scsi: sd: don't crash the host on invalid commands
[linux-2.6-block.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235         struct net *net = dev_net(dev);
236
237         ASSERT_RTNL();
238
239         write_lock_bh(&dev_base_lock);
240         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242         hlist_add_head_rcu(&dev->index_hlist,
243                            dev_index_hash(net, dev->ifindex));
244         write_unlock_bh(&dev_base_lock);
245
246         dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254         ASSERT_RTNL();
255
256         /* Unlink dev from the device chain */
257         write_lock_bh(&dev_base_lock);
258         list_del_rcu(&dev->dev_list);
259         hlist_del_rcu(&dev->name_hlist);
260         hlist_del_rcu(&dev->index_hlist);
261         write_unlock_bh(&dev_base_lock);
262
263         dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267  *      Our notifier list
268  */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273  *      Device drivers call our routines to queue packets here. We empty the
274  *      queue in the local softnet handler.
275  */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301
302 static const char *const netdev_lock_name[] = {
303         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324         int i;
325
326         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327                 if (netdev_lock_type[i] == dev_type)
328                         return i;
329         /* the last key is used by default */
330         return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334                                                  unsigned short dev_type)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev_type);
339         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340                                    netdev_lock_name[i]);
341 }
342
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345         int i;
346
347         i = netdev_lock_pos(dev->type);
348         lockdep_set_class_and_name(&dev->addr_list_lock,
349                                    &netdev_addr_lock_key[i],
350                                    netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354                                                  unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361
362 /*******************************************************************************
363  *
364  *              Protocol management and registration routines
365  *
366  *******************************************************************************/
367
368
369 /*
370  *      Add a protocol ID to the list. Now that the input handler is
371  *      smarter we can dispense with all the messy stuff that used to be
372  *      here.
373  *
374  *      BEWARE!!! Protocol handlers, mangling input packets,
375  *      MUST BE last in hash buckets and checking protocol handlers
376  *      MUST start from promiscuous ptype_all chain in net_bh.
377  *      It is true now, do not change it.
378  *      Explanation follows: if protocol handler, mangling packet, will
379  *      be the first on list, it is not able to sense, that packet
380  *      is cloned and should be copied-on-write, so that it will
381  *      change it and subsequent readers will get broken packet.
382  *                                                      --ANK (980803)
383  */
384
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387         if (pt->type == htons(ETH_P_ALL))
388                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389         else
390                 return pt->dev ? &pt->dev->ptype_specific :
391                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393
394 /**
395  *      dev_add_pack - add packet handler
396  *      @pt: packet type declaration
397  *
398  *      Add a protocol handler to the networking stack. The passed &packet_type
399  *      is linked into kernel lists and may not be freed until it has been
400  *      removed from the kernel lists.
401  *
402  *      This call does not sleep therefore it can not
403  *      guarantee all CPU's that are in middle of receiving packets
404  *      will see the new packet type (until the next received packet).
405  */
406
407 void dev_add_pack(struct packet_type *pt)
408 {
409         struct list_head *head = ptype_head(pt);
410
411         spin_lock(&ptype_lock);
412         list_add_rcu(&pt->list, head);
413         spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416
417 /**
418  *      __dev_remove_pack        - remove packet handler
419  *      @pt: packet type declaration
420  *
421  *      Remove a protocol handler that was previously added to the kernel
422  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *      from the kernel lists and can be freed or reused once this function
424  *      returns.
425  *
426  *      The packet type might still be in use by receivers
427  *      and must not be freed until after all the CPU's have gone
428  *      through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432         struct list_head *head = ptype_head(pt);
433         struct packet_type *pt1;
434
435         spin_lock(&ptype_lock);
436
437         list_for_each_entry(pt1, head, list) {
438                 if (pt == pt1) {
439                         list_del_rcu(&pt->list);
440                         goto out;
441                 }
442         }
443
444         pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446         spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449
450 /**
451  *      dev_remove_pack  - remove packet handler
452  *      @pt: packet type declaration
453  *
454  *      Remove a protocol handler that was previously added to the kernel
455  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *      from the kernel lists and can be freed or reused once this function
457  *      returns.
458  *
459  *      This call sleeps to guarantee that no CPU is looking at the packet
460  *      type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464         __dev_remove_pack(pt);
465
466         synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469
470
471 /**
472  *      dev_add_offload - register offload handlers
473  *      @po: protocol offload declaration
474  *
475  *      Add protocol offload handlers to the networking stack. The passed
476  *      &proto_offload is linked into kernel lists and may not be freed until
477  *      it has been removed from the kernel lists.
478  *
479  *      This call does not sleep therefore it can not
480  *      guarantee all CPU's that are in middle of receiving packets
481  *      will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485         struct packet_offload *elem;
486
487         spin_lock(&offload_lock);
488         list_for_each_entry(elem, &offload_base, list) {
489                 if (po->priority < elem->priority)
490                         break;
491         }
492         list_add_rcu(&po->list, elem->list.prev);
493         spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496
497 /**
498  *      __dev_remove_offload     - remove offload handler
499  *      @po: packet offload declaration
500  *
501  *      Remove a protocol offload handler that was previously added to the
502  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *      is removed from the kernel lists and can be freed or reused once this
504  *      function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *      and must not be freed until after all the CPU's have gone
508  *      through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512         struct list_head *head = &offload_base;
513         struct packet_offload *po1;
514
515         spin_lock(&offload_lock);
516
517         list_for_each_entry(po1, head, list) {
518                 if (po == po1) {
519                         list_del_rcu(&po->list);
520                         goto out;
521                 }
522         }
523
524         pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526         spin_unlock(&offload_lock);
527 }
528
529 /**
530  *      dev_remove_offload       - remove packet offload handler
531  *      @po: packet offload declaration
532  *
533  *      Remove a packet offload handler that was previously added to the kernel
534  *      offload handlers by dev_add_offload(). The passed &offload_type is
535  *      removed from the kernel lists and can be freed or reused once this
536  *      function returns.
537  *
538  *      This call sleeps to guarantee that no CPU is looking at the packet
539  *      type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543         __dev_remove_offload(po);
544
545         synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548
549 /******************************************************************************
550  *
551  *                    Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557
558 /**
559  *      netdev_boot_setup_add   - add new setup entry
560  *      @name: name of the device
561  *      @map: configured settings for the device
562  *
563  *      Adds new setup entry to the dev_boot_setup list.  The function
564  *      returns 0 on error and 1 on success.  This is a generic routine to
565  *      all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569         struct netdev_boot_setup *s;
570         int i;
571
572         s = dev_boot_setup;
573         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575                         memset(s[i].name, 0, sizeof(s[i].name));
576                         strlcpy(s[i].name, name, IFNAMSIZ);
577                         memcpy(&s[i].map, map, sizeof(s[i].map));
578                         break;
579                 }
580         }
581
582         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584
585 /**
586  * netdev_boot_setup_check      - check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596         struct netdev_boot_setup *s = dev_boot_setup;
597         int i;
598
599         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601                     !strcmp(dev->name, s[i].name)) {
602                         dev->irq = s[i].map.irq;
603                         dev->base_addr = s[i].map.base_addr;
604                         dev->mem_start = s[i].map.mem_start;
605                         dev->mem_end = s[i].map.mem_end;
606                         return 1;
607                 }
608         }
609         return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612
613
614 /**
615  * netdev_boot_base     - get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626         const struct netdev_boot_setup *s = dev_boot_setup;
627         char name[IFNAMSIZ];
628         int i;
629
630         sprintf(name, "%s%d", prefix, unit);
631
632         /*
633          * If device already registered then return base of 1
634          * to indicate not to probe for this interface
635          */
636         if (__dev_get_by_name(&init_net, name))
637                 return 1;
638
639         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640                 if (!strcmp(name, s[i].name))
641                         return s[i].map.base_addr;
642         return 0;
643 }
644
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650         int ints[5];
651         struct ifmap map;
652
653         str = get_options(str, ARRAY_SIZE(ints), ints);
654         if (!str || !*str)
655                 return 0;
656
657         /* Save settings */
658         memset(&map, 0, sizeof(map));
659         if (ints[0] > 0)
660                 map.irq = ints[1];
661         if (ints[0] > 1)
662                 map.base_addr = ints[2];
663         if (ints[0] > 2)
664                 map.mem_start = ints[3];
665         if (ints[0] > 3)
666                 map.mem_end = ints[4];
667
668         /* Add new entry to the list */
669         return netdev_boot_setup_add(str, &map);
670 }
671
672 __setup("netdev=", netdev_boot_setup);
673
674 /*******************************************************************************
675  *
676  *                          Device Interface Subroutines
677  *
678  *******************************************************************************/
679
680 /**
681  *      dev_get_iflink  - get 'iflink' value of a interface
682  *      @dev: targeted interface
683  *
684  *      Indicates the ifindex the interface is linked to.
685  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687
688 int dev_get_iflink(const struct net_device *dev)
689 {
690         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691                 return dev->netdev_ops->ndo_get_iflink(dev);
692
693         return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696
697 /**
698  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *      @dev: targeted interface
700  *      @skb: The packet.
701  *
702  *      For better visibility of tunnel traffic OVS needs to retrieve
703  *      egress tunnel information for a packet. Following API allows
704  *      user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708         struct ip_tunnel_info *info;
709
710         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711                 return -EINVAL;
712
713         info = skb_tunnel_info_unclone(skb);
714         if (!info)
715                 return -ENOMEM;
716         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717                 return -EINVAL;
718
719         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722
723 /**
724  *      __dev_get_by_name       - find a device by its name
725  *      @net: the applicable net namespace
726  *      @name: name to find
727  *
728  *      Find an interface by name. Must be called under RTNL semaphore
729  *      or @dev_base_lock. If the name is found a pointer to the device
730  *      is returned. If the name is not found then %NULL is returned. The
731  *      reference counters are not incremented so the caller must be
732  *      careful with locks.
733  */
734
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737         struct net_device *dev;
738         struct hlist_head *head = dev_name_hash(net, name);
739
740         hlist_for_each_entry(dev, head, name_hlist)
741                 if (!strncmp(dev->name, name, IFNAMSIZ))
742                         return dev;
743
744         return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747
748 /**
749  * dev_get_by_name_rcu  - find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762         struct net_device *dev;
763         struct hlist_head *head = dev_name_hash(net, name);
764
765         hlist_for_each_entry_rcu(dev, head, name_hlist)
766                 if (!strncmp(dev->name, name, IFNAMSIZ))
767                         return dev;
768
769         return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772
773 /**
774  *      dev_get_by_name         - find a device by its name
775  *      @net: the applicable net namespace
776  *      @name: name to find
777  *
778  *      Find an interface by name. This can be called from any
779  *      context and does its own locking. The returned handle has
780  *      the usage count incremented and the caller must use dev_put() to
781  *      release it when it is no longer needed. %NULL is returned if no
782  *      matching device is found.
783  */
784
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787         struct net_device *dev;
788
789         rcu_read_lock();
790         dev = dev_get_by_name_rcu(net, name);
791         if (dev)
792                 dev_hold(dev);
793         rcu_read_unlock();
794         return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797
798 /**
799  *      __dev_get_by_index - find a device by its ifindex
800  *      @net: the applicable net namespace
801  *      @ifindex: index of device
802  *
803  *      Search for an interface by index. Returns %NULL if the device
804  *      is not found or a pointer to the device. The device has not
805  *      had its reference counter increased so the caller must be careful
806  *      about locking. The caller must hold either the RTNL semaphore
807  *      or @dev_base_lock.
808  */
809
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812         struct net_device *dev;
813         struct hlist_head *head = dev_index_hash(net, ifindex);
814
815         hlist_for_each_entry(dev, head, index_hlist)
816                 if (dev->ifindex == ifindex)
817                         return dev;
818
819         return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822
823 /**
824  *      dev_get_by_index_rcu - find a device by its ifindex
825  *      @net: the applicable net namespace
826  *      @ifindex: index of device
827  *
828  *      Search for an interface by index. Returns %NULL if the device
829  *      is not found or a pointer to the device. The device has not
830  *      had its reference counter increased so the caller must be careful
831  *      about locking. The caller must hold RCU lock.
832  */
833
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836         struct net_device *dev;
837         struct hlist_head *head = dev_index_hash(net, ifindex);
838
839         hlist_for_each_entry_rcu(dev, head, index_hlist)
840                 if (dev->ifindex == ifindex)
841                         return dev;
842
843         return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846
847
848 /**
849  *      dev_get_by_index - find a device by its ifindex
850  *      @net: the applicable net namespace
851  *      @ifindex: index of device
852  *
853  *      Search for an interface by index. Returns NULL if the device
854  *      is not found or a pointer to the device. The device returned has
855  *      had a reference added and the pointer is safe until the user calls
856  *      dev_put to indicate they have finished with it.
857  */
858
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861         struct net_device *dev;
862
863         rcu_read_lock();
864         dev = dev_get_by_index_rcu(net, ifindex);
865         if (dev)
866                 dev_hold(dev);
867         rcu_read_unlock();
868         return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871
872 /**
873  *      dev_get_by_napi_id - find a device by napi_id
874  *      @napi_id: ID of the NAPI struct
875  *
876  *      Search for an interface by NAPI ID. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not had
878  *      its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884         struct napi_struct *napi;
885
886         WARN_ON_ONCE(!rcu_read_lock_held());
887
888         if (napi_id < MIN_NAPI_ID)
889                 return NULL;
890
891         napi = napi_by_id(napi_id);
892
893         return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896
897 /**
898  *      netdev_get_name - get a netdevice name, knowing its ifindex.
899  *      @net: network namespace
900  *      @name: a pointer to the buffer where the name will be stored.
901  *      @ifindex: the ifindex of the interface to get the name from.
902  *
903  *      The use of raw_seqcount_begin() and cond_resched() before
904  *      retrying is required as we want to give the writers a chance
905  *      to complete when CONFIG_PREEMPT is not set.
906  */
907 int netdev_get_name(struct net *net, char *name, int ifindex)
908 {
909         struct net_device *dev;
910         unsigned int seq;
911
912 retry:
913         seq = raw_seqcount_begin(&devnet_rename_seq);
914         rcu_read_lock();
915         dev = dev_get_by_index_rcu(net, ifindex);
916         if (!dev) {
917                 rcu_read_unlock();
918                 return -ENODEV;
919         }
920
921         strcpy(name, dev->name);
922         rcu_read_unlock();
923         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924                 cond_resched();
925                 goto retry;
926         }
927
928         return 0;
929 }
930
931 /**
932  *      dev_getbyhwaddr_rcu - find a device by its hardware address
933  *      @net: the applicable net namespace
934  *      @type: media type of device
935  *      @ha: hardware address
936  *
937  *      Search for an interface by MAC address. Returns NULL if the device
938  *      is not found or a pointer to the device.
939  *      The caller must hold RCU or RTNL.
940  *      The returned device has not had its ref count increased
941  *      and the caller must therefore be careful about locking
942  *
943  */
944
945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946                                        const char *ha)
947 {
948         struct net_device *dev;
949
950         for_each_netdev_rcu(net, dev)
951                 if (dev->type == type &&
952                     !memcmp(dev->dev_addr, ha, dev->addr_len))
953                         return dev;
954
955         return NULL;
956 }
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958
959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 {
961         struct net_device *dev;
962
963         ASSERT_RTNL();
964         for_each_netdev(net, dev)
965                 if (dev->type == type)
966                         return dev;
967
968         return NULL;
969 }
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974         struct net_device *dev, *ret = NULL;
975
976         rcu_read_lock();
977         for_each_netdev_rcu(net, dev)
978                 if (dev->type == type) {
979                         dev_hold(dev);
980                         ret = dev;
981                         break;
982                 }
983         rcu_read_unlock();
984         return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987
988 /**
989  *      __dev_get_by_flags - find any device with given flags
990  *      @net: the applicable net namespace
991  *      @if_flags: IFF_* values
992  *      @mask: bitmask of bits in if_flags to check
993  *
994  *      Search for any interface with the given flags. Returns NULL if a device
995  *      is not found or a pointer to the device. Must be called inside
996  *      rtnl_lock(), and result refcount is unchanged.
997  */
998
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000                                       unsigned short mask)
1001 {
1002         struct net_device *dev, *ret;
1003
1004         ASSERT_RTNL();
1005
1006         ret = NULL;
1007         for_each_netdev(net, dev) {
1008                 if (((dev->flags ^ if_flags) & mask) == 0) {
1009                         ret = dev;
1010                         break;
1011                 }
1012         }
1013         return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016
1017 /**
1018  *      dev_valid_name - check if name is okay for network device
1019  *      @name: name string
1020  *
1021  *      Network device names need to be valid file names to
1022  *      to allow sysfs to work.  We also disallow any kind of
1023  *      whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027         if (*name == '\0')
1028                 return false;
1029         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030                 return false;
1031         if (!strcmp(name, ".") || !strcmp(name, ".."))
1032                 return false;
1033
1034         while (*name) {
1035                 if (*name == '/' || *name == ':' || isspace(*name))
1036                         return false;
1037                 name++;
1038         }
1039         return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042
1043 /**
1044  *      __dev_alloc_name - allocate a name for a device
1045  *      @net: network namespace to allocate the device name in
1046  *      @name: name format string
1047  *      @buf:  scratch buffer and result name string
1048  *
1049  *      Passed a format string - eg "lt%d" it will try and find a suitable
1050  *      id. It scans list of devices to build up a free map, then chooses
1051  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *      while allocating the name and adding the device in order to avoid
1053  *      duplicates.
1054  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *      Returns the number of the unit assigned or a negative errno code.
1056  */
1057
1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1059 {
1060         int i = 0;
1061         const char *p;
1062         const int max_netdevices = 8*PAGE_SIZE;
1063         unsigned long *inuse;
1064         struct net_device *d;
1065
1066         if (!dev_valid_name(name))
1067                 return -EINVAL;
1068
1069         p = strchr(name, '%');
1070         if (p) {
1071                 /*
1072                  * Verify the string as this thing may have come from
1073                  * the user.  There must be either one "%d" and no other "%"
1074                  * characters.
1075                  */
1076                 if (p[1] != 'd' || strchr(p + 2, '%'))
1077                         return -EINVAL;
1078
1079                 /* Use one page as a bit array of possible slots */
1080                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1081                 if (!inuse)
1082                         return -ENOMEM;
1083
1084                 for_each_netdev(net, d) {
1085                         if (!sscanf(d->name, name, &i))
1086                                 continue;
1087                         if (i < 0 || i >= max_netdevices)
1088                                 continue;
1089
1090                         /*  avoid cases where sscanf is not exact inverse of printf */
1091                         snprintf(buf, IFNAMSIZ, name, i);
1092                         if (!strncmp(buf, d->name, IFNAMSIZ))
1093                                 set_bit(i, inuse);
1094                 }
1095
1096                 i = find_first_zero_bit(inuse, max_netdevices);
1097                 free_page((unsigned long) inuse);
1098         }
1099
1100         snprintf(buf, IFNAMSIZ, name, i);
1101         if (!__dev_get_by_name(net, buf))
1102                 return i;
1103
1104         /* It is possible to run out of possible slots
1105          * when the name is long and there isn't enough space left
1106          * for the digits, or if all bits are used.
1107          */
1108         return -ENFILE;
1109 }
1110
1111 static int dev_alloc_name_ns(struct net *net,
1112                              struct net_device *dev,
1113                              const char *name)
1114 {
1115         char buf[IFNAMSIZ];
1116         int ret;
1117
1118         BUG_ON(!net);
1119         ret = __dev_alloc_name(net, name, buf);
1120         if (ret >= 0)
1121                 strlcpy(dev->name, buf, IFNAMSIZ);
1122         return ret;
1123 }
1124
1125 /**
1126  *      dev_alloc_name - allocate a name for a device
1127  *      @dev: device
1128  *      @name: name format string
1129  *
1130  *      Passed a format string - eg "lt%d" it will try and find a suitable
1131  *      id. It scans list of devices to build up a free map, then chooses
1132  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1133  *      while allocating the name and adding the device in order to avoid
1134  *      duplicates.
1135  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136  *      Returns the number of the unit assigned or a negative errno code.
1137  */
1138
1139 int dev_alloc_name(struct net_device *dev, const char *name)
1140 {
1141         return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 }
1143 EXPORT_SYMBOL(dev_alloc_name);
1144
1145 int dev_get_valid_name(struct net *net, struct net_device *dev,
1146                        const char *name)
1147 {
1148         BUG_ON(!net);
1149
1150         if (!dev_valid_name(name))
1151                 return -EINVAL;
1152
1153         if (strchr(name, '%'))
1154                 return dev_alloc_name_ns(net, dev, name);
1155         else if (__dev_get_by_name(net, name))
1156                 return -EEXIST;
1157         else if (dev->name != name)
1158                 strlcpy(dev->name, name, IFNAMSIZ);
1159
1160         return 0;
1161 }
1162 EXPORT_SYMBOL(dev_get_valid_name);
1163
1164 /**
1165  *      dev_change_name - change name of a device
1166  *      @dev: device
1167  *      @newname: name (or format string) must be at least IFNAMSIZ
1168  *
1169  *      Change name of a device, can pass format strings "eth%d".
1170  *      for wildcarding.
1171  */
1172 int dev_change_name(struct net_device *dev, const char *newname)
1173 {
1174         unsigned char old_assign_type;
1175         char oldname[IFNAMSIZ];
1176         int err = 0;
1177         int ret;
1178         struct net *net;
1179
1180         ASSERT_RTNL();
1181         BUG_ON(!dev_net(dev));
1182
1183         net = dev_net(dev);
1184         if (dev->flags & IFF_UP)
1185                 return -EBUSY;
1186
1187         write_seqcount_begin(&devnet_rename_seq);
1188
1189         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1190                 write_seqcount_end(&devnet_rename_seq);
1191                 return 0;
1192         }
1193
1194         memcpy(oldname, dev->name, IFNAMSIZ);
1195
1196         err = dev_get_valid_name(net, dev, newname);
1197         if (err < 0) {
1198                 write_seqcount_end(&devnet_rename_seq);
1199                 return err;
1200         }
1201
1202         if (oldname[0] && !strchr(oldname, '%'))
1203                 netdev_info(dev, "renamed from %s\n", oldname);
1204
1205         old_assign_type = dev->name_assign_type;
1206         dev->name_assign_type = NET_NAME_RENAMED;
1207
1208 rollback:
1209         ret = device_rename(&dev->dev, dev->name);
1210         if (ret) {
1211                 memcpy(dev->name, oldname, IFNAMSIZ);
1212                 dev->name_assign_type = old_assign_type;
1213                 write_seqcount_end(&devnet_rename_seq);
1214                 return ret;
1215         }
1216
1217         write_seqcount_end(&devnet_rename_seq);
1218
1219         netdev_adjacent_rename_links(dev, oldname);
1220
1221         write_lock_bh(&dev_base_lock);
1222         hlist_del_rcu(&dev->name_hlist);
1223         write_unlock_bh(&dev_base_lock);
1224
1225         synchronize_rcu();
1226
1227         write_lock_bh(&dev_base_lock);
1228         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1229         write_unlock_bh(&dev_base_lock);
1230
1231         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1232         ret = notifier_to_errno(ret);
1233
1234         if (ret) {
1235                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1236                 if (err >= 0) {
1237                         err = ret;
1238                         write_seqcount_begin(&devnet_rename_seq);
1239                         memcpy(dev->name, oldname, IFNAMSIZ);
1240                         memcpy(oldname, newname, IFNAMSIZ);
1241                         dev->name_assign_type = old_assign_type;
1242                         old_assign_type = NET_NAME_RENAMED;
1243                         goto rollback;
1244                 } else {
1245                         pr_err("%s: name change rollback failed: %d\n",
1246                                dev->name, ret);
1247                 }
1248         }
1249
1250         return err;
1251 }
1252
1253 /**
1254  *      dev_set_alias - change ifalias of a device
1255  *      @dev: device
1256  *      @alias: name up to IFALIASZ
1257  *      @len: limit of bytes to copy from info
1258  *
1259  *      Set ifalias for a device,
1260  */
1261 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1262 {
1263         struct dev_ifalias *new_alias = NULL;
1264
1265         if (len >= IFALIASZ)
1266                 return -EINVAL;
1267
1268         if (len) {
1269                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1270                 if (!new_alias)
1271                         return -ENOMEM;
1272
1273                 memcpy(new_alias->ifalias, alias, len);
1274                 new_alias->ifalias[len] = 0;
1275         }
1276
1277         mutex_lock(&ifalias_mutex);
1278         rcu_swap_protected(dev->ifalias, new_alias,
1279                            mutex_is_locked(&ifalias_mutex));
1280         mutex_unlock(&ifalias_mutex);
1281
1282         if (new_alias)
1283                 kfree_rcu(new_alias, rcuhead);
1284
1285         return len;
1286 }
1287 EXPORT_SYMBOL(dev_set_alias);
1288
1289 /**
1290  *      dev_get_alias - get ifalias of a device
1291  *      @dev: device
1292  *      @name: buffer to store name of ifalias
1293  *      @len: size of buffer
1294  *
1295  *      get ifalias for a device.  Caller must make sure dev cannot go
1296  *      away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300         const struct dev_ifalias *alias;
1301         int ret = 0;
1302
1303         rcu_read_lock();
1304         alias = rcu_dereference(dev->ifalias);
1305         if (alias)
1306                 ret = snprintf(name, len, "%s", alias->ifalias);
1307         rcu_read_unlock();
1308
1309         return ret;
1310 }
1311
1312 /**
1313  *      netdev_features_change - device changes features
1314  *      @dev: device to cause notification
1315  *
1316  *      Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323
1324 /**
1325  *      netdev_state_change - device changes state
1326  *      @dev: device to cause notification
1327  *
1328  *      Called to indicate a device has changed state. This function calls
1329  *      the notifier chains for netdev_chain and sends a NEWLINK message
1330  *      to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334         if (dev->flags & IFF_UP) {
1335                 struct netdev_notifier_change_info change_info = {
1336                         .info.dev = dev,
1337                 };
1338
1339                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340                                               &change_info.info);
1341                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342         }
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358         rtnl_lock();
1359         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361         rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364
1365 static int __dev_open(struct net_device *dev)
1366 {
1367         const struct net_device_ops *ops = dev->netdev_ops;
1368         int ret;
1369
1370         ASSERT_RTNL();
1371
1372         if (!netif_device_present(dev))
1373                 return -ENODEV;
1374
1375         /* Block netpoll from trying to do any rx path servicing.
1376          * If we don't do this there is a chance ndo_poll_controller
1377          * or ndo_poll may be running while we open the device
1378          */
1379         netpoll_poll_disable(dev);
1380
1381         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382         ret = notifier_to_errno(ret);
1383         if (ret)
1384                 return ret;
1385
1386         set_bit(__LINK_STATE_START, &dev->state);
1387
1388         if (ops->ndo_validate_addr)
1389                 ret = ops->ndo_validate_addr(dev);
1390
1391         if (!ret && ops->ndo_open)
1392                 ret = ops->ndo_open(dev);
1393
1394         netpoll_poll_enable(dev);
1395
1396         if (ret)
1397                 clear_bit(__LINK_STATE_START, &dev->state);
1398         else {
1399                 dev->flags |= IFF_UP;
1400                 dev_set_rx_mode(dev);
1401                 dev_activate(dev);
1402                 add_device_randomness(dev->dev_addr, dev->addr_len);
1403         }
1404
1405         return ret;
1406 }
1407
1408 /**
1409  *      dev_open        - prepare an interface for use.
1410  *      @dev:   device to open
1411  *
1412  *      Takes a device from down to up state. The device's private open
1413  *      function is invoked and then the multicast lists are loaded. Finally
1414  *      the device is moved into the up state and a %NETDEV_UP message is
1415  *      sent to the netdev notifier chain.
1416  *
1417  *      Calling this function on an active interface is a nop. On a failure
1418  *      a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422         int ret;
1423
1424         if (dev->flags & IFF_UP)
1425                 return 0;
1426
1427         ret = __dev_open(dev);
1428         if (ret < 0)
1429                 return ret;
1430
1431         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432         call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434         return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440         struct net_device *dev;
1441
1442         ASSERT_RTNL();
1443         might_sleep();
1444
1445         list_for_each_entry(dev, head, close_list) {
1446                 /* Temporarily disable netpoll until the interface is down */
1447                 netpoll_poll_disable(dev);
1448
1449                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454                  * can be even on different cpu. So just clear netif_running().
1455                  *
1456                  * dev->stop() will invoke napi_disable() on all of it's
1457                  * napi_struct instances on this device.
1458                  */
1459                 smp_mb__after_atomic(); /* Commit netif_running(). */
1460         }
1461
1462         dev_deactivate_many(head);
1463
1464         list_for_each_entry(dev, head, close_list) {
1465                 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467                 /*
1468                  *      Call the device specific close. This cannot fail.
1469                  *      Only if device is UP
1470                  *
1471                  *      We allow it to be called even after a DETACH hot-plug
1472                  *      event.
1473                  */
1474                 if (ops->ndo_stop)
1475                         ops->ndo_stop(dev);
1476
1477                 dev->flags &= ~IFF_UP;
1478                 netpoll_poll_enable(dev);
1479         }
1480 }
1481
1482 static void __dev_close(struct net_device *dev)
1483 {
1484         LIST_HEAD(single);
1485
1486         list_add(&dev->close_list, &single);
1487         __dev_close_many(&single);
1488         list_del(&single);
1489 }
1490
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493         struct net_device *dev, *tmp;
1494
1495         /* Remove the devices that don't need to be closed */
1496         list_for_each_entry_safe(dev, tmp, head, close_list)
1497                 if (!(dev->flags & IFF_UP))
1498                         list_del_init(&dev->close_list);
1499
1500         __dev_close_many(head);
1501
1502         list_for_each_entry_safe(dev, tmp, head, close_list) {
1503                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505                 if (unlink)
1506                         list_del_init(&dev->close_list);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510
1511 /**
1512  *      dev_close - shutdown an interface.
1513  *      @dev: device to shutdown
1514  *
1515  *      This function moves an active device into down state. A
1516  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *      chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522         if (dev->flags & IFF_UP) {
1523                 LIST_HEAD(single);
1524
1525                 list_add(&dev->close_list, &single);
1526                 dev_close_many(&single, true);
1527                 list_del(&single);
1528         }
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531
1532
1533 /**
1534  *      dev_disable_lro - disable Large Receive Offload on a device
1535  *      @dev: device
1536  *
1537  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *      called under RTNL.  This is needed if received packets may be
1539  *      forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543         struct net_device *lower_dev;
1544         struct list_head *iter;
1545
1546         dev->wanted_features &= ~NETIF_F_LRO;
1547         netdev_update_features(dev);
1548
1549         if (unlikely(dev->features & NETIF_F_LRO))
1550                 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552         netdev_for_each_lower_dev(dev, lower_dev, iter)
1553                 dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556
1557 /**
1558  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *      @dev: device
1560  *
1561  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *      called under RTNL.  This is needed if Generic XDP is installed on
1563  *      the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567         dev->wanted_features &= ~NETIF_F_GRO_HW;
1568         netdev_update_features(dev);
1569
1570         if (unlikely(dev->features & NETIF_F_GRO_HW))
1571                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val)                                          \
1577         case NETDEV_##val:                              \
1578                 return "NETDEV_" __stringify(val);
1579         switch (cmd) {
1580         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589         }
1590 #undef N
1591         return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596                                    struct net_device *dev)
1597 {
1598         struct netdev_notifier_info info = {
1599                 .dev = dev,
1600         };
1601
1602         return nb->notifier_call(nb, val, &info);
1603 }
1604
1605 static int dev_boot_phase = 1;
1606
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623         struct net_device *dev;
1624         struct net_device *last;
1625         struct net *net;
1626         int err;
1627
1628         /* Close race with setup_net() and cleanup_net() */
1629         down_write(&pernet_ops_rwsem);
1630         rtnl_lock();
1631         err = raw_notifier_chain_register(&netdev_chain, nb);
1632         if (err)
1633                 goto unlock;
1634         if (dev_boot_phase)
1635                 goto unlock;
1636         for_each_net(net) {
1637                 for_each_netdev(net, dev) {
1638                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639                         err = notifier_to_errno(err);
1640                         if (err)
1641                                 goto rollback;
1642
1643                         if (!(dev->flags & IFF_UP))
1644                                 continue;
1645
1646                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1647                 }
1648         }
1649
1650 unlock:
1651         rtnl_unlock();
1652         up_write(&pernet_ops_rwsem);
1653         return err;
1654
1655 rollback:
1656         last = dev;
1657         for_each_net(net) {
1658                 for_each_netdev(net, dev) {
1659                         if (dev == last)
1660                                 goto outroll;
1661
1662                         if (dev->flags & IFF_UP) {
1663                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664                                                         dev);
1665                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666                         }
1667                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668                 }
1669         }
1670
1671 outroll:
1672         raw_notifier_chain_unregister(&netdev_chain, nb);
1673         goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693         struct net_device *dev;
1694         struct net *net;
1695         int err;
1696
1697         /* Close race with setup_net() and cleanup_net() */
1698         down_write(&pernet_ops_rwsem);
1699         rtnl_lock();
1700         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701         if (err)
1702                 goto unlock;
1703
1704         for_each_net(net) {
1705                 for_each_netdev(net, dev) {
1706                         if (dev->flags & IFF_UP) {
1707                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708                                                         dev);
1709                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710                         }
1711                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712                 }
1713         }
1714 unlock:
1715         rtnl_unlock();
1716         up_write(&pernet_ops_rwsem);
1717         return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720
1721 /**
1722  *      call_netdevice_notifiers_info - call all network notifier blocks
1723  *      @val: value passed unmodified to notifier function
1724  *      @info: notifier information data
1725  *
1726  *      Call all network notifier blocks.  Parameters and return value
1727  *      are as for raw_notifier_call_chain().
1728  */
1729
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731                                          struct netdev_notifier_info *info)
1732 {
1733         ASSERT_RTNL();
1734         return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736
1737 /**
1738  *      call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *      Call all network notifier blocks.  Parameters and return value
1743  *      are as for raw_notifier_call_chain().
1744  */
1745
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748         struct netdev_notifier_info info = {
1749                 .dev = dev,
1750         };
1751
1752         return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755
1756 #ifdef CONFIG_NET_INGRESS
1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1758
1759 void net_inc_ingress_queue(void)
1760 {
1761         static_branch_inc(&ingress_needed_key);
1762 }
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764
1765 void net_dec_ingress_queue(void)
1766 {
1767         static_branch_dec(&ingress_needed_key);
1768 }
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1771
1772 #ifdef CONFIG_NET_EGRESS
1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1774
1775 void net_inc_egress_queue(void)
1776 {
1777         static_branch_inc(&egress_needed_key);
1778 }
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780
1781 void net_dec_egress_queue(void)
1782 {
1783         static_branch_dec(&egress_needed_key);
1784 }
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1787
1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1793 {
1794         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795         int wanted;
1796
1797         wanted = atomic_add_return(deferred, &netstamp_wanted);
1798         if (wanted > 0)
1799                 static_branch_enable(&netstamp_needed_key);
1800         else
1801                 static_branch_disable(&netstamp_needed_key);
1802 }
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1805
1806 void net_enable_timestamp(void)
1807 {
1808 #ifdef HAVE_JUMP_LABEL
1809         int wanted;
1810
1811         while (1) {
1812                 wanted = atomic_read(&netstamp_wanted);
1813                 if (wanted <= 0)
1814                         break;
1815                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816                         return;
1817         }
1818         atomic_inc(&netstamp_needed_deferred);
1819         schedule_work(&netstamp_work);
1820 #else
1821         static_branch_inc(&netstamp_needed_key);
1822 #endif
1823 }
1824 EXPORT_SYMBOL(net_enable_timestamp);
1825
1826 void net_disable_timestamp(void)
1827 {
1828 #ifdef HAVE_JUMP_LABEL
1829         int wanted;
1830
1831         while (1) {
1832                 wanted = atomic_read(&netstamp_wanted);
1833                 if (wanted <= 1)
1834                         break;
1835                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836                         return;
1837         }
1838         atomic_dec(&netstamp_needed_deferred);
1839         schedule_work(&netstamp_work);
1840 #else
1841         static_branch_dec(&netstamp_needed_key);
1842 #endif
1843 }
1844 EXPORT_SYMBOL(net_disable_timestamp);
1845
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1847 {
1848         skb->tstamp = 0;
1849         if (static_branch_unlikely(&netstamp_needed_key))
1850                 __net_timestamp(skb);
1851 }
1852
1853 #define net_timestamp_check(COND, SKB)                          \
1854         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1855                 if ((COND) && !(SKB)->tstamp)                   \
1856                         __net_timestamp(SKB);                   \
1857         }                                                       \
1858
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860 {
1861         unsigned int len;
1862
1863         if (!(dev->flags & IFF_UP))
1864                 return false;
1865
1866         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867         if (skb->len <= len)
1868                 return true;
1869
1870         /* if TSO is enabled, we don't care about the length as the packet
1871          * could be forwarded without being segmented before
1872          */
1873         if (skb_is_gso(skb))
1874                 return true;
1875
1876         return false;
1877 }
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 {
1882         int ret = ____dev_forward_skb(dev, skb);
1883
1884         if (likely(!ret)) {
1885                 skb->protocol = eth_type_trans(skb, dev);
1886                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887         }
1888
1889         return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892
1893 /**
1894  * dev_forward_skb - loopback an skb to another netif
1895  *
1896  * @dev: destination network device
1897  * @skb: buffer to forward
1898  *
1899  * return values:
1900  *      NET_RX_SUCCESS  (no congestion)
1901  *      NET_RX_DROP     (packet was dropped, but freed)
1902  *
1903  * dev_forward_skb can be used for injecting an skb from the
1904  * start_xmit function of one device into the receive queue
1905  * of another device.
1906  *
1907  * The receiving device may be in another namespace, so
1908  * we have to clear all information in the skb that could
1909  * impact namespace isolation.
1910  */
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 {
1913         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 }
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916
1917 static inline int deliver_skb(struct sk_buff *skb,
1918                               struct packet_type *pt_prev,
1919                               struct net_device *orig_dev)
1920 {
1921         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922                 return -ENOMEM;
1923         refcount_inc(&skb->users);
1924         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925 }
1926
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928                                           struct packet_type **pt,
1929                                           struct net_device *orig_dev,
1930                                           __be16 type,
1931                                           struct list_head *ptype_list)
1932 {
1933         struct packet_type *ptype, *pt_prev = *pt;
1934
1935         list_for_each_entry_rcu(ptype, ptype_list, list) {
1936                 if (ptype->type != type)
1937                         continue;
1938                 if (pt_prev)
1939                         deliver_skb(skb, pt_prev, orig_dev);
1940                 pt_prev = ptype;
1941         }
1942         *pt = pt_prev;
1943 }
1944
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 {
1947         if (!ptype->af_packet_priv || !skb->sk)
1948                 return false;
1949
1950         if (ptype->id_match)
1951                 return ptype->id_match(ptype, skb->sk);
1952         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953                 return true;
1954
1955         return false;
1956 }
1957
1958 /*
1959  *      Support routine. Sends outgoing frames to any network
1960  *      taps currently in use.
1961  */
1962
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965         struct packet_type *ptype;
1966         struct sk_buff *skb2 = NULL;
1967         struct packet_type *pt_prev = NULL;
1968         struct list_head *ptype_list = &ptype_all;
1969
1970         rcu_read_lock();
1971 again:
1972         list_for_each_entry_rcu(ptype, ptype_list, list) {
1973                 /* Never send packets back to the socket
1974                  * they originated from - MvS (miquels@drinkel.ow.org)
1975                  */
1976                 if (skb_loop_sk(ptype, skb))
1977                         continue;
1978
1979                 if (pt_prev) {
1980                         deliver_skb(skb2, pt_prev, skb->dev);
1981                         pt_prev = ptype;
1982                         continue;
1983                 }
1984
1985                 /* need to clone skb, done only once */
1986                 skb2 = skb_clone(skb, GFP_ATOMIC);
1987                 if (!skb2)
1988                         goto out_unlock;
1989
1990                 net_timestamp_set(skb2);
1991
1992                 /* skb->nh should be correctly
1993                  * set by sender, so that the second statement is
1994                  * just protection against buggy protocols.
1995                  */
1996                 skb_reset_mac_header(skb2);
1997
1998                 if (skb_network_header(skb2) < skb2->data ||
1999                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001                                              ntohs(skb2->protocol),
2002                                              dev->name);
2003                         skb_reset_network_header(skb2);
2004                 }
2005
2006                 skb2->transport_header = skb2->network_header;
2007                 skb2->pkt_type = PACKET_OUTGOING;
2008                 pt_prev = ptype;
2009         }
2010
2011         if (ptype_list == &ptype_all) {
2012                 ptype_list = &dev->ptype_all;
2013                 goto again;
2014         }
2015 out_unlock:
2016         if (pt_prev) {
2017                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019                 else
2020                         kfree_skb(skb2);
2021         }
2022         rcu_read_unlock();
2023 }
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025
2026 /**
2027  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028  * @dev: Network device
2029  * @txq: number of queues available
2030  *
2031  * If real_num_tx_queues is changed the tc mappings may no longer be
2032  * valid. To resolve this verify the tc mapping remains valid and if
2033  * not NULL the mapping. With no priorities mapping to this
2034  * offset/count pair it will no longer be used. In the worst case TC0
2035  * is invalid nothing can be done so disable priority mappings. If is
2036  * expected that drivers will fix this mapping if they can before
2037  * calling netif_set_real_num_tx_queues.
2038  */
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040 {
2041         int i;
2042         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043
2044         /* If TC0 is invalidated disable TC mapping */
2045         if (tc->offset + tc->count > txq) {
2046                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047                 dev->num_tc = 0;
2048                 return;
2049         }
2050
2051         /* Invalidated prio to tc mappings set to TC0 */
2052         for (i = 1; i < TC_BITMASK + 1; i++) {
2053                 int q = netdev_get_prio_tc_map(dev, i);
2054
2055                 tc = &dev->tc_to_txq[q];
2056                 if (tc->offset + tc->count > txq) {
2057                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058                                 i, q);
2059                         netdev_set_prio_tc_map(dev, i, 0);
2060                 }
2061         }
2062 }
2063
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065 {
2066         if (dev->num_tc) {
2067                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068                 int i;
2069
2070                 /* walk through the TCs and see if it falls into any of them */
2071                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072                         if ((txq - tc->offset) < tc->count)
2073                                 return i;
2074                 }
2075
2076                 /* didn't find it, just return -1 to indicate no match */
2077                 return -1;
2078         }
2079
2080         return 0;
2081 }
2082 EXPORT_SYMBOL(netdev_txq_to_tc);
2083
2084 #ifdef CONFIG_XPS
2085 struct static_key xps_needed __read_mostly;
2086 EXPORT_SYMBOL(xps_needed);
2087 struct static_key xps_rxqs_needed __read_mostly;
2088 EXPORT_SYMBOL(xps_rxqs_needed);
2089 static DEFINE_MUTEX(xps_map_mutex);
2090 #define xmap_dereference(P)             \
2091         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2092
2093 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2094                              int tci, u16 index)
2095 {
2096         struct xps_map *map = NULL;
2097         int pos;
2098
2099         if (dev_maps)
2100                 map = xmap_dereference(dev_maps->attr_map[tci]);
2101         if (!map)
2102                 return false;
2103
2104         for (pos = map->len; pos--;) {
2105                 if (map->queues[pos] != index)
2106                         continue;
2107
2108                 if (map->len > 1) {
2109                         map->queues[pos] = map->queues[--map->len];
2110                         break;
2111                 }
2112
2113                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2114                 kfree_rcu(map, rcu);
2115                 return false;
2116         }
2117
2118         return true;
2119 }
2120
2121 static bool remove_xps_queue_cpu(struct net_device *dev,
2122                                  struct xps_dev_maps *dev_maps,
2123                                  int cpu, u16 offset, u16 count)
2124 {
2125         int num_tc = dev->num_tc ? : 1;
2126         bool active = false;
2127         int tci;
2128
2129         for (tci = cpu * num_tc; num_tc--; tci++) {
2130                 int i, j;
2131
2132                 for (i = count, j = offset; i--; j++) {
2133                         if (!remove_xps_queue(dev_maps, tci, j))
2134                                 break;
2135                 }
2136
2137                 active |= i < 0;
2138         }
2139
2140         return active;
2141 }
2142
2143 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2144                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2145                            u16 offset, u16 count, bool is_rxqs_map)
2146 {
2147         bool active = false;
2148         int i, j;
2149
2150         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2151              j < nr_ids;)
2152                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2153                                                count);
2154         if (!active) {
2155                 if (is_rxqs_map) {
2156                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2157                 } else {
2158                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2159
2160                         for (i = offset + (count - 1); count--; i--)
2161                                 netdev_queue_numa_node_write(
2162                                         netdev_get_tx_queue(dev, i),
2163                                                         NUMA_NO_NODE);
2164                 }
2165                 kfree_rcu(dev_maps, rcu);
2166         }
2167 }
2168
2169 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2170                                    u16 count)
2171 {
2172         const unsigned long *possible_mask = NULL;
2173         struct xps_dev_maps *dev_maps;
2174         unsigned int nr_ids;
2175
2176         if (!static_key_false(&xps_needed))
2177                 return;
2178
2179         cpus_read_lock();
2180         mutex_lock(&xps_map_mutex);
2181
2182         if (static_key_false(&xps_rxqs_needed)) {
2183                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2184                 if (dev_maps) {
2185                         nr_ids = dev->num_rx_queues;
2186                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2187                                        offset, count, true);
2188                 }
2189         }
2190
2191         dev_maps = xmap_dereference(dev->xps_cpus_map);
2192         if (!dev_maps)
2193                 goto out_no_maps;
2194
2195         if (num_possible_cpus() > 1)
2196                 possible_mask = cpumask_bits(cpu_possible_mask);
2197         nr_ids = nr_cpu_ids;
2198         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2199                        false);
2200
2201 out_no_maps:
2202         if (static_key_enabled(&xps_rxqs_needed))
2203                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2204
2205         static_key_slow_dec_cpuslocked(&xps_needed);
2206         mutex_unlock(&xps_map_mutex);
2207         cpus_read_unlock();
2208 }
2209
2210 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2211 {
2212         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2213 }
2214
2215 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2216                                       u16 index, bool is_rxqs_map)
2217 {
2218         struct xps_map *new_map;
2219         int alloc_len = XPS_MIN_MAP_ALLOC;
2220         int i, pos;
2221
2222         for (pos = 0; map && pos < map->len; pos++) {
2223                 if (map->queues[pos] != index)
2224                         continue;
2225                 return map;
2226         }
2227
2228         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2229         if (map) {
2230                 if (pos < map->alloc_len)
2231                         return map;
2232
2233                 alloc_len = map->alloc_len * 2;
2234         }
2235
2236         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2237          *  map
2238          */
2239         if (is_rxqs_map)
2240                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2241         else
2242                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2243                                        cpu_to_node(attr_index));
2244         if (!new_map)
2245                 return NULL;
2246
2247         for (i = 0; i < pos; i++)
2248                 new_map->queues[i] = map->queues[i];
2249         new_map->alloc_len = alloc_len;
2250         new_map->len = pos;
2251
2252         return new_map;
2253 }
2254
2255 /* Must be called under cpus_read_lock */
2256 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2257                           u16 index, bool is_rxqs_map)
2258 {
2259         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2260         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2261         int i, j, tci, numa_node_id = -2;
2262         int maps_sz, num_tc = 1, tc = 0;
2263         struct xps_map *map, *new_map;
2264         bool active = false;
2265         unsigned int nr_ids;
2266
2267         if (dev->num_tc) {
2268                 /* Do not allow XPS on subordinate device directly */
2269                 num_tc = dev->num_tc;
2270                 if (num_tc < 0)
2271                         return -EINVAL;
2272
2273                 /* If queue belongs to subordinate dev use its map */
2274                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2275
2276                 tc = netdev_txq_to_tc(dev, index);
2277                 if (tc < 0)
2278                         return -EINVAL;
2279         }
2280
2281         mutex_lock(&xps_map_mutex);
2282         if (is_rxqs_map) {
2283                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2284                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2285                 nr_ids = dev->num_rx_queues;
2286         } else {
2287                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2288                 if (num_possible_cpus() > 1) {
2289                         online_mask = cpumask_bits(cpu_online_mask);
2290                         possible_mask = cpumask_bits(cpu_possible_mask);
2291                 }
2292                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2293                 nr_ids = nr_cpu_ids;
2294         }
2295
2296         if (maps_sz < L1_CACHE_BYTES)
2297                 maps_sz = L1_CACHE_BYTES;
2298
2299         /* allocate memory for queue storage */
2300         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2301              j < nr_ids;) {
2302                 if (!new_dev_maps)
2303                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2304                 if (!new_dev_maps) {
2305                         mutex_unlock(&xps_map_mutex);
2306                         return -ENOMEM;
2307                 }
2308
2309                 tci = j * num_tc + tc;
2310                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2311                                  NULL;
2312
2313                 map = expand_xps_map(map, j, index, is_rxqs_map);
2314                 if (!map)
2315                         goto error;
2316
2317                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2318         }
2319
2320         if (!new_dev_maps)
2321                 goto out_no_new_maps;
2322
2323         static_key_slow_inc_cpuslocked(&xps_needed);
2324         if (is_rxqs_map)
2325                 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2326
2327         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2328              j < nr_ids;) {
2329                 /* copy maps belonging to foreign traffic classes */
2330                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2331                         /* fill in the new device map from the old device map */
2332                         map = xmap_dereference(dev_maps->attr_map[tci]);
2333                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2334                 }
2335
2336                 /* We need to explicitly update tci as prevous loop
2337                  * could break out early if dev_maps is NULL.
2338                  */
2339                 tci = j * num_tc + tc;
2340
2341                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2342                     netif_attr_test_online(j, online_mask, nr_ids)) {
2343                         /* add tx-queue to CPU/rx-queue maps */
2344                         int pos = 0;
2345
2346                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2347                         while ((pos < map->len) && (map->queues[pos] != index))
2348                                 pos++;
2349
2350                         if (pos == map->len)
2351                                 map->queues[map->len++] = index;
2352 #ifdef CONFIG_NUMA
2353                         if (!is_rxqs_map) {
2354                                 if (numa_node_id == -2)
2355                                         numa_node_id = cpu_to_node(j);
2356                                 else if (numa_node_id != cpu_to_node(j))
2357                                         numa_node_id = -1;
2358                         }
2359 #endif
2360                 } else if (dev_maps) {
2361                         /* fill in the new device map from the old device map */
2362                         map = xmap_dereference(dev_maps->attr_map[tci]);
2363                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2364                 }
2365
2366                 /* copy maps belonging to foreign traffic classes */
2367                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2368                         /* fill in the new device map from the old device map */
2369                         map = xmap_dereference(dev_maps->attr_map[tci]);
2370                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2371                 }
2372         }
2373
2374         if (is_rxqs_map)
2375                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2376         else
2377                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2378
2379         /* Cleanup old maps */
2380         if (!dev_maps)
2381                 goto out_no_old_maps;
2382
2383         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2384              j < nr_ids;) {
2385                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2386                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2387                         map = xmap_dereference(dev_maps->attr_map[tci]);
2388                         if (map && map != new_map)
2389                                 kfree_rcu(map, rcu);
2390                 }
2391         }
2392
2393         kfree_rcu(dev_maps, rcu);
2394
2395 out_no_old_maps:
2396         dev_maps = new_dev_maps;
2397         active = true;
2398
2399 out_no_new_maps:
2400         if (!is_rxqs_map) {
2401                 /* update Tx queue numa node */
2402                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2403                                              (numa_node_id >= 0) ?
2404                                              numa_node_id : NUMA_NO_NODE);
2405         }
2406
2407         if (!dev_maps)
2408                 goto out_no_maps;
2409
2410         /* removes tx-queue from unused CPUs/rx-queues */
2411         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2412              j < nr_ids;) {
2413                 for (i = tc, tci = j * num_tc; i--; tci++)
2414                         active |= remove_xps_queue(dev_maps, tci, index);
2415                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2416                     !netif_attr_test_online(j, online_mask, nr_ids))
2417                         active |= remove_xps_queue(dev_maps, tci, index);
2418                 for (i = num_tc - tc, tci++; --i; tci++)
2419                         active |= remove_xps_queue(dev_maps, tci, index);
2420         }
2421
2422         /* free map if not active */
2423         if (!active) {
2424                 if (is_rxqs_map)
2425                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2426                 else
2427                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2428                 kfree_rcu(dev_maps, rcu);
2429         }
2430
2431 out_no_maps:
2432         mutex_unlock(&xps_map_mutex);
2433
2434         return 0;
2435 error:
2436         /* remove any maps that we added */
2437         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2438              j < nr_ids;) {
2439                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2440                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2441                         map = dev_maps ?
2442                               xmap_dereference(dev_maps->attr_map[tci]) :
2443                               NULL;
2444                         if (new_map && new_map != map)
2445                                 kfree(new_map);
2446                 }
2447         }
2448
2449         mutex_unlock(&xps_map_mutex);
2450
2451         kfree(new_dev_maps);
2452         return -ENOMEM;
2453 }
2454 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2455
2456 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2457                         u16 index)
2458 {
2459         int ret;
2460
2461         cpus_read_lock();
2462         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2463         cpus_read_unlock();
2464
2465         return ret;
2466 }
2467 EXPORT_SYMBOL(netif_set_xps_queue);
2468
2469 #endif
2470 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2471 {
2472         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2473
2474         /* Unbind any subordinate channels */
2475         while (txq-- != &dev->_tx[0]) {
2476                 if (txq->sb_dev)
2477                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2478         }
2479 }
2480
2481 void netdev_reset_tc(struct net_device *dev)
2482 {
2483 #ifdef CONFIG_XPS
2484         netif_reset_xps_queues_gt(dev, 0);
2485 #endif
2486         netdev_unbind_all_sb_channels(dev);
2487
2488         /* Reset TC configuration of device */
2489         dev->num_tc = 0;
2490         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2491         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2492 }
2493 EXPORT_SYMBOL(netdev_reset_tc);
2494
2495 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2496 {
2497         if (tc >= dev->num_tc)
2498                 return -EINVAL;
2499
2500 #ifdef CONFIG_XPS
2501         netif_reset_xps_queues(dev, offset, count);
2502 #endif
2503         dev->tc_to_txq[tc].count = count;
2504         dev->tc_to_txq[tc].offset = offset;
2505         return 0;
2506 }
2507 EXPORT_SYMBOL(netdev_set_tc_queue);
2508
2509 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2510 {
2511         if (num_tc > TC_MAX_QUEUE)
2512                 return -EINVAL;
2513
2514 #ifdef CONFIG_XPS
2515         netif_reset_xps_queues_gt(dev, 0);
2516 #endif
2517         netdev_unbind_all_sb_channels(dev);
2518
2519         dev->num_tc = num_tc;
2520         return 0;
2521 }
2522 EXPORT_SYMBOL(netdev_set_num_tc);
2523
2524 void netdev_unbind_sb_channel(struct net_device *dev,
2525                               struct net_device *sb_dev)
2526 {
2527         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2528
2529 #ifdef CONFIG_XPS
2530         netif_reset_xps_queues_gt(sb_dev, 0);
2531 #endif
2532         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2533         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2534
2535         while (txq-- != &dev->_tx[0]) {
2536                 if (txq->sb_dev == sb_dev)
2537                         txq->sb_dev = NULL;
2538         }
2539 }
2540 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2541
2542 int netdev_bind_sb_channel_queue(struct net_device *dev,
2543                                  struct net_device *sb_dev,
2544                                  u8 tc, u16 count, u16 offset)
2545 {
2546         /* Make certain the sb_dev and dev are already configured */
2547         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2548                 return -EINVAL;
2549
2550         /* We cannot hand out queues we don't have */
2551         if ((offset + count) > dev->real_num_tx_queues)
2552                 return -EINVAL;
2553
2554         /* Record the mapping */
2555         sb_dev->tc_to_txq[tc].count = count;
2556         sb_dev->tc_to_txq[tc].offset = offset;
2557
2558         /* Provide a way for Tx queue to find the tc_to_txq map or
2559          * XPS map for itself.
2560          */
2561         while (count--)
2562                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2563
2564         return 0;
2565 }
2566 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2567
2568 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2569 {
2570         /* Do not use a multiqueue device to represent a subordinate channel */
2571         if (netif_is_multiqueue(dev))
2572                 return -ENODEV;
2573
2574         /* We allow channels 1 - 32767 to be used for subordinate channels.
2575          * Channel 0 is meant to be "native" mode and used only to represent
2576          * the main root device. We allow writing 0 to reset the device back
2577          * to normal mode after being used as a subordinate channel.
2578          */
2579         if (channel > S16_MAX)
2580                 return -EINVAL;
2581
2582         dev->num_tc = -channel;
2583
2584         return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_sb_channel);
2587
2588 /*
2589  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2590  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2591  */
2592 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2593 {
2594         bool disabling;
2595         int rc;
2596
2597         disabling = txq < dev->real_num_tx_queues;
2598
2599         if (txq < 1 || txq > dev->num_tx_queues)
2600                 return -EINVAL;
2601
2602         if (dev->reg_state == NETREG_REGISTERED ||
2603             dev->reg_state == NETREG_UNREGISTERING) {
2604                 ASSERT_RTNL();
2605
2606                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2607                                                   txq);
2608                 if (rc)
2609                         return rc;
2610
2611                 if (dev->num_tc)
2612                         netif_setup_tc(dev, txq);
2613
2614                 dev->real_num_tx_queues = txq;
2615
2616                 if (disabling) {
2617                         synchronize_net();
2618                         qdisc_reset_all_tx_gt(dev, txq);
2619 #ifdef CONFIG_XPS
2620                         netif_reset_xps_queues_gt(dev, txq);
2621 #endif
2622                 }
2623         } else {
2624                 dev->real_num_tx_queues = txq;
2625         }
2626
2627         return 0;
2628 }
2629 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2630
2631 #ifdef CONFIG_SYSFS
2632 /**
2633  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2634  *      @dev: Network device
2635  *      @rxq: Actual number of RX queues
2636  *
2637  *      This must be called either with the rtnl_lock held or before
2638  *      registration of the net device.  Returns 0 on success, or a
2639  *      negative error code.  If called before registration, it always
2640  *      succeeds.
2641  */
2642 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2643 {
2644         int rc;
2645
2646         if (rxq < 1 || rxq > dev->num_rx_queues)
2647                 return -EINVAL;
2648
2649         if (dev->reg_state == NETREG_REGISTERED) {
2650                 ASSERT_RTNL();
2651
2652                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2653                                                   rxq);
2654                 if (rc)
2655                         return rc;
2656         }
2657
2658         dev->real_num_rx_queues = rxq;
2659         return 0;
2660 }
2661 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2662 #endif
2663
2664 /**
2665  * netif_get_num_default_rss_queues - default number of RSS queues
2666  *
2667  * This routine should set an upper limit on the number of RSS queues
2668  * used by default by multiqueue devices.
2669  */
2670 int netif_get_num_default_rss_queues(void)
2671 {
2672         return is_kdump_kernel() ?
2673                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2674 }
2675 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2676
2677 static void __netif_reschedule(struct Qdisc *q)
2678 {
2679         struct softnet_data *sd;
2680         unsigned long flags;
2681
2682         local_irq_save(flags);
2683         sd = this_cpu_ptr(&softnet_data);
2684         q->next_sched = NULL;
2685         *sd->output_queue_tailp = q;
2686         sd->output_queue_tailp = &q->next_sched;
2687         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2688         local_irq_restore(flags);
2689 }
2690
2691 void __netif_schedule(struct Qdisc *q)
2692 {
2693         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2694                 __netif_reschedule(q);
2695 }
2696 EXPORT_SYMBOL(__netif_schedule);
2697
2698 struct dev_kfree_skb_cb {
2699         enum skb_free_reason reason;
2700 };
2701
2702 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2703 {
2704         return (struct dev_kfree_skb_cb *)skb->cb;
2705 }
2706
2707 void netif_schedule_queue(struct netdev_queue *txq)
2708 {
2709         rcu_read_lock();
2710         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2711                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2712
2713                 __netif_schedule(q);
2714         }
2715         rcu_read_unlock();
2716 }
2717 EXPORT_SYMBOL(netif_schedule_queue);
2718
2719 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2720 {
2721         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2722                 struct Qdisc *q;
2723
2724                 rcu_read_lock();
2725                 q = rcu_dereference(dev_queue->qdisc);
2726                 __netif_schedule(q);
2727                 rcu_read_unlock();
2728         }
2729 }
2730 EXPORT_SYMBOL(netif_tx_wake_queue);
2731
2732 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2733 {
2734         unsigned long flags;
2735
2736         if (unlikely(!skb))
2737                 return;
2738
2739         if (likely(refcount_read(&skb->users) == 1)) {
2740                 smp_rmb();
2741                 refcount_set(&skb->users, 0);
2742         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2743                 return;
2744         }
2745         get_kfree_skb_cb(skb)->reason = reason;
2746         local_irq_save(flags);
2747         skb->next = __this_cpu_read(softnet_data.completion_queue);
2748         __this_cpu_write(softnet_data.completion_queue, skb);
2749         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2750         local_irq_restore(flags);
2751 }
2752 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2753
2754 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2755 {
2756         if (in_irq() || irqs_disabled())
2757                 __dev_kfree_skb_irq(skb, reason);
2758         else
2759                 dev_kfree_skb(skb);
2760 }
2761 EXPORT_SYMBOL(__dev_kfree_skb_any);
2762
2763
2764 /**
2765  * netif_device_detach - mark device as removed
2766  * @dev: network device
2767  *
2768  * Mark device as removed from system and therefore no longer available.
2769  */
2770 void netif_device_detach(struct net_device *dev)
2771 {
2772         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2773             netif_running(dev)) {
2774                 netif_tx_stop_all_queues(dev);
2775         }
2776 }
2777 EXPORT_SYMBOL(netif_device_detach);
2778
2779 /**
2780  * netif_device_attach - mark device as attached
2781  * @dev: network device
2782  *
2783  * Mark device as attached from system and restart if needed.
2784  */
2785 void netif_device_attach(struct net_device *dev)
2786 {
2787         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2788             netif_running(dev)) {
2789                 netif_tx_wake_all_queues(dev);
2790                 __netdev_watchdog_up(dev);
2791         }
2792 }
2793 EXPORT_SYMBOL(netif_device_attach);
2794
2795 /*
2796  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2797  * to be used as a distribution range.
2798  */
2799 static u16 skb_tx_hash(const struct net_device *dev,
2800                        const struct net_device *sb_dev,
2801                        struct sk_buff *skb)
2802 {
2803         u32 hash;
2804         u16 qoffset = 0;
2805         u16 qcount = dev->real_num_tx_queues;
2806
2807         if (dev->num_tc) {
2808                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2809
2810                 qoffset = sb_dev->tc_to_txq[tc].offset;
2811                 qcount = sb_dev->tc_to_txq[tc].count;
2812         }
2813
2814         if (skb_rx_queue_recorded(skb)) {
2815                 hash = skb_get_rx_queue(skb);
2816                 while (unlikely(hash >= qcount))
2817                         hash -= qcount;
2818                 return hash + qoffset;
2819         }
2820
2821         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2822 }
2823
2824 static void skb_warn_bad_offload(const struct sk_buff *skb)
2825 {
2826         static const netdev_features_t null_features;
2827         struct net_device *dev = skb->dev;
2828         const char *name = "";
2829
2830         if (!net_ratelimit())
2831                 return;
2832
2833         if (dev) {
2834                 if (dev->dev.parent)
2835                         name = dev_driver_string(dev->dev.parent);
2836                 else
2837                         name = netdev_name(dev);
2838         }
2839         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2840              "gso_type=%d ip_summed=%d\n",
2841              name, dev ? &dev->features : &null_features,
2842              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2843              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2844              skb_shinfo(skb)->gso_type, skb->ip_summed);
2845 }
2846
2847 /*
2848  * Invalidate hardware checksum when packet is to be mangled, and
2849  * complete checksum manually on outgoing path.
2850  */
2851 int skb_checksum_help(struct sk_buff *skb)
2852 {
2853         __wsum csum;
2854         int ret = 0, offset;
2855
2856         if (skb->ip_summed == CHECKSUM_COMPLETE)
2857                 goto out_set_summed;
2858
2859         if (unlikely(skb_shinfo(skb)->gso_size)) {
2860                 skb_warn_bad_offload(skb);
2861                 return -EINVAL;
2862         }
2863
2864         /* Before computing a checksum, we should make sure no frag could
2865          * be modified by an external entity : checksum could be wrong.
2866          */
2867         if (skb_has_shared_frag(skb)) {
2868                 ret = __skb_linearize(skb);
2869                 if (ret)
2870                         goto out;
2871         }
2872
2873         offset = skb_checksum_start_offset(skb);
2874         BUG_ON(offset >= skb_headlen(skb));
2875         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2876
2877         offset += skb->csum_offset;
2878         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2879
2880         if (skb_cloned(skb) &&
2881             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2882                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2883                 if (ret)
2884                         goto out;
2885         }
2886
2887         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2888 out_set_summed:
2889         skb->ip_summed = CHECKSUM_NONE;
2890 out:
2891         return ret;
2892 }
2893 EXPORT_SYMBOL(skb_checksum_help);
2894
2895 int skb_crc32c_csum_help(struct sk_buff *skb)
2896 {
2897         __le32 crc32c_csum;
2898         int ret = 0, offset, start;
2899
2900         if (skb->ip_summed != CHECKSUM_PARTIAL)
2901                 goto out;
2902
2903         if (unlikely(skb_is_gso(skb)))
2904                 goto out;
2905
2906         /* Before computing a checksum, we should make sure no frag could
2907          * be modified by an external entity : checksum could be wrong.
2908          */
2909         if (unlikely(skb_has_shared_frag(skb))) {
2910                 ret = __skb_linearize(skb);
2911                 if (ret)
2912                         goto out;
2913         }
2914         start = skb_checksum_start_offset(skb);
2915         offset = start + offsetof(struct sctphdr, checksum);
2916         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2917                 ret = -EINVAL;
2918                 goto out;
2919         }
2920         if (skb_cloned(skb) &&
2921             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2922                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2923                 if (ret)
2924                         goto out;
2925         }
2926         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2927                                                   skb->len - start, ~(__u32)0,
2928                                                   crc32c_csum_stub));
2929         *(__le32 *)(skb->data + offset) = crc32c_csum;
2930         skb->ip_summed = CHECKSUM_NONE;
2931         skb->csum_not_inet = 0;
2932 out:
2933         return ret;
2934 }
2935
2936 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2937 {
2938         __be16 type = skb->protocol;
2939
2940         /* Tunnel gso handlers can set protocol to ethernet. */
2941         if (type == htons(ETH_P_TEB)) {
2942                 struct ethhdr *eth;
2943
2944                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2945                         return 0;
2946
2947                 eth = (struct ethhdr *)skb->data;
2948                 type = eth->h_proto;
2949         }
2950
2951         return __vlan_get_protocol(skb, type, depth);
2952 }
2953
2954 /**
2955  *      skb_mac_gso_segment - mac layer segmentation handler.
2956  *      @skb: buffer to segment
2957  *      @features: features for the output path (see dev->features)
2958  */
2959 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2960                                     netdev_features_t features)
2961 {
2962         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2963         struct packet_offload *ptype;
2964         int vlan_depth = skb->mac_len;
2965         __be16 type = skb_network_protocol(skb, &vlan_depth);
2966
2967         if (unlikely(!type))
2968                 return ERR_PTR(-EINVAL);
2969
2970         __skb_pull(skb, vlan_depth);
2971
2972         rcu_read_lock();
2973         list_for_each_entry_rcu(ptype, &offload_base, list) {
2974                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2975                         segs = ptype->callbacks.gso_segment(skb, features);
2976                         break;
2977                 }
2978         }
2979         rcu_read_unlock();
2980
2981         __skb_push(skb, skb->data - skb_mac_header(skb));
2982
2983         return segs;
2984 }
2985 EXPORT_SYMBOL(skb_mac_gso_segment);
2986
2987
2988 /* openvswitch calls this on rx path, so we need a different check.
2989  */
2990 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2991 {
2992         if (tx_path)
2993                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2994                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2995
2996         return skb->ip_summed == CHECKSUM_NONE;
2997 }
2998
2999 /**
3000  *      __skb_gso_segment - Perform segmentation on skb.
3001  *      @skb: buffer to segment
3002  *      @features: features for the output path (see dev->features)
3003  *      @tx_path: whether it is called in TX path
3004  *
3005  *      This function segments the given skb and returns a list of segments.
3006  *
3007  *      It may return NULL if the skb requires no segmentation.  This is
3008  *      only possible when GSO is used for verifying header integrity.
3009  *
3010  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3011  */
3012 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3013                                   netdev_features_t features, bool tx_path)
3014 {
3015         struct sk_buff *segs;
3016
3017         if (unlikely(skb_needs_check(skb, tx_path))) {
3018                 int err;
3019
3020                 /* We're going to init ->check field in TCP or UDP header */
3021                 err = skb_cow_head(skb, 0);
3022                 if (err < 0)
3023                         return ERR_PTR(err);
3024         }
3025
3026         /* Only report GSO partial support if it will enable us to
3027          * support segmentation on this frame without needing additional
3028          * work.
3029          */
3030         if (features & NETIF_F_GSO_PARTIAL) {
3031                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3032                 struct net_device *dev = skb->dev;
3033
3034                 partial_features |= dev->features & dev->gso_partial_features;
3035                 if (!skb_gso_ok(skb, features | partial_features))
3036                         features &= ~NETIF_F_GSO_PARTIAL;
3037         }
3038
3039         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3040                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3041
3042         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3043         SKB_GSO_CB(skb)->encap_level = 0;
3044
3045         skb_reset_mac_header(skb);
3046         skb_reset_mac_len(skb);
3047
3048         segs = skb_mac_gso_segment(skb, features);
3049
3050         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3051                 skb_warn_bad_offload(skb);
3052
3053         return segs;
3054 }
3055 EXPORT_SYMBOL(__skb_gso_segment);
3056
3057 /* Take action when hardware reception checksum errors are detected. */
3058 #ifdef CONFIG_BUG
3059 void netdev_rx_csum_fault(struct net_device *dev)
3060 {
3061         if (net_ratelimit()) {
3062                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3063                 dump_stack();
3064         }
3065 }
3066 EXPORT_SYMBOL(netdev_rx_csum_fault);
3067 #endif
3068
3069 /* XXX: check that highmem exists at all on the given machine. */
3070 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3071 {
3072 #ifdef CONFIG_HIGHMEM
3073         int i;
3074
3075         if (!(dev->features & NETIF_F_HIGHDMA)) {
3076                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3077                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3078
3079                         if (PageHighMem(skb_frag_page(frag)))
3080                                 return 1;
3081                 }
3082         }
3083 #endif
3084         return 0;
3085 }
3086
3087 /* If MPLS offload request, verify we are testing hardware MPLS features
3088  * instead of standard features for the netdev.
3089  */
3090 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3091 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3092                                            netdev_features_t features,
3093                                            __be16 type)
3094 {
3095         if (eth_p_mpls(type))
3096                 features &= skb->dev->mpls_features;
3097
3098         return features;
3099 }
3100 #else
3101 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3102                                            netdev_features_t features,
3103                                            __be16 type)
3104 {
3105         return features;
3106 }
3107 #endif
3108
3109 static netdev_features_t harmonize_features(struct sk_buff *skb,
3110         netdev_features_t features)
3111 {
3112         int tmp;
3113         __be16 type;
3114
3115         type = skb_network_protocol(skb, &tmp);
3116         features = net_mpls_features(skb, features, type);
3117
3118         if (skb->ip_summed != CHECKSUM_NONE &&
3119             !can_checksum_protocol(features, type)) {
3120                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3121         }
3122         if (illegal_highdma(skb->dev, skb))
3123                 features &= ~NETIF_F_SG;
3124
3125         return features;
3126 }
3127
3128 netdev_features_t passthru_features_check(struct sk_buff *skb,
3129                                           struct net_device *dev,
3130                                           netdev_features_t features)
3131 {
3132         return features;
3133 }
3134 EXPORT_SYMBOL(passthru_features_check);
3135
3136 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3137                                              struct net_device *dev,
3138                                              netdev_features_t features)
3139 {
3140         return vlan_features_check(skb, features);
3141 }
3142
3143 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3144                                             struct net_device *dev,
3145                                             netdev_features_t features)
3146 {
3147         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3148
3149         if (gso_segs > dev->gso_max_segs)
3150                 return features & ~NETIF_F_GSO_MASK;
3151
3152         /* Support for GSO partial features requires software
3153          * intervention before we can actually process the packets
3154          * so we need to strip support for any partial features now
3155          * and we can pull them back in after we have partially
3156          * segmented the frame.
3157          */
3158         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3159                 features &= ~dev->gso_partial_features;
3160
3161         /* Make sure to clear the IPv4 ID mangling feature if the
3162          * IPv4 header has the potential to be fragmented.
3163          */
3164         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3165                 struct iphdr *iph = skb->encapsulation ?
3166                                     inner_ip_hdr(skb) : ip_hdr(skb);
3167
3168                 if (!(iph->frag_off & htons(IP_DF)))
3169                         features &= ~NETIF_F_TSO_MANGLEID;
3170         }
3171
3172         return features;
3173 }
3174
3175 netdev_features_t netif_skb_features(struct sk_buff *skb)
3176 {
3177         struct net_device *dev = skb->dev;
3178         netdev_features_t features = dev->features;
3179
3180         if (skb_is_gso(skb))
3181                 features = gso_features_check(skb, dev, features);
3182
3183         /* If encapsulation offload request, verify we are testing
3184          * hardware encapsulation features instead of standard
3185          * features for the netdev
3186          */
3187         if (skb->encapsulation)
3188                 features &= dev->hw_enc_features;
3189
3190         if (skb_vlan_tagged(skb))
3191                 features = netdev_intersect_features(features,
3192                                                      dev->vlan_features |
3193                                                      NETIF_F_HW_VLAN_CTAG_TX |
3194                                                      NETIF_F_HW_VLAN_STAG_TX);
3195
3196         if (dev->netdev_ops->ndo_features_check)
3197                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3198                                                                 features);
3199         else
3200                 features &= dflt_features_check(skb, dev, features);
3201
3202         return harmonize_features(skb, features);
3203 }
3204 EXPORT_SYMBOL(netif_skb_features);
3205
3206 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3207                     struct netdev_queue *txq, bool more)
3208 {
3209         unsigned int len;
3210         int rc;
3211
3212         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3213                 dev_queue_xmit_nit(skb, dev);
3214
3215         len = skb->len;
3216         trace_net_dev_start_xmit(skb, dev);
3217         rc = netdev_start_xmit(skb, dev, txq, more);
3218         trace_net_dev_xmit(skb, rc, dev, len);
3219
3220         return rc;
3221 }
3222
3223 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3224                                     struct netdev_queue *txq, int *ret)
3225 {
3226         struct sk_buff *skb = first;
3227         int rc = NETDEV_TX_OK;
3228
3229         while (skb) {
3230                 struct sk_buff *next = skb->next;
3231
3232                 skb->next = NULL;
3233                 rc = xmit_one(skb, dev, txq, next != NULL);
3234                 if (unlikely(!dev_xmit_complete(rc))) {
3235                         skb->next = next;
3236                         goto out;
3237                 }
3238
3239                 skb = next;
3240                 if (netif_xmit_stopped(txq) && skb) {
3241                         rc = NETDEV_TX_BUSY;
3242                         break;
3243                 }
3244         }
3245
3246 out:
3247         *ret = rc;
3248         return skb;
3249 }
3250
3251 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3252                                           netdev_features_t features)
3253 {
3254         if (skb_vlan_tag_present(skb) &&
3255             !vlan_hw_offload_capable(features, skb->vlan_proto))
3256                 skb = __vlan_hwaccel_push_inside(skb);
3257         return skb;
3258 }
3259
3260 int skb_csum_hwoffload_help(struct sk_buff *skb,
3261                             const netdev_features_t features)
3262 {
3263         if (unlikely(skb->csum_not_inet))
3264                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3265                         skb_crc32c_csum_help(skb);
3266
3267         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3268 }
3269 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3270
3271 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3272 {
3273         netdev_features_t features;
3274
3275         features = netif_skb_features(skb);
3276         skb = validate_xmit_vlan(skb, features);
3277         if (unlikely(!skb))
3278                 goto out_null;
3279
3280         skb = sk_validate_xmit_skb(skb, dev);
3281         if (unlikely(!skb))
3282                 goto out_null;
3283
3284         if (netif_needs_gso(skb, features)) {
3285                 struct sk_buff *segs;
3286
3287                 segs = skb_gso_segment(skb, features);
3288                 if (IS_ERR(segs)) {
3289                         goto out_kfree_skb;
3290                 } else if (segs) {
3291                         consume_skb(skb);
3292                         skb = segs;
3293                 }
3294         } else {
3295                 if (skb_needs_linearize(skb, features) &&
3296                     __skb_linearize(skb))
3297                         goto out_kfree_skb;
3298
3299                 /* If packet is not checksummed and device does not
3300                  * support checksumming for this protocol, complete
3301                  * checksumming here.
3302                  */
3303                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3304                         if (skb->encapsulation)
3305                                 skb_set_inner_transport_header(skb,
3306                                                                skb_checksum_start_offset(skb));
3307                         else
3308                                 skb_set_transport_header(skb,
3309                                                          skb_checksum_start_offset(skb));
3310                         if (skb_csum_hwoffload_help(skb, features))
3311                                 goto out_kfree_skb;
3312                 }
3313         }
3314
3315         skb = validate_xmit_xfrm(skb, features, again);
3316
3317         return skb;
3318
3319 out_kfree_skb:
3320         kfree_skb(skb);
3321 out_null:
3322         atomic_long_inc(&dev->tx_dropped);
3323         return NULL;
3324 }
3325
3326 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3327 {
3328         struct sk_buff *next, *head = NULL, *tail;
3329
3330         for (; skb != NULL; skb = next) {
3331                 next = skb->next;
3332                 skb->next = NULL;
3333
3334                 /* in case skb wont be segmented, point to itself */
3335                 skb->prev = skb;
3336
3337                 skb = validate_xmit_skb(skb, dev, again);
3338                 if (!skb)
3339                         continue;
3340
3341                 if (!head)
3342                         head = skb;
3343                 else
3344                         tail->next = skb;
3345                 /* If skb was segmented, skb->prev points to
3346                  * the last segment. If not, it still contains skb.
3347                  */
3348                 tail = skb->prev;
3349         }
3350         return head;
3351 }
3352 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3353
3354 static void qdisc_pkt_len_init(struct sk_buff *skb)
3355 {
3356         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3357
3358         qdisc_skb_cb(skb)->pkt_len = skb->len;
3359
3360         /* To get more precise estimation of bytes sent on wire,
3361          * we add to pkt_len the headers size of all segments
3362          */
3363         if (shinfo->gso_size)  {
3364                 unsigned int hdr_len;
3365                 u16 gso_segs = shinfo->gso_segs;
3366
3367                 /* mac layer + network layer */
3368                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3369
3370                 /* + transport layer */
3371                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3372                         const struct tcphdr *th;
3373                         struct tcphdr _tcphdr;
3374
3375                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3376                                                 sizeof(_tcphdr), &_tcphdr);
3377                         if (likely(th))
3378                                 hdr_len += __tcp_hdrlen(th);
3379                 } else {
3380                         struct udphdr _udphdr;
3381
3382                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3383                                                sizeof(_udphdr), &_udphdr))
3384                                 hdr_len += sizeof(struct udphdr);
3385                 }
3386
3387                 if (shinfo->gso_type & SKB_GSO_DODGY)
3388                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3389                                                 shinfo->gso_size);
3390
3391                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3392         }
3393 }
3394
3395 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3396                                  struct net_device *dev,
3397                                  struct netdev_queue *txq)
3398 {
3399         spinlock_t *root_lock = qdisc_lock(q);
3400         struct sk_buff *to_free = NULL;
3401         bool contended;
3402         int rc;
3403
3404         qdisc_calculate_pkt_len(skb, q);
3405
3406         if (q->flags & TCQ_F_NOLOCK) {
3407                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3408                         __qdisc_drop(skb, &to_free);
3409                         rc = NET_XMIT_DROP;
3410                 } else {
3411                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3412                         qdisc_run(q);
3413                 }
3414
3415                 if (unlikely(to_free))
3416                         kfree_skb_list(to_free);
3417                 return rc;
3418         }
3419
3420         /*
3421          * Heuristic to force contended enqueues to serialize on a
3422          * separate lock before trying to get qdisc main lock.
3423          * This permits qdisc->running owner to get the lock more
3424          * often and dequeue packets faster.
3425          */
3426         contended = qdisc_is_running(q);
3427         if (unlikely(contended))
3428                 spin_lock(&q->busylock);
3429
3430         spin_lock(root_lock);
3431         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3432                 __qdisc_drop(skb, &to_free);
3433                 rc = NET_XMIT_DROP;
3434         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3435                    qdisc_run_begin(q)) {
3436                 /*
3437                  * This is a work-conserving queue; there are no old skbs
3438                  * waiting to be sent out; and the qdisc is not running -
3439                  * xmit the skb directly.
3440                  */
3441
3442                 qdisc_bstats_update(q, skb);
3443
3444                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3445                         if (unlikely(contended)) {
3446                                 spin_unlock(&q->busylock);
3447                                 contended = false;
3448                         }
3449                         __qdisc_run(q);
3450                 }
3451
3452                 qdisc_run_end(q);
3453                 rc = NET_XMIT_SUCCESS;
3454         } else {
3455                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3456                 if (qdisc_run_begin(q)) {
3457                         if (unlikely(contended)) {
3458                                 spin_unlock(&q->busylock);
3459                                 contended = false;
3460                         }
3461                         __qdisc_run(q);
3462                         qdisc_run_end(q);
3463                 }
3464         }
3465         spin_unlock(root_lock);
3466         if (unlikely(to_free))
3467                 kfree_skb_list(to_free);
3468         if (unlikely(contended))
3469                 spin_unlock(&q->busylock);
3470         return rc;
3471 }
3472
3473 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3474 static void skb_update_prio(struct sk_buff *skb)
3475 {
3476         const struct netprio_map *map;
3477         const struct sock *sk;
3478         unsigned int prioidx;
3479
3480         if (skb->priority)
3481                 return;
3482         map = rcu_dereference_bh(skb->dev->priomap);
3483         if (!map)
3484                 return;
3485         sk = skb_to_full_sk(skb);
3486         if (!sk)
3487                 return;
3488
3489         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3490
3491         if (prioidx < map->priomap_len)
3492                 skb->priority = map->priomap[prioidx];
3493 }
3494 #else
3495 #define skb_update_prio(skb)
3496 #endif
3497
3498 DEFINE_PER_CPU(int, xmit_recursion);
3499 EXPORT_SYMBOL(xmit_recursion);
3500
3501 /**
3502  *      dev_loopback_xmit - loop back @skb
3503  *      @net: network namespace this loopback is happening in
3504  *      @sk:  sk needed to be a netfilter okfn
3505  *      @skb: buffer to transmit
3506  */
3507 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3508 {
3509         skb_reset_mac_header(skb);
3510         __skb_pull(skb, skb_network_offset(skb));
3511         skb->pkt_type = PACKET_LOOPBACK;
3512         skb->ip_summed = CHECKSUM_UNNECESSARY;
3513         WARN_ON(!skb_dst(skb));
3514         skb_dst_force(skb);
3515         netif_rx_ni(skb);
3516         return 0;
3517 }
3518 EXPORT_SYMBOL(dev_loopback_xmit);
3519
3520 #ifdef CONFIG_NET_EGRESS
3521 static struct sk_buff *
3522 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3523 {
3524         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3525         struct tcf_result cl_res;
3526
3527         if (!miniq)
3528                 return skb;
3529
3530         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3531         mini_qdisc_bstats_cpu_update(miniq, skb);
3532
3533         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3534         case TC_ACT_OK:
3535         case TC_ACT_RECLASSIFY:
3536                 skb->tc_index = TC_H_MIN(cl_res.classid);
3537                 break;
3538         case TC_ACT_SHOT:
3539                 mini_qdisc_qstats_cpu_drop(miniq);
3540                 *ret = NET_XMIT_DROP;
3541                 kfree_skb(skb);
3542                 return NULL;
3543         case TC_ACT_STOLEN:
3544         case TC_ACT_QUEUED:
3545         case TC_ACT_TRAP:
3546                 *ret = NET_XMIT_SUCCESS;
3547                 consume_skb(skb);
3548                 return NULL;
3549         case TC_ACT_REDIRECT:
3550                 /* No need to push/pop skb's mac_header here on egress! */
3551                 skb_do_redirect(skb);
3552                 *ret = NET_XMIT_SUCCESS;
3553                 return NULL;
3554         default:
3555                 break;
3556         }
3557
3558         return skb;
3559 }
3560 #endif /* CONFIG_NET_EGRESS */
3561
3562 #ifdef CONFIG_XPS
3563 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3564                                struct xps_dev_maps *dev_maps, unsigned int tci)
3565 {
3566         struct xps_map *map;
3567         int queue_index = -1;
3568
3569         if (dev->num_tc) {
3570                 tci *= dev->num_tc;
3571                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3572         }
3573
3574         map = rcu_dereference(dev_maps->attr_map[tci]);
3575         if (map) {
3576                 if (map->len == 1)
3577                         queue_index = map->queues[0];
3578                 else
3579                         queue_index = map->queues[reciprocal_scale(
3580                                                 skb_get_hash(skb), map->len)];
3581                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3582                         queue_index = -1;
3583         }
3584         return queue_index;
3585 }
3586 #endif
3587
3588 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3589                          struct sk_buff *skb)
3590 {
3591 #ifdef CONFIG_XPS
3592         struct xps_dev_maps *dev_maps;
3593         struct sock *sk = skb->sk;
3594         int queue_index = -1;
3595
3596         if (!static_key_false(&xps_needed))
3597                 return -1;
3598
3599         rcu_read_lock();
3600         if (!static_key_false(&xps_rxqs_needed))
3601                 goto get_cpus_map;
3602
3603         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3604         if (dev_maps) {
3605                 int tci = sk_rx_queue_get(sk);
3606
3607                 if (tci >= 0 && tci < dev->num_rx_queues)
3608                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3609                                                           tci);
3610         }
3611
3612 get_cpus_map:
3613         if (queue_index < 0) {
3614                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3615                 if (dev_maps) {
3616                         unsigned int tci = skb->sender_cpu - 1;
3617
3618                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3619                                                           tci);
3620                 }
3621         }
3622         rcu_read_unlock();
3623
3624         return queue_index;
3625 #else
3626         return -1;
3627 #endif
3628 }
3629
3630 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3631                      struct net_device *sb_dev,
3632                      select_queue_fallback_t fallback)
3633 {
3634         return 0;
3635 }
3636 EXPORT_SYMBOL(dev_pick_tx_zero);
3637
3638 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3639                        struct net_device *sb_dev,
3640                        select_queue_fallback_t fallback)
3641 {
3642         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3643 }
3644 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3645
3646 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3647                             struct net_device *sb_dev)
3648 {
3649         struct sock *sk = skb->sk;
3650         int queue_index = sk_tx_queue_get(sk);
3651
3652         sb_dev = sb_dev ? : dev;
3653
3654         if (queue_index < 0 || skb->ooo_okay ||
3655             queue_index >= dev->real_num_tx_queues) {
3656                 int new_index = get_xps_queue(dev, sb_dev, skb);
3657
3658                 if (new_index < 0)
3659                         new_index = skb_tx_hash(dev, sb_dev, skb);
3660
3661                 if (queue_index != new_index && sk &&
3662                     sk_fullsock(sk) &&
3663                     rcu_access_pointer(sk->sk_dst_cache))
3664                         sk_tx_queue_set(sk, new_index);
3665
3666                 queue_index = new_index;
3667         }
3668
3669         return queue_index;
3670 }
3671
3672 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3673                                     struct sk_buff *skb,
3674                                     struct net_device *sb_dev)
3675 {
3676         int queue_index = 0;
3677
3678 #ifdef CONFIG_XPS
3679         u32 sender_cpu = skb->sender_cpu - 1;
3680
3681         if (sender_cpu >= (u32)NR_CPUS)
3682                 skb->sender_cpu = raw_smp_processor_id() + 1;
3683 #endif
3684
3685         if (dev->real_num_tx_queues != 1) {
3686                 const struct net_device_ops *ops = dev->netdev_ops;
3687
3688                 if (ops->ndo_select_queue)
3689                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3690                                                             __netdev_pick_tx);
3691                 else
3692                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3693
3694                 queue_index = netdev_cap_txqueue(dev, queue_index);
3695         }
3696
3697         skb_set_queue_mapping(skb, queue_index);
3698         return netdev_get_tx_queue(dev, queue_index);
3699 }
3700
3701 /**
3702  *      __dev_queue_xmit - transmit a buffer
3703  *      @skb: buffer to transmit
3704  *      @sb_dev: suboordinate device used for L2 forwarding offload
3705  *
3706  *      Queue a buffer for transmission to a network device. The caller must
3707  *      have set the device and priority and built the buffer before calling
3708  *      this function. The function can be called from an interrupt.
3709  *
3710  *      A negative errno code is returned on a failure. A success does not
3711  *      guarantee the frame will be transmitted as it may be dropped due
3712  *      to congestion or traffic shaping.
3713  *
3714  * -----------------------------------------------------------------------------------
3715  *      I notice this method can also return errors from the queue disciplines,
3716  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3717  *      be positive.
3718  *
3719  *      Regardless of the return value, the skb is consumed, so it is currently
3720  *      difficult to retry a send to this method.  (You can bump the ref count
3721  *      before sending to hold a reference for retry if you are careful.)
3722  *
3723  *      When calling this method, interrupts MUST be enabled.  This is because
3724  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3725  *          --BLG
3726  */
3727 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3728 {
3729         struct net_device *dev = skb->dev;
3730         struct netdev_queue *txq;
3731         struct Qdisc *q;
3732         int rc = -ENOMEM;
3733         bool again = false;
3734
3735         skb_reset_mac_header(skb);
3736
3737         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3738                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3739
3740         /* Disable soft irqs for various locks below. Also
3741          * stops preemption for RCU.
3742          */
3743         rcu_read_lock_bh();
3744
3745         skb_update_prio(skb);
3746
3747         qdisc_pkt_len_init(skb);
3748 #ifdef CONFIG_NET_CLS_ACT
3749         skb->tc_at_ingress = 0;
3750 # ifdef CONFIG_NET_EGRESS
3751         if (static_branch_unlikely(&egress_needed_key)) {
3752                 skb = sch_handle_egress(skb, &rc, dev);
3753                 if (!skb)
3754                         goto out;
3755         }
3756 # endif
3757 #endif
3758         /* If device/qdisc don't need skb->dst, release it right now while
3759          * its hot in this cpu cache.
3760          */
3761         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3762                 skb_dst_drop(skb);
3763         else
3764                 skb_dst_force(skb);
3765
3766         txq = netdev_pick_tx(dev, skb, sb_dev);
3767         q = rcu_dereference_bh(txq->qdisc);
3768
3769         trace_net_dev_queue(skb);
3770         if (q->enqueue) {
3771                 rc = __dev_xmit_skb(skb, q, dev, txq);
3772                 goto out;
3773         }
3774
3775         /* The device has no queue. Common case for software devices:
3776          * loopback, all the sorts of tunnels...
3777
3778          * Really, it is unlikely that netif_tx_lock protection is necessary
3779          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3780          * counters.)
3781          * However, it is possible, that they rely on protection
3782          * made by us here.
3783
3784          * Check this and shot the lock. It is not prone from deadlocks.
3785          *Either shot noqueue qdisc, it is even simpler 8)
3786          */
3787         if (dev->flags & IFF_UP) {
3788                 int cpu = smp_processor_id(); /* ok because BHs are off */
3789
3790                 if (txq->xmit_lock_owner != cpu) {
3791                         if (unlikely(__this_cpu_read(xmit_recursion) >
3792                                      XMIT_RECURSION_LIMIT))
3793                                 goto recursion_alert;
3794
3795                         skb = validate_xmit_skb(skb, dev, &again);
3796                         if (!skb)
3797                                 goto out;
3798
3799                         HARD_TX_LOCK(dev, txq, cpu);
3800
3801                         if (!netif_xmit_stopped(txq)) {
3802                                 __this_cpu_inc(xmit_recursion);
3803                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3804                                 __this_cpu_dec(xmit_recursion);
3805                                 if (dev_xmit_complete(rc)) {
3806                                         HARD_TX_UNLOCK(dev, txq);
3807                                         goto out;
3808                                 }
3809                         }
3810                         HARD_TX_UNLOCK(dev, txq);
3811                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3812                                              dev->name);
3813                 } else {
3814                         /* Recursion is detected! It is possible,
3815                          * unfortunately
3816                          */
3817 recursion_alert:
3818                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3819                                              dev->name);
3820                 }
3821         }
3822
3823         rc = -ENETDOWN;
3824         rcu_read_unlock_bh();
3825
3826         atomic_long_inc(&dev->tx_dropped);
3827         kfree_skb_list(skb);
3828         return rc;
3829 out:
3830         rcu_read_unlock_bh();
3831         return rc;
3832 }
3833
3834 int dev_queue_xmit(struct sk_buff *skb)
3835 {
3836         return __dev_queue_xmit(skb, NULL);
3837 }
3838 EXPORT_SYMBOL(dev_queue_xmit);
3839
3840 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3841 {
3842         return __dev_queue_xmit(skb, sb_dev);
3843 }
3844 EXPORT_SYMBOL(dev_queue_xmit_accel);
3845
3846 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3847 {
3848         struct net_device *dev = skb->dev;
3849         struct sk_buff *orig_skb = skb;
3850         struct netdev_queue *txq;
3851         int ret = NETDEV_TX_BUSY;
3852         bool again = false;
3853
3854         if (unlikely(!netif_running(dev) ||
3855                      !netif_carrier_ok(dev)))
3856                 goto drop;
3857
3858         skb = validate_xmit_skb_list(skb, dev, &again);
3859         if (skb != orig_skb)
3860                 goto drop;
3861
3862         skb_set_queue_mapping(skb, queue_id);
3863         txq = skb_get_tx_queue(dev, skb);
3864
3865         local_bh_disable();
3866
3867         HARD_TX_LOCK(dev, txq, smp_processor_id());
3868         if (!netif_xmit_frozen_or_drv_stopped(txq))
3869                 ret = netdev_start_xmit(skb, dev, txq, false);
3870         HARD_TX_UNLOCK(dev, txq);
3871
3872         local_bh_enable();
3873
3874         if (!dev_xmit_complete(ret))
3875                 kfree_skb(skb);
3876
3877         return ret;
3878 drop:
3879         atomic_long_inc(&dev->tx_dropped);
3880         kfree_skb_list(skb);
3881         return NET_XMIT_DROP;
3882 }
3883 EXPORT_SYMBOL(dev_direct_xmit);
3884
3885 /*************************************************************************
3886  *                      Receiver routines
3887  *************************************************************************/
3888
3889 int netdev_max_backlog __read_mostly = 1000;
3890 EXPORT_SYMBOL(netdev_max_backlog);
3891
3892 int netdev_tstamp_prequeue __read_mostly = 1;
3893 int netdev_budget __read_mostly = 300;
3894 unsigned int __read_mostly netdev_budget_usecs = 2000;
3895 int weight_p __read_mostly = 64;           /* old backlog weight */
3896 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3897 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3898 int dev_rx_weight __read_mostly = 64;
3899 int dev_tx_weight __read_mostly = 64;
3900
3901 /* Called with irq disabled */
3902 static inline void ____napi_schedule(struct softnet_data *sd,
3903                                      struct napi_struct *napi)
3904 {
3905         list_add_tail(&napi->poll_list, &sd->poll_list);
3906         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3907 }
3908
3909 #ifdef CONFIG_RPS
3910
3911 /* One global table that all flow-based protocols share. */
3912 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3913 EXPORT_SYMBOL(rps_sock_flow_table);
3914 u32 rps_cpu_mask __read_mostly;
3915 EXPORT_SYMBOL(rps_cpu_mask);
3916
3917 struct static_key rps_needed __read_mostly;
3918 EXPORT_SYMBOL(rps_needed);
3919 struct static_key rfs_needed __read_mostly;
3920 EXPORT_SYMBOL(rfs_needed);
3921
3922 static struct rps_dev_flow *
3923 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3924             struct rps_dev_flow *rflow, u16 next_cpu)
3925 {
3926         if (next_cpu < nr_cpu_ids) {
3927 #ifdef CONFIG_RFS_ACCEL
3928                 struct netdev_rx_queue *rxqueue;
3929                 struct rps_dev_flow_table *flow_table;
3930                 struct rps_dev_flow *old_rflow;
3931                 u32 flow_id;
3932                 u16 rxq_index;
3933                 int rc;
3934
3935                 /* Should we steer this flow to a different hardware queue? */
3936                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3937                     !(dev->features & NETIF_F_NTUPLE))
3938                         goto out;
3939                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3940                 if (rxq_index == skb_get_rx_queue(skb))
3941                         goto out;
3942
3943                 rxqueue = dev->_rx + rxq_index;
3944                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3945                 if (!flow_table)
3946                         goto out;
3947                 flow_id = skb_get_hash(skb) & flow_table->mask;
3948                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3949                                                         rxq_index, flow_id);
3950                 if (rc < 0)
3951                         goto out;
3952                 old_rflow = rflow;
3953                 rflow = &flow_table->flows[flow_id];
3954                 rflow->filter = rc;
3955                 if (old_rflow->filter == rflow->filter)
3956                         old_rflow->filter = RPS_NO_FILTER;
3957         out:
3958 #endif
3959                 rflow->last_qtail =
3960                         per_cpu(softnet_data, next_cpu).input_queue_head;
3961         }
3962
3963         rflow->cpu = next_cpu;
3964         return rflow;
3965 }
3966
3967 /*
3968  * get_rps_cpu is called from netif_receive_skb and returns the target
3969  * CPU from the RPS map of the receiving queue for a given skb.
3970  * rcu_read_lock must be held on entry.
3971  */
3972 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3973                        struct rps_dev_flow **rflowp)
3974 {
3975         const struct rps_sock_flow_table *sock_flow_table;
3976         struct netdev_rx_queue *rxqueue = dev->_rx;
3977         struct rps_dev_flow_table *flow_table;
3978         struct rps_map *map;
3979         int cpu = -1;
3980         u32 tcpu;
3981         u32 hash;
3982
3983         if (skb_rx_queue_recorded(skb)) {
3984                 u16 index = skb_get_rx_queue(skb);
3985
3986                 if (unlikely(index >= dev->real_num_rx_queues)) {
3987                         WARN_ONCE(dev->real_num_rx_queues > 1,
3988                                   "%s received packet on queue %u, but number "
3989                                   "of RX queues is %u\n",
3990                                   dev->name, index, dev->real_num_rx_queues);
3991                         goto done;
3992                 }
3993                 rxqueue += index;
3994         }
3995
3996         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3997
3998         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3999         map = rcu_dereference(rxqueue->rps_map);
4000         if (!flow_table && !map)
4001                 goto done;
4002
4003         skb_reset_network_header(skb);
4004         hash = skb_get_hash(skb);
4005         if (!hash)
4006                 goto done;
4007
4008         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4009         if (flow_table && sock_flow_table) {
4010                 struct rps_dev_flow *rflow;
4011                 u32 next_cpu;
4012                 u32 ident;
4013
4014                 /* First check into global flow table if there is a match */
4015                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4016                 if ((ident ^ hash) & ~rps_cpu_mask)
4017                         goto try_rps;
4018
4019                 next_cpu = ident & rps_cpu_mask;
4020
4021                 /* OK, now we know there is a match,
4022                  * we can look at the local (per receive queue) flow table
4023                  */
4024                 rflow = &flow_table->flows[hash & flow_table->mask];
4025                 tcpu = rflow->cpu;
4026
4027                 /*
4028                  * If the desired CPU (where last recvmsg was done) is
4029                  * different from current CPU (one in the rx-queue flow
4030                  * table entry), switch if one of the following holds:
4031                  *   - Current CPU is unset (>= nr_cpu_ids).
4032                  *   - Current CPU is offline.
4033                  *   - The current CPU's queue tail has advanced beyond the
4034                  *     last packet that was enqueued using this table entry.
4035                  *     This guarantees that all previous packets for the flow
4036                  *     have been dequeued, thus preserving in order delivery.
4037                  */
4038                 if (unlikely(tcpu != next_cpu) &&
4039                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4040                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4041                       rflow->last_qtail)) >= 0)) {
4042                         tcpu = next_cpu;
4043                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4044                 }
4045
4046                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4047                         *rflowp = rflow;
4048                         cpu = tcpu;
4049                         goto done;
4050                 }
4051         }
4052
4053 try_rps:
4054
4055         if (map) {
4056                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4057                 if (cpu_online(tcpu)) {
4058                         cpu = tcpu;
4059                         goto done;
4060                 }
4061         }
4062
4063 done:
4064         return cpu;
4065 }
4066
4067 #ifdef CONFIG_RFS_ACCEL
4068
4069 /**
4070  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4071  * @dev: Device on which the filter was set
4072  * @rxq_index: RX queue index
4073  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4074  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4075  *
4076  * Drivers that implement ndo_rx_flow_steer() should periodically call
4077  * this function for each installed filter and remove the filters for
4078  * which it returns %true.
4079  */
4080 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4081                          u32 flow_id, u16 filter_id)
4082 {
4083         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4084         struct rps_dev_flow_table *flow_table;
4085         struct rps_dev_flow *rflow;
4086         bool expire = true;
4087         unsigned int cpu;
4088
4089         rcu_read_lock();
4090         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4091         if (flow_table && flow_id <= flow_table->mask) {
4092                 rflow = &flow_table->flows[flow_id];
4093                 cpu = READ_ONCE(rflow->cpu);
4094                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4095                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4096                            rflow->last_qtail) <
4097                      (int)(10 * flow_table->mask)))
4098                         expire = false;
4099         }
4100         rcu_read_unlock();
4101         return expire;
4102 }
4103 EXPORT_SYMBOL(rps_may_expire_flow);
4104
4105 #endif /* CONFIG_RFS_ACCEL */
4106
4107 /* Called from hardirq (IPI) context */
4108 static void rps_trigger_softirq(void *data)
4109 {
4110         struct softnet_data *sd = data;
4111
4112         ____napi_schedule(sd, &sd->backlog);
4113         sd->received_rps++;
4114 }
4115
4116 #endif /* CONFIG_RPS */
4117
4118 /*
4119  * Check if this softnet_data structure is another cpu one
4120  * If yes, queue it to our IPI list and return 1
4121  * If no, return 0
4122  */
4123 static int rps_ipi_queued(struct softnet_data *sd)
4124 {
4125 #ifdef CONFIG_RPS
4126         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4127
4128         if (sd != mysd) {
4129                 sd->rps_ipi_next = mysd->rps_ipi_list;
4130                 mysd->rps_ipi_list = sd;
4131
4132                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4133                 return 1;
4134         }
4135 #endif /* CONFIG_RPS */
4136         return 0;
4137 }
4138
4139 #ifdef CONFIG_NET_FLOW_LIMIT
4140 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4141 #endif
4142
4143 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4144 {
4145 #ifdef CONFIG_NET_FLOW_LIMIT
4146         struct sd_flow_limit *fl;
4147         struct softnet_data *sd;
4148         unsigned int old_flow, new_flow;
4149
4150         if (qlen < (netdev_max_backlog >> 1))
4151                 return false;
4152
4153         sd = this_cpu_ptr(&softnet_data);
4154
4155         rcu_read_lock();
4156         fl = rcu_dereference(sd->flow_limit);
4157         if (fl) {
4158                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4159                 old_flow = fl->history[fl->history_head];
4160                 fl->history[fl->history_head] = new_flow;
4161
4162                 fl->history_head++;
4163                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4164
4165                 if (likely(fl->buckets[old_flow]))
4166                         fl->buckets[old_flow]--;
4167
4168                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4169                         fl->count++;
4170                         rcu_read_unlock();
4171                         return true;
4172                 }
4173         }
4174         rcu_read_unlock();
4175 #endif
4176         return false;
4177 }
4178
4179 /*
4180  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4181  * queue (may be a remote CPU queue).
4182  */
4183 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4184                               unsigned int *qtail)
4185 {
4186         struct softnet_data *sd;
4187         unsigned long flags;
4188         unsigned int qlen;
4189
4190         sd = &per_cpu(softnet_data, cpu);
4191
4192         local_irq_save(flags);
4193
4194         rps_lock(sd);
4195         if (!netif_running(skb->dev))
4196                 goto drop;
4197         qlen = skb_queue_len(&sd->input_pkt_queue);
4198         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4199                 if (qlen) {
4200 enqueue:
4201                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4202                         input_queue_tail_incr_save(sd, qtail);
4203                         rps_unlock(sd);
4204                         local_irq_restore(flags);
4205                         return NET_RX_SUCCESS;
4206                 }
4207
4208                 /* Schedule NAPI for backlog device
4209                  * We can use non atomic operation since we own the queue lock
4210                  */
4211                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4212                         if (!rps_ipi_queued(sd))
4213                                 ____napi_schedule(sd, &sd->backlog);
4214                 }
4215                 goto enqueue;
4216         }
4217
4218 drop:
4219         sd->dropped++;
4220         rps_unlock(sd);
4221
4222         local_irq_restore(flags);
4223
4224         atomic_long_inc(&skb->dev->rx_dropped);
4225         kfree_skb(skb);
4226         return NET_RX_DROP;
4227 }
4228
4229 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4230 {
4231         struct net_device *dev = skb->dev;
4232         struct netdev_rx_queue *rxqueue;
4233
4234         rxqueue = dev->_rx;
4235
4236         if (skb_rx_queue_recorded(skb)) {
4237                 u16 index = skb_get_rx_queue(skb);
4238
4239                 if (unlikely(index >= dev->real_num_rx_queues)) {
4240                         WARN_ONCE(dev->real_num_rx_queues > 1,
4241                                   "%s received packet on queue %u, but number "
4242                                   "of RX queues is %u\n",
4243                                   dev->name, index, dev->real_num_rx_queues);
4244
4245                         return rxqueue; /* Return first rxqueue */
4246                 }
4247                 rxqueue += index;
4248         }
4249         return rxqueue;
4250 }
4251
4252 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4253                                      struct xdp_buff *xdp,
4254                                      struct bpf_prog *xdp_prog)
4255 {
4256         struct netdev_rx_queue *rxqueue;
4257         void *orig_data, *orig_data_end;
4258         u32 metalen, act = XDP_DROP;
4259         int hlen, off;
4260         u32 mac_len;
4261
4262         /* Reinjected packets coming from act_mirred or similar should
4263          * not get XDP generic processing.
4264          */
4265         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4266                 return XDP_PASS;
4267
4268         /* XDP packets must be linear and must have sufficient headroom
4269          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4270          * native XDP provides, thus we need to do it here as well.
4271          */
4272         if (skb_is_nonlinear(skb) ||
4273             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4274                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4275                 int troom = skb->tail + skb->data_len - skb->end;
4276
4277                 /* In case we have to go down the path and also linearize,
4278                  * then lets do the pskb_expand_head() work just once here.
4279                  */
4280                 if (pskb_expand_head(skb,
4281                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4282                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4283                         goto do_drop;
4284                 if (skb_linearize(skb))
4285                         goto do_drop;
4286         }
4287
4288         /* The XDP program wants to see the packet starting at the MAC
4289          * header.
4290          */
4291         mac_len = skb->data - skb_mac_header(skb);
4292         hlen = skb_headlen(skb) + mac_len;
4293         xdp->data = skb->data - mac_len;
4294         xdp->data_meta = xdp->data;
4295         xdp->data_end = xdp->data + hlen;
4296         xdp->data_hard_start = skb->data - skb_headroom(skb);
4297         orig_data_end = xdp->data_end;
4298         orig_data = xdp->data;
4299
4300         rxqueue = netif_get_rxqueue(skb);
4301         xdp->rxq = &rxqueue->xdp_rxq;
4302
4303         act = bpf_prog_run_xdp(xdp_prog, xdp);
4304
4305         off = xdp->data - orig_data;
4306         if (off > 0)
4307                 __skb_pull(skb, off);
4308         else if (off < 0)
4309                 __skb_push(skb, -off);
4310         skb->mac_header += off;
4311
4312         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4313          * pckt.
4314          */
4315         off = orig_data_end - xdp->data_end;
4316         if (off != 0) {
4317                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4318                 skb->len -= off;
4319
4320         }
4321
4322         switch (act) {
4323         case XDP_REDIRECT:
4324         case XDP_TX:
4325                 __skb_push(skb, mac_len);
4326                 break;
4327         case XDP_PASS:
4328                 metalen = xdp->data - xdp->data_meta;
4329                 if (metalen)
4330                         skb_metadata_set(skb, metalen);
4331                 break;
4332         default:
4333                 bpf_warn_invalid_xdp_action(act);
4334                 /* fall through */
4335         case XDP_ABORTED:
4336                 trace_xdp_exception(skb->dev, xdp_prog, act);
4337                 /* fall through */
4338         case XDP_DROP:
4339         do_drop:
4340                 kfree_skb(skb);
4341                 break;
4342         }
4343
4344         return act;
4345 }
4346
4347 /* When doing generic XDP we have to bypass the qdisc layer and the
4348  * network taps in order to match in-driver-XDP behavior.
4349  */
4350 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4351 {
4352         struct net_device *dev = skb->dev;
4353         struct netdev_queue *txq;
4354         bool free_skb = true;
4355         int cpu, rc;
4356
4357         txq = netdev_pick_tx(dev, skb, NULL);
4358         cpu = smp_processor_id();
4359         HARD_TX_LOCK(dev, txq, cpu);
4360         if (!netif_xmit_stopped(txq)) {
4361                 rc = netdev_start_xmit(skb, dev, txq, 0);
4362                 if (dev_xmit_complete(rc))
4363                         free_skb = false;
4364         }
4365         HARD_TX_UNLOCK(dev, txq);
4366         if (free_skb) {
4367                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4368                 kfree_skb(skb);
4369         }
4370 }
4371 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4372
4373 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4374
4375 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4376 {
4377         if (xdp_prog) {
4378                 struct xdp_buff xdp;
4379                 u32 act;
4380                 int err;
4381
4382                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4383                 if (act != XDP_PASS) {
4384                         switch (act) {
4385                         case XDP_REDIRECT:
4386                                 err = xdp_do_generic_redirect(skb->dev, skb,
4387                                                               &xdp, xdp_prog);
4388                                 if (err)
4389                                         goto out_redir;
4390                                 break;
4391                         case XDP_TX:
4392                                 generic_xdp_tx(skb, xdp_prog);
4393                                 break;
4394                         }
4395                         return XDP_DROP;
4396                 }
4397         }
4398         return XDP_PASS;
4399 out_redir:
4400         kfree_skb(skb);
4401         return XDP_DROP;
4402 }
4403 EXPORT_SYMBOL_GPL(do_xdp_generic);
4404
4405 static int netif_rx_internal(struct sk_buff *skb)
4406 {
4407         int ret;
4408
4409         net_timestamp_check(netdev_tstamp_prequeue, skb);
4410
4411         trace_netif_rx(skb);
4412
4413         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4414                 int ret;
4415
4416                 preempt_disable();
4417                 rcu_read_lock();
4418                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4419                 rcu_read_unlock();
4420                 preempt_enable();
4421
4422                 /* Consider XDP consuming the packet a success from
4423                  * the netdev point of view we do not want to count
4424                  * this as an error.
4425                  */
4426                 if (ret != XDP_PASS)
4427                         return NET_RX_SUCCESS;
4428         }
4429
4430 #ifdef CONFIG_RPS
4431         if (static_key_false(&rps_needed)) {
4432                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4433                 int cpu;
4434
4435                 preempt_disable();
4436                 rcu_read_lock();
4437
4438                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4439                 if (cpu < 0)
4440                         cpu = smp_processor_id();
4441
4442                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4443
4444                 rcu_read_unlock();
4445                 preempt_enable();
4446         } else
4447 #endif
4448         {
4449                 unsigned int qtail;
4450
4451                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4452                 put_cpu();
4453         }
4454         return ret;
4455 }
4456
4457 /**
4458  *      netif_rx        -       post buffer to the network code
4459  *      @skb: buffer to post
4460  *
4461  *      This function receives a packet from a device driver and queues it for
4462  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4463  *      may be dropped during processing for congestion control or by the
4464  *      protocol layers.
4465  *
4466  *      return values:
4467  *      NET_RX_SUCCESS  (no congestion)
4468  *      NET_RX_DROP     (packet was dropped)
4469  *
4470  */
4471
4472 int netif_rx(struct sk_buff *skb)
4473 {
4474         trace_netif_rx_entry(skb);
4475
4476         return netif_rx_internal(skb);
4477 }
4478 EXPORT_SYMBOL(netif_rx);
4479
4480 int netif_rx_ni(struct sk_buff *skb)
4481 {
4482         int err;
4483
4484         trace_netif_rx_ni_entry(skb);
4485
4486         preempt_disable();
4487         err = netif_rx_internal(skb);
4488         if (local_softirq_pending())
4489                 do_softirq();
4490         preempt_enable();
4491
4492         return err;
4493 }
4494 EXPORT_SYMBOL(netif_rx_ni);
4495
4496 static __latent_entropy void net_tx_action(struct softirq_action *h)
4497 {
4498         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4499
4500         if (sd->completion_queue) {
4501                 struct sk_buff *clist;
4502
4503                 local_irq_disable();
4504                 clist = sd->completion_queue;
4505                 sd->completion_queue = NULL;
4506                 local_irq_enable();
4507
4508                 while (clist) {
4509                         struct sk_buff *skb = clist;
4510
4511                         clist = clist->next;
4512
4513                         WARN_ON(refcount_read(&skb->users));
4514                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4515                                 trace_consume_skb(skb);
4516                         else
4517                                 trace_kfree_skb(skb, net_tx_action);
4518
4519                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4520                                 __kfree_skb(skb);
4521                         else
4522                                 __kfree_skb_defer(skb);
4523                 }
4524
4525                 __kfree_skb_flush();
4526         }
4527
4528         if (sd->output_queue) {
4529                 struct Qdisc *head;
4530
4531                 local_irq_disable();
4532                 head = sd->output_queue;
4533                 sd->output_queue = NULL;
4534                 sd->output_queue_tailp = &sd->output_queue;
4535                 local_irq_enable();
4536
4537                 while (head) {
4538                         struct Qdisc *q = head;
4539                         spinlock_t *root_lock = NULL;
4540
4541                         head = head->next_sched;
4542
4543                         if (!(q->flags & TCQ_F_NOLOCK)) {
4544                                 root_lock = qdisc_lock(q);
4545                                 spin_lock(root_lock);
4546                         }
4547                         /* We need to make sure head->next_sched is read
4548                          * before clearing __QDISC_STATE_SCHED
4549                          */
4550                         smp_mb__before_atomic();
4551                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4552                         qdisc_run(q);
4553                         if (root_lock)
4554                                 spin_unlock(root_lock);
4555                 }
4556         }
4557
4558         xfrm_dev_backlog(sd);
4559 }
4560
4561 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4562 /* This hook is defined here for ATM LANE */
4563 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4564                              unsigned char *addr) __read_mostly;
4565 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4566 #endif
4567
4568 static inline struct sk_buff *
4569 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4570                    struct net_device *orig_dev)
4571 {
4572 #ifdef CONFIG_NET_CLS_ACT
4573         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4574         struct tcf_result cl_res;
4575
4576         /* If there's at least one ingress present somewhere (so
4577          * we get here via enabled static key), remaining devices
4578          * that are not configured with an ingress qdisc will bail
4579          * out here.
4580          */
4581         if (!miniq)
4582                 return skb;
4583
4584         if (*pt_prev) {
4585                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4586                 *pt_prev = NULL;
4587         }
4588
4589         qdisc_skb_cb(skb)->pkt_len = skb->len;
4590         skb->tc_at_ingress = 1;
4591         mini_qdisc_bstats_cpu_update(miniq, skb);
4592
4593         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4594         case TC_ACT_OK:
4595         case TC_ACT_RECLASSIFY:
4596                 skb->tc_index = TC_H_MIN(cl_res.classid);
4597                 break;
4598         case TC_ACT_SHOT:
4599                 mini_qdisc_qstats_cpu_drop(miniq);
4600                 kfree_skb(skb);
4601                 return NULL;
4602         case TC_ACT_STOLEN:
4603         case TC_ACT_QUEUED:
4604         case TC_ACT_TRAP:
4605                 consume_skb(skb);
4606                 return NULL;
4607         case TC_ACT_REDIRECT:
4608                 /* skb_mac_header check was done by cls/act_bpf, so
4609                  * we can safely push the L2 header back before
4610                  * redirecting to another netdev
4611                  */
4612                 __skb_push(skb, skb->mac_len);
4613                 skb_do_redirect(skb);
4614                 return NULL;
4615         case TC_ACT_REINSERT:
4616                 /* this does not scrub the packet, and updates stats on error */
4617                 skb_tc_reinsert(skb, &cl_res);
4618                 return NULL;
4619         default:
4620                 break;
4621         }
4622 #endif /* CONFIG_NET_CLS_ACT */
4623         return skb;
4624 }
4625
4626 /**
4627  *      netdev_is_rx_handler_busy - check if receive handler is registered
4628  *      @dev: device to check
4629  *
4630  *      Check if a receive handler is already registered for a given device.
4631  *      Return true if there one.
4632  *
4633  *      The caller must hold the rtnl_mutex.
4634  */
4635 bool netdev_is_rx_handler_busy(struct net_device *dev)
4636 {
4637         ASSERT_RTNL();
4638         return dev && rtnl_dereference(dev->rx_handler);
4639 }
4640 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4641
4642 /**
4643  *      netdev_rx_handler_register - register receive handler
4644  *      @dev: device to register a handler for
4645  *      @rx_handler: receive handler to register
4646  *      @rx_handler_data: data pointer that is used by rx handler
4647  *
4648  *      Register a receive handler for a device. This handler will then be
4649  *      called from __netif_receive_skb. A negative errno code is returned
4650  *      on a failure.
4651  *
4652  *      The caller must hold the rtnl_mutex.
4653  *
4654  *      For a general description of rx_handler, see enum rx_handler_result.
4655  */
4656 int netdev_rx_handler_register(struct net_device *dev,
4657                                rx_handler_func_t *rx_handler,
4658                                void *rx_handler_data)
4659 {
4660         if (netdev_is_rx_handler_busy(dev))
4661                 return -EBUSY;
4662
4663         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4664                 return -EINVAL;
4665
4666         /* Note: rx_handler_data must be set before rx_handler */
4667         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4668         rcu_assign_pointer(dev->rx_handler, rx_handler);
4669
4670         return 0;
4671 }
4672 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4673
4674 /**
4675  *      netdev_rx_handler_unregister - unregister receive handler
4676  *      @dev: device to unregister a handler from
4677  *
4678  *      Unregister a receive handler from a device.
4679  *
4680  *      The caller must hold the rtnl_mutex.
4681  */
4682 void netdev_rx_handler_unregister(struct net_device *dev)
4683 {
4684
4685         ASSERT_RTNL();
4686         RCU_INIT_POINTER(dev->rx_handler, NULL);
4687         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4688          * section has a guarantee to see a non NULL rx_handler_data
4689          * as well.
4690          */
4691         synchronize_net();
4692         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4693 }
4694 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4695
4696 /*
4697  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4698  * the special handling of PFMEMALLOC skbs.
4699  */
4700 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4701 {
4702         switch (skb->protocol) {
4703         case htons(ETH_P_ARP):
4704         case htons(ETH_P_IP):
4705         case htons(ETH_P_IPV6):
4706         case htons(ETH_P_8021Q):
4707         case htons(ETH_P_8021AD):
4708                 return true;
4709         default:
4710                 return false;
4711         }
4712 }
4713
4714 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4715                              int *ret, struct net_device *orig_dev)
4716 {
4717 #ifdef CONFIG_NETFILTER_INGRESS
4718         if (nf_hook_ingress_active(skb)) {
4719                 int ingress_retval;
4720
4721                 if (*pt_prev) {
4722                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4723                         *pt_prev = NULL;
4724                 }
4725
4726                 rcu_read_lock();
4727                 ingress_retval = nf_hook_ingress(skb);
4728                 rcu_read_unlock();
4729                 return ingress_retval;
4730         }
4731 #endif /* CONFIG_NETFILTER_INGRESS */
4732         return 0;
4733 }
4734
4735 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4736                                     struct packet_type **ppt_prev)
4737 {
4738         struct packet_type *ptype, *pt_prev;
4739         rx_handler_func_t *rx_handler;
4740         struct net_device *orig_dev;
4741         bool deliver_exact = false;
4742         int ret = NET_RX_DROP;
4743         __be16 type;
4744
4745         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4746
4747         trace_netif_receive_skb(skb);
4748
4749         orig_dev = skb->dev;
4750
4751         skb_reset_network_header(skb);
4752         if (!skb_transport_header_was_set(skb))
4753                 skb_reset_transport_header(skb);
4754         skb_reset_mac_len(skb);
4755
4756         pt_prev = NULL;
4757
4758 another_round:
4759         skb->skb_iif = skb->dev->ifindex;
4760
4761         __this_cpu_inc(softnet_data.processed);
4762
4763         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4764             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4765                 skb = skb_vlan_untag(skb);
4766                 if (unlikely(!skb))
4767                         goto out;
4768         }
4769
4770         if (skb_skip_tc_classify(skb))
4771                 goto skip_classify;
4772
4773         if (pfmemalloc)
4774                 goto skip_taps;
4775
4776         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4777                 if (pt_prev)
4778                         ret = deliver_skb(skb, pt_prev, orig_dev);
4779                 pt_prev = ptype;
4780         }
4781
4782         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4783                 if (pt_prev)
4784                         ret = deliver_skb(skb, pt_prev, orig_dev);
4785                 pt_prev = ptype;
4786         }
4787
4788 skip_taps:
4789 #ifdef CONFIG_NET_INGRESS
4790         if (static_branch_unlikely(&ingress_needed_key)) {
4791                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4792                 if (!skb)
4793                         goto out;
4794
4795                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4796                         goto out;
4797         }
4798 #endif
4799         skb_reset_tc(skb);
4800 skip_classify:
4801         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4802                 goto drop;
4803
4804         if (skb_vlan_tag_present(skb)) {
4805                 if (pt_prev) {
4806                         ret = deliver_skb(skb, pt_prev, orig_dev);
4807                         pt_prev = NULL;
4808                 }
4809                 if (vlan_do_receive(&skb))
4810                         goto another_round;
4811                 else if (unlikely(!skb))
4812                         goto out;
4813         }
4814
4815         rx_handler = rcu_dereference(skb->dev->rx_handler);
4816         if (rx_handler) {
4817                 if (pt_prev) {
4818                         ret = deliver_skb(skb, pt_prev, orig_dev);
4819                         pt_prev = NULL;
4820                 }
4821                 switch (rx_handler(&skb)) {
4822                 case RX_HANDLER_CONSUMED:
4823                         ret = NET_RX_SUCCESS;
4824                         goto out;
4825                 case RX_HANDLER_ANOTHER:
4826                         goto another_round;
4827                 case RX_HANDLER_EXACT:
4828                         deliver_exact = true;
4829                 case RX_HANDLER_PASS:
4830                         break;
4831                 default:
4832                         BUG();
4833                 }
4834         }
4835
4836         if (unlikely(skb_vlan_tag_present(skb))) {
4837                 if (skb_vlan_tag_get_id(skb))
4838                         skb->pkt_type = PACKET_OTHERHOST;
4839                 /* Note: we might in the future use prio bits
4840                  * and set skb->priority like in vlan_do_receive()
4841                  * For the time being, just ignore Priority Code Point
4842                  */
4843                 skb->vlan_tci = 0;
4844         }
4845
4846         type = skb->protocol;
4847
4848         /* deliver only exact match when indicated */
4849         if (likely(!deliver_exact)) {
4850                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4851                                        &ptype_base[ntohs(type) &
4852                                                    PTYPE_HASH_MASK]);
4853         }
4854
4855         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4856                                &orig_dev->ptype_specific);
4857
4858         if (unlikely(skb->dev != orig_dev)) {
4859                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4860                                        &skb->dev->ptype_specific);
4861         }
4862
4863         if (pt_prev) {
4864                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4865                         goto drop;
4866                 *ppt_prev = pt_prev;
4867         } else {
4868 drop:
4869                 if (!deliver_exact)
4870                         atomic_long_inc(&skb->dev->rx_dropped);
4871                 else
4872                         atomic_long_inc(&skb->dev->rx_nohandler);
4873                 kfree_skb(skb);
4874                 /* Jamal, now you will not able to escape explaining
4875                  * me how you were going to use this. :-)
4876                  */
4877                 ret = NET_RX_DROP;
4878         }
4879
4880 out:
4881         return ret;
4882 }
4883
4884 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4885 {
4886         struct net_device *orig_dev = skb->dev;
4887         struct packet_type *pt_prev = NULL;
4888         int ret;
4889
4890         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4891         if (pt_prev)
4892                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4893         return ret;
4894 }
4895
4896 /**
4897  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4898  *      @skb: buffer to process
4899  *
4900  *      More direct receive version of netif_receive_skb().  It should
4901  *      only be used by callers that have a need to skip RPS and Generic XDP.
4902  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4903  *
4904  *      This function may only be called from softirq context and interrupts
4905  *      should be enabled.
4906  *
4907  *      Return values (usually ignored):
4908  *      NET_RX_SUCCESS: no congestion
4909  *      NET_RX_DROP: packet was dropped
4910  */
4911 int netif_receive_skb_core(struct sk_buff *skb)
4912 {
4913         int ret;
4914
4915         rcu_read_lock();
4916         ret = __netif_receive_skb_one_core(skb, false);
4917         rcu_read_unlock();
4918
4919         return ret;
4920 }
4921 EXPORT_SYMBOL(netif_receive_skb_core);
4922
4923 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4924                                                   struct packet_type *pt_prev,
4925                                                   struct net_device *orig_dev)
4926 {
4927         struct sk_buff *skb, *next;
4928
4929         if (!pt_prev)
4930                 return;
4931         if (list_empty(head))
4932                 return;
4933         if (pt_prev->list_func != NULL)
4934                 pt_prev->list_func(head, pt_prev, orig_dev);
4935         else
4936                 list_for_each_entry_safe(skb, next, head, list)
4937                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4938 }
4939
4940 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4941 {
4942         /* Fast-path assumptions:
4943          * - There is no RX handler.
4944          * - Only one packet_type matches.
4945          * If either of these fails, we will end up doing some per-packet
4946          * processing in-line, then handling the 'last ptype' for the whole
4947          * sublist.  This can't cause out-of-order delivery to any single ptype,
4948          * because the 'last ptype' must be constant across the sublist, and all
4949          * other ptypes are handled per-packet.
4950          */
4951         /* Current (common) ptype of sublist */
4952         struct packet_type *pt_curr = NULL;
4953         /* Current (common) orig_dev of sublist */
4954         struct net_device *od_curr = NULL;
4955         struct list_head sublist;
4956         struct sk_buff *skb, *next;
4957
4958         INIT_LIST_HEAD(&sublist);
4959         list_for_each_entry_safe(skb, next, head, list) {
4960                 struct net_device *orig_dev = skb->dev;
4961                 struct packet_type *pt_prev = NULL;
4962
4963                 list_del(&skb->list);
4964                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4965                 if (!pt_prev)
4966                         continue;
4967                 if (pt_curr != pt_prev || od_curr != orig_dev) {
4968                         /* dispatch old sublist */
4969                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4970                         /* start new sublist */
4971                         INIT_LIST_HEAD(&sublist);
4972                         pt_curr = pt_prev;
4973                         od_curr = orig_dev;
4974                 }
4975                 list_add_tail(&skb->list, &sublist);
4976         }
4977
4978         /* dispatch final sublist */
4979         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4980 }
4981
4982 static int __netif_receive_skb(struct sk_buff *skb)
4983 {
4984         int ret;
4985
4986         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4987                 unsigned int noreclaim_flag;
4988
4989                 /*
4990                  * PFMEMALLOC skbs are special, they should
4991                  * - be delivered to SOCK_MEMALLOC sockets only
4992                  * - stay away from userspace
4993                  * - have bounded memory usage
4994                  *
4995                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4996                  * context down to all allocation sites.
4997                  */
4998                 noreclaim_flag = memalloc_noreclaim_save();
4999                 ret = __netif_receive_skb_one_core(skb, true);
5000                 memalloc_noreclaim_restore(noreclaim_flag);
5001         } else
5002                 ret = __netif_receive_skb_one_core(skb, false);
5003
5004         return ret;
5005 }
5006
5007 static void __netif_receive_skb_list(struct list_head *head)
5008 {
5009         unsigned long noreclaim_flag = 0;
5010         struct sk_buff *skb, *next;
5011         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5012
5013         list_for_each_entry_safe(skb, next, head, list) {
5014                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5015                         struct list_head sublist;
5016
5017                         /* Handle the previous sublist */
5018                         list_cut_before(&sublist, head, &skb->list);
5019                         if (!list_empty(&sublist))
5020                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5021                         pfmemalloc = !pfmemalloc;
5022                         /* See comments in __netif_receive_skb */
5023                         if (pfmemalloc)
5024                                 noreclaim_flag = memalloc_noreclaim_save();
5025                         else
5026                                 memalloc_noreclaim_restore(noreclaim_flag);
5027                 }
5028         }
5029         /* Handle the remaining sublist */
5030         if (!list_empty(head))
5031                 __netif_receive_skb_list_core(head, pfmemalloc);
5032         /* Restore pflags */
5033         if (pfmemalloc)
5034                 memalloc_noreclaim_restore(noreclaim_flag);
5035 }
5036
5037 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5038 {
5039         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5040         struct bpf_prog *new = xdp->prog;
5041         int ret = 0;
5042
5043         switch (xdp->command) {
5044         case XDP_SETUP_PROG:
5045                 rcu_assign_pointer(dev->xdp_prog, new);
5046                 if (old)
5047                         bpf_prog_put(old);
5048
5049                 if (old && !new) {
5050                         static_branch_dec(&generic_xdp_needed_key);
5051                 } else if (new && !old) {
5052                         static_branch_inc(&generic_xdp_needed_key);
5053                         dev_disable_lro(dev);
5054                         dev_disable_gro_hw(dev);
5055                 }
5056                 break;
5057
5058         case XDP_QUERY_PROG:
5059                 xdp->prog_id = old ? old->aux->id : 0;
5060                 break;
5061
5062         default:
5063                 ret = -EINVAL;
5064                 break;
5065         }
5066
5067         return ret;
5068 }
5069
5070 static int netif_receive_skb_internal(struct sk_buff *skb)
5071 {
5072         int ret;
5073
5074         net_timestamp_check(netdev_tstamp_prequeue, skb);
5075
5076         if (skb_defer_rx_timestamp(skb))
5077                 return NET_RX_SUCCESS;
5078
5079         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5080                 int ret;
5081
5082                 preempt_disable();
5083                 rcu_read_lock();
5084                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5085                 rcu_read_unlock();
5086                 preempt_enable();
5087
5088                 if (ret != XDP_PASS)
5089                         return NET_RX_DROP;
5090         }
5091
5092         rcu_read_lock();
5093 #ifdef CONFIG_RPS
5094         if (static_key_false(&rps_needed)) {
5095                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5096                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5097
5098                 if (cpu >= 0) {
5099                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5100                         rcu_read_unlock();
5101                         return ret;
5102                 }
5103         }
5104 #endif
5105         ret = __netif_receive_skb(skb);
5106         rcu_read_unlock();
5107         return ret;
5108 }
5109
5110 static void netif_receive_skb_list_internal(struct list_head *head)
5111 {
5112         struct bpf_prog *xdp_prog = NULL;
5113         struct sk_buff *skb, *next;
5114         struct list_head sublist;
5115
5116         INIT_LIST_HEAD(&sublist);
5117         list_for_each_entry_safe(skb, next, head, list) {
5118                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5119                 list_del(&skb->list);
5120                 if (!skb_defer_rx_timestamp(skb))
5121                         list_add_tail(&skb->list, &sublist);
5122         }
5123         list_splice_init(&sublist, head);
5124
5125         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5126                 preempt_disable();
5127                 rcu_read_lock();
5128                 list_for_each_entry_safe(skb, next, head, list) {
5129                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5130                         list_del(&skb->list);
5131                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5132                                 list_add_tail(&skb->list, &sublist);
5133                 }
5134                 rcu_read_unlock();
5135                 preempt_enable();
5136                 /* Put passed packets back on main list */
5137                 list_splice_init(&sublist, head);
5138         }
5139
5140         rcu_read_lock();
5141 #ifdef CONFIG_RPS
5142         if (static_key_false(&rps_needed)) {
5143                 list_for_each_entry_safe(skb, next, head, list) {
5144                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5145                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5146
5147                         if (cpu >= 0) {
5148                                 /* Will be handled, remove from list */
5149                                 list_del(&skb->list);
5150                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5151                         }
5152                 }
5153         }
5154 #endif
5155         __netif_receive_skb_list(head);
5156         rcu_read_unlock();
5157 }
5158
5159 /**
5160  *      netif_receive_skb - process receive buffer from network
5161  *      @skb: buffer to process
5162  *
5163  *      netif_receive_skb() is the main receive data processing function.
5164  *      It always succeeds. The buffer may be dropped during processing
5165  *      for congestion control or by the protocol layers.
5166  *
5167  *      This function may only be called from softirq context and interrupts
5168  *      should be enabled.
5169  *
5170  *      Return values (usually ignored):
5171  *      NET_RX_SUCCESS: no congestion
5172  *      NET_RX_DROP: packet was dropped
5173  */
5174 int netif_receive_skb(struct sk_buff *skb)
5175 {
5176         trace_netif_receive_skb_entry(skb);
5177
5178         return netif_receive_skb_internal(skb);
5179 }
5180 EXPORT_SYMBOL(netif_receive_skb);
5181
5182 /**
5183  *      netif_receive_skb_list - process many receive buffers from network
5184  *      @head: list of skbs to process.
5185  *
5186  *      Since return value of netif_receive_skb() is normally ignored, and
5187  *      wouldn't be meaningful for a list, this function returns void.
5188  *
5189  *      This function may only be called from softirq context and interrupts
5190  *      should be enabled.
5191  */
5192 void netif_receive_skb_list(struct list_head *head)
5193 {
5194         struct sk_buff *skb;
5195
5196         if (list_empty(head))
5197                 return;
5198         list_for_each_entry(skb, head, list)
5199                 trace_netif_receive_skb_list_entry(skb);
5200         netif_receive_skb_list_internal(head);
5201 }
5202 EXPORT_SYMBOL(netif_receive_skb_list);
5203
5204 DEFINE_PER_CPU(struct work_struct, flush_works);
5205
5206 /* Network device is going away, flush any packets still pending */
5207 static void flush_backlog(struct work_struct *work)
5208 {
5209         struct sk_buff *skb, *tmp;
5210         struct softnet_data *sd;
5211
5212         local_bh_disable();
5213         sd = this_cpu_ptr(&softnet_data);
5214
5215         local_irq_disable();
5216         rps_lock(sd);
5217         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5218                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5219                         __skb_unlink(skb, &sd->input_pkt_queue);
5220                         kfree_skb(skb);
5221                         input_queue_head_incr(sd);
5222                 }
5223         }
5224         rps_unlock(sd);
5225         local_irq_enable();
5226
5227         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5228                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5229                         __skb_unlink(skb, &sd->process_queue);
5230                         kfree_skb(skb);
5231                         input_queue_head_incr(sd);
5232                 }
5233         }
5234         local_bh_enable();
5235 }
5236
5237 static void flush_all_backlogs(void)
5238 {
5239         unsigned int cpu;
5240
5241         get_online_cpus();
5242
5243         for_each_online_cpu(cpu)
5244                 queue_work_on(cpu, system_highpri_wq,
5245                               per_cpu_ptr(&flush_works, cpu));
5246
5247         for_each_online_cpu(cpu)
5248                 flush_work(per_cpu_ptr(&flush_works, cpu));
5249
5250         put_online_cpus();
5251 }
5252
5253 static int napi_gro_complete(struct sk_buff *skb)
5254 {
5255         struct packet_offload *ptype;
5256         __be16 type = skb->protocol;
5257         struct list_head *head = &offload_base;
5258         int err = -ENOENT;
5259
5260         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5261
5262         if (NAPI_GRO_CB(skb)->count == 1) {
5263                 skb_shinfo(skb)->gso_size = 0;
5264                 goto out;
5265         }
5266
5267         rcu_read_lock();
5268         list_for_each_entry_rcu(ptype, head, list) {
5269                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5270                         continue;
5271
5272                 err = ptype->callbacks.gro_complete(skb, 0);
5273                 break;
5274         }
5275         rcu_read_unlock();
5276
5277         if (err) {
5278                 WARN_ON(&ptype->list == head);
5279                 kfree_skb(skb);
5280                 return NET_RX_SUCCESS;
5281         }
5282
5283 out:
5284         return netif_receive_skb_internal(skb);
5285 }
5286
5287 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5288                                    bool flush_old)
5289 {
5290         struct list_head *head = &napi->gro_hash[index].list;
5291         struct sk_buff *skb, *p;
5292
5293         list_for_each_entry_safe_reverse(skb, p, head, list) {
5294                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5295                         return;
5296                 list_del(&skb->list);
5297                 skb->next = NULL;
5298                 napi_gro_complete(skb);
5299                 napi->gro_hash[index].count--;
5300         }
5301
5302         if (!napi->gro_hash[index].count)
5303                 __clear_bit(index, &napi->gro_bitmask);
5304 }
5305
5306 /* napi->gro_hash[].list contains packets ordered by age.
5307  * youngest packets at the head of it.
5308  * Complete skbs in reverse order to reduce latencies.
5309  */
5310 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5311 {
5312         u32 i;
5313
5314         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5315                 if (test_bit(i, &napi->gro_bitmask))
5316                         __napi_gro_flush_chain(napi, i, flush_old);
5317         }
5318 }
5319 EXPORT_SYMBOL(napi_gro_flush);
5320
5321 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5322                                           struct sk_buff *skb)
5323 {
5324         unsigned int maclen = skb->dev->hard_header_len;
5325         u32 hash = skb_get_hash_raw(skb);
5326         struct list_head *head;
5327         struct sk_buff *p;
5328
5329         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5330         list_for_each_entry(p, head, list) {
5331                 unsigned long diffs;
5332
5333                 NAPI_GRO_CB(p)->flush = 0;
5334
5335                 if (hash != skb_get_hash_raw(p)) {
5336                         NAPI_GRO_CB(p)->same_flow = 0;
5337                         continue;
5338                 }
5339
5340                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5341                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5342                 diffs |= skb_metadata_dst_cmp(p, skb);
5343                 diffs |= skb_metadata_differs(p, skb);
5344                 if (maclen == ETH_HLEN)
5345                         diffs |= compare_ether_header(skb_mac_header(p),
5346                                                       skb_mac_header(skb));
5347                 else if (!diffs)
5348                         diffs = memcmp(skb_mac_header(p),
5349                                        skb_mac_header(skb),
5350                                        maclen);
5351                 NAPI_GRO_CB(p)->same_flow = !diffs;
5352         }
5353
5354         return head;
5355 }
5356
5357 static void skb_gro_reset_offset(struct sk_buff *skb)
5358 {
5359         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5360         const skb_frag_t *frag0 = &pinfo->frags[0];
5361
5362         NAPI_GRO_CB(skb)->data_offset = 0;
5363         NAPI_GRO_CB(skb)->frag0 = NULL;
5364         NAPI_GRO_CB(skb)->frag0_len = 0;
5365
5366         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5367             pinfo->nr_frags &&
5368             !PageHighMem(skb_frag_page(frag0))) {
5369                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5370                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5371                                                     skb_frag_size(frag0),
5372                                                     skb->end - skb->tail);
5373         }
5374 }
5375
5376 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5377 {
5378         struct skb_shared_info *pinfo = skb_shinfo(skb);
5379
5380         BUG_ON(skb->end - skb->tail < grow);
5381
5382         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5383
5384         skb->data_len -= grow;
5385         skb->tail += grow;
5386
5387         pinfo->frags[0].page_offset += grow;
5388         skb_frag_size_sub(&pinfo->frags[0], grow);
5389
5390         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5391                 skb_frag_unref(skb, 0);
5392                 memmove(pinfo->frags, pinfo->frags + 1,
5393                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5394         }
5395 }
5396
5397 static void gro_flush_oldest(struct list_head *head)
5398 {
5399         struct sk_buff *oldest;
5400
5401         oldest = list_last_entry(head, struct sk_buff, list);
5402
5403         /* We are called with head length >= MAX_GRO_SKBS, so this is
5404          * impossible.
5405          */
5406         if (WARN_ON_ONCE(!oldest))
5407                 return;
5408
5409         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5410          * SKB to the chain.
5411          */
5412         list_del(&oldest->list);
5413         napi_gro_complete(oldest);
5414 }
5415
5416 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5417 {
5418         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5419         struct list_head *head = &offload_base;
5420         struct packet_offload *ptype;
5421         __be16 type = skb->protocol;
5422         struct list_head *gro_head;
5423         struct sk_buff *pp = NULL;
5424         enum gro_result ret;
5425         int same_flow;
5426         int grow;
5427
5428         if (netif_elide_gro(skb->dev))
5429                 goto normal;
5430
5431         gro_head = gro_list_prepare(napi, skb);
5432
5433         rcu_read_lock();
5434         list_for_each_entry_rcu(ptype, head, list) {
5435                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5436                         continue;
5437
5438                 skb_set_network_header(skb, skb_gro_offset(skb));
5439                 skb_reset_mac_len(skb);
5440                 NAPI_GRO_CB(skb)->same_flow = 0;
5441                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5442                 NAPI_GRO_CB(skb)->free = 0;
5443                 NAPI_GRO_CB(skb)->encap_mark = 0;
5444                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5445                 NAPI_GRO_CB(skb)->is_fou = 0;
5446                 NAPI_GRO_CB(skb)->is_atomic = 1;
5447                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5448
5449                 /* Setup for GRO checksum validation */
5450                 switch (skb->ip_summed) {
5451                 case CHECKSUM_COMPLETE:
5452                         NAPI_GRO_CB(skb)->csum = skb->csum;
5453                         NAPI_GRO_CB(skb)->csum_valid = 1;
5454                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5455                         break;
5456                 case CHECKSUM_UNNECESSARY:
5457                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5458                         NAPI_GRO_CB(skb)->csum_valid = 0;
5459                         break;
5460                 default:
5461                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5462                         NAPI_GRO_CB(skb)->csum_valid = 0;
5463                 }
5464
5465                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5466                 break;
5467         }
5468         rcu_read_unlock();
5469
5470         if (&ptype->list == head)
5471                 goto normal;
5472
5473         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5474                 ret = GRO_CONSUMED;
5475                 goto ok;
5476         }
5477
5478         same_flow = NAPI_GRO_CB(skb)->same_flow;
5479         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5480
5481         if (pp) {
5482                 list_del(&pp->list);
5483                 pp->next = NULL;
5484                 napi_gro_complete(pp);
5485                 napi->gro_hash[hash].count--;
5486         }
5487
5488         if (same_flow)
5489                 goto ok;
5490
5491         if (NAPI_GRO_CB(skb)->flush)
5492                 goto normal;
5493
5494         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5495                 gro_flush_oldest(gro_head);
5496         } else {
5497                 napi->gro_hash[hash].count++;
5498         }
5499         NAPI_GRO_CB(skb)->count = 1;
5500         NAPI_GRO_CB(skb)->age = jiffies;
5501         NAPI_GRO_CB(skb)->last = skb;
5502         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5503         list_add(&skb->list, gro_head);
5504         ret = GRO_HELD;
5505
5506 pull:
5507         grow = skb_gro_offset(skb) - skb_headlen(skb);
5508         if (grow > 0)
5509                 gro_pull_from_frag0(skb, grow);
5510 ok:
5511         if (napi->gro_hash[hash].count) {
5512                 if (!test_bit(hash, &napi->gro_bitmask))
5513                         __set_bit(hash, &napi->gro_bitmask);
5514         } else if (test_bit(hash, &napi->gro_bitmask)) {
5515                 __clear_bit(hash, &napi->gro_bitmask);
5516         }
5517
5518         return ret;
5519
5520 normal:
5521         ret = GRO_NORMAL;
5522         goto pull;
5523 }
5524
5525 struct packet_offload *gro_find_receive_by_type(__be16 type)
5526 {
5527         struct list_head *offload_head = &offload_base;
5528         struct packet_offload *ptype;
5529
5530         list_for_each_entry_rcu(ptype, offload_head, list) {
5531                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5532                         continue;
5533                 return ptype;
5534         }
5535         return NULL;
5536 }
5537 EXPORT_SYMBOL(gro_find_receive_by_type);
5538
5539 struct packet_offload *gro_find_complete_by_type(__be16 type)
5540 {
5541         struct list_head *offload_head = &offload_base;
5542         struct packet_offload *ptype;
5543
5544         list_for_each_entry_rcu(ptype, offload_head, list) {
5545                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5546                         continue;
5547                 return ptype;
5548         }
5549         return NULL;
5550 }
5551 EXPORT_SYMBOL(gro_find_complete_by_type);
5552
5553 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5554 {
5555         skb_dst_drop(skb);
5556         secpath_reset(skb);
5557         kmem_cache_free(skbuff_head_cache, skb);
5558 }
5559
5560 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5561 {
5562         switch (ret) {
5563         case GRO_NORMAL:
5564                 if (netif_receive_skb_internal(skb))
5565                         ret = GRO_DROP;
5566                 break;
5567
5568         case GRO_DROP:
5569                 kfree_skb(skb);
5570                 break;
5571
5572         case GRO_MERGED_FREE:
5573                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5574                         napi_skb_free_stolen_head(skb);
5575                 else
5576                         __kfree_skb(skb);
5577                 break;
5578
5579         case GRO_HELD:
5580         case GRO_MERGED:
5581         case GRO_CONSUMED:
5582                 break;
5583         }
5584
5585         return ret;
5586 }
5587
5588 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5589 {
5590         skb_mark_napi_id(skb, napi);
5591         trace_napi_gro_receive_entry(skb);
5592
5593         skb_gro_reset_offset(skb);
5594
5595         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5596 }
5597 EXPORT_SYMBOL(napi_gro_receive);
5598
5599 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5600 {
5601         if (unlikely(skb->pfmemalloc)) {
5602                 consume_skb(skb);
5603                 return;
5604         }
5605         __skb_pull(skb, skb_headlen(skb));
5606         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5607         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5608         skb->vlan_tci = 0;
5609         skb->dev = napi->dev;
5610         skb->skb_iif = 0;
5611         skb->encapsulation = 0;
5612         skb_shinfo(skb)->gso_type = 0;
5613         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5614         secpath_reset(skb);
5615
5616         napi->skb = skb;
5617 }
5618
5619 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5620 {
5621         struct sk_buff *skb = napi->skb;
5622
5623         if (!skb) {
5624                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5625                 if (skb) {
5626                         napi->skb = skb;
5627                         skb_mark_napi_id(skb, napi);
5628                 }
5629         }
5630         return skb;
5631 }
5632 EXPORT_SYMBOL(napi_get_frags);
5633
5634 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5635                                       struct sk_buff *skb,
5636                                       gro_result_t ret)
5637 {
5638         switch (ret) {
5639         case GRO_NORMAL:
5640         case GRO_HELD:
5641                 __skb_push(skb, ETH_HLEN);
5642                 skb->protocol = eth_type_trans(skb, skb->dev);
5643                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5644                         ret = GRO_DROP;
5645                 break;
5646
5647         case GRO_DROP:
5648                 napi_reuse_skb(napi, skb);
5649                 break;
5650
5651         case GRO_MERGED_FREE:
5652                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5653                         napi_skb_free_stolen_head(skb);
5654                 else
5655                         napi_reuse_skb(napi, skb);
5656                 break;
5657
5658         case GRO_MERGED:
5659         case GRO_CONSUMED:
5660                 break;
5661         }
5662
5663         return ret;
5664 }
5665
5666 /* Upper GRO stack assumes network header starts at gro_offset=0
5667  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5668  * We copy ethernet header into skb->data to have a common layout.
5669  */
5670 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5671 {
5672         struct sk_buff *skb = napi->skb;
5673         const struct ethhdr *eth;
5674         unsigned int hlen = sizeof(*eth);
5675
5676         napi->skb = NULL;
5677
5678         skb_reset_mac_header(skb);
5679         skb_gro_reset_offset(skb);
5680
5681         eth = skb_gro_header_fast(skb, 0);
5682         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5683                 eth = skb_gro_header_slow(skb, hlen, 0);
5684                 if (unlikely(!eth)) {
5685                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5686                                              __func__, napi->dev->name);
5687                         napi_reuse_skb(napi, skb);
5688                         return NULL;
5689                 }
5690         } else {
5691                 gro_pull_from_frag0(skb, hlen);
5692                 NAPI_GRO_CB(skb)->frag0 += hlen;
5693                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5694         }
5695         __skb_pull(skb, hlen);
5696
5697         /*
5698          * This works because the only protocols we care about don't require
5699          * special handling.
5700          * We'll fix it up properly in napi_frags_finish()
5701          */
5702         skb->protocol = eth->h_proto;
5703
5704         return skb;
5705 }
5706
5707 gro_result_t napi_gro_frags(struct napi_struct *napi)
5708 {
5709         struct sk_buff *skb = napi_frags_skb(napi);
5710
5711         if (!skb)
5712                 return GRO_DROP;
5713
5714         trace_napi_gro_frags_entry(skb);
5715
5716         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5717 }
5718 EXPORT_SYMBOL(napi_gro_frags);
5719
5720 /* Compute the checksum from gro_offset and return the folded value
5721  * after adding in any pseudo checksum.
5722  */
5723 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5724 {
5725         __wsum wsum;
5726         __sum16 sum;
5727
5728         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5729
5730         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5731         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5732         if (likely(!sum)) {
5733                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5734                     !skb->csum_complete_sw)
5735                         netdev_rx_csum_fault(skb->dev);
5736         }
5737
5738         NAPI_GRO_CB(skb)->csum = wsum;
5739         NAPI_GRO_CB(skb)->csum_valid = 1;
5740
5741         return sum;
5742 }
5743 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5744
5745 static void net_rps_send_ipi(struct softnet_data *remsd)
5746 {
5747 #ifdef CONFIG_RPS
5748         while (remsd) {
5749                 struct softnet_data *next = remsd->rps_ipi_next;
5750
5751                 if (cpu_online(remsd->cpu))
5752                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5753                 remsd = next;
5754         }
5755 #endif
5756 }
5757
5758 /*
5759  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5760  * Note: called with local irq disabled, but exits with local irq enabled.
5761  */
5762 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5763 {
5764 #ifdef CONFIG_RPS
5765         struct softnet_data *remsd = sd->rps_ipi_list;
5766
5767         if (remsd) {
5768                 sd->rps_ipi_list = NULL;
5769
5770                 local_irq_enable();
5771
5772                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5773                 net_rps_send_ipi(remsd);
5774         } else
5775 #endif
5776                 local_irq_enable();
5777 }
5778
5779 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5780 {
5781 #ifdef CONFIG_RPS
5782         return sd->rps_ipi_list != NULL;
5783 #else
5784         return false;
5785 #endif
5786 }
5787
5788 static int process_backlog(struct napi_struct *napi, int quota)
5789 {
5790         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5791         bool again = true;
5792         int work = 0;
5793
5794         /* Check if we have pending ipi, its better to send them now,
5795          * not waiting net_rx_action() end.
5796          */
5797         if (sd_has_rps_ipi_waiting(sd)) {
5798                 local_irq_disable();
5799                 net_rps_action_and_irq_enable(sd);
5800         }
5801
5802         napi->weight = dev_rx_weight;
5803         while (again) {
5804                 struct sk_buff *skb;
5805
5806                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5807                         rcu_read_lock();
5808                         __netif_receive_skb(skb);
5809                         rcu_read_unlock();
5810                         input_queue_head_incr(sd);
5811                         if (++work >= quota)
5812                                 return work;
5813
5814                 }
5815
5816                 local_irq_disable();
5817                 rps_lock(sd);
5818                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5819                         /*
5820                          * Inline a custom version of __napi_complete().
5821                          * only current cpu owns and manipulates this napi,
5822                          * and NAPI_STATE_SCHED is the only possible flag set
5823                          * on backlog.
5824                          * We can use a plain write instead of clear_bit(),
5825                          * and we dont need an smp_mb() memory barrier.
5826                          */
5827                         napi->state = 0;
5828                         again = false;
5829                 } else {
5830                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5831                                                    &sd->process_queue);
5832                 }
5833                 rps_unlock(sd);
5834                 local_irq_enable();
5835         }
5836
5837         return work;
5838 }
5839
5840 /**
5841  * __napi_schedule - schedule for receive
5842  * @n: entry to schedule
5843  *
5844  * The entry's receive function will be scheduled to run.
5845  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5846  */
5847 void __napi_schedule(struct napi_struct *n)
5848 {
5849         unsigned long flags;
5850
5851         local_irq_save(flags);
5852         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5853         local_irq_restore(flags);
5854 }
5855 EXPORT_SYMBOL(__napi_schedule);
5856
5857 /**
5858  *      napi_schedule_prep - check if napi can be scheduled
5859  *      @n: napi context
5860  *
5861  * Test if NAPI routine is already running, and if not mark
5862  * it as running.  This is used as a condition variable
5863  * insure only one NAPI poll instance runs.  We also make
5864  * sure there is no pending NAPI disable.
5865  */
5866 bool napi_schedule_prep(struct napi_struct *n)
5867 {
5868         unsigned long val, new;
5869
5870         do {
5871                 val = READ_ONCE(n->state);
5872                 if (unlikely(val & NAPIF_STATE_DISABLE))
5873                         return false;
5874                 new = val | NAPIF_STATE_SCHED;
5875
5876                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5877                  * This was suggested by Alexander Duyck, as compiler
5878                  * emits better code than :
5879                  * if (val & NAPIF_STATE_SCHED)
5880                  *     new |= NAPIF_STATE_MISSED;
5881                  */
5882                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5883                                                    NAPIF_STATE_MISSED;
5884         } while (cmpxchg(&n->state, val, new) != val);
5885
5886         return !(val & NAPIF_STATE_SCHED);
5887 }
5888 EXPORT_SYMBOL(napi_schedule_prep);
5889
5890 /**
5891  * __napi_schedule_irqoff - schedule for receive
5892  * @n: entry to schedule
5893  *
5894  * Variant of __napi_schedule() assuming hard irqs are masked
5895  */
5896 void __napi_schedule_irqoff(struct napi_struct *n)
5897 {
5898         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5899 }
5900 EXPORT_SYMBOL(__napi_schedule_irqoff);
5901
5902 bool napi_complete_done(struct napi_struct *n, int work_done)
5903 {
5904         unsigned long flags, val, new;
5905
5906         /*
5907          * 1) Don't let napi dequeue from the cpu poll list
5908          *    just in case its running on a different cpu.
5909          * 2) If we are busy polling, do nothing here, we have
5910          *    the guarantee we will be called later.
5911          */
5912         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5913                                  NAPIF_STATE_IN_BUSY_POLL)))
5914                 return false;
5915
5916         if (n->gro_bitmask) {
5917                 unsigned long timeout = 0;
5918
5919                 if (work_done)
5920                         timeout = n->dev->gro_flush_timeout;
5921
5922                 if (timeout)
5923                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5924                                       HRTIMER_MODE_REL_PINNED);
5925                 else
5926                         napi_gro_flush(n, false);
5927         }
5928         if (unlikely(!list_empty(&n->poll_list))) {
5929                 /* If n->poll_list is not empty, we need to mask irqs */
5930                 local_irq_save(flags);
5931                 list_del_init(&n->poll_list);
5932                 local_irq_restore(flags);
5933         }
5934
5935         do {
5936                 val = READ_ONCE(n->state);
5937
5938                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5939
5940                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5941
5942                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5943                  * because we will call napi->poll() one more time.
5944                  * This C code was suggested by Alexander Duyck to help gcc.
5945                  */
5946                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5947                                                     NAPIF_STATE_SCHED;
5948         } while (cmpxchg(&n->state, val, new) != val);
5949
5950         if (unlikely(val & NAPIF_STATE_MISSED)) {
5951                 __napi_schedule(n);
5952                 return false;
5953         }
5954
5955         return true;
5956 }
5957 EXPORT_SYMBOL(napi_complete_done);
5958
5959 /* must be called under rcu_read_lock(), as we dont take a reference */
5960 static struct napi_struct *napi_by_id(unsigned int napi_id)
5961 {
5962         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5963         struct napi_struct *napi;
5964
5965         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5966                 if (napi->napi_id == napi_id)
5967                         return napi;
5968
5969         return NULL;
5970 }
5971
5972 #if defined(CONFIG_NET_RX_BUSY_POLL)
5973
5974 #define BUSY_POLL_BUDGET 8
5975
5976 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5977 {
5978         int rc;
5979
5980         /* Busy polling means there is a high chance device driver hard irq
5981          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5982          * set in napi_schedule_prep().
5983          * Since we are about to call napi->poll() once more, we can safely
5984          * clear NAPI_STATE_MISSED.
5985          *
5986          * Note: x86 could use a single "lock and ..." instruction
5987          * to perform these two clear_bit()
5988          */
5989         clear_bit(NAPI_STATE_MISSED, &napi->state);
5990         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5991
5992         local_bh_disable();
5993
5994         /* All we really want here is to re-enable device interrupts.
5995          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5996          */
5997         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5998         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5999         netpoll_poll_unlock(have_poll_lock);
6000         if (rc == BUSY_POLL_BUDGET)
6001                 __napi_schedule(napi);
6002         local_bh_enable();
6003 }
6004
6005 void napi_busy_loop(unsigned int napi_id,
6006                     bool (*loop_end)(void *, unsigned long),
6007                     void *loop_end_arg)
6008 {
6009         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6010         int (*napi_poll)(struct napi_struct *napi, int budget);
6011         void *have_poll_lock = NULL;
6012         struct napi_struct *napi;
6013
6014 restart:
6015         napi_poll = NULL;
6016
6017         rcu_read_lock();
6018
6019         napi = napi_by_id(napi_id);
6020         if (!napi)
6021                 goto out;
6022
6023         preempt_disable();
6024         for (;;) {
6025                 int work = 0;
6026
6027                 local_bh_disable();
6028                 if (!napi_poll) {
6029                         unsigned long val = READ_ONCE(napi->state);
6030
6031                         /* If multiple threads are competing for this napi,
6032                          * we avoid dirtying napi->state as much as we can.
6033                          */
6034                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6035                                    NAPIF_STATE_IN_BUSY_POLL))
6036                                 goto count;
6037                         if (cmpxchg(&napi->state, val,
6038                                     val | NAPIF_STATE_IN_BUSY_POLL |
6039                                           NAPIF_STATE_SCHED) != val)
6040                                 goto count;
6041                         have_poll_lock = netpoll_poll_lock(napi);
6042                         napi_poll = napi->poll;
6043                 }
6044                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6045                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6046 count:
6047                 if (work > 0)
6048                         __NET_ADD_STATS(dev_net(napi->dev),
6049                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6050                 local_bh_enable();
6051
6052                 if (!loop_end || loop_end(loop_end_arg, start_time))
6053                         break;
6054
6055                 if (unlikely(need_resched())) {
6056                         if (napi_poll)
6057                                 busy_poll_stop(napi, have_poll_lock);
6058                         preempt_enable();
6059                         rcu_read_unlock();
6060                         cond_resched();
6061                         if (loop_end(loop_end_arg, start_time))
6062                                 return;
6063                         goto restart;
6064                 }
6065                 cpu_relax();
6066         }
6067         if (napi_poll)
6068                 busy_poll_stop(napi, have_poll_lock);
6069         preempt_enable();
6070 out:
6071         rcu_read_unlock();
6072 }
6073 EXPORT_SYMBOL(napi_busy_loop);
6074
6075 #endif /* CONFIG_NET_RX_BUSY_POLL */
6076
6077 static void napi_hash_add(struct napi_struct *napi)
6078 {
6079         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6080             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6081                 return;
6082
6083         spin_lock(&napi_hash_lock);
6084
6085         /* 0..NR_CPUS range is reserved for sender_cpu use */
6086         do {
6087                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6088                         napi_gen_id = MIN_NAPI_ID;
6089         } while (napi_by_id(napi_gen_id));
6090         napi->napi_id = napi_gen_id;
6091
6092         hlist_add_head_rcu(&napi->napi_hash_node,
6093                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6094
6095         spin_unlock(&napi_hash_lock);
6096 }
6097
6098 /* Warning : caller is responsible to make sure rcu grace period
6099  * is respected before freeing memory containing @napi
6100  */
6101 bool napi_hash_del(struct napi_struct *napi)
6102 {
6103         bool rcu_sync_needed = false;
6104
6105         spin_lock(&napi_hash_lock);
6106
6107         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6108                 rcu_sync_needed = true;
6109                 hlist_del_rcu(&napi->napi_hash_node);
6110         }
6111         spin_unlock(&napi_hash_lock);
6112         return rcu_sync_needed;
6113 }
6114 EXPORT_SYMBOL_GPL(napi_hash_del);
6115
6116 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6117 {
6118         struct napi_struct *napi;
6119
6120         napi = container_of(timer, struct napi_struct, timer);
6121
6122         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6123          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6124          */
6125         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6126             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6127                 __napi_schedule_irqoff(napi);
6128
6129         return HRTIMER_NORESTART;
6130 }
6131
6132 static void init_gro_hash(struct napi_struct *napi)
6133 {
6134         int i;
6135
6136         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6137                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6138                 napi->gro_hash[i].count = 0;
6139         }
6140         napi->gro_bitmask = 0;
6141 }
6142
6143 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6144                     int (*poll)(struct napi_struct *, int), int weight)
6145 {
6146         INIT_LIST_HEAD(&napi->poll_list);
6147         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6148         napi->timer.function = napi_watchdog;
6149         init_gro_hash(napi);
6150         napi->skb = NULL;
6151         napi->poll = poll;
6152         if (weight > NAPI_POLL_WEIGHT)
6153                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6154                             weight, dev->name);
6155         napi->weight = weight;
6156         list_add(&napi->dev_list, &dev->napi_list);
6157         napi->dev = dev;
6158 #ifdef CONFIG_NETPOLL
6159         napi->poll_owner = -1;
6160 #endif
6161         set_bit(NAPI_STATE_SCHED, &napi->state);
6162         napi_hash_add(napi);
6163 }
6164 EXPORT_SYMBOL(netif_napi_add);
6165
6166 void napi_disable(struct napi_struct *n)
6167 {
6168         might_sleep();
6169         set_bit(NAPI_STATE_DISABLE, &n->state);
6170
6171         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6172                 msleep(1);
6173         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6174                 msleep(1);
6175
6176         hrtimer_cancel(&n->timer);
6177
6178         clear_bit(NAPI_STATE_DISABLE, &n->state);
6179 }
6180 EXPORT_SYMBOL(napi_disable);
6181
6182 static void flush_gro_hash(struct napi_struct *napi)
6183 {
6184         int i;
6185
6186         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6187                 struct sk_buff *skb, *n;
6188
6189                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6190                         kfree_skb(skb);
6191                 napi->gro_hash[i].count = 0;
6192         }
6193 }
6194
6195 /* Must be called in process context */
6196 void netif_napi_del(struct napi_struct *napi)
6197 {
6198         might_sleep();
6199         if (napi_hash_del(napi))
6200                 synchronize_net();
6201         list_del_init(&napi->dev_list);
6202         napi_free_frags(napi);
6203
6204         flush_gro_hash(napi);
6205         napi->gro_bitmask = 0;
6206 }
6207 EXPORT_SYMBOL(netif_napi_del);
6208
6209 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6210 {
6211         void *have;
6212         int work, weight;
6213
6214         list_del_init(&n->poll_list);
6215
6216         have = netpoll_poll_lock(n);
6217
6218         weight = n->weight;
6219
6220         /* This NAPI_STATE_SCHED test is for avoiding a race
6221          * with netpoll's poll_napi().  Only the entity which
6222          * obtains the lock and sees NAPI_STATE_SCHED set will
6223          * actually make the ->poll() call.  Therefore we avoid
6224          * accidentally calling ->poll() when NAPI is not scheduled.
6225          */
6226         work = 0;
6227         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6228                 work = n->poll(n, weight);
6229                 trace_napi_poll(n, work, weight);
6230         }
6231
6232         WARN_ON_ONCE(work > weight);
6233
6234         if (likely(work < weight))
6235                 goto out_unlock;
6236
6237         /* Drivers must not modify the NAPI state if they
6238          * consume the entire weight.  In such cases this code
6239          * still "owns" the NAPI instance and therefore can
6240          * move the instance around on the list at-will.
6241          */
6242         if (unlikely(napi_disable_pending(n))) {
6243                 napi_complete(n);
6244                 goto out_unlock;
6245         }
6246
6247         if (n->gro_bitmask) {
6248                 /* flush too old packets
6249                  * If HZ < 1000, flush all packets.
6250                  */
6251                 napi_gro_flush(n, HZ >= 1000);
6252         }
6253
6254         /* Some drivers may have called napi_schedule
6255          * prior to exhausting their budget.
6256          */
6257         if (unlikely(!list_empty(&n->poll_list))) {
6258                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6259                              n->dev ? n->dev->name : "backlog");
6260                 goto out_unlock;
6261         }
6262
6263         list_add_tail(&n->poll_list, repoll);
6264
6265 out_unlock:
6266         netpoll_poll_unlock(have);
6267
6268         return work;
6269 }
6270
6271 static __latent_entropy void net_rx_action(struct softirq_action *h)
6272 {
6273         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6274         unsigned long time_limit = jiffies +
6275                 usecs_to_jiffies(netdev_budget_usecs);
6276         int budget = netdev_budget;
6277         LIST_HEAD(list);
6278         LIST_HEAD(repoll);
6279
6280         local_irq_disable();
6281         list_splice_init(&sd->poll_list, &list);
6282         local_irq_enable();
6283
6284         for (;;) {
6285                 struct napi_struct *n;
6286
6287                 if (list_empty(&list)) {
6288                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6289                                 goto out;
6290                         break;
6291                 }
6292
6293                 n = list_first_entry(&list, struct napi_struct, poll_list);
6294                 budget -= napi_poll(n, &repoll);
6295
6296                 /* If softirq window is exhausted then punt.
6297                  * Allow this to run for 2 jiffies since which will allow
6298                  * an average latency of 1.5/HZ.
6299                  */
6300                 if (unlikely(budget <= 0 ||
6301                              time_after_eq(jiffies, time_limit))) {
6302                         sd->time_squeeze++;
6303                         break;
6304                 }
6305         }
6306
6307         local_irq_disable();
6308
6309         list_splice_tail_init(&sd->poll_list, &list);
6310         list_splice_tail(&repoll, &list);
6311         list_splice(&list, &sd->poll_list);
6312         if (!list_empty(&sd->poll_list))
6313                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6314
6315         net_rps_action_and_irq_enable(sd);
6316 out:
6317         __kfree_skb_flush();
6318 }
6319
6320 struct netdev_adjacent {
6321         struct net_device *dev;
6322
6323         /* upper master flag, there can only be one master device per list */
6324         bool master;
6325
6326         /* counter for the number of times this device was added to us */
6327         u16 ref_nr;
6328
6329         /* private field for the users */
6330         void *private;
6331
6332         struct list_head list;
6333         struct rcu_head rcu;
6334 };
6335
6336 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6337                                                  struct list_head *adj_list)
6338 {
6339         struct netdev_adjacent *adj;
6340
6341         list_for_each_entry(adj, adj_list, list) {
6342                 if (adj->dev == adj_dev)
6343                         return adj;
6344         }
6345         return NULL;
6346 }
6347
6348 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6349 {
6350         struct net_device *dev = data;
6351
6352         return upper_dev == dev;
6353 }
6354
6355 /**
6356  * netdev_has_upper_dev - Check if device is linked to an upper device
6357  * @dev: device
6358  * @upper_dev: upper device to check
6359  *
6360  * Find out if a device is linked to specified upper device and return true
6361  * in case it is. Note that this checks only immediate upper device,
6362  * not through a complete stack of devices. The caller must hold the RTNL lock.
6363  */
6364 bool netdev_has_upper_dev(struct net_device *dev,
6365                           struct net_device *upper_dev)
6366 {
6367         ASSERT_RTNL();
6368
6369         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6370                                              upper_dev);
6371 }
6372 EXPORT_SYMBOL(netdev_has_upper_dev);
6373
6374 /**
6375  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6376  * @dev: device
6377  * @upper_dev: upper device to check
6378  *
6379  * Find out if a device is linked to specified upper device and return true
6380  * in case it is. Note that this checks the entire upper device chain.
6381  * The caller must hold rcu lock.
6382  */
6383
6384 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6385                                   struct net_device *upper_dev)
6386 {
6387         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6388                                                upper_dev);
6389 }
6390 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6391
6392 /**
6393  * netdev_has_any_upper_dev - Check if device is linked to some device
6394  * @dev: device
6395  *
6396  * Find out if a device is linked to an upper device and return true in case
6397  * it is. The caller must hold the RTNL lock.
6398  */
6399 bool netdev_has_any_upper_dev(struct net_device *dev)
6400 {
6401         ASSERT_RTNL();
6402
6403         return !list_empty(&dev->adj_list.upper);
6404 }
6405 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6406
6407 /**
6408  * netdev_master_upper_dev_get - Get master upper device
6409  * @dev: device
6410  *
6411  * Find a master upper device and return pointer to it or NULL in case
6412  * it's not there. The caller must hold the RTNL lock.
6413  */
6414 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6415 {
6416         struct netdev_adjacent *upper;
6417
6418         ASSERT_RTNL();
6419
6420         if (list_empty(&dev->adj_list.upper))
6421                 return NULL;
6422
6423         upper = list_first_entry(&dev->adj_list.upper,
6424                                  struct netdev_adjacent, list);
6425         if (likely(upper->master))
6426                 return upper->dev;
6427         return NULL;
6428 }
6429 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6430
6431 /**
6432  * netdev_has_any_lower_dev - Check if device is linked to some device
6433  * @dev: device
6434  *
6435  * Find out if a device is linked to a lower device and return true in case
6436  * it is. The caller must hold the RTNL lock.
6437  */
6438 static bool netdev_has_any_lower_dev(struct net_device *dev)
6439 {
6440         ASSERT_RTNL();
6441
6442         return !list_empty(&dev->adj_list.lower);
6443 }
6444
6445 void *netdev_adjacent_get_private(struct list_head *adj_list)
6446 {
6447         struct netdev_adjacent *adj;
6448
6449         adj = list_entry(adj_list, struct netdev_adjacent, list);
6450
6451         return adj->private;
6452 }
6453 EXPORT_SYMBOL(netdev_adjacent_get_private);
6454
6455 /**
6456  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6457  * @dev: device
6458  * @iter: list_head ** of the current position
6459  *
6460  * Gets the next device from the dev's upper list, starting from iter
6461  * position. The caller must hold RCU read lock.
6462  */
6463 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6464                                                  struct list_head **iter)
6465 {
6466         struct netdev_adjacent *upper;
6467
6468         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6469
6470         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6471
6472         if (&upper->list == &dev->adj_list.upper)
6473                 return NULL;
6474
6475         *iter = &upper->list;
6476
6477         return upper->dev;
6478 }
6479 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6480
6481 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6482                                                     struct list_head **iter)
6483 {
6484         struct netdev_adjacent *upper;
6485
6486         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6487
6488         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6489
6490         if (&upper->list == &dev->adj_list.upper)
6491                 return NULL;
6492
6493         *iter = &upper->list;
6494
6495         return upper->dev;
6496 }
6497
6498 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6499                                   int (*fn)(struct net_device *dev,
6500                                             void *data),
6501                                   void *data)
6502 {
6503         struct net_device *udev;
6504         struct list_head *iter;
6505         int ret;
6506
6507         for (iter = &dev->adj_list.upper,
6508              udev = netdev_next_upper_dev_rcu(dev, &iter);
6509              udev;
6510              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6511                 /* first is the upper device itself */
6512                 ret = fn(udev, data);
6513                 if (ret)
6514                         return ret;
6515
6516                 /* then look at all of its upper devices */
6517                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6518                 if (ret)
6519                         return ret;
6520         }
6521
6522         return 0;
6523 }
6524 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6525
6526 /**
6527  * netdev_lower_get_next_private - Get the next ->private from the
6528  *                                 lower neighbour list
6529  * @dev: device
6530  * @iter: list_head ** of the current position
6531  *
6532  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6533  * list, starting from iter position. The caller must hold either hold the
6534  * RTNL lock or its own locking that guarantees that the neighbour lower
6535  * list will remain unchanged.
6536  */
6537 void *netdev_lower_get_next_private(struct net_device *dev,
6538                                     struct list_head **iter)
6539 {
6540         struct netdev_adjacent *lower;
6541
6542         lower = list_entry(*iter, struct netdev_adjacent, list);
6543
6544         if (&lower->list == &dev->adj_list.lower)
6545                 return NULL;
6546
6547         *iter = lower->list.next;
6548
6549         return lower->private;
6550 }
6551 EXPORT_SYMBOL(netdev_lower_get_next_private);
6552
6553 /**
6554  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6555  *                                     lower neighbour list, RCU
6556  *                                     variant
6557  * @dev: device
6558  * @iter: list_head ** of the current position
6559  *
6560  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6561  * list, starting from iter position. The caller must hold RCU read lock.
6562  */
6563 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6564                                         struct list_head **iter)
6565 {
6566         struct netdev_adjacent *lower;
6567
6568         WARN_ON_ONCE(!rcu_read_lock_held());
6569
6570         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6571
6572         if (&lower->list == &dev->adj_list.lower)
6573                 return NULL;
6574
6575         *iter = &lower->list;
6576
6577         return lower->private;
6578 }
6579 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6580
6581 /**
6582  * netdev_lower_get_next - Get the next device from the lower neighbour
6583  *                         list
6584  * @dev: device
6585  * @iter: list_head ** of the current position
6586  *
6587  * Gets the next netdev_adjacent from the dev's lower neighbour
6588  * list, starting from iter position. The caller must hold RTNL lock or
6589  * its own locking that guarantees that the neighbour lower
6590  * list will remain unchanged.
6591  */
6592 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6593 {
6594         struct netdev_adjacent *lower;
6595
6596         lower = list_entry(*iter, struct netdev_adjacent, list);
6597
6598         if (&lower->list == &dev->adj_list.lower)
6599                 return NULL;
6600
6601         *iter = lower->list.next;
6602
6603         return lower->dev;
6604 }
6605 EXPORT_SYMBOL(netdev_lower_get_next);
6606
6607 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6608                                                 struct list_head **iter)
6609 {
6610         struct netdev_adjacent *lower;
6611
6612         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6613
6614         if (&lower->list == &dev->adj_list.lower)
6615                 return NULL;
6616
6617         *iter = &lower->list;
6618
6619         return lower->dev;
6620 }
6621
6622 int netdev_walk_all_lower_dev(struct net_device *dev,
6623                               int (*fn)(struct net_device *dev,
6624                                         void *data),
6625                               void *data)
6626 {
6627         struct net_device *ldev;
6628         struct list_head *iter;
6629         int ret;
6630
6631         for (iter = &dev->adj_list.lower,
6632              ldev = netdev_next_lower_dev(dev, &iter);
6633              ldev;
6634              ldev = netdev_next_lower_dev(dev, &iter)) {
6635                 /* first is the lower device itself */
6636                 ret = fn(ldev, data);
6637                 if (ret)
6638                         return ret;
6639
6640                 /* then look at all of its lower devices */
6641                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6642                 if (ret)
6643                         return ret;
6644         }
6645
6646         return 0;
6647 }
6648 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6649
6650 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6651                                                     struct list_head **iter)
6652 {
6653         struct netdev_adjacent *lower;
6654
6655         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6656         if (&lower->list == &dev->adj_list.lower)
6657                 return NULL;
6658
6659         *iter = &lower->list;
6660
6661         return lower->dev;
6662 }
6663
6664 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6665                                   int (*fn)(struct net_device *dev,
6666                                             void *data),
6667                                   void *data)
6668 {
6669         struct net_device *ldev;
6670         struct list_head *iter;
6671         int ret;
6672
6673         for (iter = &dev->adj_list.lower,
6674              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6675              ldev;
6676              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6677                 /* first is the lower device itself */
6678                 ret = fn(ldev, data);
6679                 if (ret)
6680                         return ret;
6681
6682                 /* then look at all of its lower devices */
6683                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6684                 if (ret)
6685                         return ret;
6686         }
6687
6688         return 0;
6689 }
6690 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6691
6692 /**
6693  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6694  *                                     lower neighbour list, RCU
6695  *                                     variant
6696  * @dev: device
6697  *
6698  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6699  * list. The caller must hold RCU read lock.
6700  */
6701 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6702 {
6703         struct netdev_adjacent *lower;
6704
6705         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6706                         struct netdev_adjacent, list);
6707         if (lower)
6708                 return lower->private;
6709         return NULL;
6710 }
6711 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6712
6713 /**
6714  * netdev_master_upper_dev_get_rcu - Get master upper device
6715  * @dev: device
6716  *
6717  * Find a master upper device and return pointer to it or NULL in case
6718  * it's not there. The caller must hold the RCU read lock.
6719  */
6720 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6721 {
6722         struct netdev_adjacent *upper;
6723
6724         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6725                                        struct netdev_adjacent, list);
6726         if (upper && likely(upper->master))
6727                 return upper->dev;
6728         return NULL;
6729 }
6730 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6731
6732 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6733                               struct net_device *adj_dev,
6734                               struct list_head *dev_list)
6735 {
6736         char linkname[IFNAMSIZ+7];
6737
6738         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6739                 "upper_%s" : "lower_%s", adj_dev->name);
6740         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6741                                  linkname);
6742 }
6743 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6744                                char *name,
6745                                struct list_head *dev_list)
6746 {
6747         char linkname[IFNAMSIZ+7];
6748
6749         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6750                 "upper_%s" : "lower_%s", name);
6751         sysfs_remove_link(&(dev->dev.kobj), linkname);
6752 }
6753
6754 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6755                                                  struct net_device *adj_dev,
6756                                                  struct list_head *dev_list)
6757 {
6758         return (dev_list == &dev->adj_list.upper ||
6759                 dev_list == &dev->adj_list.lower) &&
6760                 net_eq(dev_net(dev), dev_net(adj_dev));
6761 }
6762
6763 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6764                                         struct net_device *adj_dev,
6765                                         struct list_head *dev_list,
6766                                         void *private, bool master)
6767 {
6768         struct netdev_adjacent *adj;
6769         int ret;
6770
6771         adj = __netdev_find_adj(adj_dev, dev_list);
6772
6773         if (adj) {
6774                 adj->ref_nr += 1;
6775                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6776                          dev->name, adj_dev->name, adj->ref_nr);
6777
6778                 return 0;
6779         }
6780
6781         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6782         if (!adj)
6783                 return -ENOMEM;
6784
6785         adj->dev = adj_dev;
6786         adj->master = master;
6787         adj->ref_nr = 1;
6788         adj->private = private;
6789         dev_hold(adj_dev);
6790
6791         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6792                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6793
6794         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6795                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6796                 if (ret)
6797                         goto free_adj;
6798         }
6799
6800         /* Ensure that master link is always the first item in list. */
6801         if (master) {
6802                 ret = sysfs_create_link(&(dev->dev.kobj),
6803                                         &(adj_dev->dev.kobj), "master");
6804                 if (ret)
6805                         goto remove_symlinks;
6806
6807                 list_add_rcu(&adj->list, dev_list);
6808         } else {
6809                 list_add_tail_rcu(&adj->list, dev_list);
6810         }
6811
6812         return 0;
6813
6814 remove_symlinks:
6815         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6816                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6817 free_adj:
6818         kfree(adj);
6819         dev_put(adj_dev);
6820
6821         return ret;
6822 }
6823
6824 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6825                                          struct net_device *adj_dev,
6826                                          u16 ref_nr,
6827                                          struct list_head *dev_list)
6828 {
6829         struct netdev_adjacent *adj;
6830
6831         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6832                  dev->name, adj_dev->name, ref_nr);
6833
6834         adj = __netdev_find_adj(adj_dev, dev_list);
6835
6836         if (!adj) {
6837                 pr_err("Adjacency does not exist for device %s from %s\n",
6838                        dev->name, adj_dev->name);
6839                 WARN_ON(1);
6840                 return;
6841         }
6842
6843         if (adj->ref_nr > ref_nr) {
6844                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6845                          dev->name, adj_dev->name, ref_nr,
6846                          adj->ref_nr - ref_nr);
6847                 adj->ref_nr -= ref_nr;
6848                 return;
6849         }
6850
6851         if (adj->master)
6852                 sysfs_remove_link(&(dev->dev.kobj), "master");
6853
6854         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6855                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6856
6857         list_del_rcu(&adj->list);
6858         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6859                  adj_dev->name, dev->name, adj_dev->name);
6860         dev_put(adj_dev);
6861         kfree_rcu(adj, rcu);
6862 }
6863
6864 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6865                                             struct net_device *upper_dev,
6866                                             struct list_head *up_list,
6867                                             struct list_head *down_list,
6868                                             void *private, bool master)
6869 {
6870         int ret;
6871
6872         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6873                                            private, master);
6874         if (ret)
6875                 return ret;
6876
6877         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6878                                            private, false);
6879         if (ret) {
6880                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6881                 return ret;
6882         }
6883
6884         return 0;
6885 }
6886
6887 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6888                                                struct net_device *upper_dev,
6889                                                u16 ref_nr,
6890                                                struct list_head *up_list,
6891                                                struct list_head *down_list)
6892 {
6893         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6894         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6895 }
6896
6897 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6898                                                 struct net_device *upper_dev,
6899                                                 void *private, bool master)
6900 {
6901         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6902                                                 &dev->adj_list.upper,
6903                                                 &upper_dev->adj_list.lower,
6904                                                 private, master);
6905 }
6906
6907 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6908                                                    struct net_device *upper_dev)
6909 {
6910         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6911                                            &dev->adj_list.upper,
6912                                            &upper_dev->adj_list.lower);
6913 }
6914
6915 static int __netdev_upper_dev_link(struct net_device *dev,
6916                                    struct net_device *upper_dev, bool master,
6917                                    void *upper_priv, void *upper_info,
6918                                    struct netlink_ext_ack *extack)
6919 {
6920         struct netdev_notifier_changeupper_info changeupper_info = {
6921                 .info = {
6922                         .dev = dev,
6923                         .extack = extack,
6924                 },
6925                 .upper_dev = upper_dev,
6926                 .master = master,
6927                 .linking = true,
6928                 .upper_info = upper_info,
6929         };
6930         struct net_device *master_dev;
6931         int ret = 0;
6932
6933         ASSERT_RTNL();
6934
6935         if (dev == upper_dev)
6936                 return -EBUSY;
6937
6938         /* To prevent loops, check if dev is not upper device to upper_dev. */
6939         if (netdev_has_upper_dev(upper_dev, dev))
6940                 return -EBUSY;
6941
6942         if (!master) {
6943                 if (netdev_has_upper_dev(dev, upper_dev))
6944                         return -EEXIST;
6945         } else {
6946                 master_dev = netdev_master_upper_dev_get(dev);
6947                 if (master_dev)
6948                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6949         }
6950
6951         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6952                                             &changeupper_info.info);
6953         ret = notifier_to_errno(ret);
6954         if (ret)
6955                 return ret;
6956
6957         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6958                                                    master);
6959         if (ret)
6960                 return ret;
6961
6962         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6963                                             &changeupper_info.info);
6964         ret = notifier_to_errno(ret);
6965         if (ret)
6966                 goto rollback;
6967
6968         return 0;
6969
6970 rollback:
6971         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6972
6973         return ret;
6974 }
6975
6976 /**
6977  * netdev_upper_dev_link - Add a link to the upper device
6978  * @dev: device
6979  * @upper_dev: new upper device
6980  * @extack: netlink extended ack
6981  *
6982  * Adds a link to device which is upper to this one. The caller must hold
6983  * the RTNL lock. On a failure a negative errno code is returned.
6984  * On success the reference counts are adjusted and the function
6985  * returns zero.
6986  */
6987 int netdev_upper_dev_link(struct net_device *dev,
6988                           struct net_device *upper_dev,
6989                           struct netlink_ext_ack *extack)
6990 {
6991         return __netdev_upper_dev_link(dev, upper_dev, false,
6992                                        NULL, NULL, extack);
6993 }
6994 EXPORT_SYMBOL(netdev_upper_dev_link);
6995
6996 /**
6997  * netdev_master_upper_dev_link - Add a master link to the upper device
6998  * @dev: device
6999  * @upper_dev: new upper device
7000  * @upper_priv: upper device private
7001  * @upper_info: upper info to be passed down via notifier
7002  * @extack: netlink extended ack
7003  *
7004  * Adds a link to device which is upper to this one. In this case, only
7005  * one master upper device can be linked, although other non-master devices
7006  * might be linked as well. The caller must hold the RTNL lock.
7007  * On a failure a negative errno code is returned. On success the reference
7008  * counts are adjusted and the function returns zero.
7009  */
7010 int netdev_master_upper_dev_link(struct net_device *dev,
7011                                  struct net_device *upper_dev,
7012                                  void *upper_priv, void *upper_info,
7013                                  struct netlink_ext_ack *extack)
7014 {
7015         return __netdev_upper_dev_link(dev, upper_dev, true,
7016                                        upper_priv, upper_info, extack);
7017 }
7018 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7019
7020 /**
7021  * netdev_upper_dev_unlink - Removes a link to upper device
7022  * @dev: device
7023  * @upper_dev: new upper device
7024  *
7025  * Removes a link to device which is upper to this one. The caller must hold
7026  * the RTNL lock.
7027  */
7028 void netdev_upper_dev_unlink(struct net_device *dev,
7029                              struct net_device *upper_dev)
7030 {
7031         struct netdev_notifier_changeupper_info changeupper_info = {
7032                 .info = {
7033                         .dev = dev,
7034                 },
7035                 .upper_dev = upper_dev,
7036                 .linking = false,
7037         };
7038
7039         ASSERT_RTNL();
7040
7041         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7042
7043         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7044                                       &changeupper_info.info);
7045
7046         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7047
7048         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7049                                       &changeupper_info.info);
7050 }
7051 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7052
7053 /**
7054  * netdev_bonding_info_change - Dispatch event about slave change
7055  * @dev: device
7056  * @bonding_info: info to dispatch
7057  *
7058  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7059  * The caller must hold the RTNL lock.
7060  */
7061 void netdev_bonding_info_change(struct net_device *dev,
7062                                 struct netdev_bonding_info *bonding_info)
7063 {
7064         struct netdev_notifier_bonding_info info = {
7065                 .info.dev = dev,
7066         };
7067
7068         memcpy(&info.bonding_info, bonding_info,
7069                sizeof(struct netdev_bonding_info));
7070         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7071                                       &info.info);
7072 }
7073 EXPORT_SYMBOL(netdev_bonding_info_change);
7074
7075 static void netdev_adjacent_add_links(struct net_device *dev)
7076 {
7077         struct netdev_adjacent *iter;
7078
7079         struct net *net = dev_net(dev);
7080
7081         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7082                 if (!net_eq(net, dev_net(iter->dev)))
7083                         continue;
7084                 netdev_adjacent_sysfs_add(iter->dev, dev,
7085                                           &iter->dev->adj_list.lower);
7086                 netdev_adjacent_sysfs_add(dev, iter->dev,
7087                                           &dev->adj_list.upper);
7088         }
7089
7090         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7091                 if (!net_eq(net, dev_net(iter->dev)))
7092                         continue;
7093                 netdev_adjacent_sysfs_add(iter->dev, dev,
7094                                           &iter->dev->adj_list.upper);
7095                 netdev_adjacent_sysfs_add(dev, iter->dev,
7096                                           &dev->adj_list.lower);
7097         }
7098 }
7099
7100 static void netdev_adjacent_del_links(struct net_device *dev)
7101 {
7102         struct netdev_adjacent *iter;
7103
7104         struct net *net = dev_net(dev);
7105
7106         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7107                 if (!net_eq(net, dev_net(iter->dev)))
7108                         continue;
7109                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7110                                           &iter->dev->adj_list.lower);
7111                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7112                                           &dev->adj_list.upper);
7113         }
7114
7115         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7116                 if (!net_eq(net, dev_net(iter->dev)))
7117                         continue;
7118                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7119                                           &iter->dev->adj_list.upper);
7120                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7121                                           &dev->adj_list.lower);
7122         }
7123 }
7124
7125 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7126 {
7127         struct netdev_adjacent *iter;
7128
7129         struct net *net = dev_net(dev);
7130
7131         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7132                 if (!net_eq(net, dev_net(iter->dev)))
7133                         continue;
7134                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7135                                           &iter->dev->adj_list.lower);
7136                 netdev_adjacent_sysfs_add(iter->dev, dev,
7137                                           &iter->dev->adj_list.lower);
7138         }
7139
7140         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7141                 if (!net_eq(net, dev_net(iter->dev)))
7142                         continue;
7143                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7144                                           &iter->dev->adj_list.upper);
7145                 netdev_adjacent_sysfs_add(iter->dev, dev,
7146                                           &iter->dev->adj_list.upper);
7147         }
7148 }
7149
7150 void *netdev_lower_dev_get_private(struct net_device *dev,
7151                                    struct net_device *lower_dev)
7152 {
7153         struct netdev_adjacent *lower;
7154
7155         if (!lower_dev)
7156                 return NULL;
7157         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7158         if (!lower)
7159                 return NULL;
7160
7161         return lower->private;
7162 }
7163 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7164
7165
7166 int dev_get_nest_level(struct net_device *dev)
7167 {
7168         struct net_device *lower = NULL;
7169         struct list_head *iter;
7170         int max_nest = -1;
7171         int nest;
7172
7173         ASSERT_RTNL();
7174
7175         netdev_for_each_lower_dev(dev, lower, iter) {
7176                 nest = dev_get_nest_level(lower);
7177                 if (max_nest < nest)
7178                         max_nest = nest;
7179         }
7180
7181         return max_nest + 1;
7182 }
7183 EXPORT_SYMBOL(dev_get_nest_level);
7184
7185 /**
7186  * netdev_lower_change - Dispatch event about lower device state change
7187  * @lower_dev: device
7188  * @lower_state_info: state to dispatch
7189  *
7190  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7191  * The caller must hold the RTNL lock.
7192  */
7193 void netdev_lower_state_changed(struct net_device *lower_dev,
7194                                 void *lower_state_info)
7195 {
7196         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7197                 .info.dev = lower_dev,
7198         };
7199
7200         ASSERT_RTNL();
7201         changelowerstate_info.lower_state_info = lower_state_info;
7202         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7203                                       &changelowerstate_info.info);
7204 }
7205 EXPORT_SYMBOL(netdev_lower_state_changed);
7206
7207 static void dev_change_rx_flags(struct net_device *dev, int flags)
7208 {
7209         const struct net_device_ops *ops = dev->netdev_ops;
7210
7211         if (ops->ndo_change_rx_flags)
7212                 ops->ndo_change_rx_flags(dev, flags);
7213 }
7214
7215 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7216 {
7217         unsigned int old_flags = dev->flags;
7218         kuid_t uid;
7219         kgid_t gid;
7220
7221         ASSERT_RTNL();
7222
7223         dev->flags |= IFF_PROMISC;
7224         dev->promiscuity += inc;
7225         if (dev->promiscuity == 0) {
7226                 /*
7227                  * Avoid overflow.
7228                  * If inc causes overflow, untouch promisc and return error.
7229                  */
7230                 if (inc < 0)
7231                         dev->flags &= ~IFF_PROMISC;
7232                 else {
7233                         dev->promiscuity -= inc;
7234                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7235                                 dev->name);
7236                         return -EOVERFLOW;
7237                 }
7238         }
7239         if (dev->flags != old_flags) {
7240                 pr_info("device %s %s promiscuous mode\n",
7241                         dev->name,
7242                         dev->flags & IFF_PROMISC ? "entered" : "left");
7243                 if (audit_enabled) {
7244                         current_uid_gid(&uid, &gid);
7245                         audit_log(audit_context(), GFP_ATOMIC,
7246                                   AUDIT_ANOM_PROMISCUOUS,
7247                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7248                                   dev->name, (dev->flags & IFF_PROMISC),
7249                                   (old_flags & IFF_PROMISC),
7250                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7251                                   from_kuid(&init_user_ns, uid),
7252                                   from_kgid(&init_user_ns, gid),
7253                                   audit_get_sessionid(current));
7254                 }
7255
7256                 dev_change_rx_flags(dev, IFF_PROMISC);
7257         }
7258         if (notify)
7259                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7260         return 0;
7261 }
7262
7263 /**
7264  *      dev_set_promiscuity     - update promiscuity count on a device
7265  *      @dev: device
7266  *      @inc: modifier
7267  *
7268  *      Add or remove promiscuity from a device. While the count in the device
7269  *      remains above zero the interface remains promiscuous. Once it hits zero
7270  *      the device reverts back to normal filtering operation. A negative inc
7271  *      value is used to drop promiscuity on the device.
7272  *      Return 0 if successful or a negative errno code on error.
7273  */
7274 int dev_set_promiscuity(struct net_device *dev, int inc)
7275 {
7276         unsigned int old_flags = dev->flags;
7277         int err;
7278
7279         err = __dev_set_promiscuity(dev, inc, true);
7280         if (err < 0)
7281                 return err;
7282         if (dev->flags != old_flags)
7283                 dev_set_rx_mode(dev);
7284         return err;
7285 }
7286 EXPORT_SYMBOL(dev_set_promiscuity);
7287
7288 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7289 {
7290         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7291
7292         ASSERT_RTNL();
7293
7294         dev->flags |= IFF_ALLMULTI;
7295         dev->allmulti += inc;
7296         if (dev->allmulti == 0) {
7297                 /*
7298                  * Avoid overflow.
7299                  * If inc causes overflow, untouch allmulti and return error.
7300                  */
7301                 if (inc < 0)
7302                         dev->flags &= ~IFF_ALLMULTI;
7303                 else {
7304                         dev->allmulti -= inc;
7305                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7306                                 dev->name);
7307                         return -EOVERFLOW;
7308                 }
7309         }
7310         if (dev->flags ^ old_flags) {
7311                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7312                 dev_set_rx_mode(dev);
7313                 if (notify)
7314                         __dev_notify_flags(dev, old_flags,
7315                                            dev->gflags ^ old_gflags);
7316         }
7317         return 0;
7318 }
7319
7320 /**
7321  *      dev_set_allmulti        - update allmulti count on a device
7322  *      @dev: device
7323  *      @inc: modifier
7324  *
7325  *      Add or remove reception of all multicast frames to a device. While the
7326  *      count in the device remains above zero the interface remains listening
7327  *      to all interfaces. Once it hits zero the device reverts back to normal
7328  *      filtering operation. A negative @inc value is used to drop the counter
7329  *      when releasing a resource needing all multicasts.
7330  *      Return 0 if successful or a negative errno code on error.
7331  */
7332
7333 int dev_set_allmulti(struct net_device *dev, int inc)
7334 {
7335         return __dev_set_allmulti(dev, inc, true);
7336 }
7337 EXPORT_SYMBOL(dev_set_allmulti);
7338
7339 /*
7340  *      Upload unicast and multicast address lists to device and
7341  *      configure RX filtering. When the device doesn't support unicast
7342  *      filtering it is put in promiscuous mode while unicast addresses
7343  *      are present.
7344  */
7345 void __dev_set_rx_mode(struct net_device *dev)
7346 {
7347         const struct net_device_ops *ops = dev->netdev_ops;
7348
7349         /* dev_open will call this function so the list will stay sane. */
7350         if (!(dev->flags&IFF_UP))
7351                 return;
7352
7353         if (!netif_device_present(dev))
7354                 return;
7355
7356         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7357                 /* Unicast addresses changes may only happen under the rtnl,
7358                  * therefore calling __dev_set_promiscuity here is safe.
7359                  */
7360                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7361                         __dev_set_promiscuity(dev, 1, false);
7362                         dev->uc_promisc = true;
7363                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7364                         __dev_set_promiscuity(dev, -1, false);
7365                         dev->uc_promisc = false;
7366                 }
7367         }
7368
7369         if (ops->ndo_set_rx_mode)
7370                 ops->ndo_set_rx_mode(dev);
7371 }
7372
7373 void dev_set_rx_mode(struct net_device *dev)
7374 {
7375         netif_addr_lock_bh(dev);
7376         __dev_set_rx_mode(dev);
7377         netif_addr_unlock_bh(dev);
7378 }
7379
7380 /**
7381  *      dev_get_flags - get flags reported to userspace
7382  *      @dev: device
7383  *
7384  *      Get the combination of flag bits exported through APIs to userspace.
7385  */
7386 unsigned int dev_get_flags(const struct net_device *dev)
7387 {
7388         unsigned int flags;
7389
7390         flags = (dev->flags & ~(IFF_PROMISC |
7391                                 IFF_ALLMULTI |
7392                                 IFF_RUNNING |
7393                                 IFF_LOWER_UP |
7394                                 IFF_DORMANT)) |
7395                 (dev->gflags & (IFF_PROMISC |
7396                                 IFF_ALLMULTI));
7397
7398         if (netif_running(dev)) {
7399                 if (netif_oper_up(dev))
7400                         flags |= IFF_RUNNING;
7401                 if (netif_carrier_ok(dev))
7402                         flags |= IFF_LOWER_UP;
7403                 if (netif_dormant(dev))
7404                         flags |= IFF_DORMANT;
7405         }
7406
7407         return flags;
7408 }
7409 EXPORT_SYMBOL(dev_get_flags);
7410
7411 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7412 {
7413         unsigned int old_flags = dev->flags;
7414         int ret;
7415
7416         ASSERT_RTNL();
7417
7418         /*
7419          *      Set the flags on our device.
7420          */
7421
7422         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7423                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7424                                IFF_AUTOMEDIA)) |
7425                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7426                                     IFF_ALLMULTI));
7427
7428         /*
7429          *      Load in the correct multicast list now the flags have changed.
7430          */
7431
7432         if ((old_flags ^ flags) & IFF_MULTICAST)
7433                 dev_change_rx_flags(dev, IFF_MULTICAST);
7434
7435         dev_set_rx_mode(dev);
7436
7437         /*
7438          *      Have we downed the interface. We handle IFF_UP ourselves
7439          *      according to user attempts to set it, rather than blindly
7440          *      setting it.
7441          */
7442
7443         ret = 0;
7444         if ((old_flags ^ flags) & IFF_UP) {
7445                 if (old_flags & IFF_UP)
7446                         __dev_close(dev);
7447                 else
7448                         ret = __dev_open(dev);
7449         }
7450
7451         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7452                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7453                 unsigned int old_flags = dev->flags;
7454
7455                 dev->gflags ^= IFF_PROMISC;
7456
7457                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7458                         if (dev->flags != old_flags)
7459                                 dev_set_rx_mode(dev);
7460         }
7461
7462         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7463          * is important. Some (broken) drivers set IFF_PROMISC, when
7464          * IFF_ALLMULTI is requested not asking us and not reporting.
7465          */
7466         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7467                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7468
7469                 dev->gflags ^= IFF_ALLMULTI;
7470                 __dev_set_allmulti(dev, inc, false);
7471         }
7472
7473         return ret;
7474 }
7475
7476 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7477                         unsigned int gchanges)
7478 {
7479         unsigned int changes = dev->flags ^ old_flags;
7480
7481         if (gchanges)
7482                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7483
7484         if (changes & IFF_UP) {
7485                 if (dev->flags & IFF_UP)
7486                         call_netdevice_notifiers(NETDEV_UP, dev);
7487                 else
7488                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7489         }
7490
7491         if (dev->flags & IFF_UP &&
7492             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7493                 struct netdev_notifier_change_info change_info = {
7494                         .info = {
7495                                 .dev = dev,
7496                         },
7497                         .flags_changed = changes,
7498                 };
7499
7500                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7501         }
7502 }
7503
7504 /**
7505  *      dev_change_flags - change device settings
7506  *      @dev: device
7507  *      @flags: device state flags
7508  *
7509  *      Change settings on device based state flags. The flags are
7510  *      in the userspace exported format.
7511  */
7512 int dev_change_flags(struct net_device *dev, unsigned int flags)
7513 {
7514         int ret;
7515         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7516
7517         ret = __dev_change_flags(dev, flags);
7518         if (ret < 0)
7519                 return ret;
7520
7521         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7522         __dev_notify_flags(dev, old_flags, changes);
7523         return ret;
7524 }
7525 EXPORT_SYMBOL(dev_change_flags);
7526
7527 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7528 {
7529         const struct net_device_ops *ops = dev->netdev_ops;
7530
7531         if (ops->ndo_change_mtu)
7532                 return ops->ndo_change_mtu(dev, new_mtu);
7533
7534         dev->mtu = new_mtu;
7535         return 0;
7536 }
7537 EXPORT_SYMBOL(__dev_set_mtu);
7538
7539 /**
7540  *      dev_set_mtu_ext - Change maximum transfer unit
7541  *      @dev: device
7542  *      @new_mtu: new transfer unit
7543  *      @extack: netlink extended ack
7544  *
7545  *      Change the maximum transfer size of the network device.
7546  */
7547 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7548                     struct netlink_ext_ack *extack)
7549 {
7550         int err, orig_mtu;
7551
7552         if (new_mtu == dev->mtu)
7553                 return 0;
7554
7555         /* MTU must be positive, and in range */
7556         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7557                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7558                 return -EINVAL;
7559         }
7560
7561         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7562                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7563                 return -EINVAL;
7564         }
7565
7566         if (!netif_device_present(dev))
7567                 return -ENODEV;
7568
7569         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7570         err = notifier_to_errno(err);
7571         if (err)
7572                 return err;
7573
7574         orig_mtu = dev->mtu;
7575         err = __dev_set_mtu(dev, new_mtu);
7576
7577         if (!err) {
7578                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7579                 err = notifier_to_errno(err);
7580                 if (err) {
7581                         /* setting mtu back and notifying everyone again,
7582                          * so that they have a chance to revert changes.
7583                          */
7584                         __dev_set_mtu(dev, orig_mtu);
7585                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7586                 }
7587         }
7588         return err;
7589 }
7590
7591 int dev_set_mtu(struct net_device *dev, int new_mtu)
7592 {
7593         struct netlink_ext_ack extack;
7594         int err;
7595
7596         memset(&extack, 0, sizeof(extack));
7597         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7598         if (err && extack._msg)
7599                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7600         return err;
7601 }
7602 EXPORT_SYMBOL(dev_set_mtu);
7603
7604 /**
7605  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7606  *      @dev: device
7607  *      @new_len: new tx queue length
7608  */
7609 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7610 {
7611         unsigned int orig_len = dev->tx_queue_len;
7612         int res;
7613
7614         if (new_len != (unsigned int)new_len)
7615                 return -ERANGE;
7616
7617         if (new_len != orig_len) {
7618                 dev->tx_queue_len = new_len;
7619                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7620                 res = notifier_to_errno(res);
7621                 if (res)
7622                         goto err_rollback;
7623                 res = dev_qdisc_change_tx_queue_len(dev);
7624                 if (res)
7625                         goto err_rollback;
7626         }
7627
7628         return 0;
7629
7630 err_rollback:
7631         netdev_err(dev, "refused to change device tx_queue_len\n");
7632         dev->tx_queue_len = orig_len;
7633         return res;
7634 }
7635
7636 /**
7637  *      dev_set_group - Change group this device belongs to
7638  *      @dev: device
7639  *      @new_group: group this device should belong to
7640  */
7641 void dev_set_group(struct net_device *dev, int new_group)
7642 {
7643         dev->group = new_group;
7644 }
7645 EXPORT_SYMBOL(dev_set_group);
7646
7647 /**
7648  *      dev_set_mac_address - Change Media Access Control Address
7649  *      @dev: device
7650  *      @sa: new address
7651  *
7652  *      Change the hardware (MAC) address of the device
7653  */
7654 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7655 {
7656         const struct net_device_ops *ops = dev->netdev_ops;
7657         int err;
7658
7659         if (!ops->ndo_set_mac_address)
7660                 return -EOPNOTSUPP;
7661         if (sa->sa_family != dev->type)
7662                 return -EINVAL;
7663         if (!netif_device_present(dev))
7664                 return -ENODEV;
7665         err = ops->ndo_set_mac_address(dev, sa);
7666         if (err)
7667                 return err;
7668         dev->addr_assign_type = NET_ADDR_SET;
7669         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7670         add_device_randomness(dev->dev_addr, dev->addr_len);
7671         return 0;
7672 }
7673 EXPORT_SYMBOL(dev_set_mac_address);
7674
7675 /**
7676  *      dev_change_carrier - Change device carrier
7677  *      @dev: device
7678  *      @new_carrier: new value
7679  *
7680  *      Change device carrier
7681  */
7682 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7683 {
7684         const struct net_device_ops *ops = dev->netdev_ops;
7685
7686         if (!ops->ndo_change_carrier)
7687                 return -EOPNOTSUPP;
7688         if (!netif_device_present(dev))
7689                 return -ENODEV;
7690         return ops->ndo_change_carrier(dev, new_carrier);
7691 }
7692 EXPORT_SYMBOL(dev_change_carrier);
7693
7694 /**
7695  *      dev_get_phys_port_id - Get device physical port ID
7696  *      @dev: device
7697  *      @ppid: port ID
7698  *
7699  *      Get device physical port ID
7700  */
7701 int dev_get_phys_port_id(struct net_device *dev,
7702                          struct netdev_phys_item_id *ppid)
7703 {
7704         const struct net_device_ops *ops = dev->netdev_ops;
7705
7706         if (!ops->ndo_get_phys_port_id)
7707                 return -EOPNOTSUPP;
7708         return ops->ndo_get_phys_port_id(dev, ppid);
7709 }
7710 EXPORT_SYMBOL(dev_get_phys_port_id);
7711
7712 /**
7713  *      dev_get_phys_port_name - Get device physical port name
7714  *      @dev: device
7715  *      @name: port name
7716  *      @len: limit of bytes to copy to name
7717  *
7718  *      Get device physical port name
7719  */
7720 int dev_get_phys_port_name(struct net_device *dev,
7721                            char *name, size_t len)
7722 {
7723         const struct net_device_ops *ops = dev->netdev_ops;
7724
7725         if (!ops->ndo_get_phys_port_name)
7726                 return -EOPNOTSUPP;
7727         return ops->ndo_get_phys_port_name(dev, name, len);
7728 }
7729 EXPORT_SYMBOL(dev_get_phys_port_name);
7730
7731 /**
7732  *      dev_change_proto_down - update protocol port state information
7733  *      @dev: device
7734  *      @proto_down: new value
7735  *
7736  *      This info can be used by switch drivers to set the phys state of the
7737  *      port.
7738  */
7739 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7740 {
7741         const struct net_device_ops *ops = dev->netdev_ops;
7742
7743         if (!ops->ndo_change_proto_down)
7744                 return -EOPNOTSUPP;
7745         if (!netif_device_present(dev))
7746                 return -ENODEV;
7747         return ops->ndo_change_proto_down(dev, proto_down);
7748 }
7749 EXPORT_SYMBOL(dev_change_proto_down);
7750
7751 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7752                     enum bpf_netdev_command cmd)
7753 {
7754         struct netdev_bpf xdp;
7755
7756         if (!bpf_op)
7757                 return 0;
7758
7759         memset(&xdp, 0, sizeof(xdp));
7760         xdp.command = cmd;
7761
7762         /* Query must always succeed. */
7763         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7764
7765         return xdp.prog_id;
7766 }
7767
7768 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7769                            struct netlink_ext_ack *extack, u32 flags,
7770                            struct bpf_prog *prog)
7771 {
7772         struct netdev_bpf xdp;
7773
7774         memset(&xdp, 0, sizeof(xdp));
7775         if (flags & XDP_FLAGS_HW_MODE)
7776                 xdp.command = XDP_SETUP_PROG_HW;
7777         else
7778                 xdp.command = XDP_SETUP_PROG;
7779         xdp.extack = extack;
7780         xdp.flags = flags;
7781         xdp.prog = prog;
7782
7783         return bpf_op(dev, &xdp);
7784 }
7785
7786 static void dev_xdp_uninstall(struct net_device *dev)
7787 {
7788         struct netdev_bpf xdp;
7789         bpf_op_t ndo_bpf;
7790
7791         /* Remove generic XDP */
7792         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7793
7794         /* Remove from the driver */
7795         ndo_bpf = dev->netdev_ops->ndo_bpf;
7796         if (!ndo_bpf)
7797                 return;
7798
7799         memset(&xdp, 0, sizeof(xdp));
7800         xdp.command = XDP_QUERY_PROG;
7801         WARN_ON(ndo_bpf(dev, &xdp));
7802         if (xdp.prog_id)
7803                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7804                                         NULL));
7805
7806         /* Remove HW offload */
7807         memset(&xdp, 0, sizeof(xdp));
7808         xdp.command = XDP_QUERY_PROG_HW;
7809         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7810                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7811                                         NULL));
7812 }
7813
7814 /**
7815  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7816  *      @dev: device
7817  *      @extack: netlink extended ack
7818  *      @fd: new program fd or negative value to clear
7819  *      @flags: xdp-related flags
7820  *
7821  *      Set or clear a bpf program for a device
7822  */
7823 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7824                       int fd, u32 flags)
7825 {
7826         const struct net_device_ops *ops = dev->netdev_ops;
7827         enum bpf_netdev_command query;
7828         struct bpf_prog *prog = NULL;
7829         bpf_op_t bpf_op, bpf_chk;
7830         int err;
7831
7832         ASSERT_RTNL();
7833
7834         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7835
7836         bpf_op = bpf_chk = ops->ndo_bpf;
7837         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7838                 return -EOPNOTSUPP;
7839         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7840                 bpf_op = generic_xdp_install;
7841         if (bpf_op == bpf_chk)
7842                 bpf_chk = generic_xdp_install;
7843
7844         if (fd >= 0) {
7845                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7846                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7847                         return -EEXIST;
7848                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7849                     __dev_xdp_query(dev, bpf_op, query))
7850                         return -EBUSY;
7851
7852                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7853                                              bpf_op == ops->ndo_bpf);
7854                 if (IS_ERR(prog))
7855                         return PTR_ERR(prog);
7856
7857                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7858                     bpf_prog_is_dev_bound(prog->aux)) {
7859                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7860                         bpf_prog_put(prog);
7861                         return -EINVAL;
7862                 }
7863         }
7864
7865         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7866         if (err < 0 && prog)
7867                 bpf_prog_put(prog);
7868
7869         return err;
7870 }
7871
7872 /**
7873  *      dev_new_index   -       allocate an ifindex
7874  *      @net: the applicable net namespace
7875  *
7876  *      Returns a suitable unique value for a new device interface
7877  *      number.  The caller must hold the rtnl semaphore or the
7878  *      dev_base_lock to be sure it remains unique.
7879  */
7880 static int dev_new_index(struct net *net)
7881 {
7882         int ifindex = net->ifindex;
7883
7884         for (;;) {
7885                 if (++ifindex <= 0)
7886                         ifindex = 1;
7887                 if (!__dev_get_by_index(net, ifindex))
7888                         return net->ifindex = ifindex;
7889         }
7890 }
7891
7892 /* Delayed registration/unregisteration */
7893 static LIST_HEAD(net_todo_list);
7894 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7895
7896 static void net_set_todo(struct net_device *dev)
7897 {
7898         list_add_tail(&dev->todo_list, &net_todo_list);
7899         dev_net(dev)->dev_unreg_count++;
7900 }
7901
7902 static void rollback_registered_many(struct list_head *head)
7903 {
7904         struct net_device *dev, *tmp;
7905         LIST_HEAD(close_head);
7906
7907         BUG_ON(dev_boot_phase);
7908         ASSERT_RTNL();
7909
7910         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7911                 /* Some devices call without registering
7912                  * for initialization unwind. Remove those
7913                  * devices and proceed with the remaining.
7914                  */
7915                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7916                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7917                                  dev->name, dev);
7918
7919                         WARN_ON(1);
7920                         list_del(&dev->unreg_list);
7921                         continue;
7922                 }
7923                 dev->dismantle = true;
7924                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7925         }
7926
7927         /* If device is running, close it first. */
7928         list_for_each_entry(dev, head, unreg_list)
7929                 list_add_tail(&dev->close_list, &close_head);
7930         dev_close_many(&close_head, true);
7931
7932         list_for_each_entry(dev, head, unreg_list) {
7933                 /* And unlink it from device chain. */
7934                 unlist_netdevice(dev);
7935
7936                 dev->reg_state = NETREG_UNREGISTERING;
7937         }
7938         flush_all_backlogs();
7939
7940         synchronize_net();
7941
7942         list_for_each_entry(dev, head, unreg_list) {
7943                 struct sk_buff *skb = NULL;
7944
7945                 /* Shutdown queueing discipline. */
7946                 dev_shutdown(dev);
7947
7948                 dev_xdp_uninstall(dev);
7949
7950                 /* Notify protocols, that we are about to destroy
7951                  * this device. They should clean all the things.
7952                  */
7953                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7954
7955                 if (!dev->rtnl_link_ops ||
7956                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7957                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7958                                                      GFP_KERNEL, NULL, 0);
7959
7960                 /*
7961                  *      Flush the unicast and multicast chains
7962                  */
7963                 dev_uc_flush(dev);
7964                 dev_mc_flush(dev);
7965
7966                 if (dev->netdev_ops->ndo_uninit)
7967                         dev->netdev_ops->ndo_uninit(dev);
7968
7969                 if (skb)
7970                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7971
7972                 /* Notifier chain MUST detach us all upper devices. */
7973                 WARN_ON(netdev_has_any_upper_dev(dev));
7974                 WARN_ON(netdev_has_any_lower_dev(dev));
7975
7976                 /* Remove entries from kobject tree */
7977                 netdev_unregister_kobject(dev);
7978 #ifdef CONFIG_XPS
7979                 /* Remove XPS queueing entries */
7980                 netif_reset_xps_queues_gt(dev, 0);
7981 #endif
7982         }
7983
7984         synchronize_net();
7985
7986         list_for_each_entry(dev, head, unreg_list)
7987                 dev_put(dev);
7988 }
7989
7990 static void rollback_registered(struct net_device *dev)
7991 {
7992         LIST_HEAD(single);
7993
7994         list_add(&dev->unreg_list, &single);
7995         rollback_registered_many(&single);
7996         list_del(&single);
7997 }
7998
7999 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8000         struct net_device *upper, netdev_features_t features)
8001 {
8002         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8003         netdev_features_t feature;
8004         int feature_bit;
8005
8006         for_each_netdev_feature(&upper_disables, feature_bit) {
8007                 feature = __NETIF_F_BIT(feature_bit);
8008                 if (!(upper->wanted_features & feature)
8009                     && (features & feature)) {
8010                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8011                                    &feature, upper->name);
8012                         features &= ~feature;
8013                 }
8014         }
8015
8016         return features;
8017 }
8018
8019 static void netdev_sync_lower_features(struct net_device *upper,
8020         struct net_device *lower, netdev_features_t features)
8021 {
8022         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8023         netdev_features_t feature;
8024         int feature_bit;
8025
8026         for_each_netdev_feature(&upper_disables, feature_bit) {
8027                 feature = __NETIF_F_BIT(feature_bit);
8028                 if (!(features & feature) && (lower->features & feature)) {
8029                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8030                                    &feature, lower->name);
8031                         lower->wanted_features &= ~feature;
8032                         netdev_update_features(lower);
8033
8034                         if (unlikely(lower->features & feature))
8035                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8036                                             &feature, lower->name);
8037                 }
8038         }
8039 }
8040
8041 static netdev_features_t netdev_fix_features(struct net_device *dev,
8042         netdev_features_t features)
8043 {
8044         /* Fix illegal checksum combinations */
8045         if ((features & NETIF_F_HW_CSUM) &&
8046             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8047                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8048                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8049         }
8050
8051         /* TSO requires that SG is present as well. */
8052         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8053                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8054                 features &= ~NETIF_F_ALL_TSO;
8055         }
8056
8057         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8058                                         !(features & NETIF_F_IP_CSUM)) {
8059                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8060                 features &= ~NETIF_F_TSO;
8061                 features &= ~NETIF_F_TSO_ECN;
8062         }
8063
8064         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8065                                          !(features & NETIF_F_IPV6_CSUM)) {
8066                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8067                 features &= ~NETIF_F_TSO6;
8068         }
8069
8070         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8071         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8072                 features &= ~NETIF_F_TSO_MANGLEID;
8073
8074         /* TSO ECN requires that TSO is present as well. */
8075         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8076                 features &= ~NETIF_F_TSO_ECN;
8077
8078         /* Software GSO depends on SG. */
8079         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8080                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8081                 features &= ~NETIF_F_GSO;
8082         }
8083
8084         /* GSO partial features require GSO partial be set */
8085         if ((features & dev->gso_partial_features) &&
8086             !(features & NETIF_F_GSO_PARTIAL)) {
8087                 netdev_dbg(dev,
8088                            "Dropping partially supported GSO features since no GSO partial.\n");
8089                 features &= ~dev->gso_partial_features;
8090         }
8091
8092         if (!(features & NETIF_F_RXCSUM)) {
8093                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8094                  * successfully merged by hardware must also have the
8095                  * checksum verified by hardware.  If the user does not
8096                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8097                  */
8098                 if (features & NETIF_F_GRO_HW) {
8099                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8100                         features &= ~NETIF_F_GRO_HW;
8101                 }
8102         }
8103
8104         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8105         if (features & NETIF_F_RXFCS) {
8106                 if (features & NETIF_F_LRO) {
8107                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8108                         features &= ~NETIF_F_LRO;
8109                 }
8110
8111                 if (features & NETIF_F_GRO_HW) {
8112                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8113                         features &= ~NETIF_F_GRO_HW;
8114                 }
8115         }
8116
8117         return features;
8118 }
8119
8120 int __netdev_update_features(struct net_device *dev)
8121 {
8122         struct net_device *upper, *lower;
8123         netdev_features_t features;
8124         struct list_head *iter;
8125         int err = -1;
8126
8127         ASSERT_RTNL();
8128
8129         features = netdev_get_wanted_features(dev);
8130
8131         if (dev->netdev_ops->ndo_fix_features)
8132                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8133
8134         /* driver might be less strict about feature dependencies */
8135         features = netdev_fix_features(dev, features);
8136
8137         /* some features can't be enabled if they're off an an upper device */
8138         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8139                 features = netdev_sync_upper_features(dev, upper, features);
8140
8141         if (dev->features == features)
8142                 goto sync_lower;
8143
8144         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8145                 &dev->features, &features);
8146
8147         if (dev->netdev_ops->ndo_set_features)
8148                 err = dev->netdev_ops->ndo_set_features(dev, features);
8149         else
8150                 err = 0;
8151
8152         if (unlikely(err < 0)) {
8153                 netdev_err(dev,
8154                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8155                         err, &features, &dev->features);
8156                 /* return non-0 since some features might have changed and
8157                  * it's better to fire a spurious notification than miss it
8158                  */
8159                 return -1;
8160         }
8161
8162 sync_lower:
8163         /* some features must be disabled on lower devices when disabled
8164          * on an upper device (think: bonding master or bridge)
8165          */
8166         netdev_for_each_lower_dev(dev, lower, iter)
8167                 netdev_sync_lower_features(dev, lower, features);
8168
8169         if (!err) {
8170                 netdev_features_t diff = features ^ dev->features;
8171
8172                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8173                         /* udp_tunnel_{get,drop}_rx_info both need
8174                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8175                          * device, or they won't do anything.
8176                          * Thus we need to update dev->features
8177                          * *before* calling udp_tunnel_get_rx_info,
8178                          * but *after* calling udp_tunnel_drop_rx_info.
8179                          */
8180                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8181                                 dev->features = features;
8182                                 udp_tunnel_get_rx_info(dev);
8183                         } else {
8184                                 udp_tunnel_drop_rx_info(dev);
8185                         }
8186                 }
8187
8188                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8189                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8190                                 dev->features = features;
8191                                 err |= vlan_get_rx_ctag_filter_info(dev);
8192                         } else {
8193                                 vlan_drop_rx_ctag_filter_info(dev);
8194                         }
8195                 }
8196
8197                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8198                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8199                                 dev->features = features;
8200                                 err |= vlan_get_rx_stag_filter_info(dev);
8201                         } else {
8202                                 vlan_drop_rx_stag_filter_info(dev);
8203                         }
8204                 }
8205
8206                 dev->features = features;
8207         }
8208
8209         return err < 0 ? 0 : 1;
8210 }
8211
8212 /**
8213  *      netdev_update_features - recalculate device features
8214  *      @dev: the device to check
8215  *
8216  *      Recalculate dev->features set and send notifications if it
8217  *      has changed. Should be called after driver or hardware dependent
8218  *      conditions might have changed that influence the features.
8219  */
8220 void netdev_update_features(struct net_device *dev)
8221 {
8222         if (__netdev_update_features(dev))
8223                 netdev_features_change(dev);
8224 }
8225 EXPORT_SYMBOL(netdev_update_features);
8226
8227 /**
8228  *      netdev_change_features - recalculate device features
8229  *      @dev: the device to check
8230  *
8231  *      Recalculate dev->features set and send notifications even
8232  *      if they have not changed. Should be called instead of
8233  *      netdev_update_features() if also dev->vlan_features might
8234  *      have changed to allow the changes to be propagated to stacked
8235  *      VLAN devices.
8236  */
8237 void netdev_change_features(struct net_device *dev)
8238 {
8239         __netdev_update_features(dev);
8240         netdev_features_change(dev);
8241 }
8242 EXPORT_SYMBOL(netdev_change_features);
8243
8244 /**
8245  *      netif_stacked_transfer_operstate -      transfer operstate
8246  *      @rootdev: the root or lower level device to transfer state from
8247  *      @dev: the device to transfer operstate to
8248  *
8249  *      Transfer operational state from root to device. This is normally
8250  *      called when a stacking relationship exists between the root
8251  *      device and the device(a leaf device).
8252  */
8253 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8254                                         struct net_device *dev)
8255 {
8256         if (rootdev->operstate == IF_OPER_DORMANT)
8257                 netif_dormant_on(dev);
8258         else
8259                 netif_dormant_off(dev);
8260
8261         if (netif_carrier_ok(rootdev))
8262                 netif_carrier_on(dev);
8263         else
8264                 netif_carrier_off(dev);
8265 }
8266 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8267
8268 static int netif_alloc_rx_queues(struct net_device *dev)
8269 {
8270         unsigned int i, count = dev->num_rx_queues;
8271         struct netdev_rx_queue *rx;
8272         size_t sz = count * sizeof(*rx);
8273         int err = 0;
8274
8275         BUG_ON(count < 1);
8276
8277         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8278         if (!rx)
8279                 return -ENOMEM;
8280
8281         dev->_rx = rx;
8282
8283         for (i = 0; i < count; i++) {
8284                 rx[i].dev = dev;
8285
8286                 /* XDP RX-queue setup */
8287                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8288                 if (err < 0)
8289                         goto err_rxq_info;
8290         }
8291         return 0;
8292
8293 err_rxq_info:
8294         /* Rollback successful reg's and free other resources */
8295         while (i--)
8296                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8297         kvfree(dev->_rx);
8298         dev->_rx = NULL;
8299         return err;
8300 }
8301
8302 static void netif_free_rx_queues(struct net_device *dev)
8303 {
8304         unsigned int i, count = dev->num_rx_queues;
8305
8306         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8307         if (!dev->_rx)
8308                 return;
8309
8310         for (i = 0; i < count; i++)
8311                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8312
8313         kvfree(dev->_rx);
8314 }
8315
8316 static void netdev_init_one_queue(struct net_device *dev,
8317                                   struct netdev_queue *queue, void *_unused)
8318 {
8319         /* Initialize queue lock */
8320         spin_lock_init(&queue->_xmit_lock);
8321         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8322         queue->xmit_lock_owner = -1;
8323         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8324         queue->dev = dev;
8325 #ifdef CONFIG_BQL
8326         dql_init(&queue->dql, HZ);
8327 #endif
8328 }
8329
8330 static void netif_free_tx_queues(struct net_device *dev)
8331 {
8332         kvfree(dev->_tx);
8333 }
8334
8335 static int netif_alloc_netdev_queues(struct net_device *dev)
8336 {
8337         unsigned int count = dev->num_tx_queues;
8338         struct netdev_queue *tx;
8339         size_t sz = count * sizeof(*tx);
8340
8341         if (count < 1 || count > 0xffff)
8342                 return -EINVAL;
8343
8344         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8345         if (!tx)
8346                 return -ENOMEM;
8347
8348         dev->_tx = tx;
8349
8350         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8351         spin_lock_init(&dev->tx_global_lock);
8352
8353         return 0;
8354 }
8355
8356 void netif_tx_stop_all_queues(struct net_device *dev)
8357 {
8358         unsigned int i;
8359
8360         for (i = 0; i < dev->num_tx_queues; i++) {
8361                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8362
8363                 netif_tx_stop_queue(txq);
8364         }
8365 }
8366 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8367
8368 /**
8369  *      register_netdevice      - register a network device
8370  *      @dev: device to register
8371  *
8372  *      Take a completed network device structure and add it to the kernel
8373  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8374  *      chain. 0 is returned on success. A negative errno code is returned
8375  *      on a failure to set up the device, or if the name is a duplicate.
8376  *
8377  *      Callers must hold the rtnl semaphore. You may want
8378  *      register_netdev() instead of this.
8379  *
8380  *      BUGS:
8381  *      The locking appears insufficient to guarantee two parallel registers
8382  *      will not get the same name.
8383  */
8384
8385 int register_netdevice(struct net_device *dev)
8386 {
8387         int ret;
8388         struct net *net = dev_net(dev);
8389
8390         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8391                      NETDEV_FEATURE_COUNT);
8392         BUG_ON(dev_boot_phase);
8393         ASSERT_RTNL();
8394
8395         might_sleep();
8396
8397         /* When net_device's are persistent, this will be fatal. */
8398         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8399         BUG_ON(!net);
8400
8401         spin_lock_init(&dev->addr_list_lock);
8402         netdev_set_addr_lockdep_class(dev);
8403
8404         ret = dev_get_valid_name(net, dev, dev->name);
8405         if (ret < 0)
8406                 goto out;
8407
8408         /* Init, if this function is available */
8409         if (dev->netdev_ops->ndo_init) {
8410                 ret = dev->netdev_ops->ndo_init(dev);
8411                 if (ret) {
8412                         if (ret > 0)
8413                                 ret = -EIO;
8414                         goto out;
8415                 }
8416         }
8417
8418         if (((dev->hw_features | dev->features) &
8419              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8420             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8421              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8422                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8423                 ret = -EINVAL;
8424                 goto err_uninit;
8425         }
8426
8427         ret = -EBUSY;
8428         if (!dev->ifindex)
8429                 dev->ifindex = dev_new_index(net);
8430         else if (__dev_get_by_index(net, dev->ifindex))
8431                 goto err_uninit;
8432
8433         /* Transfer changeable features to wanted_features and enable
8434          * software offloads (GSO and GRO).
8435          */
8436         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8437         dev->features |= NETIF_F_SOFT_FEATURES;
8438
8439         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8440                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8441                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8442         }
8443
8444         dev->wanted_features = dev->features & dev->hw_features;
8445
8446         if (!(dev->flags & IFF_LOOPBACK))
8447                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8448
8449         /* If IPv4 TCP segmentation offload is supported we should also
8450          * allow the device to enable segmenting the frame with the option
8451          * of ignoring a static IP ID value.  This doesn't enable the
8452          * feature itself but allows the user to enable it later.
8453          */
8454         if (dev->hw_features & NETIF_F_TSO)
8455                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8456         if (dev->vlan_features & NETIF_F_TSO)
8457                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8458         if (dev->mpls_features & NETIF_F_TSO)
8459                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8460         if (dev->hw_enc_features & NETIF_F_TSO)
8461                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8462
8463         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8464          */
8465         dev->vlan_features |= NETIF_F_HIGHDMA;
8466
8467         /* Make NETIF_F_SG inheritable to tunnel devices.
8468          */
8469         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8470
8471         /* Make NETIF_F_SG inheritable to MPLS.
8472          */
8473         dev->mpls_features |= NETIF_F_SG;
8474
8475         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8476         ret = notifier_to_errno(ret);
8477         if (ret)
8478                 goto err_uninit;
8479
8480         ret = netdev_register_kobject(dev);
8481         if (ret)
8482                 goto err_uninit;
8483         dev->reg_state = NETREG_REGISTERED;
8484
8485         __netdev_update_features(dev);
8486
8487         /*
8488          *      Default initial state at registry is that the
8489          *      device is present.
8490          */
8491
8492         set_bit(__LINK_STATE_PRESENT, &dev->state);
8493
8494         linkwatch_init_dev(dev);
8495
8496         dev_init_scheduler(dev);
8497         dev_hold(dev);
8498         list_netdevice(dev);
8499         add_device_randomness(dev->dev_addr, dev->addr_len);
8500
8501         /* If the device has permanent device address, driver should
8502          * set dev_addr and also addr_assign_type should be set to
8503          * NET_ADDR_PERM (default value).
8504          */
8505         if (dev->addr_assign_type == NET_ADDR_PERM)
8506                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8507
8508         /* Notify protocols, that a new device appeared. */
8509         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8510         ret = notifier_to_errno(ret);
8511         if (ret) {
8512                 rollback_registered(dev);
8513                 dev->reg_state = NETREG_UNREGISTERED;
8514         }
8515         /*
8516          *      Prevent userspace races by waiting until the network
8517          *      device is fully setup before sending notifications.
8518          */
8519         if (!dev->rtnl_link_ops ||
8520             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8521                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8522
8523 out:
8524         return ret;
8525
8526 err_uninit:
8527         if (dev->netdev_ops->ndo_uninit)
8528                 dev->netdev_ops->ndo_uninit(dev);
8529         if (dev->priv_destructor)
8530                 dev->priv_destructor(dev);
8531         goto out;
8532 }
8533 EXPORT_SYMBOL(register_netdevice);
8534
8535 /**
8536  *      init_dummy_netdev       - init a dummy network device for NAPI
8537  *      @dev: device to init
8538  *
8539  *      This takes a network device structure and initialize the minimum
8540  *      amount of fields so it can be used to schedule NAPI polls without
8541  *      registering a full blown interface. This is to be used by drivers
8542  *      that need to tie several hardware interfaces to a single NAPI
8543  *      poll scheduler due to HW limitations.
8544  */
8545 int init_dummy_netdev(struct net_device *dev)
8546 {
8547         /* Clear everything. Note we don't initialize spinlocks
8548          * are they aren't supposed to be taken by any of the
8549          * NAPI code and this dummy netdev is supposed to be
8550          * only ever used for NAPI polls
8551          */
8552         memset(dev, 0, sizeof(struct net_device));
8553
8554         /* make sure we BUG if trying to hit standard
8555          * register/unregister code path
8556          */
8557         dev->reg_state = NETREG_DUMMY;
8558
8559         /* NAPI wants this */
8560         INIT_LIST_HEAD(&dev->napi_list);
8561
8562         /* a dummy interface is started by default */
8563         set_bit(__LINK_STATE_PRESENT, &dev->state);
8564         set_bit(__LINK_STATE_START, &dev->state);
8565
8566         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8567          * because users of this 'device' dont need to change
8568          * its refcount.
8569          */
8570
8571         return 0;
8572 }
8573 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8574
8575
8576 /**
8577  *      register_netdev - register a network device
8578  *      @dev: device to register
8579  *
8580  *      Take a completed network device structure and add it to the kernel
8581  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8582  *      chain. 0 is returned on success. A negative errno code is returned
8583  *      on a failure to set up the device, or if the name is a duplicate.
8584  *
8585  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8586  *      and expands the device name if you passed a format string to
8587  *      alloc_netdev.
8588  */
8589 int register_netdev(struct net_device *dev)
8590 {
8591         int err;
8592
8593         if (rtnl_lock_killable())
8594                 return -EINTR;
8595         err = register_netdevice(dev);
8596         rtnl_unlock();
8597         return err;
8598 }
8599 EXPORT_SYMBOL(register_netdev);
8600
8601 int netdev_refcnt_read(const struct net_device *dev)
8602 {
8603         int i, refcnt = 0;
8604
8605         for_each_possible_cpu(i)
8606                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8607         return refcnt;
8608 }
8609 EXPORT_SYMBOL(netdev_refcnt_read);
8610
8611 /**
8612  * netdev_wait_allrefs - wait until all references are gone.
8613  * @dev: target net_device
8614  *
8615  * This is called when unregistering network devices.
8616  *
8617  * Any protocol or device that holds a reference should register
8618  * for netdevice notification, and cleanup and put back the
8619  * reference if they receive an UNREGISTER event.
8620  * We can get stuck here if buggy protocols don't correctly
8621  * call dev_put.
8622  */
8623 static void netdev_wait_allrefs(struct net_device *dev)
8624 {
8625         unsigned long rebroadcast_time, warning_time;
8626         int refcnt;
8627
8628         linkwatch_forget_dev(dev);
8629
8630         rebroadcast_time = warning_time = jiffies;
8631         refcnt = netdev_refcnt_read(dev);
8632
8633         while (refcnt != 0) {
8634                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8635                         rtnl_lock();
8636
8637                         /* Rebroadcast unregister notification */
8638                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8639
8640                         __rtnl_unlock();
8641                         rcu_barrier();
8642                         rtnl_lock();
8643
8644                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8645                                      &dev->state)) {
8646                                 /* We must not have linkwatch events
8647                                  * pending on unregister. If this
8648                                  * happens, we simply run the queue
8649                                  * unscheduled, resulting in a noop
8650                                  * for this device.
8651                                  */
8652                                 linkwatch_run_queue();
8653                         }
8654
8655                         __rtnl_unlock();
8656
8657                         rebroadcast_time = jiffies;
8658                 }
8659
8660                 msleep(250);
8661
8662                 refcnt = netdev_refcnt_read(dev);
8663
8664                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8665                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8666                                  dev->name, refcnt);
8667                         warning_time = jiffies;
8668                 }
8669         }
8670 }
8671
8672 /* The sequence is:
8673  *
8674  *      rtnl_lock();
8675  *      ...
8676  *      register_netdevice(x1);
8677  *      register_netdevice(x2);
8678  *      ...
8679  *      unregister_netdevice(y1);
8680  *      unregister_netdevice(y2);
8681  *      ...
8682  *      rtnl_unlock();
8683  *      free_netdev(y1);
8684  *      free_netdev(y2);
8685  *
8686  * We are invoked by rtnl_unlock().
8687  * This allows us to deal with problems:
8688  * 1) We can delete sysfs objects which invoke hotplug
8689  *    without deadlocking with linkwatch via keventd.
8690  * 2) Since we run with the RTNL semaphore not held, we can sleep
8691  *    safely in order to wait for the netdev refcnt to drop to zero.
8692  *
8693  * We must not return until all unregister events added during
8694  * the interval the lock was held have been completed.
8695  */
8696 void netdev_run_todo(void)
8697 {
8698         struct list_head list;
8699
8700         /* Snapshot list, allow later requests */
8701         list_replace_init(&net_todo_list, &list);
8702
8703         __rtnl_unlock();
8704
8705
8706         /* Wait for rcu callbacks to finish before next phase */
8707         if (!list_empty(&list))
8708                 rcu_barrier();
8709
8710         while (!list_empty(&list)) {
8711                 struct net_device *dev
8712                         = list_first_entry(&list, struct net_device, todo_list);
8713                 list_del(&dev->todo_list);
8714
8715                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8716                         pr_err("network todo '%s' but state %d\n",
8717                                dev->name, dev->reg_state);
8718                         dump_stack();
8719                         continue;
8720                 }
8721
8722                 dev->reg_state = NETREG_UNREGISTERED;
8723
8724                 netdev_wait_allrefs(dev);
8725
8726                 /* paranoia */
8727                 BUG_ON(netdev_refcnt_read(dev));
8728                 BUG_ON(!list_empty(&dev->ptype_all));
8729                 BUG_ON(!list_empty(&dev->ptype_specific));
8730                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8731                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8732 #if IS_ENABLED(CONFIG_DECNET)
8733                 WARN_ON(dev->dn_ptr);
8734 #endif
8735                 if (dev->priv_destructor)
8736                         dev->priv_destructor(dev);
8737                 if (dev->needs_free_netdev)
8738                         free_netdev(dev);
8739
8740                 /* Report a network device has been unregistered */
8741                 rtnl_lock();
8742                 dev_net(dev)->dev_unreg_count--;
8743                 __rtnl_unlock();
8744                 wake_up(&netdev_unregistering_wq);
8745
8746                 /* Free network device */
8747                 kobject_put(&dev->dev.kobj);
8748         }
8749 }
8750
8751 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8752  * all the same fields in the same order as net_device_stats, with only
8753  * the type differing, but rtnl_link_stats64 may have additional fields
8754  * at the end for newer counters.
8755  */
8756 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8757                              const struct net_device_stats *netdev_stats)
8758 {
8759 #if BITS_PER_LONG == 64
8760         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8761         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8762         /* zero out counters that only exist in rtnl_link_stats64 */
8763         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8764                sizeof(*stats64) - sizeof(*netdev_stats));
8765 #else
8766         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8767         const unsigned long *src = (const unsigned long *)netdev_stats;
8768         u64 *dst = (u64 *)stats64;
8769
8770         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8771         for (i = 0; i < n; i++)
8772                 dst[i] = src[i];
8773         /* zero out counters that only exist in rtnl_link_stats64 */
8774         memset((char *)stats64 + n * sizeof(u64), 0,
8775                sizeof(*stats64) - n * sizeof(u64));
8776 #endif
8777 }
8778 EXPORT_SYMBOL(netdev_stats_to_stats64);
8779
8780 /**
8781  *      dev_get_stats   - get network device statistics
8782  *      @dev: device to get statistics from
8783  *      @storage: place to store stats
8784  *
8785  *      Get network statistics from device. Return @storage.
8786  *      The device driver may provide its own method by setting
8787  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8788  *      otherwise the internal statistics structure is used.
8789  */
8790 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8791                                         struct rtnl_link_stats64 *storage)
8792 {
8793         const struct net_device_ops *ops = dev->netdev_ops;
8794
8795         if (ops->ndo_get_stats64) {
8796                 memset(storage, 0, sizeof(*storage));
8797                 ops->ndo_get_stats64(dev, storage);
8798         } else if (ops->ndo_get_stats) {
8799                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8800         } else {
8801                 netdev_stats_to_stats64(storage, &dev->stats);
8802         }
8803         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8804         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8805         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8806         return storage;
8807 }
8808 EXPORT_SYMBOL(dev_get_stats);
8809
8810 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8811 {
8812         struct netdev_queue *queue = dev_ingress_queue(dev);
8813
8814 #ifdef CONFIG_NET_CLS_ACT
8815         if (queue)
8816                 return queue;
8817         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8818         if (!queue)
8819                 return NULL;
8820         netdev_init_one_queue(dev, queue, NULL);
8821         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8822         queue->qdisc_sleeping = &noop_qdisc;
8823         rcu_assign_pointer(dev->ingress_queue, queue);
8824 #endif
8825         return queue;
8826 }
8827
8828 static const struct ethtool_ops default_ethtool_ops;
8829
8830 void netdev_set_default_ethtool_ops(struct net_device *dev,
8831                                     const struct ethtool_ops *ops)
8832 {
8833         if (dev->ethtool_ops == &default_ethtool_ops)
8834                 dev->ethtool_ops = ops;
8835 }
8836 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8837
8838 void netdev_freemem(struct net_device *dev)
8839 {
8840         char *addr = (char *)dev - dev->padded;
8841
8842         kvfree(addr);
8843 }
8844
8845 /**
8846  * alloc_netdev_mqs - allocate network device
8847  * @sizeof_priv: size of private data to allocate space for
8848  * @name: device name format string
8849  * @name_assign_type: origin of device name
8850  * @setup: callback to initialize device
8851  * @txqs: the number of TX subqueues to allocate
8852  * @rxqs: the number of RX subqueues to allocate
8853  *
8854  * Allocates a struct net_device with private data area for driver use
8855  * and performs basic initialization.  Also allocates subqueue structs
8856  * for each queue on the device.
8857  */
8858 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8859                 unsigned char name_assign_type,
8860                 void (*setup)(struct net_device *),
8861                 unsigned int txqs, unsigned int rxqs)
8862 {
8863         struct net_device *dev;
8864         unsigned int alloc_size;
8865         struct net_device *p;
8866
8867         BUG_ON(strlen(name) >= sizeof(dev->name));
8868
8869         if (txqs < 1) {
8870                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8871                 return NULL;
8872         }
8873
8874         if (rxqs < 1) {
8875                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8876                 return NULL;
8877         }
8878
8879         alloc_size = sizeof(struct net_device);
8880         if (sizeof_priv) {
8881                 /* ensure 32-byte alignment of private area */
8882                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8883                 alloc_size += sizeof_priv;
8884         }
8885         /* ensure 32-byte alignment of whole construct */
8886         alloc_size += NETDEV_ALIGN - 1;
8887
8888         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8889         if (!p)
8890                 return NULL;
8891
8892         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8893         dev->padded = (char *)dev - (char *)p;
8894
8895         dev->pcpu_refcnt = alloc_percpu(int);
8896         if (!dev->pcpu_refcnt)
8897                 goto free_dev;
8898
8899         if (dev_addr_init(dev))
8900                 goto free_pcpu;
8901
8902         dev_mc_init(dev);
8903         dev_uc_init(dev);
8904
8905         dev_net_set(dev, &init_net);
8906
8907         dev->gso_max_size = GSO_MAX_SIZE;
8908         dev->gso_max_segs = GSO_MAX_SEGS;
8909
8910         INIT_LIST_HEAD(&dev->napi_list);
8911         INIT_LIST_HEAD(&dev->unreg_list);
8912         INIT_LIST_HEAD(&dev->close_list);
8913         INIT_LIST_HEAD(&dev->link_watch_list);
8914         INIT_LIST_HEAD(&dev->adj_list.upper);
8915         INIT_LIST_HEAD(&dev->adj_list.lower);
8916         INIT_LIST_HEAD(&dev->ptype_all);
8917         INIT_LIST_HEAD(&dev->ptype_specific);
8918 #ifdef CONFIG_NET_SCHED
8919         hash_init(dev->qdisc_hash);
8920 #endif
8921         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8922         setup(dev);
8923
8924         if (!dev->tx_queue_len) {
8925                 dev->priv_flags |= IFF_NO_QUEUE;
8926                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8927         }
8928
8929         dev->num_tx_queues = txqs;
8930         dev->real_num_tx_queues = txqs;
8931         if (netif_alloc_netdev_queues(dev))
8932                 goto free_all;
8933
8934         dev->num_rx_queues = rxqs;
8935         dev->real_num_rx_queues = rxqs;
8936         if (netif_alloc_rx_queues(dev))
8937                 goto free_all;
8938
8939         strcpy(dev->name, name);
8940         dev->name_assign_type = name_assign_type;
8941         dev->group = INIT_NETDEV_GROUP;
8942         if (!dev->ethtool_ops)
8943                 dev->ethtool_ops = &default_ethtool_ops;
8944
8945         nf_hook_ingress_init(dev);
8946
8947         return dev;
8948
8949 free_all:
8950         free_netdev(dev);
8951         return NULL;
8952
8953 free_pcpu:
8954         free_percpu(dev->pcpu_refcnt);
8955 free_dev:
8956         netdev_freemem(dev);
8957         return NULL;
8958 }
8959 EXPORT_SYMBOL(alloc_netdev_mqs);
8960
8961 /**
8962  * free_netdev - free network device
8963  * @dev: device
8964  *
8965  * This function does the last stage of destroying an allocated device
8966  * interface. The reference to the device object is released. If this
8967  * is the last reference then it will be freed.Must be called in process
8968  * context.
8969  */
8970 void free_netdev(struct net_device *dev)
8971 {
8972         struct napi_struct *p, *n;
8973
8974         might_sleep();
8975         netif_free_tx_queues(dev);
8976         netif_free_rx_queues(dev);
8977
8978         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8979
8980         /* Flush device addresses */
8981         dev_addr_flush(dev);
8982
8983         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8984                 netif_napi_del(p);
8985
8986         free_percpu(dev->pcpu_refcnt);
8987         dev->pcpu_refcnt = NULL;
8988
8989         /*  Compatibility with error handling in drivers */
8990         if (dev->reg_state == NETREG_UNINITIALIZED) {
8991                 netdev_freemem(dev);
8992                 return;
8993         }
8994
8995         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8996         dev->reg_state = NETREG_RELEASED;
8997
8998         /* will free via device release */
8999         put_device(&dev->dev);
9000 }
9001 EXPORT_SYMBOL(free_netdev);
9002
9003 /**
9004  *      synchronize_net -  Synchronize with packet receive processing
9005  *
9006  *      Wait for packets currently being received to be done.
9007  *      Does not block later packets from starting.
9008  */
9009 void synchronize_net(void)
9010 {
9011         might_sleep();
9012         if (rtnl_is_locked())
9013                 synchronize_rcu_expedited();
9014         else
9015                 synchronize_rcu();
9016 }
9017 EXPORT_SYMBOL(synchronize_net);
9018
9019 /**
9020  *      unregister_netdevice_queue - remove device from the kernel
9021  *      @dev: device
9022  *      @head: list
9023  *
9024  *      This function shuts down a device interface and removes it
9025  *      from the kernel tables.
9026  *      If head not NULL, device is queued to be unregistered later.
9027  *
9028  *      Callers must hold the rtnl semaphore.  You may want
9029  *      unregister_netdev() instead of this.
9030  */
9031
9032 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9033 {
9034         ASSERT_RTNL();
9035
9036         if (head) {
9037                 list_move_tail(&dev->unreg_list, head);
9038         } else {
9039                 rollback_registered(dev);
9040                 /* Finish processing unregister after unlock */
9041                 net_set_todo(dev);
9042         }
9043 }
9044 EXPORT_SYMBOL(unregister_netdevice_queue);
9045
9046 /**
9047  *      unregister_netdevice_many - unregister many devices
9048  *      @head: list of devices
9049  *
9050  *  Note: As most callers use a stack allocated list_head,
9051  *  we force a list_del() to make sure stack wont be corrupted later.
9052  */
9053 void unregister_netdevice_many(struct list_head *head)
9054 {
9055         struct net_device *dev;
9056
9057         if (!list_empty(head)) {
9058                 rollback_registered_many(head);
9059                 list_for_each_entry(dev, head, unreg_list)
9060                         net_set_todo(dev);
9061                 list_del(head);
9062         }
9063 }
9064 EXPORT_SYMBOL(unregister_netdevice_many);
9065
9066 /**
9067  *      unregister_netdev - remove device from the kernel
9068  *      @dev: device
9069  *
9070  *      This function shuts down a device interface and removes it
9071  *      from the kernel tables.
9072  *
9073  *      This is just a wrapper for unregister_netdevice that takes
9074  *      the rtnl semaphore.  In general you want to use this and not
9075  *      unregister_netdevice.
9076  */
9077 void unregister_netdev(struct net_device *dev)
9078 {
9079         rtnl_lock();
9080         unregister_netdevice(dev);
9081         rtnl_unlock();
9082 }
9083 EXPORT_SYMBOL(unregister_netdev);
9084
9085 /**
9086  *      dev_change_net_namespace - move device to different nethost namespace
9087  *      @dev: device
9088  *      @net: network namespace
9089  *      @pat: If not NULL name pattern to try if the current device name
9090  *            is already taken in the destination network namespace.
9091  *
9092  *      This function shuts down a device interface and moves it
9093  *      to a new network namespace. On success 0 is returned, on
9094  *      a failure a netagive errno code is returned.
9095  *
9096  *      Callers must hold the rtnl semaphore.
9097  */
9098
9099 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9100 {
9101         int err, new_nsid, new_ifindex;
9102
9103         ASSERT_RTNL();
9104
9105         /* Don't allow namespace local devices to be moved. */
9106         err = -EINVAL;
9107         if (dev->features & NETIF_F_NETNS_LOCAL)
9108                 goto out;
9109
9110         /* Ensure the device has been registrered */
9111         if (dev->reg_state != NETREG_REGISTERED)
9112                 goto out;
9113
9114         /* Get out if there is nothing todo */
9115         err = 0;
9116         if (net_eq(dev_net(dev), net))
9117                 goto out;
9118
9119         /* Pick the destination device name, and ensure
9120          * we can use it in the destination network namespace.
9121          */
9122         err = -EEXIST;
9123         if (__dev_get_by_name(net, dev->name)) {
9124                 /* We get here if we can't use the current device name */
9125                 if (!pat)
9126                         goto out;
9127                 err = dev_get_valid_name(net, dev, pat);
9128                 if (err < 0)
9129                         goto out;
9130         }
9131
9132         /*
9133          * And now a mini version of register_netdevice unregister_netdevice.
9134          */
9135
9136         /* If device is running close it first. */
9137         dev_close(dev);
9138
9139         /* And unlink it from device chain */
9140         unlist_netdevice(dev);
9141
9142         synchronize_net();
9143
9144         /* Shutdown queueing discipline. */
9145         dev_shutdown(dev);
9146
9147         /* Notify protocols, that we are about to destroy
9148          * this device. They should clean all the things.
9149          *
9150          * Note that dev->reg_state stays at NETREG_REGISTERED.
9151          * This is wanted because this way 8021q and macvlan know
9152          * the device is just moving and can keep their slaves up.
9153          */
9154         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9155         rcu_barrier();
9156
9157         new_nsid = peernet2id_alloc(dev_net(dev), net);
9158         /* If there is an ifindex conflict assign a new one */
9159         if (__dev_get_by_index(net, dev->ifindex))
9160                 new_ifindex = dev_new_index(net);
9161         else
9162                 new_ifindex = dev->ifindex;
9163
9164         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9165                             new_ifindex);
9166
9167         /*
9168          *      Flush the unicast and multicast chains
9169          */
9170         dev_uc_flush(dev);
9171         dev_mc_flush(dev);
9172
9173         /* Send a netdev-removed uevent to the old namespace */
9174         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9175         netdev_adjacent_del_links(dev);
9176
9177         /* Actually switch the network namespace */
9178         dev_net_set(dev, net);
9179         dev->ifindex = new_ifindex;
9180
9181         /* Send a netdev-add uevent to the new namespace */
9182         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9183         netdev_adjacent_add_links(dev);
9184
9185         /* Fixup kobjects */
9186         err = device_rename(&dev->dev, dev->name);
9187         WARN_ON(err);
9188
9189         /* Add the device back in the hashes */
9190         list_netdevice(dev);
9191
9192         /* Notify protocols, that a new device appeared. */
9193         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9194
9195         /*
9196          *      Prevent userspace races by waiting until the network
9197          *      device is fully setup before sending notifications.
9198          */
9199         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9200
9201         synchronize_net();
9202         err = 0;
9203 out:
9204         return err;
9205 }
9206 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9207
9208 static int dev_cpu_dead(unsigned int oldcpu)
9209 {
9210         struct sk_buff **list_skb;
9211         struct sk_buff *skb;
9212         unsigned int cpu;
9213         struct softnet_data *sd, *oldsd, *remsd = NULL;
9214
9215         local_irq_disable();
9216         cpu = smp_processor_id();
9217         sd = &per_cpu(softnet_data, cpu);
9218         oldsd = &per_cpu(softnet_data, oldcpu);
9219
9220         /* Find end of our completion_queue. */
9221         list_skb = &sd->completion_queue;
9222         while (*list_skb)
9223                 list_skb = &(*list_skb)->next;
9224         /* Append completion queue from offline CPU. */
9225         *list_skb = oldsd->completion_queue;
9226         oldsd->completion_queue = NULL;
9227
9228         /* Append output queue from offline CPU. */
9229         if (oldsd->output_queue) {
9230                 *sd->output_queue_tailp = oldsd->output_queue;
9231                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9232                 oldsd->output_queue = NULL;
9233                 oldsd->output_queue_tailp = &oldsd->output_queue;
9234         }
9235         /* Append NAPI poll list from offline CPU, with one exception :
9236          * process_backlog() must be called by cpu owning percpu backlog.
9237          * We properly handle process_queue & input_pkt_queue later.
9238          */
9239         while (!list_empty(&oldsd->poll_list)) {
9240                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9241                                                             struct napi_struct,
9242                                                             poll_list);
9243
9244                 list_del_init(&napi->poll_list);
9245                 if (napi->poll == process_backlog)
9246                         napi->state = 0;
9247                 else
9248                         ____napi_schedule(sd, napi);
9249         }
9250
9251         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9252         local_irq_enable();
9253
9254 #ifdef CONFIG_RPS
9255         remsd = oldsd->rps_ipi_list;
9256         oldsd->rps_ipi_list = NULL;
9257 #endif
9258         /* send out pending IPI's on offline CPU */
9259         net_rps_send_ipi(remsd);
9260
9261         /* Process offline CPU's input_pkt_queue */
9262         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9263                 netif_rx_ni(skb);
9264                 input_queue_head_incr(oldsd);
9265         }
9266         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9267                 netif_rx_ni(skb);
9268                 input_queue_head_incr(oldsd);
9269         }
9270
9271         return 0;
9272 }
9273
9274 /**
9275  *      netdev_increment_features - increment feature set by one
9276  *      @all: current feature set
9277  *      @one: new feature set
9278  *      @mask: mask feature set
9279  *
9280  *      Computes a new feature set after adding a device with feature set
9281  *      @one to the master device with current feature set @all.  Will not
9282  *      enable anything that is off in @mask. Returns the new feature set.
9283  */
9284 netdev_features_t netdev_increment_features(netdev_features_t all,
9285         netdev_features_t one, netdev_features_t mask)
9286 {
9287         if (mask & NETIF_F_HW_CSUM)
9288                 mask |= NETIF_F_CSUM_MASK;
9289         mask |= NETIF_F_VLAN_CHALLENGED;
9290
9291         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9292         all &= one | ~NETIF_F_ALL_FOR_ALL;
9293
9294         /* If one device supports hw checksumming, set for all. */
9295         if (all & NETIF_F_HW_CSUM)
9296                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9297
9298         return all;
9299 }
9300 EXPORT_SYMBOL(netdev_increment_features);
9301
9302 static struct hlist_head * __net_init netdev_create_hash(void)
9303 {
9304         int i;
9305         struct hlist_head *hash;
9306
9307         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9308         if (hash != NULL)
9309                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9310                         INIT_HLIST_HEAD(&hash[i]);
9311
9312         return hash;
9313 }
9314
9315 /* Initialize per network namespace state */
9316 static int __net_init netdev_init(struct net *net)
9317 {
9318         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9319                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9320
9321         if (net != &init_net)
9322                 INIT_LIST_HEAD(&net->dev_base_head);
9323
9324         net->dev_name_head = netdev_create_hash();
9325         if (net->dev_name_head == NULL)
9326                 goto err_name;
9327
9328         net->dev_index_head = netdev_create_hash();
9329         if (net->dev_index_head == NULL)
9330                 goto err_idx;
9331
9332         return 0;
9333
9334 err_idx:
9335         kfree(net->dev_name_head);
9336 err_name:
9337         return -ENOMEM;
9338 }
9339
9340 /**
9341  *      netdev_drivername - network driver for the device
9342  *      @dev: network device
9343  *
9344  *      Determine network driver for device.
9345  */
9346 const char *netdev_drivername(const struct net_device *dev)
9347 {
9348         const struct device_driver *driver;
9349         const struct device *parent;
9350         const char *empty = "";
9351
9352         parent = dev->dev.parent;
9353         if (!parent)
9354                 return empty;
9355
9356         driver = parent->driver;
9357         if (driver && driver->name)
9358                 return driver->name;
9359         return empty;
9360 }
9361
9362 static void __netdev_printk(const char *level, const struct net_device *dev,
9363                             struct va_format *vaf)
9364 {
9365         if (dev && dev->dev.parent) {
9366                 dev_printk_emit(level[1] - '0',
9367                                 dev->dev.parent,
9368                                 "%s %s %s%s: %pV",
9369                                 dev_driver_string(dev->dev.parent),
9370                                 dev_name(dev->dev.parent),
9371                                 netdev_name(dev), netdev_reg_state(dev),
9372                                 vaf);
9373         } else if (dev) {
9374                 printk("%s%s%s: %pV",
9375                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9376         } else {
9377                 printk("%s(NULL net_device): %pV", level, vaf);
9378         }
9379 }
9380
9381 void netdev_printk(const char *level, const struct net_device *dev,
9382                    const char *format, ...)
9383 {
9384         struct va_format vaf;
9385         va_list args;
9386
9387         va_start(args, format);
9388
9389         vaf.fmt = format;
9390         vaf.va = &args;
9391
9392         __netdev_printk(level, dev, &vaf);
9393
9394         va_end(args);
9395 }
9396 EXPORT_SYMBOL(netdev_printk);
9397
9398 #define define_netdev_printk_level(func, level)                 \
9399 void func(const struct net_device *dev, const char *fmt, ...)   \
9400 {                                                               \
9401         struct va_format vaf;                                   \
9402         va_list args;                                           \
9403                                                                 \
9404         va_start(args, fmt);                                    \
9405                                                                 \
9406         vaf.fmt = fmt;                                          \
9407         vaf.va = &args;                                         \
9408                                                                 \
9409         __netdev_printk(level, dev, &vaf);                      \
9410                                                                 \
9411         va_end(args);                                           \
9412 }                                                               \
9413 EXPORT_SYMBOL(func);
9414
9415 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9416 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9417 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9418 define_netdev_printk_level(netdev_err, KERN_ERR);
9419 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9420 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9421 define_netdev_printk_level(netdev_info, KERN_INFO);
9422
9423 static void __net_exit netdev_exit(struct net *net)
9424 {
9425         kfree(net->dev_name_head);
9426         kfree(net->dev_index_head);
9427         if (net != &init_net)
9428                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9429 }
9430
9431 static struct pernet_operations __net_initdata netdev_net_ops = {
9432         .init = netdev_init,
9433         .exit = netdev_exit,
9434 };
9435
9436 static void __net_exit default_device_exit(struct net *net)
9437 {
9438         struct net_device *dev, *aux;
9439         /*
9440          * Push all migratable network devices back to the
9441          * initial network namespace
9442          */
9443         rtnl_lock();
9444         for_each_netdev_safe(net, dev, aux) {
9445                 int err;
9446                 char fb_name[IFNAMSIZ];
9447
9448                 /* Ignore unmoveable devices (i.e. loopback) */
9449                 if (dev->features & NETIF_F_NETNS_LOCAL)
9450                         continue;
9451
9452                 /* Leave virtual devices for the generic cleanup */
9453                 if (dev->rtnl_link_ops)
9454                         continue;
9455
9456                 /* Push remaining network devices to init_net */
9457                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9458                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9459                 if (err) {
9460                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9461                                  __func__, dev->name, err);
9462                         BUG();
9463                 }
9464         }
9465         rtnl_unlock();
9466 }
9467
9468 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9469 {
9470         /* Return with the rtnl_lock held when there are no network
9471          * devices unregistering in any network namespace in net_list.
9472          */
9473         struct net *net;
9474         bool unregistering;
9475         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9476
9477         add_wait_queue(&netdev_unregistering_wq, &wait);
9478         for (;;) {
9479                 unregistering = false;
9480                 rtnl_lock();
9481                 list_for_each_entry(net, net_list, exit_list) {
9482                         if (net->dev_unreg_count > 0) {
9483                                 unregistering = true;
9484                                 break;
9485                         }
9486                 }
9487                 if (!unregistering)
9488                         break;
9489                 __rtnl_unlock();
9490
9491                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9492         }
9493         remove_wait_queue(&netdev_unregistering_wq, &wait);
9494 }
9495
9496 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9497 {
9498         /* At exit all network devices most be removed from a network
9499          * namespace.  Do this in the reverse order of registration.
9500          * Do this across as many network namespaces as possible to
9501          * improve batching efficiency.
9502          */
9503         struct net_device *dev;
9504         struct net *net;
9505         LIST_HEAD(dev_kill_list);
9506
9507         /* To prevent network device cleanup code from dereferencing
9508          * loopback devices or network devices that have been freed
9509          * wait here for all pending unregistrations to complete,
9510          * before unregistring the loopback device and allowing the
9511          * network namespace be freed.
9512          *
9513          * The netdev todo list containing all network devices
9514          * unregistrations that happen in default_device_exit_batch
9515          * will run in the rtnl_unlock() at the end of
9516          * default_device_exit_batch.
9517          */
9518         rtnl_lock_unregistering(net_list);
9519         list_for_each_entry(net, net_list, exit_list) {
9520                 for_each_netdev_reverse(net, dev) {
9521                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9522                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9523                         else
9524                                 unregister_netdevice_queue(dev, &dev_kill_list);
9525                 }
9526         }
9527         unregister_netdevice_many(&dev_kill_list);
9528         rtnl_unlock();
9529 }
9530
9531 static struct pernet_operations __net_initdata default_device_ops = {
9532         .exit = default_device_exit,
9533         .exit_batch = default_device_exit_batch,
9534 };
9535
9536 /*
9537  *      Initialize the DEV module. At boot time this walks the device list and
9538  *      unhooks any devices that fail to initialise (normally hardware not
9539  *      present) and leaves us with a valid list of present and active devices.
9540  *
9541  */
9542
9543 /*
9544  *       This is called single threaded during boot, so no need
9545  *       to take the rtnl semaphore.
9546  */
9547 static int __init net_dev_init(void)
9548 {
9549         int i, rc = -ENOMEM;
9550
9551         BUG_ON(!dev_boot_phase);
9552
9553         if (dev_proc_init())
9554                 goto out;
9555
9556         if (netdev_kobject_init())
9557                 goto out;
9558
9559         INIT_LIST_HEAD(&ptype_all);
9560         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9561                 INIT_LIST_HEAD(&ptype_base[i]);
9562
9563         INIT_LIST_HEAD(&offload_base);
9564
9565         if (register_pernet_subsys(&netdev_net_ops))
9566                 goto out;
9567
9568         /*
9569          *      Initialise the packet receive queues.
9570          */
9571
9572         for_each_possible_cpu(i) {
9573                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9574                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9575
9576                 INIT_WORK(flush, flush_backlog);
9577
9578                 skb_queue_head_init(&sd->input_pkt_queue);
9579                 skb_queue_head_init(&sd->process_queue);
9580 #ifdef CONFIG_XFRM_OFFLOAD
9581                 skb_queue_head_init(&sd->xfrm_backlog);
9582 #endif
9583                 INIT_LIST_HEAD(&sd->poll_list);
9584                 sd->output_queue_tailp = &sd->output_queue;
9585 #ifdef CONFIG_RPS
9586                 sd->csd.func = rps_trigger_softirq;
9587                 sd->csd.info = sd;
9588                 sd->cpu = i;
9589 #endif
9590
9591                 init_gro_hash(&sd->backlog);
9592                 sd->backlog.poll = process_backlog;
9593                 sd->backlog.weight = weight_p;
9594         }
9595
9596         dev_boot_phase = 0;
9597
9598         /* The loopback device is special if any other network devices
9599          * is present in a network namespace the loopback device must
9600          * be present. Since we now dynamically allocate and free the
9601          * loopback device ensure this invariant is maintained by
9602          * keeping the loopback device as the first device on the
9603          * list of network devices.  Ensuring the loopback devices
9604          * is the first device that appears and the last network device
9605          * that disappears.
9606          */
9607         if (register_pernet_device(&loopback_net_ops))
9608                 goto out;
9609
9610         if (register_pernet_device(&default_device_ops))
9611                 goto out;
9612
9613         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9614         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9615
9616         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9617                                        NULL, dev_cpu_dead);
9618         WARN_ON(rc < 0);
9619         rc = 0;
9620 out:
9621         return rc;
9622 }
9623
9624 subsys_initcall(net_dev_init);