb(skb, dev);
3465                         if (!skb)
3466                                 goto out;
3467
3468                         HARD_TX_LOCK(dev, txq, cpu);
3469
3470                         if (!netif_xmit_stopped(txq)) {
3471                                 __this_cpu_inc(xmit_recursion);
3472                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3473                                 __this_cpu_dec(xmit_recursion);
3474                                 if (dev_xmit_complete(rc)) {
3475                                         HARD_TX_UNLOCK(dev, txq);
3476                                         goto out;
3477                                 }
3478                         }
3479                         HARD_TX_UNLOCK(dev, txq);
3480                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3481                                              dev->name);
3482                 } else {
3483                         /* Recursion is detected! It is possible,
3484                          * unfortunately
3485                          */
3486 recursion_alert:
3487                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3488                                              dev->name);
3489                 }
3490         }
3491
3492         rc = -ENETDOWN;
3493         rcu_read_unlock_bh();
3494
3495         atomic_long_inc(&dev->tx_dropped);
3496         kfree_skb_list(skb);
3497         return rc;
3498 out:
3499         rcu_read_unlock_bh();
3500         return rc;
3501 }
3502
3503 int dev_queue_xmit(struct sk_buff *skb)
3504 {
3505         return __dev_queue_xmit(skb, NULL);
3506 }
3507 EXPORT_SYMBOL(dev_queue_xmit);
3508
3509 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3510 {
3511         return __dev_queue_xmit(skb, accel_priv);
3512 }
3513 EXPORT_SYMBOL(dev_queue_xmit_accel);
3514
3515
3516 /*************************************************************************
3517  *                      Receiver routines
3518  *************************************************************************/
3519
3520 int netdev_max_backlog __read_mostly = 1000;
3521 EXPORT_SYMBOL(netdev_max_backlog);
3522
3523 int netdev_tstamp_prequeue __read_mostly = 1;
3524 int netdev_budget __read_mostly = 300;
3525 unsigned int __read_mostly netdev_budget_usecs = 2000;
3526 int weight_p __read_mostly = 64;           /* old backlog weight */
3527 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3528 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3529 int dev_rx_weight __read_mostly = 64;
3530 int dev_tx_weight __read_mostly = 64;
3531
3532 /* Called with irq disabled */
3533 static inline void ____napi_schedule(struct softnet_data *sd,
3534                                      struct napi_struct *napi)
3535 {
3536         list_add_tail(&napi->poll_list, &sd->poll_list);
3537         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3538 }
3539
3540 #ifdef CONFIG_RPS
3541
3542 /* One global table that all flow-based protocols share. */
3543 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3544 EXPORT_SYMBOL(rps_sock_flow_table);
3545 u32 rps_cpu_mask __read_mostly;
3546 EXPORT_SYMBOL(rps_cpu_mask);
3547
3548 struct static_key rps_needed __read_mostly;
3549 EXPORT_SYMBOL(rps_needed);
3550 struct static_key rfs_needed __read_mostly;
3551 EXPORT_SYMBOL(rfs_needed);
3552
3553 static struct rps_dev_flow *
3554 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3555             struct rps_dev_flow *rflow, u16 next_cpu)
3556 {
3557         if (next_cpu < nr_cpu_ids) {
3558 #ifdef CONFIG_RFS_ACCEL
3559                 struct netdev_rx_queue *rxqueue;
3560                 struct rps_dev_flow_table *flow_table;
3561                 struct rps_dev_flow *old_rflow;
3562                 u32 flow_id;
3563                 u16 rxq_index;
3564                 int rc;
3565
3566                 /* Should we steer this flow to a different hardware queue? */
3567                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3568                     !(dev->features & NETIF_F_NTUPLE))
3569                         goto out;
3570                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3571                 if (rxq_index == skb_get_rx_queue(skb))
3572                         goto out;
3573
3574                 rxqueue = dev->_rx + rxq_index;
3575                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3576                 if (!flow_table)
3577                         goto out;
3578                 flow_id = skb_get_hash(skb) & flow_table->mask;
3579                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3580                                                         rxq_index, flow_id);
3581                 if (rc < 0)
3582                         goto out;
3583                 old_rflow = rflow;
3584                 rflow = &flow_table->flows[flow_id];
3585                 rflow->filter = rc;
3586                 if (old_rflow->filter == rflow->filter)
3587                         old_rflow->filter = RPS_NO_FILTER;
3588         out:
3589 #endif
3590                 rflow->last_qtail =
3591                         per_cpu(softnet_data, next_cpu).input_queue_head;
3592         }
3593
3594         rflow->cpu = next_cpu;
3595         return rflow;
3596 }
3597
3598 /*
3599  * get_rps_cpu is called from netif_receive_skb and returns the target
3600  * CPU from the RPS map of the receiving queue for a given skb.
3601  * rcu_read_lock must be held on entry.
3602  */
3603 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3604                        struct rps_dev_flow **rflowp)
3605 {
3606         const struct rps_sock_flow_table *sock_flow_table;
3607         struct netdev_rx_queue *rxqueue = dev->_rx;
3608         struct rps_dev_flow_table *flow_table;
3609         struct rps_map *map;
3610         int cpu = -1;
3611         u32 tcpu;
3612         u32 hash;
3613
3614         if (skb_rx_queue_recorded(skb)) {
3615                 u16 index = skb_get_rx_queue(skb);
3616
3617                 if (unlikely(index >= dev->real_num_rx_queues)) {
3618                         WARN_ONCE(dev->real_num_rx_queues > 1,
3619                                   "%s received packet on queue %u, but number "
3620                                   "of RX queues is %u\n",
3621                                   dev->name, index, dev->real_num_rx_queues);
3622                         goto done;
3623                 }
3624                 rxqueue += index;
3625         }
3626
3627         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3628
3629         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3630         map = rcu_dereference(rxqueue->rps_map);
3631         if (!flow_table && !map)
3632                 goto done;
3633
3634         skb_reset_network_header(skb);
3635         hash = skb_get_hash(skb);
3636         if (!hash)
3637                 goto done;
3638
3639         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3640         if (flow_table && sock_flow_table) {
3641                 struct rps_dev_flow *rflow;
3642                 u32 next_cpu;
3643                 u32 ident;
3644
3645                 /* First check into global flow table if there is a match */
3646                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3647                 if ((ident ^ hash) & ~rps_cpu_mask)
3648                         goto try_rps;
3649
3650                 next_cpu = ident & rps_cpu_mask;
3651
3652                 /* OK, now we know there is a match,
3653                  * we can look at the local (per receive queue) flow table
3654                  */
3655                 rflow = &flow_table->flows[hash & flow_table->mask];
3656                 tcpu = rflow->cpu;
3657
3658                 /*
3659                  * If the desired CPU (where last recvmsg was done) is
3660                  * different from current CPU (one in the rx-queue flow
3661                  * table entry), switch if one of the following holds:
3662                  *   - Current CPU is unset (>= nr_cpu_ids).
3663                  *   - Current CPU is offline.
3664                  *   - The current CPU's queue tail has advanced beyond the
3665                  *     last packet that was enqueued using this table entry.
3666                  *     This guarantees that all previous packets for the flow
3667                  *     have been dequeued, thus preserving in order delivery.
3668                  */
3669                 if (unlikely(tcpu != next_cpu) &&
3670                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3671                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3672                       rflow->last_qtail)) >= 0)) {
3673                         tcpu = next_cpu;
3674                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3675                 }
3676
3677                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3678                         *rflowp = rflow;
3679                         cpu = tcpu;
3680                         goto done;
3681                 }
3682         }
3683
3684 try_rps:
3685
3686         if (map) {
3687                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3688                 if (cpu_online(tcpu)) {
3689                         cpu = tcpu;
3690                         goto done;
3691                 }
3692         }
3693
3694 done:
3695         return cpu;
3696 }
3697
3698 #ifdef CONFIG_RFS_ACCEL
3699
3700 /**
3701  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3702  * @dev: Device on which the filter was set
3703  * @rxq_index: RX queue index
3704  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3705  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3706  *
3707  * Drivers that implement ndo_rx_flow_steer() should periodically call
3708  * this function for each installed filter and remove the filters for
3709  * which it returns %true.
3710  */
3711 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3712                          u32 flow_id, u16 filter_id)
3713 {
3714         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3715         struct rps_dev_flow_table *flow_table;
3716         struct rps_dev_flow *rflow;
3717         bool expire = true;
3718         unsigned int cpu;
3719
3720         rcu_read_lock();
3721         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3722         if (flow_table && flow_id <= flow_table->mask) {
3723                 rflow = &flow_table->flows[flow_id];
3724                 cpu = ACCESS_ONCE(rflow->cpu);
3725                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3726                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3727                            rflow->last_qtail) <
3728                      (int)(10 * flow_table->mask)))
3729                         expire = false;
3730         }
3731         rcu_read_unlock();
3732         return expire;
3733 }
3734 EXPORT_SYMBOL(rps_may_expire_flow);
3735
3736 #endif /* CONFIG_RFS_ACCEL */
3737
3738 /* Called from hardirq (IPI) context */
3739 static void rps_trigger_softirq(void *data)
3740 {
3741         struct softnet_data *sd = data;
3742
3743         ____napi_schedule(sd, &sd->backlog);
3744         sd->received_rps++;
3745 }
3746
3747 #endif /* CONFIG_RPS */
3748
3749 /*
3750  * Check if this softnet_data structure is another cpu one
3751  * If yes, queue it to our IPI list and return 1
3752  * If no, return 0
3753  */
3754 static int rps_ipi_queued(struct softnet_data *sd)
3755 {
3756 #ifdef CONFIG_RPS
3757         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3758
3759         if (sd != mysd) {
3760                 sd->rps_ipi_next = mysd->rps_ipi_list;
3761                 mysd->rps_ipi_list = sd;
3762
3763                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3764                 return 1;
3765         }
3766 #endif /* CONFIG_RPS */
3767         return 0;
3768 }
3769
3770 #ifdef CONFIG_NET_FLOW_LIMIT
3771 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3772 #endif
3773
3774 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3775 {
3776 #ifdef CONFIG_NET_FLOW_LIMIT
3777         struct sd_flow_limit *fl;
3778         struct softnet_data *sd;
3779         unsigned int old_flow, new_flow;
3780
3781         if (qlen < (netdev_max_backlog >> 1))
3782                 return false;
3783
3784         sd = this_cpu_ptr(&softnet_data);
3785
3786         rcu_read_lock();
3787         fl = rcu_dereference(sd->flow_limit);
3788         if (fl) {
3789                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3790                 old_flow = fl->history[fl->history_head];
3791                 fl->history[fl->history_head] = new_flow;
3792
3793                 fl->history_head++;
3794                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3795
3796                 if (likely(fl->buckets[old_flow]))
3797                         fl->buckets[old_flow]--;
3798
3799                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3800                         fl->count++;
3801                         rcu_read_unlock();
3802                         return true;
3803                 }
3804         }
3805         rcu_read_unlock();
3806 #endif
3807         return false;
3808 }
3809
3810 /*
3811  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3812  * queue (may be a remote CPU queue).
3813  */
3814 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3815                               unsigned int *qtail)
3816 {
3817         struct softnet_data *sd;
3818         unsigned long flags;
3819         unsigned int qlen;
3820
3821         sd = &per_cpu(softnet_data, cpu);
3822
3823         local_irq_save(flags);
3824
3825         rps_lock(sd);
3826         if (!netif_running(skb->dev))
3827                 goto drop;
3828         qlen = skb_queue_len(&sd->input_pkt_queue);
3829         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3830                 if (qlen) {
3831 enqueue:
3832                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3833                         input_queue_tail_incr_save(sd, qtail);
3834                         rps_unlock(sd);
3835                         local_irq_restore(flags);
3836                         return NET_RX_SUCCESS;
3837                 }
3838
3839                 /* Schedule NAPI for backlog device
3840                  * We can use non atomic operation since we own the queue lock
3841                  */
3842                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3843                         if (!rps_ipi_queued(sd))
3844                                 ____napi_schedule(sd, &sd->backlog);
3845                 }
3846                 goto enqueue;
3847         }
3848
3849 drop:
3850         sd->dropped++;
3851         rps_unlock(sd);
3852
3853         local_irq_restore(flags);
3854
3855         atomic_long_inc(&skb->dev->rx_dropped);
3856         kfree_skb(skb);
3857         return NET_RX_DROP;
3858 }
3859
3860 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3861                                      struct bpf_prog *xdp_prog)
3862 {
3863         struct xdp_buff xdp;
3864         u32 act = XDP_DROP;
3865         void *orig_data;
3866         int hlen, off;
3867         u32 mac_len;
3868
3869         /* Reinjected packets coming from act_mirred or similar should
3870          * not get XDP generic processing.
3871          */
3872         if (skb_cloned(skb))
3873                 return XDP_PASS;
3874
3875         if (skb_linearize(skb))
3876                 goto do_drop;
3877
3878         /* The XDP program wants to see the packet starting at the MAC
3879          * header.
3880          */
3881         mac_len = skb->data - skb_mac_header(skb);
3882         hlen = skb_headlen(skb) + mac_len;
3883         xdp.data = skb->data - mac_len;
3884         xdp.data_end = xdp.data + hlen;
3885         xdp.data_hard_start = skb->data - skb_headroom(skb);
3886         orig_data = xdp.data;
3887
3888         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3889
3890         off = xdp.data - orig_data;
3891         if (off > 0)
3892                 __skb_pull(skb, off);
3893         else if (off < 0)
3894                 __skb_push(skb, -off);
3895
3896         switch (act) {
3897         case XDP_REDIRECT:
3898         case XDP_TX:
3899                 __skb_push(skb, mac_len);
3900                 /* fall through */
3901         case XDP_PASS:
3902                 break;
3903
3904         default:
3905                 bpf_warn_invalid_xdp_action(act);
3906                 /* fall through */
3907         case XDP_ABORTED:
3908                 trace_xdp_exception(skb->dev, xdp_prog, act);
3909                 /* fall through */
3910         case XDP_DROP:
3911         do_drop:
3912                 kfree_skb(skb);
3913                 break;
3914         }
3915
3916         return act;
3917 }
3918
3919 /* When doing generic XDP we have to bypass the qdisc layer and the
3920  * network taps in order to match in-driver-XDP behavior.
3921  */
3922 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3923 {
3924         struct net_device *dev = skb->dev;
3925         struct netdev_queue *txq;
3926         bool free_skb = true;
3927         int cpu, rc;
3928
3929         txq = netdev_pick_tx(dev, skb, NULL);
3930         cpu = smp_processor_id();
3931         HARD_TX_LOCK(dev, txq, cpu);
3932         if (!netif_xmit_stopped(txq)) {
3933                 rc = netdev_start_xmit(skb, dev, txq, 0);
3934                 if (dev_xmit_complete(rc))
3935                         free_skb = false;
3936         }
3937         HARD_TX_UNLOCK(dev, txq);
3938         if (free_skb) {
3939                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3940                 kfree_skb(skb);
3941         }
3942 }
3943 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3944
3945 static struct static_key generic_xdp_needed __read_mostly;
3946
3947 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3948 {
3949         if (xdp_prog) {
3950                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3951                 int err;
3952
3953                 if (act != XDP_PASS) {
3954                         switch (act) {
3955                         case XDP_REDIRECT:
3956                                 err = xdp_do_generic_redirect(skb->dev, skb,
3957                                                               xdp_prog);
3958                                 if (err)
3959                                         goto out_redir;
3960                         /* fallthru to submit skb */
3961                         case XDP_TX:
3962                                 generic_xdp_tx(skb, xdp_prog);
3963                                 break;
3964                         }
3965                         return XDP_DROP;
3966                 }
3967         }
3968         return XDP_PASS;
3969 out_redir:
3970         kfree_skb(skb);
3971         return XDP_DROP;
3972 }
3973 EXPORT_SYMBOL_GPL(do_xdp_generic);
3974
3975 static int netif_rx_internal(struct sk_buff *skb)
3976 {
3977         int ret;
3978
3979         net_timestamp_check(netdev_tstamp_prequeue, skb);
3980
3981         trace_netif_rx(skb);
3982
3983         if (static_key_false(&generic_xdp_needed)) {
3984                 int ret;
3985
3986                 preempt_disable();
3987                 rcu_read_lock();
3988                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
3989                 rcu_read_unlock();
3990                 preempt_enable();
3991
3992                 /* Consider XDP consuming the packet a success from
3993                  * the netdev point of view we do not want to count
3994                  * this as an error.
3995                  */
3996                 if (ret != XDP_PASS)
3997                         return NET_RX_SUCCESS;
3998         }
3999
4000 #ifdef CONFIG_RPS
4001         if (static_key_false(&rps_needed)) {
4002                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4003                 int cpu;
4004
4005                 preempt_disable();
4006                 rcu_read_lock();
4007
4008                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4009                 if (cpu < 0)
4010                         cpu = smp_processor_id();
4011
4012                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4013
4014                 rcu_read_unlock();
4015                 preempt_enable();
4016         } else
4017 #endif
4018         {
4019                 unsigned int qtail;
4020
4021                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4022                 put_cpu();
4023         }
4024         return ret;
4025 }
4026
4027 /**
4028  *      netif_rx        -       post buffer to the network code
4029  *      @skb: buffer to post
4030  *
4031  *      This function receives a packet from a device driver and queues it for
4032  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4033  *      may be dropped during processing for congestion control or by the
4034  *      protocol layers.
4035  *
4036  *      return values:
4037  *      NET_RX_SUCCESS  (no congestion)
4038  *      NET_RX_DROP     (packet was dropped)
4039  *
4040  */
4041
4042 int netif_rx(struct sk_buff *skb)
4043 {
4044         trace_netif_rx_entry(skb);
4045
4046         return netif_rx_internal(skb);
4047 }
4048 EXPORT_SYMBOL(netif_rx);
4049
4050 int netif_rx_ni(struct sk_buff *skb)
4051 {
4052         int err;
4053
4054         trace_netif_rx_ni_entry(skb);
4055
4056         preempt_disable();
4057         err = netif_rx_internal(skb);
4058         if (local_softirq_pending())
4059                 do_softirq();
4060         preempt_enable();
4061
4062         return err;
4063 }
4064 EXPORT_SYMBOL(netif_rx_ni);
4065
4066 static __latent_entropy void net_tx_action(struct softirq_action *h)
4067 {
4068         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4069
4070         if (sd->completion_queue) {
4071                 struct sk_buff *clist;
4072
4073                 local_irq_disable();
4074                 clist = sd->completion_queue;
4075                 sd->completion_queue = NULL;
4076                 local_irq_enable();
4077
4078                 while (clist) {
4079                         struct sk_buff *skb = clist;
4080
4081                         clist = clist->next;
4082
4083                         WARN_ON(refcount_read(&skb->users));
4084                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4085                                 trace_consume_skb(skb);
4086                         else
4087                                 trace_kfree_skb(skb, net_tx_action);
4088
4089                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4090                                 __kfree_skb(skb);
4091                         else
4092                                 __kfree_skb_defer(skb);
4093                 }
4094
4095                 __kfree_skb_flush();
4096         }
4097
4098         if (sd->output_queue) {
4099                 struct Qdisc *head;
4100
4101                 local_irq_disable();
4102                 head = sd->output_queue;
4103                 sd->output_queue = NULL;
4104                 sd->output_queue_tailp = &sd->output_queue;
4105                 local_irq_enable();
4106
4107                 while (head) {
4108                         struct Qdisc *q = head;
4109                         spinlock_t *root_lock;
4110
4111                         head = head->next_sched;
4112
4113                         root_lock = qdisc_lock(q);
4114                         spin_lock(root_lock);
4115                         /* We need to make sure head->next_sched is read
4116                          * before clearing __QDISC_STATE_SCHED
4117                          */
4118                         smp_mb__before_atomic();
4119                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4120                         qdisc_run(q);
4121                         spin_unlock(root_lock);
4122                 }
4123         }
4124 }
4125
4126 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4127 /* This hook is defined here for ATM LANE */
4128 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4129                              unsigned char *addr) __read_mostly;
4130 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4131 #endif
4132
4133 static inline struct sk_buff *
4134 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4135                    struct net_device *orig_dev)
4136 {
4137 #ifdef CONFIG_NET_CLS_ACT
4138         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4139         struct tcf_result cl_res;
4140
4141         /* If there's at least one ingress present somewhere (so
4142          * we get here via enabled static key), remaining devices
4143          * that are not configured with an ingress qdisc will bail
4144          * out here.
4145          */
4146         if (!cl)
4147                 return skb;
4148         if (*pt_prev) {
4149                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4150                 *pt_prev = NULL;
4151         }
4152
4153         qdisc_skb_cb(skb)->pkt_len = skb->len;
4154         skb->tc_at_ingress = 1;
4155         qdisc_bstats_cpu_update(cl->q, skb);
4156
4157         switch (tcf_classify(skb, cl, &cl_res, false)) {
4158         case TC_ACT_OK:
4159         case TC_ACT_RECLASSIFY:
4160                 skb->tc_index = TC_H_MIN(cl_res.classid);
4161                 break;
4162         case TC_ACT_SHOT:
4163                 qdisc_qstats_cpu_drop(cl->q);
4164                 kfree_skb(skb);
4165                 return NULL;
4166         case TC_ACT_STOLEN:
4167         case TC_ACT_QUEUED:
4168         case TC_ACT_TRAP:
4169                 consume_skb(skb);
4170                 return NULL;
4171         case TC_ACT_REDIRECT:
4172                 /* skb_mac_header check was done by cls/act_bpf, so
4173                  * we can safely push the L2 header back before
4174                  * redirecting to another netdev
4175                  */
4176                 __skb_push(skb, skb->mac_len);
4177                 skb_do_redirect(skb);
4178                 return NULL;
4179         default:
4180                 break;
4181         }
4182 #endif /* CONFIG_NET_CLS_ACT */
4183         return skb;
4184 }
4185
4186 /**
4187  *      netdev_is_rx_handler_busy - check if receive handler is registered
4188  *      @dev: device to check
4189  *
4190  *      Check if a receive handler is already registered for a given device.
4191  *      Return true if there one.
4192  *
4193  *      The caller must hold the rtnl_mutex.
4194  */
4195 bool netdev_is_rx_handler_busy(struct net_device *dev)
4196 {
4197         ASSERT_RTNL();
4198         return dev && rtnl_dereference(dev->rx_handler);
4199 }
4200 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4201
4202 /**
4203  *      netdev_rx_handler_register - register receive handler
4204  *      @dev: device to register a handler for
4205  *      @rx_handler: receive handler to register
4206  *      @rx_handler_data: data pointer that is used by rx handler
4207  *
4208  *      Register a receive handler for a device. This handler will then be
4209  *      called from __netif_receive_skb. A negative errno code is returned
4210  *      on a failure.
4211  *
4212  *      The caller must hold the rtnl_mutex.
4213  *
4214  *      For a general description of rx_handler, see enum rx_handler_result.
4215  */
4216 int netdev_rx_handler_register(struct net_device *dev,
4217                                rx_handler_func_t *rx_handler,
4218                                void *rx_handler_data)
4219 {
4220         if (netdev_is_rx_handler_busy(dev))
4221                 return -EBUSY;
4222
4223         /* Note: rx_handler_data must be set before rx_handler */
4224         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4225         rcu_assign_pointer(dev->rx_handler, rx_handler);
4226
4227         return 0;
4228 }
4229 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4230
4231 /**
4232  *      netdev_rx_handler_unregister - unregister receive handler
4233  *      @dev: device to unregister a handler from
4234  *
4235  *      Unregister a receive handler from a device.
4236  *
4237  *      The caller must hold the rtnl_mutex.
4238  */
4239 void netdev_rx_handler_unregister(struct net_device *dev)
4240 {
4241
4242         ASSERT_RTNL();
4243         RCU_INIT_POINTER(dev->rx_handler, NULL);
4244         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4245          * section has a guarantee to see a non NULL rx_handler_data
4246          * as well.
4247          */
4248         synchronize_net();
4249         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4250 }
4251 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4252
4253 /*
4254  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4255  * the special handling of PFMEMALLOC skbs.
4256  */
4257 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4258 {
4259         switch (skb->protocol) {
4260         case htons(ETH_P_ARP):
4261         case htons(ETH_P_IP):
4262         case htons(ETH_P_IPV6):
4263         case htons(ETH_P_8021Q):
4264         case htons(ETH_P_8021AD):
4265                 return true;
4266         default:
4267                 return false;
4268         }
4269 }
4270
4271 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4272                              int *ret, struct net_device *orig_dev)
4273 {
4274 #ifdef CONFIG_NETFILTER_INGRESS
4275         if (nf_hook_ingress_active(skb)) {
4276                 int ingress_retval;
4277
4278                 if (*pt_prev) {
4279                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4280                         *pt_prev = NULL;
4281                 }
4282
4283                 rcu_read_lock();
4284                 ingress_retval = nf_hook_ingress(skb);
4285                 rcu_read_unlock();
4286                 return ingress_retval;
4287         }
4288 #endif /* CONFIG_NETFILTER_INGRESS */
4289         return 0;
4290 }
4291
4292 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4293 {
4294         struct packet_type *ptype, *pt_prev;
4295         rx_handler_func_t *rx_handler;
4296         struct net_device *orig_dev;
4297         bool deliver_exact = false;
4298         int ret = NET_RX_DROP;
4299         __be16 type;
4300
4301         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4302
4303         trace_netif_receive_skb(skb);
4304
4305         orig_dev = skb->dev;
4306
4307         skb_reset_network_header(skb);
4308         if (!skb_transport_header_was_set(skb))
4309                 skb_reset_transport_header(skb);
4310         skb_reset_mac_len(skb);
4311
4312         pt_prev = NULL;
4313
4314 another_round:
4315         skb->skb_iif = skb->dev->ifindex;
4316
4317         __this_cpu_inc(softnet_data.processed);
4318
4319         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4320             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4321                 skb = skb_vlan_untag(skb);
4322                 if (unlikely(!skb))
4323                         goto out;
4324         }
4325
4326         if (skb_skip_tc_classify(skb))
4327                 goto skip_classify;
4328
4329         if (pfmemalloc)
4330                 goto skip_taps;
4331
4332         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4333                 if (pt_prev)
4334                         ret = deliver_skb(skb, pt_prev, orig_dev);
4335                 pt_prev = ptype;
4336         }
4337
4338         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4339                 if (pt_prev)
4340                         ret = deliver_skb(skb, pt_prev, orig_dev);
4341                 pt_prev = ptype;
4342         }
4343
4344 skip_taps:
4345 #ifdef CONFIG_NET_INGRESS
4346         if (static_key_false(&ingress_needed)) {
4347                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4348                 if (!skb)
4349                         goto out;
4350
4351                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4352                         goto out;
4353         }
4354 #endif
4355         skb_reset_tc(skb);
4356 skip_classify:
4357         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4358                 goto drop;
4359
4360         if (skb_vlan_tag_present(skb)) {
4361                 if (pt_prev) {
4362                         ret = deliver_skb(skb, pt_prev, orig_dev);
4363                         pt_prev = NULL;
4364                 }
4365                 if (vlan_do_receive(&skb))
4366                         goto another_round;
4367                 else if (unlikely(!skb))
4368                         goto out;
4369         }
4370
4371         rx_handler = rcu_dereference(skb->dev->rx_handler);
4372         if (rx_handler) {
4373                 if (pt_prev) {
4374                         ret = deliver_skb(skb, pt_prev, orig_dev);
4375                         pt_prev = NULL;
4376                 }
4377                 switch (rx_handler(&skb)) {
4378                 case RX_HANDLER_CONSUMED:
4379                         ret = NET_RX_SUCCESS;
4380                         goto out;
4381                 case RX_HANDLER_ANOTHER:
4382                         goto another_round;
4383                 case RX_HANDLER_EXACT:
4384                         deliver_exact = true;
4385                 case RX_HANDLER_PASS:
4386                         break;
4387                 default:
4388                         BUG();
4389                 }
4390         }
4391
4392         if (unlikely(skb_vlan_tag_present(skb))) {
4393                 if (skb_vlan_tag_get_id(skb))
4394                         skb->pkt_type = PACKET_OTHERHOST;
4395                 /* Note: we might in the future use prio bits
4396                  * and set skb->priority like in vlan_do_receive()
4397                  * For the time being, just ignore Priority Code Point
4398                  */
4399                 skb->vlan_tci = 0;
4400         }
4401
4402         type = skb->protocol;
4403
4404         /* deliver only exact match when indicated */
4405         if (likely(!deliver_exact)) {
4406                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4407                                        &ptype_base[ntohs(type) &
4408                                                    PTYPE_HASH_MASK]);
4409         }
4410
4411         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4412                                &orig_dev->ptype_specific);
4413
4414         if (unlikely(skb->dev != orig_dev)) {
4415                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4416                                        &skb->dev->ptype_specific);
4417         }
4418
4419         if (pt_prev) {
4420                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4421                         goto drop;
4422                 else
4423                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4424         } else {
4425 drop:
4426                 if (!deliver_exact)
4427                         atomic_long_inc(&skb->dev->rx_dropped);
4428                 else
4429                         atomic_long_inc(&skb->dev->rx_nohandler);
4430                 kfree_skb(skb);
4431                 /* Jamal, now you will not able to escape explaining
4432                  * me how you were going to use this. :-)
4433                  */
4434                 ret = NET_RX_DROP;
4435         }
4436
4437 out:
4438         return ret;
4439 }
4440
4441 static int __netif_receive_skb(struct sk_buff *skb)
4442 {
4443         int ret;
4444
4445         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4446                 unsigned int noreclaim_flag;
4447
4448                 /*
4449                  * PFMEMALLOC skbs are special, they should
4450                  * - be delivered to SOCK_MEMALLOC sockets only
4451                  * - stay away from userspace
4452                  * - have bounded memory usage
4453                  *
4454                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4455                  * context down to all allocation sites.
4456                  */
4457                 noreclaim_flag = memalloc_noreclaim_save();
4458                 ret = __netif_receive_skb_core(skb, true);
4459                 memalloc_noreclaim_restore(noreclaim_flag);
4460         } else
4461                 ret = __netif_receive_skb_core(skb, false);
4462
4463         return ret;
4464 }
4465
4466 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4467 {
4468         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4469         struct bpf_prog *new = xdp->prog;
4470         int ret = 0;
4471
4472         switch (xdp->command) {
4473         case XDP_SETUP_PROG:
4474                 rcu_assign_pointer(dev->xdp_prog, new);
4475                 if (old)
4476                         bpf_prog_put(old);
4477
4478                 if (old && !new) {
4479                         static_key_slow_dec(&generic_xdp_needed);
4480                 } else if (new && !old) {
4481                         static_key_slow_inc(&generic_xdp_needed);
4482                         dev_disable_lro(dev);
4483                 }
4484                 break;
4485
4486         case XDP_QUERY_PROG:
4487                 xdp->prog_attached = !!old;
4488                 xdp->prog_id = old ? old->aux->id : 0;
4489                 break;
4490
4491         default:
4492                 ret = -EINVAL;
4493                 break;
4494         }
4495
4496         return ret;
4497 }
4498
4499 static int netif_receive_skb_internal(struct sk_buff *skb)
4500 {
4501         int ret;
4502
4503         net_timestamp_check(netdev_tstamp_prequeue, skb);
4504
4505         if (skb_defer_rx_timestamp(skb))
4506                 return NET_RX_SUCCESS;
4507
4508         if (static_key_false(&generic_xdp_needed)) {
4509                 int ret;
4510
4511                 preempt_disable();
4512                 rcu_read_lock();
4513                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4514                 rcu_read_unlock();
4515                 preempt_enable();
4516
4517                 if (ret != XDP_PASS)
4518                         return NET_RX_DROP;
4519         }
4520
4521         rcu_read_lock();
4522 #ifdef CONFIG_RPS
4523         if (static_key_false(&rps_needed)) {
4524                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4525                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4526
4527                 if (cpu >= 0) {
4528                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4529                         rcu_read_unlock();
4530                         return ret;
4531                 }
4532         }
4533 #endif
4534         ret = __netif_receive_skb(skb);
4535         rcu_read_unlock();
4536         return ret;
4537 }
4538
4539 /**
4540  *      netif_receive_skb - process receive buffer from network
4541  *      @skb: buffer to process
4542  *
4543  *      netif_receive_skb() is the main receive data processing function.
4544  *      It always succeeds. The buffer may be dropped during processing
4545  *      for congestion control or by the protocol layers.
4546  *
4547  *      This function may only be called from softirq context and interrupts
4548  *      should be enabled.
4549  *
4550  *      Return values (usually ignored):
4551  *      NET_RX_SUCCESS: no congestion
4552  *      NET_RX_DROP: packet was dropped
4553  */
4554 int netif_receive_skb(struct sk_buff *skb)
4555 {
4556         trace_netif_receive_skb_entry(skb);
4557
4558         return netif_receive_skb_internal(skb);
4559 }
4560 EXPORT_SYMBOL(netif_receive_skb);
4561
4562 DEFINE_PER_CPU(struct work_struct, flush_works);
4563
4564 /* Network device is going away, flush any packets still pending */
4565 static void flush_backlog(struct work_struct *work)
4566 {
4567         struct sk_buff *skb, *tmp;
4568         struct softnet_data *sd;
4569
4570         local_bh_disable();
4571         sd = this_cpu_ptr(&softnet_data);
4572
4573         local_irq_disable();
4574         rps_lock(sd);
4575         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4576                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4577                         __skb_unlink(skb, &sd->input_pkt_queue);
4578                         kfree_skb(skb);
4579                         input_queue_head_incr(sd);
4580                 }
4581         }
4582         rps_unlock(sd);
4583         local_irq_enable();
4584
4585         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4586                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4587                         __skb_unlink(skb, &sd->process_queue);
4588                         kfree_skb(skb);
4589                         input_queue_head_incr(sd);
4590                 }
4591         }
4592         local_bh_enable();
4593 }
4594
4595 static void flush_all_backlogs(void)
4596 {
4597         unsigned int cpu;
4598
4599         get_online_cpus();
4600
4601         for_each_online_cpu(cpu)
4602                 queue_work_on(cpu, system_highpri_wq,
4603                               per_cpu_ptr(&flush_works, cpu));
4604
4605         for_each_online_cpu(cpu)
4606                 flush_work(per_cpu_ptr(&flush_works, cpu));
4607
4608         put_online_cpus();
4609 }
4610
4611 static int napi_gro_complete(struct sk_buff *skb)
4612 {
4613         struct packet_offload *ptype;
4614         __be16 type = skb->protocol;
4615         struct list_head *head = &offload_base;
4616         int err = -ENOENT;
4617
4618         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4619
4620         if (NAPI_GRO_CB(skb)->count == 1) {
4621                 skb_shinfo(skb)->gso_size = 0;
4622                 goto out;
4623         }
4624
4625         rcu_read_lock();
4626         list_for_each_entry_rcu(ptype, head, list) {
4627                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4628                         continue;
4629
4630                 err = ptype->callbacks.gro_complete(skb, 0);
4631                 break;
4632         }
4633         rcu_read_unlock();
4634
4635         if (err) {
4636                 WARN_ON(&ptype->list == head);
4637                 kfree_skb(skb);
4638                 return NET_RX_SUCCESS;
4639         }
4640
4641 out:
4642         return netif_receive_skb_internal(skb);
4643 }
4644
4645 /* napi->gro_list contains packets ordered by age.
4646  * youngest packets at the head of it.
4647  * Complete skbs in reverse order to reduce latencies.
4648  */
4649 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4650 {
4651         struct sk_buff *skb, *prev = NULL;
4652
4653         /* scan list and build reverse chain */
4654         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4655                 skb->prev = prev;
4656                 prev = skb;
4657         }
4658
4659         for (skb = prev; skb; skb = prev) {
4660                 skb->next = NULL;
4661
4662                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4663                         return;
4664
4665                 prev = skb->prev;
4666                 napi_gro_complete(skb);
4667                 napi->gro_count--;
4668         }
4669
4670         napi->gro_list = NULL;
4671 }
4672 EXPORT_SYMBOL(napi_gro_flush);
4673
4674 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4675 {
4676         struct sk_buff *p;
4677         unsigned int maclen = skb->dev->hard_header_len;
4678         u32 hash = skb_get_hash_raw(skb);
4679
4680         for (p = napi->gro_list; p; p = p->next) {
4681                 unsigned long diffs;
4682
4683                 NAPI_GRO_CB(p)->flush = 0;
4684
4685                 if (hash != skb_get_hash_raw(p)) {
4686                         NAPI_GRO_CB(p)->same_flow = 0;
4687                         continue;
4688                 }
4689
4690                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4691                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4692                 diffs |= skb_metadata_dst_cmp(p, skb);
4693                 if (maclen == ETH_HLEN)
4694                         diffs |= compare_ether_header(skb_mac_header(p),
4695                                                       skb_mac_header(skb));
4696                 else if (!diffs)
4697                         diffs = memcmp(skb_mac_header(p),
4698                                        skb_mac_header(skb),
4699                                        maclen);
4700                 NAPI_GRO_CB(p)->same_flow = !diffs;
4701         }
4702 }
4703
4704 static void skb_gro_reset_offset(struct sk_buff *skb)
4705 {
4706         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4707         const skb_frag_t *frag0 = &pinfo->frags[0];
4708
4709         NAPI_GRO_CB(skb)->data_offset = 0;
4710         NAPI_GRO_CB(skb)->frag0 = NULL;
4711         NAPI_GRO_CB(skb)->frag0_len = 0;
4712
4713         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4714             pinfo->nr_frags &&
4715             !PageHighMem(skb_frag_page(frag0))) {
4716                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4717                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4718                                                     skb_frag_size(frag0),
4719                                                     skb->end - skb->tail);
4720         }
4721 }
4722
4723 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4724 {
4725         struct skb_shared_info *pinfo = skb_shinfo(skb);
4726
4727         BUG_ON(skb->end - skb->tail < grow);
4728
4729         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4730
4731         skb->data_len -= grow;
4732         skb->tail += grow;
4733
4734         pinfo->frags[0].page_offset += grow;
4735         skb_frag_size_sub(&pinfo->frags[0], grow);
4736
4737         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4738                 skb_frag_unref(skb, 0);
4739                 memmove(pinfo->frags, pinfo->frags + 1,
4740                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4741         }
4742 }
4743
4744 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4745 {
4746         struct sk_buff **pp = NULL;
4747         struct packet_offload *ptype;
4748         __be16 type = skb->protocol;
4749         struct list_head *head = &offload_base;
4750         int same_flow;
4751         enum gro_result ret;
4752         int grow;
4753
4754         if (netif_elide_gro(skb->dev))
4755                 goto normal;
4756
4757         gro_list_prepare(napi, skb);
4758
4759         rcu_read_lock();
4760         list_for_each_entry_rcu(ptype, head, list) {
4761                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4762                         continue;
4763
4764                 skb_set_network_header(skb, skb_gro_offset(skb));
4765                 skb_reset_mac_len(skb);
4766                 NAPI_GRO_CB(skb)->same_flow = 0;
4767                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4768                 NAPI_GRO_CB(skb)->free = 0;
4769                 NAPI_GRO_CB(skb)->encap_mark = 0;
4770                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4771                 NAPI_GRO_CB(skb)->is_fou = 0;
4772                 NAPI_GRO_CB(skb)->is_atomic = 1;
4773                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4774
4775                 /* Setup for GRO checksum validation */
4776                 switch (skb->ip_summed) {
4777                 case CHECKSUM_COMPLETE:
4778                         NAPI_GRO_CB(skb)->csum = skb->csum;
4779                         NAPI_GRO_CB(skb)->csum_valid = 1;
4780                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4781                         break;
4782                 case CHECKSUM_UNNECESSARY:
4783                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4784                         NAPI_GRO_CB(skb)->csum_valid = 0;
4785                         break;
4786                 default:
4787                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4788                         NAPI_GRO_CB(skb)->csum_valid = 0;
4789                 }
4790
4791                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4792                 break;
4793         }
4794         rcu_read_unlock();
4795
4796         if (&ptype->list == head)
4797                 goto normal;
4798
4799         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4800                 ret = GRO_CONSUMED;
4801                 goto ok;
4802         }
4803
4804         same_flow = NAPI_GRO_CB(skb)->same_flow;
4805         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4806
4807         if (pp) {
4808                 struct sk_buff *nskb = *pp;
4809
4810                 *pp = nskb->next;
4811                 nskb->next = NULL;
4812                 napi_gro_complete(nskb);
4813                 napi->gro_count--;
4814         }
4815
4816         if (same_flow)
4817                 goto ok;
4818
4819         if (NAPI_GRO_CB(skb)->flush)
4820                 goto normal;
4821
4822         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4823                 struct sk_buff *nskb = napi->gro_list;
4824
4825                 /* locate the end of the list to select the 'oldest' flow */
4826                 while (nskb->next) {
4827                         pp = &nskb->next;
4828                         nskb = *pp;
4829                 }
4830                 *pp = NULL;
4831                 nskb->next = NULL;
4832                 napi_gro_complete(nskb);
4833         } else {
4834                 napi->gro_count++;
4835         }
4836         NAPI_GRO_CB(skb)->count = 1;
4837         NAPI_GRO_CB(skb)->age = jiffies;
4838         NAPI_GRO_CB(skb)->last = skb;
4839         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4840         skb->next = napi->gro_list;
4841         napi->gro_list = skb;
4842         ret = GRO_HELD;
4843
4844 pull:
4845         grow = skb_gro_offset(skb) - skb_headlen(skb);
4846         if (grow > 0)
4847                 gro_pull_from_frag0(skb, grow);
4848 ok:
4849         return ret;
4850
4851 normal:
4852         ret = GRO_NORMAL;
4853         goto pull;
4854 }
4855
4856 struct packet_offload *gro_find_receive_by_type(__be16 type)
4857 {
4858         struct list_head *offload_head = &offload_base;
4859         struct packet_offload *ptype;
4860
4861         list_for_each_entry_rcu(ptype, offload_head, list) {
4862                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4863                         continue;
4864                 return ptype;
4865         }
4866         return NULL;
4867 }
4868 EXPORT_SYMBOL(gro_find_receive_by_type);
4869
4870 struct packet_offload *gro_find_complete_by_type(__be16 type)
4871 {
4872         struct list_head *offload_head = &offload_base;
4873         struct packet_offload *ptype;
4874
4875         list_for_each_entry_rcu(ptype, offload_head, list) {
4876                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4877                         continue;
4878                 return ptype;
4879         }
4880         return NULL;
4881 }
4882 EXPORT_SYMBOL(gro_find_complete_by_type);
4883
4884 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4885 {
4886         skb_dst_drop(skb);
4887         secpath_reset(skb);
4888         kmem_cache_free(skbuff_head_cache, skb);
4889 }
4890
4891 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4892 {
4893         switch (ret) {
4894         case GRO_NORMAL:
4895                 if (netif_receive_skb_internal(skb))
4896                         ret = GRO_DROP;
4897                 break;
4898
4899         case GRO_DROP:
4900                 kfree_skb(skb);
4901                 break;
4902
4903         case GRO_MERGED_FREE:
4904                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4905                         napi_skb_free_stolen_head(skb);
4906                 else
4907                         __kfree_skb(skb);
4908                 break;
4909
4910         case GRO_HELD:
4911         case GRO_MERGED:
4912         case GRO_CONSUMED:
4913                 break;
4914         }
4915
4916         return ret;
4917 }
4918
4919 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4920 {
4921         skb_mark_napi_id(skb, napi);
4922         trace_napi_gro_receive_entry(skb);
4923
4924         skb_gro_reset_offset(skb);
4925
4926         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4927 }
4928 EXPORT_SYMBOL(napi_gro_receive);
4929
4930 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4931 {
4932         if (unlikely(skb->pfmemalloc)) {
4933                 consume_skb(skb);
4934                 return;
4935         }
4936         __skb_pull(skb, skb_headlen(skb));
4937         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4938         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4939         skb->vlan_tci = 0;
4940         skb->dev = napi->dev;
4941         skb->skb_iif = 0;
4942         skb->encapsulation = 0;
4943         skb_shinfo(skb)->gso_type = 0;
4944         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4945         secpath_reset(skb);
4946
4947         napi->skb = skb;
4948 }
4949
4950 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4951 {
4952         struct sk_buff *skb = napi->skb;
4953
4954         if (!skb) {
4955                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4956                 if (skb) {
4957                         napi->skb = skb;
4958                         skb_mark_napi_id(skb, napi);
4959                 }
4960         }
4961         return skb;
4962 }
4963 EXPORT_SYMBOL(napi_get_frags);
4964
4965 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4966                                       struct sk_buff *skb,
4967                                       gro_result_t ret)
4968 {
4969         switch (ret) {
4970         case GRO_NORMAL:
4971         case GRO_HELD:
4972                 __skb_push(skb, ETH_HLEN);
4973                 skb->protocol = eth_type_trans(skb, skb->dev);
4974                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4975                         ret = GRO_DROP;
4976                 break;
4977
4978         case GRO_DROP:
4979                 napi_reuse_skb(napi, skb);
4980                 break;
4981
4982         case GRO_MERGED_FREE:
4983                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4984                         napi_skb_free_stolen_head(skb);
4985                 else
4986                         napi_reuse_skb(napi, skb);
4987                 break;
4988
4989         case GRO_MERGED:
4990         case GRO_CONSUMED:
4991                 break;
4992         }
4993
4994         return ret;
4995 }
4996
4997 /* Upper GRO stack assumes network header starts at gro_offset=0
4998  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4999  * We copy ethernet header into skb->data to have a common layout.
5000  */
5001 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5002 {
5003         struct sk_buff *skb = napi->skb;
5004         const struct ethhdr *eth;
5005         unsigned int hlen = sizeof(*eth);
5006
5007         napi->skb = NULL;
5008
5009         skb_reset_mac_header(skb);
5010         skb_gro_reset_offset(skb);
5011
5012         eth = skb_gro_header_fast(skb, 0);
5013         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5014                 eth = skb_gro_header_slow(skb, hlen, 0);
5015                 if (unlikely(!eth)) {
5016                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5017                                              __func__, napi->dev->name);
5018                         napi_reuse_skb(napi, skb);
5019                         return NULL;
5020                 }
5021         } else {
5022                 gro_pull_from_frag0(skb, hlen);
5023                 NAPI_GRO_CB(skb)->frag0 += hlen;
5024                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5025         }
5026         __skb_pull(skb, hlen);
5027
5028         /*
5029          * This works because the only protocols we care about don't require
5030          * special handling.
5031          * We'll fix it up properly in napi_frags_finish()
5032          */
5033         skb->protocol = eth->h_proto;
5034
5035         return skb;
5036 }
5037
5038 gro_result_t napi_gro_frags(struct napi_struct *napi)
5039 {
5040         struct sk_buff *skb = napi_frags_skb(napi);
5041
5042         if (!skb)
5043                 return GRO_DROP;
5044
5045         trace_napi_gro_frags_entry(skb);
5046
5047         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5048 }
5049 EXPORT_SYMBOL(napi_gro_frags);
5050
5051 /* Compute the checksum from gro_offset and return the folded value
5052  * after adding in any pseudo checksum.
5053  */
5054 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5055 {
5056         __wsum wsum;
5057         __sum16 sum;
5058
5059         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5060
5061         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5062         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5063         if (likely(!sum)) {
5064                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5065                     !skb->csum_complete_sw)
5066                         netdev_rx_csum_fault(skb->dev);
5067         }
5068
5069         NAPI_GRO_CB(skb)->csum = wsum;
5070         NAPI_GRO_CB(skb)->csum_valid = 1;
5071
5072         return sum;
5073 }
5074 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5075
5076 static void net_rps_send_ipi(struct softnet_data *remsd)
5077 {
5078 #ifdef CONFIG_RPS
5079         while (remsd) {
5080                 struct softnet_data *next = remsd->rps_ipi_next;
5081
5082                 if (cpu_online(remsd->cpu))
5083                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5084                 remsd = next;
5085         }
5086 #endif
5087 }
5088
5089 /*
5090  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5091  * Note: called with local irq disabled, but exits with local irq enabled.
5092  */
5093 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5094 {
5095 #ifdef CONFIG_RPS
5096         struct softnet_data *remsd = sd->rps_ipi_list;
5097
5098         if (remsd) {
5099                 sd->rps_ipi_list = NULL;
5100
5101                 local_irq_enable();
5102
5103                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5104                 net_rps_send_ipi(remsd);
5105         } else
5106 #endif
5107                 local_irq_enable();
5108 }
5109
5110 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5111 {
5112 #ifdef CONFIG_RPS
5113         return sd->rps_ipi_list != NULL;
5114 #else
5115         return false;
5116 #endif
5117 }
5118
5119 static int process_backlog(struct napi_struct *napi, int quota)
5120 {
5121         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5122         bool again = true;
5123         int work = 0;
5124
5125         /* Check if we have pending ipi, its better to send them now,
5126          * not waiting net_rx_action() end.
5127          */
5128         if (sd_has_rps_ipi_waiting(sd)) {
5129                 local_irq_disable();
5130                 net_rps_action_and_irq_enable(sd);
5131         }
5132
5133         napi->weight = dev_rx_weight;
5134         while (again) {
5135                 struct sk_buff *skb;
5136
5137                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5138                         rcu_read_lock();
5139                         __netif_receive_skb(skb);
5140                         rcu_read_unlock();
5141                         input_queue_head_incr(sd);
5142                         if (++work >= quota)
5143                                 return work;
5144
5145                 }
5146
5147                 local_irq_disable();
5148                 rps_lock(sd);
5149                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5150                         /*
5151                          * Inline a custom version of __napi_complete().
5152                          * only current cpu owns and manipulates this napi,
5153                          * and NAPI_STATE_SCHED is the only possible flag set
5154                          * on backlog.
5155                          * We can use a plain write instead of clear_bit(),
5156                          * and we dont need an smp_mb() memory barrier.
5157                          */
5158                         napi->state = 0;
5159                         again = false;
5160                 } else {
5161                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5162                                                    &sd->process_queue);
5163                 }
5164                 rps_unlock(sd);
5165                 local_irq_enable();
5166         }
5167
5168         return work;
5169 }
5170
5171 /**
5172  * __napi_schedule - schedule for receive
5173  * @n: entry to schedule
5174  *
5175  * The entry's receive function will be scheduled to run.
5176  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5177  */
5178 void __napi_schedule(struct napi_struct *n)
5179 {
5180         unsigned long flags;
5181
5182         local_irq_save(flags);
5183         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5184         local_irq_restore(flags);
5185 }
5186 EXPORT_SYMBOL(__napi_schedule);
5187
5188 /**
5189  *      napi_schedule_prep - check if napi can be scheduled
5190  *      @n: napi context
5191  *
5192  * Test if NAPI routine is already running, and if not mark
5193  * it as running.  This is used as a condition variable
5194  * insure only one NAPI poll instance runs.  We also make
5195  * sure there is no pending NAPI disable.
5196  */
5197 bool napi_schedule_prep(struct napi_struct *n)
5198 {
5199         unsigned long val, new;
5200
5201         do {
5202                 val = READ_ONCE(n->state);
5203                 if (unlikely(val & NAPIF_STATE_DISABLE))
5204                         return false;
5205                 new = val | NAPIF_STATE_SCHED;
5206
5207                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5208                  * This was suggested by Alexander Duyck, as compiler
5209                  * emits better code than :
5210                  * if (val & NAPIF_STATE_SCHED)
5211                  *     new |= NAPIF_STATE_MISSED;
5212                  */
5213                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5214                                                    NAPIF_STATE_MISSED;
5215         } while (cmpxchg(&n->state, val, new) != val);
5216
5217         return !(val & NAPIF_STATE_SCHED);
5218 }
5219 EXPORT_SYMBOL(napi_schedule_prep);
5220
5221 /**
5222  * __napi_schedule_irqoff - schedule for receive
5223  * @n: entry to schedule
5224  *
5225  * Variant of __napi_schedule() assuming hard irqs are masked
5226  */
5227 void __napi_schedule_irqoff(struct napi_struct *n)
5228 {
5229         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5230 }
5231 EXPORT_SYMBOL(__napi_schedule_irqoff);
5232
5233 bool napi_complete_done(struct napi_struct *n, int work_done)
5234 {
5235         unsigned long flags, val, new;
5236
5237         /*
5238          * 1) Don't let napi dequeue from the cpu poll list
5239          *    just in case its running on a different cpu.
5240          * 2) If we are busy polling, do nothing here, we have
5241          *    the guarantee we will be called later.
5242          */
5243         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5244                                  NAPIF_STATE_IN_BUSY_POLL)))
5245                 return false;
5246
5247         if (n->gro_list) {
5248                 unsigned long timeout = 0;
5249
5250                 if (work_done)
5251                         timeout = n->dev->gro_flush_timeout;
5252
5253                 if (timeout)
5254                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5255                                       HRTIMER_MODE_REL_PINNED);
5256                 else
5257                         napi_gro_flush(n, false);
5258         }
5259         if (unlikely(!list_empty(&n->poll_list))) {
5260                 /* If n->poll_list is not empty, we need to mask irqs */
5261                 local_irq_save(flags);
5262                 list_del_init(&n->poll_list);
5263                 local_irq_restore(flags);
5264         }
5265
5266         do {
5267                 val = READ_ONCE(n->state);
5268
5269                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5270
5271                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5272
5273                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5274                  * because we will call napi->poll() one more time.
5275                  * This C code was suggested by Alexander Duyck to help gcc.
5276                  */
5277                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5278                                                     NAPIF_STATE_SCHED;
5279         } while (cmpxchg(&n->state, val, new) != val);
5280
5281         if (unlikely(val & NAPIF_STATE_MISSED)) {
5282                 __napi_schedule(n);
5283                 return false;
5284         }
5285
5286         return true;
5287 }
5288 EXPORT_SYMBOL(napi_complete_done);
5289
5290 /* must be called under rcu_read_lock(), as we dont take a reference */
5291 static struct napi_struct *napi_by_id(unsigned int napi_id)
5292 {
5293         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5294         struct napi_struct *napi;
5295
5296         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5297                 if (napi->napi_id == napi_id)
5298                         return napi;
5299
5300         return NULL;
5301 }
5302
5303 #if defined(CONFIG_NET_RX_BUSY_POLL)
5304
5305 #define BUSY_POLL_BUDGET 8
5306
5307 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5308 {
5309         int rc;
5310
5311         /* Busy polling means there is a high chance device driver hard irq
5312          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5313          * set in napi_schedule_prep().
5314          * Since we are about to call napi->poll() once more, we can safely
5315          * clear NAPI_STATE_MISSED.
5316          *
5317          * Note: x86 could use a single "lock and ..." instruction
5318          * to perform these two clear_bit()
5319          */
5320         clear_bit(NAPI_STATE_MISSED, &napi->state);
5321         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5322
5323         local_bh_disable();
5324
5325         /* All we really want here is to re-enable device interrupts.
5326          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5327          */
5328         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5329         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5330         netpoll_poll_unlock(have_poll_lock);
5331         if (rc == BUSY_POLL_BUDGET)
5332                 __napi_schedule(napi);
5333         local_bh_enable();
5334 }
5335
5336 void napi_busy_loop(unsigned int napi_id,
5337                     bool (*loop_end)(void *, unsigned long),
5338                     void *loop_end_arg)
5339 {
5340         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5341         int (*napi_poll)(struct napi_struct *napi, int budget);
5342         void *have_poll_lock = NULL;
5343         struct napi_struct *napi;
5344
5345 restart:
5346         napi_poll = NULL;
5347
5348         rcu_read_lock();
5349
5350         napi = napi_by_id(napi_id);
5351         if (!napi)
5352                 goto out;
5353
5354         preempt_disable();
5355         for (;;) {
5356                 int work = 0;
5357
5358                 local_bh_disable();
5359                 if (!napi_poll) {
5360                         unsigned long val = READ_ONCE(napi->state);
5361
5362                         /* If multiple threads are competing for this napi,
5363                          * we avoid dirtying napi->state as much as we can.
5364                          */
5365                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5366                                    NAPIF_STATE_IN_BUSY_POLL))
5367                                 goto count;
5368                         if (cmpxchg(&napi->state, val,
5369                                     val | NAPIF_STATE_IN_BUSY_POLL |
5370                                           NAPIF_STATE_SCHED) != val)
5371                                 goto count;
5372                         have_poll_lock = netpoll_poll_lock(napi);
5373                         napi_poll = napi->poll;
5374                 }
5375                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5376                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5377 count:
5378                 if (work > 0)
5379                         __NET_ADD_STATS(dev_net(napi->dev),
5380                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5381                 local_bh_enable();
5382
5383                 if (!loop_end || loop_end(loop_end_arg, start_time))
5384                         break;
5385
5386                 if (unlikely(need_resched())) {
5387                         if (napi_poll)
5388                                 busy_poll_stop(napi, have_poll_lock);
5389                         preempt_enable();
5390                         rcu_read_unlock();
5391                         cond_resched();
5392                         if (loop_end(loop_end_arg, start_time))
5393                                 return;
5394                         goto restart;
5395                 }
5396                 cpu_relax();
5397         }
5398         if (napi_poll)
5399                 busy_poll_stop(napi, have_poll_lock);
5400         preempt_enable();
5401 out:
5402         rcu_read_unlock();
5403 }
5404 EXPORT_SYMBOL(napi_busy_loop);
5405
5406 #endif /* CONFIG_NET_RX_BUSY_POLL */
5407
5408 static void napi_hash_add(struct napi_struct *napi)
5409 {
5410         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5411             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5412                 return;
5413
5414         spin_lock(&napi_hash_lock);
5415
5416         /* 0..NR_CPUS range is reserved for sender_cpu use */
5417         do {
5418                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5419                         napi_gen_id = MIN_NAPI_ID;
5420         } while (napi_by_id(napi_gen_id));
5421         napi->napi_id = napi_gen_id;
5422
5423         hlist_add_head_rcu(&napi->napi_hash_node,
5424                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5425
5426         spin_unlock(&napi_hash_lock);
5427 }
5428
5429 /* Warning : caller is responsible to make sure rcu grace period
5430  * is respected before freeing memory containing @napi
5431  */
5432 bool napi_hash_del(struct napi_struct *napi)
5433 {
5434         bool rcu_sync_needed = false;
5435
5436         spin_lock(&napi_hash_lock);
5437
5438         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5439                 rcu_sync_needed = true;
5440                 hlist_del_rcu(&napi->napi_hash_node);
5441         }
5442         spin_unlock(&napi_hash_lock);
5443         return rcu_sync_needed;
5444 }
5445 EXPORT_SYMBOL_GPL(napi_hash_del);
5446
5447 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5448 {
5449         struct napi_struct *napi;
5450
5451         napi = container_of(timer, struct napi_struct, timer);
5452
5453         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5454          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5455          */
5456         if (napi->gro_list && !napi_disable_pending(napi) &&
5457             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5458                 __napi_schedule_irqoff(napi);
5459
5460         return HRTIMER_NORESTART;
5461 }
5462
5463 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5464                     int (*poll)(struct napi_struct *, int), int weight)
5465 {
5466         INIT_LIST_HEAD(&napi->poll_list);
5467         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5468         napi->timer.function = napi_watchdog;
5469         napi->gro_count = 0;
5470         napi->gro_list = NULL;
5471         napi->skb = NULL;
5472         napi->poll = poll;
5473         if (weight > NAPI_POLL_WEIGHT)
5474                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5475                             weight, dev->name);
5476         napi->weight = weight;
5477         list_add(&napi->dev_list, &dev->napi_list);
5478         napi->dev = dev;
5479 #ifdef CONFIG_NETPOLL
5480         napi->poll_owner = -1;
5481 #endif
5482         set_bit(NAPI_STATE_SCHED, &napi->state);
5483         napi_hash_add(napi);
5484 }
5485 EXPORT_SYMBOL(netif_napi_add);
5486
5487 void napi_disable(struct napi_struct *n)
5488 {
5489         might_sleep();
5490         set_bit(NAPI_STATE_DISABLE, &n->state);
5491
5492         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5493                 msleep(1);
5494         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5495                 msleep(1);
5496
5497         hrtimer_cancel(&n->timer);
5498
5499         clear_bit(NAPI_STATE_DISABLE, &n->state);
5500 }
5501 EXPORT_SYMBOL(napi_disable);
5502
5503 /* Must be called in process context */
5504 void netif_napi_del(struct napi_struct *napi)
5505 {
5506         might_sleep();
5507         if (napi_hash_del(napi))
5508                 synchronize_net();
5509         list_del_init(&napi->dev_list);
5510         napi_free_frags(napi);
5511
5512         kfree_skb_list(napi->gro_list);
5513         napi->gro_list = NULL;
5514         napi->gro_count = 0;
5515 }
5516 EXPORT_SYMBOL(netif_napi_del);
5517
5518 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5519 {
5520         void *have;
5521         int work, weight;
5522
5523         list_del_init(&n->poll_list);
5524
5525         have = netpoll_poll_lock(n);
5526
5527         weight = n->weight;
5528
5529         /* This NAPI_STATE_SCHED test is for avoiding a race
5530          * with netpoll's poll_napi().  Only the entity which
5531          * obtains the lock and sees NAPI_STATE_SCHED set will
5532          * actually make the ->poll() call.  Therefore we avoid
5533          * accidentally calling ->poll() when NAPI is not scheduled.
5534          */
5535         work = 0;
5536         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5537                 work = n->poll(n, weight);
5538                 trace_napi_poll(n, work, weight);
5539         }
5540
5541         WARN_ON_ONCE(work > weight);
5542
5543         if (likely(work < weight))
5544                 goto out_unlock;
5545
5546         /* Drivers must not modify the NAPI state if they
5547          * consume the entire weight.  In such cases this code
5548          * still "owns" the NAPI instance and therefore can
5549          * move the instance around on the list at-will.
5550          */
5551         if (unlikely(napi_disable_pending(n))) {
5552                 napi_complete(n);
5553                 goto out_unlock;
5554         }
5555
5556         if (n->gro_list) {
5557                 /* flush too old packets
5558                  * If HZ < 1000, flush all packets.
5559                  */
5560                 napi_gro_flush(n, HZ >= 1000);
5561         }
5562
5563         /* Some drivers may have called napi_schedule
5564          * prior to exhausting their budget.
5565          */
5566         if (unlikely(!list_empty(&n->poll_list))) {
5567                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5568                              n->dev ? n->dev->name : "backlog");
5569                 goto out_unlock;
5570         }
5571
5572         list_add_tail(&n->poll_list, repoll);
5573
5574 out_unlock:
5575         netpoll_poll_unlock(have);
5576
5577         return work;
5578 }
5579
5580 static __latent_entropy void net_rx_action(struct softirq_action *h)
5581 {
5582         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5583         unsigned long time_limit = jiffies +
5584                 usecs_to_jiffies(netdev_budget_usecs);
5585         int budget = netdev_budget;
5586         LIST_HEAD(list);
5587         LIST_HEAD(repoll);
5588
5589         local_irq_disable();
5590         list_splice_init(&sd->poll_list, &list);
5591         local_irq_enable();
5592
5593         for (;;) {
5594                 struct napi_struct *n;
5595
5596                 if (list_empty(&list)) {
5597                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5598                                 goto out;
5599                         break;
5600                 }
5601
5602                 n = list_first_entry(&list, struct napi_struct, poll_list);
5603                 budget -= napi_poll(n, &repoll);
5604
5605                 /* If softirq window is exhausted then punt.
5606                  * Allow this to run for 2 jiffies since which will allow
5607                  * an average latency of 1.5/HZ.
5608                  */
5609                 if (unlikely(budget <= 0 ||
5610                              time_after_eq(jiffies, time_limit))) {
5611                         sd->time_squeeze++;
5612                         break;
5613                 }
5614         }
5615
5616         local_irq_disable();
5617
5618         list_splice_tail_init(&sd->poll_list, &list);
5619         list_splice_tail(&repoll, &list);
5620         list_splice(&list, &sd->poll_list);
5621         if (!list_empty(&sd->poll_list))
5622                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5623
5624         net_rps_action_and_irq_enable(sd);
5625 out:
5626         __kfree_skb_flush();
5627 }
5628
5629 struct netdev_adjacent {
5630         struct net_device *dev;
5631
5632         /* upper master flag, there can only be one master device per list */
5633         bool master;
5634
5635         /* counter for the number of times this device was added to us */
5636         u16 ref_nr;
5637
5638         /* private field for the users */
5639         void *private;
5640
5641         struct list_head list;
5642         struct rcu_head rcu;
5643 };
5644
5645 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5646                                                  struct list_head *adj_list)
5647 {
5648         struct netdev_adjacent *adj;
5649
5650         list_for_each_entry(adj, adj_list, list) {
5651                 if (adj->dev == adj_dev)
5652                         return adj;
5653         }
5654         return NULL;
5655 }
5656
5657 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5658 {
5659         struct net_device *dev = data;
5660
5661         return upper_dev == dev;
5662 }
5663
5664 /**
5665  * netdev_has_upper_dev - Check if device is linked to an upper device
5666  * @dev: device
5667  * @upper_dev: upper device to check
5668  *
5669  * Find out if a device is linked to specified upper device and return true
5670  * in case it is. Note that this checks only immediate upper device,
5671  * not through a complete stack of devices. The caller must hold the RTNL lock.
5672  */
5673 bool netdev_has_upper_dev(struct net_device *dev,
5674                           struct net_device *upper_dev)
5675 {
5676         ASSERT_RTNL();
5677
5678         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5679                                              upper_dev);
5680 }
5681 EXPORT_SYMBOL(netdev_has_upper_dev);
5682
5683 /**
5684  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5685  * @dev: device
5686  * @upper_dev: upper device to check
5687  *
5688  * Find out if a device is linked to specified upper device and return true
5689  * in case it is. Note that this checks the entire upper device chain.
5690  * The caller must hold rcu lock.
5691  */
5692
5693 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5694                                   struct net_device *upper_dev)
5695 {
5696         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5697                                                upper_dev);
5698 }
5699 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5700
5701 /**
5702  * netdev_has_any_upper_dev - Check if device is linked to some device
5703  * @dev: device
5704  *
5705  * Find out if a device is linked to an upper device and return true in case
5706  * it is. The caller must hold the RTNL lock.
5707  */
5708 bool netdev_has_any_upper_dev(struct net_device *dev)
5709 {
5710         ASSERT_RTNL();
5711
5712         return !list_empty(&dev->adj_list.upper);
5713 }
5714 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5715
5716 /**
5717  * netdev_master_upper_dev_get - Get master upper device
5718  * @dev: device
5719  *
5720  * Find a master upper device and return pointer to it or NULL in case
5721  * it's not there. The caller must hold the RTNL lock.
5722  */
5723 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5724 {
5725         struct netdev_adjacent *upper;
5726
5727         ASSERT_RTNL();
5728
5729         if (list_empty(&dev->adj_list.upper))
5730                 return NULL;
5731
5732         upper = list_first_entry(&dev->adj_list.upper,
5733                                  struct netdev_adjacent, list);
5734         if (likely(upper->master))
5735                 return upper->dev;
5736         return NULL;
5737 }
5738 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5739
5740 /**
5741  * netdev_has_any_lower_dev - Check if device is linked to some device
5742  * @dev: device
5743  *
5744  * Find out if a device is linked to a lower device and return true in case
5745  * it is. The caller must hold the RTNL lock.
5746  */
5747 static bool netdev_has_any_lower_dev(struct net_device *dev)
5748 {
5749         ASSERT_RTNL();
5750
5751         return !list_empty(&dev->adj_list.lower);
5752 }
5753
5754 void *netdev_adjacent_get_private(struct list_head *adj_list)
5755 {
5756         struct netdev_adjacent *adj;
5757
5758         adj = list_entry(adj_list, struct netdev_adjacent, list);
5759
5760         return adj->private;
5761 }
5762 EXPORT_SYMBOL(netdev_adjacent_get_private);
5763
5764 /**
5765  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5766  * @dev: device
5767  * @iter: list_head ** of the current position
5768  *
5769  * Gets the next device from the dev's upper list, starting from iter
5770  * position. The caller must hold RCU read lock.
5771  */
5772 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5773                                                  struct list_head **iter)
5774 {
5775         struct netdev_adjacent *upper;
5776
5777         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5778
5779         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5780
5781         if (&upper->list == &dev->adj_list.upper)
5782                 return NULL;
5783
5784         *iter = &upper->list;
5785
5786         return upper->dev;
5787 }
5788 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5789
5790 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5791                                                     struct list_head **iter)
5792 {
5793         struct netdev_adjacent *upper;
5794
5795         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5796
5797         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5798
5799         if (&upper->list == &dev->adj_list.upper)
5800                 return NULL;
5801
5802         *iter = &upper->list;
5803
5804         return upper->dev;
5805 }
5806
5807 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5808                                   int (*fn)(struct net_device *dev,
5809                                             void *data),
5810                                   void *data)
5811 {
5812         struct net_device *udev;
5813         struct list_head *iter;
5814         int ret;
5815
5816         for (iter = &dev->adj_list.upper,
5817              udev = netdev_next_upper_dev_rcu(dev, &iter);
5818              udev;
5819              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5820                 /* first is the upper device itself */
5821                 ret = fn(udev, data);
5822                 if (ret)
5823                         return ret;
5824
5825                 /* then look at all of its upper devices */
5826                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5827                 if (ret)
5828                         return ret;
5829         }
5830
5831         return 0;
5832 }
5833 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5834
5835 /**
5836  * netdev_lower_get_next_private - Get the next ->private from the
5837  *                                 lower neighbour list
5838  * @dev: device
5839  * @iter: list_head ** of the current position
5840  *
5841  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5842  * list, starting from iter position. The caller must hold either hold the
5843  * RTNL lock or its own locking that guarantees that the neighbour lower
5844  * list will remain unchanged.
5845  */
5846 void *netdev_lower_get_next_private(struct net_device *dev,
5847                                     struct list_head **iter)
5848 {
5849         struct netdev_adjacent *lower;
5850
5851         lower = list_entry(*iter, struct netdev_adjacent, list);
5852
5853         if (&lower->list == &dev->adj_list.lower)
5854                 return NULL;
5855
5856         *iter = lower->list.next;
5857
5858         return lower->private;
5859 }
5860 EXPORT_SYMBOL(netdev_lower_get_next_private);
5861
5862 /**
5863  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5864  *                                     lower neighbour list, RCU
5865  *                                     variant
5866  * @dev: device
5867  * @iter: list_head ** of the current position
5868  *
5869  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5870  * list, starting from iter position. The caller must hold RCU read lock.
5871  */
5872 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5873                                         struct list_head **iter)
5874 {
5875         struct netdev_adjacent *lower;
5876
5877         WARN_ON_ONCE(!rcu_read_lock_held());
5878
5879         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5880
5881         if (&lower->list == &dev->adj_list.lower)
5882                 return NULL;
5883
5884         *iter = &lower->list;
5885
5886         return lower->private;
5887 }
5888 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5889
5890 /**
5891  * netdev_lower_get_next - Get the next device from the lower neighbour
5892  *                         list
5893  * @dev: device
5894  * @iter: list_head ** of the current position
5895  *
5896  * Gets the next netdev_adjacent from the dev's lower neighbour
5897  * list, starting from iter position. The caller must hold RTNL lock or
5898  * its own locking that guarantees that the neighbour lower
5899  * list will remain unchanged.
5900  */
5901 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5902 {
5903         struct netdev_adjacent *lower;
5904
5905         lower = list_entry(*iter, struct netdev_adjacent, list);
5906
5907         if (&lower->list == &dev->adj_list.lower)
5908                 return NULL;
5909
5910         *iter = lower->list.next;
5911
5912         return lower->dev;
5913 }
5914 EXPORT_SYMBOL(netdev_lower_get_next);
5915
5916 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5917                                                 struct list_head **iter)
5918 {
5919         struct netdev_adjacent *lower;
5920
5921         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5922
5923         if (&lower->list == &dev->adj_list.lower)
5924                 return NULL;
5925
5926         *iter = &lower->list;
5927
5928         return lower->dev;
5929 }
5930
5931 int netdev_walk_all_lower_dev(struct net_device *dev,
5932                               int (*fn)(struct net_device *dev,
5933                                         void *data),
5934                               void *data)
5935 {
5936         struct net_device *ldev;
5937         struct list_head *iter;
5938         int ret;
5939
5940         for (iter = &dev->adj_list.lower,
5941              ldev = netdev_next_lower_dev(dev, &iter);
5942              ldev;
5943              ldev = netdev_next_lower_dev(dev, &iter)) {
5944                 /* first is the lower device itself */
5945                 ret = fn(ldev, data);
5946                 if (ret)
5947                         return ret;
5948
5949                 /* then look at all of its lower devices */
5950                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5951                 if (ret)
5952                         return ret;
5953         }
5954
5955         return 0;
5956 }
5957 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5958
5959 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5960                                                     struct list_head **iter)
5961 {
5962         struct netdev_adjacent *lower;
5963
5964         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5965         if (&lower->list == &dev->adj_list.lower)
5966                 return NULL;
5967
5968         *iter = &lower->list;
5969
5970         return lower->dev;
5971 }
5972
5973 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5974                                   int (*fn)(struct net_device *dev,
5975                                             void *data),
5976                                   void *data)
5977 {
5978         struct net_device *ldev;
5979         struct list_head *iter;
5980         int ret;
5981
5982         for (iter = &dev->adj_list.lower,
5983              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5984              ldev;
5985              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5986                 /* first is the lower device itself */
5987                 ret = fn(ldev, data);
5988                 if (ret)
5989                         return ret;
5990
5991                 /* then look at all of its lower devices */
5992                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5993                 if (ret)
5994                         return ret;
5995         }
5996
5997         return 0;
5998 }
5999 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6000
6001 /**
6002  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6003  *                                     lower neighbour list, RCU
6004  *                                     variant
6005  * @dev: device
6006  *
6007  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6008  * list. The caller must hold RCU read lock.
6009  */
6010 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6011 {
6012         struct netdev_adjacent *lower;
6013
6014         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6015                         struct netdev_adjacent, list);
6016         if (lower)
6017                 return lower->private;
6018         return NULL;
6019 }
6020 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6021
6022 /**
6023  * netdev_master_upper_dev_get_rcu - Get master upper device
6024  * @dev: device
6025  *
6026  * Find a master upper device and return pointer to it or NULL in case
6027  * it's not there. The caller must hold the RCU read lock.
6028  */
6029 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6030 {
6031         struct netdev_adjacent *upper;
6032
6033         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6034                                        struct netdev_adjacent, list);
6035         if (upper && likely(upper->master))
6036                 return upper->dev;
6037         return NULL;
6038 }
6039 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6040
6041 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6042                               struct net_device *adj_dev,
6043                               struct list_head *dev_list)
6044 {
6045         char linkname[IFNAMSIZ+7];
6046
6047         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6048                 "upper_%s" : "lower_%s", adj_dev->name);
6049         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6050                                  linkname);
6051 }
6052 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6053                                char *name,
6054                                struct list_head *dev_list)
6055 {
6056         char linkname[IFNAMSIZ+7];
6057
6058         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6059                 "upper_%s" : "lower_%s", name);
6060         sysfs_remove_link(&(dev->dev.kobj), linkname);
6061 }
6062
6063 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6064                                                  struct net_device *adj_dev,
6065                                                  struct list_head *dev_list)
6066 {
6067         return (dev_list == &dev->adj_list.upper ||
6068                 dev_list == &dev->adj_list.lower) &&
6069                 net_eq(dev_net(dev), dev_net(adj_dev));
6070 }
6071
6072 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6073                                         struct net_device *adj_dev,
6074                                         struct list_head *dev_list,
6075                                         void *private, bool master)
6076 {
6077         struct netdev_adjacent *adj;
6078         int ret;
6079
6080         adj = __netdev_find_adj(adj_dev, dev_list);
6081
6082         if (adj) {
6083                 adj->ref_nr += 1;
6084                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6085                          dev->name, adj_dev->name, adj->ref_nr);
6086
6087                 return 0;
6088         }
6089
6090         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6091         if (!adj)
6092                 return -ENOMEM;
6093
6094         adj->dev = adj_dev;
6095         adj->master = master;
6096         adj->ref_nr = 1;
6097         adj->private = private;
6098         dev_hold(adj_dev);
6099
6100         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6101                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6102
6103         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6104                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6105                 if (ret)
6106                         goto free_adj;
6107         }
6108
6109         /* Ensure that master link is always the first item in list. */
6110         if (master) {
6111                 ret = sysfs_create_link(&(dev->dev.kobj),
6112                                         &(adj_dev->dev.kobj), "master");
6113                 if (ret)
6114                         goto remove_symlinks;
6115
6116                 list_add_rcu(&adj->list, dev_list);
6117         } else {
6118                 list_add_tail_rcu(&adj->list, dev_list);
6119         }
6120
6121         return 0;
6122
6123 remove_symlinks:
6124         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6125                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6126 free_adj:
6127         kfree(adj);
6128         dev_put(adj_dev);
6129
6130         return ret;
6131 }
6132
6133 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6134                                          struct net_device *adj_dev,
6135                                          u16 ref_nr,
6136                                          struct list_head *dev_list)
6137 {
6138         struct netdev_adjacent *adj;
6139
6140         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6141                  dev->name, adj_dev->name, ref_nr);
6142
6143         adj = __netdev_find_adj(adj_dev, dev_list);
6144
6145         if (!adj) {
6146                 pr_err("Adjacency does not exist for device %s from %s\n",
6147                        dev->name, adj_dev->name);
6148                 WARN_ON(1);
6149                 return;
6150         }
6151
6152         if (adj->ref_nr > ref_nr) {
6153                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6154                          dev->name, adj_dev->name, ref_nr,
6155                          adj->ref_nr - ref_nr);
6156                 adj->ref_nr -= ref_nr;
6157                 return;
6158         }
6159
6160         if (adj->master)
6161                 sysfs_remove_link(&(dev->dev.kobj), "master");
6162
6163         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6164                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6165
6166         list_del_rcu(&adj->list);
6167         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6168                  adj_dev->name, dev->name, adj_dev->name);
6169         dev_put(adj_dev);
6170         kfree_rcu(adj, rcu);
6171 }
6172
6173 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6174                                             struct net_device *upper_dev,
6175                                             struct list_head *up_list,
6176                                             struct list_head *down_list,
6177                                             void *private, bool master)
6178 {
6179         int ret;
6180
6181         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6182                                            private, master);
6183         if (ret)
6184                 return ret;
6185
6186         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6187                                            private, false);
6188         if (ret) {
6189                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6190                 return ret;
6191         }
6192
6193         return 0;
6194 }
6195
6196 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6197                                                struct net_device *upper_dev,
6198                                                u16 ref_nr,
6199                                                struct list_head *up_list,
6200                                                struct list_head *down_list)
6201 {
6202         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6203         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6204 }
6205
6206 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6207                                                 struct net_device *upper_dev,
6208                                                 void *private, bool master)
6209 {
6210         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6211                                                 &dev->adj_list.upper,
6212                                                 &upper_dev->adj_list.lower,
6213                                                 private, master);
6214 }
6215
6216 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6217                                                    struct net_device *upper_dev)
6218 {
6219         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6220                                            &dev->adj_list.upper,
6221                                            &upper_dev->adj_list.lower);
6222 }
6223
6224 static int __netdev_upper_dev_link(struct net_device *dev,
6225                                    struct net_device *upper_dev, bool master,
6226                                    void *upper_priv, void *upper_info)
6227 {
6228         struct netdev_notifier_changeupper_info changeupper_info;
6229         int ret = 0;
6230
6231         ASSERT_RTNL();
6232
6233         if (dev == upper_dev)
6234                 return -EBUSY;
6235
6236         /* To prevent loops, check if dev is not upper device to upper_dev. */
6237         if (netdev_has_upper_dev(upper_dev, dev))
6238                 return -EBUSY;
6239
6240         if (netdev_has_upper_dev(dev, upper_dev))
6241                 return -EEXIST;
6242
6243         if (master && netdev_master_upper_dev_get(dev))
6244                 return -EBUSY;
6245
6246         changeupper_info.upper_dev = upper_dev;
6247         changeupper_info.master = master;
6248         changeupper_info.linking = true;
6249         changeupper_info.upper_info = upper_info;
6250
6251         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6252                                             &changeupper_info.info);
6253         ret = notifier_to_errno(ret);
6254         if (ret)
6255                 return ret;
6256
6257         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6258                                                    master);
6259         if (ret)
6260                 return ret;
6261
6262         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6263                                             &changeupper_info.info);
6264         ret = notifier_to_errno(ret);
6265         if (ret)
6266                 goto rollback;
6267
6268         return 0;
6269
6270 rollback:
6271         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6272
6273         return ret;
6274 }
6275
6276 /**
6277  * netdev_upper_dev_link - Add a link to the upper device
6278  * @dev: device
6279  * @upper_dev: new upper device
6280  *
6281  * Adds a link to device which is upper to this one. The caller must hold
6282  * the RTNL lock. On a failure a negative errno code is returned.
6283  * On success the reference counts are adjusted and the function
6284  * returns zero.
6285  */
6286 int netdev_upper_dev_link(struct net_device *dev,
6287                           struct net_device *upper_dev)
6288 {
6289         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6290 }
6291 EXPORT_SYMBOL(netdev_upper_dev_link);
6292
6293 /**
6294  * netdev_master_upper_dev_link - Add a master link to the upper device
6295  * @dev: device
6296  * @upper_dev: new upper device
6297  * @upper_priv: upper device private
6298  * @upper_info: upper info to be passed down via notifier
6299  *
6300  * Adds a link to device which is upper to this one. In this case, only
6301  * one master upper device can be linked, although other non-master devices
6302  * might be linked as well. The caller must hold the RTNL lock.
6303  * On a failure a negative errno code is returned. On success the reference
6304  * counts are adjusted and the function returns zero.
6305  */
6306 int netdev_master_upper_dev_link(struct net_device *dev,
6307                                  struct net_device *upper_dev,
6308                                  void *upper_priv, void *upper_info)
6309 {
6310         return __netdev_upper_dev_link(dev, upper_dev, true,
6311                                        upper_priv, upper_info);
6312 }
6313 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6314
6315 /**
6316  * netdev_upper_dev_unlink - Removes a link to upper device
6317  * @dev: device
6318  * @upper_dev: new upper device
6319  *
6320  * Removes a link to device which is upper to this one. The caller must hold
6321  * the RTNL lock.
6322  */
6323 void netdev_upper_dev_unlink(struct net_device *dev,
6324                              struct net_device *upper_dev)
6325 {
6326         struct netdev_notifier_changeupper_info changeupper_info;
6327
6328         ASSERT_RTNL();
6329
6330         changeupper_info.upper_dev = upper_dev;
6331         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6332         changeupper_info.linking = false;
6333
6334         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6335                                       &changeupper_info.info);
6336
6337         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6338
6339         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6340                                       &changeupper_info.info);
6341 }
6342 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6343
6344 /**
6345  * netdev_bonding_info_change - Dispatch event about slave change
6346  * @dev: device
6347  * @bonding_info: info to dispatch
6348  *
6349  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6350  * The caller must hold the RTNL lock.
6351  */
6352 void netdev_bonding_info_change(struct net_device *dev,
6353                                 struct netdev_bonding_info *bonding_info)
6354 {
6355         struct netdev_notifier_bonding_info     info;
6356
6357         memcpy(&info.bonding_info, bonding_info,
6358                sizeof(struct netdev_bonding_info));
6359         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6360                                       &info.info);
6361 }
6362 EXPORT_SYMBOL(netdev_bonding_info_change);
6363
6364 static void netdev_adjacent_add_links(struct net_device *dev)
6365 {
6366         struct netdev_adjacent *iter;
6367
6368         struct net *net = dev_net(dev);
6369
6370         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6371                 if (!net_eq(net, dev_net(iter->dev)))
6372                         continue;
6373                 netdev_adjacent_sysfs_add(iter->dev, dev,
6374                                           &iter->dev->adj_list.lower);
6375                 netdev_adjacent_sysfs_add(dev, iter->dev,
6376                                           &dev->adj_list.upper);
6377         }
6378
6379         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6380                 if (!net_eq(net, dev_net(iter->dev)))
6381                         continue;
6382                 netdev_adjacent_sysfs_add(iter->dev, dev,
6383                                           &iter->dev->adj_list.upper);
6384                 netdev_adjacent_sysfs_add(dev, iter->dev,
6385                                           &dev->adj_list.lower);
6386         }
6387 }
6388
6389 static void netdev_adjacent_del_links(struct net_device *dev)
6390 {
6391         struct netdev_adjacent *iter;
6392
6393         struct net *net = dev_net(dev);
6394
6395         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6396                 if (!net_eq(net, dev_net(iter->dev)))
6397                         continue;
6398                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6399                                           &iter->dev->adj_list.lower);
6400                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6401                                           &dev->adj_list.upper);
6402         }
6403
6404         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6405                 if (!net_eq(net, dev_net(iter->dev)))
6406                         continue;
6407                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6408                                           &iter->dev->adj_list.upper);
6409                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6410                                           &dev->adj_list.lower);
6411         }
6412 }
6413
6414 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6415 {
6416         struct netdev_adjacent *iter;
6417
6418         struct net *net = dev_net(dev);
6419
6420         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6421                 if (!net_eq(net, dev_net(iter->dev)))
6422                         continue;
6423                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6424                                           &iter->dev->adj_list.lower);
6425                 netdev_adjacent_sysfs_add(iter->dev, dev,
6426                                           &iter->dev->adj_list.lower);
6427         }
6428
6429         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6430                 if (!net_eq(net, dev_net(iter->dev)))
6431                         continue;
6432                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6433                                           &iter->dev->adj_list.upper);
6434                 netdev_adjacent_sysfs_add(iter->dev, dev,
6435                                           &iter->dev->adj_list.upper);
6436         }
6437 }
6438
6439 void *netdev_lower_dev_get_private(struct net_device *dev,
6440                                    struct net_device *lower_dev)
6441 {
6442         struct netdev_adjacent *lower;
6443
6444         if (!lower_dev)
6445                 return NULL;
6446         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6447         if (!lower)
6448                 return NULL;
6449
6450         return lower->private;
6451 }
6452 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6453
6454
6455 int dev_get_nest_level(struct net_device *dev)
6456 {
6457         struct net_device *lower = NULL;
6458         struct list_head *iter;
6459         int max_nest = -1;
6460         int nest;
6461
6462         ASSERT_RTNL();
6463
6464         netdev_for_each_lower_dev(dev, lower, iter) {
6465                 nest = dev_get_nest_level(lower);
6466                 if (max_nest < nest)
6467                         max_nest = nest;
6468         }
6469
6470         return max_nest + 1;
6471 }
6472 EXPORT_SYMBOL(dev_get_nest_level);
6473
6474 /**
6475  * netdev_lower_change - Dispatch event about lower device state change
6476  * @lower_dev: device
6477  * @lower_state_info: state to dispatch
6478  *
6479  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6480  * The caller must hold the RTNL lock.
6481  */
6482 void netdev_lower_state_changed(struct net_device *lower_dev,
6483                                 void *lower_state_info)
6484 {
6485         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6486
6487         ASSERT_RTNL();
6488         changelowerstate_info.lower_state_info = lower_state_info;
6489         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6490                                       &changelowerstate_info.info);
6491 }
6492 EXPORT_SYMBOL(netdev_lower_state_changed);
6493
6494 static void dev_change_rx_flags(struct net_device *dev, int flags)
6495 {
6496         const struct net_device_ops *ops = dev->netdev_ops;
6497
6498         if (ops->ndo_change_rx_flags)
6499                 ops->ndo_change_rx_flags(dev, flags);
6500 }
6501
6502 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6503 {
6504         unsigned int old_flags = dev->flags;
6505         kuid_t uid;
6506         kgid_t gid;
6507
6508         ASSERT_RTNL();
6509
6510         dev->flags |= IFF_PROMISC;
6511         dev->promiscuity += inc;
6512         if (dev->promiscuity == 0) {
6513                 /*
6514                  * Avoid overflow.
6515                  * If inc causes overflow, untouch promisc and return error.
6516                  */
6517                 if (inc < 0)
6518                         dev->flags &= ~IFF_PROMISC;
6519                 else {
6520                         dev->promiscuity -= inc;
6521                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6522                                 dev->name);
6523                         return -EOVERFLOW;
6524                 }
6525         }
6526         if (dev->flags != old_flags) {
6527                 pr_info("device %s %s promiscuous mode\n",
6528                         dev->name,
6529                         dev->flags & IFF_PROMISC ? "entered" : "left");
6530                 if (audit_enabled) {
6531                         current_uid_gid(&uid, &gid);
6532                         audit_log(current->audit_context, GFP_ATOMIC,
6533                                 AUDIT_ANOM_PROMISCUOUS,
6534                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6535                                 dev->name, (dev->flags & IFF_PROMISC),
6536                                 (old_flags & IFF_PROMISC),
6537                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6538                                 from_kuid(&init_user_ns, uid),
6539                                 from_kgid(&init_user_ns, gid),
6540                                 audit_get_sessionid(current));
6541                 }
6542
6543                 dev_change_rx_flags(dev, IFF_PROMISC);
6544         }
6545         if (notify)
6546                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6547         return 0;
6548 }
6549
6550 /**
6551  *      dev_set_promiscuity     - update promiscuity count on a device
6552  *      @dev: device
6553  *      @inc: modifier
6554  *
6555  *      Add or remove promiscuity from a device. While the count in the device
6556  *      remains above zero the interface remains promiscuous. Once it hits zero
6557  *      the device reverts back to normal filtering operation. A negative inc
6558  *      value is used to drop promiscuity on the device.
6559  *      Return 0 if successful or a negative errno code on error.
6560  */
6561 int dev_set_promiscuity(struct net_device *dev, int inc)
6562 {
6563         unsigned int old_flags = dev->flags;
6564         int err;
6565
6566         err = __dev_set_promiscuity(dev, inc, true);
6567         if (err < 0)
6568                 return err;
6569         if (dev->flags != old_flags)
6570                 dev_set_rx_mode(dev);
6571         return err;
6572 }
6573 EXPORT_SYMBOL(dev_set_promiscuity);
6574
6575 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6576 {
6577         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6578
6579         ASSERT_RTNL();
6580
6581         dev->flags |= IFF_ALLMULTI;
6582         dev->allmulti += inc;
6583         if (dev->allmulti == 0) {
6584                 /*
6585                  * Avoid overflow.
6586                  * If inc causes overflow, untouch allmulti and return error.
6587                  */
6588                 if (inc < 0)
6589                         dev->flags &= ~IFF_ALLMULTI;
6590                 else {
6591                         dev->allmulti -= inc;
6592                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6593                                 dev->name);
6594                         return -EOVERFLOW;
6595                 }
6596         }
6597         if (dev->flags ^ old_flags) {
6598                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6599                 dev_set_rx_mode(dev);
6600                 if (notify)
6601                         __dev_notify_flags(dev, old_flags,
6602                                            dev->gflags ^ old_gflags);
6603         }
6604         return 0;
6605 }
6606
6607 /**
6608  *      dev_set_allmulti        - update allmulti count on a device
6609  *      @dev: device
6610  *      @inc: modifier
6611  *
6612  *      Add or remove reception of all multicast frames to a device. While the
6613  *      count in the device remains above zero the interface remains listening
6614  *      to all interfaces. Once it hits zero the device reverts back to normal
6615  *      filtering operation. A negative @inc value is used to drop the counter
6616  *      when releasing a resource needing all multicasts.
6617  *      Return 0 if successful or a negative errno code on error.
6618  */
6619
6620 int dev_set_allmulti(struct net_device *dev, int inc)
6621 {
6622         return __dev_set_allmulti(dev, inc, true);
6623 }
6624 EXPORT_SYMBOL(dev_set_allmulti);
6625
6626 /*
6627  *      Upload unicast and multicast address lists to device and
6628  *      configure RX filtering. When the device doesn't support unicast
6629  *      filtering it is put in promiscuous mode while unicast addresses
6630  *      are present.
6631  */
6632 void __dev_set_rx_mode(struct net_device *dev)
6633 {
6634         const struct net_device_ops *ops = dev->netdev_ops;
6635
6636         /* dev_open will call this function so the list will stay sane. */
6637         if (!(dev->flags&IFF_UP))
6638                 return;
6639
6640         if (!netif_device_present(dev))
6641                 return;
6642
6643         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6644                 /* Unicast addresses changes may only happen under the rtnl,
6645                  * therefore calling __dev_set_promiscuity here is safe.
6646                  */
6647                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6648                         __dev_set_promiscuity(dev, 1, false);
6649                         dev->uc_promisc = true;
6650                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6651                         __dev_set_promiscuity(dev, -1, false);
6652                         dev->uc_promisc = false;
6653                 }
6654         }
6655
6656         if (ops->ndo_set_rx_mode)
6657                 ops->ndo_set_rx_mode(dev);
6658 }
6659
6660 void dev_set_rx_mode(struct net_device *dev)
6661 {
6662         netif_addr_lock_bh(dev);
6663         __dev_set_rx_mode(dev);
6664         netif_addr_unlock_bh(dev);
6665 }
6666
6667 /**
6668  *      dev_get_flags - get flags reported to userspace
6669  *      @dev: device
6670  *
6671  *      Get the combination of flag bits exported through APIs to userspace.
6672  */
6673 unsigned int dev_get_flags(const struct net_device *dev)
6674 {
6675         unsigned int flags;
6676
6677         flags = (dev->flags & ~(IFF_PROMISC |
6678                                 IFF_ALLMULTI |
6679                                 IFF_RUNNING |
6680                                 IFF_LOWER_UP |
6681                                 IFF_DORMANT)) |
6682                 (dev->gflags & (IFF_PROMISC |
6683                                 IFF_ALLMULTI));
6684
6685         if (netif_running(dev)) {
6686                 if (netif_oper_up(dev))
6687                         flags |= IFF_RUNNING;
6688                 if (netif_carrier_ok(dev))
6689                         flags |= IFF_LOWER_UP;
6690                 if (netif_dormant(dev))
6691                         flags |= IFF_DORMANT;
6692         }
6693
6694         return flags;
6695 }
6696 EXPORT_SYMBOL(dev_get_flags);
6697
6698 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6699 {
6700         unsigned int old_flags = dev->flags;
6701         int ret;
6702
6703         ASSERT_RTNL();
6704
6705         /*
6706          *      Set the flags on our device.
6707          */
6708
6709         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6710                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6711                                IFF_AUTOMEDIA)) |
6712                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6713                                     IFF_ALLMULTI));
6714
6715         /*
6716          *      Load in the correct multicast list now the flags have changed.
6717          */
6718
6719         if ((old_flags ^ flags) & IFF_MULTICAST)
6720                 dev_change_rx_flags(dev, IFF_MULTICAST);
6721
6722         dev_set_rx_mode(dev);
6723
6724         /*
6725          *      Have we downed the interface. We handle IFF_UP ourselves
6726          *      according to user attempts to set it, rather than blindly
6727          *      setting it.
6728          */
6729
6730         ret = 0;
6731         if ((old_flags ^ flags) & IFF_UP) {
6732                 if (old_flags & IFF_UP)
6733                         __dev_close(dev);
6734                 else
6735                         ret = __dev_open(dev);
6736         }
6737
6738         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6739                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6740                 unsigned int old_flags = dev->flags;
6741
6742                 dev->gflags ^= IFF_PROMISC;
6743
6744                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6745                         if (dev->flags != old_flags)
6746                                 dev_set_rx_mode(dev);
6747         }
6748
6749         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6750          * is important. Some (broken) drivers set IFF_PROMISC, when
6751          * IFF_ALLMULTI is requested not asking us and not reporting.
6752          */
6753         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6754                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6755
6756                 dev->gflags ^= IFF_ALLMULTI;
6757                 __dev_set_allmulti(dev, inc, false);
6758         }
6759
6760         return ret;
6761 }
6762
6763 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6764                         unsigned int gchanges)
6765 {
6766         unsigned int changes = dev->flags ^ old_flags;
6767
6768         if (gchanges)
6769                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6770
6771         if (changes & IFF_UP) {
6772                 if (dev->flags & IFF_UP)
6773                         call_netdevice_notifiers(NETDEV_UP, dev);
6774                 else
6775                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6776         }
6777
6778         if (dev->flags & IFF_UP &&
6779             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6780                 struct netdev_notifier_change_info change_info;
6781
6782                 change_info.flags_changed = changes;
6783                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6784                                               &change_info.info);
6785         }
6786 }
6787
6788 /**
6789  *      dev_change_flags - change device settings
6790  *      @dev: device
6791  *      @flags: device state flags
6792  *
6793  *      Change settings on device based state flags. The flags are
6794  *      in the userspace exported format.
6795  */
6796 int dev_change_flags(struct net_device *dev, unsigned int flags)
6797 {
6798         int ret;
6799         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6800
6801         ret = __dev_change_flags(dev, flags);
6802         if (ret < 0)
6803                 return ret;
6804
6805         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6806         __dev_notify_flags(dev, old_flags, changes);
6807         return ret;
6808 }
6809 EXPORT_SYMBOL(dev_change_flags);
6810
6811 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6812 {
6813         const struct net_device_ops *ops = dev->netdev_ops;
6814
6815         if (ops->ndo_change_mtu)
6816                 return ops->ndo_change_mtu(dev, new_mtu);
6817
6818         dev->mtu = new_mtu;
6819         return 0;
6820 }
6821 EXPORT_SYMBOL(__dev_set_mtu);
6822
6823 /**
6824  *      dev_set_mtu - Change maximum transfer unit
6825  *      @dev: device
6826  *      @new_mtu: new transfer unit
6827  *
6828  *      Change the maximum transfer size of the network device.
6829  */
6830 int dev_set_mtu(struct net_device *dev, int new_mtu)
6831 {
6832         int err, orig_mtu;
6833
6834         if (new_mtu == dev->mtu)
6835                 return 0;
6836
6837         /* MTU must be positive, and in range */
6838         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6839                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6840                                     dev->name, new_mtu, dev->min_mtu);
6841                 return -EINVAL;
6842         }
6843
6844         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6845                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6846                                     dev->name, new_mtu, dev->max_mtu);
6847                 return -EINVAL;
6848         }
6849
6850         if (!netif_device_present(dev))
6851                 return -ENODEV;
6852
6853         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6854         err = notifier_to_errno(err);
6855         if (err)
6856                 return err;
6857
6858         orig_mtu = dev->mtu;
6859         err = __dev_set_mtu(dev, new_mtu);
6860
6861         if (!err) {
6862                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6863                 err = notifier_to_errno(err);
6864                 if (err) {
6865                         /* setting mtu back and notifying everyone again,
6866                          * so that they have a chance to revert changes.
6867                          */
6868                         __dev_set_mtu(dev, orig_mtu);
6869                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6870                 }
6871         }
6872         return err;
6873 }
6874 EXPORT_SYMBOL(dev_set_mtu);
6875
6876 /**
6877  *      dev_set_group - Change group this device belongs to
6878  *      @dev: device
6879  *      @new_group: group this device should belong to
6880  */
6881 void dev_set_group(struct net_device *dev, int new_group)
6882 {
6883         dev->group = new_group;
6884 }
6885 EXPORT_SYMBOL(dev_set_group);
6886
6887 /**
6888  *      dev_set_mac_address - Change Media Access Control Address
6889  *      @dev: device
6890  *      @sa: new address
6891  *
6892  *      Change the hardware (MAC) address of the device
6893  */
6894 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6895 {
6896         const struct net_device_ops *ops = dev->netdev_ops;
6897         int err;
6898
6899         if (!ops->ndo_set_mac_address)
6900                 return -EOPNOTSUPP;
6901         if (sa->sa_family != dev->type)
6902                 return -EINVAL;
6903         if (!netif_device_present(dev))
6904                 return -ENODEV;
6905         err = ops->ndo_set_mac_address(dev, sa);
6906         if (err)
6907                 return err;
6908         dev->addr_assign_type = NET_ADDR_SET;
6909         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6910         add_device_randomness(dev->dev_addr, dev->addr_len);
6911         return 0;
6912 }
6913 EXPORT_SYMBOL(dev_set_mac_address);
6914
6915 /**
6916  *      dev_change_carrier - Change device carrier
6917  *      @dev: device
6918  *      @new_carrier: new value
6919  *
6920  *      Change device carrier
6921  */
6922 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6923 {
6924         const struct net_device_ops *ops = dev->netdev_ops;
6925
6926         if (!ops->ndo_change_carrier)
6927                 return -EOPNOTSUPP;
6928         if (!netif_device_present(dev))
6929                 return -ENODEV;
6930         return ops->ndo_change_carrier(dev, new_carrier);
6931 }
6932 EXPORT_SYMBOL(dev_change_carrier);
6933
6934 /**
6935  *      dev_get_phys_port_id - Get device physical port ID
6936  *      @dev: device
6937  *      @ppid: port ID
6938  *
6939  *      Get device physical port ID
6940  */
6941 int dev_get_phys_port_id(struct net_device *dev,
6942                          struct netdev_phys_item_id *ppid)
6943 {
6944         const struct net_device_ops *ops = dev->netdev_ops;
6945
6946         if (!ops->ndo_get_phys_port_id)
6947                 return -EOPNOTSUPP;
6948         return ops->ndo_get_phys_port_id(dev, ppid);
6949 }
6950 EXPORT_SYMBOL(dev_get_phys_port_id);
6951
6952 /**
6953  *      dev_get_phys_port_name - Get device physical port name
6954  *      @dev: device
6955  *      @name: port name
6956  *      @len: limit of bytes to copy to name
6957  *
6958  *      Get device physical port name
6959  */
6960 int dev_get_phys_port_name(struct net_device *dev,
6961                            char *name, size_t len)
6962 {
6963         const struct net_device_ops *ops = dev->netdev_ops;
6964
6965         if (!ops->ndo_get_phys_port_name)
6966                 return -EOPNOTSUPP;
6967         return ops->ndo_get_phys_port_name(dev, name, len);
6968 }
6969 EXPORT_SYMBOL(dev_get_phys_port_name);
6970
6971 /**
6972  *      dev_change_proto_down - update protocol port state information
6973  *      @dev: device
6974  *      @proto_down: new value
6975  *
6976  *      This info can be used by switch drivers to set the phys state of the
6977  *      port.
6978  */
6979 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6980 {
6981         const struct net_device_ops *ops = dev->netdev_ops;
6982
6983         if (!ops->ndo_change_proto_down)
6984                 return -EOPNOTSUPP;
6985         if (!netif_device_present(dev))
6986                 return -ENODEV;
6987         return ops->ndo_change_proto_down(dev, proto_down);
6988 }
6989 EXPORT_SYMBOL(dev_change_proto_down);
6990
6991 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6992 {
6993         struct netdev_xdp xdp;
6994
6995         memset(&xdp, 0, sizeof(xdp));
6996         xdp.command = XDP_QUERY_PROG;
6997
6998         /* Query must always succeed. */
6999         WARN_ON(xdp_op(dev, &xdp) < 0);
7000         if (prog_id)
7001                 *prog_id = xdp.prog_id;
7002
7003         return xdp.prog_attached;
7004 }
7005
7006 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7007                            struct netlink_ext_ack *extack, u32 flags,
7008                            struct bpf_prog *prog)
7009 {
7010         struct netdev_xdp xdp;
7011
7012         memset(&xdp, 0, sizeof(xdp));
7013         if (flags & XDP_FLAGS_HW_MODE)
7014                 xdp.command = XDP_SETUP_PROG_HW;
7015         else
7016                 xdp.command = XDP_SETUP_PROG;
7017         xdp.extack = extack;
7018         xdp.flags = flags;
7019         xdp.prog = prog;
7020
7021         return xdp_op(dev, &xdp);
7022 }
7023
7024 /**
7025  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7026  *      @dev: device
7027  *      @extack: netlink extended ack
7028  *      @fd: new program fd or negative value to clear
7029  *      @flags: xdp-related flags
7030  *
7031  *      Set or clear a bpf program for a device
7032  */
7033 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7034                       int fd, u32 flags)
7035 {
7036         const struct net_device_ops *ops = dev->netdev_ops;
7037         struct bpf_prog *prog = NULL;
7038         xdp_op_t xdp_op, xdp_chk;
7039         int err;
7040
7041         ASSERT_RTNL();
7042
7043         xdp_op = xdp_chk = ops->ndo_xdp;
7044         if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7045                 return -EOPNOTSUPP;
7046         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7047                 xdp_op = generic_xdp_install;
7048         if (xdp_op == xdp_chk)
7049                 xdp_chk = generic_xdp_install;
7050
7051         if (fd >= 0) {
7052                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7053                         return -EEXIST;
7054                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7055                     __dev_xdp_attached(dev, xdp_op, NULL))
7056                         return -EBUSY;
7057
7058                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7059                 if (IS_ERR(prog))
7060                         return PTR_ERR(prog);
7061         }
7062
7063         err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7064         if (err < 0 && prog)
7065                 bpf_prog_put(prog);
7066
7067         return err;
7068 }
7069
7070 /**
7071  *      dev_new_index   -       allocate an ifindex
7072  *      @net: the applicable net namespace
7073  *
7074  *      Returns a suitable unique value for a new device interface
7075  *      number.  The caller must hold the rtnl semaphore or the
7076  *      dev_base_lock to be sure it remains unique.
7077  */
7078 static int dev_new_index(struct net *net)
7079 {
7080         int ifindex = net->ifindex;
7081
7082         for (;;) {
7083                 if (++ifindex <= 0)
7084                         ifindex = 1;
7085                 if (!__dev_get_by_index(net, ifindex))
7086                         return net->ifindex = ifindex;
7087         }
7088 }
7089
7090 /* Delayed registration/unregisteration */
7091 static LIST_HEAD(net_todo_list);
7092 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7093
7094 static void net_set_todo(struct net_device *dev)
7095 {
7096         list_add_tail(&dev->todo_list, &net_todo_list);
7097         dev_net(dev)->dev_unreg_count++;
7098 }
7099
7100 static void rollback_registered_many(struct list_head *head)
7101 {
7102         struct net_device *dev, *tmp;
7103         LIST_HEAD(close_head);
7104
7105         BUG_ON(dev_boot_phase);
7106         ASSERT_RTNL();
7107
7108         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7109                 /* Some devices call without registering
7110                  * for initialization unwind. Remove those
7111                  * devices and proceed with the remaining.
7112                  */
7113                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7114                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7115                                  dev->name, dev);
7116
7117                         WARN_ON(1);
7118                         list_del(&dev->unreg_list);
7119                         continue;
7120                 }
7121                 dev->dismantle = true;
7122                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7123         }
7124
7125         /* If device is running, close it first. */
7126         list_for_each_entry(dev, head, unreg_list)
7127                 list_add_tail(&dev->close_list, &close_head);
7128         dev_close_many(&close_head, true);
7129
7130         list_for_each_entry(dev, head, unreg_list) {
7131                 /* And unlink it from device chain. */
7132                 unlist_netdevice(dev);
7133
7134                 dev->reg_state = NETREG_UNREGISTERING;
7135         }
7136         flush_all_backlogs();
7137
7138         synchronize_net();
7139
7140         list_for_each_entry(dev, head, unreg_list) {
7141                 struct sk_buff *skb = NULL;
7142
7143                 /* Shutdown queueing discipline. */
7144                 dev_shutdown(dev);
7145
7146
7147                 /* Notify protocols, that we are about to destroy
7148                  * this device. They should clean all the things.
7149                  */
7150                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7151
7152                 if (!dev->rtnl_link_ops ||
7153                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7154                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7155                                                      GFP_KERNEL);
7156
7157                 /*
7158                  *      Flush the unicast and multicast chains
7159                  */
7160                 dev_uc_flush(dev);
7161                 dev_mc_flush(dev);
7162
7163                 if (dev->netdev_ops->ndo_uninit)
7164                         dev->netdev_ops->ndo_uninit(dev);
7165
7166                 if (skb)
7167                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7168
7169                 /* Notifier chain MUST detach us all upper devices. */
7170                 WARN_ON(netdev_has_any_upper_dev(dev));
7171                 WARN_ON(netdev_has_any_lower_dev(dev));
7172
7173                 /* Remove entries from kobject tree */
7174                 netdev_unregister_kobject(dev);
7175 #ifdef CONFIG_XPS
7176                 /* Remove XPS queueing entries */
7177                 netif_reset_xps_queues_gt(dev, 0);
7178 #endif
7179         }
7180
7181         synchronize_net();
7182
7183         list_for_each_entry(dev, head, unreg_list)
7184                 dev_put(dev);
7185 }
7186
7187 static void rollback_registered(struct net_device *dev)
7188 {
7189         LIST_HEAD(single);
7190
7191         list_add(&dev->unreg_list, &single);
7192         rollback_registered_many(&single);
7193         list_del(&single);
7194 }
7195
7196 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7197         struct net_device *upper, netdev_features_t features)
7198 {
7199         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7200         netdev_features_t feature;
7201         int feature_bit;
7202
7203         for_each_netdev_feature(&upper_disables, feature_bit) {
7204                 feature = __NETIF_F_BIT(feature_bit);
7205                 if (!(upper->wanted_features & feature)
7206                     && (features & feature)) {
7207                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7208                                    &feature, upper->name);
7209                         features &= ~feature;
7210                 }
7211         }
7212
7213         return features;
7214 }
7215
7216 static void netdev_sync_lower_features(struct net_device *upper,
7217         struct net_device *lower, netdev_features_t features)
7218 {
7219         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7220         netdev_features_t feature;
7221         int feature_bit;
7222
7223         for_each_netdev_feature(&upper_disables, feature_bit) {
7224                 feature = __NETIF_F_BIT(feature_bit);
7225                 if (!(features & feature) && (lower->features & feature)) {
7226                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7227                                    &feature, lower->name);
7228                         lower->wanted_features &= ~feature;
7229                         netdev_update_features(lower);
7230
7231                         if (unlikely(lower->features & feature))
7232                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7233                                             &feature, lower->name);
7234                 }
7235         }
7236 }
7237
7238 static netdev_features_t netdev_fix_features(struct net_device *dev,
7239         netdev_features_t features)
7240 {
7241         /* Fix illegal checksum combinations */
7242         if ((features & NETIF_F_HW_CSUM) &&
7243             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7244                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7245                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7246         }
7247
7248         /* TSO requires that SG is present as well. */
7249         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7250                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7251                 features &= ~NETIF_F_ALL_TSO;
7252         }
7253
7254         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7255                                         !(features & NETIF_F_IP_CSUM)) {
7256                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7257                 features &= ~NETIF_F_TSO;
7258                 features &= ~NETIF_F_TSO_ECN;
7259         }
7260
7261         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7262                                          !(features & NETIF_F_IPV6_CSUM)) {
7263                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7264                 features &= ~NETIF_F_TSO6;
7265         }
7266
7267         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7268         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7269                 features &= ~NETIF_F_TSO_MANGLEID;
7270
7271         /* TSO ECN requires that TSO is present as well. */
7272         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7273                 features &= ~NETIF_F_TSO_ECN;
7274
7275         /* Software GSO depends on SG. */
7276         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7277                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7278                 features &= ~NETIF_F_GSO;
7279         }
7280
7281         /* GSO partial features require GSO partial be set */
7282         if ((features & dev->gso_partial_features) &&
7283             !(features & NETIF_F_GSO_PARTIAL)) {
7284                 netdev_dbg(dev,
7285                            "Dropping partially supported GSO features since no GSO partial.\n");
7286                 features &= ~dev->gso_partial_features;
7287         }
7288
7289         return features;
7290 }
7291
7292 int __netdev_update_features(struct net_device *dev)
7293 {
7294         struct net_device *upper, *lower;
7295         netdev_features_t features;
7296         struct list_head *iter;
7297         int err = -1;
7298
7299         ASSERT_RTNL();
7300
7301         features = netdev_get_wanted_features(dev);
7302
7303         if (dev->netdev_ops->ndo_fix_features)
7304                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7305
7306         /* driver might be less strict about feature dependencies */
7307         features = netdev_fix_features(dev, features);
7308
7309         /* some features can't be enabled if they're off an an upper device */
7310         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7311                 features = netdev_sync_upper_features(dev, upper, features);
7312
7313         if (dev->features == features)
7314                 goto sync_lower;
7315
7316         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7317                 &dev->features, &features);
7318
7319         if (dev->netdev_ops->ndo_set_features)
7320                 err = dev->netdev_ops->ndo_set_features(dev, features);
7321         else
7322                 err = 0;
7323
7324         if (unlikely(err < 0)) {
7325                 netdev_err(dev,
7326                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7327                         err, &features, &dev->features);
7328                 /* return non-0 since some features might have changed and
7329                  * it's better to fire a spurious notification than miss it
7330                  */
7331                 return -1;
7332         }
7333
7334 sync_lower:
7335         /* some features must be disabled on lower devices when disabled
7336          * on an upper device (think: bonding master or bridge)
7337          */
7338         netdev_for_each_lower_dev(dev, lower, iter)
7339                 netdev_sync_lower_features(dev, lower, features);
7340
7341         if (!err) {
7342                 netdev_features_t diff = features ^ dev->features;
7343
7344                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7345                         /* udp_tunnel_{get,drop}_rx_info both need
7346                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7347                          * device, or they won't do anything.
7348                          * Thus we need to update dev->features
7349                          * *before* calling udp_tunnel_get_rx_info,
7350                          * but *after* calling udp_tunnel_drop_rx_info.
7351                          */
7352                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7353                                 dev->features = features;
7354                                 udp_tunnel_get_rx_info(dev);
7355                         } else {
7356                                 udp_tunnel_drop_rx_info(dev);
7357                         }
7358                 }
7359
7360                 dev->features = features;
7361         }
7362
7363         return err < 0 ? 0 : 1;
7364 }
7365
7366 /**
7367  *      netdev_update_features - recalculate device features
7368  *      @dev: the device to check
7369  *
7370  *      Recalculate dev->features set and send notifications if it
7371  *      has changed. Should be called after driver or hardware dependent
7372  *      conditions might have changed that influence the features.
7373  */
7374 void netdev_update_features(struct net_device *dev)
7375 {
7376         if (__netdev_update_features(dev))
7377                 netdev_features_change(dev);
7378 }
7379 EXPORT_SYMBOL(netdev_update_features);
7380
7381 /**
7382  *      netdev_change_features - recalculate device features
7383  *      @dev: the device to check
7384  *
7385  *      Recalculate dev->features set and send notifications even
7386  *      if they have not changed. Should be called instead of
7387  *      netdev_update_features() if also dev->vlan_features might
7388  *      have changed to allow the changes to be propagated to stacked
7389  *      VLAN devices.
7390  */
7391 void netdev_change_features(struct net_device *dev)
7392 {
7393         __netdev_update_features(dev);
7394         netdev_features_change(dev);
7395 }
7396 EXPORT_SYMBOL(netdev_change_features);
7397
7398 /**
7399  *      netif_stacked_transfer_operstate -      transfer operstate
7400  *      @rootdev: the root or lower level device to transfer state from
7401  *      @dev: the device to transfer operstate to
7402  *
7403  *      Transfer operational state from root to device. This is normally
7404  *      called when a stacking relationship exists between the root
7405  *      device and the device(a leaf device).
7406  */
7407 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7408                                         struct net_device *dev)
7409 {
7410         if (rootdev->operstate == IF_OPER_DORMANT)
7411                 netif_dormant_on(dev);
7412         else
7413                 netif_dormant_off(dev);
7414
7415         if (netif_carrier_ok(rootdev))
7416                 netif_carrier_on(dev);
7417         else
7418                 netif_carrier_off(dev);
7419 }
7420 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7421
7422 #ifdef CONFIG_SYSFS
7423 static int netif_alloc_rx_queues(struct net_device *dev)
7424 {
7425         unsigned int i, count = dev->num_rx_queues;
7426         struct netdev_rx_queue *rx;
7427         size_t sz = count * sizeof(*rx);
7428
7429         BUG_ON(count < 1);
7430
7431         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7432         if (!rx)
7433                 return -ENOMEM;
7434
7435         dev->_rx = rx;
7436
7437         for (i = 0; i < count; i++)
7438                 rx[i].dev = dev;
7439         return 0;
7440 }
7441 #endif
7442
7443 static void netdev_init_one_queue(struct net_device *dev,
7444                                   struct netdev_queue *queue, void *_unused)
7445 {
7446         /* Initialize queue lock */
7447         spin_lock_init(&queue->_xmit_lock);
7448         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7449         queue->xmit_lock_owner = -1;
7450         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7451         queue->dev = dev;
7452 #ifdef CONFIG_BQL
7453         dql_init(&queue->dql, HZ);
7454 #endif
7455 }
7456
7457 static void netif_free_tx_queues(struct net_device *dev)
7458 {
7459         kvfree(dev->_tx);
7460 }
7461
7462 static int netif_alloc_netdev_queues(struct net_device *dev)
7463 {
7464         unsigned int count = dev->num_tx_queues;
7465         struct netdev_queue *tx;
7466         size_t sz = count * sizeof(*tx);
7467
7468         if (count < 1 || count > 0xffff)
7469                 return -EINVAL;
7470
7471         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7472         if (!tx)
7473                 return -ENOMEM;
7474
7475         dev->_tx = tx;
7476
7477         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7478         spin_lock_init(&dev->tx_global_lock);
7479
7480         return 0;
7481 }
7482
7483 void netif_tx_stop_all_queues(struct net_device *dev)
7484 {
7485         unsigned int i;
7486
7487         for (i = 0; i < dev->num_tx_queues; i++) {
7488                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7489
7490                 netif_tx_stop_queue(txq);
7491         }
7492 }
7493 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7494
7495 /**
7496  *      register_netdevice      - register a network device
7497  *      @dev: device to register
7498  *
7499  *      Take a completed network device structure and add it to the kernel
7500  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7501  *      chain. 0 is returned on success. A negative errno code is returned
7502  *      on a failure to set up the device, or if the name is a duplicate.
7503  *
7504  *      Callers must hold the rtnl semaphore. You may want
7505  *      register_netdev() instead of this.
7506  *
7507  *      BUGS:
7508  *      The locking appears insufficient to guarantee two parallel registers
7509  *      will not get the same name.
7510  */
7511
7512 int register_netdevice(struct net_device *dev)
7513 {
7514         int ret;
7515         struct net *net = dev_net(dev);
7516
7517         BUG_ON(dev_boot_phase);
7518         ASSERT_RTNL();
7519
7520         might_sleep();
7521
7522         /* When net_device's are persistent, this will be fatal. */
7523         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7524         BUG_ON(!net);
7525
7526         spin_lock_init(&dev->addr_list_lock);
7527         netdev_set_addr_lockdep_class(dev);
7528
7529         ret = dev_get_valid_name(net, dev, dev->name);
7530         if (ret < 0)
7531                 goto out;
7532
7533         /* Init, if this function is available */
7534         if (dev->netdev_ops->ndo_init) {
7535                 ret = dev->netdev_ops->ndo_init(dev);
7536                 if (ret) {
7537                         if (ret > 0)
7538                                 ret = -EIO;
7539                         goto out;
7540                 }
7541         }
7542
7543         if (((dev->hw_features | dev->features) &
7544              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7545             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7546              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7547                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7548                 ret = -EINVAL;
7549                 goto err_uninit;
7550         }
7551
7552         ret = -EBUSY;
7553         if (!dev->ifindex)
7554                 dev->ifindex = dev_new_index(net);
7555         else if (__dev_get_by_index(net, dev->ifindex))
7556                 goto err_uninit;
7557
7558         /* Transfer changeable features to wanted_features and enable
7559          * software offloads (GSO and GRO).
7560          */
7561         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7562         dev->features |= NETIF_F_SOFT_FEATURES;
7563
7564         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7565                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7566                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7567         }
7568
7569         dev->wanted_features = dev->features & dev->hw_features;
7570
7571         if (!(dev->flags & IFF_LOOPBACK))
7572                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7573
7574         /* If IPv4 TCP segmentation offload is supported we should also
7575          * allow the device to enable segmenting the frame with the option
7576          * of ignoring a static IP ID value.  This doesn't enable the
7577          * feature itself but allows the user to enable it later.
7578          */
7579         if (dev->hw_features & NETIF_F_TSO)
7580                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7581         if (dev->vlan_features & NETIF_F_TSO)
7582                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7583         if (dev->mpls_features & NETIF_F_TSO)
7584                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7585         if (dev->hw_enc_features & NETIF_F_TSO)
7586                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7587
7588         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7589          */
7590         dev->vlan_features |= NETIF_F_HIGHDMA;
7591
7592         /* Make NETIF_F_SG inheritable to tunnel devices.
7593          */
7594         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7595
7596         /* Make NETIF_F_SG inheritable to MPLS.
7597          */
7598         dev->mpls_features |= NETIF_F_SG;
7599
7600         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7601         ret = notifier_to_errno(ret);
7602         if (ret)
7603                 goto err_uninit;
7604
7605         ret = netdev_register_kobject(dev);
7606         if (ret)
7607                 goto err_uninit;
7608         dev->reg_state = NETREG_REGISTERED;
7609
7610         __netdev_update_features(dev);
7611
7612         /*
7613          *      Default initial state at registry is that the
7614          *      device is present.
7615          */
7616
7617         set_bit(__LINK_STATE_PRESENT, &dev->state);
7618
7619         linkwatch_init_dev(dev);
7620
7621         dev_init_scheduler(dev);
7622         dev_hold(dev);
7623         list_netdevice(dev);
7624         add_device_randomness(dev->dev_addr, dev->addr_len);
7625
7626         /* If the device has permanent device address, driver should
7627          * set dev_addr and also addr_assign_type should be set to
7628          * NET_ADDR_PERM (default value).
7629          */
7630         if (dev->addr_assign_type == NET_ADDR_PERM)
7631                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7632
7633         /* Notify protocols, that a new device appeared. */
7634         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7635         ret = notifier_to_errno(ret);
7636         if (ret) {
7637                 rollback_registered(dev);
7638                 dev->reg_state = NETREG_UNREGISTERED;
7639         }
7640         /*
7641          *      Prevent userspace races by waiting until the network
7642          *      device is fully setup before sending notifications.
7643          */
7644         if (!dev->rtnl_link_ops ||
7645             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7646                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7647
7648 out:
7649         return ret;
7650
7651 err_uninit:
7652         if (dev->netdev_ops->ndo_uninit)
7653                 dev->netdev_ops->ndo_uninit(dev);
7654         if (dev->priv_destructor)
7655                 dev->priv_destructor(dev);
7656         goto out;
7657 }
7658 EXPORT_SYMBOL(register_netdevice);
7659
7660 /**
7661  *      init_dummy_netdev       - init a dummy network device for NAPI
7662  *      @dev: device to init
7663  *
7664  *      This takes a network device structure and initialize the minimum
7665  *      amount of fields so it can be used to schedule NAPI polls without
7666  *      registering a full blown interface. This is to be used by drivers
7667  *      that need to tie several hardware interfaces to a single NAPI
7668  *      poll scheduler due to HW limitations.
7669  */
7670 int init_dummy_netdev(struct net_device *dev)
7671 {
7672         /* Clear everything. Note we don't initialize spinlocks
7673          * are they aren't supposed to be taken by any of the
7674          * NAPI code and this dummy netdev is supposed to be
7675          * only ever used for NAPI polls
7676          */
7677         memset(dev, 0, sizeof(struct net_device));
7678
7679         /* make sure we BUG if trying to hit standard
7680          * register/unregister code path
7681          */
7682         dev->reg_state = NETREG_DUMMY;
7683
7684         /* NAPI wants this */
7685         INIT_LIST_HEAD(&dev->napi_list);
7686
7687         /* a dummy interface is started by default */
7688         set_bit(__LINK_STATE_PRESENT, &dev->state);
7689         set_bit(__LINK_STATE_START, &dev->state);
7690
7691         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7692          * because users of this 'device' dont need to change
7693          * its refcount.
7694          */
7695
7696         return 0;
7697 }
7698 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7699
7700
7701 /**
7702  *      register_netdev - register a network device
7703  *      @dev: device to register
7704  *
7705  *      Take a completed network device structure and add it to the kernel
7706  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7707  *      chain. 0 is returned on success. A negative errno code is returned
7708  *      on a failure to set up the device, or if the name is a duplicate.
7709  *
7710  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7711  *      and expands the device name if you passed a format string to
7712  *      alloc_netdev.
7713  */
7714 int register_netdev(struct net_device *dev)
7715 {
7716         int err;
7717
7718         rtnl_lock();
7719         err = register_netdevice(dev);
7720         rtnl_unlock();
7721         return err;
7722 }
7723 EXPORT_SYMBOL(register_netdev);
7724
7725 int netdev_refcnt_read(const struct net_device *dev)
7726 {
7727         int i, refcnt = 0;
7728
7729         for_each_possible_cpu(i)
7730                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7731         return refcnt;
7732 }
7733 EXPORT_SYMBOL(netdev_refcnt_read);
7734
7735 /**
7736  * netdev_wait_allrefs - wait until all references are gone.
7737  * @dev: target net_device
7738  *
7739  * This is called when unregistering network devices.
7740  *
7741  * Any protocol or device that holds a reference should register
7742  * for netdevice notification, and cleanup and put back the
7743  * reference if they receive an UNREGISTER event.
7744  * We can get stuck here if buggy protocols don't correctly
7745  * call dev_put.
7746  */
7747 static void netdev_wait_allrefs(struct net_device *dev)
7748 {
7749         unsigned long rebroadcast_time, warning_time;
7750         int refcnt;
7751
7752         linkwatch_forget_dev(dev);
7753
7754         rebroadcast_time = warning_time = jiffies;
7755         refcnt = netdev_refcnt_read(dev);
7756
7757         while (refcnt != 0) {
7758                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7759                         rtnl_lock();
7760
7761                         /* Rebroadcast unregister notification */
7762                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7763
7764                         __rtnl_unlock();
7765                         rcu_barrier();
7766                         rtnl_lock();
7767
7768                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7769                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7770                                      &dev->state)) {
7771                                 /* We must not have linkwatch events
7772                                  * pending on unregister. If this
7773                                  * happens, we simply run the queue
7774                                  * unscheduled, resulting in a noop
7775                                  * for this device.
7776                                  */
7777                                 linkwatch_run_queue();
7778                         }
7779
7780                         __rtnl_unlock();
7781
7782                         rebroadcast_time = jiffies;
7783                 }
7784
7785                 msleep(250);
7786
7787                 refcnt = netdev_refcnt_read(dev);
7788
7789                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7790                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7791                                  dev->name, refcnt);
7792                         warning_time = jiffies;
7793                 }
7794         }
7795 }
7796
7797 /* The sequence is:
7798  *
7799  *      rtnl_lock();
7800  *      ...
7801  *      register_netdevice(x1);
7802  *      register_netdevice(x2);
7803  *      ...
7804  *      unregister_netdevice(y1);
7805  *      unregister_netdevice(y2);
7806  *      ...
7807  *      rtnl_unlock();
7808  *      free_netdev(y1);
7809  *      free_netdev(y2);
7810  *
7811  * We are invoked by rtnl_unlock().
7812  * This allows us to deal with problems:
7813  * 1) We can delete sysfs objects which invoke hotplug
7814  *    without deadlocking with linkwatch via keventd.
7815  * 2) Since we run with the RTNL semaphore not held, we can sleep
7816  *    safely in order to wait for the netdev refcnt to drop to zero.
7817  *
7818  * We must not return until all unregister events added during
7819  * the interval the lock was held have been completed.
7820  */
7821 void netdev_run_todo(void)
7822 {
7823         struct list_head list;
7824
7825         /* Snapshot list, allow later requests */
7826         list_replace_init(&net_todo_list, &list);
7827
7828         __rtnl_unlock();
7829
7830
7831         /* Wait for rcu callbacks to finish before next phase */
7832         if (!list_empty(&list))
7833                 rcu_barrier();
7834
7835         while (!list_empty(&list)) {
7836                 struct net_device *dev
7837                         = list_first_entry(&list, struct net_device, todo_list);
7838                 list_del(&dev->todo_list);
7839
7840                 rtnl_lock();
7841                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7842                 __rtnl_unlock();
7843
7844                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7845                         pr_err("network todo '%s' but state %d\n",
7846                                dev->name, dev->reg_state);
7847                         dump_stack();
7848                         continue;
7849                 }
7850
7851                 dev->reg_state = NETREG_UNREGISTERED;
7852
7853                 netdev_wait_allrefs(dev);
7854
7855                 /* paranoia */
7856                 BUG_ON(netdev_refcnt_read(dev));
7857                 BUG_ON(!list_empty(&dev->ptype_all));
7858                 BUG_ON(!list_empty(&dev->ptype_specific));
7859                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7860                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7861                 WARN_ON(dev->dn_ptr);
7862
7863                 if (dev->priv_destructor)
7864                         dev->priv_destructor(dev);
7865                 if (dev->needs_free_netdev)
7866                         free_netdev(dev);
7867
7868                 /* Report a network device has been unregistered */
7869                 rtnl_lock();
7870                 dev_net(dev)->dev_unreg_count--;
7871                 __rtnl_unlock();
7872                 wake_up(&netdev_unregistering_wq);
7873
7874                 /* Free network device */
7875                 kobject_put(&dev->dev.kobj);
7876         }
7877 }
7878
7879 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7880  * all the same fields in the same order as net_device_stats, with only
7881  * the type differing, but rtnl_link_stats64 may have additional fields
7882  * at the end for newer counters.
7883  */
7884 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7885                              const struct net_device_stats *netdev_stats)
7886 {
7887 #if BITS_PER_LONG == 64
7888         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7889         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7890         /* zero out counters that only exist in rtnl_link_stats64 */
7891         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7892                sizeof(*stats64) - sizeof(*netdev_stats));
7893 #else
7894         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7895         const unsigned long *src = (const unsigned long *)netdev_stats;
7896         u64 *dst = (u64 *)stats64;
7897
7898         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7899         for (i = 0; i < n; i++)
7900                 dst[i] = src[i];
7901         /* zero out counters that only exist in rtnl_link_stats64 */
7902         memset((char *)stats64 + n * sizeof(u64), 0,
7903                sizeof(*stats64) - n * sizeof(u64));
7904 #endif
7905 }
7906 EXPORT_SYMBOL(netdev_stats_to_stats64);
7907
7908 /**
7909  *      dev_get_stats   - get network device statistics
7910  *      @dev: device to get statistics from
7911  *      @storage: place to store stats
7912  *
7913  *      Get network statistics from device. Return @storage.
7914  *      The device driver may provide its own method by setting
7915  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7916  *      otherwise the internal statistics structure is used.
7917  */
7918 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7919                                         struct rtnl_link_stats64 *storage)
7920 {
7921         const struct net_device_ops *ops = dev->netdev_ops;
7922
7923         if (ops->ndo_get_stats64) {
7924                 memset(storage, 0, sizeof(*storage));
7925                 ops->ndo_get_stats64(dev, storage);
7926         } else if (ops->ndo_get_stats) {
7927                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7928         } else {
7929                 netdev_stats_to_stats64(storage, &dev->stats);
7930         }
7931         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7932         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7933         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7934         return storage;
7935 }
7936 EXPORT_SYMBOL(dev_get_stats);
7937
7938 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7939 {
7940         struct netdev_queue *queue = dev_ingress_queue(dev);
7941
7942 #ifdef CONFIG_NET_CLS_ACT
7943         if (queue)
7944                 return queue;
7945         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7946         if (!queue)
7947                 return NULL;
7948         netdev_init_one_queue(dev, queue, NULL);
7949         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7950         queue->qdisc_sleeping = &noop_qdisc;
7951         rcu_assign_pointer(dev->ingress_queue, queue);
7952 #endif
7953         return queue;
7954 }
7955
7956 static const struct ethtool_ops default_ethtool_ops;
7957
7958 void netdev_set_default_ethtool_ops(struct net_device *dev,
7959                                     const struct ethtool_ops *ops)
7960 {
7961         if (dev->ethtool_ops == &default_ethtool_ops)
7962                 dev->ethtool_ops = ops;
7963 }
7964 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7965
7966 void netdev_freemem(struct net_device *dev)
7967 {
7968         char *addr = (char *)dev - dev->padded;
7969
7970         kvfree(addr);
7971 }
7972
7973 /**
7974  * alloc_netdev_mqs - allocate network device
7975  * @sizeof_priv: size of private data to allocate space for
7976  * @name: device name format string
7977  * @name_assign_type: origin of device name
7978  * @setup: callback to initialize device
7979  * @txqs: the number of TX subqueues to allocate
7980  * @rxqs: the number of RX subqueues to allocate
7981  *
7982  * Allocates a struct net_device with private data area for driver use
7983  * and performs basic initialization.  Also allocates subqueue structs
7984  * for each queue on the device.
7985  */
7986 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7987                 unsigned char name_assign_type,
7988                 void (*setup)(struct net_device *),
7989                 unsigned int txqs, unsigned int rxqs)
7990 {
7991         struct net_device *dev;
7992         size_t alloc_size;
7993         struct net_device *p;
7994
7995         BUG_ON(strlen(name) >= sizeof(dev->name));
7996
7997         if (txqs < 1) {
7998                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7999                 return NULL;
8000         }
8001
8002 #ifdef CONFIG_SYSFS
8003         if (rxqs < 1) {
8004                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8005                 return NULL;
8006         }
8007 #endif
8008
8009         alloc_size = sizeof(struct net_device);
8010         if (sizeof_priv) {
8011                 /* ensure 32-byte alignment of private area */
8012                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8013                 alloc_size += sizeof_priv;
8014         }
8015         /* ensure 32-byte alignment of whole construct */
8016         alloc_size += NETDEV_ALIGN - 1;
8017
8018         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8019         if (!p)
8020                 return NULL;
8021
8022         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8023         dev->padded = (char *)dev - (char *)p;
8024
8025         dev->pcpu_refcnt = alloc_percpu(int);
8026         if (!dev->pcpu_refcnt)
8027                 goto free_dev;
8028
8029         if (dev_addr_init(dev))
8030                 goto free_pcpu;
8031
8032         dev_mc_init(dev);
8033         dev_uc_init(dev);
8034
8035         dev_net_set(dev, &init_net);
8036
8037         dev->gso_max_size = GSO_MAX_SIZE;
8038         dev->gso_max_segs = GSO_MAX_SEGS;
8039
8040         INIT_LIST_HEAD(&dev->napi_list);
8041         INIT_LIST_HEAD(&dev->unreg_list);
8042         INIT_LIST_HEAD(&dev->close_list);
8043         INIT_LIST_HEAD(&dev->link_watch_list);
8044         INIT_LIST_HEAD(&dev->adj_list.upper);
8045         INIT_LIST_HEAD(&dev->adj_list.lower);
8046         INIT_LIST_HEAD(&dev->ptype_all);
8047         INIT_LIST_HEAD(&dev->ptype_specific);
8048 #ifdef CONFIG_NET_SCHED
8049         hash_init(dev->qdisc_hash);
8050 #endif
8051         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8052         setup(dev);
8053
8054         if (!dev->tx_queue_len) {
8055                 dev->priv_flags |= IFF_NO_QUEUE;
8056                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8057         }
8058
8059         dev->num_tx_queues = txqs;
8060         dev->real_num_tx_queues = txqs;
8061         if (netif_alloc_netdev_queues(dev))
8062                 goto free_all;
8063
8064 #ifdef CONFIG_SYSFS
8065         dev->num_rx_queues = rxqs;
8066         dev->real_num_rx_queues = rxqs;
8067         if (netif_alloc_rx_queues(dev))
8068                 goto free_all;
8069 #endif
8070
8071         strcpy(dev->name, name);
8072         dev->name_assign_type = name_assign_type;
8073         dev->group = INIT_NETDEV_GROUP;
8074         if (!dev->ethtool_ops)
8075                 dev->ethtool_ops = &default_ethtool_ops;
8076
8077         nf_hook_ingress_init(dev);
8078
8079         return dev;
8080
8081 free_all:
8082         free_netdev(dev);
8083         return NULL;
8084
8085 free_pcpu:
8086         free_percpu(dev->pcpu_refcnt);
8087 free_dev:
8088         netdev_freemem(dev);
8089         return NULL;
8090 }
8091 EXPORT_SYMBOL(alloc_netdev_mqs);
8092
8093 /**
8094  * free_netdev - free network device
8095  * @dev: device
8096  *
8097  * This function does the last stage of destroying an allocated device
8098  * interface. The reference to the device object is released. If this
8099  * is the last reference then it will be freed.Must be called in process
8100  * context.
8101  */
8102 void free_netdev(struct net_device *dev)
8103 {
8104         struct napi_struct *p, *n;
8105         struct bpf_prog *prog;
8106
8107         might_sleep();
8108         netif_free_tx_queues(dev);
8109 #ifdef CONFIG_SYSFS
8110         kvfree(dev->_rx);
8111 #endif
8112
8113         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8114
8115         /* Flush device addresses */
8116         dev_addr_flush(dev);
8117
8118         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8119                 netif_napi_del(p);
8120
8121         free_percpu(dev->pcpu_refcnt);
8122         dev->pcpu_refcnt = NULL;
8123
8124         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8125         if (prog) {
8126                 bpf_prog_put(prog);
8127                 static_key_slow_dec(&generic_xdp_needed);
8128         }
8129
8130         /*  Compatibility with error handling in drivers */
8131         if (dev->reg_state == NETREG_UNINITIALIZED) {
8132                 netdev_freemem(dev);
8133                 return;
8134         }
8135
8136         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8137         dev->reg_state = NETREG_RELEASED;
8138
8139         /* will free via device release */
8140         put_device(&dev->dev);
8141 }
8142 EXPORT_SYMBOL(free_netdev);
8143
8144 /**
8145  *      synchronize_net -  Synchronize with packet receive processing
8146  *
8147  *      Wait for packets currently being received to be done.
8148  *      Does not block later packets from starting.
8149  */
8150 void synchronize_net(void)
8151 {
8152         might_sleep();
8153         if (rtnl_is_locked())
8154                 synchronize_rcu_expedited();
8155         else
8156                 synchronize_rcu();
8157 }
8158 EXPORT_SYMBOL(synchronize_net);
8159
8160 /**
8161  *      unregister_netdevice_queue - remove device from the kernel
8162  *      @dev: device
8163  *      @head: list
8164  *
8165  *      This function shuts down a device interface and removes it
8166  *      from the kernel tables.
8167  *      If head not NULL, device is queued to be unregistered later.
8168  *
8169  *      Callers must hold the rtnl semaphore.  You may want
8170  *      unregister_netdev() instead of this.
8171  */
8172
8173 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8174 {
8175         ASSERT_RTNL();
8176
8177         if (head) {
8178                 list_move_tail(&dev->unreg_list, head);
8179         } else {
8180                 rollback_registered(dev);
8181                 /* Finish processing unregister after unlock */
8182                 net_set_todo(dev);
8183         }
8184 }
8185 EXPORT_SYMBOL(unregister_netdevice_queue);
8186
8187 /**
8188  *      unregister_netdevice_many - unregister many devices
8189  *      @head: list of devices
8190  *
8191  *  Note: As most callers use a stack allocated list_head,
8192  *  we force a list_del() to make sure stack wont be corrupted later.
8193  */
8194 void unregister_netdevice_many(struct list_head *head)
8195 {
8196         struct net_device *dev;
8197
8198         if (!list_empty(head)) {
8199                 rollback_registered_many(head);
8200                 list_for_each_entry(dev, head, unreg_list)
8201                         net_set_todo(dev);
8202                 list_del(head);
8203         }
8204 }
8205 EXPORT_SYMBOL(unregister_netdevice_many);
8206
8207 /**
8208  *      unregister_netdev - remove device from the kernel
8209  *      @dev: device
8210  *
8211  *      This function shuts down a device interface and removes it
8212  *      from the kernel tables.
8213  *
8214  *      This is just a wrapper for unregister_netdevice that takes
8215  *      the rtnl semaphore.  In general you want to use this and not
8216  *      unregister_netdevice.
8217  */
8218 void unregister_netdev(struct net_device *dev)
8219 {
8220         rtnl_lock();
8221         unregister_netdevice(dev);
8222         rtnl_unlock();
8223 }
8224 EXPORT_SYMBOL(unregister_netdev);
8225
8226 /**
8227  *      dev_change_net_namespace - move device to different nethost namespace
8228  *      @dev: device
8229  *      @net: network namespace
8230  *      @pat: If not NULL name pattern to try if the current device name
8231  *            is already taken in the destination network namespace.
8232  *
8233  *      This function shuts down a device interface and moves it
8234  *      to a new network namespace. On success 0 is returned, on
8235  *      a failure a netagive errno code is returned.
8236  *
8237  *      Callers must hold the rtnl semaphore.
8238  */
8239
8240 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8241 {
8242         int err;
8243
8244         ASSERT_RTNL();
8245
8246         /* Don't allow namespace local devices to be moved. */
8247         err = -EINVAL;
8248         if (dev->features & NETIF_F_NETNS_LOCAL)
8249                 goto out;
8250
8251         /* Ensure the device has been registrered */
8252         if (dev->reg_state != NETREG_REGISTERED)
8253                 goto out;
8254
8255         /* Get out if there is nothing todo */
8256         err = 0;
8257         if (net_eq(dev_net(dev), net))
8258                 goto out;
8259
8260         /* Pick the destination device name, and ensure
8261          * we can use it in the destination network namespace.
8262          */
8263         err = -EEXIST;
8264         if (__dev_get_by_name(net, dev->name)) {
8265                 /* We get here if we can't use the current device name */
8266                 if (!pat)
8267                         goto out;
8268                 if (dev_get_valid_name(net, dev, pat) < 0)
8269                         goto out;
8270         }
8271
8272         /*
8273          * And now a mini version of register_netdevice unregister_netdevice.
8274          */
8275
8276         /* If device is running close it first. */
8277         dev_close(dev);
8278
8279         /* And unlink it from device chain */
8280         err = -ENODEV;
8281         unlist_netdevice(dev);
8282
8283         synchronize_net();
8284
8285         /* Shutdown queueing discipline. */
8286         dev_shutdown(dev);
8287
8288         /* Notify protocols, that we are about to destroy
8289          * this device. They should clean all the things.
8290          *
8291          * Note that dev->reg_state stays at NETREG_REGISTERED.
8292          * This is wanted because this way 8021q and macvlan know
8293          * the device is just moving and can keep their slaves up.
8294          */
8295         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8296         rcu_barrier();
8297         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8298         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8299
8300         /*
8301          *      Flush the unicast and multicast chains
8302          */
8303         dev_uc_flush(dev);
8304         dev_mc_flush(dev);
8305
8306         /* Send a netdev-removed uevent to the old namespace */
8307         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8308         netdev_adjacent_del_links(dev);
8309
8310         /* Actually switch the network namespace */
8311         dev_net_set(dev, net);
8312
8313         /* If there is an ifindex conflict assign a new one */
8314         if (__dev_get_by_index(net, dev->ifindex))
8315                 dev->ifindex = dev_new_index(net);
8316
8317         /* Send a netdev-add uevent to the new namespace */
8318         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8319         netdev_adjacent_add_links(dev);
8320
8321         /* Fixup kobjects */
8322         err = device_rename(&dev->dev, dev->name);
8323         WARN_ON(err);
8324
8325         /* Add the device back in the hashes */
8326         list_netdevice(dev);
8327
8328         /* Notify protocols, that a new device appeared. */
8329         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8330
8331         /*
8332          *      Prevent userspace races by waiting until the network
8333          *      device is fully setup before sending notifications.
8334          */
8335         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8336
8337         synchronize_net();
8338         err = 0;
8339 out:
8340         return err;
8341 }
8342 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8343
8344 static int dev_cpu_dead(unsigned int oldcpu)
8345 {
8346         struct sk_buff **list_skb;
8347         struct sk_buff *skb;
8348         unsigned int cpu;
8349         struct softnet_data *sd, *oldsd, *remsd = NULL;
8350
8351         local_irq_disable();
8352         cpu = smp_processor_id();
8353         sd = &per_cpu(softnet_data, cpu);
8354         oldsd = &per_cpu(softnet_data, oldcpu);
8355
8356         /* Find end of our completion_queue. */
8357         list_skb = &sd->completion_queue;
8358         while (*list_skb)
8359                 list_skb = &(*list_skb)->next;
8360         /* Append completion queue from offline CPU. */
8361         *list_skb = oldsd->completion_queue;
8362         oldsd->completion_queue = NULL;
8363
8364         /* Append output queue from offline CPU. */
8365         if (oldsd->output_queue) {
8366                 *sd->output_queue_tailp = oldsd->output_queue;
8367                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8368                 oldsd->output_queue = NULL;
8369                 oldsd->output_queue_tailp = &oldsd->output_queue;
8370         }
8371         /* Append NAPI poll list from offline CPU, with one exception :
8372          * process_backlog() must be called by cpu owning percpu backlog.
8373          * We properly handle process_queue & input_pkt_queue later.
8374          */
8375         while (!list_empty(&oldsd->poll_list)) {
8376                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8377                                                             struct napi_struct,
8378                                                             poll_list);
8379
8380                 list_del_init(&napi->poll_list);
8381                 if (napi->poll == process_backlog)
8382                         napi->state = 0;
8383                 else
8384                         ____napi_schedule(sd, napi);
8385         }
8386
8387         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8388         local_irq_enable();
8389
8390 #ifdef CONFIG_RPS
8391         remsd = oldsd->rps_ipi_list;
8392         oldsd->rps_ipi_list = NULL;
8393 #endif
8394         /* send out pending IPI's on offline CPU */
8395         net_rps_send_ipi(remsd);
8396
8397         /* Process offline CPU's input_pkt_queue */
8398         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8399                 netif_rx_ni(skb);
8400                 input_queue_head_incr(oldsd);
8401         }
8402         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8403                 netif_rx_ni(skb);
8404                 input_queue_head_incr(oldsd);
8405         }
8406
8407         return 0;
8408 }
8409
8410 /**
8411  *      netdev_increment_features - increment feature set by one
8412  *      @all: current feature set
8413  *      @one: new feature set
8414  *      @mask: mask feature set
8415  *
8416  *      Computes a new feature set after adding a device with feature set
8417  *      @one to the master device with current feature set @all.  Will not
8418  *      enable anything that is off in @mask. Returns the new feature set.
8419  */
8420 netdev_features_t netdev_increment_features(netdev_features_t all,
8421         netdev_features_t one, netdev_features_t mask)
8422 {
8423         if (mask & NETIF_F_HW_CSUM)
8424                 mask |= NETIF_F_CSUM_MASK;
8425         mask |= NETIF_F_VLAN_CHALLENGED;
8426
8427         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8428         all &= one | ~NETIF_F_ALL_FOR_ALL;
8429
8430         /* If one device supports hw checksumming, set for all. */
8431         if (all & NETIF_F_HW_CSUM)
8432                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8433
8434         return all;
8435 }
8436 EXPORT_SYMBOL(netdev_increment_features);
8437
8438 static struct hlist_head * __net_init netdev_create_hash(void)
8439 {
8440         int i;
8441         struct hlist_head *hash;
8442
8443         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8444         if (hash != NULL)
8445                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8446                         INIT_HLIST_HEAD(&hash[i]);
8447
8448         return hash;
8449 }
8450
8451 /* Initialize per network namespace state */
8452 static int __net_init netdev_init(struct net *net)
8453 {
8454         if (net != &init_net)
8455                 INIT_LIST_HEAD(&net->dev_base_head);
8456
8457         net->dev_name_head = netdev_create_hash();
8458         if (net->dev_name_head == NULL)
8459                 goto err_name;
8460
8461         net->dev_index_head = netdev_create_hash();
8462         if (net->dev_index_head == NULL)
8463                 goto err_idx;
8464
8465         return 0;
8466
8467 err_idx:
8468         kfree(net->dev_name_head);
8469 err_name:
8470         return -ENOMEM;
8471 }
8472
8473 /**
8474  *      netdev_drivername - network driver for the device
8475  *      @dev: network device
8476  *
8477  *      Determine network driver for device.
8478  */
8479 const char *netdev_drivername(const struct net_device *dev)
8480 {
8481         const struct device_driver *driver;
8482         const struct device *parent;
8483         const char *empty = "";
8484
8485         parent = dev->dev.parent;
8486         if (!parent)
8487                 return empty;
8488
8489         driver = parent->driver;
8490         if (driver && driver->name)
8491                 return driver->name;
8492         return empty;
8493 }
8494
8495 static void __netdev_printk(const char *level, const struct net_device *dev,
8496                             struct va_format *vaf)
8497 {
8498         if (dev && dev->dev.parent) {
8499                 dev_printk_emit(level[1] - '0',
8500                                 dev->dev.parent,
8501                                 "%s %s %s%s: %pV",
8502                                 dev_driver_string(dev->dev.parent),
8503                                 dev_name(dev->dev.parent),
8504                                 netdev_name(dev), netdev_reg_state(dev),
8505                                 vaf);
8506         } else if (dev) {
8507                 printk("%s%s%s: %pV",
8508                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8509         } else {
8510                 printk("%s(NULL net_device): %pV", level, vaf);
8511         }
8512 }
8513
8514 void netdev_printk(const char *level, const struct net_device *dev,
8515                    const char *format, ...)
8516 {
8517         struct va_format vaf;
8518         va_list args;
8519
8520         va_start(args, format);
8521
8522         vaf.fmt = format;
8523         vaf.va = &args;
8524
8525         __netdev_printk(level, dev, &vaf);
8526
8527         va_end(args);
8528 }
8529 EXPORT_SYMBOL(netdev_printk);
8530
8531 #define define_netdev_printk_level(func, level)                 \
8532 void func(const struct net_device *dev, const char *fmt, ...)   \
8533 {                                                               \
8534         struct va_format vaf;                                   \
8535         va_list args;                                           \
8536                                                                 \
8537         va_start(args, fmt);                                    \
8538                                                                 \
8539         vaf.fmt = fmt;                                          \
8540         vaf.va = &args;                                         \
8541                                                                 \
8542         __netdev_printk(level, dev, &vaf);                      \
8543                                                                 \
8544         va_end(args);                                           \
8545 }                                                               \
8546 EXPORT_SYMBOL(func);
8547
8548 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8549 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8550 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8551 define_netdev_printk_level(netdev_err, KERN_ERR);
8552 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8553 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8554 define_netdev_printk_level(netdev_info, KERN_INFO);
8555
8556 static void __net_exit netdev_exit(struct net *net)
8557 {
8558         kfree(net->dev_name_head);
8559         kfree(net->dev_index_head);
8560 }
8561
8562 static struct pernet_operations __net_initdata netdev_net_ops = {
8563         .init = netdev_init,
8564         .exit = netdev_exit,
8565 };
8566
8567 static void __net_exit default_device_exit(struct net *net)
8568 {
8569         struct net_device *dev, *aux;
8570         /*
8571          * Push all migratable network devices back to the
8572          * initial network namespace
8573          */
8574         rtnl_lock();
8575         for_each_netdev_safe(net, dev, aux) {
8576                 int err;
8577                 char fb_name[IFNAMSIZ];
8578
8579                 /* Ignore unmoveable devices (i.e. loopback) */
8580                 if (dev->features & NETIF_F_NETNS_LOCAL)
8581                         continue;
8582
8583                 /* Leave virtual devices for the generic cleanup */
8584                 if (dev->rtnl_link_ops)
8585                         continue;
8586
8587                 /* Push remaining network devices to init_net */
8588                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8589                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8590                 if (err) {
8591                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8592                                  __func__, dev->name, err);
8593                         BUG();
8594                 }
8595         }
8596         rtnl_unlock();
8597 }
8598
8599 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8600 {
8601         /* Return with the rtnl_lock held when there are no network
8602          * devices unregistering in any network namespace in net_list.
8603          */
8604         struct net *net;
8605         bool unregistering;
8606         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8607
8608         add_wait_queue(&netdev_unregistering_wq, &wait);
8609         for (;;) {
8610                 unregistering = false;
8611                 rtnl_lock();
8612                 list_for_each_entry(net, net_list, exit_list) {
8613                         if (net->dev_unreg_count > 0) {
8614                                 unregistering = true;
8615                                 break;
8616                         }
8617                 }
8618                 if (!unregistering)
8619                         break;
8620                 __rtnl_unlock();
8621
8622                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8623         }
8624         remove_wait_queue(&netdev_unregistering_wq, &wait);
8625 }
8626
8627 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8628 {
8629         /* At exit all network devices most be removed from a network
8630          * namespace.  Do this in the reverse order of registration.
8631          * Do this across as many network namespaces as possible to
8632          * improve batching efficiency.
8633          */
8634         struct net_device *dev;
8635         struct net *net;
8636         LIST_HEAD(dev_kill_list);
8637
8638         /* To prevent network device cleanup code from dereferencing
8639          * loopback devices or network devices that have been freed
8640          * wait here for all pending unregistrations to complete,
8641          * before unregistring the loopback device and allowing the
8642          * network namespace be freed.
8643          *
8644          * The netdev todo list containing all network devices
8645          * unregistrations that happen in default_device_exit_batch
8646          * will run in the rtnl_unlock() at the end of
8647          * default_device_exit_batch.
8648          */
8649         rtnl_lock_unregistering(net_list);
8650         list_for_each_entry(net, net_list, exit_list) {
8651                 for_each_netdev_reverse(net, dev) {
8652                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8653                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8654                         else
8655                                 unregister_netdevice_queue(dev, &dev_kill_list);
8656                 }
8657         }
8658         unregister_netdevice_many(&dev_kill_list);
8659         rtnl_unlock();
8660 }
8661
8662 static struct pernet_operations __net_initdata default_device_ops = {
8663         .exit = default_device_exit,
8664         .exit_batch = default_device_exit_batch,
8665 };
8666
8667 /*
8668  *      Initialize the DEV module. At boot time this walks the device list and
8669  *      unhooks any devices that fail to initialise (normally hardware not
8670  *      present) and leaves us with a valid list of present and active devices.
8671  *
8672  */
8673
8674 /*
8675  *       This is called single threaded during boot, so no need
8676  *       to take the rtnl semaphore.
8677  */
8678 static int __init net_dev_init(void)
8679 {
8680         int i, rc = -ENOMEM;
8681
8682         BUG_ON(!dev_boot_phase);
8683
8684         if (dev_proc_init())
8685                 goto out;
8686
8687         if (netdev_kobject_init())
8688                 goto out;
8689
8690         INIT_LIST_HEAD(&ptype_all);
8691         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8692                 INIT_LIST_HEAD(&ptype_base[i]);
8693
8694         INIT_LIST_HEAD(&offload_base);
8695
8696         if (register_pernet_subsys(&netdev_net_ops))
8697                 goto out;
8698
8699         /*
8700          *      Initialise the packet receive queues.
8701          */
8702
8703         for_each_possible_cpu(i) {
8704                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8705                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8706
8707                 INIT_WORK(flush, flush_backlog);
8708
8709                 skb_queue_head_init(&sd->input_pkt_queue);
8710                 skb_queue_head_init(&sd->process_queue);
8711                 INIT_LIST_HEAD(&sd->poll_list);
8712                 sd->output_queue_tailp = &sd->output_queue;
8713 #ifdef CONFIG_RPS
8714                 sd->csd.func = rps_trigger_softirq;
8715                 sd->csd.info = sd;
8716                 sd->cpu = i;
8717 #endif
8718
8719                 sd->backlog.poll = process_backlog;
8720                 sd->backlog.weight = weight_p;
8721         }
8722
8723         dev_boot_phase = 0;
8724
8725         /* The loopback device is special if any other network devices
8726          * is present in a network namespace the loopback device must
8727          * be present. Since we now dynamically allocate and free the
8728          * loopback device ensure this invariant is maintained by
8729          * keeping the loopback device as the first device on the
8730          * list of network devices.  Ensuring the loopback devices
8731          * is the first device that appears and the last network device
8732          * that disappears.
8733          */
8734         if (register_pernet_device(&loopback_net_ops))
8735                 goto out;
8736
8737         if (register_pernet_device(&default_device_ops))
8738                 goto out;
8739
8740         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8741         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8742
8743         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8744                                        NULL, dev_cpu_dead);
8745         WARN_ON(rc < 0);
8746         rc = 0;
8747 out:
8748         return rc;
8749 }
8750
8751 subsys_initcall(net_dev_init);