Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec...
[linux-2.6-block.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201
202         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227         struct net *net = dev_net(dev);
228
229         ASSERT_RTNL();
230
231         write_lock_bh(&dev_base_lock);
232         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234         hlist_add_head_rcu(&dev->index_hlist,
235                            dev_index_hash(net, dev->ifindex));
236         write_unlock_bh(&dev_base_lock);
237
238         dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246         ASSERT_RTNL();
247
248         /* Unlink dev from the device chain */
249         write_lock_bh(&dev_base_lock);
250         list_del_rcu(&dev->dev_list);
251         hlist_del_rcu(&dev->name_hlist);
252         hlist_del_rcu(&dev->index_hlist);
253         write_unlock_bh(&dev_base_lock);
254
255         dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259  *      Our notifier list
260  */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265  *      Device drivers call our routines to queue packets here. We empty the
266  *      queue in the local softnet handler.
267  */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316         int i;
317
318         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319                 if (netdev_lock_type[i] == dev_type)
320                         return i;
321         /* the last key is used by default */
322         return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326                                                  unsigned short dev_type)
327 {
328         int i;
329
330         i = netdev_lock_pos(dev_type);
331         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332                                    netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev->type);
340         lockdep_set_class_and_name(&dev->addr_list_lock,
341                                    &netdev_addr_lock_key[i],
342                                    netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346                                                  unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356                 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361  *      Add a protocol ID to the list. Now that the input handler is
362  *      smarter we can dispense with all the messy stuff that used to be
363  *      here.
364  *
365  *      BEWARE!!! Protocol handlers, mangling input packets,
366  *      MUST BE last in hash buckets and checking protocol handlers
367  *      MUST start from promiscuous ptype_all chain in net_bh.
368  *      It is true now, do not change it.
369  *      Explanation follows: if protocol handler, mangling packet, will
370  *      be the first on list, it is not able to sense, that packet
371  *      is cloned and should be copied-on-write, so that it will
372  *      change it and subsequent readers will get broken packet.
373  *                                                      --ANK (980803)
374  */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378         if (pt->type == htons(ETH_P_ALL))
379                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380         else
381                 return pt->dev ? &pt->dev->ptype_specific :
382                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386  *      dev_add_pack - add packet handler
387  *      @pt: packet type declaration
388  *
389  *      Add a protocol handler to the networking stack. The passed &packet_type
390  *      is linked into kernel lists and may not be freed until it has been
391  *      removed from the kernel lists.
392  *
393  *      This call does not sleep therefore it can not
394  *      guarantee all CPU's that are in middle of receiving packets
395  *      will see the new packet type (until the next received packet).
396  */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400         struct list_head *head = ptype_head(pt);
401
402         spin_lock(&ptype_lock);
403         list_add_rcu(&pt->list, head);
404         spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409  *      __dev_remove_pack        - remove packet handler
410  *      @pt: packet type declaration
411  *
412  *      Remove a protocol handler that was previously added to the kernel
413  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *      from the kernel lists and can be freed or reused once this function
415  *      returns.
416  *
417  *      The packet type might still be in use by receivers
418  *      and must not be freed until after all the CPU's have gone
419  *      through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423         struct list_head *head = ptype_head(pt);
424         struct packet_type *pt1;
425
426         spin_lock(&ptype_lock);
427
428         list_for_each_entry(pt1, head, list) {
429                 if (pt == pt1) {
430                         list_del_rcu(&pt->list);
431                         goto out;
432                 }
433         }
434
435         pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437         spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442  *      dev_remove_pack  - remove packet handler
443  *      @pt: packet type declaration
444  *
445  *      Remove a protocol handler that was previously added to the kernel
446  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *      from the kernel lists and can be freed or reused once this function
448  *      returns.
449  *
450  *      This call sleeps to guarantee that no CPU is looking at the packet
451  *      type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455         __dev_remove_pack(pt);
456
457         synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463  *      dev_add_offload - register offload handlers
464  *      @po: protocol offload declaration
465  *
466  *      Add protocol offload handlers to the networking stack. The passed
467  *      &proto_offload is linked into kernel lists and may not be freed until
468  *      it has been removed from the kernel lists.
469  *
470  *      This call does not sleep therefore it can not
471  *      guarantee all CPU's that are in middle of receiving packets
472  *      will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476         struct packet_offload *elem;
477
478         spin_lock(&offload_lock);
479         list_for_each_entry(elem, &offload_base, list) {
480                 if (po->priority < elem->priority)
481                         break;
482         }
483         list_add_rcu(&po->list, elem->list.prev);
484         spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489  *      __dev_remove_offload     - remove offload handler
490  *      @po: packet offload declaration
491  *
492  *      Remove a protocol offload handler that was previously added to the
493  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *      is removed from the kernel lists and can be freed or reused once this
495  *      function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *      and must not be freed until after all the CPU's have gone
499  *      through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503         struct list_head *head = &offload_base;
504         struct packet_offload *po1;
505
506         spin_lock(&offload_lock);
507
508         list_for_each_entry(po1, head, list) {
509                 if (po == po1) {
510                         list_del_rcu(&po->list);
511                         goto out;
512                 }
513         }
514
515         pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517         spin_unlock(&offload_lock);
518 }
519
520 /**
521  *      dev_remove_offload       - remove packet offload handler
522  *      @po: packet offload declaration
523  *
524  *      Remove a packet offload handler that was previously added to the kernel
525  *      offload handlers by dev_add_offload(). The passed &offload_type is
526  *      removed from the kernel lists and can be freed or reused once this
527  *      function returns.
528  *
529  *      This call sleeps to guarantee that no CPU is looking at the packet
530  *      type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534         __dev_remove_offload(po);
535
536         synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542                       Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550  *      netdev_boot_setup_add   - add new setup entry
551  *      @name: name of the device
552  *      @map: configured settings for the device
553  *
554  *      Adds new setup entry to the dev_boot_setup list.  The function
555  *      returns 0 on error and 1 on success.  This is a generic routine to
556  *      all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560         struct netdev_boot_setup *s;
561         int i;
562
563         s = dev_boot_setup;
564         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566                         memset(s[i].name, 0, sizeof(s[i].name));
567                         strlcpy(s[i].name, name, IFNAMSIZ);
568                         memcpy(&s[i].map, map, sizeof(s[i].map));
569                         break;
570                 }
571         }
572
573         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577  *      netdev_boot_setup_check - check boot time settings
578  *      @dev: the netdevice
579  *
580  *      Check boot time settings for the device.
581  *      The found settings are set for the device to be used
582  *      later in the device probing.
583  *      Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587         struct netdev_boot_setup *s = dev_boot_setup;
588         int i;
589
590         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592                     !strcmp(dev->name, s[i].name)) {
593                         dev->irq        = s[i].map.irq;
594                         dev->base_addr  = s[i].map.base_addr;
595                         dev->mem_start  = s[i].map.mem_start;
596                         dev->mem_end    = s[i].map.mem_end;
597                         return 1;
598                 }
599         }
600         return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606  *      netdev_boot_base        - get address from boot time settings
607  *      @prefix: prefix for network device
608  *      @unit: id for network device
609  *
610  *      Check boot time settings for the base address of device.
611  *      The found settings are set for the device to be used
612  *      later in the device probing.
613  *      Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617         const struct netdev_boot_setup *s = dev_boot_setup;
618         char name[IFNAMSIZ];
619         int i;
620
621         sprintf(name, "%s%d", prefix, unit);
622
623         /*
624          * If device already registered then return base of 1
625          * to indicate not to probe for this interface
626          */
627         if (__dev_get_by_name(&init_net, name))
628                 return 1;
629
630         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631                 if (!strcmp(name, s[i].name))
632                         return s[i].map.base_addr;
633         return 0;
634 }
635
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641         int ints[5];
642         struct ifmap map;
643
644         str = get_options(str, ARRAY_SIZE(ints), ints);
645         if (!str || !*str)
646                 return 0;
647
648         /* Save settings */
649         memset(&map, 0, sizeof(map));
650         if (ints[0] > 0)
651                 map.irq = ints[1];
652         if (ints[0] > 1)
653                 map.base_addr = ints[2];
654         if (ints[0] > 2)
655                 map.mem_start = ints[3];
656         if (ints[0] > 3)
657                 map.mem_end = ints[4];
658
659         /* Add new entry to the list */
660         return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667                             Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672  *      dev_get_iflink  - get 'iflink' value of a interface
673  *      @dev: targeted interface
674  *
675  *      Indicates the ifindex the interface is linked to.
676  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682                 return dev->netdev_ops->ndo_get_iflink(dev);
683
684         return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *      @dev: targeted interface
691  *      @skb: The packet.
692  *
693  *      For better visibility of tunnel traffic OVS needs to retrieve
694  *      egress tunnel information for a packet. Following API allows
695  *      user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699         struct ip_tunnel_info *info;
700
701         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702                 return -EINVAL;
703
704         info = skb_tunnel_info_unclone(skb);
705         if (!info)
706                 return -ENOMEM;
707         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708                 return -EINVAL;
709
710         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715  *      __dev_get_by_name       - find a device by its name
716  *      @net: the applicable net namespace
717  *      @name: name to find
718  *
719  *      Find an interface by name. Must be called under RTNL semaphore
720  *      or @dev_base_lock. If the name is found a pointer to the device
721  *      is returned. If the name is not found then %NULL is returned. The
722  *      reference counters are not incremented so the caller must be
723  *      careful with locks.
724  */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728         struct net_device *dev;
729         struct hlist_head *head = dev_name_hash(net, name);
730
731         hlist_for_each_entry(dev, head, name_hlist)
732                 if (!strncmp(dev->name, name, IFNAMSIZ))
733                         return dev;
734
735         return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740  *      dev_get_by_name_rcu     - find a device by its name
741  *      @net: the applicable net namespace
742  *      @name: name to find
743  *
744  *      Find an interface by name.
745  *      If the name is found a pointer to the device is returned.
746  *      If the name is not found then %NULL is returned.
747  *      The reference counters are not incremented so the caller must be
748  *      careful with locks. The caller must hold RCU lock.
749  */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753         struct net_device *dev;
754         struct hlist_head *head = dev_name_hash(net, name);
755
756         hlist_for_each_entry_rcu(dev, head, name_hlist)
757                 if (!strncmp(dev->name, name, IFNAMSIZ))
758                         return dev;
759
760         return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765  *      dev_get_by_name         - find a device by its name
766  *      @net: the applicable net namespace
767  *      @name: name to find
768  *
769  *      Find an interface by name. This can be called from any
770  *      context and does its own locking. The returned handle has
771  *      the usage count incremented and the caller must use dev_put() to
772  *      release it when it is no longer needed. %NULL is returned if no
773  *      matching device is found.
774  */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778         struct net_device *dev;
779
780         rcu_read_lock();
781         dev = dev_get_by_name_rcu(net, name);
782         if (dev)
783                 dev_hold(dev);
784         rcu_read_unlock();
785         return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790  *      __dev_get_by_index - find a device by its ifindex
791  *      @net: the applicable net namespace
792  *      @ifindex: index of device
793  *
794  *      Search for an interface by index. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not
796  *      had its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold either the RTNL semaphore
798  *      or @dev_base_lock.
799  */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803         struct net_device *dev;
804         struct hlist_head *head = dev_index_hash(net, ifindex);
805
806         hlist_for_each_entry(dev, head, index_hlist)
807                 if (dev->ifindex == ifindex)
808                         return dev;
809
810         return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815  *      dev_get_by_index_rcu - find a device by its ifindex
816  *      @net: the applicable net namespace
817  *      @ifindex: index of device
818  *
819  *      Search for an interface by index. Returns %NULL if the device
820  *      is not found or a pointer to the device. The device has not
821  *      had its reference counter increased so the caller must be careful
822  *      about locking. The caller must hold RCU lock.
823  */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827         struct net_device *dev;
828         struct hlist_head *head = dev_index_hash(net, ifindex);
829
830         hlist_for_each_entry_rcu(dev, head, index_hlist)
831                 if (dev->ifindex == ifindex)
832                         return dev;
833
834         return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840  *      dev_get_by_index - find a device by its ifindex
841  *      @net: the applicable net namespace
842  *      @ifindex: index of device
843  *
844  *      Search for an interface by index. Returns NULL if the device
845  *      is not found or a pointer to the device. The device returned has
846  *      had a reference added and the pointer is safe until the user calls
847  *      dev_put to indicate they have finished with it.
848  */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852         struct net_device *dev;
853
854         rcu_read_lock();
855         dev = dev_get_by_index_rcu(net, ifindex);
856         if (dev)
857                 dev_hold(dev);
858         rcu_read_unlock();
859         return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864  *      netdev_get_name - get a netdevice name, knowing its ifindex.
865  *      @net: network namespace
866  *      @name: a pointer to the buffer where the name will be stored.
867  *      @ifindex: the ifindex of the interface to get the name from.
868  *
869  *      The use of raw_seqcount_begin() and cond_resched() before
870  *      retrying is required as we want to give the writers a chance
871  *      to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875         struct net_device *dev;
876         unsigned int seq;
877
878 retry:
879         seq = raw_seqcount_begin(&devnet_rename_seq);
880         rcu_read_lock();
881         dev = dev_get_by_index_rcu(net, ifindex);
882         if (!dev) {
883                 rcu_read_unlock();
884                 return -ENODEV;
885         }
886
887         strcpy(name, dev->name);
888         rcu_read_unlock();
889         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890                 cond_resched();
891                 goto retry;
892         }
893
894         return 0;
895 }
896
897 /**
898  *      dev_getbyhwaddr_rcu - find a device by its hardware address
899  *      @net: the applicable net namespace
900  *      @type: media type of device
901  *      @ha: hardware address
902  *
903  *      Search for an interface by MAC address. Returns NULL if the device
904  *      is not found or a pointer to the device.
905  *      The caller must hold RCU or RTNL.
906  *      The returned device has not had its ref count increased
907  *      and the caller must therefore be careful about locking
908  *
909  */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912                                        const char *ha)
913 {
914         struct net_device *dev;
915
916         for_each_netdev_rcu(net, dev)
917                 if (dev->type == type &&
918                     !memcmp(dev->dev_addr, ha, dev->addr_len))
919                         return dev;
920
921         return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927         struct net_device *dev;
928
929         ASSERT_RTNL();
930         for_each_netdev(net, dev)
931                 if (dev->type == type)
932                         return dev;
933
934         return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940         struct net_device *dev, *ret = NULL;
941
942         rcu_read_lock();
943         for_each_netdev_rcu(net, dev)
944                 if (dev->type == type) {
945                         dev_hold(dev);
946                         ret = dev;
947                         break;
948                 }
949         rcu_read_unlock();
950         return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955  *      __dev_get_by_flags - find any device with given flags
956  *      @net: the applicable net namespace
957  *      @if_flags: IFF_* values
958  *      @mask: bitmask of bits in if_flags to check
959  *
960  *      Search for any interface with the given flags. Returns NULL if a device
961  *      is not found or a pointer to the device. Must be called inside
962  *      rtnl_lock(), and result refcount is unchanged.
963  */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966                                       unsigned short mask)
967 {
968         struct net_device *dev, *ret;
969
970         ASSERT_RTNL();
971
972         ret = NULL;
973         for_each_netdev(net, dev) {
974                 if (((dev->flags ^ if_flags) & mask) == 0) {
975                         ret = dev;
976                         break;
977                 }
978         }
979         return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984  *      dev_valid_name - check if name is okay for network device
985  *      @name: name string
986  *
987  *      Network device names need to be valid file names to
988  *      to allow sysfs to work.  We also disallow any kind of
989  *      whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993         if (*name == '\0')
994                 return false;
995         if (strlen(name) >= IFNAMSIZ)
996                 return false;
997         if (!strcmp(name, ".") || !strcmp(name, ".."))
998                 return false;
999
1000         while (*name) {
1001                 if (*name == '/' || *name == ':' || isspace(*name))
1002                         return false;
1003                 name++;
1004         }
1005         return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010  *      __dev_alloc_name - allocate a name for a device
1011  *      @net: network namespace to allocate the device name in
1012  *      @name: name format string
1013  *      @buf:  scratch buffer and result name string
1014  *
1015  *      Passed a format string - eg "lt%d" it will try and find a suitable
1016  *      id. It scans list of devices to build up a free map, then chooses
1017  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *      while allocating the name and adding the device in order to avoid
1019  *      duplicates.
1020  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *      Returns the number of the unit assigned or a negative errno code.
1022  */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026         int i = 0;
1027         const char *p;
1028         const int max_netdevices = 8*PAGE_SIZE;
1029         unsigned long *inuse;
1030         struct net_device *d;
1031
1032         p = strnchr(name, IFNAMSIZ-1, '%');
1033         if (p) {
1034                 /*
1035                  * Verify the string as this thing may have come from
1036                  * the user.  There must be either one "%d" and no other "%"
1037                  * characters.
1038                  */
1039                 if (p[1] != 'd' || strchr(p + 2, '%'))
1040                         return -EINVAL;
1041
1042                 /* Use one page as a bit array of possible slots */
1043                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044                 if (!inuse)
1045                         return -ENOMEM;
1046
1047                 for_each_netdev(net, d) {
1048                         if (!sscanf(d->name, name, &i))
1049                                 continue;
1050                         if (i < 0 || i >= max_netdevices)
1051                                 continue;
1052
1053                         /*  avoid cases where sscanf is not exact inverse of printf */
1054                         snprintf(buf, IFNAMSIZ, name, i);
1055                         if (!strncmp(buf, d->name, IFNAMSIZ))
1056                                 set_bit(i, inuse);
1057                 }
1058
1059                 i = find_first_zero_bit(inuse, max_netdevices);
1060                 free_page((unsigned long) inuse);
1061         }
1062
1063         if (buf != name)
1064                 snprintf(buf, IFNAMSIZ, name, i);
1065         if (!__dev_get_by_name(net, buf))
1066                 return i;
1067
1068         /* It is possible to run out of possible slots
1069          * when the name is long and there isn't enough space left
1070          * for the digits, or if all bits are used.
1071          */
1072         return -ENFILE;
1073 }
1074
1075 /**
1076  *      dev_alloc_name - allocate a name for a device
1077  *      @dev: device
1078  *      @name: name format string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091         char buf[IFNAMSIZ];
1092         struct net *net;
1093         int ret;
1094
1095         BUG_ON(!dev_net(dev));
1096         net = dev_net(dev);
1097         ret = __dev_alloc_name(net, name, buf);
1098         if (ret >= 0)
1099                 strlcpy(dev->name, buf, IFNAMSIZ);
1100         return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105                              struct net_device *dev,
1106                              const char *name)
1107 {
1108         char buf[IFNAMSIZ];
1109         int ret;
1110
1111         ret = __dev_alloc_name(net, name, buf);
1112         if (ret >= 0)
1113                 strlcpy(dev->name, buf, IFNAMSIZ);
1114         return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118                               struct net_device *dev,
1119                               const char *name)
1120 {
1121         BUG_ON(!net);
1122
1123         if (!dev_valid_name(name))
1124                 return -EINVAL;
1125
1126         if (strchr(name, '%'))
1127                 return dev_alloc_name_ns(net, dev, name);
1128         else if (__dev_get_by_name(net, name))
1129                 return -EEXIST;
1130         else if (dev->name != name)
1131                 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  *      dev_change_name - change name of a device
1138  *      @dev: device
1139  *      @newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *      Change name of a device, can pass format strings "eth%d".
1142  *      for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146         unsigned char old_assign_type;
1147         char oldname[IFNAMSIZ];
1148         int err = 0;
1149         int ret;
1150         struct net *net;
1151
1152         ASSERT_RTNL();
1153         BUG_ON(!dev_net(dev));
1154
1155         net = dev_net(dev);
1156         if (dev->flags & IFF_UP)
1157                 return -EBUSY;
1158
1159         write_seqcount_begin(&devnet_rename_seq);
1160
1161         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162                 write_seqcount_end(&devnet_rename_seq);
1163                 return 0;
1164         }
1165
1166         memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168         err = dev_get_valid_name(net, dev, newname);
1169         if (err < 0) {
1170                 write_seqcount_end(&devnet_rename_seq);
1171                 return err;
1172         }
1173
1174         if (oldname[0] && !strchr(oldname, '%'))
1175                 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177         old_assign_type = dev->name_assign_type;
1178         dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181         ret = device_rename(&dev->dev, dev->name);
1182         if (ret) {
1183                 memcpy(dev->name, oldname, IFNAMSIZ);
1184                 dev->name_assign_type = old_assign_type;
1185                 write_seqcount_end(&devnet_rename_seq);
1186                 return ret;
1187         }
1188
1189         write_seqcount_end(&devnet_rename_seq);
1190
1191         netdev_adjacent_rename_links(dev, oldname);
1192
1193         write_lock_bh(&dev_base_lock);
1194         hlist_del_rcu(&dev->name_hlist);
1195         write_unlock_bh(&dev_base_lock);
1196
1197         synchronize_rcu();
1198
1199         write_lock_bh(&dev_base_lock);
1200         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201         write_unlock_bh(&dev_base_lock);
1202
1203         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204         ret = notifier_to_errno(ret);
1205
1206         if (ret) {
1207                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208                 if (err >= 0) {
1209                         err = ret;
1210                         write_seqcount_begin(&devnet_rename_seq);
1211                         memcpy(dev->name, oldname, IFNAMSIZ);
1212                         memcpy(oldname, newname, IFNAMSIZ);
1213                         dev->name_assign_type = old_assign_type;
1214                         old_assign_type = NET_NAME_RENAMED;
1215                         goto rollback;
1216                 } else {
1217                         pr_err("%s: name change rollback failed: %d\n",
1218                                dev->name, ret);
1219                 }
1220         }
1221
1222         return err;
1223 }
1224
1225 /**
1226  *      dev_set_alias - change ifalias of a device
1227  *      @dev: device
1228  *      @alias: name up to IFALIASZ
1229  *      @len: limit of bytes to copy from info
1230  *
1231  *      Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235         char *new_ifalias;
1236
1237         ASSERT_RTNL();
1238
1239         if (len >= IFALIASZ)
1240                 return -EINVAL;
1241
1242         if (!len) {
1243                 kfree(dev->ifalias);
1244                 dev->ifalias = NULL;
1245                 return 0;
1246         }
1247
1248         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249         if (!new_ifalias)
1250                 return -ENOMEM;
1251         dev->ifalias = new_ifalias;
1252
1253         strlcpy(dev->ifalias, alias, len+1);
1254         return len;
1255 }
1256
1257
1258 /**
1259  *      netdev_features_change - device changes features
1260  *      @dev: device to cause notification
1261  *
1262  *      Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271  *      netdev_state_change - device changes state
1272  *      @dev: device to cause notification
1273  *
1274  *      Called to indicate a device has changed state. This function calls
1275  *      the notifier chains for netdev_chain and sends a NEWLINK message
1276  *      to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280         if (dev->flags & IFF_UP) {
1281                 struct netdev_notifier_change_info change_info;
1282
1283                 change_info.flags_changed = 0;
1284                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285                                               &change_info.info);
1286                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287         }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292  *      netdev_notify_peers - notify network peers about existence of @dev
1293  *      @dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303         rtnl_lock();
1304         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305         rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311         const struct net_device_ops *ops = dev->netdev_ops;
1312         int ret;
1313
1314         ASSERT_RTNL();
1315
1316         if (!netif_device_present(dev))
1317                 return -ENODEV;
1318
1319         /* Block netpoll from trying to do any rx path servicing.
1320          * If we don't do this there is a chance ndo_poll_controller
1321          * or ndo_poll may be running while we open the device
1322          */
1323         netpoll_poll_disable(dev);
1324
1325         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326         ret = notifier_to_errno(ret);
1327         if (ret)
1328                 return ret;
1329
1330         set_bit(__LINK_STATE_START, &dev->state);
1331
1332         if (ops->ndo_validate_addr)
1333                 ret = ops->ndo_validate_addr(dev);
1334
1335         if (!ret && ops->ndo_open)
1336                 ret = ops->ndo_open(dev);
1337
1338         netpoll_poll_enable(dev);
1339
1340         if (ret)
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342         else {
1343                 dev->flags |= IFF_UP;
1344                 dev_set_rx_mode(dev);
1345                 dev_activate(dev);
1346                 add_device_randomness(dev->dev_addr, dev->addr_len);
1347         }
1348
1349         return ret;
1350 }
1351
1352 /**
1353  *      dev_open        - prepare an interface for use.
1354  *      @dev:   device to open
1355  *
1356  *      Takes a device from down to up state. The device's private open
1357  *      function is invoked and then the multicast lists are loaded. Finally
1358  *      the device is moved into the up state and a %NETDEV_UP message is
1359  *      sent to the netdev notifier chain.
1360  *
1361  *      Calling this function on an active interface is a nop. On a failure
1362  *      a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366         int ret;
1367
1368         if (dev->flags & IFF_UP)
1369                 return 0;
1370
1371         ret = __dev_open(dev);
1372         if (ret < 0)
1373                 return ret;
1374
1375         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376         call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384         struct net_device *dev;
1385
1386         ASSERT_RTNL();
1387         might_sleep();
1388
1389         list_for_each_entry(dev, head, close_list) {
1390                 /* Temporarily disable netpoll until the interface is down */
1391                 netpoll_poll_disable(dev);
1392
1393                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395                 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398                  * can be even on different cpu. So just clear netif_running().
1399                  *
1400                  * dev->stop() will invoke napi_disable() on all of it's
1401                  * napi_struct instances on this device.
1402                  */
1403                 smp_mb__after_atomic(); /* Commit netif_running(). */
1404         }
1405
1406         dev_deactivate_many(head);
1407
1408         list_for_each_entry(dev, head, close_list) {
1409                 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411                 /*
1412                  *      Call the device specific close. This cannot fail.
1413                  *      Only if device is UP
1414                  *
1415                  *      We allow it to be called even after a DETACH hot-plug
1416                  *      event.
1417                  */
1418                 if (ops->ndo_stop)
1419                         ops->ndo_stop(dev);
1420
1421                 dev->flags &= ~IFF_UP;
1422                 netpoll_poll_enable(dev);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430         int retval;
1431         LIST_HEAD(single);
1432
1433         list_add(&dev->close_list, &single);
1434         retval = __dev_close_many(&single);
1435         list_del(&single);
1436
1437         return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442         struct net_device *dev, *tmp;
1443
1444         /* Remove the devices that don't need to be closed */
1445         list_for_each_entry_safe(dev, tmp, head, close_list)
1446                 if (!(dev->flags & IFF_UP))
1447                         list_del_init(&dev->close_list);
1448
1449         __dev_close_many(head);
1450
1451         list_for_each_entry_safe(dev, tmp, head, close_list) {
1452                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454                 if (unlink)
1455                         list_del_init(&dev->close_list);
1456         }
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463  *      dev_close - shutdown an interface.
1464  *      @dev: device to shutdown
1465  *
1466  *      This function moves an active device into down state. A
1467  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *      chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473         if (dev->flags & IFF_UP) {
1474                 LIST_HEAD(single);
1475
1476                 list_add(&dev->close_list, &single);
1477                 dev_close_many(&single, true);
1478                 list_del(&single);
1479         }
1480         return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486  *      dev_disable_lro - disable Large Receive Offload on a device
1487  *      @dev: device
1488  *
1489  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *      called under RTNL.  This is needed if received packets may be
1491  *      forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495         struct net_device *lower_dev;
1496         struct list_head *iter;
1497
1498         dev->wanted_features &= ~NETIF_F_LRO;
1499         netdev_update_features(dev);
1500
1501         if (unlikely(dev->features & NETIF_F_LRO))
1502                 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504         netdev_for_each_lower_dev(dev, lower_dev, iter)
1505                 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510                                    struct net_device *dev)
1511 {
1512         struct netdev_notifier_info info;
1513
1514         netdev_notifier_info_init(&info, dev);
1515         return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521  *      register_netdevice_notifier - register a network notifier block
1522  *      @nb: notifier
1523  *
1524  *      Register a notifier to be called when network device events occur.
1525  *      The notifier passed is linked into the kernel structures and must
1526  *      not be reused until it has been unregistered. A negative errno code
1527  *      is returned on a failure.
1528  *
1529  *      When registered all registration and up events are replayed
1530  *      to the new notifier to allow device to have a race free
1531  *      view of the network device list.
1532  */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536         struct net_device *dev;
1537         struct net_device *last;
1538         struct net *net;
1539         int err;
1540
1541         rtnl_lock();
1542         err = raw_notifier_chain_register(&netdev_chain, nb);
1543         if (err)
1544                 goto unlock;
1545         if (dev_boot_phase)
1546                 goto unlock;
1547         for_each_net(net) {
1548                 for_each_netdev(net, dev) {
1549                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550                         err = notifier_to_errno(err);
1551                         if (err)
1552                                 goto rollback;
1553
1554                         if (!(dev->flags & IFF_UP))
1555                                 continue;
1556
1557                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1558                 }
1559         }
1560
1561 unlock:
1562         rtnl_unlock();
1563         return err;
1564
1565 rollback:
1566         last = dev;
1567         for_each_net(net) {
1568                 for_each_netdev(net, dev) {
1569                         if (dev == last)
1570                                 goto outroll;
1571
1572                         if (dev->flags & IFF_UP) {
1573                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574                                                         dev);
1575                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576                         }
1577                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578                 }
1579         }
1580
1581 outroll:
1582         raw_notifier_chain_unregister(&netdev_chain, nb);
1583         goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588  *      unregister_netdevice_notifier - unregister a network notifier block
1589  *      @nb: notifier
1590  *
1591  *      Unregister a notifier previously registered by
1592  *      register_netdevice_notifier(). The notifier is unlinked into the
1593  *      kernel structures and may then be reused. A negative errno code
1594  *      is returned on a failure.
1595  *
1596  *      After unregistering unregister and down device events are synthesized
1597  *      for all devices on the device list to the removed notifier to remove
1598  *      the need for special case cleanup code.
1599  */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603         struct net_device *dev;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611
1612         for_each_net(net) {
1613                 for_each_netdev(net, dev) {
1614                         if (dev->flags & IFF_UP) {
1615                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616                                                         dev);
1617                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618                         }
1619                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620                 }
1621         }
1622 unlock:
1623         rtnl_unlock();
1624         return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629  *      call_netdevice_notifiers_info - call all network notifier blocks
1630  *      @val: value passed unmodified to notifier function
1631  *      @dev: net_device pointer passed unmodified to notifier function
1632  *      @info: notifier information data
1633  *
1634  *      Call all network notifier blocks.  Parameters and return value
1635  *      are as for raw_notifier_call_chain().
1636  */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639                                          struct net_device *dev,
1640                                          struct netdev_notifier_info *info)
1641 {
1642         ASSERT_RTNL();
1643         netdev_notifier_info_init(info, dev);
1644         return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648  *      call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *      Call all network notifier blocks.  Parameters and return value
1653  *      are as for raw_notifier_call_chain().
1654  */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658         struct netdev_notifier_info info;
1659
1660         return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669         static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675         static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685         static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691         static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710         if (deferred) {
1711                 while (--deferred)
1712                         static_key_slow_dec(&netstamp_needed);
1713                 return;
1714         }
1715 #endif
1716         static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723         if (in_interrupt()) {
1724                 atomic_inc(&netstamp_needed_deferred);
1725                 return;
1726         }
1727 #endif
1728         static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734         skb->tstamp = 0;
1735         if (static_key_false(&netstamp_needed))
1736                 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB)                  \
1740         if (static_key_false(&netstamp_needed)) {               \
1741                 if ((COND) && !(SKB)->tstamp)   \
1742                         __net_timestamp(SKB);           \
1743         }                                               \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747         unsigned int len;
1748
1749         if (!(dev->flags & IFF_UP))
1750                 return false;
1751
1752         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753         if (skb->len <= len)
1754                 return true;
1755
1756         /* if TSO is enabled, we don't care about the length as the packet
1757          * could be forwarded without being segmented before
1758          */
1759         if (skb_is_gso(skb))
1760                 return true;
1761
1762         return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768         int ret = ____dev_forward_skb(dev, skb);
1769
1770         if (likely(!ret)) {
1771                 skb->protocol = eth_type_trans(skb, dev);
1772                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773         }
1774
1775         return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *      NET_RX_SUCCESS  (no congestion)
1787  *      NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
1803 static inline int deliver_skb(struct sk_buff *skb,
1804                               struct packet_type *pt_prev,
1805                               struct net_device *orig_dev)
1806 {
1807         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808                 return -ENOMEM;
1809         atomic_inc(&skb->users);
1810         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814                                           struct packet_type **pt,
1815                                           struct net_device *orig_dev,
1816                                           __be16 type,
1817                                           struct list_head *ptype_list)
1818 {
1819         struct packet_type *ptype, *pt_prev = *pt;
1820
1821         list_for_each_entry_rcu(ptype, ptype_list, list) {
1822                 if (ptype->type != type)
1823                         continue;
1824                 if (pt_prev)
1825                         deliver_skb(skb, pt_prev, orig_dev);
1826                 pt_prev = ptype;
1827         }
1828         *pt = pt_prev;
1829 }
1830
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833         if (!ptype->af_packet_priv || !skb->sk)
1834                 return false;
1835
1836         if (ptype->id_match)
1837                 return ptype->id_match(ptype, skb->sk);
1838         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839                 return true;
1840
1841         return false;
1842 }
1843
1844 /*
1845  *      Support routine. Sends outgoing frames to any network
1846  *      taps currently in use.
1847  */
1848
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851         struct packet_type *ptype;
1852         struct sk_buff *skb2 = NULL;
1853         struct packet_type *pt_prev = NULL;
1854         struct list_head *ptype_list = &ptype_all;
1855
1856         rcu_read_lock();
1857 again:
1858         list_for_each_entry_rcu(ptype, ptype_list, list) {
1859                 /* Never send packets back to the socket
1860                  * they originated from - MvS (miquels@drinkel.ow.org)
1861                  */
1862                 if (skb_loop_sk(ptype, skb))
1863                         continue;
1864
1865                 if (pt_prev) {
1866                         deliver_skb(skb2, pt_prev, skb->dev);
1867                         pt_prev = ptype;
1868                         continue;
1869                 }
1870
1871                 /* need to clone skb, done only once */
1872                 skb2 = skb_clone(skb, GFP_ATOMIC);
1873                 if (!skb2)
1874                         goto out_unlock;
1875
1876                 net_timestamp_set(skb2);
1877
1878                 /* skb->nh should be correctly
1879                  * set by sender, so that the second statement is
1880                  * just protection against buggy protocols.
1881                  */
1882                 skb_reset_mac_header(skb2);
1883
1884                 if (skb_network_header(skb2) < skb2->data ||
1885                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887                                              ntohs(skb2->protocol),
1888                                              dev->name);
1889                         skb_reset_network_header(skb2);
1890                 }
1891
1892                 skb2->transport_header = skb2->network_header;
1893                 skb2->pkt_type = PACKET_OUTGOING;
1894                 pt_prev = ptype;
1895         }
1896
1897         if (ptype_list == &ptype_all) {
1898                 ptype_list = &dev->ptype_all;
1899                 goto again;
1900         }
1901 out_unlock:
1902         if (pt_prev)
1903                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904         rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923         int i;
1924         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926         /* If TC0 is invalidated disable TC mapping */
1927         if (tc->offset + tc->count > txq) {
1928                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929                 dev->num_tc = 0;
1930                 return;
1931         }
1932
1933         /* Invalidated prio to tc mappings set to TC0 */
1934         for (i = 1; i < TC_BITMASK + 1; i++) {
1935                 int q = netdev_get_prio_tc_map(dev, i);
1936
1937                 tc = &dev->tc_to_txq[q];
1938                 if (tc->offset + tc->count > txq) {
1939                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940                                 i, q);
1941                         netdev_set_prio_tc_map(dev, i, 0);
1942                 }
1943         }
1944 }
1945
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948         if (dev->num_tc) {
1949                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950                 int i;
1951
1952                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953                         if ((txq - tc->offset) < tc->count)
1954                                 return i;
1955                 }
1956
1957                 return -1;
1958         }
1959
1960         return 0;
1961 }
1962
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)             \
1966         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969                              int tci, u16 index)
1970 {
1971         struct xps_map *map = NULL;
1972         int pos;
1973
1974         if (dev_maps)
1975                 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976         if (!map)
1977                 return false;
1978
1979         for (pos = map->len; pos--;) {
1980                 if (map->queues[pos] != index)
1981                         continue;
1982
1983                 if (map->len > 1) {
1984                         map->queues[pos] = map->queues[--map->len];
1985                         break;
1986                 }
1987
1988                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989                 kfree_rcu(map, rcu);
1990                 return false;
1991         }
1992
1993         return true;
1994 }
1995
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997                                  struct xps_dev_maps *dev_maps,
1998                                  int cpu, u16 offset, u16 count)
1999 {
2000         int num_tc = dev->num_tc ? : 1;
2001         bool active = false;
2002         int tci;
2003
2004         for (tci = cpu * num_tc; num_tc--; tci++) {
2005                 int i, j;
2006
2007                 for (i = count, j = offset; i--; j++) {
2008                         if (!remove_xps_queue(dev_maps, cpu, j))
2009                                 break;
2010                 }
2011
2012                 active |= i < 0;
2013         }
2014
2015         return active;
2016 }
2017
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019                                    u16 count)
2020 {
2021         struct xps_dev_maps *dev_maps;
2022         int cpu, i;
2023         bool active = false;
2024
2025         mutex_lock(&xps_map_mutex);
2026         dev_maps = xmap_dereference(dev->xps_maps);
2027
2028         if (!dev_maps)
2029                 goto out_no_maps;
2030
2031         for_each_possible_cpu(cpu)
2032                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033                                                offset, count);
2034
2035         if (!active) {
2036                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037                 kfree_rcu(dev_maps, rcu);
2038         }
2039
2040         for (i = offset + (count - 1); count--; i--)
2041                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042                                              NUMA_NO_NODE);
2043
2044 out_no_maps:
2045         mutex_unlock(&xps_map_mutex);
2046 }
2047
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054                                       int cpu, u16 index)
2055 {
2056         struct xps_map *new_map;
2057         int alloc_len = XPS_MIN_MAP_ALLOC;
2058         int i, pos;
2059
2060         for (pos = 0; map && pos < map->len; pos++) {
2061                 if (map->queues[pos] != index)
2062                         continue;
2063                 return map;
2064         }
2065
2066         /* Need to add queue to this CPU's existing map */
2067         if (map) {
2068                 if (pos < map->alloc_len)
2069                         return map;
2070
2071                 alloc_len = map->alloc_len * 2;
2072         }
2073
2074         /* Need to allocate new map to store queue on this CPU's map */
2075         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076                                cpu_to_node(cpu));
2077         if (!new_map)
2078                 return NULL;
2079
2080         for (i = 0; i < pos; i++)
2081                 new_map->queues[i] = map->queues[i];
2082         new_map->alloc_len = alloc_len;
2083         new_map->len = pos;
2084
2085         return new_map;
2086 }
2087
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089                         u16 index)
2090 {
2091         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092         int i, cpu, tci, numa_node_id = -2;
2093         int maps_sz, num_tc = 1, tc = 0;
2094         struct xps_map *map, *new_map;
2095         bool active = false;
2096
2097         if (dev->num_tc) {
2098                 num_tc = dev->num_tc;
2099                 tc = netdev_txq_to_tc(dev, index);
2100                 if (tc < 0)
2101                         return -EINVAL;
2102         }
2103
2104         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105         if (maps_sz < L1_CACHE_BYTES)
2106                 maps_sz = L1_CACHE_BYTES;
2107
2108         mutex_lock(&xps_map_mutex);
2109
2110         dev_maps = xmap_dereference(dev->xps_maps);
2111
2112         /* allocate memory for queue storage */
2113         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114                 if (!new_dev_maps)
2115                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116                 if (!new_dev_maps) {
2117                         mutex_unlock(&xps_map_mutex);
2118                         return -ENOMEM;
2119                 }
2120
2121                 tci = cpu * num_tc + tc;
2122                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123                                  NULL;
2124
2125                 map = expand_xps_map(map, cpu, index);
2126                 if (!map)
2127                         goto error;
2128
2129                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130         }
2131
2132         if (!new_dev_maps)
2133                 goto out_no_new_maps;
2134
2135         for_each_possible_cpu(cpu) {
2136                 /* copy maps belonging to foreign traffic classes */
2137                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138                         /* fill in the new device map from the old device map */
2139                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2140                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141                 }
2142
2143                 /* We need to explicitly update tci as prevous loop
2144                  * could break out early if dev_maps is NULL.
2145                  */
2146                 tci = cpu * num_tc + tc;
2147
2148                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149                         /* add queue to CPU maps */
2150                         int pos = 0;
2151
2152                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153                         while ((pos < map->len) && (map->queues[pos] != index))
2154                                 pos++;
2155
2156                         if (pos == map->len)
2157                                 map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159                         if (numa_node_id == -2)
2160                                 numa_node_id = cpu_to_node(cpu);
2161                         else if (numa_node_id != cpu_to_node(cpu))
2162                                 numa_node_id = -1;
2163 #endif
2164                 } else if (dev_maps) {
2165                         /* fill in the new device map from the old device map */
2166                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2167                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168                 }
2169
2170                 /* copy maps belonging to foreign traffic classes */
2171                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172                         /* fill in the new device map from the old device map */
2173                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2174                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175                 }
2176         }
2177
2178         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
2180         /* Cleanup old maps */
2181         if (!dev_maps)
2182                 goto out_no_old_maps;
2183
2184         for_each_possible_cpu(cpu) {
2185                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2188                         if (map && map != new_map)
2189                                 kfree_rcu(map, rcu);
2190                 }
2191         }
2192
2193         kfree_rcu(dev_maps, rcu);
2194
2195 out_no_old_maps:
2196         dev_maps = new_dev_maps;
2197         active = true;
2198
2199 out_no_new_maps:
2200         /* update Tx queue numa node */
2201         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202                                      (numa_node_id >= 0) ? numa_node_id :
2203                                      NUMA_NO_NODE);
2204
2205         if (!dev_maps)
2206                 goto out_no_maps;
2207
2208         /* removes queue from unused CPUs */
2209         for_each_possible_cpu(cpu) {
2210                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211                         active |= remove_xps_queue(dev_maps, tci, index);
2212                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213                         active |= remove_xps_queue(dev_maps, tci, index);
2214                 for (i = num_tc - tc, tci++; --i; tci++)
2215                         active |= remove_xps_queue(dev_maps, tci, index);
2216         }
2217
2218         /* free map if not active */
2219         if (!active) {
2220                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221                 kfree_rcu(dev_maps, rcu);
2222         }
2223
2224 out_no_maps:
2225         mutex_unlock(&xps_map_mutex);
2226
2227         return 0;
2228 error:
2229         /* remove any maps that we added */
2230         for_each_possible_cpu(cpu) {
2231                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233                         map = dev_maps ?
2234                               xmap_dereference(dev_maps->cpu_map[tci]) :
2235                               NULL;
2236                         if (new_map && new_map != map)
2237                                 kfree(new_map);
2238                 }
2239         }
2240
2241         mutex_unlock(&xps_map_mutex);
2242
2243         kfree(new_dev_maps);
2244         return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252         netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254         dev->num_tc = 0;
2255         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262         if (tc >= dev->num_tc)
2263                 return -EINVAL;
2264
2265 #ifdef CONFIG_XPS
2266         netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268         dev->tc_to_txq[tc].count = count;
2269         dev->tc_to_txq[tc].offset = offset;
2270         return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276         if (num_tc > TC_MAX_QUEUE)
2277                 return -EINVAL;
2278
2279 #ifdef CONFIG_XPS
2280         netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282         dev->num_tc = num_tc;
2283         return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293         int rc;
2294
2295         if (txq < 1 || txq > dev->num_tx_queues)
2296                 return -EINVAL;
2297
2298         if (dev->reg_state == NETREG_REGISTERED ||
2299             dev->reg_state == NETREG_UNREGISTERING) {
2300                 ASSERT_RTNL();
2301
2302                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303                                                   txq);
2304                 if (rc)
2305                         return rc;
2306
2307                 if (dev->num_tc)
2308                         netif_setup_tc(dev, txq);
2309
2310                 if (txq < dev->real_num_tx_queues) {
2311                         qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313                         netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315                 }
2316         }
2317
2318         dev->real_num_tx_queues = txq;
2319         return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *      @dev: Network device
2327  *      @rxq: Actual number of RX queues
2328  *
2329  *      This must be called either with the rtnl_lock held or before
2330  *      registration of the net device.  Returns 0 on success, or a
2331  *      negative error code.  If called before registration, it always
2332  *      succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336         int rc;
2337
2338         if (rxq < 1 || rxq > dev->num_rx_queues)
2339                 return -EINVAL;
2340
2341         if (dev->reg_state == NETREG_REGISTERED) {
2342                 ASSERT_RTNL();
2343
2344                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345                                                   rxq);
2346                 if (rc)
2347                         return rc;
2348         }
2349
2350         dev->real_num_rx_queues = rxq;
2351         return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364         return is_kdump_kernel() ?
2365                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371         struct softnet_data *sd;
2372         unsigned long flags;
2373
2374         local_irq_save(flags);
2375         sd = this_cpu_ptr(&softnet_data);
2376         q->next_sched = NULL;
2377         *sd->output_queue_tailp = q;
2378         sd->output_queue_tailp = &q->next_sched;
2379         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380         local_irq_restore(flags);
2381 }
2382
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386                 __netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389
2390 struct dev_kfree_skb_cb {
2391         enum skb_free_reason reason;
2392 };
2393
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396         return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401         rcu_read_lock();
2402         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405                 __netif_schedule(q);
2406         }
2407         rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410
2411 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2412 {
2413         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2414                 struct Qdisc *q;
2415
2416                 rcu_read_lock();
2417                 q = rcu_dereference(dev_queue->qdisc);
2418                 __netif_schedule(q);
2419                 rcu_read_unlock();
2420         }
2421 }
2422 EXPORT_SYMBOL(netif_tx_wake_queue);
2423
2424 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2425 {
2426         unsigned long flags;
2427
2428         if (likely(atomic_read(&skb->users) == 1)) {
2429                 smp_rmb();
2430                 atomic_set(&skb->users, 0);
2431         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2432                 return;
2433         }
2434         get_kfree_skb_cb(skb)->reason = reason;
2435         local_irq_save(flags);
2436         skb->next = __this_cpu_read(softnet_data.completion_queue);
2437         __this_cpu_write(softnet_data.completion_queue, skb);
2438         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2439         local_irq_restore(flags);
2440 }
2441 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2442
2443 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2444 {
2445         if (in_irq() || irqs_disabled())
2446                 __dev_kfree_skb_irq(skb, reason);
2447         else
2448                 dev_kfree_skb(skb);
2449 }
2450 EXPORT_SYMBOL(__dev_kfree_skb_any);
2451
2452
2453 /**
2454  * netif_device_detach - mark device as removed
2455  * @dev: network device
2456  *
2457  * Mark device as removed from system and therefore no longer available.
2458  */
2459 void netif_device_detach(struct net_device *dev)
2460 {
2461         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2462             netif_running(dev)) {
2463                 netif_tx_stop_all_queues(dev);
2464         }
2465 }
2466 EXPORT_SYMBOL(netif_device_detach);
2467
2468 /**
2469  * netif_device_attach - mark device as attached
2470  * @dev: network device
2471  *
2472  * Mark device as attached from system and restart if needed.
2473  */
2474 void netif_device_attach(struct net_device *dev)
2475 {
2476         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2477             netif_running(dev)) {
2478                 netif_tx_wake_all_queues(dev);
2479                 __netdev_watchdog_up(dev);
2480         }
2481 }
2482 EXPORT_SYMBOL(netif_device_attach);
2483
2484 /*
2485  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2486  * to be used as a distribution range.
2487  */
2488 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2489                   unsigned int num_tx_queues)
2490 {
2491         u32 hash;
2492         u16 qoffset = 0;
2493         u16 qcount = num_tx_queues;
2494
2495         if (skb_rx_queue_recorded(skb)) {
2496                 hash = skb_get_rx_queue(skb);
2497                 while (unlikely(hash >= num_tx_queues))
2498                         hash -= num_tx_queues;
2499                 return hash;
2500         }
2501
2502         if (dev->num_tc) {
2503                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2504                 qoffset = dev->tc_to_txq[tc].offset;
2505                 qcount = dev->tc_to_txq[tc].count;
2506         }
2507
2508         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2509 }
2510 EXPORT_SYMBOL(__skb_tx_hash);
2511
2512 static void skb_warn_bad_offload(const struct sk_buff *skb)
2513 {
2514         static const netdev_features_t null_features;
2515         struct net_device *dev = skb->dev;
2516         const char *name = "";
2517
2518         if (!net_ratelimit())
2519                 return;
2520
2521         if (dev) {
2522                 if (dev->dev.parent)
2523                         name = dev_driver_string(dev->dev.parent);
2524                 else
2525                         name = netdev_name(dev);
2526         }
2527         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2528              "gso_type=%d ip_summed=%d\n",
2529              name, dev ? &dev->features : &null_features,
2530              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2531              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2532              skb_shinfo(skb)->gso_type, skb->ip_summed);
2533 }
2534
2535 /*
2536  * Invalidate hardware checksum when packet is to be mangled, and
2537  * complete checksum manually on outgoing path.
2538  */
2539 int skb_checksum_help(struct sk_buff *skb)
2540 {
2541         __wsum csum;
2542         int ret = 0, offset;
2543
2544         if (skb->ip_summed == CHECKSUM_COMPLETE)
2545                 goto out_set_summed;
2546
2547         if (unlikely(skb_shinfo(skb)->gso_size)) {
2548                 skb_warn_bad_offload(skb);
2549                 return -EINVAL;
2550         }
2551
2552         /* Before computing a checksum, we should make sure no frag could
2553          * be modified by an external entity : checksum could be wrong.
2554          */
2555         if (skb_has_shared_frag(skb)) {
2556                 ret = __skb_linearize(skb);
2557                 if (ret)
2558                         goto out;
2559         }
2560
2561         offset = skb_checksum_start_offset(skb);
2562         BUG_ON(offset >= skb_headlen(skb));
2563         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2564
2565         offset += skb->csum_offset;
2566         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2567
2568         if (skb_cloned(skb) &&
2569             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2570                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2571                 if (ret)
2572                         goto out;
2573         }
2574
2575         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2576 out_set_summed:
2577         skb->ip_summed = CHECKSUM_NONE;
2578 out:
2579         return ret;
2580 }
2581 EXPORT_SYMBOL(skb_checksum_help);
2582
2583 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2584 {
2585         __be16 type = skb->protocol;
2586
2587         /* Tunnel gso handlers can set protocol to ethernet. */
2588         if (type == htons(ETH_P_TEB)) {
2589                 struct ethhdr *eth;
2590
2591                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2592                         return 0;
2593
2594                 eth = (struct ethhdr *)skb_mac_header(skb);
2595                 type = eth->h_proto;
2596         }
2597
2598         return __vlan_get_protocol(skb, type, depth);
2599 }
2600
2601 /**
2602  *      skb_mac_gso_segment - mac layer segmentation handler.
2603  *      @skb: buffer to segment
2604  *      @features: features for the output path (see dev->features)
2605  */
2606 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2607                                     netdev_features_t features)
2608 {
2609         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2610         struct packet_offload *ptype;
2611         int vlan_depth = skb->mac_len;
2612         __be16 type = skb_network_protocol(skb, &vlan_depth);
2613
2614         if (unlikely(!type))
2615                 return ERR_PTR(-EINVAL);
2616
2617         __skb_pull(skb, vlan_depth);
2618
2619         rcu_read_lock();
2620         list_for_each_entry_rcu(ptype, &offload_base, list) {
2621                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2622                         segs = ptype->callbacks.gso_segment(skb, features);
2623                         break;
2624                 }
2625         }
2626         rcu_read_unlock();
2627
2628         __skb_push(skb, skb->data - skb_mac_header(skb));
2629
2630         return segs;
2631 }
2632 EXPORT_SYMBOL(skb_mac_gso_segment);
2633
2634
2635 /* openvswitch calls this on rx path, so we need a different check.
2636  */
2637 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2638 {
2639         if (tx_path)
2640                 return skb->ip_summed != CHECKSUM_PARTIAL;
2641         else
2642                 return skb->ip_summed == CHECKSUM_NONE;
2643 }
2644
2645 /**
2646  *      __skb_gso_segment - Perform segmentation on skb.
2647  *      @skb: buffer to segment
2648  *      @features: features for the output path (see dev->features)
2649  *      @tx_path: whether it is called in TX path
2650  *
2651  *      This function segments the given skb and returns a list of segments.
2652  *
2653  *      It may return NULL if the skb requires no segmentation.  This is
2654  *      only possible when GSO is used for verifying header integrity.
2655  *
2656  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2657  */
2658 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2659                                   netdev_features_t features, bool tx_path)
2660 {
2661         if (unlikely(skb_needs_check(skb, tx_path))) {
2662                 int err;
2663
2664                 skb_warn_bad_offload(skb);
2665
2666                 err = skb_cow_head(skb, 0);
2667                 if (err < 0)
2668                         return ERR_PTR(err);
2669         }
2670
2671         /* Only report GSO partial support if it will enable us to
2672          * support segmentation on this frame without needing additional
2673          * work.
2674          */
2675         if (features & NETIF_F_GSO_PARTIAL) {
2676                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2677                 struct net_device *dev = skb->dev;
2678
2679                 partial_features |= dev->features & dev->gso_partial_features;
2680                 if (!skb_gso_ok(skb, features | partial_features))
2681                         features &= ~NETIF_F_GSO_PARTIAL;
2682         }
2683
2684         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2685                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2686
2687         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2688         SKB_GSO_CB(skb)->encap_level = 0;
2689
2690         skb_reset_mac_header(skb);
2691         skb_reset_mac_len(skb);
2692
2693         return skb_mac_gso_segment(skb, features);
2694 }
2695 EXPORT_SYMBOL(__skb_gso_segment);
2696
2697 /* Take action when hardware reception checksum errors are detected. */
2698 #ifdef CONFIG_BUG
2699 void netdev_rx_csum_fault(struct net_device *dev)
2700 {
2701         if (net_ratelimit()) {
2702                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2703                 dump_stack();
2704         }
2705 }
2706 EXPORT_SYMBOL(netdev_rx_csum_fault);
2707 #endif
2708
2709 /* Actually, we should eliminate this check as soon as we know, that:
2710  * 1. IOMMU is present and allows to map all the memory.
2711  * 2. No high memory really exists on this machine.
2712  */
2713
2714 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2715 {
2716 #ifdef CONFIG_HIGHMEM
2717         int i;
2718         if (!(dev->features & NETIF_F_HIGHDMA)) {
2719                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2720                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2721                         if (PageHighMem(skb_frag_page(frag)))
2722                                 return 1;
2723                 }
2724         }
2725
2726         if (PCI_DMA_BUS_IS_PHYS) {
2727                 struct device *pdev = dev->dev.parent;
2728
2729                 if (!pdev)
2730                         return 0;
2731                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2732                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2733                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2734                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2735                                 return 1;
2736                 }
2737         }
2738 #endif
2739         return 0;
2740 }
2741
2742 /* If MPLS offload request, verify we are testing hardware MPLS features
2743  * instead of standard features for the netdev.
2744  */
2745 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2746 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2747                                            netdev_features_t features,
2748                                            __be16 type)
2749 {
2750         if (eth_p_mpls(type))
2751                 features &= skb->dev->mpls_features;
2752
2753         return features;
2754 }
2755 #else
2756 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2757                                            netdev_features_t features,
2758                                            __be16 type)
2759 {
2760         return features;
2761 }
2762 #endif
2763
2764 static netdev_features_t harmonize_features(struct sk_buff *skb,
2765         netdev_features_t features)
2766 {
2767         int tmp;
2768         __be16 type;
2769
2770         type = skb_network_protocol(skb, &tmp);
2771         features = net_mpls_features(skb, features, type);
2772
2773         if (skb->ip_summed != CHECKSUM_NONE &&
2774             !can_checksum_protocol(features, type)) {
2775                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2776         }
2777         if (illegal_highdma(skb->dev, skb))
2778                 features &= ~NETIF_F_SG;
2779
2780         return features;
2781 }
2782
2783 netdev_features_t passthru_features_check(struct sk_buff *skb,
2784                                           struct net_device *dev,
2785                                           netdev_features_t features)
2786 {
2787         return features;
2788 }
2789 EXPORT_SYMBOL(passthru_features_check);
2790
2791 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2792                                              struct net_device *dev,
2793                                              netdev_features_t features)
2794 {
2795         return vlan_features_check(skb, features);
2796 }
2797
2798 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2799                                             struct net_device *dev,
2800                                             netdev_features_t features)
2801 {
2802         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2803
2804         if (gso_segs > dev->gso_max_segs)
2805                 return features & ~NETIF_F_GSO_MASK;
2806
2807         /* Support for GSO partial features requires software
2808          * intervention before we can actually process the packets
2809          * so we need to strip support for any partial features now
2810          * and we can pull them back in after we have partially
2811          * segmented the frame.
2812          */
2813         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2814                 features &= ~dev->gso_partial_features;
2815
2816         /* Make sure to clear the IPv4 ID mangling feature if the
2817          * IPv4 header has the potential to be fragmented.
2818          */
2819         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2820                 struct iphdr *iph = skb->encapsulation ?
2821                                     inner_ip_hdr(skb) : ip_hdr(skb);
2822
2823                 if (!(iph->frag_off & htons(IP_DF)))
2824                         features &= ~NETIF_F_TSO_MANGLEID;
2825         }
2826
2827         return features;
2828 }
2829
2830 netdev_features_t netif_skb_features(struct sk_buff *skb)
2831 {
2832         struct net_device *dev = skb->dev;
2833         netdev_features_t features = dev->features;
2834
2835         if (skb_is_gso(skb))
2836                 features = gso_features_check(skb, dev, features);
2837
2838         /* If encapsulation offload request, verify we are testing
2839          * hardware encapsulation features instead of standard
2840          * features for the netdev
2841          */
2842         if (skb->encapsulation)
2843                 features &= dev->hw_enc_features;
2844
2845         if (skb_vlan_tagged(skb))
2846                 features = netdev_intersect_features(features,
2847                                                      dev->vlan_features |
2848                                                      NETIF_F_HW_VLAN_CTAG_TX |
2849                                                      NETIF_F_HW_VLAN_STAG_TX);
2850
2851         if (dev->netdev_ops->ndo_features_check)
2852                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2853                                                                 features);
2854         else
2855                 features &= dflt_features_check(skb, dev, features);
2856
2857         return harmonize_features(skb, features);
2858 }
2859 EXPORT_SYMBOL(netif_skb_features);
2860
2861 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2862                     struct netdev_queue *txq, bool more)
2863 {
2864         unsigned int len;
2865         int rc;
2866
2867         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2868                 dev_queue_xmit_nit(skb, dev);
2869
2870         len = skb->len;
2871         trace_net_dev_start_xmit(skb, dev);
2872         rc = netdev_start_xmit(skb, dev, txq, more);
2873         trace_net_dev_xmit(skb, rc, dev, len);
2874
2875         return rc;
2876 }
2877
2878 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2879                                     struct netdev_queue *txq, int *ret)
2880 {
2881         struct sk_buff *skb = first;
2882         int rc = NETDEV_TX_OK;
2883
2884         while (skb) {
2885                 struct sk_buff *next = skb->next;
2886
2887                 skb->next = NULL;
2888                 rc = xmit_one(skb, dev, txq, next != NULL);
2889                 if (unlikely(!dev_xmit_complete(rc))) {
2890                         skb->next = next;
2891                         goto out;
2892                 }
2893
2894                 skb = next;
2895                 if (netif_xmit_stopped(txq) && skb) {
2896                         rc = NETDEV_TX_BUSY;
2897                         break;
2898                 }
2899         }
2900
2901 out:
2902         *ret = rc;
2903         return skb;
2904 }
2905
2906 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2907                                           netdev_features_t features)
2908 {
2909         if (skb_vlan_tag_present(skb) &&
2910             !vlan_hw_offload_capable(features, skb->vlan_proto))
2911                 skb = __vlan_hwaccel_push_inside(skb);
2912         return skb;
2913 }
2914
2915 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2916 {
2917         netdev_features_t features;
2918
2919         features = netif_skb_features(skb);
2920         skb = validate_xmit_vlan(skb, features);
2921         if (unlikely(!skb))
2922                 goto out_null;
2923
2924         if (netif_needs_gso(skb, features)) {
2925                 struct sk_buff *segs;
2926
2927                 segs = skb_gso_segment(skb, features);
2928                 if (IS_ERR(segs)) {
2929                         goto out_kfree_skb;
2930                 } else if (segs) {
2931                         consume_skb(skb);
2932                         skb = segs;
2933                 }
2934         } else {
2935                 if (skb_needs_linearize(skb, features) &&
2936                     __skb_linearize(skb))
2937                         goto out_kfree_skb;
2938
2939                 /* If packet is not checksummed and device does not
2940                  * support checksumming for this protocol, complete
2941                  * checksumming here.
2942                  */
2943                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2944                         if (skb->encapsulation)
2945                                 skb_set_inner_transport_header(skb,
2946                                                                skb_checksum_start_offset(skb));
2947                         else
2948                                 skb_set_transport_header(skb,
2949                                                          skb_checksum_start_offset(skb));
2950                         if (!(features & NETIF_F_CSUM_MASK) &&
2951                             skb_checksum_help(skb))
2952                                 goto out_kfree_skb;
2953                 }
2954         }
2955
2956         return skb;
2957
2958 out_kfree_skb:
2959         kfree_skb(skb);
2960 out_null:
2961         atomic_long_inc(&dev->tx_dropped);
2962         return NULL;
2963 }
2964
2965 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2966 {
2967         struct sk_buff *next, *head = NULL, *tail;
2968
2969         for (; skb != NULL; skb = next) {
2970                 next = skb->next;
2971                 skb->next = NULL;
2972
2973                 /* in case skb wont be segmented, point to itself */
2974                 skb->prev = skb;
2975
2976                 skb = validate_xmit_skb(skb, dev);
2977                 if (!skb)
2978                         continue;
2979
2980                 if (!head)
2981                         head = skb;
2982                 else
2983                         tail->next = skb;
2984                 /* If skb was segmented, skb->prev points to
2985                  * the last segment. If not, it still contains skb.
2986                  */
2987                 tail = skb->prev;
2988         }
2989         return head;
2990 }
2991 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997         qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999         /* To get more precise estimation of bytes sent on wire,
3000          * we add to pkt_len the headers size of all segments
3001          */
3002         if (shinfo->gso_size)  {
3003                 unsigned int hdr_len;
3004                 u16 gso_segs = shinfo->gso_segs;
3005
3006                 /* mac layer + network layer */
3007                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009                 /* + transport layer */
3010                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011                         hdr_len += tcp_hdrlen(skb);
3012                 else
3013                         hdr_len += sizeof(struct udphdr);
3014
3015                 if (shinfo->gso_type & SKB_GSO_DODGY)
3016                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017                                                 shinfo->gso_size);
3018
3019                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020         }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024                                  struct net_device *dev,
3025                                  struct netdev_queue *txq)
3026 {
3027         spinlock_t *root_lock = qdisc_lock(q);
3028         struct sk_buff *to_free = NULL;
3029         bool contended;
3030         int rc;
3031
3032         qdisc_calculate_pkt_len(skb, q);
3033         /*
3034          * Heuristic to force contended enqueues to serialize on a
3035          * separate lock before trying to get qdisc main lock.
3036          * This permits qdisc->running owner to get the lock more
3037          * often and dequeue packets faster.
3038          */
3039         contended = qdisc_is_running(q);
3040         if (unlikely(contended))
3041                 spin_lock(&q->busylock);
3042
3043         spin_lock(root_lock);
3044         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3045                 __qdisc_drop(skb, &to_free);
3046                 rc = NET_XMIT_DROP;
3047         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3048                    qdisc_run_begin(q)) {
3049                 /*
3050                  * This is a work-conserving queue; there are no old skbs
3051                  * waiting to be sent out; and the qdisc is not running -
3052                  * xmit the skb directly.
3053                  */
3054
3055                 qdisc_bstats_update(q, skb);
3056
3057                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3058                         if (unlikely(contended)) {
3059                                 spin_unlock(&q->busylock);
3060                                 contended = false;
3061                         }
3062                         __qdisc_run(q);
3063                 } else
3064                         qdisc_run_end(q);
3065
3066                 rc = NET_XMIT_SUCCESS;
3067         } else {
3068                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3069                 if (qdisc_run_begin(q)) {
3070                         if (unlikely(contended)) {
3071                                 spin_unlock(&q->busylock);
3072                                 contended = false;
3073                         }
3074                         __qdisc_run(q);
3075                 }
3076         }
3077         spin_unlock(root_lock);
3078         if (unlikely(to_free))
3079                 kfree_skb_list(to_free);
3080         if (unlikely(contended))
3081                 spin_unlock(&q->busylock);
3082         return rc;
3083 }
3084
3085 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3086 static void skb_update_prio(struct sk_buff *skb)
3087 {
3088         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3089
3090         if (!skb->priority && skb->sk && map) {
3091                 unsigned int prioidx =
3092                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3093
3094                 if (prioidx < map->priomap_len)
3095                         skb->priority = map->priomap[prioidx];
3096         }
3097 }
3098 #else
3099 #define skb_update_prio(skb)
3100 #endif
3101
3102 DEFINE_PER_CPU(int, xmit_recursion);
3103 EXPORT_SYMBOL(xmit_recursion);
3104
3105 /**
3106  *      dev_loopback_xmit - loop back @skb
3107  *      @net: network namespace this loopback is happening in
3108  *      @sk:  sk needed to be a netfilter okfn
3109  *      @skb: buffer to transmit
3110  */
3111 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3112 {
3113         skb_reset_mac_header(skb);
3114         __skb_pull(skb, skb_network_offset(skb));
3115         skb->pkt_type = PACKET_LOOPBACK;
3116         skb->ip_summed = CHECKSUM_UNNECESSARY;
3117         WARN_ON(!skb_dst(skb));
3118         skb_dst_force(skb);
3119         netif_rx_ni(skb);
3120         return 0;
3121 }
3122 EXPORT_SYMBOL(dev_loopback_xmit);
3123
3124 #ifdef CONFIG_NET_EGRESS
3125 static struct sk_buff *
3126 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3127 {
3128         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3129         struct tcf_result cl_res;
3130
3131         if (!cl)
3132                 return skb;
3133
3134         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3135         qdisc_bstats_cpu_update(cl->q, skb);
3136
3137         switch (tc_classify(skb, cl, &cl_res, false)) {
3138         case TC_ACT_OK:
3139         case TC_ACT_RECLASSIFY:
3140                 skb->tc_index = TC_H_MIN(cl_res.classid);
3141                 break;
3142         case TC_ACT_SHOT:
3143                 qdisc_qstats_cpu_drop(cl->q);
3144                 *ret = NET_XMIT_DROP;
3145                 kfree_skb(skb);
3146                 return NULL;
3147         case TC_ACT_STOLEN:
3148         case TC_ACT_QUEUED:
3149                 *ret = NET_XMIT_SUCCESS;
3150                 consume_skb(skb);
3151                 return NULL;
3152         case TC_ACT_REDIRECT:
3153                 /* No need to push/pop skb's mac_header here on egress! */
3154                 skb_do_redirect(skb);
3155                 *ret = NET_XMIT_SUCCESS;
3156                 return NULL;
3157         default:
3158                 break;
3159         }
3160
3161         return skb;
3162 }
3163 #endif /* CONFIG_NET_EGRESS */
3164
3165 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3166 {
3167 #ifdef CONFIG_XPS
3168         struct xps_dev_maps *dev_maps;
3169         struct xps_map *map;
3170         int queue_index = -1;
3171
3172         rcu_read_lock();
3173         dev_maps = rcu_dereference(dev->xps_maps);
3174         if (dev_maps) {
3175                 unsigned int tci = skb->sender_cpu - 1;
3176
3177                 if (dev->num_tc) {
3178                         tci *= dev->num_tc;
3179                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3180                 }
3181
3182                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3183                 if (map) {
3184                         if (map->len == 1)
3185                                 queue_index = map->queues[0];
3186                         else
3187                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3188                                                                            map->len)];
3189                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3190                                 queue_index = -1;
3191                 }
3192         }
3193         rcu_read_unlock();
3194
3195         return queue_index;
3196 #else
3197         return -1;
3198 #endif
3199 }
3200
3201 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3202 {
3203         struct sock *sk = skb->sk;
3204         int queue_index = sk_tx_queue_get(sk);
3205
3206         if (queue_index < 0 || skb->ooo_okay ||
3207             queue_index >= dev->real_num_tx_queues) {
3208                 int new_index = get_xps_queue(dev, skb);
3209                 if (new_index < 0)
3210                         new_index = skb_tx_hash(dev, skb);
3211
3212                 if (queue_index != new_index && sk &&
3213                     sk_fullsock(sk) &&
3214                     rcu_access_pointer(sk->sk_dst_cache))
3215                         sk_tx_queue_set(sk, new_index);
3216
3217                 queue_index = new_index;
3218         }
3219
3220         return queue_index;
3221 }
3222
3223 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3224                                     struct sk_buff *skb,
3225                                     void *accel_priv)
3226 {
3227         int queue_index = 0;
3228
3229 #ifdef CONFIG_XPS
3230         u32 sender_cpu = skb->sender_cpu - 1;
3231
3232         if (sender_cpu >= (u32)NR_CPUS)
3233                 skb->sender_cpu = raw_smp_processor_id() + 1;
3234 #endif
3235
3236         if (dev->real_num_tx_queues != 1) {
3237                 const struct net_device_ops *ops = dev->netdev_ops;
3238                 if (ops->ndo_select_queue)
3239                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3240                                                             __netdev_pick_tx);
3241                 else
3242                         queue_index = __netdev_pick_tx(dev, skb);
3243
3244                 if (!accel_priv)
3245                         queue_index = netdev_cap_txqueue(dev, queue_index);
3246         }
3247
3248         skb_set_queue_mapping(skb, queue_index);
3249         return netdev_get_tx_queue(dev, queue_index);
3250 }
3251
3252 /**
3253  *      __dev_queue_xmit - transmit a buffer
3254  *      @skb: buffer to transmit
3255  *      @accel_priv: private data used for L2 forwarding offload
3256  *
3257  *      Queue a buffer for transmission to a network device. The caller must
3258  *      have set the device and priority and built the buffer before calling
3259  *      this function. The function can be called from an interrupt.
3260  *
3261  *      A negative errno code is returned on a failure. A success does not
3262  *      guarantee the frame will be transmitted as it may be dropped due
3263  *      to congestion or traffic shaping.
3264  *
3265  * -----------------------------------------------------------------------------------
3266  *      I notice this method can also return errors from the queue disciplines,
3267  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3268  *      be positive.
3269  *
3270  *      Regardless of the return value, the skb is consumed, so it is currently
3271  *      difficult to retry a send to this method.  (You can bump the ref count
3272  *      before sending to hold a reference for retry if you are careful.)
3273  *
3274  *      When calling this method, interrupts MUST be enabled.  This is because
3275  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3276  *          --BLG
3277  */
3278 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3279 {
3280         struct net_device *dev = skb->dev;
3281         struct netdev_queue *txq;
3282         struct Qdisc *q;
3283         int rc = -ENOMEM;
3284
3285         skb_reset_mac_header(skb);
3286
3287         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3288                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3289
3290         /* Disable soft irqs for various locks below. Also
3291          * stops preemption for RCU.
3292          */
3293         rcu_read_lock_bh();
3294
3295         skb_update_prio(skb);
3296
3297         qdisc_pkt_len_init(skb);
3298 #ifdef CONFIG_NET_CLS_ACT
3299         skb->tc_at_ingress = 0;
3300 # ifdef CONFIG_NET_EGRESS
3301         if (static_key_false(&egress_needed)) {
3302                 skb = sch_handle_egress(skb, &rc, dev);
3303                 if (!skb)
3304                         goto out;
3305         }
3306 # endif
3307 #endif
3308         /* If device/qdisc don't need skb->dst, release it right now while
3309          * its hot in this cpu cache.
3310          */
3311         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3312                 skb_dst_drop(skb);
3313         else
3314                 skb_dst_force(skb);
3315
3316         txq = netdev_pick_tx(dev, skb, accel_priv);
3317         q = rcu_dereference_bh(txq->qdisc);
3318
3319         trace_net_dev_queue(skb);
3320         if (q->enqueue) {
3321                 rc = __dev_xmit_skb(skb, q, dev, txq);
3322                 goto out;
3323         }
3324
3325         /* The device has no queue. Common case for software devices:
3326            loopback, all the sorts of tunnels...
3327
3328            Really, it is unlikely that netif_tx_lock protection is necessary
3329            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3330            counters.)
3331            However, it is possible, that they rely on protection
3332            made by us here.
3333
3334            Check this and shot the lock. It is not prone from deadlocks.
3335            Either shot noqueue qdisc, it is even simpler 8)
3336          */
3337         if (dev->flags & IFF_UP) {
3338                 int cpu = smp_processor_id(); /* ok because BHs are off */
3339
3340                 if (txq->xmit_lock_owner != cpu) {
3341                         if (unlikely(__this_cpu_read(xmit_recursion) >
3342                                      XMIT_RECURSION_LIMIT))
3343                                 goto recursion_alert;
3344
3345                         skb = validate_xmit_skb(skb, dev);
3346                         if (!skb)
3347                                 goto out;
3348
3349                         HARD_TX_LOCK(dev, txq, cpu);
3350
3351                         if (!netif_xmit_stopped(txq)) {
3352                                 __this_cpu_inc(xmit_recursion);
3353                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3354                                 __this_cpu_dec(xmit_recursion);
3355                                 if (dev_xmit_complete(rc)) {
3356                                         HARD_TX_UNLOCK(dev, txq);
3357                                         goto out;
3358                                 }
3359                         }
3360                         HARD_TX_UNLOCK(dev, txq);
3361                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3362                                              dev->name);
3363                 } else {
3364                         /* Recursion is detected! It is possible,
3365                          * unfortunately
3366                          */
3367 recursion_alert:
3368                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3369                                              dev->name);
3370                 }
3371         }
3372
3373         rc = -ENETDOWN;
3374         rcu_read_unlock_bh();
3375
3376         atomic_long_inc(&dev->tx_dropped);
3377         kfree_skb_list(skb);
3378         return rc;
3379 out:
3380         rcu_read_unlock_bh();
3381         return rc;
3382 }
3383
3384 int dev_queue_xmit(struct sk_buff *skb)
3385 {
3386         return __dev_queue_xmit(skb, NULL);
3387 }
3388 EXPORT_SYMBOL(dev_queue_xmit);
3389
3390 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3391 {
3392         return __dev_queue_xmit(skb, accel_priv);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit_accel);
3395
3396
3397 /*=======================================================================
3398                         Receiver routines
3399   =======================================================================*/
3400
3401 int netdev_max_backlog __read_mostly = 1000;
3402 EXPORT_SYMBOL(netdev_max_backlog);
3403
3404 int netdev_tstamp_prequeue __read_mostly = 1;
3405 int netdev_budget __read_mostly = 300;
3406 int weight_p __read_mostly = 64;           /* old backlog weight */
3407 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3408 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3409 int dev_rx_weight __read_mostly = 64;
3410 int dev_tx_weight __read_mostly = 64;
3411
3412 /* Called with irq disabled */
3413 static inline void ____napi_schedule(struct softnet_data *sd,
3414                                      struct napi_struct *napi)
3415 {
3416         list_add_tail(&napi->poll_list, &sd->poll_list);
3417         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3418 }
3419
3420 #ifdef CONFIG_RPS
3421
3422 /* One global table that all flow-based protocols share. */
3423 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3424 EXPORT_SYMBOL(rps_sock_flow_table);
3425 u32 rps_cpu_mask __read_mostly;
3426 EXPORT_SYMBOL(rps_cpu_mask);
3427
3428 struct static_key rps_needed __read_mostly;
3429 EXPORT_SYMBOL(rps_needed);
3430 struct static_key rfs_needed __read_mostly;
3431 EXPORT_SYMBOL(rfs_needed);
3432
3433 static struct rps_dev_flow *
3434 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3435             struct rps_dev_flow *rflow, u16 next_cpu)
3436 {
3437         if (next_cpu < nr_cpu_ids) {
3438 #ifdef CONFIG_RFS_ACCEL
3439                 struct netdev_rx_queue *rxqueue;
3440                 struct rps_dev_flow_table *flow_table;
3441                 struct rps_dev_flow *old_rflow;
3442                 u32 flow_id;
3443                 u16 rxq_index;
3444                 int rc;
3445
3446                 /* Should we steer this flow to a different hardware queue? */
3447                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3448                     !(dev->features & NETIF_F_NTUPLE))
3449                         goto out;
3450                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3451                 if (rxq_index == skb_get_rx_queue(skb))
3452                         goto out;
3453
3454                 rxqueue = dev->_rx + rxq_index;
3455                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3456                 if (!flow_table)
3457                         goto out;
3458                 flow_id = skb_get_hash(skb) & flow_table->mask;
3459                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3460                                                         rxq_index, flow_id);
3461                 if (rc < 0)
3462                         goto out;
3463                 old_rflow = rflow;
3464                 rflow = &flow_table->flows[flow_id];
3465                 rflow->filter = rc;
3466                 if (old_rflow->filter == rflow->filter)
3467                         old_rflow->filter = RPS_NO_FILTER;
3468         out:
3469 #endif
3470                 rflow->last_qtail =
3471                         per_cpu(softnet_data, next_cpu).input_queue_head;
3472         }
3473
3474         rflow->cpu = next_cpu;
3475         return rflow;
3476 }
3477
3478 /*
3479  * get_rps_cpu is called from netif_receive_skb and returns the target
3480  * CPU from the RPS map of the receiving queue for a given skb.
3481  * rcu_read_lock must be held on entry.
3482  */
3483 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3484                        struct rps_dev_flow **rflowp)
3485 {
3486         const struct rps_sock_flow_table *sock_flow_table;
3487         struct netdev_rx_queue *rxqueue = dev->_rx;
3488         struct rps_dev_flow_table *flow_table;
3489         struct rps_map *map;
3490         int cpu = -1;
3491         u32 tcpu;
3492         u32 hash;
3493
3494         if (skb_rx_queue_recorded(skb)) {
3495                 u16 index = skb_get_rx_queue(skb);
3496
3497                 if (unlikely(index >= dev->real_num_rx_queues)) {
3498                         WARN_ONCE(dev->real_num_rx_queues > 1,
3499                                   "%s received packet on queue %u, but number "
3500                                   "of RX queues is %u\n",
3501                                   dev->name, index, dev->real_num_rx_queues);
3502                         goto done;
3503                 }
3504                 rxqueue += index;
3505         }
3506
3507         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3508
3509         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3510         map = rcu_dereference(rxqueue->rps_map);
3511         if (!flow_table && !map)
3512                 goto done;
3513
3514         skb_reset_network_header(skb);
3515         hash = skb_get_hash(skb);
3516         if (!hash)
3517                 goto done;
3518
3519         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3520         if (flow_table && sock_flow_table) {
3521                 struct rps_dev_flow *rflow;
3522                 u32 next_cpu;
3523                 u32 ident;
3524
3525                 /* First check into global flow table if there is a match */
3526                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3527                 if ((ident ^ hash) & ~rps_cpu_mask)
3528                         goto try_rps;
3529
3530                 next_cpu = ident & rps_cpu_mask;
3531
3532                 /* OK, now we know there is a match,
3533                  * we can look at the local (per receive queue) flow table
3534                  */
3535                 rflow = &flow_table->flows[hash & flow_table->mask];
3536                 tcpu = rflow->cpu;
3537
3538                 /*
3539                  * If the desired CPU (where last recvmsg was done) is
3540                  * different from current CPU (one in the rx-queue flow
3541                  * table entry), switch if one of the following holds:
3542                  *   - Current CPU is unset (>= nr_cpu_ids).
3543                  *   - Current CPU is offline.
3544                  *   - The current CPU's queue tail has advanced beyond the
3545                  *     last packet that was enqueued using this table entry.
3546                  *     This guarantees that all previous packets for the flow
3547                  *     have been dequeued, thus preserving in order delivery.
3548                  */
3549                 if (unlikely(tcpu != next_cpu) &&
3550                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3551                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3552                       rflow->last_qtail)) >= 0)) {
3553                         tcpu = next_cpu;
3554                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3555                 }
3556
3557                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3558                         *rflowp = rflow;
3559                         cpu = tcpu;
3560                         goto done;
3561                 }
3562         }
3563
3564 try_rps:
3565
3566         if (map) {
3567                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3568                 if (cpu_online(tcpu)) {
3569                         cpu = tcpu;
3570                         goto done;
3571                 }
3572         }
3573
3574 done:
3575         return cpu;
3576 }
3577
3578 #ifdef CONFIG_RFS_ACCEL
3579
3580 /**
3581  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3582  * @dev: Device on which the filter was set
3583  * @rxq_index: RX queue index
3584  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3585  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3586  *
3587  * Drivers that implement ndo_rx_flow_steer() should periodically call
3588  * this function for each installed filter and remove the filters for
3589  * which it returns %true.
3590  */
3591 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3592                          u32 flow_id, u16 filter_id)
3593 {
3594         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3595         struct rps_dev_flow_table *flow_table;
3596         struct rps_dev_flow *rflow;
3597         bool expire = true;
3598         unsigned int cpu;
3599
3600         rcu_read_lock();
3601         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3602         if (flow_table && flow_id <= flow_table->mask) {
3603                 rflow = &flow_table->flows[flow_id];
3604                 cpu = ACCESS_ONCE(rflow->cpu);
3605                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3606                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3607                            rflow->last_qtail) <
3608                      (int)(10 * flow_table->mask)))
3609                         expire = false;
3610         }
3611         rcu_read_unlock();
3612         return expire;
3613 }
3614 EXPORT_SYMBOL(rps_may_expire_flow);
3615
3616 #endif /* CONFIG_RFS_ACCEL */
3617
3618 /* Called from hardirq (IPI) context */
3619 static void rps_trigger_softirq(void *data)
3620 {
3621         struct softnet_data *sd = data;
3622
3623         ____napi_schedule(sd, &sd->backlog);
3624         sd->received_rps++;
3625 }
3626
3627 #endif /* CONFIG_RPS */
3628
3629 /*
3630  * Check if this softnet_data structure is another cpu one
3631  * If yes, queue it to our IPI list and return 1
3632  * If no, return 0
3633  */
3634 static int rps_ipi_queued(struct softnet_data *sd)
3635 {
3636 #ifdef CONFIG_RPS
3637         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3638
3639         if (sd != mysd) {
3640                 sd->rps_ipi_next = mysd->rps_ipi_list;
3641                 mysd->rps_ipi_list = sd;
3642
3643                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3644                 return 1;
3645         }
3646 #endif /* CONFIG_RPS */
3647         return 0;
3648 }
3649
3650 #ifdef CONFIG_NET_FLOW_LIMIT
3651 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3652 #endif
3653
3654 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3655 {
3656 #ifdef CONFIG_NET_FLOW_LIMIT
3657         struct sd_flow_limit *fl;
3658         struct softnet_data *sd;
3659         unsigned int old_flow, new_flow;
3660
3661         if (qlen < (netdev_max_backlog >> 1))
3662                 return false;
3663
3664         sd = this_cpu_ptr(&softnet_data);
3665
3666         rcu_read_lock();
3667         fl = rcu_dereference(sd->flow_limit);
3668         if (fl) {
3669                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3670                 old_flow = fl->history[fl->history_head];
3671                 fl->history[fl->history_head] = new_flow;
3672
3673                 fl->history_head++;
3674                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3675
3676                 if (likely(fl->buckets[old_flow]))
3677                         fl->buckets[old_flow]--;
3678
3679                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3680                         fl->count++;
3681                         rcu_read_unlock();
3682                         return true;
3683                 }
3684         }
3685         rcu_read_unlock();
3686 #endif
3687         return false;
3688 }
3689
3690 /*
3691  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3692  * queue (may be a remote CPU queue).
3693  */
3694 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3695                               unsigned int *qtail)
3696 {
3697         struct softnet_data *sd;
3698         unsigned long flags;
3699         unsigned int qlen;
3700
3701         sd = &per_cpu(softnet_data, cpu);
3702
3703         local_irq_save(flags);
3704
3705         rps_lock(sd);
3706         if (!netif_running(skb->dev))
3707                 goto drop;
3708         qlen = skb_queue_len(&sd->input_pkt_queue);
3709         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3710                 if (qlen) {
3711 enqueue:
3712                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3713                         input_queue_tail_incr_save(sd, qtail);
3714                         rps_unlock(sd);
3715                         local_irq_restore(flags);
3716                         return NET_RX_SUCCESS;
3717                 }
3718
3719                 /* Schedule NAPI for backlog device
3720                  * We can use non atomic operation since we own the queue lock
3721                  */
3722                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3723                         if (!rps_ipi_queued(sd))
3724                                 ____napi_schedule(sd, &sd->backlog);
3725                 }
3726                 goto enqueue;
3727         }
3728
3729 drop:
3730         sd->dropped++;
3731         rps_unlock(sd);
3732
3733         local_irq_restore(flags);
3734
3735         atomic_long_inc(&skb->dev->rx_dropped);
3736         kfree_skb(skb);
3737         return NET_RX_DROP;
3738 }
3739
3740 static int netif_rx_internal(struct sk_buff *skb)
3741 {
3742         int ret;
3743
3744         net_timestamp_check(netdev_tstamp_prequeue, skb);
3745
3746         trace_netif_rx(skb);
3747 #ifdef CONFIG_RPS
3748         if (static_key_false(&rps_needed)) {
3749                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3750                 int cpu;
3751
3752                 preempt_disable();
3753                 rcu_read_lock();
3754
3755                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3756                 if (cpu < 0)
3757                         cpu = smp_processor_id();
3758
3759                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3760
3761                 rcu_read_unlock();
3762                 preempt_enable();
3763         } else
3764 #endif
3765         {
3766                 unsigned int qtail;
3767                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3768                 put_cpu();
3769         }
3770         return ret;
3771 }
3772
3773 /**
3774  *      netif_rx        -       post buffer to the network code
3775  *      @skb: buffer to post
3776  *
3777  *      This function receives a packet from a device driver and queues it for
3778  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3779  *      may be dropped during processing for congestion control or by the
3780  *      protocol layers.
3781  *
3782  *      return values:
3783  *      NET_RX_SUCCESS  (no congestion)
3784  *      NET_RX_DROP     (packet was dropped)
3785  *
3786  */
3787
3788 int netif_rx(struct sk_buff *skb)
3789 {
3790         trace_netif_rx_entry(skb);
3791
3792         return netif_rx_internal(skb);
3793 }
3794 EXPORT_SYMBOL(netif_rx);
3795
3796 int netif_rx_ni(struct sk_buff *skb)
3797 {
3798         int err;
3799
3800         trace_netif_rx_ni_entry(skb);
3801
3802         preempt_disable();
3803         err = netif_rx_internal(skb);
3804         if (local_softirq_pending())
3805                 do_softirq();
3806         preempt_enable();
3807
3808         return err;
3809 }
3810 EXPORT_SYMBOL(netif_rx_ni);
3811
3812 static __latent_entropy void net_tx_action(struct softirq_action *h)
3813 {
3814         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3815
3816         if (sd->completion_queue) {
3817                 struct sk_buff *clist;
3818
3819                 local_irq_disable();
3820                 clist = sd->completion_queue;
3821                 sd->completion_queue = NULL;
3822                 local_irq_enable();
3823
3824                 while (clist) {
3825                         struct sk_buff *skb = clist;
3826                         clist = clist->next;
3827
3828                         WARN_ON(atomic_read(&skb->users));
3829                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3830                                 trace_consume_skb(skb);
3831                         else
3832                                 trace_kfree_skb(skb, net_tx_action);
3833
3834                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3835                                 __kfree_skb(skb);
3836                         else
3837                                 __kfree_skb_defer(skb);
3838                 }
3839
3840                 __kfree_skb_flush();
3841         }
3842
3843         if (sd->output_queue) {
3844                 struct Qdisc *head;
3845
3846                 local_irq_disable();
3847                 head = sd->output_queue;
3848                 sd->output_queue = NULL;
3849                 sd->output_queue_tailp = &sd->output_queue;
3850                 local_irq_enable();
3851
3852                 while (head) {
3853                         struct Qdisc *q = head;
3854                         spinlock_t *root_lock;
3855
3856                         head = head->next_sched;
3857
3858                         root_lock = qdisc_lock(q);
3859                         spin_lock(root_lock);
3860                         /* We need to make sure head->next_sched is read
3861                          * before clearing __QDISC_STATE_SCHED
3862                          */
3863                         smp_mb__before_atomic();
3864                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3865                         qdisc_run(q);
3866                         spin_unlock(root_lock);
3867                 }
3868         }
3869 }
3870
3871 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3872 /* This hook is defined here for ATM LANE */
3873 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3874                              unsigned char *addr) __read_mostly;
3875 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3876 #endif
3877
3878 static inline struct sk_buff *
3879 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3880                    struct net_device *orig_dev)
3881 {
3882 #ifdef CONFIG_NET_CLS_ACT
3883         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3884         struct tcf_result cl_res;
3885
3886         /* If there's at least one ingress present somewhere (so
3887          * we get here via enabled static key), remaining devices
3888          * that are not configured with an ingress qdisc will bail
3889          * out here.
3890          */
3891         if (!cl)
3892                 return skb;
3893         if (*pt_prev) {
3894                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3895                 *pt_prev = NULL;
3896         }
3897
3898         qdisc_skb_cb(skb)->pkt_len = skb->len;
3899         skb->tc_at_ingress = 1;
3900         qdisc_bstats_cpu_update(cl->q, skb);
3901
3902         switch (tc_classify(skb, cl, &cl_res, false)) {
3903         case TC_ACT_OK:
3904         case TC_ACT_RECLASSIFY:
3905                 skb->tc_index = TC_H_MIN(cl_res.classid);
3906                 break;
3907         case TC_ACT_SHOT:
3908                 qdisc_qstats_cpu_drop(cl->q);
3909                 kfree_skb(skb);
3910                 return NULL;
3911         case TC_ACT_STOLEN:
3912         case TC_ACT_QUEUED:
3913                 consume_skb(skb);
3914                 return NULL;
3915         case TC_ACT_REDIRECT:
3916                 /* skb_mac_header check was done by cls/act_bpf, so
3917                  * we can safely push the L2 header back before
3918                  * redirecting to another netdev
3919                  */
3920                 __skb_push(skb, skb->mac_len);
3921                 skb_do_redirect(skb);
3922                 return NULL;
3923         default:
3924                 break;
3925         }
3926 #endif /* CONFIG_NET_CLS_ACT */
3927         return skb;
3928 }
3929
3930 /**
3931  *      netdev_is_rx_handler_busy - check if receive handler is registered
3932  *      @dev: device to check
3933  *
3934  *      Check if a receive handler is already registered for a given device.
3935  *      Return true if there one.
3936  *
3937  *      The caller must hold the rtnl_mutex.
3938  */
3939 bool netdev_is_rx_handler_busy(struct net_device *dev)
3940 {
3941         ASSERT_RTNL();
3942         return dev && rtnl_dereference(dev->rx_handler);
3943 }
3944 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3945
3946 /**
3947  *      netdev_rx_handler_register - register receive handler
3948  *      @dev: device to register a handler for
3949  *      @rx_handler: receive handler to register
3950  *      @rx_handler_data: data pointer that is used by rx handler
3951  *
3952  *      Register a receive handler for a device. This handler will then be
3953  *      called from __netif_receive_skb. A negative errno code is returned
3954  *      on a failure.
3955  *
3956  *      The caller must hold the rtnl_mutex.
3957  *
3958  *      For a general description of rx_handler, see enum rx_handler_result.
3959  */
3960 int netdev_rx_handler_register(struct net_device *dev,
3961                                rx_handler_func_t *rx_handler,
3962                                void *rx_handler_data)
3963 {
3964         if (netdev_is_rx_handler_busy(dev))
3965                 return -EBUSY;
3966
3967         /* Note: rx_handler_data must be set before rx_handler */
3968         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3969         rcu_assign_pointer(dev->rx_handler, rx_handler);
3970
3971         return 0;
3972 }
3973 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3974
3975 /**
3976  *      netdev_rx_handler_unregister - unregister receive handler
3977  *      @dev: device to unregister a handler from
3978  *
3979  *      Unregister a receive handler from a device.
3980  *
3981  *      The caller must hold the rtnl_mutex.
3982  */
3983 void netdev_rx_handler_unregister(struct net_device *dev)
3984 {
3985
3986         ASSERT_RTNL();
3987         RCU_INIT_POINTER(dev->rx_handler, NULL);
3988         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3989          * section has a guarantee to see a non NULL rx_handler_data
3990          * as well.
3991          */
3992         synchronize_net();
3993         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3994 }
3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3996
3997 /*
3998  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3999  * the special handling of PFMEMALLOC skbs.
4000  */
4001 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4002 {
4003         switch (skb->protocol) {
4004         case htons(ETH_P_ARP):
4005         case htons(ETH_P_IP):
4006         case htons(ETH_P_IPV6):
4007         case htons(ETH_P_8021Q):
4008         case htons(ETH_P_8021AD):
4009                 return true;
4010         default:
4011                 return false;
4012         }
4013 }
4014
4015 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4016                              int *ret, struct net_device *orig_dev)
4017 {
4018 #ifdef CONFIG_NETFILTER_INGRESS
4019         if (nf_hook_ingress_active(skb)) {
4020                 int ingress_retval;
4021
4022                 if (*pt_prev) {
4023                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4024                         *pt_prev = NULL;
4025                 }
4026
4027                 rcu_read_lock();
4028                 ingress_retval = nf_hook_ingress(skb);
4029                 rcu_read_unlock();
4030                 return ingress_retval;
4031         }
4032 #endif /* CONFIG_NETFILTER_INGRESS */
4033         return 0;
4034 }
4035
4036 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4037 {
4038         struct packet_type *ptype, *pt_prev;
4039         rx_handler_func_t *rx_handler;
4040         struct net_device *orig_dev;
4041         bool deliver_exact = false;
4042         int ret = NET_RX_DROP;
4043         __be16 type;
4044
4045         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4046
4047         trace_netif_receive_skb(skb);
4048
4049         orig_dev = skb->dev;
4050
4051         skb_reset_network_header(skb);
4052         if (!skb_transport_header_was_set(skb))
4053                 skb_reset_transport_header(skb);
4054         skb_reset_mac_len(skb);
4055
4056         pt_prev = NULL;
4057
4058 another_round:
4059         skb->skb_iif = skb->dev->ifindex;
4060
4061         __this_cpu_inc(softnet_data.processed);
4062
4063         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4064             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4065                 skb = skb_vlan_untag(skb);
4066                 if (unlikely(!skb))
4067                         goto out;
4068         }
4069
4070         if (skb_skip_tc_classify(skb))
4071                 goto skip_classify;
4072
4073         if (pfmemalloc)
4074                 goto skip_taps;
4075
4076         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4077                 if (pt_prev)
4078                         ret = deliver_skb(skb, pt_prev, orig_dev);
4079                 pt_prev = ptype;
4080         }
4081
4082         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4083                 if (pt_prev)
4084                         ret = deliver_skb(skb, pt_prev, orig_dev);
4085                 pt_prev = ptype;
4086         }
4087
4088 skip_taps:
4089 #ifdef CONFIG_NET_INGRESS
4090         if (static_key_false(&ingress_needed)) {
4091                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4092                 if (!skb)
4093                         goto out;
4094
4095                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4096                         goto out;
4097         }
4098 #endif
4099         skb_reset_tc(skb);
4100 skip_classify:
4101         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4102                 goto drop;
4103
4104         if (skb_vlan_tag_present(skb)) {
4105                 if (pt_prev) {
4106                         ret = deliver_skb(skb, pt_prev, orig_dev);
4107                         pt_prev = NULL;
4108                 }
4109                 if (vlan_do_receive(&skb))
4110                         goto another_round;
4111                 else if (unlikely(!skb))
4112                         goto out;
4113         }
4114
4115         rx_handler = rcu_dereference(skb->dev->rx_handler);
4116         if (rx_handler) {
4117                 if (pt_prev) {
4118                         ret = deliver_skb(skb, pt_prev, orig_dev);
4119                         pt_prev = NULL;
4120                 }
4121                 switch (rx_handler(&skb)) {
4122                 case RX_HANDLER_CONSUMED:
4123                         ret = NET_RX_SUCCESS;
4124                         goto out;
4125                 case RX_HANDLER_ANOTHER:
4126                         goto another_round;
4127                 case RX_HANDLER_EXACT:
4128                         deliver_exact = true;
4129                 case RX_HANDLER_PASS:
4130                         break;
4131                 default:
4132                         BUG();
4133                 }
4134         }
4135
4136         if (unlikely(skb_vlan_tag_present(skb))) {
4137                 if (skb_vlan_tag_get_id(skb))
4138                         skb->pkt_type = PACKET_OTHERHOST;
4139                 /* Note: we might in the future use prio bits
4140                  * and set skb->priority like in vlan_do_receive()
4141                  * For the time being, just ignore Priority Code Point
4142                  */
4143                 skb->vlan_tci = 0;
4144         }
4145
4146         type = skb->protocol;
4147
4148         /* deliver only exact match when indicated */
4149         if (likely(!deliver_exact)) {
4150                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4151                                        &ptype_base[ntohs(type) &
4152                                                    PTYPE_HASH_MASK]);
4153         }
4154
4155         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4156                                &orig_dev->ptype_specific);
4157
4158         if (unlikely(skb->dev != orig_dev)) {
4159                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4160                                        &skb->dev->ptype_specific);
4161         }
4162
4163         if (pt_prev) {
4164                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4165                         goto drop;
4166                 else
4167                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4168         } else {
4169 drop:
4170                 if (!deliver_exact)
4171                         atomic_long_inc(&skb->dev->rx_dropped);
4172                 else
4173                         atomic_long_inc(&skb->dev->rx_nohandler);
4174                 kfree_skb(skb);
4175                 /* Jamal, now you will not able to escape explaining
4176                  * me how you were going to use this. :-)
4177                  */
4178                 ret = NET_RX_DROP;
4179         }
4180
4181 out:
4182         return ret;
4183 }
4184
4185 static int __netif_receive_skb(struct sk_buff *skb)
4186 {
4187         int ret;
4188
4189         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4190                 unsigned long pflags = current->flags;
4191
4192                 /*
4193                  * PFMEMALLOC skbs are special, they should
4194                  * - be delivered to SOCK_MEMALLOC sockets only
4195                  * - stay away from userspace
4196                  * - have bounded memory usage
4197                  *
4198                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4199                  * context down to all allocation sites.
4200                  */
4201                 current->flags |= PF_MEMALLOC;
4202                 ret = __netif_receive_skb_core(skb, true);
4203                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4204         } else
4205                 ret = __netif_receive_skb_core(skb, false);
4206
4207         return ret;
4208 }
4209
4210 static int netif_receive_skb_internal(struct sk_buff *skb)
4211 {
4212         int ret;
4213
4214         net_timestamp_check(netdev_tstamp_prequeue, skb);
4215
4216         if (skb_defer_rx_timestamp(skb))
4217                 return NET_RX_SUCCESS;
4218
4219         rcu_read_lock();
4220
4221 #ifdef CONFIG_RPS
4222         if (static_key_false(&rps_needed)) {
4223                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4224                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4225
4226                 if (cpu >= 0) {
4227                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4228                         rcu_read_unlock();
4229                         return ret;
4230                 }
4231         }
4232 #endif
4233         ret = __netif_receive_skb(skb);
4234         rcu_read_unlock();
4235         return ret;
4236 }
4237
4238 /**
4239  *      netif_receive_skb - process receive buffer from network
4240  *      @skb: buffer to process
4241  *
4242  *      netif_receive_skb() is the main receive data processing function.
4243  *      It always succeeds. The buffer may be dropped during processing
4244  *      for congestion control or by the protocol layers.
4245  *
4246  *      This function may only be called from softirq context and interrupts
4247  *      should be enabled.
4248  *
4249  *      Return values (usually ignored):
4250  *      NET_RX_SUCCESS: no congestion
4251  *      NET_RX_DROP: packet was dropped
4252  */
4253 int netif_receive_skb(struct sk_buff *skb)
4254 {
4255         trace_netif_receive_skb_entry(skb);
4256
4257         return netif_receive_skb_internal(skb);
4258 }
4259 EXPORT_SYMBOL(netif_receive_skb);
4260
4261 DEFINE_PER_CPU(struct work_struct, flush_works);
4262
4263 /* Network device is going away, flush any packets still pending */
4264 static void flush_backlog(struct work_struct *work)
4265 {
4266         struct sk_buff *skb, *tmp;
4267         struct softnet_data *sd;
4268
4269         local_bh_disable();
4270         sd = this_cpu_ptr(&softnet_data);
4271
4272         local_irq_disable();
4273         rps_lock(sd);
4274         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4275                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4276                         __skb_unlink(skb, &sd->input_pkt_queue);
4277                         kfree_skb(skb);
4278                         input_queue_head_incr(sd);
4279                 }
4280         }
4281         rps_unlock(sd);
4282         local_irq_enable();
4283
4284         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4285                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4286                         __skb_unlink(skb, &sd->process_queue);
4287                         kfree_skb(skb);
4288                         input_queue_head_incr(sd);
4289                 }
4290         }
4291         local_bh_enable();
4292 }
4293
4294 static void flush_all_backlogs(void)
4295 {
4296         unsigned int cpu;
4297
4298         get_online_cpus();
4299
4300         for_each_online_cpu(cpu)
4301                 queue_work_on(cpu, system_highpri_wq,
4302                               per_cpu_ptr(&flush_works, cpu));
4303
4304         for_each_online_cpu(cpu)
4305                 flush_work(per_cpu_ptr(&flush_works, cpu));
4306
4307         put_online_cpus();
4308 }
4309
4310 static int napi_gro_complete(struct sk_buff *skb)
4311 {
4312         struct packet_offload *ptype;
4313         __be16 type = skb->protocol;
4314         struct list_head *head = &offload_base;
4315         int err = -ENOENT;
4316
4317         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4318
4319         if (NAPI_GRO_CB(skb)->count == 1) {
4320                 skb_shinfo(skb)->gso_size = 0;
4321                 goto out;
4322         }
4323
4324         rcu_read_lock();
4325         list_for_each_entry_rcu(ptype, head, list) {
4326                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4327                         continue;
4328
4329                 err = ptype->callbacks.gro_complete(skb, 0);
4330                 break;
4331         }
4332         rcu_read_unlock();
4333
4334         if (err) {
4335                 WARN_ON(&ptype->list == head);
4336                 kfree_skb(skb);
4337                 return NET_RX_SUCCESS;
4338         }
4339
4340 out:
4341         return netif_receive_skb_internal(skb);
4342 }
4343
4344 /* napi->gro_list contains packets ordered by age.
4345  * youngest packets at the head of it.
4346  * Complete skbs in reverse order to reduce latencies.
4347  */
4348 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4349 {
4350         struct sk_buff *skb, *prev = NULL;
4351
4352         /* scan list and build reverse chain */
4353         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4354                 skb->prev = prev;
4355                 prev = skb;
4356         }
4357
4358         for (skb = prev; skb; skb = prev) {
4359                 skb->next = NULL;
4360
4361                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4362                         return;
4363
4364                 prev = skb->prev;
4365                 napi_gro_complete(skb);
4366                 napi->gro_count--;
4367         }
4368
4369         napi->gro_list = NULL;
4370 }
4371 EXPORT_SYMBOL(napi_gro_flush);
4372
4373 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4374 {
4375         struct sk_buff *p;
4376         unsigned int maclen = skb->dev->hard_header_len;
4377         u32 hash = skb_get_hash_raw(skb);
4378
4379         for (p = napi->gro_list; p; p = p->next) {
4380                 unsigned long diffs;
4381
4382                 NAPI_GRO_CB(p)->flush = 0;
4383
4384                 if (hash != skb_get_hash_raw(p)) {
4385                         NAPI_GRO_CB(p)->same_flow = 0;
4386                         continue;
4387                 }
4388
4389                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4390                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4391                 diffs |= skb_metadata_dst_cmp(p, skb);
4392                 if (maclen == ETH_HLEN)
4393                         diffs |= compare_ether_header(skb_mac_header(p),
4394                                                       skb_mac_header(skb));
4395                 else if (!diffs)
4396                         diffs = memcmp(skb_mac_header(p),
4397                                        skb_mac_header(skb),
4398                                        maclen);
4399                 NAPI_GRO_CB(p)->same_flow = !diffs;
4400         }
4401 }
4402
4403 static void skb_gro_reset_offset(struct sk_buff *skb)
4404 {
4405         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4406         const skb_frag_t *frag0 = &pinfo->frags[0];
4407
4408         NAPI_GRO_CB(skb)->data_offset = 0;
4409         NAPI_GRO_CB(skb)->frag0 = NULL;
4410         NAPI_GRO_CB(skb)->frag0_len = 0;
4411
4412         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4413             pinfo->nr_frags &&
4414             !PageHighMem(skb_frag_page(frag0))) {
4415                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4416                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4417                                                     skb_frag_size(frag0),
4418                                                     skb->end - skb->tail);
4419         }
4420 }
4421
4422 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4423 {
4424         struct skb_shared_info *pinfo = skb_shinfo(skb);
4425
4426         BUG_ON(skb->end - skb->tail < grow);
4427
4428         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4429
4430         skb->data_len -= grow;
4431         skb->tail += grow;
4432
4433         pinfo->frags[0].page_offset += grow;
4434         skb_frag_size_sub(&pinfo->frags[0], grow);
4435
4436         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4437                 skb_frag_unref(skb, 0);
4438                 memmove(pinfo->frags, pinfo->frags + 1,
4439                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4440         }
4441 }
4442
4443 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4444 {
4445         struct sk_buff **pp = NULL;
4446         struct packet_offload *ptype;
4447         __be16 type = skb->protocol;
4448         struct list_head *head = &offload_base;
4449         int same_flow;
4450         enum gro_result ret;
4451         int grow;
4452
4453         if (!(skb->dev->features & NETIF_F_GRO))
4454                 goto normal;
4455
4456         if (skb->csum_bad)
4457                 goto normal;
4458
4459         gro_list_prepare(napi, skb);
4460
4461         rcu_read_lock();
4462         list_for_each_entry_rcu(ptype, head, list) {
4463                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4464                         continue;
4465
4466                 skb_set_network_header(skb, skb_gro_offset(skb));
4467                 skb_reset_mac_len(skb);
4468                 NAPI_GRO_CB(skb)->same_flow = 0;
4469                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4470                 NAPI_GRO_CB(skb)->free = 0;
4471                 NAPI_GRO_CB(skb)->encap_mark = 0;
4472                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4473                 NAPI_GRO_CB(skb)->is_fou = 0;
4474                 NAPI_GRO_CB(skb)->is_atomic = 1;
4475                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4476
4477                 /* Setup for GRO checksum validation */
4478                 switch (skb->ip_summed) {
4479                 case CHECKSUM_COMPLETE:
4480                         NAPI_GRO_CB(skb)->csum = skb->csum;
4481                         NAPI_GRO_CB(skb)->csum_valid = 1;
4482                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4483                         break;
4484                 case CHECKSUM_UNNECESSARY:
4485                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4486                         NAPI_GRO_CB(skb)->csum_valid = 0;
4487                         break;
4488                 default:
4489                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4490                         NAPI_GRO_CB(skb)->csum_valid = 0;
4491                 }
4492
4493                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4494                 break;
4495         }
4496         rcu_read_unlock();
4497
4498         if (&ptype->list == head)
4499                 goto normal;
4500
4501         same_flow = NAPI_GRO_CB(skb)->same_flow;
4502         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4503
4504         if (pp) {
4505                 struct sk_buff *nskb = *pp;
4506
4507                 *pp = nskb->next;
4508                 nskb->next = NULL;
4509                 napi_gro_complete(nskb);
4510                 napi->gro_count--;
4511         }
4512
4513         if (same_flow)
4514                 goto ok;
4515
4516         if (NAPI_GRO_CB(skb)->flush)
4517                 goto normal;
4518
4519         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4520                 struct sk_buff *nskb = napi->gro_list;
4521
4522                 /* locate the end of the list to select the 'oldest' flow */
4523                 while (nskb->next) {
4524                         pp = &nskb->next;
4525                         nskb = *pp;
4526                 }
4527                 *pp = NULL;
4528                 nskb->next = NULL;
4529                 napi_gro_complete(nskb);
4530         } else {
4531                 napi->gro_count++;
4532         }
4533         NAPI_GRO_CB(skb)->count = 1;
4534         NAPI_GRO_CB(skb)->age = jiffies;
4535         NAPI_GRO_CB(skb)->last = skb;
4536         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4537         skb->next = napi->gro_list;
4538         napi->gro_list = skb;
4539         ret = GRO_HELD;
4540
4541 pull:
4542         grow = skb_gro_offset(skb) - skb_headlen(skb);
4543         if (grow > 0)
4544                 gro_pull_from_frag0(skb, grow);
4545 ok:
4546         return ret;
4547
4548 normal:
4549         ret = GRO_NORMAL;
4550         goto pull;
4551 }
4552
4553 struct packet_offload *gro_find_receive_by_type(__be16 type)
4554 {
4555         struct list_head *offload_head = &offload_base;
4556         struct packet_offload *ptype;
4557
4558         list_for_each_entry_rcu(ptype, offload_head, list) {
4559                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4560                         continue;
4561                 return ptype;
4562         }
4563         return NULL;
4564 }
4565 EXPORT_SYMBOL(gro_find_receive_by_type);
4566
4567 struct packet_offload *gro_find_complete_by_type(__be16 type)
4568 {
4569         struct list_head *offload_head = &offload_base;
4570         struct packet_offload *ptype;
4571
4572         list_for_each_entry_rcu(ptype, offload_head, list) {
4573                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4574                         continue;
4575                 return ptype;
4576         }
4577         return NULL;
4578 }
4579 EXPORT_SYMBOL(gro_find_complete_by_type);
4580
4581 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4582 {
4583         switch (ret) {
4584         case GRO_NORMAL:
4585                 if (netif_receive_skb_internal(skb))
4586                         ret = GRO_DROP;
4587                 break;
4588
4589         case GRO_DROP:
4590                 kfree_skb(skb);
4591                 break;
4592
4593         case GRO_MERGED_FREE:
4594                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4595                         skb_dst_drop(skb);
4596                         secpath_reset(skb);
4597                         kmem_cache_free(skbuff_head_cache, skb);
4598                 } else {
4599                         __kfree_skb(skb);
4600                 }
4601                 break;
4602
4603         case GRO_HELD:
4604         case GRO_MERGED:
4605                 break;
4606         }
4607
4608         return ret;
4609 }
4610
4611 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4612 {
4613         skb_mark_napi_id(skb, napi);
4614         trace_napi_gro_receive_entry(skb);
4615
4616         skb_gro_reset_offset(skb);
4617
4618         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4619 }
4620 EXPORT_SYMBOL(napi_gro_receive);
4621
4622 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4623 {
4624         if (unlikely(skb->pfmemalloc)) {
4625                 consume_skb(skb);
4626                 return;
4627         }
4628         __skb_pull(skb, skb_headlen(skb));
4629         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4630         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4631         skb->vlan_tci = 0;
4632         skb->dev = napi->dev;
4633         skb->skb_iif = 0;
4634         skb->encapsulation = 0;
4635         skb_shinfo(skb)->gso_type = 0;
4636         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4637         secpath_reset(skb);
4638
4639         napi->skb = skb;
4640 }
4641
4642 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4643 {
4644         struct sk_buff *skb = napi->skb;
4645
4646         if (!skb) {
4647                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4648                 if (skb) {
4649                         napi->skb = skb;
4650                         skb_mark_napi_id(skb, napi);
4651                 }
4652         }
4653         return skb;
4654 }
4655 EXPORT_SYMBOL(napi_get_frags);
4656
4657 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4658                                       struct sk_buff *skb,
4659                                       gro_result_t ret)
4660 {
4661         switch (ret) {
4662         case GRO_NORMAL:
4663         case GRO_HELD:
4664                 __skb_push(skb, ETH_HLEN);
4665                 skb->protocol = eth_type_trans(skb, skb->dev);
4666                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4667                         ret = GRO_DROP;
4668                 break;
4669
4670         case GRO_DROP:
4671         case GRO_MERGED_FREE:
4672                 napi_reuse_skb(napi, skb);
4673                 break;
4674
4675         case GRO_MERGED:
4676                 break;
4677         }
4678
4679         return ret;
4680 }
4681
4682 /* Upper GRO stack assumes network header starts at gro_offset=0
4683  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4684  * We copy ethernet header into skb->data to have a common layout.
4685  */
4686 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4687 {
4688         struct sk_buff *skb = napi->skb;
4689         const struct ethhdr *eth;
4690         unsigned int hlen = sizeof(*eth);
4691
4692         napi->skb = NULL;
4693
4694         skb_reset_mac_header(skb);
4695         skb_gro_reset_offset(skb);
4696
4697         eth = skb_gro_header_fast(skb, 0);
4698         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4699                 eth = skb_gro_header_slow(skb, hlen, 0);
4700                 if (unlikely(!eth)) {
4701                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4702                                              __func__, napi->dev->name);
4703                         napi_reuse_skb(napi, skb);
4704                         return NULL;
4705                 }
4706         } else {
4707                 gro_pull_from_frag0(skb, hlen);
4708                 NAPI_GRO_CB(skb)->frag0 += hlen;
4709                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4710         }
4711         __skb_pull(skb, hlen);
4712
4713         /*
4714          * This works because the only protocols we care about don't require
4715          * special handling.
4716          * We'll fix it up properly in napi_frags_finish()
4717          */
4718         skb->protocol = eth->h_proto;
4719
4720         return skb;
4721 }
4722
4723 gro_result_t napi_gro_frags(struct napi_struct *napi)
4724 {
4725         struct sk_buff *skb = napi_frags_skb(napi);
4726
4727         if (!skb)
4728                 return GRO_DROP;
4729
4730         trace_napi_gro_frags_entry(skb);
4731
4732         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4733 }
4734 EXPORT_SYMBOL(napi_gro_frags);
4735
4736 /* Compute the checksum from gro_offset and return the folded value
4737  * after adding in any pseudo checksum.
4738  */
4739 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4740 {
4741         __wsum wsum;
4742         __sum16 sum;
4743
4744         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4745
4746         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4747         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4748         if (likely(!sum)) {
4749                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4750                     !skb->csum_complete_sw)
4751                         netdev_rx_csum_fault(skb->dev);
4752         }
4753
4754         NAPI_GRO_CB(skb)->csum = wsum;
4755         NAPI_GRO_CB(skb)->csum_valid = 1;
4756
4757         return sum;
4758 }
4759 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4760
4761 /*
4762  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4763  * Note: called with local irq disabled, but exits with local irq enabled.
4764  */
4765 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4766 {
4767 #ifdef CONFIG_RPS
4768         struct softnet_data *remsd = sd->rps_ipi_list;
4769
4770         if (remsd) {
4771                 sd->rps_ipi_list = NULL;
4772
4773                 local_irq_enable();
4774
4775                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4776                 while (remsd) {
4777                         struct softnet_data *next = remsd->rps_ipi_next;
4778
4779                         if (cpu_online(remsd->cpu))
4780                                 smp_call_function_single_async(remsd->cpu,
4781                                                            &remsd->csd);
4782                         remsd = next;
4783                 }
4784         } else
4785 #endif
4786                 local_irq_enable();
4787 }
4788
4789 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4790 {
4791 #ifdef CONFIG_RPS
4792         return sd->rps_ipi_list != NULL;
4793 #else
4794         return false;
4795 #endif
4796 }
4797
4798 static int process_backlog(struct napi_struct *napi, int quota)
4799 {
4800         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4801         bool again = true;
4802         int work = 0;
4803
4804         /* Check if we have pending ipi, its better to send them now,
4805          * not waiting net_rx_action() end.
4806          */
4807         if (sd_has_rps_ipi_waiting(sd)) {
4808                 local_irq_disable();
4809                 net_rps_action_and_irq_enable(sd);
4810         }
4811
4812         napi->weight = dev_rx_weight;
4813         while (again) {
4814                 struct sk_buff *skb;
4815
4816                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4817                         rcu_read_lock();
4818                         __netif_receive_skb(skb);
4819                         rcu_read_unlock();
4820                         input_queue_head_incr(sd);
4821                         if (++work >= quota)
4822                                 return work;
4823
4824                 }
4825
4826                 local_irq_disable();
4827                 rps_lock(sd);
4828                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4829                         /*
4830                          * Inline a custom version of __napi_complete().
4831                          * only current cpu owns and manipulates this napi,
4832                          * and NAPI_STATE_SCHED is the only possible flag set
4833                          * on backlog.
4834                          * We can use a plain write instead of clear_bit(),
4835                          * and we dont need an smp_mb() memory barrier.
4836                          */
4837                         napi->state = 0;
4838                         again = false;
4839                 } else {
4840                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4841                                                    &sd->process_queue);
4842                 }
4843                 rps_unlock(sd);
4844                 local_irq_enable();
4845         }
4846
4847         return work;
4848 }
4849
4850 /**
4851  * __napi_schedule - schedule for receive
4852  * @n: entry to schedule
4853  *
4854  * The entry's receive function will be scheduled to run.
4855  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4856  */
4857 void __napi_schedule(struct napi_struct *n)
4858 {
4859         unsigned long flags;
4860
4861         local_irq_save(flags);
4862         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4863         local_irq_restore(flags);
4864 }
4865 EXPORT_SYMBOL(__napi_schedule);
4866
4867 /**
4868  * __napi_schedule_irqoff - schedule for receive
4869  * @n: entry to schedule
4870  *
4871  * Variant of __napi_schedule() assuming hard irqs are masked
4872  */
4873 void __napi_schedule_irqoff(struct napi_struct *n)
4874 {
4875         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4876 }
4877 EXPORT_SYMBOL(__napi_schedule_irqoff);
4878
4879 bool __napi_complete(struct napi_struct *n)
4880 {
4881         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4882
4883         /* Some drivers call us directly, instead of calling
4884          * napi_complete_done().
4885          */
4886         if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4887                 return false;
4888
4889         list_del_init(&n->poll_list);
4890         smp_mb__before_atomic();
4891         clear_bit(NAPI_STATE_SCHED, &n->state);
4892         return true;
4893 }
4894 EXPORT_SYMBOL(__napi_complete);
4895
4896 bool napi_complete_done(struct napi_struct *n, int work_done)
4897 {
4898         unsigned long flags;
4899
4900         /*
4901          * 1) Don't let napi dequeue from the cpu poll list
4902          *    just in case its running on a different cpu.
4903          * 2) If we are busy polling, do nothing here, we have
4904          *    the guarantee we will be called later.
4905          */
4906         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4907                                  NAPIF_STATE_IN_BUSY_POLL)))
4908                 return false;
4909
4910         if (n->gro_list) {
4911                 unsigned long timeout = 0;
4912
4913                 if (work_done)
4914                         timeout = n->dev->gro_flush_timeout;
4915
4916                 if (timeout)
4917                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4918                                       HRTIMER_MODE_REL_PINNED);
4919                 else
4920                         napi_gro_flush(n, false);
4921         }
4922         if (likely(list_empty(&n->poll_list))) {
4923                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4924         } else {
4925                 /* If n->poll_list is not empty, we need to mask irqs */
4926                 local_irq_save(flags);
4927                 __napi_complete(n);
4928                 local_irq_restore(flags);
4929         }
4930         return true;
4931 }
4932 EXPORT_SYMBOL(napi_complete_done);
4933
4934 /* must be called under rcu_read_lock(), as we dont take a reference */
4935 static struct napi_struct *napi_by_id(unsigned int napi_id)
4936 {
4937         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4938         struct napi_struct *napi;
4939
4940         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4941                 if (napi->napi_id == napi_id)
4942                         return napi;
4943
4944         return NULL;
4945 }
4946
4947 #if defined(CONFIG_NET_RX_BUSY_POLL)
4948
4949 #define BUSY_POLL_BUDGET 8
4950
4951 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4952 {
4953         int rc;
4954
4955         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4956
4957         local_bh_disable();
4958
4959         /* All we really want here is to re-enable device interrupts.
4960          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4961          */
4962         rc = napi->poll(napi, BUSY_POLL_BUDGET);
4963         netpoll_poll_unlock(have_poll_lock);
4964         if (rc == BUSY_POLL_BUDGET)
4965                 __napi_schedule(napi);
4966         local_bh_enable();
4967         if (local_softirq_pending())
4968                 do_softirq();
4969 }
4970
4971 bool sk_busy_loop(struct sock *sk, int nonblock)
4972 {
4973         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4974         int (*napi_poll)(struct napi_struct *napi, int budget);
4975         int (*busy_poll)(struct napi_struct *dev);
4976         void *have_poll_lock = NULL;
4977         struct napi_struct *napi;
4978         int rc;
4979
4980 restart:
4981         rc = false;
4982         napi_poll = NULL;
4983
4984         rcu_read_lock();
4985
4986         napi = napi_by_id(sk->sk_napi_id);
4987         if (!napi)
4988                 goto out;
4989
4990         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4991         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4992
4993         preempt_disable();
4994         for (;;) {
4995                 rc = 0;
4996                 local_bh_disable();
4997                 if (busy_poll) {
4998                         rc = busy_poll(napi);
4999                         goto count;
5000                 }
5001                 if (!napi_poll) {
5002                         unsigned long val = READ_ONCE(napi->state);
5003
5004                         /* If multiple threads are competing for this napi,
5005                          * we avoid dirtying napi->state as much as we can.
5006                          */
5007                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5008                                    NAPIF_STATE_IN_BUSY_POLL))
5009                                 goto count;
5010                         if (cmpxchg(&napi->state, val,
5011                                     val | NAPIF_STATE_IN_BUSY_POLL |
5012                                           NAPIF_STATE_SCHED) != val)
5013                                 goto count;
5014                         have_poll_lock = netpoll_poll_lock(napi);
5015                         napi_poll = napi->poll;
5016                 }
5017                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5018                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5019 count:
5020                 if (rc > 0)
5021                         __NET_ADD_STATS(sock_net(sk),
5022                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5023                 local_bh_enable();
5024
5025                 if (rc == LL_FLUSH_FAILED)
5026                         break; /* permanent failure */
5027
5028                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5029                     busy_loop_timeout(end_time))
5030                         break;
5031
5032                 if (unlikely(need_resched())) {
5033                         if (napi_poll)
5034                                 busy_poll_stop(napi, have_poll_lock);
5035                         preempt_enable();
5036                         rcu_read_unlock();
5037                         cond_resched();
5038                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5039                         if (rc || busy_loop_timeout(end_time))
5040                                 return rc;
5041                         goto restart;
5042                 }
5043                 cpu_relax();
5044         }
5045         if (napi_poll)
5046                 busy_poll_stop(napi, have_poll_lock);
5047         preempt_enable();
5048         rc = !skb_queue_empty(&sk->sk_receive_queue);
5049 out:
5050         rcu_read_unlock();
5051         return rc;
5052 }
5053 EXPORT_SYMBOL(sk_busy_loop);
5054
5055 #endif /* CONFIG_NET_RX_BUSY_POLL */
5056
5057 static void napi_hash_add(struct napi_struct *napi)
5058 {
5059         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5060             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5061                 return;
5062
5063         spin_lock(&napi_hash_lock);
5064
5065         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5066         do {
5067                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5068                         napi_gen_id = NR_CPUS + 1;
5069         } while (napi_by_id(napi_gen_id));
5070         napi->napi_id = napi_gen_id;
5071
5072         hlist_add_head_rcu(&napi->napi_hash_node,
5073                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5074
5075         spin_unlock(&napi_hash_lock);
5076 }
5077
5078 /* Warning : caller is responsible to make sure rcu grace period
5079  * is respected before freeing memory containing @napi
5080  */
5081 bool napi_hash_del(struct napi_struct *napi)
5082 {
5083         bool rcu_sync_needed = false;
5084
5085         spin_lock(&napi_hash_lock);
5086
5087         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5088                 rcu_sync_needed = true;
5089                 hlist_del_rcu(&napi->napi_hash_node);
5090         }
5091         spin_unlock(&napi_hash_lock);
5092         return rcu_sync_needed;
5093 }
5094 EXPORT_SYMBOL_GPL(napi_hash_del);
5095
5096 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5097 {
5098         struct napi_struct *napi;
5099
5100         napi = container_of(timer, struct napi_struct, timer);
5101         if (napi->gro_list)
5102                 napi_schedule(napi);
5103
5104         return HRTIMER_NORESTART;
5105 }
5106
5107 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5108                     int (*poll)(struct napi_struct *, int), int weight)
5109 {
5110         INIT_LIST_HEAD(&napi->poll_list);
5111         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5112         napi->timer.function = napi_watchdog;
5113         napi->gro_count = 0;
5114         napi->gro_list = NULL;
5115         napi->skb = NULL;
5116         napi->poll = poll;
5117         if (weight > NAPI_POLL_WEIGHT)
5118                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5119                             weight, dev->name);
5120         napi->weight = weight;
5121         list_add(&napi->dev_list, &dev->napi_list);
5122         napi->dev = dev;
5123 #ifdef CONFIG_NETPOLL
5124         napi->poll_owner = -1;
5125 #endif
5126         set_bit(NAPI_STATE_SCHED, &napi->state);
5127         napi_hash_add(napi);
5128 }
5129 EXPORT_SYMBOL(netif_napi_add);
5130
5131 void napi_disable(struct napi_struct *n)
5132 {
5133         might_sleep();
5134         set_bit(NAPI_STATE_DISABLE, &n->state);
5135
5136         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5137                 msleep(1);
5138         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5139                 msleep(1);
5140
5141         hrtimer_cancel(&n->timer);
5142
5143         clear_bit(NAPI_STATE_DISABLE, &n->state);
5144 }
5145 EXPORT_SYMBOL(napi_disable);
5146
5147 /* Must be called in process context */
5148 void netif_napi_del(struct napi_struct *napi)
5149 {
5150         might_sleep();
5151         if (napi_hash_del(napi))
5152                 synchronize_net();
5153         list_del_init(&napi->dev_list);
5154         napi_free_frags(napi);
5155
5156         kfree_skb_list(napi->gro_list);
5157         napi->gro_list = NULL;
5158         napi->gro_count = 0;
5159 }
5160 EXPORT_SYMBOL(netif_napi_del);
5161
5162 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5163 {
5164         void *have;
5165         int work, weight;
5166
5167         list_del_init(&n->poll_list);
5168
5169         have = netpoll_poll_lock(n);
5170
5171         weight = n->weight;
5172
5173         /* This NAPI_STATE_SCHED test is for avoiding a race
5174          * with netpoll's poll_napi().  Only the entity which
5175          * obtains the lock and sees NAPI_STATE_SCHED set will
5176          * actually make the ->poll() call.  Therefore we avoid
5177          * accidentally calling ->poll() when NAPI is not scheduled.
5178          */
5179         work = 0;
5180         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5181                 work = n->poll(n, weight);
5182                 trace_napi_poll(n, work, weight);
5183         }
5184
5185         WARN_ON_ONCE(work > weight);
5186
5187         if (likely(work < weight))
5188                 goto out_unlock;
5189
5190         /* Drivers must not modify the NAPI state if they
5191          * consume the entire weight.  In such cases this code
5192          * still "owns" the NAPI instance and therefore can
5193          * move the instance around on the list at-will.
5194          */
5195         if (unlikely(napi_disable_pending(n))) {
5196                 napi_complete(n);
5197                 goto out_unlock;
5198         }
5199
5200         if (n->gro_list) {
5201                 /* flush too old packets
5202                  * If HZ < 1000, flush all packets.
5203                  */
5204                 napi_gro_flush(n, HZ >= 1000);
5205         }
5206
5207         /* Some drivers may have called napi_schedule
5208          * prior to exhausting their budget.
5209          */
5210         if (unlikely(!list_empty(&n->poll_list))) {
5211                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5212                              n->dev ? n->dev->name : "backlog");
5213                 goto out_unlock;
5214         }
5215
5216         list_add_tail(&n->poll_list, repoll);
5217
5218 out_unlock:
5219         netpoll_poll_unlock(have);
5220
5221         return work;
5222 }
5223
5224 static __latent_entropy void net_rx_action(struct softirq_action *h)
5225 {
5226         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5227         unsigned long time_limit = jiffies + 2;
5228         int budget = netdev_budget;
5229         LIST_HEAD(list);
5230         LIST_HEAD(repoll);
5231
5232         local_irq_disable();
5233         list_splice_init(&sd->poll_list, &list);
5234         local_irq_enable();
5235
5236         for (;;) {
5237                 struct napi_struct *n;
5238
5239                 if (list_empty(&list)) {
5240                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5241                                 goto out;
5242                         break;
5243                 }
5244
5245                 n = list_first_entry(&list, struct napi_struct, poll_list);
5246                 budget -= napi_poll(n, &repoll);
5247
5248                 /* If softirq window is exhausted then punt.
5249                  * Allow this to run for 2 jiffies since which will allow
5250                  * an average latency of 1.5/HZ.
5251                  */
5252                 if (unlikely(budget <= 0 ||
5253                              time_after_eq(jiffies, time_limit))) {
5254                         sd->time_squeeze++;
5255                         break;
5256                 }
5257         }
5258
5259         local_irq_disable();
5260
5261         list_splice_tail_init(&sd->poll_list, &list);
5262         list_splice_tail(&repoll, &list);
5263         list_splice(&list, &sd->poll_list);
5264         if (!list_empty(&sd->poll_list))
5265                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5266
5267         net_rps_action_and_irq_enable(sd);
5268 out:
5269         __kfree_skb_flush();
5270 }
5271
5272 struct netdev_adjacent {
5273         struct net_device *dev;
5274
5275         /* upper master flag, there can only be one master device per list */
5276         bool master;
5277
5278         /* counter for the number of times this device was added to us */
5279         u16 ref_nr;
5280
5281         /* private field for the users */
5282         void *private;
5283
5284         struct list_head list;
5285         struct rcu_head rcu;
5286 };
5287
5288 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5289                                                  struct list_head *adj_list)
5290 {
5291         struct netdev_adjacent *adj;
5292
5293         list_for_each_entry(adj, adj_list, list) {
5294                 if (adj->dev == adj_dev)
5295                         return adj;
5296         }
5297         return NULL;
5298 }
5299
5300 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5301 {
5302         struct net_device *dev = data;
5303
5304         return upper_dev == dev;
5305 }
5306
5307 /**
5308  * netdev_has_upper_dev - Check if device is linked to an upper device
5309  * @dev: device
5310  * @upper_dev: upper device to check
5311  *
5312  * Find out if a device is linked to specified upper device and return true
5313  * in case it is. Note that this checks only immediate upper device,
5314  * not through a complete stack of devices. The caller must hold the RTNL lock.
5315  */
5316 bool netdev_has_upper_dev(struct net_device *dev,
5317                           struct net_device *upper_dev)
5318 {
5319         ASSERT_RTNL();
5320
5321         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5322                                              upper_dev);
5323 }
5324 EXPORT_SYMBOL(netdev_has_upper_dev);
5325
5326 /**
5327  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5328  * @dev: device
5329  * @upper_dev: upper device to check
5330  *
5331  * Find out if a device is linked to specified upper device and return true
5332  * in case it is. Note that this checks the entire upper device chain.
5333  * The caller must hold rcu lock.
5334  */
5335
5336 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5337                                   struct net_device *upper_dev)
5338 {
5339         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5340                                                upper_dev);
5341 }
5342 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5343
5344 /**
5345  * netdev_has_any_upper_dev - Check if device is linked to some device
5346  * @dev: device
5347  *
5348  * Find out if a device is linked to an upper device and return true in case
5349  * it is. The caller must hold the RTNL lock.
5350  */
5351 static bool netdev_has_any_upper_dev(struct net_device *dev)
5352 {
5353         ASSERT_RTNL();
5354
5355         return !list_empty(&dev->adj_list.upper);
5356 }
5357
5358 /**
5359  * netdev_master_upper_dev_get - Get master upper device
5360  * @dev: device
5361  *
5362  * Find a master upper device and return pointer to it or NULL in case
5363  * it's not there. The caller must hold the RTNL lock.
5364  */
5365 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5366 {
5367         struct netdev_adjacent *upper;
5368
5369         ASSERT_RTNL();
5370
5371         if (list_empty(&dev->adj_list.upper))
5372                 return NULL;
5373
5374         upper = list_first_entry(&dev->adj_list.upper,
5375                                  struct netdev_adjacent, list);
5376         if (likely(upper->master))
5377                 return upper->dev;
5378         return NULL;
5379 }
5380 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5381
5382 /**
5383  * netdev_has_any_lower_dev - Check if device is linked to some device
5384  * @dev: device
5385  *
5386  * Find out if a device is linked to a lower device and return true in case
5387  * it is. The caller must hold the RTNL lock.
5388  */
5389 static bool netdev_has_any_lower_dev(struct net_device *dev)
5390 {
5391         ASSERT_RTNL();
5392
5393         return !list_empty(&dev->adj_list.lower);
5394 }
5395
5396 void *netdev_adjacent_get_private(struct list_head *adj_list)
5397 {
5398         struct netdev_adjacent *adj;
5399
5400         adj = list_entry(adj_list, struct netdev_adjacent, list);
5401
5402         return adj->private;
5403 }
5404 EXPORT_SYMBOL(netdev_adjacent_get_private);
5405
5406 /**
5407  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5408  * @dev: device
5409  * @iter: list_head ** of the current position
5410  *
5411  * Gets the next device from the dev's upper list, starting from iter
5412  * position. The caller must hold RCU read lock.
5413  */
5414 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5415                                                  struct list_head **iter)
5416 {
5417         struct netdev_adjacent *upper;
5418
5419         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5420
5421         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5422
5423         if (&upper->list == &dev->adj_list.upper)
5424                 return NULL;
5425
5426         *iter = &upper->list;
5427
5428         return upper->dev;
5429 }
5430 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5431
5432 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5433                                                     struct list_head **iter)
5434 {
5435         struct netdev_adjacent *upper;
5436
5437         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5438
5439         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5440
5441         if (&upper->list == &dev->adj_list.upper)
5442                 return NULL;
5443
5444         *iter = &upper->list;
5445
5446         return upper->dev;
5447 }
5448
5449 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5450                                   int (*fn)(struct net_device *dev,
5451                                             void *data),
5452                                   void *data)
5453 {
5454         struct net_device *udev;
5455         struct list_head *iter;
5456         int ret;
5457
5458         for (iter = &dev->adj_list.upper,
5459              udev = netdev_next_upper_dev_rcu(dev, &iter);
5460              udev;
5461              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5462                 /* first is the upper device itself */
5463                 ret = fn(udev, data);
5464                 if (ret)
5465                         return ret;
5466
5467                 /* then look at all of its upper devices */
5468                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5469                 if (ret)
5470                         return ret;
5471         }
5472
5473         return 0;
5474 }
5475 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5476
5477 /**
5478  * netdev_lower_get_next_private - Get the next ->private from the
5479  *                                 lower neighbour list
5480  * @dev: device
5481  * @iter: list_head ** of the current position
5482  *
5483  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5484  * list, starting from iter position. The caller must hold either hold the
5485  * RTNL lock or its own locking that guarantees that the neighbour lower
5486  * list will remain unchanged.
5487  */
5488 void *netdev_lower_get_next_private(struct net_device *dev,
5489                                     struct list_head **iter)
5490 {
5491         struct netdev_adjacent *lower;
5492
5493         lower = list_entry(*iter, struct netdev_adjacent, list);
5494
5495         if (&lower->list == &dev->adj_list.lower)
5496                 return NULL;
5497
5498         *iter = lower->list.next;
5499
5500         return lower->private;
5501 }
5502 EXPORT_SYMBOL(netdev_lower_get_next_private);
5503
5504 /**
5505  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5506  *                                     lower neighbour list, RCU
5507  *                                     variant
5508  * @dev: device
5509  * @iter: list_head ** of the current position
5510  *
5511  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5512  * list, starting from iter position. The caller must hold RCU read lock.
5513  */
5514 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5515                                         struct list_head **iter)
5516 {
5517         struct netdev_adjacent *lower;
5518
5519         WARN_ON_ONCE(!rcu_read_lock_held());
5520
5521         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5522
5523         if (&lower->list == &dev->adj_list.lower)
5524                 return NULL;
5525
5526         *iter = &lower->list;
5527
5528         return lower->private;
5529 }
5530 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5531
5532 /**
5533  * netdev_lower_get_next - Get the next device from the lower neighbour
5534  *                         list
5535  * @dev: device
5536  * @iter: list_head ** of the current position
5537  *
5538  * Gets the next netdev_adjacent from the dev's lower neighbour
5539  * list, starting from iter position. The caller must hold RTNL lock or
5540  * its own locking that guarantees that the neighbour lower
5541  * list will remain unchanged.
5542  */
5543 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5544 {
5545         struct netdev_adjacent *lower;
5546
5547         lower = list_entry(*iter, struct netdev_adjacent, list);
5548
5549         if (&lower->list == &dev->adj_list.lower)
5550                 return NULL;
5551
5552         *iter = lower->list.next;
5553
5554         return lower->dev;
5555 }
5556 EXPORT_SYMBOL(netdev_lower_get_next);
5557
5558 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5559                                                 struct list_head **iter)
5560 {
5561         struct netdev_adjacent *lower;
5562
5563         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5564
5565         if (&lower->list == &dev->adj_list.lower)
5566                 return NULL;
5567
5568         *iter = &lower->list;
5569
5570         return lower->dev;
5571 }
5572
5573 int netdev_walk_all_lower_dev(struct net_device *dev,
5574                               int (*fn)(struct net_device *dev,
5575                                         void *data),
5576                               void *data)
5577 {
5578         struct net_device *ldev;
5579         struct list_head *iter;
5580         int ret;
5581
5582         for (iter = &dev->adj_list.lower,
5583              ldev = netdev_next_lower_dev(dev, &iter);
5584              ldev;
5585              ldev = netdev_next_lower_dev(dev, &iter)) {
5586                 /* first is the lower device itself */
5587                 ret = fn(ldev, data);
5588                 if (ret)
5589                         return ret;
5590
5591                 /* then look at all of its lower devices */
5592                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5593                 if (ret)
5594                         return ret;
5595         }
5596
5597         return 0;
5598 }
5599 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5600
5601 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5602                                                     struct list_head **iter)
5603 {
5604         struct netdev_adjacent *lower;
5605
5606         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5607         if (&lower->list == &dev->adj_list.lower)
5608                 return NULL;
5609
5610         *iter = &lower->list;
5611
5612         return lower->dev;
5613 }
5614
5615 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5616                                   int (*fn)(struct net_device *dev,
5617                                             void *data),
5618                                   void *data)
5619 {
5620         struct net_device *ldev;
5621         struct list_head *iter;
5622         int ret;
5623
5624         for (iter = &dev->adj_list.lower,
5625              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5626              ldev;
5627              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5628                 /* first is the lower device itself */
5629                 ret = fn(ldev, data);
5630                 if (ret)
5631                         return ret;
5632
5633                 /* then look at all of its lower devices */
5634                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5635                 if (ret)
5636                         return ret;
5637         }
5638
5639         return 0;
5640 }
5641 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5642
5643 /**
5644  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5645  *                                     lower neighbour list, RCU
5646  *                                     variant
5647  * @dev: device
5648  *
5649  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5650  * list. The caller must hold RCU read lock.
5651  */
5652 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5653 {
5654         struct netdev_adjacent *lower;
5655
5656         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5657                         struct netdev_adjacent, list);
5658         if (lower)
5659                 return lower->private;
5660         return NULL;
5661 }
5662 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5663
5664 /**
5665  * netdev_master_upper_dev_get_rcu - Get master upper device
5666  * @dev: device
5667  *
5668  * Find a master upper device and return pointer to it or NULL in case
5669  * it's not there. The caller must hold the RCU read lock.
5670  */
5671 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5672 {
5673         struct netdev_adjacent *upper;
5674
5675         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5676                                        struct netdev_adjacent, list);
5677         if (upper && likely(upper->master))
5678                 return upper->dev;
5679         return NULL;
5680 }
5681 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5682
5683 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5684                               struct net_device *adj_dev,
5685                               struct list_head *dev_list)
5686 {
5687         char linkname[IFNAMSIZ+7];
5688         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5689                 "upper_%s" : "lower_%s", adj_dev->name);
5690         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5691                                  linkname);
5692 }
5693 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5694                                char *name,
5695                                struct list_head *dev_list)
5696 {
5697         char linkname[IFNAMSIZ+7];
5698         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5699                 "upper_%s" : "lower_%s", name);
5700         sysfs_remove_link(&(dev->dev.kobj), linkname);
5701 }
5702
5703 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5704                                                  struct net_device *adj_dev,
5705                                                  struct list_head *dev_list)
5706 {
5707         return (dev_list == &dev->adj_list.upper ||
5708                 dev_list == &dev->adj_list.lower) &&
5709                 net_eq(dev_net(dev), dev_net(adj_dev));
5710 }
5711
5712 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5713                                         struct net_device *adj_dev,
5714                                         struct list_head *dev_list,
5715                                         void *private, bool master)
5716 {
5717         struct netdev_adjacent *adj;
5718         int ret;
5719
5720         adj = __netdev_find_adj(adj_dev, dev_list);
5721
5722         if (adj) {
5723                 adj->ref_nr += 1;
5724                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5725                          dev->name, adj_dev->name, adj->ref_nr);
5726
5727                 return 0;
5728         }
5729
5730         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5731         if (!adj)
5732                 return -ENOMEM;
5733
5734         adj->dev = adj_dev;
5735         adj->master = master;
5736         adj->ref_nr = 1;
5737         adj->private = private;
5738         dev_hold(adj_dev);
5739
5740         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5741                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5742
5743         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5744                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5745                 if (ret)
5746                         goto free_adj;
5747         }
5748
5749         /* Ensure that master link is always the first item in list. */
5750         if (master) {
5751                 ret = sysfs_create_link(&(dev->dev.kobj),
5752                                         &(adj_dev->dev.kobj), "master");
5753                 if (ret)
5754                         goto remove_symlinks;
5755
5756                 list_add_rcu(&adj->list, dev_list);
5757         } else {
5758                 list_add_tail_rcu(&adj->list, dev_list);
5759         }
5760
5761         return 0;
5762
5763 remove_symlinks:
5764         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5765                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5766 free_adj:
5767         kfree(adj);
5768         dev_put(adj_dev);
5769
5770         return ret;
5771 }
5772
5773 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5774                                          struct net_device *adj_dev,
5775                                          u16 ref_nr,
5776                                          struct list_head *dev_list)
5777 {
5778         struct netdev_adjacent *adj;
5779
5780         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5781                  dev->name, adj_dev->name, ref_nr);
5782
5783         adj = __netdev_find_adj(adj_dev, dev_list);
5784
5785         if (!adj) {
5786                 pr_err("Adjacency does not exist for device %s from %s\n",
5787                        dev->name, adj_dev->name);
5788                 WARN_ON(1);
5789                 return;
5790         }
5791
5792         if (adj->ref_nr > ref_nr) {
5793                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5794                          dev->name, adj_dev->name, ref_nr,
5795                          adj->ref_nr - ref_nr);
5796                 adj->ref_nr -= ref_nr;
5797                 return;
5798         }
5799
5800         if (adj->master)
5801                 sysfs_remove_link(&(dev->dev.kobj), "master");
5802
5803         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5804                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5805
5806         list_del_rcu(&adj->list);
5807         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5808                  adj_dev->name, dev->name, adj_dev->name);
5809         dev_put(adj_dev);
5810         kfree_rcu(adj, rcu);
5811 }
5812
5813 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5814                                             struct net_device *upper_dev,
5815                                             struct list_head *up_list,
5816                                             struct list_head *down_list,
5817                                             void *private, bool master)
5818 {
5819         int ret;
5820
5821         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5822                                            private, master);
5823         if (ret)
5824                 return ret;
5825
5826         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5827                                            private, false);
5828         if (ret) {
5829                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5830                 return ret;
5831         }
5832
5833         return 0;
5834 }
5835
5836 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5837                                                struct net_device *upper_dev,
5838                                                u16 ref_nr,
5839                                                struct list_head *up_list,
5840                                                struct list_head *down_list)
5841 {
5842         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5843         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5844 }
5845
5846 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5847                                                 struct net_device *upper_dev,
5848                                                 void *private, bool master)
5849 {
5850         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5851                                                 &dev->adj_list.upper,
5852                                                 &upper_dev->adj_list.lower,
5853                                                 private, master);
5854 }
5855
5856 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5857                                                    struct net_device *upper_dev)
5858 {
5859         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5860                                            &dev->adj_list.upper,
5861                                            &upper_dev->adj_list.lower);
5862 }
5863
5864 static int __netdev_upper_dev_link(struct net_device *dev,
5865                                    struct net_device *upper_dev, bool master,
5866                                    void *upper_priv, void *upper_info)
5867 {
5868         struct netdev_notifier_changeupper_info changeupper_info;
5869         int ret = 0;
5870
5871         ASSERT_RTNL();
5872
5873         if (dev == upper_dev)
5874                 return -EBUSY;
5875
5876         /* To prevent loops, check if dev is not upper device to upper_dev. */
5877         if (netdev_has_upper_dev(upper_dev, dev))
5878                 return -EBUSY;
5879
5880         if (netdev_has_upper_dev(dev, upper_dev))
5881                 return -EEXIST;
5882
5883         if (master && netdev_master_upper_dev_get(dev))
5884                 return -EBUSY;
5885
5886         changeupper_info.upper_dev = upper_dev;
5887         changeupper_info.master = master;
5888         changeupper_info.linking = true;
5889         changeupper_info.upper_info = upper_info;
5890
5891         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5892                                             &changeupper_info.info);
5893         ret = notifier_to_errno(ret);
5894         if (ret)
5895                 return ret;
5896
5897         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5898                                                    master);
5899         if (ret)
5900                 return ret;
5901
5902         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5903                                             &changeupper_info.info);
5904         ret = notifier_to_errno(ret);
5905         if (ret)
5906                 goto rollback;
5907
5908         return 0;
5909
5910 rollback:
5911         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5912
5913         return ret;
5914 }
5915
5916 /**
5917  * netdev_upper_dev_link - Add a link to the upper device
5918  * @dev: device
5919  * @upper_dev: new upper device
5920  *
5921  * Adds a link to device which is upper to this one. The caller must hold
5922  * the RTNL lock. On a failure a negative errno code is returned.
5923  * On success the reference counts are adjusted and the function
5924  * returns zero.
5925  */
5926 int netdev_upper_dev_link(struct net_device *dev,
5927                           struct net_device *upper_dev)
5928 {
5929         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5930 }
5931 EXPORT_SYMBOL(netdev_upper_dev_link);
5932
5933 /**
5934  * netdev_master_upper_dev_link - Add a master link to the upper device
5935  * @dev: device
5936  * @upper_dev: new upper device
5937  * @upper_priv: upper device private
5938  * @upper_info: upper info to be passed down via notifier
5939  *
5940  * Adds a link to device which is upper to this one. In this case, only
5941  * one master upper device can be linked, although other non-master devices
5942  * might be linked as well. The caller must hold the RTNL lock.
5943  * On a failure a negative errno code is returned. On success the reference
5944  * counts are adjusted and the function returns zero.
5945  */
5946 int netdev_master_upper_dev_link(struct net_device *dev,
5947                                  struct net_device *upper_dev,
5948                                  void *upper_priv, void *upper_info)
5949 {
5950         return __netdev_upper_dev_link(dev, upper_dev, true,
5951                                        upper_priv, upper_info);
5952 }
5953 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5954
5955 /**
5956  * netdev_upper_dev_unlink - Removes a link to upper device
5957  * @dev: device
5958  * @upper_dev: new upper device
5959  *
5960  * Removes a link to device which is upper to this one. The caller must hold
5961  * the RTNL lock.
5962  */
5963 void netdev_upper_dev_unlink(struct net_device *dev,
5964                              struct net_device *upper_dev)
5965 {
5966         struct netdev_notifier_changeupper_info changeupper_info;
5967         ASSERT_RTNL();
5968
5969         changeupper_info.upper_dev = upper_dev;
5970         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5971         changeupper_info.linking = false;
5972
5973         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5974                                       &changeupper_info.info);
5975
5976         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5977
5978         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5979                                       &changeupper_info.info);
5980 }
5981 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5982
5983 /**
5984  * netdev_bonding_info_change - Dispatch event about slave change
5985  * @dev: device
5986  * @bonding_info: info to dispatch
5987  *
5988  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5989  * The caller must hold the RTNL lock.
5990  */
5991 void netdev_bonding_info_change(struct net_device *dev,
5992                                 struct netdev_bonding_info *bonding_info)
5993 {
5994         struct netdev_notifier_bonding_info     info;
5995
5996         memcpy(&info.bonding_info, bonding_info,
5997                sizeof(struct netdev_bonding_info));
5998         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5999                                       &info.info);
6000 }
6001 EXPORT_SYMBOL(netdev_bonding_info_change);
6002
6003 static void netdev_adjacent_add_links(struct net_device *dev)
6004 {
6005         struct netdev_adjacent *iter;
6006
6007         struct net *net = dev_net(dev);
6008
6009         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6010                 if (!net_eq(net, dev_net(iter->dev)))
6011                         continue;
6012                 netdev_adjacent_sysfs_add(iter->dev, dev,
6013                                           &iter->dev->adj_list.lower);
6014                 netdev_adjacent_sysfs_add(dev, iter->dev,
6015                                           &dev->adj_list.upper);
6016         }
6017
6018         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6019                 if (!net_eq(net, dev_net(iter->dev)))
6020                         continue;
6021                 netdev_adjacent_sysfs_add(iter->dev, dev,
6022                                           &iter->dev->adj_list.upper);
6023                 netdev_adjacent_sysfs_add(dev, iter->dev,
6024                                           &dev->adj_list.lower);
6025         }
6026 }
6027
6028 static void netdev_adjacent_del_links(struct net_device *dev)
6029 {
6030         struct netdev_adjacent *iter;
6031
6032         struct net *net = dev_net(dev);
6033
6034         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6035                 if (!net_eq(net, dev_net(iter->dev)))
6036                         continue;
6037                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6038                                           &iter->dev->adj_list.lower);
6039                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6040                                           &dev->adj_list.upper);
6041         }
6042
6043         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6044                 if (!net_eq(net, dev_net(iter->dev)))
6045                         continue;
6046                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6047                                           &iter->dev->adj_list.upper);
6048                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6049                                           &dev->adj_list.lower);
6050         }
6051 }
6052
6053 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6054 {
6055         struct netdev_adjacent *iter;
6056
6057         struct net *net = dev_net(dev);
6058
6059         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6060                 if (!net_eq(net, dev_net(iter->dev)))
6061                         continue;
6062                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6063                                           &iter->dev->adj_list.lower);
6064                 netdev_adjacent_sysfs_add(iter->dev, dev,
6065                                           &iter->dev->adj_list.lower);
6066         }
6067
6068         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6069                 if (!net_eq(net, dev_net(iter->dev)))
6070                         continue;
6071                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6072                                           &iter->dev->adj_list.upper);
6073                 netdev_adjacent_sysfs_add(iter->dev, dev,
6074                                           &iter->dev->adj_list.upper);
6075         }
6076 }
6077
6078 void *netdev_lower_dev_get_private(struct net_device *dev,
6079                                    struct net_device *lower_dev)
6080 {
6081         struct netdev_adjacent *lower;
6082
6083         if (!lower_dev)
6084                 return NULL;
6085         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6086         if (!lower)
6087                 return NULL;
6088
6089         return lower->private;
6090 }
6091 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6092
6093
6094 int dev_get_nest_level(struct net_device *dev)
6095 {
6096         struct net_device *lower = NULL;
6097         struct list_head *iter;
6098         int max_nest = -1;
6099         int nest;
6100
6101         ASSERT_RTNL();
6102
6103         netdev_for_each_lower_dev(dev, lower, iter) {
6104                 nest = dev_get_nest_level(lower);
6105                 if (max_nest < nest)
6106                         max_nest = nest;
6107         }
6108
6109         return max_nest + 1;
6110 }
6111 EXPORT_SYMBOL(dev_get_nest_level);
6112
6113 /**
6114  * netdev_lower_change - Dispatch event about lower device state change
6115  * @lower_dev: device
6116  * @lower_state_info: state to dispatch
6117  *
6118  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6119  * The caller must hold the RTNL lock.
6120  */
6121 void netdev_lower_state_changed(struct net_device *lower_dev,
6122                                 void *lower_state_info)
6123 {
6124         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6125
6126         ASSERT_RTNL();
6127         changelowerstate_info.lower_state_info = lower_state_info;
6128         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6129                                       &changelowerstate_info.info);
6130 }
6131 EXPORT_SYMBOL(netdev_lower_state_changed);
6132
6133 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6134                                            struct neighbour *n)
6135 {
6136         struct net_device *lower_dev, *stop_dev;
6137         struct list_head *iter;
6138         int err;
6139
6140         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6141                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6142                         continue;
6143                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6144                 if (err) {
6145                         stop_dev = lower_dev;
6146                         goto rollback;
6147                 }
6148         }
6149         return 0;
6150
6151 rollback:
6152         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6153                 if (lower_dev == stop_dev)
6154                         break;
6155                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6156                         continue;
6157                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6158         }
6159         return err;
6160 }
6161 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6162
6163 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6164                                           struct neighbour *n)
6165 {
6166         struct net_device *lower_dev;
6167         struct list_head *iter;
6168
6169         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6170                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6171                         continue;
6172                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6173         }
6174 }
6175 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6176
6177 static void dev_change_rx_flags(struct net_device *dev, int flags)
6178 {
6179         const struct net_device_ops *ops = dev->netdev_ops;
6180
6181         if (ops->ndo_change_rx_flags)
6182                 ops->ndo_change_rx_flags(dev, flags);
6183 }
6184
6185 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6186 {
6187         unsigned int old_flags = dev->flags;
6188         kuid_t uid;
6189         kgid_t gid;
6190
6191         ASSERT_RTNL();
6192
6193         dev->flags |= IFF_PROMISC;
6194         dev->promiscuity += inc;
6195         if (dev->promiscuity == 0) {
6196                 /*
6197                  * Avoid overflow.
6198                  * If inc causes overflow, untouch promisc and return error.
6199                  */
6200                 if (inc < 0)
6201                         dev->flags &= ~IFF_PROMISC;
6202                 else {
6203                         dev->promiscuity -= inc;
6204                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6205                                 dev->name);
6206                         return -EOVERFLOW;
6207                 }
6208         }
6209         if (dev->flags != old_flags) {
6210                 pr_info("device %s %s promiscuous mode\n",
6211                         dev->name,
6212                         dev->flags & IFF_PROMISC ? "entered" : "left");
6213                 if (audit_enabled) {
6214                         current_uid_gid(&uid, &gid);
6215                         audit_log(current->audit_context, GFP_ATOMIC,
6216                                 AUDIT_ANOM_PROMISCUOUS,
6217                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6218                                 dev->name, (dev->flags & IFF_PROMISC),
6219                                 (old_flags & IFF_PROMISC),
6220                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6221                                 from_kuid(&init_user_ns, uid),
6222                                 from_kgid(&init_user_ns, gid),
6223                                 audit_get_sessionid(current));
6224                 }
6225
6226                 dev_change_rx_flags(dev, IFF_PROMISC);
6227         }
6228         if (notify)
6229                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6230         return 0;
6231 }
6232
6233 /**
6234  *      dev_set_promiscuity     - update promiscuity count on a device
6235  *      @dev: device
6236  *      @inc: modifier
6237  *
6238  *      Add or remove promiscuity from a device. While the count in the device
6239  *      remains above zero the interface remains promiscuous. Once it hits zero
6240  *      the device reverts back to normal filtering operation. A negative inc
6241  *      value is used to drop promiscuity on the device.
6242  *      Return 0 if successful or a negative errno code on error.
6243  */
6244 int dev_set_promiscuity(struct net_device *dev, int inc)
6245 {
6246         unsigned int old_flags = dev->flags;
6247         int err;
6248
6249         err = __dev_set_promiscuity(dev, inc, true);
6250         if (err < 0)
6251                 return err;
6252         if (dev->flags != old_flags)
6253                 dev_set_rx_mode(dev);
6254         return err;
6255 }
6256 EXPORT_SYMBOL(dev_set_promiscuity);
6257
6258 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6259 {
6260         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6261
6262         ASSERT_RTNL();
6263
6264         dev->flags |= IFF_ALLMULTI;
6265         dev->allmulti += inc;
6266         if (dev->allmulti == 0) {
6267                 /*
6268                  * Avoid overflow.
6269                  * If inc causes overflow, untouch allmulti and return error.
6270                  */
6271                 if (inc < 0)
6272                         dev->flags &= ~IFF_ALLMULTI;
6273                 else {
6274                         dev->allmulti -= inc;
6275                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6276                                 dev->name);
6277                         return -EOVERFLOW;
6278                 }
6279         }
6280         if (dev->flags ^ old_flags) {
6281                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6282                 dev_set_rx_mode(dev);
6283                 if (notify)
6284                         __dev_notify_flags(dev, old_flags,
6285                                            dev->gflags ^ old_gflags);
6286         }
6287         return 0;
6288 }
6289
6290 /**
6291  *      dev_set_allmulti        - update allmulti count on a device
6292  *      @dev: device
6293  *      @inc: modifier
6294  *
6295  *      Add or remove reception of all multicast frames to a device. While the
6296  *      count in the device remains above zero the interface remains listening
6297  *      to all interfaces. Once it hits zero the device reverts back to normal
6298  *      filtering operation. A negative @inc value is used to drop the counter
6299  *      when releasing a resource needing all multicasts.
6300  *      Return 0 if successful or a negative errno code on error.
6301  */
6302
6303 int dev_set_allmulti(struct net_device *dev, int inc)
6304 {
6305         return __dev_set_allmulti(dev, inc, true);
6306 }
6307 EXPORT_SYMBOL(dev_set_allmulti);
6308
6309 /*
6310  *      Upload unicast and multicast address lists to device and
6311  *      configure RX filtering. When the device doesn't support unicast
6312  *      filtering it is put in promiscuous mode while unicast addresses
6313  *      are present.
6314  */
6315 void __dev_set_rx_mode(struct net_device *dev)
6316 {
6317         const struct net_device_ops *ops = dev->netdev_ops;
6318
6319         /* dev_open will call this function so the list will stay sane. */
6320         if (!(dev->flags&IFF_UP))
6321                 return;
6322
6323         if (!netif_device_present(dev))
6324                 return;
6325
6326         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6327                 /* Unicast addresses changes may only happen under the rtnl,
6328                  * therefore calling __dev_set_promiscuity here is safe.
6329                  */
6330                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6331                         __dev_set_promiscuity(dev, 1, false);
6332                         dev->uc_promisc = true;
6333                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6334                         __dev_set_promiscuity(dev, -1, false);
6335                         dev->uc_promisc = false;
6336                 }
6337         }
6338
6339         if (ops->ndo_set_rx_mode)
6340                 ops->ndo_set_rx_mode(dev);
6341 }
6342
6343 void dev_set_rx_mode(struct net_device *dev)
6344 {
6345         netif_addr_lock_bh(dev);
6346         __dev_set_rx_mode(dev);
6347         netif_addr_unlock_bh(dev);
6348 }
6349
6350 /**
6351  *      dev_get_flags - get flags reported to userspace
6352  *      @dev: device
6353  *
6354  *      Get the combination of flag bits exported through APIs to userspace.
6355  */
6356 unsigned int dev_get_flags(const struct net_device *dev)
6357 {
6358         unsigned int flags;
6359
6360         flags = (dev->flags & ~(IFF_PROMISC |
6361                                 IFF_ALLMULTI |
6362                                 IFF_RUNNING |
6363                                 IFF_LOWER_UP |
6364                                 IFF_DORMANT)) |
6365                 (dev->gflags & (IFF_PROMISC |
6366                                 IFF_ALLMULTI));
6367
6368         if (netif_running(dev)) {
6369                 if (netif_oper_up(dev))
6370                         flags |= IFF_RUNNING;
6371                 if (netif_carrier_ok(dev))
6372                         flags |= IFF_LOWER_UP;
6373                 if (netif_dormant(dev))
6374                         flags |= IFF_DORMANT;
6375         }
6376
6377         return flags;
6378 }
6379 EXPORT_SYMBOL(dev_get_flags);
6380
6381 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6382 {
6383         unsigned int old_flags = dev->flags;
6384         int ret;
6385
6386         ASSERT_RTNL();
6387
6388         /*
6389          *      Set the flags on our device.
6390          */
6391
6392         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6393                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6394                                IFF_AUTOMEDIA)) |
6395                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6396                                     IFF_ALLMULTI));
6397
6398         /*
6399          *      Load in the correct multicast list now the flags have changed.
6400          */
6401
6402         if ((old_flags ^ flags) & IFF_MULTICAST)
6403                 dev_change_rx_flags(dev, IFF_MULTICAST);
6404
6405         dev_set_rx_mode(dev);
6406
6407         /*
6408          *      Have we downed the interface. We handle IFF_UP ourselves
6409          *      according to user attempts to set it, rather than blindly
6410          *      setting it.
6411          */
6412
6413         ret = 0;
6414         if ((old_flags ^ flags) & IFF_UP)
6415                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6416
6417         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6418                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6419                 unsigned int old_flags = dev->flags;
6420
6421                 dev->gflags ^= IFF_PROMISC;
6422
6423                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6424                         if (dev->flags != old_flags)
6425                                 dev_set_rx_mode(dev);
6426         }
6427
6428         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6429            is important. Some (broken) drivers set IFF_PROMISC, when
6430            IFF_ALLMULTI is requested not asking us and not reporting.
6431          */
6432         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6433                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6434
6435                 dev->gflags ^= IFF_ALLMULTI;
6436                 __dev_set_allmulti(dev, inc, false);
6437         }
6438
6439         return ret;
6440 }
6441
6442 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6443                         unsigned int gchanges)
6444 {
6445         unsigned int changes = dev->flags ^ old_flags;
6446
6447         if (gchanges)
6448                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6449
6450         if (changes & IFF_UP) {
6451                 if (dev->flags & IFF_UP)
6452                         call_netdevice_notifiers(NETDEV_UP, dev);
6453                 else
6454                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6455         }
6456
6457         if (dev->flags & IFF_UP &&
6458             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6459                 struct netdev_notifier_change_info change_info;
6460
6461                 change_info.flags_changed = changes;
6462                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6463                                               &change_info.info);
6464         }
6465 }
6466
6467 /**
6468  *      dev_change_flags - change device settings
6469  *      @dev: device
6470  *      @flags: device state flags
6471  *
6472  *      Change settings on device based state flags. The flags are
6473  *      in the userspace exported format.
6474  */
6475 int dev_change_flags(struct net_device *dev, unsigned int flags)
6476 {
6477         int ret;
6478         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6479
6480         ret = __dev_change_flags(dev, flags);
6481         if (ret < 0)
6482                 return ret;
6483
6484         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6485         __dev_notify_flags(dev, old_flags, changes);
6486         return ret;
6487 }
6488 EXPORT_SYMBOL(dev_change_flags);
6489
6490 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6491 {
6492         const struct net_device_ops *ops = dev->netdev_ops;
6493
6494         if (ops->ndo_change_mtu)
6495                 return ops->ndo_change_mtu(dev, new_mtu);
6496
6497         dev->mtu = new_mtu;
6498         return 0;
6499 }
6500
6501 /**
6502  *      dev_set_mtu - Change maximum transfer unit
6503  *      @dev: device
6504  *      @new_mtu: new transfer unit
6505  *
6506  *      Change the maximum transfer size of the network device.
6507  */
6508 int dev_set_mtu(struct net_device *dev, int new_mtu)
6509 {
6510         int err, orig_mtu;
6511
6512         if (new_mtu == dev->mtu)
6513                 return 0;
6514
6515         /* MTU must be positive, and in range */
6516         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6517                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6518                                     dev->name, new_mtu, dev->min_mtu);
6519                 return -EINVAL;
6520         }
6521
6522         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6523                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6524                                     dev->name, new_mtu, dev->max_mtu);
6525                 return -EINVAL;
6526         }
6527
6528         if (!netif_device_present(dev))
6529                 return -ENODEV;
6530
6531         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6532         err = notifier_to_errno(err);
6533         if (err)
6534                 return err;
6535
6536         orig_mtu = dev->mtu;
6537         err = __dev_set_mtu(dev, new_mtu);
6538
6539         if (!err) {
6540                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6541                 err = notifier_to_errno(err);
6542                 if (err) {
6543                         /* setting mtu back and notifying everyone again,
6544                          * so that they have a chance to revert changes.
6545                          */
6546                         __dev_set_mtu(dev, orig_mtu);
6547                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6548                 }
6549         }
6550         return err;
6551 }
6552 EXPORT_SYMBOL(dev_set_mtu);
6553
6554 /**
6555  *      dev_set_group - Change group this device belongs to
6556  *      @dev: device
6557  *      @new_group: group this device should belong to
6558  */
6559 void dev_set_group(struct net_device *dev, int new_group)
6560 {
6561         dev->group = new_group;
6562 }
6563 EXPORT_SYMBOL(dev_set_group);
6564
6565 /**
6566  *      dev_set_mac_address - Change Media Access Control Address
6567  *      @dev: device
6568  *      @sa: new address
6569  *
6570  *      Change the hardware (MAC) address of the device
6571  */
6572 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6573 {
6574         const struct net_device_ops *ops = dev->netdev_ops;
6575         int err;
6576
6577         if (!ops->ndo_set_mac_address)
6578                 return -EOPNOTSUPP;
6579         if (sa->sa_family != dev->type)
6580                 return -EINVAL;
6581         if (!netif_device_present(dev))
6582                 return -ENODEV;
6583         err = ops->ndo_set_mac_address(dev, sa);
6584         if (err)
6585                 return err;
6586         dev->addr_assign_type = NET_ADDR_SET;
6587         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6588         add_device_randomness(dev->dev_addr, dev->addr_len);
6589         return 0;
6590 }
6591 EXPORT_SYMBOL(dev_set_mac_address);
6592
6593 /**
6594  *      dev_change_carrier - Change device carrier
6595  *      @dev: device
6596  *      @new_carrier: new value
6597  *
6598  *      Change device carrier
6599  */
6600 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6601 {
6602         const struct net_device_ops *ops = dev->netdev_ops;
6603
6604         if (!ops->ndo_change_carrier)
6605                 return -EOPNOTSUPP;
6606         if (!netif_device_present(dev))
6607                 return -ENODEV;
6608         return ops->ndo_change_carrier(dev, new_carrier);
6609 }
6610 EXPORT_SYMBOL(dev_change_carrier);
6611
6612 /**
6613  *      dev_get_phys_port_id - Get device physical port ID
6614  *      @dev: device
6615  *      @ppid: port ID
6616  *
6617  *      Get device physical port ID
6618  */
6619 int dev_get_phys_port_id(struct net_device *dev,
6620                          struct netdev_phys_item_id *ppid)
6621 {
6622         const struct net_device_ops *ops = dev->netdev_ops;
6623
6624         if (!ops->ndo_get_phys_port_id)
6625                 return -EOPNOTSUPP;
6626         return ops->ndo_get_phys_port_id(dev, ppid);
6627 }
6628 EXPORT_SYMBOL(dev_get_phys_port_id);
6629
6630 /**
6631  *      dev_get_phys_port_name - Get device physical port name
6632  *      @dev: device
6633  *      @name: port name
6634  *      @len: limit of bytes to copy to name
6635  *
6636  *      Get device physical port name
6637  */
6638 int dev_get_phys_port_name(struct net_device *dev,
6639                            char *name, size_t len)
6640 {
6641         const struct net_device_ops *ops = dev->netdev_ops;
6642
6643         if (!ops->ndo_get_phys_port_name)
6644                 return -EOPNOTSUPP;
6645         return ops->ndo_get_phys_port_name(dev, name, len);
6646 }
6647 EXPORT_SYMBOL(dev_get_phys_port_name);
6648
6649 /**
6650  *      dev_change_proto_down - update protocol port state information
6651  *      @dev: device
6652  *      @proto_down: new value
6653  *
6654  *      This info can be used by switch drivers to set the phys state of the
6655  *      port.
6656  */
6657 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6658 {
6659         const struct net_device_ops *ops = dev->netdev_ops;
6660
6661         if (!ops->ndo_change_proto_down)
6662                 return -EOPNOTSUPP;
6663         if (!netif_device_present(dev))
6664                 return -ENODEV;
6665         return ops->ndo_change_proto_down(dev, proto_down);
6666 }
6667 EXPORT_SYMBOL(dev_change_proto_down);
6668
6669 /**
6670  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6671  *      @dev: device
6672  *      @fd: new program fd or negative value to clear
6673  *      @flags: xdp-related flags
6674  *
6675  *      Set or clear a bpf program for a device
6676  */
6677 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6678 {
6679         const struct net_device_ops *ops = dev->netdev_ops;
6680         struct bpf_prog *prog = NULL;
6681         struct netdev_xdp xdp;
6682         int err;
6683
6684         ASSERT_RTNL();
6685
6686         if (!ops->ndo_xdp)
6687                 return -EOPNOTSUPP;
6688         if (fd >= 0) {
6689                 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6690                         memset(&xdp, 0, sizeof(xdp));
6691                         xdp.command = XDP_QUERY_PROG;
6692
6693                         err = ops->ndo_xdp(dev, &xdp);
6694                         if (err < 0)
6695                                 return err;
6696                         if (xdp.prog_attached)
6697                                 return -EBUSY;
6698                 }
6699
6700                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6701                 if (IS_ERR(prog))
6702                         return PTR_ERR(prog);
6703         }
6704
6705         memset(&xdp, 0, sizeof(xdp));
6706         xdp.command = XDP_SETUP_PROG;
6707         xdp.prog = prog;
6708
6709         err = ops->ndo_xdp(dev, &xdp);
6710         if (err < 0 && prog)
6711                 bpf_prog_put(prog);
6712
6713         return err;
6714 }
6715 EXPORT_SYMBOL(dev_change_xdp_fd);
6716
6717 /**
6718  *      dev_new_index   -       allocate an ifindex
6719  *      @net: the applicable net namespace
6720  *
6721  *      Returns a suitable unique value for a new device interface
6722  *      number.  The caller must hold the rtnl semaphore or the
6723  *      dev_base_lock to be sure it remains unique.
6724  */
6725 static int dev_new_index(struct net *net)
6726 {
6727         int ifindex = net->ifindex;
6728         for (;;) {
6729                 if (++ifindex <= 0)
6730                         ifindex = 1;
6731                 if (!__dev_get_by_index(net, ifindex))
6732                         return net->ifindex = ifindex;
6733         }
6734 }
6735
6736 /* Delayed registration/unregisteration */
6737 static LIST_HEAD(net_todo_list);
6738 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6739
6740 static void net_set_todo(struct net_device *dev)
6741 {
6742         list_add_tail(&dev->todo_list, &net_todo_list);
6743         dev_net(dev)->dev_unreg_count++;
6744 }
6745
6746 static void rollback_registered_many(struct list_head *head)
6747 {
6748         struct net_device *dev, *tmp;
6749         LIST_HEAD(close_head);
6750
6751         BUG_ON(dev_boot_phase);
6752         ASSERT_RTNL();
6753
6754         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6755                 /* Some devices call without registering
6756                  * for initialization unwind. Remove those
6757                  * devices and proceed with the remaining.
6758                  */
6759                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6760                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6761                                  dev->name, dev);
6762
6763                         WARN_ON(1);
6764                         list_del(&dev->unreg_list);
6765                         continue;
6766                 }
6767                 dev->dismantle = true;
6768                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6769         }
6770
6771         /* If device is running, close it first. */
6772         list_for_each_entry(dev, head, unreg_list)
6773                 list_add_tail(&dev->close_list, &close_head);
6774         dev_close_many(&close_head, true);
6775
6776         list_for_each_entry(dev, head, unreg_list) {
6777                 /* And unlink it from device chain. */
6778                 unlist_netdevice(dev);
6779
6780                 dev->reg_state = NETREG_UNREGISTERING;
6781         }
6782         flush_all_backlogs();
6783
6784         synchronize_net();
6785
6786         list_for_each_entry(dev, head, unreg_list) {
6787                 struct sk_buff *skb = NULL;
6788
6789                 /* Shutdown queueing discipline. */
6790                 dev_shutdown(dev);
6791
6792
6793                 /* Notify protocols, that we are about to destroy
6794                    this device. They should clean all the things.
6795                 */
6796                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6797
6798                 if (!dev->rtnl_link_ops ||
6799                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6800                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6801                                                      GFP_KERNEL);
6802
6803                 /*
6804                  *      Flush the unicast and multicast chains
6805                  */
6806                 dev_uc_flush(dev);
6807                 dev_mc_flush(dev);
6808
6809                 if (dev->netdev_ops->ndo_uninit)
6810                         dev->netdev_ops->ndo_uninit(dev);
6811
6812                 if (skb)
6813                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6814
6815                 /* Notifier chain MUST detach us all upper devices. */
6816                 WARN_ON(netdev_has_any_upper_dev(dev));
6817                 WARN_ON(netdev_has_any_lower_dev(dev));
6818
6819                 /* Remove entries from kobject tree */
6820                 netdev_unregister_kobject(dev);
6821 #ifdef CONFIG_XPS
6822                 /* Remove XPS queueing entries */
6823                 netif_reset_xps_queues_gt(dev, 0);
6824 #endif
6825         }
6826
6827         synchronize_net();
6828
6829         list_for_each_entry(dev, head, unreg_list)
6830                 dev_put(dev);
6831 }
6832
6833 static void rollback_registered(struct net_device *dev)
6834 {
6835         LIST_HEAD(single);
6836
6837         list_add(&dev->unreg_list, &single);
6838         rollback_registered_many(&single);
6839         list_del(&single);
6840 }
6841
6842 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6843         struct net_device *upper, netdev_features_t features)
6844 {
6845         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6846         netdev_features_t feature;
6847         int feature_bit;
6848
6849         for_each_netdev_feature(&upper_disables, feature_bit) {
6850                 feature = __NETIF_F_BIT(feature_bit);
6851                 if (!(upper->wanted_features & feature)
6852                     && (features & feature)) {
6853                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6854                                    &feature, upper->name);
6855                         features &= ~feature;
6856                 }
6857         }
6858
6859         return features;
6860 }
6861
6862 static void netdev_sync_lower_features(struct net_device *upper,
6863         struct net_device *lower, netdev_features_t features)
6864 {
6865         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6866         netdev_features_t feature;
6867         int feature_bit;
6868
6869         for_each_netdev_feature(&upper_disables, feature_bit) {
6870                 feature = __NETIF_F_BIT(feature_bit);
6871                 if (!(features & feature) && (lower->features & feature)) {
6872                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6873                                    &feature, lower->name);
6874                         lower->wanted_features &= ~feature;
6875                         netdev_update_features(lower);
6876
6877                         if (unlikely(lower->features & feature))
6878                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6879                                             &feature, lower->name);
6880                 }
6881         }
6882 }
6883
6884 static netdev_features_t netdev_fix_features(struct net_device *dev,
6885         netdev_features_t features)
6886 {
6887         /* Fix illegal checksum combinations */
6888         if ((features & NETIF_F_HW_CSUM) &&
6889             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6890                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6891                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6892         }
6893
6894         /* TSO requires that SG is present as well. */
6895         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6896                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6897                 features &= ~NETIF_F_ALL_TSO;
6898         }
6899
6900         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6901                                         !(features & NETIF_F_IP_CSUM)) {
6902                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6903                 features &= ~NETIF_F_TSO;
6904                 features &= ~NETIF_F_TSO_ECN;
6905         }
6906
6907         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6908                                          !(features & NETIF_F_IPV6_CSUM)) {
6909                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6910                 features &= ~NETIF_F_TSO6;
6911         }
6912
6913         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6914         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6915                 features &= ~NETIF_F_TSO_MANGLEID;
6916
6917         /* TSO ECN requires that TSO is present as well. */
6918         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6919                 features &= ~NETIF_F_TSO_ECN;
6920
6921         /* Software GSO depends on SG. */
6922         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6923                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6924                 features &= ~NETIF_F_GSO;
6925         }
6926
6927         /* UFO needs SG and checksumming */
6928         if (features & NETIF_F_UFO) {
6929                 /* maybe split UFO into V4 and V6? */
6930                 if (!(features & NETIF_F_HW_CSUM) &&
6931                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6932                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6933                         netdev_dbg(dev,
6934                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6935                         features &= ~NETIF_F_UFO;
6936                 }
6937
6938                 if (!(features & NETIF_F_SG)) {
6939                         netdev_dbg(dev,
6940                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6941                         features &= ~NETIF_F_UFO;
6942                 }
6943         }
6944
6945         /* GSO partial features require GSO partial be set */
6946         if ((features & dev->gso_partial_features) &&
6947             !(features & NETIF_F_GSO_PARTIAL)) {
6948                 netdev_dbg(dev,
6949                            "Dropping partially supported GSO features since no GSO partial.\n");
6950                 features &= ~dev->gso_partial_features;
6951         }
6952
6953 #ifdef CONFIG_NET_RX_BUSY_POLL
6954         if (dev->netdev_ops->ndo_busy_poll)
6955                 features |= NETIF_F_BUSY_POLL;
6956         else
6957 #endif
6958                 features &= ~NETIF_F_BUSY_POLL;
6959
6960         return features;
6961 }
6962
6963 int __netdev_update_features(struct net_device *dev)
6964 {
6965         struct net_device *upper, *lower;
6966         netdev_features_t features;
6967         struct list_head *iter;
6968         int err = -1;
6969
6970         ASSERT_RTNL();
6971
6972         features = netdev_get_wanted_features(dev);
6973
6974         if (dev->netdev_ops->ndo_fix_features)
6975                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6976
6977         /* driver might be less strict about feature dependencies */
6978         features = netdev_fix_features(dev, features);
6979
6980         /* some features can't be enabled if they're off an an upper device */
6981         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6982                 features = netdev_sync_upper_features(dev, upper, features);
6983
6984         if (dev->features == features)
6985                 goto sync_lower;
6986
6987         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6988                 &dev->features, &features);
6989
6990         if (dev->netdev_ops->ndo_set_features)
6991                 err = dev->netdev_ops->ndo_set_features(dev, features);
6992         else
6993                 err = 0;
6994
6995         if (unlikely(err < 0)) {
6996                 netdev_err(dev,
6997                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6998                         err, &features, &dev->features);
6999                 /* return non-0 since some features might have changed and
7000                  * it's better to fire a spurious notification than miss it
7001                  */
7002                 return -1;
7003         }
7004
7005 sync_lower:
7006         /* some features must be disabled on lower devices when disabled
7007          * on an upper device (think: bonding master or bridge)
7008          */
7009         netdev_for_each_lower_dev(dev, lower, iter)
7010                 netdev_sync_lower_features(dev, lower, features);
7011
7012         if (!err)
7013                 dev->features = features;
7014
7015         return err < 0 ? 0 : 1;
7016 }
7017
7018 /**
7019  *      netdev_update_features - recalculate device features
7020  *      @dev: the device to check
7021  *
7022  *      Recalculate dev->features set and send notifications if it
7023  *      has changed. Should be called after driver or hardware dependent
7024  *      conditions might have changed that influence the features.
7025  */
7026 void netdev_update_features(struct net_device *dev)
7027 {
7028         if (__netdev_update_features(dev))
7029                 netdev_features_change(dev);
7030 }
7031 EXPORT_SYMBOL(netdev_update_features);
7032
7033 /**
7034  *      netdev_change_features - recalculate device features
7035  *      @dev: the device to check
7036  *
7037  *      Recalculate dev->features set and send notifications even
7038  *      if they have not changed. Should be called instead of
7039  *      netdev_update_features() if also dev->vlan_features might
7040  *      have changed to allow the changes to be propagated to stacked
7041  *      VLAN devices.
7042  */
7043 void netdev_change_features(struct net_device *dev)
7044 {
7045         __netdev_update_features(dev);
7046         netdev_features_change(dev);
7047 }
7048 EXPORT_SYMBOL(netdev_change_features);
7049
7050 /**
7051  *      netif_stacked_transfer_operstate -      transfer operstate
7052  *      @rootdev: the root or lower level device to transfer state from
7053  *      @dev: the device to transfer operstate to
7054  *
7055  *      Transfer operational state from root to device. This is normally
7056  *      called when a stacking relationship exists between the root
7057  *      device and the device(a leaf device).
7058  */
7059 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7060                                         struct net_device *dev)
7061 {
7062         if (rootdev->operstate == IF_OPER_DORMANT)
7063                 netif_dormant_on(dev);
7064         else
7065                 netif_dormant_off(dev);
7066
7067         if (netif_carrier_ok(rootdev)) {
7068                 if (!netif_carrier_ok(dev))
7069                         netif_carrier_on(dev);
7070         } else {
7071                 if (netif_carrier_ok(dev))
7072                         netif_carrier_off(dev);
7073         }
7074 }
7075 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7076
7077 #ifdef CONFIG_SYSFS
7078 static int netif_alloc_rx_queues(struct net_device *dev)
7079 {
7080         unsigned int i, count = dev->num_rx_queues;
7081         struct netdev_rx_queue *rx;
7082         size_t sz = count * sizeof(*rx);
7083
7084         BUG_ON(count < 1);
7085
7086         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7087         if (!rx) {
7088                 rx = vzalloc(sz);
7089                 if (!rx)
7090                         return -ENOMEM;
7091         }
7092         dev->_rx = rx;
7093
7094         for (i = 0; i < count; i++)
7095                 rx[i].dev = dev;
7096         return 0;
7097 }
7098 #endif
7099
7100 static void netdev_init_one_queue(struct net_device *dev,
7101                                   struct netdev_queue *queue, void *_unused)
7102 {
7103         /* Initialize queue lock */
7104         spin_lock_init(&queue->_xmit_lock);
7105         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7106         queue->xmit_lock_owner = -1;
7107         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7108         queue->dev = dev;
7109 #ifdef CONFIG_BQL
7110         dql_init(&queue->dql, HZ);
7111 #endif
7112 }
7113
7114 static void netif_free_tx_queues(struct net_device *dev)
7115 {
7116         kvfree(dev->_tx);
7117 }
7118
7119 static int netif_alloc_netdev_queues(struct net_device *dev)
7120 {
7121         unsigned int count = dev->num_tx_queues;
7122         struct netdev_queue *tx;
7123         size_t sz = count * sizeof(*tx);
7124
7125         if (count < 1 || count > 0xffff)
7126                 return -EINVAL;
7127
7128         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7129         if (!tx) {
7130                 tx = vzalloc(sz);
7131                 if (!tx)
7132                         return -ENOMEM;
7133         }
7134         dev->_tx = tx;
7135
7136         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7137         spin_lock_init(&dev->tx_global_lock);
7138
7139         return 0;
7140 }
7141
7142 void netif_tx_stop_all_queues(struct net_device *dev)
7143 {
7144         unsigned int i;
7145
7146         for (i = 0; i < dev->num_tx_queues; i++) {
7147                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7148                 netif_tx_stop_queue(txq);
7149         }
7150 }
7151 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7152
7153 /**
7154  *      register_netdevice      - register a network device
7155  *      @dev: device to register
7156  *
7157  *      Take a completed network device structure and add it to the kernel
7158  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7159  *      chain. 0 is returned on success. A negative errno code is returned
7160  *      on a failure to set up the device, or if the name is a duplicate.
7161  *
7162  *      Callers must hold the rtnl semaphore. You may want
7163  *      register_netdev() instead of this.
7164  *
7165  *      BUGS:
7166  *      The locking appears insufficient to guarantee two parallel registers
7167  *      will not get the same name.
7168  */
7169
7170 int register_netdevice(struct net_device *dev)
7171 {
7172         int ret;
7173         struct net *net = dev_net(dev);
7174
7175         BUG_ON(dev_boot_phase);
7176         ASSERT_RTNL();
7177
7178         might_sleep();
7179
7180         /* When net_device's are persistent, this will be fatal. */
7181         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7182         BUG_ON(!net);
7183
7184         spin_lock_init(&dev->addr_list_lock);
7185         netdev_set_addr_lockdep_class(dev);
7186
7187         ret = dev_get_valid_name(net, dev, dev->name);
7188         if (ret < 0)
7189                 goto out;
7190
7191         /* Init, if this function is available */
7192         if (dev->netdev_ops->ndo_init) {
7193                 ret = dev->netdev_ops->ndo_init(dev);
7194                 if (ret) {
7195                         if (ret > 0)
7196                                 ret = -EIO;
7197                         goto out;
7198                 }
7199         }
7200
7201         if (((dev->hw_features | dev->features) &
7202              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7203             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7204              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7205                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7206                 ret = -EINVAL;
7207                 goto err_uninit;
7208         }
7209
7210         ret = -EBUSY;
7211         if (!dev->ifindex)
7212                 dev->ifindex = dev_new_index(net);
7213         else if (__dev_get_by_index(net, dev->ifindex))
7214                 goto err_uninit;
7215
7216         /* Transfer changeable features to wanted_features and enable
7217          * software offloads (GSO and GRO).
7218          */
7219         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7220         dev->features |= NETIF_F_SOFT_FEATURES;
7221         dev->wanted_features = dev->features & dev->hw_features;
7222
7223         if (!(dev->flags & IFF_LOOPBACK))
7224                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7225
7226         /* If IPv4 TCP segmentation offload is supported we should also
7227          * allow the device to enable segmenting the frame with the option
7228          * of ignoring a static IP ID value.  This doesn't enable the
7229          * feature itself but allows the user to enable it later.
7230          */
7231         if (dev->hw_features & NETIF_F_TSO)
7232                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7233         if (dev->vlan_features & NETIF_F_TSO)
7234                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7235         if (dev->mpls_features & NETIF_F_TSO)
7236                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7237         if (dev->hw_enc_features & NETIF_F_TSO)
7238                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7239
7240         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7241          */
7242         dev->vlan_features |= NETIF_F_HIGHDMA;
7243
7244         /* Make NETIF_F_SG inheritable to tunnel devices.
7245          */
7246         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7247
7248         /* Make NETIF_F_SG inheritable to MPLS.
7249          */
7250         dev->mpls_features |= NETIF_F_SG;
7251
7252         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7253         ret = notifier_to_errno(ret);
7254         if (ret)
7255                 goto err_uninit;
7256
7257         ret = netdev_register_kobject(dev);
7258         if (ret)
7259                 goto err_uninit;
7260         dev->reg_state = NETREG_REGISTERED;
7261
7262         __netdev_update_features(dev);
7263
7264         /*
7265          *      Default initial state at registry is that the
7266          *      device is present.
7267          */
7268
7269         set_bit(__LINK_STATE_PRESENT, &dev->state);
7270
7271         linkwatch_init_dev(dev);
7272
7273         dev_init_scheduler(dev);
7274         dev_hold(dev);
7275         list_netdevice(dev);
7276         add_device_randomness(dev->dev_addr, dev->addr_len);
7277
7278         /* If the device has permanent device address, driver should
7279          * set dev_addr and also addr_assign_type should be set to
7280          * NET_ADDR_PERM (default value).
7281          */
7282         if (dev->addr_assign_type == NET_ADDR_PERM)
7283                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7284
7285         /* Notify protocols, that a new device appeared. */
7286         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7287         ret = notifier_to_errno(ret);
7288         if (ret) {
7289                 rollback_registered(dev);
7290                 dev->reg_state = NETREG_UNREGISTERED;
7291         }
7292         /*
7293          *      Prevent userspace races by waiting until the network
7294          *      device is fully setup before sending notifications.
7295          */
7296         if (!dev->rtnl_link_ops ||
7297             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7298                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7299
7300 out:
7301         return ret;
7302
7303 err_uninit:
7304         if (dev->netdev_ops->ndo_uninit)
7305                 dev->netdev_ops->ndo_uninit(dev);
7306         goto out;
7307 }
7308 EXPORT_SYMBOL(register_netdevice);
7309
7310 /**
7311  *      init_dummy_netdev       - init a dummy network device for NAPI
7312  *      @dev: device to init
7313  *
7314  *      This takes a network device structure and initialize the minimum
7315  *      amount of fields so it can be used to schedule NAPI polls without
7316  *      registering a full blown interface. This is to be used by drivers
7317  *      that need to tie several hardware interfaces to a single NAPI
7318  *      poll scheduler due to HW limitations.
7319  */
7320 int init_dummy_netdev(struct net_device *dev)
7321 {
7322         /* Clear everything. Note we don't initialize spinlocks
7323          * are they aren't supposed to be taken by any of the
7324          * NAPI code and this dummy netdev is supposed to be
7325          * only ever used for NAPI polls
7326          */
7327         memset(dev, 0, sizeof(struct net_device));
7328
7329         /* make sure we BUG if trying to hit standard
7330          * register/unregister code path
7331          */
7332         dev->reg_state = NETREG_DUMMY;
7333
7334         /* NAPI wants this */
7335         INIT_LIST_HEAD(&dev->napi_list);
7336
7337         /* a dummy interface is started by default */
7338         set_bit(__LINK_STATE_PRESENT, &dev->state);
7339         set_bit(__LINK_STATE_START, &dev->state);
7340
7341         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7342          * because users of this 'device' dont need to change
7343          * its refcount.
7344          */
7345
7346         return 0;
7347 }
7348 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7349
7350
7351 /**
7352  *      register_netdev - register a network device
7353  *      @dev: device to register
7354  *
7355  *      Take a completed network device structure and add it to the kernel
7356  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7357  *      chain. 0 is returned on success. A negative errno code is returned
7358  *      on a failure to set up the device, or if the name is a duplicate.
7359  *
7360  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7361  *      and expands the device name if you passed a format string to
7362  *      alloc_netdev.
7363  */
7364 int register_netdev(struct net_device *dev)
7365 {
7366         int err;
7367
7368         rtnl_lock();
7369         err = register_netdevice(dev);
7370         rtnl_unlock();
7371         return err;
7372 }
7373 EXPORT_SYMBOL(register_netdev);
7374
7375 int netdev_refcnt_read(const struct net_device *dev)
7376 {
7377         int i, refcnt = 0;
7378
7379         for_each_possible_cpu(i)
7380                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7381         return refcnt;
7382 }
7383 EXPORT_SYMBOL(netdev_refcnt_read);
7384
7385 /**
7386  * netdev_wait_allrefs - wait until all references are gone.
7387  * @dev: target net_device
7388  *
7389  * This is called when unregistering network devices.
7390  *
7391  * Any protocol or device that holds a reference should register
7392  * for netdevice notification, and cleanup and put back the
7393  * reference if they receive an UNREGISTER event.
7394  * We can get stuck here if buggy protocols don't correctly
7395  * call dev_put.
7396  */
7397 static void netdev_wait_allrefs(struct net_device *dev)
7398 {
7399         unsigned long rebroadcast_time, warning_time;
7400         int refcnt;
7401
7402         linkwatch_forget_dev(dev);
7403
7404         rebroadcast_time = warning_time = jiffies;
7405         refcnt = netdev_refcnt_read(dev);
7406
7407         while (refcnt != 0) {
7408                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7409                         rtnl_lock();
7410
7411                         /* Rebroadcast unregister notification */
7412                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7413
7414                         __rtnl_unlock();
7415                         rcu_barrier();
7416                         rtnl_lock();
7417
7418                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7419                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7420                                      &dev->state)) {
7421                                 /* We must not have linkwatch events
7422                                  * pending on unregister. If this
7423                                  * happens, we simply run the queue
7424                                  * unscheduled, resulting in a noop
7425                                  * for this device.
7426                                  */
7427                                 linkwatch_run_queue();
7428                         }
7429
7430                         __rtnl_unlock();
7431
7432                         rebroadcast_time = jiffies;
7433                 }
7434
7435                 msleep(250);
7436
7437                 refcnt = netdev_refcnt_read(dev);
7438
7439                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7440                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7441                                  dev->name, refcnt);
7442                         warning_time = jiffies;
7443                 }
7444         }
7445 }
7446
7447 /* The sequence is:
7448  *
7449  *      rtnl_lock();
7450  *      ...
7451  *      register_netdevice(x1);
7452  *      register_netdevice(x2);
7453  *      ...
7454  *      unregister_netdevice(y1);
7455  *      unregister_netdevice(y2);
7456  *      ...
7457  *      rtnl_unlock();
7458  *      free_netdev(y1);
7459  *      free_netdev(y2);
7460  *
7461  * We are invoked by rtnl_unlock().
7462  * This allows us to deal with problems:
7463  * 1) We can delete sysfs objects which invoke hotplug
7464  *    without deadlocking with linkwatch via keventd.
7465  * 2) Since we run with the RTNL semaphore not held, we can sleep
7466  *    safely in order to wait for the netdev refcnt to drop to zero.
7467  *
7468  * We must not return until all unregister events added during
7469  * the interval the lock was held have been completed.
7470  */
7471 void netdev_run_todo(void)
7472 {
7473         struct list_head list;
7474
7475         /* Snapshot list, allow later requests */
7476         list_replace_init(&net_todo_list, &list);
7477
7478         __rtnl_unlock();
7479
7480
7481         /* Wait for rcu callbacks to finish before next phase */
7482         if (!list_empty(&list))
7483                 rcu_barrier();
7484
7485         while (!list_empty(&list)) {
7486                 struct net_device *dev
7487                         = list_first_entry(&list, struct net_device, todo_list);
7488                 list_del(&dev->todo_list);
7489
7490                 rtnl_lock();
7491                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7492                 __rtnl_unlock();
7493
7494                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7495                         pr_err("network todo '%s' but state %d\n",
7496                                dev->name, dev->reg_state);
7497                         dump_stack();
7498                         continue;
7499                 }
7500
7501                 dev->reg_state = NETREG_UNREGISTERED;
7502
7503                 netdev_wait_allrefs(dev);
7504
7505                 /* paranoia */
7506                 BUG_ON(netdev_refcnt_read(dev));
7507                 BUG_ON(!list_empty(&dev->ptype_all));
7508                 BUG_ON(!list_empty(&dev->ptype_specific));
7509                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7510                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7511                 WARN_ON(dev->dn_ptr);
7512
7513                 if (dev->destructor)
7514                         dev->destructor(dev);
7515
7516                 /* Report a network device has been unregistered */
7517                 rtnl_lock();
7518                 dev_net(dev)->dev_unreg_count--;
7519                 __rtnl_unlock();
7520                 wake_up(&netdev_unregistering_wq);
7521
7522                 /* Free network device */
7523                 kobject_put(&dev->dev.kobj);
7524         }
7525 }
7526
7527 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7528  * all the same fields in the same order as net_device_stats, with only
7529  * the type differing, but rtnl_link_stats64 may have additional fields
7530  * at the end for newer counters.
7531  */
7532 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7533                              const struct net_device_stats *netdev_stats)
7534 {
7535 #if BITS_PER_LONG == 64
7536         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7537         memcpy(stats64, netdev_stats, sizeof(*stats64));
7538         /* zero out counters that only exist in rtnl_link_stats64 */
7539         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7540                sizeof(*stats64) - sizeof(*netdev_stats));
7541 #else
7542         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7543         const unsigned long *src = (const unsigned long *)netdev_stats;
7544         u64 *dst = (u64 *)stats64;
7545
7546         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7547         for (i = 0; i < n; i++)
7548                 dst[i] = src[i];
7549         /* zero out counters that only exist in rtnl_link_stats64 */
7550         memset((char *)stats64 + n * sizeof(u64), 0,
7551                sizeof(*stats64) - n * sizeof(u64));
7552 #endif
7553 }
7554 EXPORT_SYMBOL(netdev_stats_to_stats64);
7555
7556 /**
7557  *      dev_get_stats   - get network device statistics
7558  *      @dev: device to get statistics from
7559  *      @storage: place to store stats
7560  *
7561  *      Get network statistics from device. Return @storage.
7562  *      The device driver may provide its own method by setting
7563  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7564  *      otherwise the internal statistics structure is used.
7565  */
7566 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7567                                         struct rtnl_link_stats64 *storage)
7568 {
7569         const struct net_device_ops *ops = dev->netdev_ops;
7570
7571         if (ops->ndo_get_stats64) {
7572                 memset(storage, 0, sizeof(*storage));
7573                 ops->ndo_get_stats64(dev, storage);
7574         } else if (ops->ndo_get_stats) {
7575                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7576         } else {
7577                 netdev_stats_to_stats64(storage, &dev->stats);
7578         }
7579         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7580         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7581         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7582         return storage;
7583 }
7584 EXPORT_SYMBOL(dev_get_stats);
7585
7586 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7587 {
7588         struct netdev_queue *queue = dev_ingress_queue(dev);
7589
7590 #ifdef CONFIG_NET_CLS_ACT
7591         if (queue)
7592                 return queue;
7593         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7594         if (!queue)
7595                 return NULL;
7596         netdev_init_one_queue(dev, queue, NULL);
7597         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7598         queue->qdisc_sleeping = &noop_qdisc;
7599         rcu_assign_pointer(dev->ingress_queue, queue);
7600 #endif
7601         return queue;
7602 }
7603
7604 static const struct ethtool_ops default_ethtool_ops;
7605
7606 void netdev_set_default_ethtool_ops(struct net_device *dev,
7607                                     const struct ethtool_ops *ops)
7608 {
7609         if (dev->ethtool_ops == &default_ethtool_ops)
7610                 dev->ethtool_ops = ops;
7611 }
7612 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7613
7614 void netdev_freemem(struct net_device *dev)
7615 {
7616         char *addr = (char *)dev - dev->padded;
7617
7618         kvfree(addr);
7619 }
7620
7621 /**
7622  *      alloc_netdev_mqs - allocate network device
7623  *      @sizeof_priv:           size of private data to allocate space for
7624  *      @name:                  device name format string
7625  *      @name_assign_type:      origin of device name
7626  *      @setup:                 callback to initialize device
7627  *      @txqs:                  the number of TX subqueues to allocate
7628  *      @rxqs:                  the number of RX subqueues to allocate
7629  *
7630  *      Allocates a struct net_device with private data area for driver use
7631  *      and performs basic initialization.  Also allocates subqueue structs
7632  *      for each queue on the device.
7633  */
7634 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7635                 unsigned char name_assign_type,
7636                 void (*setup)(struct net_device *),
7637                 unsigned int txqs, unsigned int rxqs)
7638 {
7639         struct net_device *dev;
7640         size_t alloc_size;
7641         struct net_device *p;
7642
7643         BUG_ON(strlen(name) >= sizeof(dev->name));
7644
7645         if (txqs < 1) {
7646                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7647                 return NULL;
7648         }
7649
7650 #ifdef CONFIG_SYSFS
7651         if (rxqs < 1) {
7652                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7653                 return NULL;
7654         }
7655 #endif
7656
7657         alloc_size = sizeof(struct net_device);
7658         if (sizeof_priv) {
7659                 /* ensure 32-byte alignment of private area */
7660                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7661                 alloc_size += sizeof_priv;
7662         }
7663         /* ensure 32-byte alignment of whole construct */
7664         alloc_size += NETDEV_ALIGN - 1;
7665
7666         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7667         if (!p)
7668                 p = vzalloc(alloc_size);
7669         if (!p)
7670                 return NULL;
7671
7672         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7673         dev->padded = (char *)dev - (char *)p;
7674
7675         dev->pcpu_refcnt = alloc_percpu(int);
7676         if (!dev->pcpu_refcnt)
7677                 goto free_dev;
7678
7679         if (dev_addr_init(dev))
7680                 goto free_pcpu;
7681
7682         dev_mc_init(dev);
7683         dev_uc_init(dev);
7684
7685         dev_net_set(dev, &init_net);
7686
7687         dev->gso_max_size = GSO_MAX_SIZE;
7688         dev->gso_max_segs = GSO_MAX_SEGS;
7689
7690         INIT_LIST_HEAD(&dev->napi_list);
7691         INIT_LIST_HEAD(&dev->unreg_list);
7692         INIT_LIST_HEAD(&dev->close_list);
7693         INIT_LIST_HEAD(&dev->link_watch_list);
7694         INIT_LIST_HEAD(&dev->adj_list.upper);
7695         INIT_LIST_HEAD(&dev->adj_list.lower);
7696         INIT_LIST_HEAD(&dev->ptype_all);
7697         INIT_LIST_HEAD(&dev->ptype_specific);
7698 #ifdef CONFIG_NET_SCHED
7699         hash_init(dev->qdisc_hash);
7700 #endif
7701         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7702         setup(dev);
7703
7704         if (!dev->tx_queue_len) {
7705                 dev->priv_flags |= IFF_NO_QUEUE;
7706                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7707         }
7708
7709         dev->num_tx_queues = txqs;
7710         dev->real_num_tx_queues = txqs;
7711         if (netif_alloc_netdev_queues(dev))
7712                 goto free_all;
7713
7714 #ifdef CONFIG_SYSFS
7715         dev->num_rx_queues = rxqs;
7716         dev->real_num_rx_queues = rxqs;
7717         if (netif_alloc_rx_queues(dev))
7718                 goto free_all;
7719 #endif
7720
7721         strcpy(dev->name, name);
7722         dev->name_assign_type = name_assign_type;
7723         dev->group = INIT_NETDEV_GROUP;
7724         if (!dev->ethtool_ops)
7725                 dev->ethtool_ops = &default_ethtool_ops;
7726
7727         nf_hook_ingress_init(dev);
7728
7729         return dev;
7730
7731 free_all:
7732         free_netdev(dev);
7733         return NULL;
7734
7735 free_pcpu:
7736         free_percpu(dev->pcpu_refcnt);
7737 free_dev:
7738         netdev_freemem(dev);
7739         return NULL;
7740 }
7741 EXPORT_SYMBOL(alloc_netdev_mqs);
7742
7743 /**
7744  *      free_netdev - free network device
7745  *      @dev: device
7746  *
7747  *      This function does the last stage of destroying an allocated device
7748  *      interface. The reference to the device object is released.
7749  *      If this is the last reference then it will be freed.
7750  *      Must be called in process context.
7751  */
7752 void free_netdev(struct net_device *dev)
7753 {
7754         struct napi_struct *p, *n;
7755
7756         might_sleep();
7757         netif_free_tx_queues(dev);
7758 #ifdef CONFIG_SYSFS
7759         kvfree(dev->_rx);
7760 #endif
7761
7762         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7763
7764         /* Flush device addresses */
7765         dev_addr_flush(dev);
7766
7767         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7768                 netif_napi_del(p);
7769
7770         free_percpu(dev->pcpu_refcnt);
7771         dev->pcpu_refcnt = NULL;
7772
7773         /*  Compatibility with error handling in drivers */
7774         if (dev->reg_state == NETREG_UNINITIALIZED) {
7775                 netdev_freemem(dev);
7776                 return;
7777         }
7778
7779         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7780         dev->reg_state = NETREG_RELEASED;
7781
7782         /* will free via device release */
7783         put_device(&dev->dev);
7784 }
7785 EXPORT_SYMBOL(free_netdev);
7786
7787 /**
7788  *      synchronize_net -  Synchronize with packet receive processing
7789  *
7790  *      Wait for packets currently being received to be done.
7791  *      Does not block later packets from starting.
7792  */
7793 void synchronize_net(void)
7794 {
7795         might_sleep();
7796         if (rtnl_is_locked())
7797                 synchronize_rcu_expedited();
7798         else
7799                 synchronize_rcu();
7800 }
7801 EXPORT_SYMBOL(synchronize_net);
7802
7803 /**
7804  *      unregister_netdevice_queue - remove device from the kernel
7805  *      @dev: device
7806  *      @head: list
7807  *
7808  *      This function shuts down a device interface and removes it
7809  *      from the kernel tables.
7810  *      If head not NULL, device is queued to be unregistered later.
7811  *
7812  *      Callers must hold the rtnl semaphore.  You may want
7813  *      unregister_netdev() instead of this.
7814  */
7815
7816 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7817 {
7818         ASSERT_RTNL();
7819
7820         if (head) {
7821                 list_move_tail(&dev->unreg_list, head);
7822         } else {
7823                 rollback_registered(dev);
7824                 /* Finish processing unregister after unlock */
7825                 net_set_todo(dev);
7826         }
7827 }
7828 EXPORT_SYMBOL(unregister_netdevice_queue);
7829
7830 /**
7831  *      unregister_netdevice_many - unregister many devices
7832  *      @head: list of devices
7833  *
7834  *  Note: As most callers use a stack allocated list_head,
7835  *  we force a list_del() to make sure stack wont be corrupted later.
7836  */
7837 void unregister_netdevice_many(struct list_head *head)
7838 {
7839         struct net_device *dev;
7840
7841         if (!list_empty(head)) {
7842                 rollback_registered_many(head);
7843                 list_for_each_entry(dev, head, unreg_list)
7844                         net_set_todo(dev);
7845                 list_del(head);
7846         }
7847 }
7848 EXPORT_SYMBOL(unregister_netdevice_many);
7849
7850 /**
7851  *      unregister_netdev - remove device from the kernel
7852  *      @dev: device
7853  *
7854  *      This function shuts down a device interface and removes it
7855  *      from the kernel tables.
7856  *
7857  *      This is just a wrapper for unregister_netdevice that takes
7858  *      the rtnl semaphore.  In general you want to use this and not
7859  *      unregister_netdevice.
7860  */
7861 void unregister_netdev(struct net_device *dev)
7862 {
7863         rtnl_lock();
7864         unregister_netdevice(dev);
7865         rtnl_unlock();
7866 }
7867 EXPORT_SYMBOL(unregister_netdev);
7868
7869 /**
7870  *      dev_change_net_namespace - move device to different nethost namespace
7871  *      @dev: device
7872  *      @net: network namespace
7873  *      @pat: If not NULL name pattern to try if the current device name
7874  *            is already taken in the destination network namespace.
7875  *
7876  *      This function shuts down a device interface and moves it
7877  *      to a new network namespace. On success 0 is returned, on
7878  *      a failure a netagive errno code is returned.
7879  *
7880  *      Callers must hold the rtnl semaphore.
7881  */
7882
7883 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7884 {
7885         int err;
7886
7887         ASSERT_RTNL();
7888
7889         /* Don't allow namespace local devices to be moved. */
7890         err = -EINVAL;
7891         if (dev->features & NETIF_F_NETNS_LOCAL)
7892                 goto out;
7893
7894         /* Ensure the device has been registrered */
7895         if (dev->reg_state != NETREG_REGISTERED)
7896                 goto out;
7897
7898         /* Get out if there is nothing todo */
7899         err = 0;
7900         if (net_eq(dev_net(dev), net))
7901                 goto out;
7902
7903         /* Pick the destination device name, and ensure
7904          * we can use it in the destination network namespace.
7905          */
7906         err = -EEXIST;
7907         if (__dev_get_by_name(net, dev->name)) {
7908                 /* We get here if we can't use the current device name */
7909                 if (!pat)
7910                         goto out;
7911                 if (dev_get_valid_name(net, dev, pat) < 0)
7912                         goto out;
7913         }
7914
7915         /*
7916          * And now a mini version of register_netdevice unregister_netdevice.
7917          */
7918
7919         /* If device is running close it first. */
7920         dev_close(dev);
7921
7922         /* And unlink it from device chain */
7923         err = -ENODEV;
7924         unlist_netdevice(dev);
7925
7926         synchronize_net();
7927
7928         /* Shutdown queueing discipline. */
7929         dev_shutdown(dev);
7930
7931         /* Notify protocols, that we are about to destroy
7932            this device. They should clean all the things.
7933
7934            Note that dev->reg_state stays at NETREG_REGISTERED.
7935            This is wanted because this way 8021q and macvlan know
7936            the device is just moving and can keep their slaves up.
7937         */
7938         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7939         rcu_barrier();
7940         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7941         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7942
7943         /*
7944          *      Flush the unicast and multicast chains
7945          */
7946         dev_uc_flush(dev);
7947         dev_mc_flush(dev);
7948
7949         /* Send a netdev-removed uevent to the old namespace */
7950         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7951         netdev_adjacent_del_links(dev);
7952
7953         /* Actually switch the network namespace */
7954         dev_net_set(dev, net);
7955
7956         /* If there is an ifindex conflict assign a new one */
7957         if (__dev_get_by_index(net, dev->ifindex))
7958                 dev->ifindex = dev_new_index(net);
7959
7960         /* Send a netdev-add uevent to the new namespace */
7961         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7962         netdev_adjacent_add_links(dev);
7963
7964         /* Fixup kobjects */
7965         err = device_rename(&dev->dev, dev->name);
7966         WARN_ON(err);
7967
7968         /* Add the device back in the hashes */
7969         list_netdevice(dev);
7970
7971         /* Notify protocols, that a new device appeared. */
7972         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7973
7974         /*
7975          *      Prevent userspace races by waiting until the network
7976          *      device is fully setup before sending notifications.
7977          */
7978         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7979
7980         synchronize_net();
7981         err = 0;
7982 out:
7983         return err;
7984 }
7985 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7986
7987 static int dev_cpu_dead(unsigned int oldcpu)
7988 {
7989         struct sk_buff **list_skb;
7990         struct sk_buff *skb;
7991         unsigned int cpu;
7992         struct softnet_data *sd, *oldsd;
7993
7994         local_irq_disable();
7995         cpu = smp_processor_id();
7996         sd = &per_cpu(softnet_data, cpu);
7997         oldsd = &per_cpu(softnet_data, oldcpu);
7998
7999         /* Find end of our completion_queue. */
8000         list_skb = &sd->completion_queue;
8001         while (*list_skb)
8002                 list_skb = &(*list_skb)->next;
8003         /* Append completion queue from offline CPU. */
8004         *list_skb = oldsd->completion_queue;
8005         oldsd->completion_queue = NULL;
8006
8007         /* Append output queue from offline CPU. */
8008         if (oldsd->output_queue) {
8009                 *sd->output_queue_tailp = oldsd->output_queue;
8010                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8011                 oldsd->output_queue = NULL;
8012                 oldsd->output_queue_tailp = &oldsd->output_queue;
8013         }
8014         /* Append NAPI poll list from offline CPU, with one exception :
8015          * process_backlog() must be called by cpu owning percpu backlog.
8016          * We properly handle process_queue & input_pkt_queue later.
8017          */
8018         while (!list_empty(&oldsd->poll_list)) {
8019                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8020                                                             struct napi_struct,
8021                                                             poll_list);
8022
8023                 list_del_init(&napi->poll_list);
8024                 if (napi->poll == process_backlog)
8025                         napi->state = 0;
8026                 else
8027                         ____napi_schedule(sd, napi);
8028         }
8029
8030         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8031         local_irq_enable();
8032
8033         /* Process offline CPU's input_pkt_queue */
8034         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8035                 netif_rx_ni(skb);
8036                 input_queue_head_incr(oldsd);
8037         }
8038         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8039                 netif_rx_ni(skb);
8040                 input_queue_head_incr(oldsd);
8041         }
8042
8043         return 0;
8044 }
8045
8046 /**
8047  *      netdev_increment_features - increment feature set by one
8048  *      @all: current feature set
8049  *      @one: new feature set
8050  *      @mask: mask feature set
8051  *
8052  *      Computes a new feature set after adding a device with feature set
8053  *      @one to the master device with current feature set @all.  Will not
8054  *      enable anything that is off in @mask. Returns the new feature set.
8055  */
8056 netdev_features_t netdev_increment_features(netdev_features_t all,
8057         netdev_features_t one, netdev_features_t mask)
8058 {
8059         if (mask & NETIF_F_HW_CSUM)
8060                 mask |= NETIF_F_CSUM_MASK;
8061         mask |= NETIF_F_VLAN_CHALLENGED;
8062
8063         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8064         all &= one | ~NETIF_F_ALL_FOR_ALL;
8065
8066         /* If one device supports hw checksumming, set for all. */
8067         if (all & NETIF_F_HW_CSUM)
8068                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8069
8070         return all;
8071 }
8072 EXPORT_SYMBOL(netdev_increment_features);
8073
8074 static struct hlist_head * __net_init netdev_create_hash(void)
8075 {
8076         int i;
8077         struct hlist_head *hash;
8078
8079         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8080         if (hash != NULL)
8081                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8082                         INIT_HLIST_HEAD(&hash[i]);
8083
8084         return hash;
8085 }
8086
8087 /* Initialize per network namespace state */
8088 static int __net_init netdev_init(struct net *net)
8089 {
8090         if (net != &init_net)
8091                 INIT_LIST_HEAD(&net->dev_base_head);
8092
8093         net->dev_name_head = netdev_create_hash();
8094         if (net->dev_name_head == NULL)
8095                 goto err_name;
8096
8097         net->dev_index_head = netdev_create_hash();
8098         if (net->dev_index_head == NULL)
8099                 goto err_idx;
8100
8101         return 0;
8102
8103 err_idx:
8104         kfree(net->dev_name_head);
8105 err_name:
8106         return -ENOMEM;
8107 }
8108
8109 /**
8110  *      netdev_drivername - network driver for the device
8111  *      @dev: network device
8112  *
8113  *      Determine network driver for device.
8114  */
8115 const char *netdev_drivername(const struct net_device *dev)
8116 {
8117         const struct device_driver *driver;
8118         const struct device *parent;
8119         const char *empty = "";
8120
8121         parent = dev->dev.parent;
8122         if (!parent)
8123                 return empty;
8124
8125         driver = parent->driver;
8126         if (driver && driver->name)
8127                 return driver->name;
8128         return empty;
8129 }
8130
8131 static void __netdev_printk(const char *level, const struct net_device *dev,
8132                             struct va_format *vaf)
8133 {
8134         if (dev && dev->dev.parent) {
8135                 dev_printk_emit(level[1] - '0',
8136                                 dev->dev.parent,
8137                                 "%s %s %s%s: %pV",
8138                                 dev_driver_string(dev->dev.parent),
8139                                 dev_name(dev->dev.parent),
8140                                 netdev_name(dev), netdev_reg_state(dev),
8141                                 vaf);
8142         } else if (dev) {
8143                 printk("%s%s%s: %pV",
8144                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8145         } else {
8146                 printk("%s(NULL net_device): %pV", level, vaf);
8147         }
8148 }
8149
8150 void netdev_printk(const char *level, const struct net_device *dev,
8151                    const char *format, ...)
8152 {
8153         struct va_format vaf;
8154         va_list args;
8155
8156         va_start(args, format);
8157
8158         vaf.fmt = format;
8159         vaf.va = &args;
8160
8161         __netdev_printk(level, dev, &vaf);
8162
8163         va_end(args);
8164 }
8165 EXPORT_SYMBOL(netdev_printk);
8166
8167 #define define_netdev_printk_level(func, level)                 \
8168 void func(const struct net_device *dev, const char *fmt, ...)   \
8169 {                                                               \
8170         struct va_format vaf;                                   \
8171         va_list args;                                           \
8172                                                                 \
8173         va_start(args, fmt);                                    \
8174                                                                 \
8175         vaf.fmt = fmt;                                          \
8176         vaf.va = &args;                                         \
8177                                                                 \
8178         __netdev_printk(level, dev, &vaf);                      \
8179                                                                 \
8180         va_end(args);                                           \
8181 }                                                               \
8182 EXPORT_SYMBOL(func);
8183
8184 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8185 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8186 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8187 define_netdev_printk_level(netdev_err, KERN_ERR);
8188 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8189 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8190 define_netdev_printk_level(netdev_info, KERN_INFO);
8191
8192 static void __net_exit netdev_exit(struct net *net)
8193 {
8194         kfree(net->dev_name_head);
8195         kfree(net->dev_index_head);
8196 }
8197
8198 static struct pernet_operations __net_initdata netdev_net_ops = {
8199         .init = netdev_init,
8200         .exit = netdev_exit,
8201 };
8202
8203 static void __net_exit default_device_exit(struct net *net)
8204 {
8205         struct net_device *dev, *aux;
8206         /*
8207          * Push all migratable network devices back to the
8208          * initial network namespace
8209          */
8210         rtnl_lock();
8211         for_each_netdev_safe(net, dev, aux) {
8212                 int err;
8213                 char fb_name[IFNAMSIZ];
8214
8215                 /* Ignore unmoveable devices (i.e. loopback) */
8216                 if (dev->features & NETIF_F_NETNS_LOCAL)
8217                         continue;
8218
8219                 /* Leave virtual devices for the generic cleanup */
8220                 if (dev->rtnl_link_ops)
8221                         continue;
8222
8223                 /* Push remaining network devices to init_net */
8224                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8225                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8226                 if (err) {
8227                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8228                                  __func__, dev->name, err);
8229                         BUG();
8230                 }
8231         }
8232         rtnl_unlock();
8233 }
8234
8235 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8236 {
8237         /* Return with the rtnl_lock held when there are no network
8238          * devices unregistering in any network namespace in net_list.
8239          */
8240         struct net *net;
8241         bool unregistering;
8242         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8243
8244         add_wait_queue(&netdev_unregistering_wq, &wait);
8245         for (;;) {
8246                 unregistering = false;
8247                 rtnl_lock();
8248                 list_for_each_entry(net, net_list, exit_list) {
8249                         if (net->dev_unreg_count > 0) {
8250                                 unregistering = true;
8251                                 break;
8252                         }
8253                 }
8254                 if (!unregistering)
8255                         break;
8256                 __rtnl_unlock();
8257
8258                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8259         }
8260         remove_wait_queue(&netdev_unregistering_wq, &wait);
8261 }
8262
8263 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8264 {
8265         /* At exit all network devices most be removed from a network
8266          * namespace.  Do this in the reverse order of registration.
8267          * Do this across as many network namespaces as possible to
8268          * improve batching efficiency.
8269          */
8270         struct net_device *dev;
8271         struct net *net;
8272         LIST_HEAD(dev_kill_list);
8273
8274         /* To prevent network device cleanup code from dereferencing
8275          * loopback devices or network devices that have been freed
8276          * wait here for all pending unregistrations to complete,
8277          * before unregistring the loopback device and allowing the
8278          * network namespace be freed.
8279          *
8280          * The netdev todo list containing all network devices
8281          * unregistrations that happen in default_device_exit_batch
8282          * will run in the rtnl_unlock() at the end of
8283          * default_device_exit_batch.
8284          */
8285         rtnl_lock_unregistering(net_list);
8286         list_for_each_entry(net, net_list, exit_list) {
8287                 for_each_netdev_reverse(net, dev) {
8288                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8289                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8290                         else
8291                                 unregister_netdevice_queue(dev, &dev_kill_list);
8292                 }
8293         }
8294         unregister_netdevice_many(&dev_kill_list);
8295         rtnl_unlock();
8296 }
8297
8298 static struct pernet_operations __net_initdata default_device_ops = {
8299         .exit = default_device_exit,
8300         .exit_batch = default_device_exit_batch,
8301 };
8302
8303 /*
8304  *      Initialize the DEV module. At boot time this walks the device list and
8305  *      unhooks any devices that fail to initialise (normally hardware not
8306  *      present) and leaves us with a valid list of present and active devices.
8307  *
8308  */
8309
8310 /*
8311  *       This is called single threaded during boot, so no need
8312  *       to take the rtnl semaphore.
8313  */
8314 static int __init net_dev_init(void)
8315 {
8316         int i, rc = -ENOMEM;
8317
8318         BUG_ON(!dev_boot_phase);
8319
8320         if (dev_proc_init())
8321                 goto out;
8322
8323         if (netdev_kobject_init())
8324                 goto out;
8325
8326         INIT_LIST_HEAD(&ptype_all);
8327         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8328                 INIT_LIST_HEAD(&ptype_base[i]);
8329
8330         INIT_LIST_HEAD(&offload_base);
8331
8332         if (register_pernet_subsys(&netdev_net_ops))
8333                 goto out;
8334
8335         /*
8336          *      Initialise the packet receive queues.
8337          */
8338
8339         for_each_possible_cpu(i) {
8340                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8341                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8342
8343                 INIT_WORK(flush, flush_backlog);
8344
8345                 skb_queue_head_init(&sd->input_pkt_queue);
8346                 skb_queue_head_init(&sd->process_queue);
8347                 INIT_LIST_HEAD(&sd->poll_list);
8348                 sd->output_queue_tailp = &sd->output_queue;
8349 #ifdef CONFIG_RPS
8350                 sd->csd.func = rps_trigger_softirq;
8351                 sd->csd.info = sd;
8352                 sd->cpu = i;
8353 #endif
8354
8355                 sd->backlog.poll = process_backlog;
8356                 sd->backlog.weight = weight_p;
8357         }
8358
8359         dev_boot_phase = 0;
8360
8361         /* The loopback device is special if any other network devices
8362          * is present in a network namespace the loopback device must
8363          * be present. Since we now dynamically allocate and free the
8364          * loopback device ensure this invariant is maintained by
8365          * keeping the loopback device as the first device on the
8366          * list of network devices.  Ensuring the loopback devices
8367          * is the first device that appears and the last network device
8368          * that disappears.
8369          */
8370         if (register_pernet_device(&loopback_net_ops))
8371                 goto out;
8372
8373         if (register_pernet_device(&default_device_ops))
8374                 goto out;
8375
8376         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8377         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8378
8379         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8380                                        NULL, dev_cpu_dead);
8381         WARN_ON(rc < 0);
8382         dst_subsys_init();
8383         rc = 0;
8384 out:
8385         return rc;
8386 }
8387
8388 subsys_initcall(net_dev_init);