Merge remote-tracking branch 'net-next/master' into mac80211-next
[linux-block.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59
60 /* ---- HCI debugfs entries ---- */
61
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63                              size_t count, loff_t *ppos)
64 {
65         struct hci_dev *hdev = file->private_data;
66         char buf[3];
67
68         buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69         buf[1] = '\n';
70         buf[2] = '\0';
71         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75                               size_t count, loff_t *ppos)
76 {
77         struct hci_dev *hdev = file->private_data;
78         struct sk_buff *skb;
79         char buf[32];
80         size_t buf_size = min(count, (sizeof(buf)-1));
81         bool enable;
82
83         if (!test_bit(HCI_UP, &hdev->flags))
84                 return -ENETDOWN;
85
86         if (copy_from_user(buf, user_buf, buf_size))
87                 return -EFAULT;
88
89         buf[buf_size] = '\0';
90         if (strtobool(buf, &enable))
91                 return -EINVAL;
92
93         if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94                 return -EALREADY;
95
96         hci_req_sync_lock(hdev);
97         if (enable)
98                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99                                      HCI_CMD_TIMEOUT);
100         else
101                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102                                      HCI_CMD_TIMEOUT);
103         hci_req_sync_unlock(hdev);
104
105         if (IS_ERR(skb))
106                 return PTR_ERR(skb);
107
108         kfree_skb(skb);
109
110         hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112         return count;
113 }
114
115 static const struct file_operations dut_mode_fops = {
116         .open           = simple_open,
117         .read           = dut_mode_read,
118         .write          = dut_mode_write,
119         .llseek         = default_llseek,
120 };
121
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123                                 size_t count, loff_t *ppos)
124 {
125         struct hci_dev *hdev = file->private_data;
126         char buf[3];
127
128         buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129         buf[1] = '\n';
130         buf[2] = '\0';
131         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135                                  size_t count, loff_t *ppos)
136 {
137         struct hci_dev *hdev = file->private_data;
138         char buf[32];
139         size_t buf_size = min(count, (sizeof(buf)-1));
140         bool enable;
141         int err;
142
143         if (copy_from_user(buf, user_buf, buf_size))
144                 return -EFAULT;
145
146         buf[buf_size] = '\0';
147         if (strtobool(buf, &enable))
148                 return -EINVAL;
149
150         /* When the diagnostic flags are not persistent and the transport
151          * is not active or in user channel operation, then there is no need
152          * for the vendor callback. Instead just store the desired value and
153          * the setting will be programmed when the controller gets powered on.
154          */
155         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
156             (!test_bit(HCI_RUNNING, &hdev->flags) ||
157              hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
158                 goto done;
159
160         hci_req_sync_lock(hdev);
161         err = hdev->set_diag(hdev, enable);
162         hci_req_sync_unlock(hdev);
163
164         if (err < 0)
165                 return err;
166
167 done:
168         if (enable)
169                 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170         else
171                 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173         return count;
174 }
175
176 static const struct file_operations vendor_diag_fops = {
177         .open           = simple_open,
178         .read           = vendor_diag_read,
179         .write          = vendor_diag_write,
180         .llseek         = default_llseek,
181 };
182
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185         debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186                             &dut_mode_fops);
187
188         if (hdev->set_diag)
189                 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190                                     &vendor_diag_fops);
191 }
192
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195         BT_DBG("%s %ld", req->hdev->name, opt);
196
197         /* Reset device */
198         set_bit(HCI_RESET, &req->hdev->flags);
199         hci_req_add(req, HCI_OP_RESET, 0, NULL);
200         return 0;
201 }
202
203 static void bredr_init(struct hci_request *req)
204 {
205         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207         /* Read Local Supported Features */
208         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210         /* Read Local Version */
211         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213         /* Read BD Address */
214         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216
217 static void amp_init1(struct hci_request *req)
218 {
219         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221         /* Read Local Version */
222         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224         /* Read Local Supported Commands */
225         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227         /* Read Local AMP Info */
228         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230         /* Read Data Blk size */
231         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233         /* Read Flow Control Mode */
234         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236         /* Read Location Data */
237         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239
240 static int amp_init2(struct hci_request *req)
241 {
242         /* Read Local Supported Features. Not all AMP controllers
243          * support this so it's placed conditionally in the second
244          * stage init.
245          */
246         if (req->hdev->commands[14] & 0x20)
247                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249         return 0;
250 }
251
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254         struct hci_dev *hdev = req->hdev;
255
256         BT_DBG("%s %ld", hdev->name, opt);
257
258         /* Reset */
259         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260                 hci_reset_req(req, 0);
261
262         switch (hdev->dev_type) {
263         case HCI_PRIMARY:
264                 bredr_init(req);
265                 break;
266         case HCI_AMP:
267                 amp_init1(req);
268                 break;
269         default:
270                 BT_ERR("Unknown device type %d", hdev->dev_type);
271                 break;
272         }
273
274         return 0;
275 }
276
277 static void bredr_setup(struct hci_request *req)
278 {
279         __le16 param;
280         __u8 flt_type;
281
282         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284
285         /* Read Class of Device */
286         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287
288         /* Read Local Name */
289         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290
291         /* Read Voice Setting */
292         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293
294         /* Read Number of Supported IAC */
295         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296
297         /* Read Current IAC LAP */
298         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299
300         /* Clear Event Filters */
301         flt_type = HCI_FLT_CLEAR_ALL;
302         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303
304         /* Connection accept timeout ~20 secs */
305         param = cpu_to_le16(0x7d00);
306         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308
309 static void le_setup(struct hci_request *req)
310 {
311         struct hci_dev *hdev = req->hdev;
312
313         /* Read LE Buffer Size */
314         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315
316         /* Read LE Local Supported Features */
317         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318
319         /* Read LE Supported States */
320         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321
322         /* LE-only controllers have LE implicitly enabled */
323         if (!lmp_bredr_capable(hdev))
324                 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329         struct hci_dev *hdev = req->hdev;
330
331         /* The second byte is 0xff instead of 0x9f (two reserved bits
332          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333          * command otherwise.
334          */
335         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336
337         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338          * any event mask for pre 1.2 devices.
339          */
340         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341                 return;
342
343         if (lmp_bredr_capable(hdev)) {
344                 events[4] |= 0x01; /* Flow Specification Complete */
345         } else {
346                 /* Use a different default for LE-only devices */
347                 memset(events, 0, sizeof(events));
348                 events[1] |= 0x20; /* Command Complete */
349                 events[1] |= 0x40; /* Command Status */
350                 events[1] |= 0x80; /* Hardware Error */
351
352                 /* If the controller supports the Disconnect command, enable
353                  * the corresponding event. In addition enable packet flow
354                  * control related events.
355                  */
356                 if (hdev->commands[0] & 0x20) {
357                         events[0] |= 0x10; /* Disconnection Complete */
358                         events[2] |= 0x04; /* Number of Completed Packets */
359                         events[3] |= 0x02; /* Data Buffer Overflow */
360                 }
361
362                 /* If the controller supports the Read Remote Version
363                  * Information command, enable the corresponding event.
364                  */
365                 if (hdev->commands[2] & 0x80)
366                         events[1] |= 0x08; /* Read Remote Version Information
367                                             * Complete
368                                             */
369
370                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371                         events[0] |= 0x80; /* Encryption Change */
372                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
373                 }
374         }
375
376         if (lmp_inq_rssi_capable(hdev) ||
377             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378                 events[4] |= 0x02; /* Inquiry Result with RSSI */
379
380         if (lmp_ext_feat_capable(hdev))
381                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
382
383         if (lmp_esco_capable(hdev)) {
384                 events[5] |= 0x08; /* Synchronous Connection Complete */
385                 events[5] |= 0x10; /* Synchronous Connection Changed */
386         }
387
388         if (lmp_sniffsubr_capable(hdev))
389                 events[5] |= 0x20; /* Sniff Subrating */
390
391         if (lmp_pause_enc_capable(hdev))
392                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
393
394         if (lmp_ext_inq_capable(hdev))
395                 events[5] |= 0x40; /* Extended Inquiry Result */
396
397         if (lmp_no_flush_capable(hdev))
398                 events[7] |= 0x01; /* Enhanced Flush Complete */
399
400         if (lmp_lsto_capable(hdev))
401                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
402
403         if (lmp_ssp_capable(hdev)) {
404                 events[6] |= 0x01;      /* IO Capability Request */
405                 events[6] |= 0x02;      /* IO Capability Response */
406                 events[6] |= 0x04;      /* User Confirmation Request */
407                 events[6] |= 0x08;      /* User Passkey Request */
408                 events[6] |= 0x10;      /* Remote OOB Data Request */
409                 events[6] |= 0x20;      /* Simple Pairing Complete */
410                 events[7] |= 0x04;      /* User Passkey Notification */
411                 events[7] |= 0x08;      /* Keypress Notification */
412                 events[7] |= 0x10;      /* Remote Host Supported
413                                          * Features Notification
414                                          */
415         }
416
417         if (lmp_le_capable(hdev))
418                 events[7] |= 0x20;      /* LE Meta-Event */
419
420         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425         struct hci_dev *hdev = req->hdev;
426
427         if (hdev->dev_type == HCI_AMP)
428                 return amp_init2(req);
429
430         if (lmp_bredr_capable(hdev))
431                 bredr_setup(req);
432         else
433                 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434
435         if (lmp_le_capable(hdev))
436                 le_setup(req);
437
438         /* All Bluetooth 1.2 and later controllers should support the
439          * HCI command for reading the local supported commands.
440          *
441          * Unfortunately some controllers indicate Bluetooth 1.2 support,
442          * but do not have support for this command. If that is the case,
443          * the driver can quirk the behavior and skip reading the local
444          * supported commands.
445          */
446         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449
450         if (lmp_ssp_capable(hdev)) {
451                 /* When SSP is available, then the host features page
452                  * should also be available as well. However some
453                  * controllers list the max_page as 0 as long as SSP
454                  * has not been enabled. To achieve proper debugging
455                  * output, force the minimum max_page to 1 at least.
456                  */
457                 hdev->max_page = 0x01;
458
459                 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460                         u8 mode = 0x01;
461
462                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463                                     sizeof(mode), &mode);
464                 } else {
465                         struct hci_cp_write_eir cp;
466
467                         memset(hdev->eir, 0, sizeof(hdev->eir));
468                         memset(&cp, 0, sizeof(cp));
469
470                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471                 }
472         }
473
474         if (lmp_inq_rssi_capable(hdev) ||
475             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476                 u8 mode;
477
478                 /* If Extended Inquiry Result events are supported, then
479                  * they are clearly preferred over Inquiry Result with RSSI
480                  * events.
481                  */
482                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483
484                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485         }
486
487         if (lmp_inq_tx_pwr_capable(hdev))
488                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489
490         if (lmp_ext_feat_capable(hdev)) {
491                 struct hci_cp_read_local_ext_features cp;
492
493                 cp.page = 0x01;
494                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495                             sizeof(cp), &cp);
496         }
497
498         if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499                 u8 enable = 1;
500                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501                             &enable);
502         }
503
504         return 0;
505 }
506
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509         struct hci_dev *hdev = req->hdev;
510         struct hci_cp_write_def_link_policy cp;
511         u16 link_policy = 0;
512
513         if (lmp_rswitch_capable(hdev))
514                 link_policy |= HCI_LP_RSWITCH;
515         if (lmp_hold_capable(hdev))
516                 link_policy |= HCI_LP_HOLD;
517         if (lmp_sniff_capable(hdev))
518                 link_policy |= HCI_LP_SNIFF;
519         if (lmp_park_capable(hdev))
520                 link_policy |= HCI_LP_PARK;
521
522         cp.policy = cpu_to_le16(link_policy);
523         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525
526 static void hci_set_le_support(struct hci_request *req)
527 {
528         struct hci_dev *hdev = req->hdev;
529         struct hci_cp_write_le_host_supported cp;
530
531         /* LE-only devices do not support explicit enablement */
532         if (!lmp_bredr_capable(hdev))
533                 return;
534
535         memset(&cp, 0, sizeof(cp));
536
537         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538                 cp.le = 0x01;
539                 cp.simul = 0x00;
540         }
541
542         if (cp.le != lmp_host_le_capable(hdev))
543                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544                             &cp);
545 }
546
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549         struct hci_dev *hdev = req->hdev;
550         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551
552         /* If Connectionless Slave Broadcast master role is supported
553          * enable all necessary events for it.
554          */
555         if (lmp_csb_master_capable(hdev)) {
556                 events[1] |= 0x40;      /* Triggered Clock Capture */
557                 events[1] |= 0x80;      /* Synchronization Train Complete */
558                 events[2] |= 0x10;      /* Slave Page Response Timeout */
559                 events[2] |= 0x20;      /* CSB Channel Map Change */
560         }
561
562         /* If Connectionless Slave Broadcast slave role is supported
563          * enable all necessary events for it.
564          */
565         if (lmp_csb_slave_capable(hdev)) {
566                 events[2] |= 0x01;      /* Synchronization Train Received */
567                 events[2] |= 0x02;      /* CSB Receive */
568                 events[2] |= 0x04;      /* CSB Timeout */
569                 events[2] |= 0x08;      /* Truncated Page Complete */
570         }
571
572         /* Enable Authenticated Payload Timeout Expired event if supported */
573         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
574                 events[2] |= 0x80;
575
576         hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
577 }
578
579 static int hci_init3_req(struct hci_request *req, unsigned long opt)
580 {
581         struct hci_dev *hdev = req->hdev;
582         u8 p;
583
584         hci_setup_event_mask(req);
585
586         if (hdev->commands[6] & 0x20 &&
587             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
588                 struct hci_cp_read_stored_link_key cp;
589
590                 bacpy(&cp.bdaddr, BDADDR_ANY);
591                 cp.read_all = 0x01;
592                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
593         }
594
595         if (hdev->commands[5] & 0x10)
596                 hci_setup_link_policy(req);
597
598         if (hdev->commands[8] & 0x01)
599                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
600
601         /* Some older Broadcom based Bluetooth 1.2 controllers do not
602          * support the Read Page Scan Type command. Check support for
603          * this command in the bit mask of supported commands.
604          */
605         if (hdev->commands[13] & 0x01)
606                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
607
608         if (lmp_le_capable(hdev)) {
609                 u8 events[8];
610
611                 memset(events, 0, sizeof(events));
612
613                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
614                         events[0] |= 0x10;      /* LE Long Term Key Request */
615
616                 /* If controller supports the Connection Parameters Request
617                  * Link Layer Procedure, enable the corresponding event.
618                  */
619                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
620                         events[0] |= 0x20;      /* LE Remote Connection
621                                                  * Parameter Request
622                                                  */
623
624                 /* If the controller supports the Data Length Extension
625                  * feature, enable the corresponding event.
626                  */
627                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
628                         events[0] |= 0x40;      /* LE Data Length Change */
629
630                 /* If the controller supports Extended Scanner Filter
631                  * Policies, enable the correspondig event.
632                  */
633                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
634                         events[1] |= 0x04;      /* LE Direct Advertising
635                                                  * Report
636                                                  */
637
638                 /* If the controller supports Channel Selection Algorithm #2
639                  * feature, enable the corresponding event.
640                  */
641                 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
642                         events[2] |= 0x08;      /* LE Channel Selection
643                                                  * Algorithm
644                                                  */
645
646                 /* If the controller supports the LE Set Scan Enable command,
647                  * enable the corresponding advertising report event.
648                  */
649                 if (hdev->commands[26] & 0x08)
650                         events[0] |= 0x02;      /* LE Advertising Report */
651
652                 /* If the controller supports the LE Create Connection
653                  * command, enable the corresponding event.
654                  */
655                 if (hdev->commands[26] & 0x10)
656                         events[0] |= 0x01;      /* LE Connection Complete */
657
658                 /* If the controller supports the LE Connection Update
659                  * command, enable the corresponding event.
660                  */
661                 if (hdev->commands[27] & 0x04)
662                         events[0] |= 0x04;      /* LE Connection Update
663                                                  * Complete
664                                                  */
665
666                 /* If the controller supports the LE Read Remote Used Features
667                  * command, enable the corresponding event.
668                  */
669                 if (hdev->commands[27] & 0x20)
670                         events[0] |= 0x08;      /* LE Read Remote Used
671                                                  * Features Complete
672                                                  */
673
674                 /* If the controller supports the LE Read Local P-256
675                  * Public Key command, enable the corresponding event.
676                  */
677                 if (hdev->commands[34] & 0x02)
678                         events[0] |= 0x80;      /* LE Read Local P-256
679                                                  * Public Key Complete
680                                                  */
681
682                 /* If the controller supports the LE Generate DHKey
683                  * command, enable the corresponding event.
684                  */
685                 if (hdev->commands[34] & 0x04)
686                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
687
688                 /* If the controller supports the LE Set Default PHY or
689                  * LE Set PHY commands, enable the corresponding event.
690                  */
691                 if (hdev->commands[35] & (0x20 | 0x40))
692                         events[1] |= 0x08;        /* LE PHY Update Complete */
693
694                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
695                             events);
696
697                 if (hdev->commands[25] & 0x40) {
698                         /* Read LE Advertising Channel TX Power */
699                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
700                 }
701
702                 if (hdev->commands[26] & 0x40) {
703                         /* Read LE White List Size */
704                         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
705                                     0, NULL);
706                 }
707
708                 if (hdev->commands[26] & 0x80) {
709                         /* Clear LE White List */
710                         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
711                 }
712
713                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
714                         /* Read LE Maximum Data Length */
715                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
716
717                         /* Read LE Suggested Default Data Length */
718                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
719                 }
720
721                 hci_set_le_support(req);
722         }
723
724         /* Read features beyond page 1 if available */
725         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
726                 struct hci_cp_read_local_ext_features cp;
727
728                 cp.page = p;
729                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
730                             sizeof(cp), &cp);
731         }
732
733         return 0;
734 }
735
736 static int hci_init4_req(struct hci_request *req, unsigned long opt)
737 {
738         struct hci_dev *hdev = req->hdev;
739
740         /* Some Broadcom based Bluetooth controllers do not support the
741          * Delete Stored Link Key command. They are clearly indicating its
742          * absence in the bit mask of supported commands.
743          *
744          * Check the supported commands and only if the the command is marked
745          * as supported send it. If not supported assume that the controller
746          * does not have actual support for stored link keys which makes this
747          * command redundant anyway.
748          *
749          * Some controllers indicate that they support handling deleting
750          * stored link keys, but they don't. The quirk lets a driver
751          * just disable this command.
752          */
753         if (hdev->commands[6] & 0x80 &&
754             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
755                 struct hci_cp_delete_stored_link_key cp;
756
757                 bacpy(&cp.bdaddr, BDADDR_ANY);
758                 cp.delete_all = 0x01;
759                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
760                             sizeof(cp), &cp);
761         }
762
763         /* Set event mask page 2 if the HCI command for it is supported */
764         if (hdev->commands[22] & 0x04)
765                 hci_set_event_mask_page_2(req);
766
767         /* Read local codec list if the HCI command is supported */
768         if (hdev->commands[29] & 0x20)
769                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
770
771         /* Get MWS transport configuration if the HCI command is supported */
772         if (hdev->commands[30] & 0x08)
773                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
774
775         /* Check for Synchronization Train support */
776         if (lmp_sync_train_capable(hdev))
777                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
778
779         /* Enable Secure Connections if supported and configured */
780         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
781             bredr_sc_enabled(hdev)) {
782                 u8 support = 0x01;
783
784                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
785                             sizeof(support), &support);
786         }
787
788         /* Set Suggested Default Data Length to maximum if supported */
789         if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
790                 struct hci_cp_le_write_def_data_len cp;
791
792                 cp.tx_len = hdev->le_max_tx_len;
793                 cp.tx_time = hdev->le_max_tx_time;
794                 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
795         }
796
797         /* Set Default PHY parameters if command is supported */
798         if (hdev->commands[35] & 0x20) {
799                 struct hci_cp_le_set_default_phy cp;
800
801                 /* No transmitter PHY or receiver PHY preferences */
802                 cp.all_phys = 0x03;
803                 cp.tx_phys = 0;
804                 cp.rx_phys = 0;
805
806                 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
807         }
808
809         return 0;
810 }
811
812 static int __hci_init(struct hci_dev *hdev)
813 {
814         int err;
815
816         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
817         if (err < 0)
818                 return err;
819
820         if (hci_dev_test_flag(hdev, HCI_SETUP))
821                 hci_debugfs_create_basic(hdev);
822
823         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
824         if (err < 0)
825                 return err;
826
827         /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
828          * BR/EDR/LE type controllers. AMP controllers only need the
829          * first two stages of init.
830          */
831         if (hdev->dev_type != HCI_PRIMARY)
832                 return 0;
833
834         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
835         if (err < 0)
836                 return err;
837
838         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
839         if (err < 0)
840                 return err;
841
842         /* This function is only called when the controller is actually in
843          * configured state. When the controller is marked as unconfigured,
844          * this initialization procedure is not run.
845          *
846          * It means that it is possible that a controller runs through its
847          * setup phase and then discovers missing settings. If that is the
848          * case, then this function will not be called. It then will only
849          * be called during the config phase.
850          *
851          * So only when in setup phase or config phase, create the debugfs
852          * entries and register the SMP channels.
853          */
854         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
855             !hci_dev_test_flag(hdev, HCI_CONFIG))
856                 return 0;
857
858         hci_debugfs_create_common(hdev);
859
860         if (lmp_bredr_capable(hdev))
861                 hci_debugfs_create_bredr(hdev);
862
863         if (lmp_le_capable(hdev))
864                 hci_debugfs_create_le(hdev);
865
866         return 0;
867 }
868
869 static int hci_init0_req(struct hci_request *req, unsigned long opt)
870 {
871         struct hci_dev *hdev = req->hdev;
872
873         BT_DBG("%s %ld", hdev->name, opt);
874
875         /* Reset */
876         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
877                 hci_reset_req(req, 0);
878
879         /* Read Local Version */
880         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
881
882         /* Read BD Address */
883         if (hdev->set_bdaddr)
884                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
885
886         return 0;
887 }
888
889 static int __hci_unconf_init(struct hci_dev *hdev)
890 {
891         int err;
892
893         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
894                 return 0;
895
896         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
897         if (err < 0)
898                 return err;
899
900         if (hci_dev_test_flag(hdev, HCI_SETUP))
901                 hci_debugfs_create_basic(hdev);
902
903         return 0;
904 }
905
906 static int hci_scan_req(struct hci_request *req, unsigned long opt)
907 {
908         __u8 scan = opt;
909
910         BT_DBG("%s %x", req->hdev->name, scan);
911
912         /* Inquiry and Page scans */
913         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
914         return 0;
915 }
916
917 static int hci_auth_req(struct hci_request *req, unsigned long opt)
918 {
919         __u8 auth = opt;
920
921         BT_DBG("%s %x", req->hdev->name, auth);
922
923         /* Authentication */
924         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
925         return 0;
926 }
927
928 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
929 {
930         __u8 encrypt = opt;
931
932         BT_DBG("%s %x", req->hdev->name, encrypt);
933
934         /* Encryption */
935         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
936         return 0;
937 }
938
939 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
940 {
941         __le16 policy = cpu_to_le16(opt);
942
943         BT_DBG("%s %x", req->hdev->name, policy);
944
945         /* Default link policy */
946         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
947         return 0;
948 }
949
950 /* Get HCI device by index.
951  * Device is held on return. */
952 struct hci_dev *hci_dev_get(int index)
953 {
954         struct hci_dev *hdev = NULL, *d;
955
956         BT_DBG("%d", index);
957
958         if (index < 0)
959                 return NULL;
960
961         read_lock(&hci_dev_list_lock);
962         list_for_each_entry(d, &hci_dev_list, list) {
963                 if (d->id == index) {
964                         hdev = hci_dev_hold(d);
965                         break;
966                 }
967         }
968         read_unlock(&hci_dev_list_lock);
969         return hdev;
970 }
971
972 /* ---- Inquiry support ---- */
973
974 bool hci_discovery_active(struct hci_dev *hdev)
975 {
976         struct discovery_state *discov = &hdev->discovery;
977
978         switch (discov->state) {
979         case DISCOVERY_FINDING:
980         case DISCOVERY_RESOLVING:
981                 return true;
982
983         default:
984                 return false;
985         }
986 }
987
988 void hci_discovery_set_state(struct hci_dev *hdev, int state)
989 {
990         int old_state = hdev->discovery.state;
991
992         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
993
994         if (old_state == state)
995                 return;
996
997         hdev->discovery.state = state;
998
999         switch (state) {
1000         case DISCOVERY_STOPPED:
1001                 hci_update_background_scan(hdev);
1002
1003                 if (old_state != DISCOVERY_STARTING)
1004                         mgmt_discovering(hdev, 0);
1005                 break;
1006         case DISCOVERY_STARTING:
1007                 break;
1008         case DISCOVERY_FINDING:
1009                 mgmt_discovering(hdev, 1);
1010                 break;
1011         case DISCOVERY_RESOLVING:
1012                 break;
1013         case DISCOVERY_STOPPING:
1014                 break;
1015         }
1016 }
1017
1018 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1019 {
1020         struct discovery_state *cache = &hdev->discovery;
1021         struct inquiry_entry *p, *n;
1022
1023         list_for_each_entry_safe(p, n, &cache->all, all) {
1024                 list_del(&p->all);
1025                 kfree(p);
1026         }
1027
1028         INIT_LIST_HEAD(&cache->unknown);
1029         INIT_LIST_HEAD(&cache->resolve);
1030 }
1031
1032 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1033                                                bdaddr_t *bdaddr)
1034 {
1035         struct discovery_state *cache = &hdev->discovery;
1036         struct inquiry_entry *e;
1037
1038         BT_DBG("cache %p, %pMR", cache, bdaddr);
1039
1040         list_for_each_entry(e, &cache->all, all) {
1041                 if (!bacmp(&e->data.bdaddr, bdaddr))
1042                         return e;
1043         }
1044
1045         return NULL;
1046 }
1047
1048 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1049                                                        bdaddr_t *bdaddr)
1050 {
1051         struct discovery_state *cache = &hdev->discovery;
1052         struct inquiry_entry *e;
1053
1054         BT_DBG("cache %p, %pMR", cache, bdaddr);
1055
1056         list_for_each_entry(e, &cache->unknown, list) {
1057                 if (!bacmp(&e->data.bdaddr, bdaddr))
1058                         return e;
1059         }
1060
1061         return NULL;
1062 }
1063
1064 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1065                                                        bdaddr_t *bdaddr,
1066                                                        int state)
1067 {
1068         struct discovery_state *cache = &hdev->discovery;
1069         struct inquiry_entry *e;
1070
1071         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1072
1073         list_for_each_entry(e, &cache->resolve, list) {
1074                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1075                         return e;
1076                 if (!bacmp(&e->data.bdaddr, bdaddr))
1077                         return e;
1078         }
1079
1080         return NULL;
1081 }
1082
1083 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1084                                       struct inquiry_entry *ie)
1085 {
1086         struct discovery_state *cache = &hdev->discovery;
1087         struct list_head *pos = &cache->resolve;
1088         struct inquiry_entry *p;
1089
1090         list_del(&ie->list);
1091
1092         list_for_each_entry(p, &cache->resolve, list) {
1093                 if (p->name_state != NAME_PENDING &&
1094                     abs(p->data.rssi) >= abs(ie->data.rssi))
1095                         break;
1096                 pos = &p->list;
1097         }
1098
1099         list_add(&ie->list, pos);
1100 }
1101
1102 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1103                              bool name_known)
1104 {
1105         struct discovery_state *cache = &hdev->discovery;
1106         struct inquiry_entry *ie;
1107         u32 flags = 0;
1108
1109         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1110
1111         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1112
1113         if (!data->ssp_mode)
1114                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1115
1116         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1117         if (ie) {
1118                 if (!ie->data.ssp_mode)
1119                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1120
1121                 if (ie->name_state == NAME_NEEDED &&
1122                     data->rssi != ie->data.rssi) {
1123                         ie->data.rssi = data->rssi;
1124                         hci_inquiry_cache_update_resolve(hdev, ie);
1125                 }
1126
1127                 goto update;
1128         }
1129
1130         /* Entry not in the cache. Add new one. */
1131         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1132         if (!ie) {
1133                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1134                 goto done;
1135         }
1136
1137         list_add(&ie->all, &cache->all);
1138
1139         if (name_known) {
1140                 ie->name_state = NAME_KNOWN;
1141         } else {
1142                 ie->name_state = NAME_NOT_KNOWN;
1143                 list_add(&ie->list, &cache->unknown);
1144         }
1145
1146 update:
1147         if (name_known && ie->name_state != NAME_KNOWN &&
1148             ie->name_state != NAME_PENDING) {
1149                 ie->name_state = NAME_KNOWN;
1150                 list_del(&ie->list);
1151         }
1152
1153         memcpy(&ie->data, data, sizeof(*data));
1154         ie->timestamp = jiffies;
1155         cache->timestamp = jiffies;
1156
1157         if (ie->name_state == NAME_NOT_KNOWN)
1158                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1159
1160 done:
1161         return flags;
1162 }
1163
1164 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1165 {
1166         struct discovery_state *cache = &hdev->discovery;
1167         struct inquiry_info *info = (struct inquiry_info *) buf;
1168         struct inquiry_entry *e;
1169         int copied = 0;
1170
1171         list_for_each_entry(e, &cache->all, all) {
1172                 struct inquiry_data *data = &e->data;
1173
1174                 if (copied >= num)
1175                         break;
1176
1177                 bacpy(&info->bdaddr, &data->bdaddr);
1178                 info->pscan_rep_mode    = data->pscan_rep_mode;
1179                 info->pscan_period_mode = data->pscan_period_mode;
1180                 info->pscan_mode        = data->pscan_mode;
1181                 memcpy(info->dev_class, data->dev_class, 3);
1182                 info->clock_offset      = data->clock_offset;
1183
1184                 info++;
1185                 copied++;
1186         }
1187
1188         BT_DBG("cache %p, copied %d", cache, copied);
1189         return copied;
1190 }
1191
1192 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1193 {
1194         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1195         struct hci_dev *hdev = req->hdev;
1196         struct hci_cp_inquiry cp;
1197
1198         BT_DBG("%s", hdev->name);
1199
1200         if (test_bit(HCI_INQUIRY, &hdev->flags))
1201                 return 0;
1202
1203         /* Start Inquiry */
1204         memcpy(&cp.lap, &ir->lap, 3);
1205         cp.length  = ir->length;
1206         cp.num_rsp = ir->num_rsp;
1207         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1208
1209         return 0;
1210 }
1211
1212 int hci_inquiry(void __user *arg)
1213 {
1214         __u8 __user *ptr = arg;
1215         struct hci_inquiry_req ir;
1216         struct hci_dev *hdev;
1217         int err = 0, do_inquiry = 0, max_rsp;
1218         long timeo;
1219         __u8 *buf;
1220
1221         if (copy_from_user(&ir, ptr, sizeof(ir)))
1222                 return -EFAULT;
1223
1224         hdev = hci_dev_get(ir.dev_id);
1225         if (!hdev)
1226                 return -ENODEV;
1227
1228         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1229                 err = -EBUSY;
1230                 goto done;
1231         }
1232
1233         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1234                 err = -EOPNOTSUPP;
1235                 goto done;
1236         }
1237
1238         if (hdev->dev_type != HCI_PRIMARY) {
1239                 err = -EOPNOTSUPP;
1240                 goto done;
1241         }
1242
1243         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1244                 err = -EOPNOTSUPP;
1245                 goto done;
1246         }
1247
1248         hci_dev_lock(hdev);
1249         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1250             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1251                 hci_inquiry_cache_flush(hdev);
1252                 do_inquiry = 1;
1253         }
1254         hci_dev_unlock(hdev);
1255
1256         timeo = ir.length * msecs_to_jiffies(2000);
1257
1258         if (do_inquiry) {
1259                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1260                                    timeo, NULL);
1261                 if (err < 0)
1262                         goto done;
1263
1264                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1265                  * cleared). If it is interrupted by a signal, return -EINTR.
1266                  */
1267                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1268                                 TASK_INTERRUPTIBLE))
1269                         return -EINTR;
1270         }
1271
1272         /* for unlimited number of responses we will use buffer with
1273          * 255 entries
1274          */
1275         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1276
1277         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1278          * copy it to the user space.
1279          */
1280         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1281         if (!buf) {
1282                 err = -ENOMEM;
1283                 goto done;
1284         }
1285
1286         hci_dev_lock(hdev);
1287         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1288         hci_dev_unlock(hdev);
1289
1290         BT_DBG("num_rsp %d", ir.num_rsp);
1291
1292         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1293                 ptr += sizeof(ir);
1294                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1295                                  ir.num_rsp))
1296                         err = -EFAULT;
1297         } else
1298                 err = -EFAULT;
1299
1300         kfree(buf);
1301
1302 done:
1303         hci_dev_put(hdev);
1304         return err;
1305 }
1306
1307 static int hci_dev_do_open(struct hci_dev *hdev)
1308 {
1309         int ret = 0;
1310
1311         BT_DBG("%s %p", hdev->name, hdev);
1312
1313         hci_req_sync_lock(hdev);
1314
1315         if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1316                 ret = -ENODEV;
1317                 goto done;
1318         }
1319
1320         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1321             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1322                 /* Check for rfkill but allow the HCI setup stage to
1323                  * proceed (which in itself doesn't cause any RF activity).
1324                  */
1325                 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1326                         ret = -ERFKILL;
1327                         goto done;
1328                 }
1329
1330                 /* Check for valid public address or a configured static
1331                  * random adddress, but let the HCI setup proceed to
1332                  * be able to determine if there is a public address
1333                  * or not.
1334                  *
1335                  * In case of user channel usage, it is not important
1336                  * if a public address or static random address is
1337                  * available.
1338                  *
1339                  * This check is only valid for BR/EDR controllers
1340                  * since AMP controllers do not have an address.
1341                  */
1342                 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1343                     hdev->dev_type == HCI_PRIMARY &&
1344                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1345                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1346                         ret = -EADDRNOTAVAIL;
1347                         goto done;
1348                 }
1349         }
1350
1351         if (test_bit(HCI_UP, &hdev->flags)) {
1352                 ret = -EALREADY;
1353                 goto done;
1354         }
1355
1356         if (hdev->open(hdev)) {
1357                 ret = -EIO;
1358                 goto done;
1359         }
1360
1361         set_bit(HCI_RUNNING, &hdev->flags);
1362         hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1363
1364         atomic_set(&hdev->cmd_cnt, 1);
1365         set_bit(HCI_INIT, &hdev->flags);
1366
1367         if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1368                 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1369
1370                 if (hdev->setup)
1371                         ret = hdev->setup(hdev);
1372
1373                 /* The transport driver can set these quirks before
1374                  * creating the HCI device or in its setup callback.
1375                  *
1376                  * In case any of them is set, the controller has to
1377                  * start up as unconfigured.
1378                  */
1379                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1380                     test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1381                         hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1382
1383                 /* For an unconfigured controller it is required to
1384                  * read at least the version information provided by
1385                  * the Read Local Version Information command.
1386                  *
1387                  * If the set_bdaddr driver callback is provided, then
1388                  * also the original Bluetooth public device address
1389                  * will be read using the Read BD Address command.
1390                  */
1391                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1392                         ret = __hci_unconf_init(hdev);
1393         }
1394
1395         if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1396                 /* If public address change is configured, ensure that
1397                  * the address gets programmed. If the driver does not
1398                  * support changing the public address, fail the power
1399                  * on procedure.
1400                  */
1401                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1402                     hdev->set_bdaddr)
1403                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1404                 else
1405                         ret = -EADDRNOTAVAIL;
1406         }
1407
1408         if (!ret) {
1409                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1410                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1411                         ret = __hci_init(hdev);
1412                         if (!ret && hdev->post_init)
1413                                 ret = hdev->post_init(hdev);
1414                 }
1415         }
1416
1417         /* If the HCI Reset command is clearing all diagnostic settings,
1418          * then they need to be reprogrammed after the init procedure
1419          * completed.
1420          */
1421         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1422             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1423             hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1424                 ret = hdev->set_diag(hdev, true);
1425
1426         clear_bit(HCI_INIT, &hdev->flags);
1427
1428         if (!ret) {
1429                 hci_dev_hold(hdev);
1430                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1431                 set_bit(HCI_UP, &hdev->flags);
1432                 hci_sock_dev_event(hdev, HCI_DEV_UP);
1433                 hci_leds_update_powered(hdev, true);
1434                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1435                     !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1436                     !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1437                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1438                     hci_dev_test_flag(hdev, HCI_MGMT) &&
1439                     hdev->dev_type == HCI_PRIMARY) {
1440                         ret = __hci_req_hci_power_on(hdev);
1441                         mgmt_power_on(hdev, ret);
1442                 }
1443         } else {
1444                 /* Init failed, cleanup */
1445                 flush_work(&hdev->tx_work);
1446                 flush_work(&hdev->cmd_work);
1447                 flush_work(&hdev->rx_work);
1448
1449                 skb_queue_purge(&hdev->cmd_q);
1450                 skb_queue_purge(&hdev->rx_q);
1451
1452                 if (hdev->flush)
1453                         hdev->flush(hdev);
1454
1455                 if (hdev->sent_cmd) {
1456                         kfree_skb(hdev->sent_cmd);
1457                         hdev->sent_cmd = NULL;
1458                 }
1459
1460                 clear_bit(HCI_RUNNING, &hdev->flags);
1461                 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1462
1463                 hdev->close(hdev);
1464                 hdev->flags &= BIT(HCI_RAW);
1465         }
1466
1467 done:
1468         hci_req_sync_unlock(hdev);
1469         return ret;
1470 }
1471
1472 /* ---- HCI ioctl helpers ---- */
1473
1474 int hci_dev_open(__u16 dev)
1475 {
1476         struct hci_dev *hdev;
1477         int err;
1478
1479         hdev = hci_dev_get(dev);
1480         if (!hdev)
1481                 return -ENODEV;
1482
1483         /* Devices that are marked as unconfigured can only be powered
1484          * up as user channel. Trying to bring them up as normal devices
1485          * will result into a failure. Only user channel operation is
1486          * possible.
1487          *
1488          * When this function is called for a user channel, the flag
1489          * HCI_USER_CHANNEL will be set first before attempting to
1490          * open the device.
1491          */
1492         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1493             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1494                 err = -EOPNOTSUPP;
1495                 goto done;
1496         }
1497
1498         /* We need to ensure that no other power on/off work is pending
1499          * before proceeding to call hci_dev_do_open. This is
1500          * particularly important if the setup procedure has not yet
1501          * completed.
1502          */
1503         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1504                 cancel_delayed_work(&hdev->power_off);
1505
1506         /* After this call it is guaranteed that the setup procedure
1507          * has finished. This means that error conditions like RFKILL
1508          * or no valid public or static random address apply.
1509          */
1510         flush_workqueue(hdev->req_workqueue);
1511
1512         /* For controllers not using the management interface and that
1513          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1514          * so that pairing works for them. Once the management interface
1515          * is in use this bit will be cleared again and userspace has
1516          * to explicitly enable it.
1517          */
1518         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1519             !hci_dev_test_flag(hdev, HCI_MGMT))
1520                 hci_dev_set_flag(hdev, HCI_BONDABLE);
1521
1522         err = hci_dev_do_open(hdev);
1523
1524 done:
1525         hci_dev_put(hdev);
1526         return err;
1527 }
1528
1529 /* This function requires the caller holds hdev->lock */
1530 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1531 {
1532         struct hci_conn_params *p;
1533
1534         list_for_each_entry(p, &hdev->le_conn_params, list) {
1535                 if (p->conn) {
1536                         hci_conn_drop(p->conn);
1537                         hci_conn_put(p->conn);
1538                         p->conn = NULL;
1539                 }
1540                 list_del_init(&p->action);
1541         }
1542
1543         BT_DBG("All LE pending actions cleared");
1544 }
1545
1546 int hci_dev_do_close(struct hci_dev *hdev)
1547 {
1548         bool auto_off;
1549
1550         BT_DBG("%s %p", hdev->name, hdev);
1551
1552         if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1553             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1554             test_bit(HCI_UP, &hdev->flags)) {
1555                 /* Execute vendor specific shutdown routine */
1556                 if (hdev->shutdown)
1557                         hdev->shutdown(hdev);
1558         }
1559
1560         cancel_delayed_work(&hdev->power_off);
1561
1562         hci_request_cancel_all(hdev);
1563         hci_req_sync_lock(hdev);
1564
1565         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1566                 cancel_delayed_work_sync(&hdev->cmd_timer);
1567                 hci_req_sync_unlock(hdev);
1568                 return 0;
1569         }
1570
1571         hci_leds_update_powered(hdev, false);
1572
1573         /* Flush RX and TX works */
1574         flush_work(&hdev->tx_work);
1575         flush_work(&hdev->rx_work);
1576
1577         if (hdev->discov_timeout > 0) {
1578                 hdev->discov_timeout = 0;
1579                 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1580                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1581         }
1582
1583         if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1584                 cancel_delayed_work(&hdev->service_cache);
1585
1586         if (hci_dev_test_flag(hdev, HCI_MGMT))
1587                 cancel_delayed_work_sync(&hdev->rpa_expired);
1588
1589         /* Avoid potential lockdep warnings from the *_flush() calls by
1590          * ensuring the workqueue is empty up front.
1591          */
1592         drain_workqueue(hdev->workqueue);
1593
1594         hci_dev_lock(hdev);
1595
1596         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1597
1598         auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1599
1600         if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1601             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1602             hci_dev_test_flag(hdev, HCI_MGMT))
1603                 __mgmt_power_off(hdev);
1604
1605         hci_inquiry_cache_flush(hdev);
1606         hci_pend_le_actions_clear(hdev);
1607         hci_conn_hash_flush(hdev);
1608         hci_dev_unlock(hdev);
1609
1610         smp_unregister(hdev);
1611
1612         hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1613
1614         if (hdev->flush)
1615                 hdev->flush(hdev);
1616
1617         /* Reset device */
1618         skb_queue_purge(&hdev->cmd_q);
1619         atomic_set(&hdev->cmd_cnt, 1);
1620         if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1621             !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1622                 set_bit(HCI_INIT, &hdev->flags);
1623                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1624                 clear_bit(HCI_INIT, &hdev->flags);
1625         }
1626
1627         /* flush cmd  work */
1628         flush_work(&hdev->cmd_work);
1629
1630         /* Drop queues */
1631         skb_queue_purge(&hdev->rx_q);
1632         skb_queue_purge(&hdev->cmd_q);
1633         skb_queue_purge(&hdev->raw_q);
1634
1635         /* Drop last sent command */
1636         if (hdev->sent_cmd) {
1637                 cancel_delayed_work_sync(&hdev->cmd_timer);
1638                 kfree_skb(hdev->sent_cmd);
1639                 hdev->sent_cmd = NULL;
1640         }
1641
1642         clear_bit(HCI_RUNNING, &hdev->flags);
1643         hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1644
1645         /* After this point our queues are empty
1646          * and no tasks are scheduled. */
1647         hdev->close(hdev);
1648
1649         /* Clear flags */
1650         hdev->flags &= BIT(HCI_RAW);
1651         hci_dev_clear_volatile_flags(hdev);
1652
1653         /* Controller radio is available but is currently powered down */
1654         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1655
1656         memset(hdev->eir, 0, sizeof(hdev->eir));
1657         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1658         bacpy(&hdev->random_addr, BDADDR_ANY);
1659
1660         hci_req_sync_unlock(hdev);
1661
1662         hci_dev_put(hdev);
1663         return 0;
1664 }
1665
1666 int hci_dev_close(__u16 dev)
1667 {
1668         struct hci_dev *hdev;
1669         int err;
1670
1671         hdev = hci_dev_get(dev);
1672         if (!hdev)
1673                 return -ENODEV;
1674
1675         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1676                 err = -EBUSY;
1677                 goto done;
1678         }
1679
1680         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1681                 cancel_delayed_work(&hdev->power_off);
1682
1683         err = hci_dev_do_close(hdev);
1684
1685 done:
1686         hci_dev_put(hdev);
1687         return err;
1688 }
1689
1690 static int hci_dev_do_reset(struct hci_dev *hdev)
1691 {
1692         int ret;
1693
1694         BT_DBG("%s %p", hdev->name, hdev);
1695
1696         hci_req_sync_lock(hdev);
1697
1698         /* Drop queues */
1699         skb_queue_purge(&hdev->rx_q);
1700         skb_queue_purge(&hdev->cmd_q);
1701
1702         /* Avoid potential lockdep warnings from the *_flush() calls by
1703          * ensuring the workqueue is empty up front.
1704          */
1705         drain_workqueue(hdev->workqueue);
1706
1707         hci_dev_lock(hdev);
1708         hci_inquiry_cache_flush(hdev);
1709         hci_conn_hash_flush(hdev);
1710         hci_dev_unlock(hdev);
1711
1712         if (hdev->flush)
1713                 hdev->flush(hdev);
1714
1715         atomic_set(&hdev->cmd_cnt, 1);
1716         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1717
1718         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1719
1720         hci_req_sync_unlock(hdev);
1721         return ret;
1722 }
1723
1724 int hci_dev_reset(__u16 dev)
1725 {
1726         struct hci_dev *hdev;
1727         int err;
1728
1729         hdev = hci_dev_get(dev);
1730         if (!hdev)
1731                 return -ENODEV;
1732
1733         if (!test_bit(HCI_UP, &hdev->flags)) {
1734                 err = -ENETDOWN;
1735                 goto done;
1736         }
1737
1738         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1739                 err = -EBUSY;
1740                 goto done;
1741         }
1742
1743         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1744                 err = -EOPNOTSUPP;
1745                 goto done;
1746         }
1747
1748         err = hci_dev_do_reset(hdev);
1749
1750 done:
1751         hci_dev_put(hdev);
1752         return err;
1753 }
1754
1755 int hci_dev_reset_stat(__u16 dev)
1756 {
1757         struct hci_dev *hdev;
1758         int ret = 0;
1759
1760         hdev = hci_dev_get(dev);
1761         if (!hdev)
1762                 return -ENODEV;
1763
1764         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1765                 ret = -EBUSY;
1766                 goto done;
1767         }
1768
1769         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1770                 ret = -EOPNOTSUPP;
1771                 goto done;
1772         }
1773
1774         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1775
1776 done:
1777         hci_dev_put(hdev);
1778         return ret;
1779 }
1780
1781 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1782 {
1783         bool conn_changed, discov_changed;
1784
1785         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1786
1787         if ((scan & SCAN_PAGE))
1788                 conn_changed = !hci_dev_test_and_set_flag(hdev,
1789                                                           HCI_CONNECTABLE);
1790         else
1791                 conn_changed = hci_dev_test_and_clear_flag(hdev,
1792                                                            HCI_CONNECTABLE);
1793
1794         if ((scan & SCAN_INQUIRY)) {
1795                 discov_changed = !hci_dev_test_and_set_flag(hdev,
1796                                                             HCI_DISCOVERABLE);
1797         } else {
1798                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1799                 discov_changed = hci_dev_test_and_clear_flag(hdev,
1800                                                              HCI_DISCOVERABLE);
1801         }
1802
1803         if (!hci_dev_test_flag(hdev, HCI_MGMT))
1804                 return;
1805
1806         if (conn_changed || discov_changed) {
1807                 /* In case this was disabled through mgmt */
1808                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1809
1810                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1811                         hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1812
1813                 mgmt_new_settings(hdev);
1814         }
1815 }
1816
1817 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1818 {
1819         struct hci_dev *hdev;
1820         struct hci_dev_req dr;
1821         int err = 0;
1822
1823         if (copy_from_user(&dr, arg, sizeof(dr)))
1824                 return -EFAULT;
1825
1826         hdev = hci_dev_get(dr.dev_id);
1827         if (!hdev)
1828                 return -ENODEV;
1829
1830         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1831                 err = -EBUSY;
1832                 goto done;
1833         }
1834
1835         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1836                 err = -EOPNOTSUPP;
1837                 goto done;
1838         }
1839
1840         if (hdev->dev_type != HCI_PRIMARY) {
1841                 err = -EOPNOTSUPP;
1842                 goto done;
1843         }
1844
1845         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1846                 err = -EOPNOTSUPP;
1847                 goto done;
1848         }
1849
1850         switch (cmd) {
1851         case HCISETAUTH:
1852                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1853                                    HCI_INIT_TIMEOUT, NULL);
1854                 break;
1855
1856         case HCISETENCRYPT:
1857                 if (!lmp_encrypt_capable(hdev)) {
1858                         err = -EOPNOTSUPP;
1859                         break;
1860                 }
1861
1862                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1863                         /* Auth must be enabled first */
1864                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1865                                            HCI_INIT_TIMEOUT, NULL);
1866                         if (err)
1867                                 break;
1868                 }
1869
1870                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1871                                    HCI_INIT_TIMEOUT, NULL);
1872                 break;
1873
1874         case HCISETSCAN:
1875                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1876                                    HCI_INIT_TIMEOUT, NULL);
1877
1878                 /* Ensure that the connectable and discoverable states
1879                  * get correctly modified as this was a non-mgmt change.
1880                  */
1881                 if (!err)
1882                         hci_update_scan_state(hdev, dr.dev_opt);
1883                 break;
1884
1885         case HCISETLINKPOL:
1886                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1887                                    HCI_INIT_TIMEOUT, NULL);
1888                 break;
1889
1890         case HCISETLINKMODE:
1891                 hdev->link_mode = ((__u16) dr.dev_opt) &
1892                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
1893                 break;
1894
1895         case HCISETPTYPE:
1896                 hdev->pkt_type = (__u16) dr.dev_opt;
1897                 break;
1898
1899         case HCISETACLMTU:
1900                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1901                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1902                 break;
1903
1904         case HCISETSCOMTU:
1905                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1906                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1907                 break;
1908
1909         default:
1910                 err = -EINVAL;
1911                 break;
1912         }
1913
1914 done:
1915         hci_dev_put(hdev);
1916         return err;
1917 }
1918
1919 int hci_get_dev_list(void __user *arg)
1920 {
1921         struct hci_dev *hdev;
1922         struct hci_dev_list_req *dl;
1923         struct hci_dev_req *dr;
1924         int n = 0, size, err;
1925         __u16 dev_num;
1926
1927         if (get_user(dev_num, (__u16 __user *) arg))
1928                 return -EFAULT;
1929
1930         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1931                 return -EINVAL;
1932
1933         size = sizeof(*dl) + dev_num * sizeof(*dr);
1934
1935         dl = kzalloc(size, GFP_KERNEL);
1936         if (!dl)
1937                 return -ENOMEM;
1938
1939         dr = dl->dev_req;
1940
1941         read_lock(&hci_dev_list_lock);
1942         list_for_each_entry(hdev, &hci_dev_list, list) {
1943                 unsigned long flags = hdev->flags;
1944
1945                 /* When the auto-off is configured it means the transport
1946                  * is running, but in that case still indicate that the
1947                  * device is actually down.
1948                  */
1949                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1950                         flags &= ~BIT(HCI_UP);
1951
1952                 (dr + n)->dev_id  = hdev->id;
1953                 (dr + n)->dev_opt = flags;
1954
1955                 if (++n >= dev_num)
1956                         break;
1957         }
1958         read_unlock(&hci_dev_list_lock);
1959
1960         dl->dev_num = n;
1961         size = sizeof(*dl) + n * sizeof(*dr);
1962
1963         err = copy_to_user(arg, dl, size);
1964         kfree(dl);
1965
1966         return err ? -EFAULT : 0;
1967 }
1968
1969 int hci_get_dev_info(void __user *arg)
1970 {
1971         struct hci_dev *hdev;
1972         struct hci_dev_info di;
1973         unsigned long flags;
1974         int err = 0;
1975
1976         if (copy_from_user(&di, arg, sizeof(di)))
1977                 return -EFAULT;
1978
1979         hdev = hci_dev_get(di.dev_id);
1980         if (!hdev)
1981                 return -ENODEV;
1982
1983         /* When the auto-off is configured it means the transport
1984          * is running, but in that case still indicate that the
1985          * device is actually down.
1986          */
1987         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1988                 flags = hdev->flags & ~BIT(HCI_UP);
1989         else
1990                 flags = hdev->flags;
1991
1992         strcpy(di.name, hdev->name);
1993         di.bdaddr   = hdev->bdaddr;
1994         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1995         di.flags    = flags;
1996         di.pkt_type = hdev->pkt_type;
1997         if (lmp_bredr_capable(hdev)) {
1998                 di.acl_mtu  = hdev->acl_mtu;
1999                 di.acl_pkts = hdev->acl_pkts;
2000                 di.sco_mtu  = hdev->sco_mtu;
2001                 di.sco_pkts = hdev->sco_pkts;
2002         } else {
2003                 di.acl_mtu  = hdev->le_mtu;
2004                 di.acl_pkts = hdev->le_pkts;
2005                 di.sco_mtu  = 0;
2006                 di.sco_pkts = 0;
2007         }
2008         di.link_policy = hdev->link_policy;
2009         di.link_mode   = hdev->link_mode;
2010
2011         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2012         memcpy(&di.features, &hdev->features, sizeof(di.features));
2013
2014         if (copy_to_user(arg, &di, sizeof(di)))
2015                 err = -EFAULT;
2016
2017         hci_dev_put(hdev);
2018
2019         return err;
2020 }
2021
2022 /* ---- Interface to HCI drivers ---- */
2023
2024 static int hci_rfkill_set_block(void *data, bool blocked)
2025 {
2026         struct hci_dev *hdev = data;
2027
2028         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2029
2030         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2031                 return -EBUSY;
2032
2033         if (blocked) {
2034                 hci_dev_set_flag(hdev, HCI_RFKILLED);
2035                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2036                     !hci_dev_test_flag(hdev, HCI_CONFIG))
2037                         hci_dev_do_close(hdev);
2038         } else {
2039                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2040         }
2041
2042         return 0;
2043 }
2044
2045 static const struct rfkill_ops hci_rfkill_ops = {
2046         .set_block = hci_rfkill_set_block,
2047 };
2048
2049 static void hci_power_on(struct work_struct *work)
2050 {
2051         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2052         int err;
2053
2054         BT_DBG("%s", hdev->name);
2055
2056         if (test_bit(HCI_UP, &hdev->flags) &&
2057             hci_dev_test_flag(hdev, HCI_MGMT) &&
2058             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2059                 cancel_delayed_work(&hdev->power_off);
2060                 hci_req_sync_lock(hdev);
2061                 err = __hci_req_hci_power_on(hdev);
2062                 hci_req_sync_unlock(hdev);
2063                 mgmt_power_on(hdev, err);
2064                 return;
2065         }
2066
2067         err = hci_dev_do_open(hdev);
2068         if (err < 0) {
2069                 hci_dev_lock(hdev);
2070                 mgmt_set_powered_failed(hdev, err);
2071                 hci_dev_unlock(hdev);
2072                 return;
2073         }
2074
2075         /* During the HCI setup phase, a few error conditions are
2076          * ignored and they need to be checked now. If they are still
2077          * valid, it is important to turn the device back off.
2078          */
2079         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2080             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2081             (hdev->dev_type == HCI_PRIMARY &&
2082              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2083              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2084                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2085                 hci_dev_do_close(hdev);
2086         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2087                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2088                                    HCI_AUTO_OFF_TIMEOUT);
2089         }
2090
2091         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2092                 /* For unconfigured devices, set the HCI_RAW flag
2093                  * so that userspace can easily identify them.
2094                  */
2095                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2096                         set_bit(HCI_RAW, &hdev->flags);
2097
2098                 /* For fully configured devices, this will send
2099                  * the Index Added event. For unconfigured devices,
2100                  * it will send Unconfigued Index Added event.
2101                  *
2102                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2103                  * and no event will be send.
2104                  */
2105                 mgmt_index_added(hdev);
2106         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2107                 /* When the controller is now configured, then it
2108                  * is important to clear the HCI_RAW flag.
2109                  */
2110                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2111                         clear_bit(HCI_RAW, &hdev->flags);
2112
2113                 /* Powering on the controller with HCI_CONFIG set only
2114                  * happens with the transition from unconfigured to
2115                  * configured. This will send the Index Added event.
2116                  */
2117                 mgmt_index_added(hdev);
2118         }
2119 }
2120
2121 static void hci_power_off(struct work_struct *work)
2122 {
2123         struct hci_dev *hdev = container_of(work, struct hci_dev,
2124                                             power_off.work);
2125
2126         BT_DBG("%s", hdev->name);
2127
2128         hci_dev_do_close(hdev);
2129 }
2130
2131 static void hci_error_reset(struct work_struct *work)
2132 {
2133         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2134
2135         BT_DBG("%s", hdev->name);
2136
2137         if (hdev->hw_error)
2138                 hdev->hw_error(hdev, hdev->hw_error_code);
2139         else
2140                 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2141                        hdev->hw_error_code);
2142
2143         if (hci_dev_do_close(hdev))
2144                 return;
2145
2146         hci_dev_do_open(hdev);
2147 }
2148
2149 void hci_uuids_clear(struct hci_dev *hdev)
2150 {
2151         struct bt_uuid *uuid, *tmp;
2152
2153         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2154                 list_del(&uuid->list);
2155                 kfree(uuid);
2156         }
2157 }
2158
2159 void hci_link_keys_clear(struct hci_dev *hdev)
2160 {
2161         struct link_key *key;
2162
2163         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2164                 list_del_rcu(&key->list);
2165                 kfree_rcu(key, rcu);
2166         }
2167 }
2168
2169 void hci_smp_ltks_clear(struct hci_dev *hdev)
2170 {
2171         struct smp_ltk *k;
2172
2173         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2174                 list_del_rcu(&k->list);
2175                 kfree_rcu(k, rcu);
2176         }
2177 }
2178
2179 void hci_smp_irks_clear(struct hci_dev *hdev)
2180 {
2181         struct smp_irk *k;
2182
2183         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2184                 list_del_rcu(&k->list);
2185                 kfree_rcu(k, rcu);
2186         }
2187 }
2188
2189 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2190 {
2191         struct link_key *k;
2192
2193         rcu_read_lock();
2194         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2195                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2196                         rcu_read_unlock();
2197                         return k;
2198                 }
2199         }
2200         rcu_read_unlock();
2201
2202         return NULL;
2203 }
2204
2205 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2206                                u8 key_type, u8 old_key_type)
2207 {
2208         /* Legacy key */
2209         if (key_type < 0x03)
2210                 return true;
2211
2212         /* Debug keys are insecure so don't store them persistently */
2213         if (key_type == HCI_LK_DEBUG_COMBINATION)
2214                 return false;
2215
2216         /* Changed combination key and there's no previous one */
2217         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2218                 return false;
2219
2220         /* Security mode 3 case */
2221         if (!conn)
2222                 return true;
2223
2224         /* BR/EDR key derived using SC from an LE link */
2225         if (conn->type == LE_LINK)
2226                 return true;
2227
2228         /* Neither local nor remote side had no-bonding as requirement */
2229         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2230                 return true;
2231
2232         /* Local side had dedicated bonding as requirement */
2233         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2234                 return true;
2235
2236         /* Remote side had dedicated bonding as requirement */
2237         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2238                 return true;
2239
2240         /* If none of the above criteria match, then don't store the key
2241          * persistently */
2242         return false;
2243 }
2244
2245 static u8 ltk_role(u8 type)
2246 {
2247         if (type == SMP_LTK)
2248                 return HCI_ROLE_MASTER;
2249
2250         return HCI_ROLE_SLAVE;
2251 }
2252
2253 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2254                              u8 addr_type, u8 role)
2255 {
2256         struct smp_ltk *k;
2257
2258         rcu_read_lock();
2259         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2260                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2261                         continue;
2262
2263                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2264                         rcu_read_unlock();
2265                         return k;
2266                 }
2267         }
2268         rcu_read_unlock();
2269
2270         return NULL;
2271 }
2272
2273 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2274 {
2275         struct smp_irk *irk;
2276
2277         rcu_read_lock();
2278         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2279                 if (!bacmp(&irk->rpa, rpa)) {
2280                         rcu_read_unlock();
2281                         return irk;
2282                 }
2283         }
2284
2285         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2286                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2287                         bacpy(&irk->rpa, rpa);
2288                         rcu_read_unlock();
2289                         return irk;
2290                 }
2291         }
2292         rcu_read_unlock();
2293
2294         return NULL;
2295 }
2296
2297 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2298                                      u8 addr_type)
2299 {
2300         struct smp_irk *irk;
2301
2302         /* Identity Address must be public or static random */
2303         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2304                 return NULL;
2305
2306         rcu_read_lock();
2307         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2308                 if (addr_type == irk->addr_type &&
2309                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2310                         rcu_read_unlock();
2311                         return irk;
2312                 }
2313         }
2314         rcu_read_unlock();
2315
2316         return NULL;
2317 }
2318
2319 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2320                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2321                                   u8 pin_len, bool *persistent)
2322 {
2323         struct link_key *key, *old_key;
2324         u8 old_key_type;
2325
2326         old_key = hci_find_link_key(hdev, bdaddr);
2327         if (old_key) {
2328                 old_key_type = old_key->type;
2329                 key = old_key;
2330         } else {
2331                 old_key_type = conn ? conn->key_type : 0xff;
2332                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2333                 if (!key)
2334                         return NULL;
2335                 list_add_rcu(&key->list, &hdev->link_keys);
2336         }
2337
2338         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2339
2340         /* Some buggy controller combinations generate a changed
2341          * combination key for legacy pairing even when there's no
2342          * previous key */
2343         if (type == HCI_LK_CHANGED_COMBINATION &&
2344             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2345                 type = HCI_LK_COMBINATION;
2346                 if (conn)
2347                         conn->key_type = type;
2348         }
2349
2350         bacpy(&key->bdaddr, bdaddr);
2351         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2352         key->pin_len = pin_len;
2353
2354         if (type == HCI_LK_CHANGED_COMBINATION)
2355                 key->type = old_key_type;
2356         else
2357                 key->type = type;
2358
2359         if (persistent)
2360                 *persistent = hci_persistent_key(hdev, conn, type,
2361                                                  old_key_type);
2362
2363         return key;
2364 }
2365
2366 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2367                             u8 addr_type, u8 type, u8 authenticated,
2368                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2369 {
2370         struct smp_ltk *key, *old_key;
2371         u8 role = ltk_role(type);
2372
2373         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2374         if (old_key)
2375                 key = old_key;
2376         else {
2377                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2378                 if (!key)
2379                         return NULL;
2380                 list_add_rcu(&key->list, &hdev->long_term_keys);
2381         }
2382
2383         bacpy(&key->bdaddr, bdaddr);
2384         key->bdaddr_type = addr_type;
2385         memcpy(key->val, tk, sizeof(key->val));
2386         key->authenticated = authenticated;
2387         key->ediv = ediv;
2388         key->rand = rand;
2389         key->enc_size = enc_size;
2390         key->type = type;
2391
2392         return key;
2393 }
2394
2395 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2396                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2397 {
2398         struct smp_irk *irk;
2399
2400         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2401         if (!irk) {
2402                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2403                 if (!irk)
2404                         return NULL;
2405
2406                 bacpy(&irk->bdaddr, bdaddr);
2407                 irk->addr_type = addr_type;
2408
2409                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2410         }
2411
2412         memcpy(irk->val, val, 16);
2413         bacpy(&irk->rpa, rpa);
2414
2415         return irk;
2416 }
2417
2418 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2419 {
2420         struct link_key *key;
2421
2422         key = hci_find_link_key(hdev, bdaddr);
2423         if (!key)
2424                 return -ENOENT;
2425
2426         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428         list_del_rcu(&key->list);
2429         kfree_rcu(key, rcu);
2430
2431         return 0;
2432 }
2433
2434 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2435 {
2436         struct smp_ltk *k;
2437         int removed = 0;
2438
2439         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2440                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2441                         continue;
2442
2443                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2444
2445                 list_del_rcu(&k->list);
2446                 kfree_rcu(k, rcu);
2447                 removed++;
2448         }
2449
2450         return removed ? 0 : -ENOENT;
2451 }
2452
2453 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2454 {
2455         struct smp_irk *k;
2456
2457         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2458                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2459                         continue;
2460
2461                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2462
2463                 list_del_rcu(&k->list);
2464                 kfree_rcu(k, rcu);
2465         }
2466 }
2467
2468 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2469 {
2470         struct smp_ltk *k;
2471         struct smp_irk *irk;
2472         u8 addr_type;
2473
2474         if (type == BDADDR_BREDR) {
2475                 if (hci_find_link_key(hdev, bdaddr))
2476                         return true;
2477                 return false;
2478         }
2479
2480         /* Convert to HCI addr type which struct smp_ltk uses */
2481         if (type == BDADDR_LE_PUBLIC)
2482                 addr_type = ADDR_LE_DEV_PUBLIC;
2483         else
2484                 addr_type = ADDR_LE_DEV_RANDOM;
2485
2486         irk = hci_get_irk(hdev, bdaddr, addr_type);
2487         if (irk) {
2488                 bdaddr = &irk->bdaddr;
2489                 addr_type = irk->addr_type;
2490         }
2491
2492         rcu_read_lock();
2493         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2494                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2495                         rcu_read_unlock();
2496                         return true;
2497                 }
2498         }
2499         rcu_read_unlock();
2500
2501         return false;
2502 }
2503
2504 /* HCI command timer function */
2505 static void hci_cmd_timeout(struct work_struct *work)
2506 {
2507         struct hci_dev *hdev = container_of(work, struct hci_dev,
2508                                             cmd_timer.work);
2509
2510         if (hdev->sent_cmd) {
2511                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2512                 u16 opcode = __le16_to_cpu(sent->opcode);
2513
2514                 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2515         } else {
2516                 BT_ERR("%s command tx timeout", hdev->name);
2517         }
2518
2519         atomic_set(&hdev->cmd_cnt, 1);
2520         queue_work(hdev->workqueue, &hdev->cmd_work);
2521 }
2522
2523 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2524                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2525 {
2526         struct oob_data *data;
2527
2528         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2529                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2530                         continue;
2531                 if (data->bdaddr_type != bdaddr_type)
2532                         continue;
2533                 return data;
2534         }
2535
2536         return NULL;
2537 }
2538
2539 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2540                                u8 bdaddr_type)
2541 {
2542         struct oob_data *data;
2543
2544         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2545         if (!data)
2546                 return -ENOENT;
2547
2548         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2549
2550         list_del(&data->list);
2551         kfree(data);
2552
2553         return 0;
2554 }
2555
2556 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2557 {
2558         struct oob_data *data, *n;
2559
2560         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2561                 list_del(&data->list);
2562                 kfree(data);
2563         }
2564 }
2565
2566 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2567                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2568                             u8 *hash256, u8 *rand256)
2569 {
2570         struct oob_data *data;
2571
2572         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2573         if (!data) {
2574                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2575                 if (!data)
2576                         return -ENOMEM;
2577
2578                 bacpy(&data->bdaddr, bdaddr);
2579                 data->bdaddr_type = bdaddr_type;
2580                 list_add(&data->list, &hdev->remote_oob_data);
2581         }
2582
2583         if (hash192 && rand192) {
2584                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2585                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2586                 if (hash256 && rand256)
2587                         data->present = 0x03;
2588         } else {
2589                 memset(data->hash192, 0, sizeof(data->hash192));
2590                 memset(data->rand192, 0, sizeof(data->rand192));
2591                 if (hash256 && rand256)
2592                         data->present = 0x02;
2593                 else
2594                         data->present = 0x00;
2595         }
2596
2597         if (hash256 && rand256) {
2598                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2599                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2600         } else {
2601                 memset(data->hash256, 0, sizeof(data->hash256));
2602                 memset(data->rand256, 0, sizeof(data->rand256));
2603                 if (hash192 && rand192)
2604                         data->present = 0x01;
2605         }
2606
2607         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2608
2609         return 0;
2610 }
2611
2612 /* This function requires the caller holds hdev->lock */
2613 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2614 {
2615         struct adv_info *adv_instance;
2616
2617         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2618                 if (adv_instance->instance == instance)
2619                         return adv_instance;
2620         }
2621
2622         return NULL;
2623 }
2624
2625 /* This function requires the caller holds hdev->lock */
2626 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2627 {
2628         struct adv_info *cur_instance;
2629
2630         cur_instance = hci_find_adv_instance(hdev, instance);
2631         if (!cur_instance)
2632                 return NULL;
2633
2634         if (cur_instance == list_last_entry(&hdev->adv_instances,
2635                                             struct adv_info, list))
2636                 return list_first_entry(&hdev->adv_instances,
2637                                                  struct adv_info, list);
2638         else
2639                 return list_next_entry(cur_instance, list);
2640 }
2641
2642 /* This function requires the caller holds hdev->lock */
2643 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2644 {
2645         struct adv_info *adv_instance;
2646
2647         adv_instance = hci_find_adv_instance(hdev, instance);
2648         if (!adv_instance)
2649                 return -ENOENT;
2650
2651         BT_DBG("%s removing %dMR", hdev->name, instance);
2652
2653         if (hdev->cur_adv_instance == instance) {
2654                 if (hdev->adv_instance_timeout) {
2655                         cancel_delayed_work(&hdev->adv_instance_expire);
2656                         hdev->adv_instance_timeout = 0;
2657                 }
2658                 hdev->cur_adv_instance = 0x00;
2659         }
2660
2661         list_del(&adv_instance->list);
2662         kfree(adv_instance);
2663
2664         hdev->adv_instance_cnt--;
2665
2666         return 0;
2667 }
2668
2669 /* This function requires the caller holds hdev->lock */
2670 void hci_adv_instances_clear(struct hci_dev *hdev)
2671 {
2672         struct adv_info *adv_instance, *n;
2673
2674         if (hdev->adv_instance_timeout) {
2675                 cancel_delayed_work(&hdev->adv_instance_expire);
2676                 hdev->adv_instance_timeout = 0;
2677         }
2678
2679         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2680                 list_del(&adv_instance->list);
2681                 kfree(adv_instance);
2682         }
2683
2684         hdev->adv_instance_cnt = 0;
2685         hdev->cur_adv_instance = 0x00;
2686 }
2687
2688 /* This function requires the caller holds hdev->lock */
2689 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2690                          u16 adv_data_len, u8 *adv_data,
2691                          u16 scan_rsp_len, u8 *scan_rsp_data,
2692                          u16 timeout, u16 duration)
2693 {
2694         struct adv_info *adv_instance;
2695
2696         adv_instance = hci_find_adv_instance(hdev, instance);
2697         if (adv_instance) {
2698                 memset(adv_instance->adv_data, 0,
2699                        sizeof(adv_instance->adv_data));
2700                 memset(adv_instance->scan_rsp_data, 0,
2701                        sizeof(adv_instance->scan_rsp_data));
2702         } else {
2703                 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2704                     instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2705                         return -EOVERFLOW;
2706
2707                 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2708                 if (!adv_instance)
2709                         return -ENOMEM;
2710
2711                 adv_instance->pending = true;
2712                 adv_instance->instance = instance;
2713                 list_add(&adv_instance->list, &hdev->adv_instances);
2714                 hdev->adv_instance_cnt++;
2715         }
2716
2717         adv_instance->flags = flags;
2718         adv_instance->adv_data_len = adv_data_len;
2719         adv_instance->scan_rsp_len = scan_rsp_len;
2720
2721         if (adv_data_len)
2722                 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2723
2724         if (scan_rsp_len)
2725                 memcpy(adv_instance->scan_rsp_data,
2726                        scan_rsp_data, scan_rsp_len);
2727
2728         adv_instance->timeout = timeout;
2729         adv_instance->remaining_time = timeout;
2730
2731         if (duration == 0)
2732                 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2733         else
2734                 adv_instance->duration = duration;
2735
2736         BT_DBG("%s for %dMR", hdev->name, instance);
2737
2738         return 0;
2739 }
2740
2741 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2742                                          bdaddr_t *bdaddr, u8 type)
2743 {
2744         struct bdaddr_list *b;
2745
2746         list_for_each_entry(b, bdaddr_list, list) {
2747                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2748                         return b;
2749         }
2750
2751         return NULL;
2752 }
2753
2754 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2755 {
2756         struct bdaddr_list *b, *n;
2757
2758         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2759                 list_del(&b->list);
2760                 kfree(b);
2761         }
2762 }
2763
2764 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2765 {
2766         struct bdaddr_list *entry;
2767
2768         if (!bacmp(bdaddr, BDADDR_ANY))
2769                 return -EBADF;
2770
2771         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2772                 return -EEXIST;
2773
2774         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2775         if (!entry)
2776                 return -ENOMEM;
2777
2778         bacpy(&entry->bdaddr, bdaddr);
2779         entry->bdaddr_type = type;
2780
2781         list_add(&entry->list, list);
2782
2783         return 0;
2784 }
2785
2786 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2787 {
2788         struct bdaddr_list *entry;
2789
2790         if (!bacmp(bdaddr, BDADDR_ANY)) {
2791                 hci_bdaddr_list_clear(list);
2792                 return 0;
2793         }
2794
2795         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2796         if (!entry)
2797                 return -ENOENT;
2798
2799         list_del(&entry->list);
2800         kfree(entry);
2801
2802         return 0;
2803 }
2804
2805 /* This function requires the caller holds hdev->lock */
2806 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2807                                                bdaddr_t *addr, u8 addr_type)
2808 {
2809         struct hci_conn_params *params;
2810
2811         list_for_each_entry(params, &hdev->le_conn_params, list) {
2812                 if (bacmp(&params->addr, addr) == 0 &&
2813                     params->addr_type == addr_type) {
2814                         return params;
2815                 }
2816         }
2817
2818         return NULL;
2819 }
2820
2821 /* This function requires the caller holds hdev->lock */
2822 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2823                                                   bdaddr_t *addr, u8 addr_type)
2824 {
2825         struct hci_conn_params *param;
2826
2827         list_for_each_entry(param, list, action) {
2828                 if (bacmp(&param->addr, addr) == 0 &&
2829                     param->addr_type == addr_type)
2830                         return param;
2831         }
2832
2833         return NULL;
2834 }
2835
2836 /* This function requires the caller holds hdev->lock */
2837 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2838                                             bdaddr_t *addr, u8 addr_type)
2839 {
2840         struct hci_conn_params *params;
2841
2842         params = hci_conn_params_lookup(hdev, addr, addr_type);
2843         if (params)
2844                 return params;
2845
2846         params = kzalloc(sizeof(*params), GFP_KERNEL);
2847         if (!params) {
2848                 BT_ERR("Out of memory");
2849                 return NULL;
2850         }
2851
2852         bacpy(&params->addr, addr);
2853         params->addr_type = addr_type;
2854
2855         list_add(&params->list, &hdev->le_conn_params);
2856         INIT_LIST_HEAD(&params->action);
2857
2858         params->conn_min_interval = hdev->le_conn_min_interval;
2859         params->conn_max_interval = hdev->le_conn_max_interval;
2860         params->conn_latency = hdev->le_conn_latency;
2861         params->supervision_timeout = hdev->le_supv_timeout;
2862         params->auto_connect = HCI_AUTO_CONN_DISABLED;
2863
2864         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2865
2866         return params;
2867 }
2868
2869 static void hci_conn_params_free(struct hci_conn_params *params)
2870 {
2871         if (params->conn) {
2872                 hci_conn_drop(params->conn);
2873                 hci_conn_put(params->conn);
2874         }
2875
2876         list_del(&params->action);
2877         list_del(&params->list);
2878         kfree(params);
2879 }
2880
2881 /* This function requires the caller holds hdev->lock */
2882 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2883 {
2884         struct hci_conn_params *params;
2885
2886         params = hci_conn_params_lookup(hdev, addr, addr_type);
2887         if (!params)
2888                 return;
2889
2890         hci_conn_params_free(params);
2891
2892         hci_update_background_scan(hdev);
2893
2894         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2895 }
2896
2897 /* This function requires the caller holds hdev->lock */
2898 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2899 {
2900         struct hci_conn_params *params, *tmp;
2901
2902         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2903                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2904                         continue;
2905
2906                 /* If trying to estabilish one time connection to disabled
2907                  * device, leave the params, but mark them as just once.
2908                  */
2909                 if (params->explicit_connect) {
2910                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2911                         continue;
2912                 }
2913
2914                 list_del(&params->list);
2915                 kfree(params);
2916         }
2917
2918         BT_DBG("All LE disabled connection parameters were removed");
2919 }
2920
2921 /* This function requires the caller holds hdev->lock */
2922 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2923 {
2924         struct hci_conn_params *params, *tmp;
2925
2926         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2927                 hci_conn_params_free(params);
2928
2929         BT_DBG("All LE connection parameters were removed");
2930 }
2931
2932 /* Copy the Identity Address of the controller.
2933  *
2934  * If the controller has a public BD_ADDR, then by default use that one.
2935  * If this is a LE only controller without a public address, default to
2936  * the static random address.
2937  *
2938  * For debugging purposes it is possible to force controllers with a
2939  * public address to use the static random address instead.
2940  *
2941  * In case BR/EDR has been disabled on a dual-mode controller and
2942  * userspace has configured a static address, then that address
2943  * becomes the identity address instead of the public BR/EDR address.
2944  */
2945 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2946                                u8 *bdaddr_type)
2947 {
2948         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2949             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2950             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2951              bacmp(&hdev->static_addr, BDADDR_ANY))) {
2952                 bacpy(bdaddr, &hdev->static_addr);
2953                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2954         } else {
2955                 bacpy(bdaddr, &hdev->bdaddr);
2956                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2957         }
2958 }
2959
2960 /* Alloc HCI device */
2961 struct hci_dev *hci_alloc_dev(void)
2962 {
2963         struct hci_dev *hdev;
2964
2965         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2966         if (!hdev)
2967                 return NULL;
2968
2969         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2970         hdev->esco_type = (ESCO_HV1);
2971         hdev->link_mode = (HCI_LM_ACCEPT);
2972         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
2973         hdev->io_capability = 0x03;     /* No Input No Output */
2974         hdev->manufacturer = 0xffff;    /* Default to internal use */
2975         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2976         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2977         hdev->adv_instance_cnt = 0;
2978         hdev->cur_adv_instance = 0x00;
2979         hdev->adv_instance_timeout = 0;
2980
2981         hdev->sniff_max_interval = 800;
2982         hdev->sniff_min_interval = 80;
2983
2984         hdev->le_adv_channel_map = 0x07;
2985         hdev->le_adv_min_interval = 0x0800;
2986         hdev->le_adv_max_interval = 0x0800;
2987         hdev->le_scan_interval = 0x0060;
2988         hdev->le_scan_window = 0x0030;
2989         hdev->le_conn_min_interval = 0x0018;
2990         hdev->le_conn_max_interval = 0x0028;
2991         hdev->le_conn_latency = 0x0000;
2992         hdev->le_supv_timeout = 0x002a;
2993         hdev->le_def_tx_len = 0x001b;
2994         hdev->le_def_tx_time = 0x0148;
2995         hdev->le_max_tx_len = 0x001b;
2996         hdev->le_max_tx_time = 0x0148;
2997         hdev->le_max_rx_len = 0x001b;
2998         hdev->le_max_rx_time = 0x0148;
2999
3000         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3001         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3002         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3003         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3004
3005         mutex_init(&hdev->lock);
3006         mutex_init(&hdev->req_lock);
3007
3008         INIT_LIST_HEAD(&hdev->mgmt_pending);
3009         INIT_LIST_HEAD(&hdev->blacklist);
3010         INIT_LIST_HEAD(&hdev->whitelist);
3011         INIT_LIST_HEAD(&hdev->uuids);
3012         INIT_LIST_HEAD(&hdev->link_keys);
3013         INIT_LIST_HEAD(&hdev->long_term_keys);
3014         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3015         INIT_LIST_HEAD(&hdev->remote_oob_data);
3016         INIT_LIST_HEAD(&hdev->le_white_list);
3017         INIT_LIST_HEAD(&hdev->le_conn_params);
3018         INIT_LIST_HEAD(&hdev->pend_le_conns);
3019         INIT_LIST_HEAD(&hdev->pend_le_reports);
3020         INIT_LIST_HEAD(&hdev->conn_hash.list);
3021         INIT_LIST_HEAD(&hdev->adv_instances);
3022
3023         INIT_WORK(&hdev->rx_work, hci_rx_work);
3024         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3025         INIT_WORK(&hdev->tx_work, hci_tx_work);
3026         INIT_WORK(&hdev->power_on, hci_power_on);
3027         INIT_WORK(&hdev->error_reset, hci_error_reset);
3028
3029         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3030
3031         skb_queue_head_init(&hdev->rx_q);
3032         skb_queue_head_init(&hdev->cmd_q);
3033         skb_queue_head_init(&hdev->raw_q);
3034
3035         init_waitqueue_head(&hdev->req_wait_q);
3036
3037         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3038
3039         hci_request_setup(hdev);
3040
3041         hci_init_sysfs(hdev);
3042         discovery_init(hdev);
3043
3044         return hdev;
3045 }
3046 EXPORT_SYMBOL(hci_alloc_dev);
3047
3048 /* Free HCI device */
3049 void hci_free_dev(struct hci_dev *hdev)
3050 {
3051         /* will free via device release */
3052         put_device(&hdev->dev);
3053 }
3054 EXPORT_SYMBOL(hci_free_dev);
3055
3056 /* Register HCI device */
3057 int hci_register_dev(struct hci_dev *hdev)
3058 {
3059         int id, error;
3060
3061         if (!hdev->open || !hdev->close || !hdev->send)
3062                 return -EINVAL;
3063
3064         /* Do not allow HCI_AMP devices to register at index 0,
3065          * so the index can be used as the AMP controller ID.
3066          */
3067         switch (hdev->dev_type) {
3068         case HCI_PRIMARY:
3069                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3070                 break;
3071         case HCI_AMP:
3072                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3073                 break;
3074         default:
3075                 return -EINVAL;
3076         }
3077
3078         if (id < 0)
3079                 return id;
3080
3081         sprintf(hdev->name, "hci%d", id);
3082         hdev->id = id;
3083
3084         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3085
3086         hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3087                                           WQ_MEM_RECLAIM, 1, hdev->name);
3088         if (!hdev->workqueue) {
3089                 error = -ENOMEM;
3090                 goto err;
3091         }
3092
3093         hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3094                                               WQ_MEM_RECLAIM, 1, hdev->name);
3095         if (!hdev->req_workqueue) {
3096                 destroy_workqueue(hdev->workqueue);
3097                 error = -ENOMEM;
3098                 goto err;
3099         }
3100
3101         if (!IS_ERR_OR_NULL(bt_debugfs))
3102                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3103
3104         dev_set_name(&hdev->dev, "%s", hdev->name);
3105
3106         error = device_add(&hdev->dev);
3107         if (error < 0)
3108                 goto err_wqueue;
3109
3110         hci_leds_init(hdev);
3111
3112         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3113                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3114                                     hdev);
3115         if (hdev->rfkill) {
3116                 if (rfkill_register(hdev->rfkill) < 0) {
3117                         rfkill_destroy(hdev->rfkill);
3118                         hdev->rfkill = NULL;
3119                 }
3120         }
3121
3122         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3123                 hci_dev_set_flag(hdev, HCI_RFKILLED);
3124
3125         hci_dev_set_flag(hdev, HCI_SETUP);
3126         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3127
3128         if (hdev->dev_type == HCI_PRIMARY) {
3129                 /* Assume BR/EDR support until proven otherwise (such as
3130                  * through reading supported features during init.
3131                  */
3132                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3133         }
3134
3135         write_lock(&hci_dev_list_lock);
3136         list_add(&hdev->list, &hci_dev_list);
3137         write_unlock(&hci_dev_list_lock);
3138
3139         /* Devices that are marked for raw-only usage are unconfigured
3140          * and should not be included in normal operation.
3141          */
3142         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3143                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3144
3145         hci_sock_dev_event(hdev, HCI_DEV_REG);
3146         hci_dev_hold(hdev);
3147
3148         queue_work(hdev->req_workqueue, &hdev->power_on);
3149
3150         return id;
3151
3152 err_wqueue:
3153         destroy_workqueue(hdev->workqueue);
3154         destroy_workqueue(hdev->req_workqueue);
3155 err:
3156         ida_simple_remove(&hci_index_ida, hdev->id);
3157
3158         return error;
3159 }
3160 EXPORT_SYMBOL(hci_register_dev);
3161
3162 /* Unregister HCI device */
3163 void hci_unregister_dev(struct hci_dev *hdev)
3164 {
3165         int id;
3166
3167         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3168
3169         hci_dev_set_flag(hdev, HCI_UNREGISTER);
3170
3171         id = hdev->id;
3172
3173         write_lock(&hci_dev_list_lock);
3174         list_del(&hdev->list);
3175         write_unlock(&hci_dev_list_lock);
3176
3177         cancel_work_sync(&hdev->power_on);
3178
3179         hci_dev_do_close(hdev);
3180
3181         if (!test_bit(HCI_INIT, &hdev->flags) &&
3182             !hci_dev_test_flag(hdev, HCI_SETUP) &&
3183             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3184                 hci_dev_lock(hdev);
3185                 mgmt_index_removed(hdev);
3186                 hci_dev_unlock(hdev);
3187         }
3188
3189         /* mgmt_index_removed should take care of emptying the
3190          * pending list */
3191         BUG_ON(!list_empty(&hdev->mgmt_pending));
3192
3193         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3194
3195         if (hdev->rfkill) {
3196                 rfkill_unregister(hdev->rfkill);
3197                 rfkill_destroy(hdev->rfkill);
3198         }
3199
3200         device_del(&hdev->dev);
3201
3202         debugfs_remove_recursive(hdev->debugfs);
3203         kfree_const(hdev->hw_info);
3204         kfree_const(hdev->fw_info);
3205
3206         destroy_workqueue(hdev->workqueue);
3207         destroy_workqueue(hdev->req_workqueue);
3208
3209         hci_dev_lock(hdev);
3210         hci_bdaddr_list_clear(&hdev->blacklist);
3211         hci_bdaddr_list_clear(&hdev->whitelist);
3212         hci_uuids_clear(hdev);
3213         hci_link_keys_clear(hdev);
3214         hci_smp_ltks_clear(hdev);
3215         hci_smp_irks_clear(hdev);
3216         hci_remote_oob_data_clear(hdev);
3217         hci_adv_instances_clear(hdev);
3218         hci_bdaddr_list_clear(&hdev->le_white_list);
3219         hci_conn_params_clear_all(hdev);
3220         hci_discovery_filter_clear(hdev);
3221         hci_dev_unlock(hdev);
3222
3223         hci_dev_put(hdev);
3224
3225         ida_simple_remove(&hci_index_ida, id);
3226 }
3227 EXPORT_SYMBOL(hci_unregister_dev);
3228
3229 /* Suspend HCI device */
3230 int hci_suspend_dev(struct hci_dev *hdev)
3231 {
3232         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3233         return 0;
3234 }
3235 EXPORT_SYMBOL(hci_suspend_dev);
3236
3237 /* Resume HCI device */
3238 int hci_resume_dev(struct hci_dev *hdev)
3239 {
3240         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3241         return 0;
3242 }
3243 EXPORT_SYMBOL(hci_resume_dev);
3244
3245 /* Reset HCI device */
3246 int hci_reset_dev(struct hci_dev *hdev)
3247 {
3248         const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3249         struct sk_buff *skb;
3250
3251         skb = bt_skb_alloc(3, GFP_ATOMIC);
3252         if (!skb)
3253                 return -ENOMEM;
3254
3255         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3256         memcpy(skb_put(skb, 3), hw_err, 3);
3257
3258         /* Send Hardware Error to upper stack */
3259         return hci_recv_frame(hdev, skb);
3260 }
3261 EXPORT_SYMBOL(hci_reset_dev);
3262
3263 /* Receive frame from HCI drivers */
3264 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3265 {
3266         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3267                       && !test_bit(HCI_INIT, &hdev->flags))) {
3268                 kfree_skb(skb);
3269                 return -ENXIO;
3270         }
3271
3272         if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3273             hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3274             hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3275                 kfree_skb(skb);
3276                 return -EINVAL;
3277         }
3278
3279         /* Incoming skb */
3280         bt_cb(skb)->incoming = 1;
3281
3282         /* Time stamp */
3283         __net_timestamp(skb);
3284
3285         skb_queue_tail(&hdev->rx_q, skb);
3286         queue_work(hdev->workqueue, &hdev->rx_work);
3287
3288         return 0;
3289 }
3290 EXPORT_SYMBOL(hci_recv_frame);
3291
3292 /* Receive diagnostic message from HCI drivers */
3293 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3294 {
3295         /* Mark as diagnostic packet */
3296         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3297
3298         /* Time stamp */
3299         __net_timestamp(skb);
3300
3301         skb_queue_tail(&hdev->rx_q, skb);
3302         queue_work(hdev->workqueue, &hdev->rx_work);
3303
3304         return 0;
3305 }
3306 EXPORT_SYMBOL(hci_recv_diag);
3307
3308 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3309 {
3310         va_list vargs;
3311
3312         va_start(vargs, fmt);
3313         kfree_const(hdev->hw_info);
3314         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3315         va_end(vargs);
3316 }
3317 EXPORT_SYMBOL(hci_set_hw_info);
3318
3319 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3320 {
3321         va_list vargs;
3322
3323         va_start(vargs, fmt);
3324         kfree_const(hdev->fw_info);
3325         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3326         va_end(vargs);
3327 }
3328 EXPORT_SYMBOL(hci_set_fw_info);
3329
3330 /* ---- Interface to upper protocols ---- */
3331
3332 int hci_register_cb(struct hci_cb *cb)
3333 {
3334         BT_DBG("%p name %s", cb, cb->name);
3335
3336         mutex_lock(&hci_cb_list_lock);
3337         list_add_tail(&cb->list, &hci_cb_list);
3338         mutex_unlock(&hci_cb_list_lock);
3339
3340         return 0;
3341 }
3342 EXPORT_SYMBOL(hci_register_cb);
3343
3344 int hci_unregister_cb(struct hci_cb *cb)
3345 {
3346         BT_DBG("%p name %s", cb, cb->name);
3347
3348         mutex_lock(&hci_cb_list_lock);
3349         list_del(&cb->list);
3350         mutex_unlock(&hci_cb_list_lock);
3351
3352         return 0;
3353 }
3354 EXPORT_SYMBOL(hci_unregister_cb);
3355
3356 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3357 {
3358         int err;
3359
3360         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3361                skb->len);
3362
3363         /* Time stamp */
3364         __net_timestamp(skb);
3365
3366         /* Send copy to monitor */
3367         hci_send_to_monitor(hdev, skb);
3368
3369         if (atomic_read(&hdev->promisc)) {
3370                 /* Send copy to the sockets */
3371                 hci_send_to_sock(hdev, skb);
3372         }
3373
3374         /* Get rid of skb owner, prior to sending to the driver. */
3375         skb_orphan(skb);
3376
3377         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3378                 kfree_skb(skb);
3379                 return;
3380         }
3381
3382         err = hdev->send(hdev, skb);
3383         if (err < 0) {
3384                 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3385                 kfree_skb(skb);
3386         }
3387 }
3388
3389 /* Send HCI command */
3390 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3391                  const void *param)
3392 {
3393         struct sk_buff *skb;
3394
3395         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3396
3397         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3398         if (!skb) {
3399                 BT_ERR("%s no memory for command", hdev->name);
3400                 return -ENOMEM;
3401         }
3402
3403         /* Stand-alone HCI commands must be flagged as
3404          * single-command requests.
3405          */
3406         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3407
3408         skb_queue_tail(&hdev->cmd_q, skb);
3409         queue_work(hdev->workqueue, &hdev->cmd_work);
3410
3411         return 0;
3412 }
3413
3414 /* Get data from the previously sent command */
3415 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3416 {
3417         struct hci_command_hdr *hdr;
3418
3419         if (!hdev->sent_cmd)
3420                 return NULL;
3421
3422         hdr = (void *) hdev->sent_cmd->data;
3423
3424         if (hdr->opcode != cpu_to_le16(opcode))
3425                 return NULL;
3426
3427         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3428
3429         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3430 }
3431
3432 /* Send HCI command and wait for command commplete event */
3433 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3434                              const void *param, u32 timeout)
3435 {
3436         struct sk_buff *skb;
3437
3438         if (!test_bit(HCI_UP, &hdev->flags))
3439                 return ERR_PTR(-ENETDOWN);
3440
3441         bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3442
3443         hci_req_sync_lock(hdev);
3444         skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3445         hci_req_sync_unlock(hdev);
3446
3447         return skb;
3448 }
3449 EXPORT_SYMBOL(hci_cmd_sync);
3450
3451 /* Send ACL data */
3452 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3453 {
3454         struct hci_acl_hdr *hdr;
3455         int len = skb->len;
3456
3457         skb_push(skb, HCI_ACL_HDR_SIZE);
3458         skb_reset_transport_header(skb);
3459         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3460         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3461         hdr->dlen   = cpu_to_le16(len);
3462 }
3463
3464 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3465                           struct sk_buff *skb, __u16 flags)
3466 {
3467         struct hci_conn *conn = chan->conn;
3468         struct hci_dev *hdev = conn->hdev;
3469         struct sk_buff *list;
3470
3471         skb->len = skb_headlen(skb);
3472         skb->data_len = 0;
3473
3474         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3475
3476         switch (hdev->dev_type) {
3477         case HCI_PRIMARY:
3478                 hci_add_acl_hdr(skb, conn->handle, flags);
3479                 break;
3480         case HCI_AMP:
3481                 hci_add_acl_hdr(skb, chan->handle, flags);
3482                 break;
3483         default:
3484                 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3485                 return;
3486         }
3487
3488         list = skb_shinfo(skb)->frag_list;
3489         if (!list) {
3490                 /* Non fragmented */
3491                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3492
3493                 skb_queue_tail(queue, skb);
3494         } else {
3495                 /* Fragmented */
3496                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3497
3498                 skb_shinfo(skb)->frag_list = NULL;
3499
3500                 /* Queue all fragments atomically. We need to use spin_lock_bh
3501                  * here because of 6LoWPAN links, as there this function is
3502                  * called from softirq and using normal spin lock could cause
3503                  * deadlocks.
3504                  */
3505                 spin_lock_bh(&queue->lock);
3506
3507                 __skb_queue_tail(queue, skb);
3508
3509                 flags &= ~ACL_START;
3510                 flags |= ACL_CONT;
3511                 do {
3512                         skb = list; list = list->next;
3513
3514                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3515                         hci_add_acl_hdr(skb, conn->handle, flags);
3516
3517                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3518
3519                         __skb_queue_tail(queue, skb);
3520                 } while (list);
3521
3522                 spin_unlock_bh(&queue->lock);
3523         }
3524 }
3525
3526 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3527 {
3528         struct hci_dev *hdev = chan->conn->hdev;
3529
3530         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3531
3532         hci_queue_acl(chan, &chan->data_q, skb, flags);
3533
3534         queue_work(hdev->workqueue, &hdev->tx_work);
3535 }
3536
3537 /* Send SCO data */
3538 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3539 {
3540         struct hci_dev *hdev = conn->hdev;
3541         struct hci_sco_hdr hdr;
3542
3543         BT_DBG("%s len %d", hdev->name, skb->len);
3544
3545         hdr.handle = cpu_to_le16(conn->handle);
3546         hdr.dlen   = skb->len;
3547
3548         skb_push(skb, HCI_SCO_HDR_SIZE);
3549         skb_reset_transport_header(skb);
3550         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3551
3552         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3553
3554         skb_queue_tail(&conn->data_q, skb);
3555         queue_work(hdev->workqueue, &hdev->tx_work);
3556 }
3557
3558 /* ---- HCI TX task (outgoing data) ---- */
3559
3560 /* HCI Connection scheduler */
3561 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3562                                      int *quote)
3563 {
3564         struct hci_conn_hash *h = &hdev->conn_hash;
3565         struct hci_conn *conn = NULL, *c;
3566         unsigned int num = 0, min = ~0;
3567
3568         /* We don't have to lock device here. Connections are always
3569          * added and removed with TX task disabled. */
3570
3571         rcu_read_lock();
3572
3573         list_for_each_entry_rcu(c, &h->list, list) {
3574                 if (c->type != type || skb_queue_empty(&c->data_q))
3575                         continue;
3576
3577                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3578                         continue;
3579
3580                 num++;
3581
3582                 if (c->sent < min) {
3583                         min  = c->sent;
3584                         conn = c;
3585                 }
3586
3587                 if (hci_conn_num(hdev, type) == num)
3588                         break;
3589         }
3590
3591         rcu_read_unlock();
3592
3593         if (conn) {
3594                 int cnt, q;
3595
3596                 switch (conn->type) {
3597                 case ACL_LINK:
3598                         cnt = hdev->acl_cnt;
3599                         break;
3600                 case SCO_LINK:
3601                 case ESCO_LINK:
3602                         cnt = hdev->sco_cnt;
3603                         break;
3604                 case LE_LINK:
3605                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3606                         break;
3607                 default:
3608                         cnt = 0;
3609                         BT_ERR("Unknown link type");
3610                 }
3611
3612                 q = cnt / num;
3613                 *quote = q ? q : 1;
3614         } else
3615                 *quote = 0;
3616
3617         BT_DBG("conn %p quote %d", conn, *quote);
3618         return conn;
3619 }
3620
3621 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3622 {
3623         struct hci_conn_hash *h = &hdev->conn_hash;
3624         struct hci_conn *c;
3625
3626         BT_ERR("%s link tx timeout", hdev->name);
3627
3628         rcu_read_lock();
3629
3630         /* Kill stalled connections */
3631         list_for_each_entry_rcu(c, &h->list, list) {
3632                 if (c->type == type && c->sent) {
3633                         BT_ERR("%s killing stalled connection %pMR",
3634                                hdev->name, &c->dst);
3635                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3636                 }
3637         }
3638
3639         rcu_read_unlock();
3640 }
3641
3642 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3643                                       int *quote)
3644 {
3645         struct hci_conn_hash *h = &hdev->conn_hash;
3646         struct hci_chan *chan = NULL;
3647         unsigned int num = 0, min = ~0, cur_prio = 0;
3648         struct hci_conn *conn;
3649         int cnt, q, conn_num = 0;
3650
3651         BT_DBG("%s", hdev->name);
3652
3653         rcu_read_lock();
3654
3655         list_for_each_entry_rcu(conn, &h->list, list) {
3656                 struct hci_chan *tmp;
3657
3658                 if (conn->type != type)
3659                         continue;
3660
3661                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3662                         continue;
3663
3664                 conn_num++;
3665
3666                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3667                         struct sk_buff *skb;
3668
3669                         if (skb_queue_empty(&tmp->data_q))
3670                                 continue;
3671
3672                         skb = skb_peek(&tmp->data_q);
3673                         if (skb->priority < cur_prio)
3674                                 continue;
3675
3676                         if (skb->priority > cur_prio) {
3677                                 num = 0;
3678                                 min = ~0;
3679                                 cur_prio = skb->priority;
3680                         }
3681
3682                         num++;
3683
3684                         if (conn->sent < min) {
3685                                 min  = conn->sent;
3686                                 chan = tmp;
3687                         }
3688                 }
3689
3690                 if (hci_conn_num(hdev, type) == conn_num)
3691                         break;
3692         }
3693
3694         rcu_read_unlock();
3695
3696         if (!chan)
3697                 return NULL;
3698
3699         switch (chan->conn->type) {
3700         case ACL_LINK:
3701                 cnt = hdev->acl_cnt;
3702                 break;
3703         case AMP_LINK:
3704                 cnt = hdev->block_cnt;
3705                 break;
3706         case SCO_LINK:
3707         case ESCO_LINK:
3708                 cnt = hdev->sco_cnt;
3709                 break;
3710         case LE_LINK:
3711                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3712                 break;
3713         default:
3714                 cnt = 0;
3715                 BT_ERR("Unknown link type");
3716         }
3717
3718         q = cnt / num;
3719         *quote = q ? q : 1;
3720         BT_DBG("chan %p quote %d", chan, *quote);
3721         return chan;
3722 }
3723
3724 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3725 {
3726         struct hci_conn_hash *h = &hdev->conn_hash;
3727         struct hci_conn *conn;
3728         int num = 0;
3729
3730         BT_DBG("%s", hdev->name);
3731
3732         rcu_read_lock();
3733
3734         list_for_each_entry_rcu(conn, &h->list, list) {
3735                 struct hci_chan *chan;
3736
3737                 if (conn->type != type)
3738                         continue;
3739
3740                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3741                         continue;
3742
3743                 num++;
3744
3745                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3746                         struct sk_buff *skb;
3747
3748                         if (chan->sent) {
3749                                 chan->sent = 0;
3750                                 continue;
3751                         }
3752
3753                         if (skb_queue_empty(&chan->data_q))
3754                                 continue;
3755
3756                         skb = skb_peek(&chan->data_q);
3757                         if (skb->priority >= HCI_PRIO_MAX - 1)
3758                                 continue;
3759
3760                         skb->priority = HCI_PRIO_MAX - 1;
3761
3762                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3763                                skb->priority);
3764                 }
3765
3766                 if (hci_conn_num(hdev, type) == num)
3767                         break;
3768         }
3769
3770         rcu_read_unlock();
3771
3772 }
3773
3774 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3775 {
3776         /* Calculate count of blocks used by this packet */
3777         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3778 }
3779
3780 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3781 {
3782         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3783                 /* ACL tx timeout must be longer than maximum
3784                  * link supervision timeout (40.9 seconds) */
3785                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3786                                        HCI_ACL_TX_TIMEOUT))
3787                         hci_link_tx_to(hdev, ACL_LINK);
3788         }
3789 }
3790
3791 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3792 {
3793         unsigned int cnt = hdev->acl_cnt;
3794         struct hci_chan *chan;
3795         struct sk_buff *skb;
3796         int quote;
3797
3798         __check_timeout(hdev, cnt);
3799
3800         while (hdev->acl_cnt &&
3801                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3802                 u32 priority = (skb_peek(&chan->data_q))->priority;
3803                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3804                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3805                                skb->len, skb->priority);
3806
3807                         /* Stop if priority has changed */
3808                         if (skb->priority < priority)
3809                                 break;
3810
3811                         skb = skb_dequeue(&chan->data_q);
3812
3813                         hci_conn_enter_active_mode(chan->conn,
3814                                                    bt_cb(skb)->force_active);
3815
3816                         hci_send_frame(hdev, skb);
3817                         hdev->acl_last_tx = jiffies;
3818
3819                         hdev->acl_cnt--;
3820                         chan->sent++;
3821                         chan->conn->sent++;
3822                 }
3823         }
3824
3825         if (cnt != hdev->acl_cnt)
3826                 hci_prio_recalculate(hdev, ACL_LINK);
3827 }
3828
3829 static void hci_sched_acl_blk(struct hci_dev *hdev)
3830 {
3831         unsigned int cnt = hdev->block_cnt;
3832         struct hci_chan *chan;
3833         struct sk_buff *skb;
3834         int quote;
3835         u8 type;
3836
3837         __check_timeout(hdev, cnt);
3838
3839         BT_DBG("%s", hdev->name);
3840
3841         if (hdev->dev_type == HCI_AMP)
3842                 type = AMP_LINK;
3843         else
3844                 type = ACL_LINK;
3845
3846         while (hdev->block_cnt > 0 &&
3847                (chan = hci_chan_sent(hdev, type, &quote))) {
3848                 u32 priority = (skb_peek(&chan->data_q))->priority;
3849                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3850                         int blocks;
3851
3852                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3853                                skb->len, skb->priority);
3854
3855                         /* Stop if priority has changed */
3856                         if (skb->priority < priority)
3857                                 break;
3858
3859                         skb = skb_dequeue(&chan->data_q);
3860
3861                         blocks = __get_blocks(hdev, skb);
3862                         if (blocks > hdev->block_cnt)
3863                                 return;
3864
3865                         hci_conn_enter_active_mode(chan->conn,
3866                                                    bt_cb(skb)->force_active);
3867
3868                         hci_send_frame(hdev, skb);
3869                         hdev->acl_last_tx = jiffies;
3870
3871                         hdev->block_cnt -= blocks;
3872                         quote -= blocks;
3873
3874                         chan->sent += blocks;
3875                         chan->conn->sent += blocks;
3876                 }
3877         }
3878
3879         if (cnt != hdev->block_cnt)
3880                 hci_prio_recalculate(hdev, type);
3881 }
3882
3883 static void hci_sched_acl(struct hci_dev *hdev)
3884 {
3885         BT_DBG("%s", hdev->name);
3886
3887         /* No ACL link over BR/EDR controller */
3888         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3889                 return;
3890
3891         /* No AMP link over AMP controller */
3892         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3893                 return;
3894
3895         switch (hdev->flow_ctl_mode) {
3896         case HCI_FLOW_CTL_MODE_PACKET_BASED:
3897                 hci_sched_acl_pkt(hdev);
3898                 break;
3899
3900         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3901                 hci_sched_acl_blk(hdev);
3902                 break;
3903         }
3904 }
3905
3906 /* Schedule SCO */
3907 static void hci_sched_sco(struct hci_dev *hdev)
3908 {
3909         struct hci_conn *conn;
3910         struct sk_buff *skb;
3911         int quote;
3912
3913         BT_DBG("%s", hdev->name);
3914
3915         if (!hci_conn_num(hdev, SCO_LINK))
3916                 return;
3917
3918         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3919                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3920                         BT_DBG("skb %p len %d", skb, skb->len);
3921                         hci_send_frame(hdev, skb);
3922
3923                         conn->sent++;
3924                         if (conn->sent == ~0)
3925                                 conn->sent = 0;
3926                 }
3927         }
3928 }
3929
3930 static void hci_sched_esco(struct hci_dev *hdev)
3931 {
3932         struct hci_conn *conn;
3933         struct sk_buff *skb;
3934         int quote;
3935
3936         BT_DBG("%s", hdev->name);
3937
3938         if (!hci_conn_num(hdev, ESCO_LINK))
3939                 return;
3940
3941         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3942                                                      &quote))) {
3943                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3944                         BT_DBG("skb %p len %d", skb, skb->len);
3945                         hci_send_frame(hdev, skb);
3946
3947                         conn->sent++;
3948                         if (conn->sent == ~0)
3949                                 conn->sent = 0;
3950                 }
3951         }
3952 }
3953
3954 static void hci_sched_le(struct hci_dev *hdev)
3955 {
3956         struct hci_chan *chan;
3957         struct sk_buff *skb;
3958         int quote, cnt, tmp;
3959
3960         BT_DBG("%s", hdev->name);
3961
3962         if (!hci_conn_num(hdev, LE_LINK))
3963                 return;
3964
3965         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3966                 /* LE tx timeout must be longer than maximum
3967                  * link supervision timeout (40.9 seconds) */
3968                 if (!hdev->le_cnt && hdev->le_pkts &&
3969                     time_after(jiffies, hdev->le_last_tx + HZ * 45))
3970                         hci_link_tx_to(hdev, LE_LINK);
3971         }
3972
3973         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3974         tmp = cnt;
3975         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3976                 u32 priority = (skb_peek(&chan->data_q))->priority;
3977                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3978                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3979                                skb->len, skb->priority);
3980
3981                         /* Stop if priority has changed */
3982                         if (skb->priority < priority)
3983                                 break;
3984
3985                         skb = skb_dequeue(&chan->data_q);
3986
3987                         hci_send_frame(hdev, skb);
3988                         hdev->le_last_tx = jiffies;
3989
3990                         cnt--;
3991                         chan->sent++;
3992                         chan->conn->sent++;
3993                 }
3994         }
3995
3996         if (hdev->le_pkts)
3997                 hdev->le_cnt = cnt;
3998         else
3999                 hdev->acl_cnt = cnt;
4000
4001         if (cnt != tmp)
4002                 hci_prio_recalculate(hdev, LE_LINK);
4003 }
4004
4005 static void hci_tx_work(struct work_struct *work)
4006 {
4007         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4008         struct sk_buff *skb;
4009
4010         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4011                hdev->sco_cnt, hdev->le_cnt);
4012
4013         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4014                 /* Schedule queues and send stuff to HCI driver */
4015                 hci_sched_acl(hdev);
4016                 hci_sched_sco(hdev);
4017                 hci_sched_esco(hdev);
4018                 hci_sched_le(hdev);
4019         }
4020
4021         /* Send next queued raw (unknown type) packet */
4022         while ((skb = skb_dequeue(&hdev->raw_q)))
4023                 hci_send_frame(hdev, skb);
4024 }
4025
4026 /* ----- HCI RX task (incoming data processing) ----- */
4027
4028 /* ACL data packet */
4029 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4030 {
4031         struct hci_acl_hdr *hdr = (void *) skb->data;
4032         struct hci_conn *conn;
4033         __u16 handle, flags;
4034
4035         skb_pull(skb, HCI_ACL_HDR_SIZE);
4036
4037         handle = __le16_to_cpu(hdr->handle);
4038         flags  = hci_flags(handle);
4039         handle = hci_handle(handle);
4040
4041         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4042                handle, flags);
4043
4044         hdev->stat.acl_rx++;
4045
4046         hci_dev_lock(hdev);
4047         conn = hci_conn_hash_lookup_handle(hdev, handle);
4048         hci_dev_unlock(hdev);
4049
4050         if (conn) {
4051                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4052
4053                 /* Send to upper protocol */
4054                 l2cap_recv_acldata(conn, skb, flags);
4055                 return;
4056         } else {
4057                 BT_ERR("%s ACL packet for unknown connection handle %d",
4058                        hdev->name, handle);
4059         }
4060
4061         kfree_skb(skb);
4062 }
4063
4064 /* SCO data packet */
4065 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4066 {
4067         struct hci_sco_hdr *hdr = (void *) skb->data;
4068         struct hci_conn *conn;
4069         __u16 handle;
4070
4071         skb_pull(skb, HCI_SCO_HDR_SIZE);
4072
4073         handle = __le16_to_cpu(hdr->handle);
4074
4075         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4076
4077         hdev->stat.sco_rx++;
4078
4079         hci_dev_lock(hdev);
4080         conn = hci_conn_hash_lookup_handle(hdev, handle);
4081         hci_dev_unlock(hdev);
4082
4083         if (conn) {
4084                 /* Send to upper protocol */
4085                 sco_recv_scodata(conn, skb);
4086                 return;
4087         } else {
4088                 BT_ERR("%s SCO packet for unknown connection handle %d",
4089                        hdev->name, handle);
4090         }
4091
4092         kfree_skb(skb);
4093 }
4094
4095 static bool hci_req_is_complete(struct hci_dev *hdev)
4096 {
4097         struct sk_buff *skb;
4098
4099         skb = skb_peek(&hdev->cmd_q);
4100         if (!skb)
4101                 return true;
4102
4103         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4104 }
4105
4106 static void hci_resend_last(struct hci_dev *hdev)
4107 {
4108         struct hci_command_hdr *sent;
4109         struct sk_buff *skb;
4110         u16 opcode;
4111
4112         if (!hdev->sent_cmd)
4113                 return;
4114
4115         sent = (void *) hdev->sent_cmd->data;
4116         opcode = __le16_to_cpu(sent->opcode);
4117         if (opcode == HCI_OP_RESET)
4118                 return;
4119
4120         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4121         if (!skb)
4122                 return;
4123
4124         skb_queue_head(&hdev->cmd_q, skb);
4125         queue_work(hdev->workqueue, &hdev->cmd_work);
4126 }
4127
4128 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4129                           hci_req_complete_t *req_complete,
4130                           hci_req_complete_skb_t *req_complete_skb)
4131 {
4132         struct sk_buff *skb;
4133         unsigned long flags;
4134
4135         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4136
4137         /* If the completed command doesn't match the last one that was
4138          * sent we need to do special handling of it.
4139          */
4140         if (!hci_sent_cmd_data(hdev, opcode)) {
4141                 /* Some CSR based controllers generate a spontaneous
4142                  * reset complete event during init and any pending
4143                  * command will never be completed. In such a case we
4144                  * need to resend whatever was the last sent
4145                  * command.
4146                  */
4147                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4148                         hci_resend_last(hdev);
4149
4150                 return;
4151         }
4152
4153         /* If the command succeeded and there's still more commands in
4154          * this request the request is not yet complete.
4155          */
4156         if (!status && !hci_req_is_complete(hdev))
4157                 return;
4158
4159         /* If this was the last command in a request the complete
4160          * callback would be found in hdev->sent_cmd instead of the
4161          * command queue (hdev->cmd_q).
4162          */
4163         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4164                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4165                 return;
4166         }
4167
4168         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4169                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4170                 return;
4171         }
4172
4173         /* Remove all pending commands belonging to this request */
4174         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4175         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4176                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4177                         __skb_queue_head(&hdev->cmd_q, skb);
4178                         break;
4179                 }
4180
4181                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4182                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4183                 else
4184                         *req_complete = bt_cb(skb)->hci.req_complete;
4185                 kfree_skb(skb);
4186         }
4187         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4188 }
4189
4190 static void hci_rx_work(struct work_struct *work)
4191 {
4192         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4193         struct sk_buff *skb;
4194
4195         BT_DBG("%s", hdev->name);
4196
4197         while ((skb = skb_dequeue(&hdev->rx_q))) {
4198                 /* Send copy to monitor */
4199                 hci_send_to_monitor(hdev, skb);
4200
4201                 if (atomic_read(&hdev->promisc)) {
4202                         /* Send copy to the sockets */
4203                         hci_send_to_sock(hdev, skb);
4204                 }
4205
4206                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4207                         kfree_skb(skb);
4208                         continue;
4209                 }
4210
4211                 if (test_bit(HCI_INIT, &hdev->flags)) {
4212                         /* Don't process data packets in this states. */
4213                         switch (hci_skb_pkt_type(skb)) {
4214                         case HCI_ACLDATA_PKT:
4215                         case HCI_SCODATA_PKT:
4216                                 kfree_skb(skb);
4217                                 continue;
4218                         }
4219                 }
4220
4221                 /* Process frame */
4222                 switch (hci_skb_pkt_type(skb)) {
4223                 case HCI_EVENT_PKT:
4224                         BT_DBG("%s Event packet", hdev->name);
4225                         hci_event_packet(hdev, skb);
4226                         break;
4227
4228                 case HCI_ACLDATA_PKT:
4229                         BT_DBG("%s ACL data packet", hdev->name);
4230                         hci_acldata_packet(hdev, skb);
4231                         break;
4232
4233                 case HCI_SCODATA_PKT:
4234                         BT_DBG("%s SCO data packet", hdev->name);
4235                         hci_scodata_packet(hdev, skb);
4236                         break;
4237
4238                 default:
4239                         kfree_skb(skb);
4240                         break;
4241                 }
4242         }
4243 }
4244
4245 static void hci_cmd_work(struct work_struct *work)
4246 {
4247         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4248         struct sk_buff *skb;
4249
4250         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4251                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4252
4253         /* Send queued commands */
4254         if (atomic_read(&hdev->cmd_cnt)) {
4255                 skb = skb_dequeue(&hdev->cmd_q);
4256                 if (!skb)
4257                         return;
4258
4259                 kfree_skb(hdev->sent_cmd);
4260
4261                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4262                 if (hdev->sent_cmd) {
4263                         atomic_dec(&hdev->cmd_cnt);
4264                         hci_send_frame(hdev, skb);
4265                         if (test_bit(HCI_RESET, &hdev->flags))
4266                                 cancel_delayed_work(&hdev->cmd_timer);
4267                         else
4268                                 schedule_delayed_work(&hdev->cmd_timer,
4269                                                       HCI_CMD_TIMEOUT);
4270                 } else {
4271                         skb_queue_head(&hdev->cmd_q, skb);
4272                         queue_work(hdev->workqueue, &hdev->cmd_work);
4273                 }
4274         }
4275 }