mm/zsmalloc: use class->objs_per_zspage to get num of max objects
[linux-2.6-block.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *
24  * Usage of struct page flags:
25  *      PG_private: identifies the first component page
26  *      PG_private2: identifies the last component page
27  *      PG_owner_priv_1: indentifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/bitops.h>
37 #include <linux/errno.h>
38 #include <linux/highmem.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <asm/tlbflush.h>
42 #include <asm/pgtable.h>
43 #include <linux/cpumask.h>
44 #include <linux/cpu.h>
45 #include <linux/vmalloc.h>
46 #include <linux/preempt.h>
47 #include <linux/spinlock.h>
48 #include <linux/types.h>
49 #include <linux/debugfs.h>
50 #include <linux/zsmalloc.h>
51 #include <linux/zpool.h>
52 #include <linux/mount.h>
53 #include <linux/migrate.h>
54 #include <linux/pagemap.h>
55
56 #define ZSPAGE_MAGIC    0x58
57
58 /*
59  * This must be power of 2 and greater than of equal to sizeof(link_free).
60  * These two conditions ensure that any 'struct link_free' itself doesn't
61  * span more than 1 page which avoids complex case of mapping 2 pages simply
62  * to restore link_free pointer values.
63  */
64 #define ZS_ALIGN                8
65
66 /*
67  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
68  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
69  */
70 #define ZS_MAX_ZSPAGE_ORDER 2
71 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
72
73 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
74
75 /*
76  * Object location (<PFN>, <obj_idx>) is encoded as
77  * as single (unsigned long) handle value.
78  *
79  * Note that object index <obj_idx> starts from 0.
80  *
81  * This is made more complicated by various memory models and PAE.
82  */
83
84 #ifndef MAX_PHYSMEM_BITS
85 #ifdef CONFIG_HIGHMEM64G
86 #define MAX_PHYSMEM_BITS 36
87 #else /* !CONFIG_HIGHMEM64G */
88 /*
89  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
90  * be PAGE_SHIFT
91  */
92 #define MAX_PHYSMEM_BITS BITS_PER_LONG
93 #endif
94 #endif
95 #define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
96
97 /*
98  * Memory for allocating for handle keeps object position by
99  * encoding <page, obj_idx> and the encoded value has a room
100  * in least bit(ie, look at obj_to_location).
101  * We use the bit to synchronize between object access by
102  * user and migration.
103  */
104 #define HANDLE_PIN_BIT  0
105
106 /*
107  * Head in allocated object should have OBJ_ALLOCATED_TAG
108  * to identify the object was allocated or not.
109  * It's okay to add the status bit in the least bit because
110  * header keeps handle which is 4byte-aligned address so we
111  * have room for two bit at least.
112  */
113 #define OBJ_ALLOCATED_TAG 1
114 #define OBJ_TAG_BITS 1
115 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
116 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117
118 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
119 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
120 #define ZS_MIN_ALLOC_SIZE \
121         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
122 /* each chunk includes extra space to keep handle */
123 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
124
125 /*
126  * On systems with 4K page size, this gives 255 size classes! There is a
127  * trader-off here:
128  *  - Large number of size classes is potentially wasteful as free page are
129  *    spread across these classes
130  *  - Small number of size classes causes large internal fragmentation
131  *  - Probably its better to use specific size classes (empirically
132  *    determined). NOTE: all those class sizes must be set as multiple of
133  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
134  *
135  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
136  *  (reason above)
137  */
138 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
139
140 /*
141  * We do not maintain any list for completely empty or full pages
142  */
143 enum fullness_group {
144         ZS_EMPTY,
145         ZS_ALMOST_EMPTY,
146         ZS_ALMOST_FULL,
147         ZS_FULL,
148         NR_ZS_FULLNESS,
149 };
150
151 enum zs_stat_type {
152         CLASS_EMPTY,
153         CLASS_ALMOST_EMPTY,
154         CLASS_ALMOST_FULL,
155         CLASS_FULL,
156         OBJ_ALLOCATED,
157         OBJ_USED,
158         NR_ZS_STAT_TYPE,
159 };
160
161 struct zs_size_stat {
162         unsigned long objs[NR_ZS_STAT_TYPE];
163 };
164
165 #ifdef CONFIG_ZSMALLOC_STAT
166 static struct dentry *zs_stat_root;
167 #endif
168
169 #ifdef CONFIG_COMPACTION
170 static struct vfsmount *zsmalloc_mnt;
171 #endif
172
173 /*
174  * number of size_classes
175  */
176 static int zs_size_classes;
177
178 /*
179  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180  *      n <= N / f, where
181  * n = number of allocated objects
182  * N = total number of objects zspage can store
183  * f = fullness_threshold_frac
184  *
185  * Similarly, we assign zspage to:
186  *      ZS_ALMOST_FULL  when n > N / f
187  *      ZS_EMPTY        when n == 0
188  *      ZS_FULL         when n == N
189  *
190  * (see: fix_fullness_group())
191  */
192 static const int fullness_threshold_frac = 4;
193
194 struct size_class {
195         spinlock_t lock;
196         struct list_head fullness_list[NR_ZS_FULLNESS];
197         /*
198          * Size of objects stored in this class. Must be multiple
199          * of ZS_ALIGN.
200          */
201         int size;
202         int objs_per_zspage;
203         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204         int pages_per_zspage;
205
206         unsigned int index;
207         struct zs_size_stat stats;
208 };
209
210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211 static void SetPageHugeObject(struct page *page)
212 {
213         SetPageOwnerPriv1(page);
214 }
215
216 static void ClearPageHugeObject(struct page *page)
217 {
218         ClearPageOwnerPriv1(page);
219 }
220
221 static int PageHugeObject(struct page *page)
222 {
223         return PageOwnerPriv1(page);
224 }
225
226 /*
227  * Placed within free objects to form a singly linked list.
228  * For every zspage, zspage->freeobj gives head of this list.
229  *
230  * This must be power of 2 and less than or equal to ZS_ALIGN
231  */
232 struct link_free {
233         union {
234                 /*
235                  * Free object index;
236                  * It's valid for non-allocated object
237                  */
238                 unsigned long next;
239                 /*
240                  * Handle of allocated object.
241                  */
242                 unsigned long handle;
243         };
244 };
245
246 struct zs_pool {
247         const char *name;
248
249         struct size_class **size_class;
250         struct kmem_cache *handle_cachep;
251         struct kmem_cache *zspage_cachep;
252
253         atomic_long_t pages_allocated;
254
255         struct zs_pool_stats stats;
256
257         /* Compact classes */
258         struct shrinker shrinker;
259         /*
260          * To signify that register_shrinker() was successful
261          * and unregister_shrinker() will not Oops.
262          */
263         bool shrinker_enabled;
264 #ifdef CONFIG_ZSMALLOC_STAT
265         struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268         struct inode *inode;
269         struct work_struct free_work;
270 #endif
271 };
272
273 /*
274  * A zspage's class index and fullness group
275  * are encoded in its (first)page->mapping
276  */
277 #define FULLNESS_BITS   2
278 #define CLASS_BITS      8
279 #define ISOLATED_BITS   3
280 #define MAGIC_VAL_BITS  8
281
282 struct zspage {
283         struct {
284                 unsigned int fullness:FULLNESS_BITS;
285                 unsigned int class:CLASS_BITS;
286                 unsigned int isolated:ISOLATED_BITS;
287                 unsigned int magic:MAGIC_VAL_BITS;
288         };
289         unsigned int inuse;
290         unsigned int freeobj;
291         struct page *first_page;
292         struct list_head list; /* fullness list */
293 #ifdef CONFIG_COMPACTION
294         rwlock_t lock;
295 #endif
296 };
297
298 struct mapping_area {
299 #ifdef CONFIG_PGTABLE_MAPPING
300         struct vm_struct *vm; /* vm area for mapping object that span pages */
301 #else
302         char *vm_buf; /* copy buffer for objects that span pages */
303 #endif
304         char *vm_addr; /* address of kmap_atomic()'ed pages */
305         enum zs_mapmode vm_mm; /* mapping mode */
306 };
307
308 #ifdef CONFIG_COMPACTION
309 static int zs_register_migration(struct zs_pool *pool);
310 static void zs_unregister_migration(struct zs_pool *pool);
311 static void migrate_lock_init(struct zspage *zspage);
312 static void migrate_read_lock(struct zspage *zspage);
313 static void migrate_read_unlock(struct zspage *zspage);
314 static void kick_deferred_free(struct zs_pool *pool);
315 static void init_deferred_free(struct zs_pool *pool);
316 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
317 #else
318 static int zsmalloc_mount(void) { return 0; }
319 static void zsmalloc_unmount(void) {}
320 static int zs_register_migration(struct zs_pool *pool) { return 0; }
321 static void zs_unregister_migration(struct zs_pool *pool) {}
322 static void migrate_lock_init(struct zspage *zspage) {}
323 static void migrate_read_lock(struct zspage *zspage) {}
324 static void migrate_read_unlock(struct zspage *zspage) {}
325 static void kick_deferred_free(struct zs_pool *pool) {}
326 static void init_deferred_free(struct zs_pool *pool) {}
327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
328 #endif
329
330 static int create_cache(struct zs_pool *pool)
331 {
332         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
333                                         0, 0, NULL);
334         if (!pool->handle_cachep)
335                 return 1;
336
337         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
338                                         0, 0, NULL);
339         if (!pool->zspage_cachep) {
340                 kmem_cache_destroy(pool->handle_cachep);
341                 pool->handle_cachep = NULL;
342                 return 1;
343         }
344
345         return 0;
346 }
347
348 static void destroy_cache(struct zs_pool *pool)
349 {
350         kmem_cache_destroy(pool->handle_cachep);
351         kmem_cache_destroy(pool->zspage_cachep);
352 }
353
354 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
355 {
356         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
357                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 }
359
360 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
361 {
362         kmem_cache_free(pool->handle_cachep, (void *)handle);
363 }
364
365 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
366 {
367         return kmem_cache_alloc(pool->zspage_cachep,
368                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 };
370
371 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
372 {
373         kmem_cache_free(pool->zspage_cachep, zspage);
374 }
375
376 static void record_obj(unsigned long handle, unsigned long obj)
377 {
378         /*
379          * lsb of @obj represents handle lock while other bits
380          * represent object value the handle is pointing so
381          * updating shouldn't do store tearing.
382          */
383         WRITE_ONCE(*(unsigned long *)handle, obj);
384 }
385
386 /* zpool driver */
387
388 #ifdef CONFIG_ZPOOL
389
390 static void *zs_zpool_create(const char *name, gfp_t gfp,
391                              const struct zpool_ops *zpool_ops,
392                              struct zpool *zpool)
393 {
394         /*
395          * Ignore global gfp flags: zs_malloc() may be invoked from
396          * different contexts and its caller must provide a valid
397          * gfp mask.
398          */
399         return zs_create_pool(name);
400 }
401
402 static void zs_zpool_destroy(void *pool)
403 {
404         zs_destroy_pool(pool);
405 }
406
407 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
408                         unsigned long *handle)
409 {
410         *handle = zs_malloc(pool, size, gfp);
411         return *handle ? 0 : -1;
412 }
413 static void zs_zpool_free(void *pool, unsigned long handle)
414 {
415         zs_free(pool, handle);
416 }
417
418 static int zs_zpool_shrink(void *pool, unsigned int pages,
419                         unsigned int *reclaimed)
420 {
421         return -EINVAL;
422 }
423
424 static void *zs_zpool_map(void *pool, unsigned long handle,
425                         enum zpool_mapmode mm)
426 {
427         enum zs_mapmode zs_mm;
428
429         switch (mm) {
430         case ZPOOL_MM_RO:
431                 zs_mm = ZS_MM_RO;
432                 break;
433         case ZPOOL_MM_WO:
434                 zs_mm = ZS_MM_WO;
435                 break;
436         case ZPOOL_MM_RW: /* fallthru */
437         default:
438                 zs_mm = ZS_MM_RW;
439                 break;
440         }
441
442         return zs_map_object(pool, handle, zs_mm);
443 }
444 static void zs_zpool_unmap(void *pool, unsigned long handle)
445 {
446         zs_unmap_object(pool, handle);
447 }
448
449 static u64 zs_zpool_total_size(void *pool)
450 {
451         return zs_get_total_pages(pool) << PAGE_SHIFT;
452 }
453
454 static struct zpool_driver zs_zpool_driver = {
455         .type =         "zsmalloc",
456         .owner =        THIS_MODULE,
457         .create =       zs_zpool_create,
458         .destroy =      zs_zpool_destroy,
459         .malloc =       zs_zpool_malloc,
460         .free =         zs_zpool_free,
461         .shrink =       zs_zpool_shrink,
462         .map =          zs_zpool_map,
463         .unmap =        zs_zpool_unmap,
464         .total_size =   zs_zpool_total_size,
465 };
466
467 MODULE_ALIAS("zpool-zsmalloc");
468 #endif /* CONFIG_ZPOOL */
469
470 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
471 {
472         return pages_per_zspage * PAGE_SIZE / size;
473 }
474
475 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
476 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
477
478 static bool is_zspage_isolated(struct zspage *zspage)
479 {
480         return zspage->isolated;
481 }
482
483 static int is_first_page(struct page *page)
484 {
485         return PagePrivate(page);
486 }
487
488 /* Protected by class->lock */
489 static inline int get_zspage_inuse(struct zspage *zspage)
490 {
491         return zspage->inuse;
492 }
493
494 static inline void set_zspage_inuse(struct zspage *zspage, int val)
495 {
496         zspage->inuse = val;
497 }
498
499 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
500 {
501         zspage->inuse += val;
502 }
503
504 static inline struct page *get_first_page(struct zspage *zspage)
505 {
506         struct page *first_page = zspage->first_page;
507
508         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
509         return first_page;
510 }
511
512 static inline int get_first_obj_offset(struct page *page)
513 {
514         return page->units;
515 }
516
517 static inline void set_first_obj_offset(struct page *page, int offset)
518 {
519         page->units = offset;
520 }
521
522 static inline unsigned int get_freeobj(struct zspage *zspage)
523 {
524         return zspage->freeobj;
525 }
526
527 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
528 {
529         zspage->freeobj = obj;
530 }
531
532 static void get_zspage_mapping(struct zspage *zspage,
533                                 unsigned int *class_idx,
534                                 enum fullness_group *fullness)
535 {
536         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
537
538         *fullness = zspage->fullness;
539         *class_idx = zspage->class;
540 }
541
542 static void set_zspage_mapping(struct zspage *zspage,
543                                 unsigned int class_idx,
544                                 enum fullness_group fullness)
545 {
546         zspage->class = class_idx;
547         zspage->fullness = fullness;
548 }
549
550 /*
551  * zsmalloc divides the pool into various size classes where each
552  * class maintains a list of zspages where each zspage is divided
553  * into equal sized chunks. Each allocation falls into one of these
554  * classes depending on its size. This function returns index of the
555  * size class which has chunk size big enough to hold the give size.
556  */
557 static int get_size_class_index(int size)
558 {
559         int idx = 0;
560
561         if (likely(size > ZS_MIN_ALLOC_SIZE))
562                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
563                                 ZS_SIZE_CLASS_DELTA);
564
565         return min(zs_size_classes - 1, idx);
566 }
567
568 static inline void zs_stat_inc(struct size_class *class,
569                                 enum zs_stat_type type, unsigned long cnt)
570 {
571         class->stats.objs[type] += cnt;
572 }
573
574 static inline void zs_stat_dec(struct size_class *class,
575                                 enum zs_stat_type type, unsigned long cnt)
576 {
577         class->stats.objs[type] -= cnt;
578 }
579
580 static inline unsigned long zs_stat_get(struct size_class *class,
581                                 enum zs_stat_type type)
582 {
583         return class->stats.objs[type];
584 }
585
586 #ifdef CONFIG_ZSMALLOC_STAT
587
588 static void __init zs_stat_init(void)
589 {
590         if (!debugfs_initialized()) {
591                 pr_warn("debugfs not available, stat dir not created\n");
592                 return;
593         }
594
595         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
596         if (!zs_stat_root)
597                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
598 }
599
600 static void __exit zs_stat_exit(void)
601 {
602         debugfs_remove_recursive(zs_stat_root);
603 }
604
605 static unsigned long zs_can_compact(struct size_class *class);
606
607 static int zs_stats_size_show(struct seq_file *s, void *v)
608 {
609         int i;
610         struct zs_pool *pool = s->private;
611         struct size_class *class;
612         int objs_per_zspage;
613         unsigned long class_almost_full, class_almost_empty;
614         unsigned long obj_allocated, obj_used, pages_used, freeable;
615         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
616         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
617         unsigned long total_freeable = 0;
618
619         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
620                         "class", "size", "almost_full", "almost_empty",
621                         "obj_allocated", "obj_used", "pages_used",
622                         "pages_per_zspage", "freeable");
623
624         for (i = 0; i < zs_size_classes; i++) {
625                 class = pool->size_class[i];
626
627                 if (class->index != i)
628                         continue;
629
630                 spin_lock(&class->lock);
631                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
632                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
633                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
634                 obj_used = zs_stat_get(class, OBJ_USED);
635                 freeable = zs_can_compact(class);
636                 spin_unlock(&class->lock);
637
638                 objs_per_zspage = class->objs_per_zspage;
639                 pages_used = obj_allocated / objs_per_zspage *
640                                 class->pages_per_zspage;
641
642                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
643                                 " %10lu %10lu %16d %8lu\n",
644                         i, class->size, class_almost_full, class_almost_empty,
645                         obj_allocated, obj_used, pages_used,
646                         class->pages_per_zspage, freeable);
647
648                 total_class_almost_full += class_almost_full;
649                 total_class_almost_empty += class_almost_empty;
650                 total_objs += obj_allocated;
651                 total_used_objs += obj_used;
652                 total_pages += pages_used;
653                 total_freeable += freeable;
654         }
655
656         seq_puts(s, "\n");
657         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
658                         "Total", "", total_class_almost_full,
659                         total_class_almost_empty, total_objs,
660                         total_used_objs, total_pages, "", total_freeable);
661
662         return 0;
663 }
664
665 static int zs_stats_size_open(struct inode *inode, struct file *file)
666 {
667         return single_open(file, zs_stats_size_show, inode->i_private);
668 }
669
670 static const struct file_operations zs_stat_size_ops = {
671         .open           = zs_stats_size_open,
672         .read           = seq_read,
673         .llseek         = seq_lseek,
674         .release        = single_release,
675 };
676
677 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
678 {
679         struct dentry *entry;
680
681         if (!zs_stat_root) {
682                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
683                 return;
684         }
685
686         entry = debugfs_create_dir(name, zs_stat_root);
687         if (!entry) {
688                 pr_warn("debugfs dir <%s> creation failed\n", name);
689                 return;
690         }
691         pool->stat_dentry = entry;
692
693         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
694                         pool->stat_dentry, pool, &zs_stat_size_ops);
695         if (!entry) {
696                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
697                                 name, "classes");
698                 debugfs_remove_recursive(pool->stat_dentry);
699                 pool->stat_dentry = NULL;
700         }
701 }
702
703 static void zs_pool_stat_destroy(struct zs_pool *pool)
704 {
705         debugfs_remove_recursive(pool->stat_dentry);
706 }
707
708 #else /* CONFIG_ZSMALLOC_STAT */
709 static void __init zs_stat_init(void)
710 {
711 }
712
713 static void __exit zs_stat_exit(void)
714 {
715 }
716
717 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
718 {
719 }
720
721 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
722 {
723 }
724 #endif
725
726
727 /*
728  * For each size class, zspages are divided into different groups
729  * depending on how "full" they are. This was done so that we could
730  * easily find empty or nearly empty zspages when we try to shrink
731  * the pool (not yet implemented). This function returns fullness
732  * status of the given page.
733  */
734 static enum fullness_group get_fullness_group(struct size_class *class,
735                                                 struct zspage *zspage)
736 {
737         int inuse, objs_per_zspage;
738         enum fullness_group fg;
739
740         inuse = get_zspage_inuse(zspage);
741         objs_per_zspage = class->objs_per_zspage;
742
743         if (inuse == 0)
744                 fg = ZS_EMPTY;
745         else if (inuse == objs_per_zspage)
746                 fg = ZS_FULL;
747         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
748                 fg = ZS_ALMOST_EMPTY;
749         else
750                 fg = ZS_ALMOST_FULL;
751
752         return fg;
753 }
754
755 /*
756  * Each size class maintains various freelists and zspages are assigned
757  * to one of these freelists based on the number of live objects they
758  * have. This functions inserts the given zspage into the freelist
759  * identified by <class, fullness_group>.
760  */
761 static void insert_zspage(struct size_class *class,
762                                 struct zspage *zspage,
763                                 enum fullness_group fullness)
764 {
765         struct zspage *head;
766
767         zs_stat_inc(class, fullness, 1);
768         head = list_first_entry_or_null(&class->fullness_list[fullness],
769                                         struct zspage, list);
770         /*
771          * We want to see more ZS_FULL pages and less almost empty/full.
772          * Put pages with higher ->inuse first.
773          */
774         if (head) {
775                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
776                         list_add(&zspage->list, &head->list);
777                         return;
778                 }
779         }
780         list_add(&zspage->list, &class->fullness_list[fullness]);
781 }
782
783 /*
784  * This function removes the given zspage from the freelist identified
785  * by <class, fullness_group>.
786  */
787 static void remove_zspage(struct size_class *class,
788                                 struct zspage *zspage,
789                                 enum fullness_group fullness)
790 {
791         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
792         VM_BUG_ON(is_zspage_isolated(zspage));
793
794         list_del_init(&zspage->list);
795         zs_stat_dec(class, fullness, 1);
796 }
797
798 /*
799  * Each size class maintains zspages in different fullness groups depending
800  * on the number of live objects they contain. When allocating or freeing
801  * objects, the fullness status of the page can change, say, from ALMOST_FULL
802  * to ALMOST_EMPTY when freeing an object. This function checks if such
803  * a status change has occurred for the given page and accordingly moves the
804  * page from the freelist of the old fullness group to that of the new
805  * fullness group.
806  */
807 static enum fullness_group fix_fullness_group(struct size_class *class,
808                                                 struct zspage *zspage)
809 {
810         int class_idx;
811         enum fullness_group currfg, newfg;
812
813         get_zspage_mapping(zspage, &class_idx, &currfg);
814         newfg = get_fullness_group(class, zspage);
815         if (newfg == currfg)
816                 goto out;
817
818         if (!is_zspage_isolated(zspage)) {
819                 remove_zspage(class, zspage, currfg);
820                 insert_zspage(class, zspage, newfg);
821         }
822
823         set_zspage_mapping(zspage, class_idx, newfg);
824
825 out:
826         return newfg;
827 }
828
829 /*
830  * We have to decide on how many pages to link together
831  * to form a zspage for each size class. This is important
832  * to reduce wastage due to unusable space left at end of
833  * each zspage which is given as:
834  *     wastage = Zp % class_size
835  *     usage = Zp - wastage
836  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
837  *
838  * For example, for size class of 3/8 * PAGE_SIZE, we should
839  * link together 3 PAGE_SIZE sized pages to form a zspage
840  * since then we can perfectly fit in 8 such objects.
841  */
842 static int get_pages_per_zspage(int class_size)
843 {
844         int i, max_usedpc = 0;
845         /* zspage order which gives maximum used size per KB */
846         int max_usedpc_order = 1;
847
848         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
849                 int zspage_size;
850                 int waste, usedpc;
851
852                 zspage_size = i * PAGE_SIZE;
853                 waste = zspage_size % class_size;
854                 usedpc = (zspage_size - waste) * 100 / zspage_size;
855
856                 if (usedpc > max_usedpc) {
857                         max_usedpc = usedpc;
858                         max_usedpc_order = i;
859                 }
860         }
861
862         return max_usedpc_order;
863 }
864
865 static struct zspage *get_zspage(struct page *page)
866 {
867         struct zspage *zspage = (struct zspage *)page->private;
868
869         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
870         return zspage;
871 }
872
873 static struct page *get_next_page(struct page *page)
874 {
875         if (unlikely(PageHugeObject(page)))
876                 return NULL;
877
878         return page->freelist;
879 }
880
881 /**
882  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
883  * @page: page object resides in zspage
884  * @obj_idx: object index
885  */
886 static void obj_to_location(unsigned long obj, struct page **page,
887                                 unsigned int *obj_idx)
888 {
889         obj >>= OBJ_TAG_BITS;
890         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
891         *obj_idx = (obj & OBJ_INDEX_MASK);
892 }
893
894 /**
895  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
896  * @page: page object resides in zspage
897  * @obj_idx: object index
898  */
899 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
900 {
901         unsigned long obj;
902
903         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
904         obj |= obj_idx & OBJ_INDEX_MASK;
905         obj <<= OBJ_TAG_BITS;
906
907         return obj;
908 }
909
910 static unsigned long handle_to_obj(unsigned long handle)
911 {
912         return *(unsigned long *)handle;
913 }
914
915 static unsigned long obj_to_head(struct page *page, void *obj)
916 {
917         if (unlikely(PageHugeObject(page))) {
918                 VM_BUG_ON_PAGE(!is_first_page(page), page);
919                 return page->index;
920         } else
921                 return *(unsigned long *)obj;
922 }
923
924 static inline int testpin_tag(unsigned long handle)
925 {
926         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
927 }
928
929 static inline int trypin_tag(unsigned long handle)
930 {
931         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
932 }
933
934 static void pin_tag(unsigned long handle)
935 {
936         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
937 }
938
939 static void unpin_tag(unsigned long handle)
940 {
941         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
942 }
943
944 static void reset_page(struct page *page)
945 {
946         __ClearPageMovable(page);
947         clear_bit(PG_private, &page->flags);
948         clear_bit(PG_private_2, &page->flags);
949         set_page_private(page, 0);
950         page_mapcount_reset(page);
951         ClearPageHugeObject(page);
952         page->freelist = NULL;
953 }
954
955 /*
956  * To prevent zspage destroy during migration, zspage freeing should
957  * hold locks of all pages in the zspage.
958  */
959 void lock_zspage(struct zspage *zspage)
960 {
961         struct page *page = get_first_page(zspage);
962
963         do {
964                 lock_page(page);
965         } while ((page = get_next_page(page)) != NULL);
966 }
967
968 int trylock_zspage(struct zspage *zspage)
969 {
970         struct page *cursor, *fail;
971
972         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
973                                         get_next_page(cursor)) {
974                 if (!trylock_page(cursor)) {
975                         fail = cursor;
976                         goto unlock;
977                 }
978         }
979
980         return 1;
981 unlock:
982         for (cursor = get_first_page(zspage); cursor != fail; cursor =
983                                         get_next_page(cursor))
984                 unlock_page(cursor);
985
986         return 0;
987 }
988
989 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
990                                 struct zspage *zspage)
991 {
992         struct page *page, *next;
993         enum fullness_group fg;
994         unsigned int class_idx;
995
996         get_zspage_mapping(zspage, &class_idx, &fg);
997
998         assert_spin_locked(&class->lock);
999
1000         VM_BUG_ON(get_zspage_inuse(zspage));
1001         VM_BUG_ON(fg != ZS_EMPTY);
1002
1003         next = page = get_first_page(zspage);
1004         do {
1005                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1006                 next = get_next_page(page);
1007                 reset_page(page);
1008                 unlock_page(page);
1009                 dec_zone_page_state(page, NR_ZSPAGES);
1010                 put_page(page);
1011                 page = next;
1012         } while (page != NULL);
1013
1014         cache_free_zspage(pool, zspage);
1015
1016         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1017         atomic_long_sub(class->pages_per_zspage,
1018                                         &pool->pages_allocated);
1019 }
1020
1021 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1022                                 struct zspage *zspage)
1023 {
1024         VM_BUG_ON(get_zspage_inuse(zspage));
1025         VM_BUG_ON(list_empty(&zspage->list));
1026
1027         if (!trylock_zspage(zspage)) {
1028                 kick_deferred_free(pool);
1029                 return;
1030         }
1031
1032         remove_zspage(class, zspage, ZS_EMPTY);
1033         __free_zspage(pool, class, zspage);
1034 }
1035
1036 /* Initialize a newly allocated zspage */
1037 static void init_zspage(struct size_class *class, struct zspage *zspage)
1038 {
1039         unsigned int freeobj = 1;
1040         unsigned long off = 0;
1041         struct page *page = get_first_page(zspage);
1042
1043         while (page) {
1044                 struct page *next_page;
1045                 struct link_free *link;
1046                 void *vaddr;
1047
1048                 set_first_obj_offset(page, off);
1049
1050                 vaddr = kmap_atomic(page);
1051                 link = (struct link_free *)vaddr + off / sizeof(*link);
1052
1053                 while ((off += class->size) < PAGE_SIZE) {
1054                         link->next = freeobj++ << OBJ_TAG_BITS;
1055                         link += class->size / sizeof(*link);
1056                 }
1057
1058                 /*
1059                  * We now come to the last (full or partial) object on this
1060                  * page, which must point to the first object on the next
1061                  * page (if present)
1062                  */
1063                 next_page = get_next_page(page);
1064                 if (next_page) {
1065                         link->next = freeobj++ << OBJ_TAG_BITS;
1066                 } else {
1067                         /*
1068                          * Reset OBJ_TAG_BITS bit to last link to tell
1069                          * whether it's allocated object or not.
1070                          */
1071                         link->next = -1 << OBJ_TAG_BITS;
1072                 }
1073                 kunmap_atomic(vaddr);
1074                 page = next_page;
1075                 off %= PAGE_SIZE;
1076         }
1077
1078         set_freeobj(zspage, 0);
1079 }
1080
1081 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1082                                 struct page *pages[])
1083 {
1084         int i;
1085         struct page *page;
1086         struct page *prev_page = NULL;
1087         int nr_pages = class->pages_per_zspage;
1088
1089         /*
1090          * Allocate individual pages and link them together as:
1091          * 1. all pages are linked together using page->freelist
1092          * 2. each sub-page point to zspage using page->private
1093          *
1094          * we set PG_private to identify the first page (i.e. no other sub-page
1095          * has this flag set) and PG_private_2 to identify the last page.
1096          */
1097         for (i = 0; i < nr_pages; i++) {
1098                 page = pages[i];
1099                 set_page_private(page, (unsigned long)zspage);
1100                 page->freelist = NULL;
1101                 if (i == 0) {
1102                         zspage->first_page = page;
1103                         SetPagePrivate(page);
1104                         if (unlikely(class->objs_per_zspage == 1 &&
1105                                         class->pages_per_zspage == 1))
1106                                 SetPageHugeObject(page);
1107                 } else {
1108                         prev_page->freelist = page;
1109                 }
1110                 if (i == nr_pages - 1)
1111                         SetPagePrivate2(page);
1112                 prev_page = page;
1113         }
1114 }
1115
1116 /*
1117  * Allocate a zspage for the given size class
1118  */
1119 static struct zspage *alloc_zspage(struct zs_pool *pool,
1120                                         struct size_class *class,
1121                                         gfp_t gfp)
1122 {
1123         int i;
1124         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1125         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1126
1127         if (!zspage)
1128                 return NULL;
1129
1130         memset(zspage, 0, sizeof(struct zspage));
1131         zspage->magic = ZSPAGE_MAGIC;
1132         migrate_lock_init(zspage);
1133
1134         for (i = 0; i < class->pages_per_zspage; i++) {
1135                 struct page *page;
1136
1137                 page = alloc_page(gfp);
1138                 if (!page) {
1139                         while (--i >= 0) {
1140                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1141                                 __free_page(pages[i]);
1142                         }
1143                         cache_free_zspage(pool, zspage);
1144                         return NULL;
1145                 }
1146
1147                 inc_zone_page_state(page, NR_ZSPAGES);
1148                 pages[i] = page;
1149         }
1150
1151         create_page_chain(class, zspage, pages);
1152         init_zspage(class, zspage);
1153
1154         return zspage;
1155 }
1156
1157 static struct zspage *find_get_zspage(struct size_class *class)
1158 {
1159         int i;
1160         struct zspage *zspage;
1161
1162         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1163                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1164                                 struct zspage, list);
1165                 if (zspage)
1166                         break;
1167         }
1168
1169         return zspage;
1170 }
1171
1172 #ifdef CONFIG_PGTABLE_MAPPING
1173 static inline int __zs_cpu_up(struct mapping_area *area)
1174 {
1175         /*
1176          * Make sure we don't leak memory if a cpu UP notification
1177          * and zs_init() race and both call zs_cpu_up() on the same cpu
1178          */
1179         if (area->vm)
1180                 return 0;
1181         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1182         if (!area->vm)
1183                 return -ENOMEM;
1184         return 0;
1185 }
1186
1187 static inline void __zs_cpu_down(struct mapping_area *area)
1188 {
1189         if (area->vm)
1190                 free_vm_area(area->vm);
1191         area->vm = NULL;
1192 }
1193
1194 static inline void *__zs_map_object(struct mapping_area *area,
1195                                 struct page *pages[2], int off, int size)
1196 {
1197         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1198         area->vm_addr = area->vm->addr;
1199         return area->vm_addr + off;
1200 }
1201
1202 static inline void __zs_unmap_object(struct mapping_area *area,
1203                                 struct page *pages[2], int off, int size)
1204 {
1205         unsigned long addr = (unsigned long)area->vm_addr;
1206
1207         unmap_kernel_range(addr, PAGE_SIZE * 2);
1208 }
1209
1210 #else /* CONFIG_PGTABLE_MAPPING */
1211
1212 static inline int __zs_cpu_up(struct mapping_area *area)
1213 {
1214         /*
1215          * Make sure we don't leak memory if a cpu UP notification
1216          * and zs_init() race and both call zs_cpu_up() on the same cpu
1217          */
1218         if (area->vm_buf)
1219                 return 0;
1220         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1221         if (!area->vm_buf)
1222                 return -ENOMEM;
1223         return 0;
1224 }
1225
1226 static inline void __zs_cpu_down(struct mapping_area *area)
1227 {
1228         kfree(area->vm_buf);
1229         area->vm_buf = NULL;
1230 }
1231
1232 static void *__zs_map_object(struct mapping_area *area,
1233                         struct page *pages[2], int off, int size)
1234 {
1235         int sizes[2];
1236         void *addr;
1237         char *buf = area->vm_buf;
1238
1239         /* disable page faults to match kmap_atomic() return conditions */
1240         pagefault_disable();
1241
1242         /* no read fastpath */
1243         if (area->vm_mm == ZS_MM_WO)
1244                 goto out;
1245
1246         sizes[0] = PAGE_SIZE - off;
1247         sizes[1] = size - sizes[0];
1248
1249         /* copy object to per-cpu buffer */
1250         addr = kmap_atomic(pages[0]);
1251         memcpy(buf, addr + off, sizes[0]);
1252         kunmap_atomic(addr);
1253         addr = kmap_atomic(pages[1]);
1254         memcpy(buf + sizes[0], addr, sizes[1]);
1255         kunmap_atomic(addr);
1256 out:
1257         return area->vm_buf;
1258 }
1259
1260 static void __zs_unmap_object(struct mapping_area *area,
1261                         struct page *pages[2], int off, int size)
1262 {
1263         int sizes[2];
1264         void *addr;
1265         char *buf;
1266
1267         /* no write fastpath */
1268         if (area->vm_mm == ZS_MM_RO)
1269                 goto out;
1270
1271         buf = area->vm_buf;
1272         buf = buf + ZS_HANDLE_SIZE;
1273         size -= ZS_HANDLE_SIZE;
1274         off += ZS_HANDLE_SIZE;
1275
1276         sizes[0] = PAGE_SIZE - off;
1277         sizes[1] = size - sizes[0];
1278
1279         /* copy per-cpu buffer to object */
1280         addr = kmap_atomic(pages[0]);
1281         memcpy(addr + off, buf, sizes[0]);
1282         kunmap_atomic(addr);
1283         addr = kmap_atomic(pages[1]);
1284         memcpy(addr, buf + sizes[0], sizes[1]);
1285         kunmap_atomic(addr);
1286
1287 out:
1288         /* enable page faults to match kunmap_atomic() return conditions */
1289         pagefault_enable();
1290 }
1291
1292 #endif /* CONFIG_PGTABLE_MAPPING */
1293
1294 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1295                                 void *pcpu)
1296 {
1297         int ret, cpu = (long)pcpu;
1298         struct mapping_area *area;
1299
1300         switch (action) {
1301         case CPU_UP_PREPARE:
1302                 area = &per_cpu(zs_map_area, cpu);
1303                 ret = __zs_cpu_up(area);
1304                 if (ret)
1305                         return notifier_from_errno(ret);
1306                 break;
1307         case CPU_DEAD:
1308         case CPU_UP_CANCELED:
1309                 area = &per_cpu(zs_map_area, cpu);
1310                 __zs_cpu_down(area);
1311                 break;
1312         }
1313
1314         return NOTIFY_OK;
1315 }
1316
1317 static struct notifier_block zs_cpu_nb = {
1318         .notifier_call = zs_cpu_notifier
1319 };
1320
1321 static int zs_register_cpu_notifier(void)
1322 {
1323         int cpu, uninitialized_var(ret);
1324
1325         cpu_notifier_register_begin();
1326
1327         __register_cpu_notifier(&zs_cpu_nb);
1328         for_each_online_cpu(cpu) {
1329                 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1330                 if (notifier_to_errno(ret))
1331                         break;
1332         }
1333
1334         cpu_notifier_register_done();
1335         return notifier_to_errno(ret);
1336 }
1337
1338 static void zs_unregister_cpu_notifier(void)
1339 {
1340         int cpu;
1341
1342         cpu_notifier_register_begin();
1343
1344         for_each_online_cpu(cpu)
1345                 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1346         __unregister_cpu_notifier(&zs_cpu_nb);
1347
1348         cpu_notifier_register_done();
1349 }
1350
1351 static void init_zs_size_classes(void)
1352 {
1353         int nr;
1354
1355         nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1356         if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1357                 nr += 1;
1358
1359         zs_size_classes = nr;
1360 }
1361
1362 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1363 {
1364         if (prev->pages_per_zspage != pages_per_zspage)
1365                 return false;
1366
1367         if (prev->objs_per_zspage
1368                 != get_maxobj_per_zspage(size, pages_per_zspage))
1369                 return false;
1370
1371         return true;
1372 }
1373
1374 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1375 {
1376         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1377 }
1378
1379 unsigned long zs_get_total_pages(struct zs_pool *pool)
1380 {
1381         return atomic_long_read(&pool->pages_allocated);
1382 }
1383 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1384
1385 /**
1386  * zs_map_object - get address of allocated object from handle.
1387  * @pool: pool from which the object was allocated
1388  * @handle: handle returned from zs_malloc
1389  *
1390  * Before using an object allocated from zs_malloc, it must be mapped using
1391  * this function. When done with the object, it must be unmapped using
1392  * zs_unmap_object.
1393  *
1394  * Only one object can be mapped per cpu at a time. There is no protection
1395  * against nested mappings.
1396  *
1397  * This function returns with preemption and page faults disabled.
1398  */
1399 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1400                         enum zs_mapmode mm)
1401 {
1402         struct zspage *zspage;
1403         struct page *page;
1404         unsigned long obj, off;
1405         unsigned int obj_idx;
1406
1407         unsigned int class_idx;
1408         enum fullness_group fg;
1409         struct size_class *class;
1410         struct mapping_area *area;
1411         struct page *pages[2];
1412         void *ret;
1413
1414         /*
1415          * Because we use per-cpu mapping areas shared among the
1416          * pools/users, we can't allow mapping in interrupt context
1417          * because it can corrupt another users mappings.
1418          */
1419         WARN_ON_ONCE(in_interrupt());
1420
1421         /* From now on, migration cannot move the object */
1422         pin_tag(handle);
1423
1424         obj = handle_to_obj(handle);
1425         obj_to_location(obj, &page, &obj_idx);
1426         zspage = get_zspage(page);
1427
1428         /* migration cannot move any subpage in this zspage */
1429         migrate_read_lock(zspage);
1430
1431         get_zspage_mapping(zspage, &class_idx, &fg);
1432         class = pool->size_class[class_idx];
1433         off = (class->size * obj_idx) & ~PAGE_MASK;
1434
1435         area = &get_cpu_var(zs_map_area);
1436         area->vm_mm = mm;
1437         if (off + class->size <= PAGE_SIZE) {
1438                 /* this object is contained entirely within a page */
1439                 area->vm_addr = kmap_atomic(page);
1440                 ret = area->vm_addr + off;
1441                 goto out;
1442         }
1443
1444         /* this object spans two pages */
1445         pages[0] = page;
1446         pages[1] = get_next_page(page);
1447         BUG_ON(!pages[1]);
1448
1449         ret = __zs_map_object(area, pages, off, class->size);
1450 out:
1451         if (likely(!PageHugeObject(page)))
1452                 ret += ZS_HANDLE_SIZE;
1453
1454         return ret;
1455 }
1456 EXPORT_SYMBOL_GPL(zs_map_object);
1457
1458 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1459 {
1460         struct zspage *zspage;
1461         struct page *page;
1462         unsigned long obj, off;
1463         unsigned int obj_idx;
1464
1465         unsigned int class_idx;
1466         enum fullness_group fg;
1467         struct size_class *class;
1468         struct mapping_area *area;
1469
1470         obj = handle_to_obj(handle);
1471         obj_to_location(obj, &page, &obj_idx);
1472         zspage = get_zspage(page);
1473         get_zspage_mapping(zspage, &class_idx, &fg);
1474         class = pool->size_class[class_idx];
1475         off = (class->size * obj_idx) & ~PAGE_MASK;
1476
1477         area = this_cpu_ptr(&zs_map_area);
1478         if (off + class->size <= PAGE_SIZE)
1479                 kunmap_atomic(area->vm_addr);
1480         else {
1481                 struct page *pages[2];
1482
1483                 pages[0] = page;
1484                 pages[1] = get_next_page(page);
1485                 BUG_ON(!pages[1]);
1486
1487                 __zs_unmap_object(area, pages, off, class->size);
1488         }
1489         put_cpu_var(zs_map_area);
1490
1491         migrate_read_unlock(zspage);
1492         unpin_tag(handle);
1493 }
1494 EXPORT_SYMBOL_GPL(zs_unmap_object);
1495
1496 static unsigned long obj_malloc(struct size_class *class,
1497                                 struct zspage *zspage, unsigned long handle)
1498 {
1499         int i, nr_page, offset;
1500         unsigned long obj;
1501         struct link_free *link;
1502
1503         struct page *m_page;
1504         unsigned long m_offset;
1505         void *vaddr;
1506
1507         handle |= OBJ_ALLOCATED_TAG;
1508         obj = get_freeobj(zspage);
1509
1510         offset = obj * class->size;
1511         nr_page = offset >> PAGE_SHIFT;
1512         m_offset = offset & ~PAGE_MASK;
1513         m_page = get_first_page(zspage);
1514
1515         for (i = 0; i < nr_page; i++)
1516                 m_page = get_next_page(m_page);
1517
1518         vaddr = kmap_atomic(m_page);
1519         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1520         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1521         if (likely(!PageHugeObject(m_page)))
1522                 /* record handle in the header of allocated chunk */
1523                 link->handle = handle;
1524         else
1525                 /* record handle to page->index */
1526                 zspage->first_page->index = handle;
1527
1528         kunmap_atomic(vaddr);
1529         mod_zspage_inuse(zspage, 1);
1530         zs_stat_inc(class, OBJ_USED, 1);
1531
1532         obj = location_to_obj(m_page, obj);
1533
1534         return obj;
1535 }
1536
1537
1538 /**
1539  * zs_malloc - Allocate block of given size from pool.
1540  * @pool: pool to allocate from
1541  * @size: size of block to allocate
1542  *
1543  * On success, handle to the allocated object is returned,
1544  * otherwise 0.
1545  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1546  */
1547 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1548 {
1549         unsigned long handle, obj;
1550         struct size_class *class;
1551         enum fullness_group newfg;
1552         struct zspage *zspage;
1553
1554         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1555                 return 0;
1556
1557         handle = cache_alloc_handle(pool, gfp);
1558         if (!handle)
1559                 return 0;
1560
1561         /* extra space in chunk to keep the handle */
1562         size += ZS_HANDLE_SIZE;
1563         class = pool->size_class[get_size_class_index(size)];
1564
1565         spin_lock(&class->lock);
1566         zspage = find_get_zspage(class);
1567         if (likely(zspage)) {
1568                 obj = obj_malloc(class, zspage, handle);
1569                 /* Now move the zspage to another fullness group, if required */
1570                 fix_fullness_group(class, zspage);
1571                 record_obj(handle, obj);
1572                 spin_unlock(&class->lock);
1573
1574                 return handle;
1575         }
1576
1577         spin_unlock(&class->lock);
1578
1579         zspage = alloc_zspage(pool, class, gfp);
1580         if (!zspage) {
1581                 cache_free_handle(pool, handle);
1582                 return 0;
1583         }
1584
1585         spin_lock(&class->lock);
1586         obj = obj_malloc(class, zspage, handle);
1587         newfg = get_fullness_group(class, zspage);
1588         insert_zspage(class, zspage, newfg);
1589         set_zspage_mapping(zspage, class->index, newfg);
1590         record_obj(handle, obj);
1591         atomic_long_add(class->pages_per_zspage,
1592                                 &pool->pages_allocated);
1593         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1594
1595         /* We completely set up zspage so mark them as movable */
1596         SetZsPageMovable(pool, zspage);
1597         spin_unlock(&class->lock);
1598
1599         return handle;
1600 }
1601 EXPORT_SYMBOL_GPL(zs_malloc);
1602
1603 static void obj_free(struct size_class *class, unsigned long obj)
1604 {
1605         struct link_free *link;
1606         struct zspage *zspage;
1607         struct page *f_page;
1608         unsigned long f_offset;
1609         unsigned int f_objidx;
1610         void *vaddr;
1611
1612         obj &= ~OBJ_ALLOCATED_TAG;
1613         obj_to_location(obj, &f_page, &f_objidx);
1614         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1615         zspage = get_zspage(f_page);
1616
1617         vaddr = kmap_atomic(f_page);
1618
1619         /* Insert this object in containing zspage's freelist */
1620         link = (struct link_free *)(vaddr + f_offset);
1621         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1622         kunmap_atomic(vaddr);
1623         set_freeobj(zspage, f_objidx);
1624         mod_zspage_inuse(zspage, -1);
1625         zs_stat_dec(class, OBJ_USED, 1);
1626 }
1627
1628 void zs_free(struct zs_pool *pool, unsigned long handle)
1629 {
1630         struct zspage *zspage;
1631         struct page *f_page;
1632         unsigned long obj;
1633         unsigned int f_objidx;
1634         int class_idx;
1635         struct size_class *class;
1636         enum fullness_group fullness;
1637         bool isolated;
1638
1639         if (unlikely(!handle))
1640                 return;
1641
1642         pin_tag(handle);
1643         obj = handle_to_obj(handle);
1644         obj_to_location(obj, &f_page, &f_objidx);
1645         zspage = get_zspage(f_page);
1646
1647         migrate_read_lock(zspage);
1648
1649         get_zspage_mapping(zspage, &class_idx, &fullness);
1650         class = pool->size_class[class_idx];
1651
1652         spin_lock(&class->lock);
1653         obj_free(class, obj);
1654         fullness = fix_fullness_group(class, zspage);
1655         if (fullness != ZS_EMPTY) {
1656                 migrate_read_unlock(zspage);
1657                 goto out;
1658         }
1659
1660         isolated = is_zspage_isolated(zspage);
1661         migrate_read_unlock(zspage);
1662         /* If zspage is isolated, zs_page_putback will free the zspage */
1663         if (likely(!isolated))
1664                 free_zspage(pool, class, zspage);
1665 out:
1666
1667         spin_unlock(&class->lock);
1668         unpin_tag(handle);
1669         cache_free_handle(pool, handle);
1670 }
1671 EXPORT_SYMBOL_GPL(zs_free);
1672
1673 static void zs_object_copy(struct size_class *class, unsigned long dst,
1674                                 unsigned long src)
1675 {
1676         struct page *s_page, *d_page;
1677         unsigned int s_objidx, d_objidx;
1678         unsigned long s_off, d_off;
1679         void *s_addr, *d_addr;
1680         int s_size, d_size, size;
1681         int written = 0;
1682
1683         s_size = d_size = class->size;
1684
1685         obj_to_location(src, &s_page, &s_objidx);
1686         obj_to_location(dst, &d_page, &d_objidx);
1687
1688         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1689         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1690
1691         if (s_off + class->size > PAGE_SIZE)
1692                 s_size = PAGE_SIZE - s_off;
1693
1694         if (d_off + class->size > PAGE_SIZE)
1695                 d_size = PAGE_SIZE - d_off;
1696
1697         s_addr = kmap_atomic(s_page);
1698         d_addr = kmap_atomic(d_page);
1699
1700         while (1) {
1701                 size = min(s_size, d_size);
1702                 memcpy(d_addr + d_off, s_addr + s_off, size);
1703                 written += size;
1704
1705                 if (written == class->size)
1706                         break;
1707
1708                 s_off += size;
1709                 s_size -= size;
1710                 d_off += size;
1711                 d_size -= size;
1712
1713                 if (s_off >= PAGE_SIZE) {
1714                         kunmap_atomic(d_addr);
1715                         kunmap_atomic(s_addr);
1716                         s_page = get_next_page(s_page);
1717                         s_addr = kmap_atomic(s_page);
1718                         d_addr = kmap_atomic(d_page);
1719                         s_size = class->size - written;
1720                         s_off = 0;
1721                 }
1722
1723                 if (d_off >= PAGE_SIZE) {
1724                         kunmap_atomic(d_addr);
1725                         d_page = get_next_page(d_page);
1726                         d_addr = kmap_atomic(d_page);
1727                         d_size = class->size - written;
1728                         d_off = 0;
1729                 }
1730         }
1731
1732         kunmap_atomic(d_addr);
1733         kunmap_atomic(s_addr);
1734 }
1735
1736 /*
1737  * Find alloced object in zspage from index object and
1738  * return handle.
1739  */
1740 static unsigned long find_alloced_obj(struct size_class *class,
1741                                         struct page *page, int *obj_idx)
1742 {
1743         unsigned long head;
1744         int offset = 0;
1745         int index = *obj_idx;
1746         unsigned long handle = 0;
1747         void *addr = kmap_atomic(page);
1748
1749         offset = get_first_obj_offset(page);
1750         offset += class->size * index;
1751
1752         while (offset < PAGE_SIZE) {
1753                 head = obj_to_head(page, addr + offset);
1754                 if (head & OBJ_ALLOCATED_TAG) {
1755                         handle = head & ~OBJ_ALLOCATED_TAG;
1756                         if (trypin_tag(handle))
1757                                 break;
1758                         handle = 0;
1759                 }
1760
1761                 offset += class->size;
1762                 index++;
1763         }
1764
1765         kunmap_atomic(addr);
1766
1767         *obj_idx = index;
1768
1769         return handle;
1770 }
1771
1772 struct zs_compact_control {
1773         /* Source spage for migration which could be a subpage of zspage */
1774         struct page *s_page;
1775         /* Destination page for migration which should be a first page
1776          * of zspage. */
1777         struct page *d_page;
1778          /* Starting object index within @s_page which used for live object
1779           * in the subpage. */
1780         int obj_idx;
1781 };
1782
1783 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1784                                 struct zs_compact_control *cc)
1785 {
1786         unsigned long used_obj, free_obj;
1787         unsigned long handle;
1788         struct page *s_page = cc->s_page;
1789         struct page *d_page = cc->d_page;
1790         int obj_idx = cc->obj_idx;
1791         int ret = 0;
1792
1793         while (1) {
1794                 handle = find_alloced_obj(class, s_page, &obj_idx);
1795                 if (!handle) {
1796                         s_page = get_next_page(s_page);
1797                         if (!s_page)
1798                                 break;
1799                         obj_idx = 0;
1800                         continue;
1801                 }
1802
1803                 /* Stop if there is no more space */
1804                 if (zspage_full(class, get_zspage(d_page))) {
1805                         unpin_tag(handle);
1806                         ret = -ENOMEM;
1807                         break;
1808                 }
1809
1810                 used_obj = handle_to_obj(handle);
1811                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1812                 zs_object_copy(class, free_obj, used_obj);
1813                 obj_idx++;
1814                 /*
1815                  * record_obj updates handle's value to free_obj and it will
1816                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1817                  * breaks synchronization using pin_tag(e,g, zs_free) so
1818                  * let's keep the lock bit.
1819                  */
1820                 free_obj |= BIT(HANDLE_PIN_BIT);
1821                 record_obj(handle, free_obj);
1822                 unpin_tag(handle);
1823                 obj_free(class, used_obj);
1824         }
1825
1826         /* Remember last position in this iteration */
1827         cc->s_page = s_page;
1828         cc->obj_idx = obj_idx;
1829
1830         return ret;
1831 }
1832
1833 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1834 {
1835         int i;
1836         struct zspage *zspage;
1837         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1838
1839         if (!source) {
1840                 fg[0] = ZS_ALMOST_FULL;
1841                 fg[1] = ZS_ALMOST_EMPTY;
1842         }
1843
1844         for (i = 0; i < 2; i++) {
1845                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1846                                                         struct zspage, list);
1847                 if (zspage) {
1848                         VM_BUG_ON(is_zspage_isolated(zspage));
1849                         remove_zspage(class, zspage, fg[i]);
1850                         return zspage;
1851                 }
1852         }
1853
1854         return zspage;
1855 }
1856
1857 /*
1858  * putback_zspage - add @zspage into right class's fullness list
1859  * @class: destination class
1860  * @zspage: target page
1861  *
1862  * Return @zspage's fullness_group
1863  */
1864 static enum fullness_group putback_zspage(struct size_class *class,
1865                         struct zspage *zspage)
1866 {
1867         enum fullness_group fullness;
1868
1869         VM_BUG_ON(is_zspage_isolated(zspage));
1870
1871         fullness = get_fullness_group(class, zspage);
1872         insert_zspage(class, zspage, fullness);
1873         set_zspage_mapping(zspage, class->index, fullness);
1874
1875         return fullness;
1876 }
1877
1878 #ifdef CONFIG_COMPACTION
1879 static struct dentry *zs_mount(struct file_system_type *fs_type,
1880                                 int flags, const char *dev_name, void *data)
1881 {
1882         static const struct dentry_operations ops = {
1883                 .d_dname = simple_dname,
1884         };
1885
1886         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1887 }
1888
1889 static struct file_system_type zsmalloc_fs = {
1890         .name           = "zsmalloc",
1891         .mount          = zs_mount,
1892         .kill_sb        = kill_anon_super,
1893 };
1894
1895 static int zsmalloc_mount(void)
1896 {
1897         int ret = 0;
1898
1899         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1900         if (IS_ERR(zsmalloc_mnt))
1901                 ret = PTR_ERR(zsmalloc_mnt);
1902
1903         return ret;
1904 }
1905
1906 static void zsmalloc_unmount(void)
1907 {
1908         kern_unmount(zsmalloc_mnt);
1909 }
1910
1911 static void migrate_lock_init(struct zspage *zspage)
1912 {
1913         rwlock_init(&zspage->lock);
1914 }
1915
1916 static void migrate_read_lock(struct zspage *zspage)
1917 {
1918         read_lock(&zspage->lock);
1919 }
1920
1921 static void migrate_read_unlock(struct zspage *zspage)
1922 {
1923         read_unlock(&zspage->lock);
1924 }
1925
1926 static void migrate_write_lock(struct zspage *zspage)
1927 {
1928         write_lock(&zspage->lock);
1929 }
1930
1931 static void migrate_write_unlock(struct zspage *zspage)
1932 {
1933         write_unlock(&zspage->lock);
1934 }
1935
1936 /* Number of isolated subpage for *page migration* in this zspage */
1937 static void inc_zspage_isolation(struct zspage *zspage)
1938 {
1939         zspage->isolated++;
1940 }
1941
1942 static void dec_zspage_isolation(struct zspage *zspage)
1943 {
1944         zspage->isolated--;
1945 }
1946
1947 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1948                                 struct page *newpage, struct page *oldpage)
1949 {
1950         struct page *page;
1951         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1952         int idx = 0;
1953
1954         page = get_first_page(zspage);
1955         do {
1956                 if (page == oldpage)
1957                         pages[idx] = newpage;
1958                 else
1959                         pages[idx] = page;
1960                 idx++;
1961         } while ((page = get_next_page(page)) != NULL);
1962
1963         create_page_chain(class, zspage, pages);
1964         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1965         if (unlikely(PageHugeObject(oldpage)))
1966                 newpage->index = oldpage->index;
1967         __SetPageMovable(newpage, page_mapping(oldpage));
1968 }
1969
1970 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1971 {
1972         struct zs_pool *pool;
1973         struct size_class *class;
1974         int class_idx;
1975         enum fullness_group fullness;
1976         struct zspage *zspage;
1977         struct address_space *mapping;
1978
1979         /*
1980          * Page is locked so zspage couldn't be destroyed. For detail, look at
1981          * lock_zspage in free_zspage.
1982          */
1983         VM_BUG_ON_PAGE(!PageMovable(page), page);
1984         VM_BUG_ON_PAGE(PageIsolated(page), page);
1985
1986         zspage = get_zspage(page);
1987
1988         /*
1989          * Without class lock, fullness could be stale while class_idx is okay
1990          * because class_idx is constant unless page is freed so we should get
1991          * fullness again under class lock.
1992          */
1993         get_zspage_mapping(zspage, &class_idx, &fullness);
1994         mapping = page_mapping(page);
1995         pool = mapping->private_data;
1996         class = pool->size_class[class_idx];
1997
1998         spin_lock(&class->lock);
1999         if (get_zspage_inuse(zspage) == 0) {
2000                 spin_unlock(&class->lock);
2001                 return false;
2002         }
2003
2004         /* zspage is isolated for object migration */
2005         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2006                 spin_unlock(&class->lock);
2007                 return false;
2008         }
2009
2010         /*
2011          * If this is first time isolation for the zspage, isolate zspage from
2012          * size_class to prevent further object allocation from the zspage.
2013          */
2014         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2015                 get_zspage_mapping(zspage, &class_idx, &fullness);
2016                 remove_zspage(class, zspage, fullness);
2017         }
2018
2019         inc_zspage_isolation(zspage);
2020         spin_unlock(&class->lock);
2021
2022         return true;
2023 }
2024
2025 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2026                 struct page *page, enum migrate_mode mode)
2027 {
2028         struct zs_pool *pool;
2029         struct size_class *class;
2030         int class_idx;
2031         enum fullness_group fullness;
2032         struct zspage *zspage;
2033         struct page *dummy;
2034         void *s_addr, *d_addr, *addr;
2035         int offset, pos;
2036         unsigned long handle, head;
2037         unsigned long old_obj, new_obj;
2038         unsigned int obj_idx;
2039         int ret = -EAGAIN;
2040
2041         VM_BUG_ON_PAGE(!PageMovable(page), page);
2042         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2043
2044         zspage = get_zspage(page);
2045
2046         /* Concurrent compactor cannot migrate any subpage in zspage */
2047         migrate_write_lock(zspage);
2048         get_zspage_mapping(zspage, &class_idx, &fullness);
2049         pool = mapping->private_data;
2050         class = pool->size_class[class_idx];
2051         offset = get_first_obj_offset(page);
2052
2053         spin_lock(&class->lock);
2054         if (!get_zspage_inuse(zspage)) {
2055                 ret = -EBUSY;
2056                 goto unlock_class;
2057         }
2058
2059         pos = offset;
2060         s_addr = kmap_atomic(page);
2061         while (pos < PAGE_SIZE) {
2062                 head = obj_to_head(page, s_addr + pos);
2063                 if (head & OBJ_ALLOCATED_TAG) {
2064                         handle = head & ~OBJ_ALLOCATED_TAG;
2065                         if (!trypin_tag(handle))
2066                                 goto unpin_objects;
2067                 }
2068                 pos += class->size;
2069         }
2070
2071         /*
2072          * Here, any user cannot access all objects in the zspage so let's move.
2073          */
2074         d_addr = kmap_atomic(newpage);
2075         memcpy(d_addr, s_addr, PAGE_SIZE);
2076         kunmap_atomic(d_addr);
2077
2078         for (addr = s_addr + offset; addr < s_addr + pos;
2079                                         addr += class->size) {
2080                 head = obj_to_head(page, addr);
2081                 if (head & OBJ_ALLOCATED_TAG) {
2082                         handle = head & ~OBJ_ALLOCATED_TAG;
2083                         if (!testpin_tag(handle))
2084                                 BUG();
2085
2086                         old_obj = handle_to_obj(handle);
2087                         obj_to_location(old_obj, &dummy, &obj_idx);
2088                         new_obj = (unsigned long)location_to_obj(newpage,
2089                                                                 obj_idx);
2090                         new_obj |= BIT(HANDLE_PIN_BIT);
2091                         record_obj(handle, new_obj);
2092                 }
2093         }
2094
2095         replace_sub_page(class, zspage, newpage, page);
2096         get_page(newpage);
2097
2098         dec_zspage_isolation(zspage);
2099
2100         /*
2101          * Page migration is done so let's putback isolated zspage to
2102          * the list if @page is final isolated subpage in the zspage.
2103          */
2104         if (!is_zspage_isolated(zspage))
2105                 putback_zspage(class, zspage);
2106
2107         reset_page(page);
2108         put_page(page);
2109         page = newpage;
2110
2111         ret = MIGRATEPAGE_SUCCESS;
2112 unpin_objects:
2113         for (addr = s_addr + offset; addr < s_addr + pos;
2114                                                 addr += class->size) {
2115                 head = obj_to_head(page, addr);
2116                 if (head & OBJ_ALLOCATED_TAG) {
2117                         handle = head & ~OBJ_ALLOCATED_TAG;
2118                         if (!testpin_tag(handle))
2119                                 BUG();
2120                         unpin_tag(handle);
2121                 }
2122         }
2123         kunmap_atomic(s_addr);
2124 unlock_class:
2125         spin_unlock(&class->lock);
2126         migrate_write_unlock(zspage);
2127
2128         return ret;
2129 }
2130
2131 void zs_page_putback(struct page *page)
2132 {
2133         struct zs_pool *pool;
2134         struct size_class *class;
2135         int class_idx;
2136         enum fullness_group fg;
2137         struct address_space *mapping;
2138         struct zspage *zspage;
2139
2140         VM_BUG_ON_PAGE(!PageMovable(page), page);
2141         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2142
2143         zspage = get_zspage(page);
2144         get_zspage_mapping(zspage, &class_idx, &fg);
2145         mapping = page_mapping(page);
2146         pool = mapping->private_data;
2147         class = pool->size_class[class_idx];
2148
2149         spin_lock(&class->lock);
2150         dec_zspage_isolation(zspage);
2151         if (!is_zspage_isolated(zspage)) {
2152                 fg = putback_zspage(class, zspage);
2153                 /*
2154                  * Due to page_lock, we cannot free zspage immediately
2155                  * so let's defer.
2156                  */
2157                 if (fg == ZS_EMPTY)
2158                         schedule_work(&pool->free_work);
2159         }
2160         spin_unlock(&class->lock);
2161 }
2162
2163 const struct address_space_operations zsmalloc_aops = {
2164         .isolate_page = zs_page_isolate,
2165         .migratepage = zs_page_migrate,
2166         .putback_page = zs_page_putback,
2167 };
2168
2169 static int zs_register_migration(struct zs_pool *pool)
2170 {
2171         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2172         if (IS_ERR(pool->inode)) {
2173                 pool->inode = NULL;
2174                 return 1;
2175         }
2176
2177         pool->inode->i_mapping->private_data = pool;
2178         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2179         return 0;
2180 }
2181
2182 static void zs_unregister_migration(struct zs_pool *pool)
2183 {
2184         flush_work(&pool->free_work);
2185         if (pool->inode)
2186                 iput(pool->inode);
2187 }
2188
2189 /*
2190  * Caller should hold page_lock of all pages in the zspage
2191  * In here, we cannot use zspage meta data.
2192  */
2193 static void async_free_zspage(struct work_struct *work)
2194 {
2195         int i;
2196         struct size_class *class;
2197         unsigned int class_idx;
2198         enum fullness_group fullness;
2199         struct zspage *zspage, *tmp;
2200         LIST_HEAD(free_pages);
2201         struct zs_pool *pool = container_of(work, struct zs_pool,
2202                                         free_work);
2203
2204         for (i = 0; i < zs_size_classes; i++) {
2205                 class = pool->size_class[i];
2206                 if (class->index != i)
2207                         continue;
2208
2209                 spin_lock(&class->lock);
2210                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2211                 spin_unlock(&class->lock);
2212         }
2213
2214
2215         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2216                 list_del(&zspage->list);
2217                 lock_zspage(zspage);
2218
2219                 get_zspage_mapping(zspage, &class_idx, &fullness);
2220                 VM_BUG_ON(fullness != ZS_EMPTY);
2221                 class = pool->size_class[class_idx];
2222                 spin_lock(&class->lock);
2223                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2224                 spin_unlock(&class->lock);
2225         }
2226 };
2227
2228 static void kick_deferred_free(struct zs_pool *pool)
2229 {
2230         schedule_work(&pool->free_work);
2231 }
2232
2233 static void init_deferred_free(struct zs_pool *pool)
2234 {
2235         INIT_WORK(&pool->free_work, async_free_zspage);
2236 }
2237
2238 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2239 {
2240         struct page *page = get_first_page(zspage);
2241
2242         do {
2243                 WARN_ON(!trylock_page(page));
2244                 __SetPageMovable(page, pool->inode->i_mapping);
2245                 unlock_page(page);
2246         } while ((page = get_next_page(page)) != NULL);
2247 }
2248 #endif
2249
2250 /*
2251  *
2252  * Based on the number of unused allocated objects calculate
2253  * and return the number of pages that we can free.
2254  */
2255 static unsigned long zs_can_compact(struct size_class *class)
2256 {
2257         unsigned long obj_wasted;
2258         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2259         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2260
2261         if (obj_allocated <= obj_used)
2262                 return 0;
2263
2264         obj_wasted = obj_allocated - obj_used;
2265         obj_wasted /= class->objs_per_zspage;
2266
2267         return obj_wasted * class->pages_per_zspage;
2268 }
2269
2270 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2271 {
2272         struct zs_compact_control cc;
2273         struct zspage *src_zspage;
2274         struct zspage *dst_zspage = NULL;
2275
2276         spin_lock(&class->lock);
2277         while ((src_zspage = isolate_zspage(class, true))) {
2278
2279                 if (!zs_can_compact(class))
2280                         break;
2281
2282                 cc.obj_idx = 0;
2283                 cc.s_page = get_first_page(src_zspage);
2284
2285                 while ((dst_zspage = isolate_zspage(class, false))) {
2286                         cc.d_page = get_first_page(dst_zspage);
2287                         /*
2288                          * If there is no more space in dst_page, resched
2289                          * and see if anyone had allocated another zspage.
2290                          */
2291                         if (!migrate_zspage(pool, class, &cc))
2292                                 break;
2293
2294                         putback_zspage(class, dst_zspage);
2295                 }
2296
2297                 /* Stop if we couldn't find slot */
2298                 if (dst_zspage == NULL)
2299                         break;
2300
2301                 putback_zspage(class, dst_zspage);
2302                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2303                         free_zspage(pool, class, src_zspage);
2304                         pool->stats.pages_compacted += class->pages_per_zspage;
2305                 }
2306                 spin_unlock(&class->lock);
2307                 cond_resched();
2308                 spin_lock(&class->lock);
2309         }
2310
2311         if (src_zspage)
2312                 putback_zspage(class, src_zspage);
2313
2314         spin_unlock(&class->lock);
2315 }
2316
2317 unsigned long zs_compact(struct zs_pool *pool)
2318 {
2319         int i;
2320         struct size_class *class;
2321
2322         for (i = zs_size_classes - 1; i >= 0; i--) {
2323                 class = pool->size_class[i];
2324                 if (!class)
2325                         continue;
2326                 if (class->index != i)
2327                         continue;
2328                 __zs_compact(pool, class);
2329         }
2330
2331         return pool->stats.pages_compacted;
2332 }
2333 EXPORT_SYMBOL_GPL(zs_compact);
2334
2335 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2336 {
2337         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2338 }
2339 EXPORT_SYMBOL_GPL(zs_pool_stats);
2340
2341 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2342                 struct shrink_control *sc)
2343 {
2344         unsigned long pages_freed;
2345         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2346                         shrinker);
2347
2348         pages_freed = pool->stats.pages_compacted;
2349         /*
2350          * Compact classes and calculate compaction delta.
2351          * Can run concurrently with a manually triggered
2352          * (by user) compaction.
2353          */
2354         pages_freed = zs_compact(pool) - pages_freed;
2355
2356         return pages_freed ? pages_freed : SHRINK_STOP;
2357 }
2358
2359 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2360                 struct shrink_control *sc)
2361 {
2362         int i;
2363         struct size_class *class;
2364         unsigned long pages_to_free = 0;
2365         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2366                         shrinker);
2367
2368         for (i = zs_size_classes - 1; i >= 0; i--) {
2369                 class = pool->size_class[i];
2370                 if (!class)
2371                         continue;
2372                 if (class->index != i)
2373                         continue;
2374
2375                 pages_to_free += zs_can_compact(class);
2376         }
2377
2378         return pages_to_free;
2379 }
2380
2381 static void zs_unregister_shrinker(struct zs_pool *pool)
2382 {
2383         if (pool->shrinker_enabled) {
2384                 unregister_shrinker(&pool->shrinker);
2385                 pool->shrinker_enabled = false;
2386         }
2387 }
2388
2389 static int zs_register_shrinker(struct zs_pool *pool)
2390 {
2391         pool->shrinker.scan_objects = zs_shrinker_scan;
2392         pool->shrinker.count_objects = zs_shrinker_count;
2393         pool->shrinker.batch = 0;
2394         pool->shrinker.seeks = DEFAULT_SEEKS;
2395
2396         return register_shrinker(&pool->shrinker);
2397 }
2398
2399 /**
2400  * zs_create_pool - Creates an allocation pool to work from.
2401  * @flags: allocation flags used to allocate pool metadata
2402  *
2403  * This function must be called before anything when using
2404  * the zsmalloc allocator.
2405  *
2406  * On success, a pointer to the newly created pool is returned,
2407  * otherwise NULL.
2408  */
2409 struct zs_pool *zs_create_pool(const char *name)
2410 {
2411         int i;
2412         struct zs_pool *pool;
2413         struct size_class *prev_class = NULL;
2414
2415         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2416         if (!pool)
2417                 return NULL;
2418
2419         init_deferred_free(pool);
2420         pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2421                         GFP_KERNEL);
2422         if (!pool->size_class) {
2423                 kfree(pool);
2424                 return NULL;
2425         }
2426
2427         pool->name = kstrdup(name, GFP_KERNEL);
2428         if (!pool->name)
2429                 goto err;
2430
2431         if (create_cache(pool))
2432                 goto err;
2433
2434         /*
2435          * Iterate reversly, because, size of size_class that we want to use
2436          * for merging should be larger or equal to current size.
2437          */
2438         for (i = zs_size_classes - 1; i >= 0; i--) {
2439                 int size;
2440                 int pages_per_zspage;
2441                 struct size_class *class;
2442                 int fullness = 0;
2443
2444                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2445                 if (size > ZS_MAX_ALLOC_SIZE)
2446                         size = ZS_MAX_ALLOC_SIZE;
2447                 pages_per_zspage = get_pages_per_zspage(size);
2448
2449                 /*
2450                  * size_class is used for normal zsmalloc operation such
2451                  * as alloc/free for that size. Although it is natural that we
2452                  * have one size_class for each size, there is a chance that we
2453                  * can get more memory utilization if we use one size_class for
2454                  * many different sizes whose size_class have same
2455                  * characteristics. So, we makes size_class point to
2456                  * previous size_class if possible.
2457                  */
2458                 if (prev_class) {
2459                         if (can_merge(prev_class, size, pages_per_zspage)) {
2460                                 pool->size_class[i] = prev_class;
2461                                 continue;
2462                         }
2463                 }
2464
2465                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2466                 if (!class)
2467                         goto err;
2468
2469                 class->size = size;
2470                 class->index = i;
2471                 class->pages_per_zspage = pages_per_zspage;
2472                 class->objs_per_zspage = get_maxobj_per_zspage(class->size,
2473                                                         class->pages_per_zspage);
2474                 spin_lock_init(&class->lock);
2475                 pool->size_class[i] = class;
2476                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2477                                                         fullness++)
2478                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2479
2480                 prev_class = class;
2481         }
2482
2483         /* debug only, don't abort if it fails */
2484         zs_pool_stat_create(pool, name);
2485
2486         if (zs_register_migration(pool))
2487                 goto err;
2488
2489         /*
2490          * Not critical, we still can use the pool
2491          * and user can trigger compaction manually.
2492          */
2493         if (zs_register_shrinker(pool) == 0)
2494                 pool->shrinker_enabled = true;
2495         return pool;
2496
2497 err:
2498         zs_destroy_pool(pool);
2499         return NULL;
2500 }
2501 EXPORT_SYMBOL_GPL(zs_create_pool);
2502
2503 void zs_destroy_pool(struct zs_pool *pool)
2504 {
2505         int i;
2506
2507         zs_unregister_shrinker(pool);
2508         zs_unregister_migration(pool);
2509         zs_pool_stat_destroy(pool);
2510
2511         for (i = 0; i < zs_size_classes; i++) {
2512                 int fg;
2513                 struct size_class *class = pool->size_class[i];
2514
2515                 if (!class)
2516                         continue;
2517
2518                 if (class->index != i)
2519                         continue;
2520
2521                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2522                         if (!list_empty(&class->fullness_list[fg])) {
2523                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2524                                         class->size, fg);
2525                         }
2526                 }
2527                 kfree(class);
2528         }
2529
2530         destroy_cache(pool);
2531         kfree(pool->size_class);
2532         kfree(pool->name);
2533         kfree(pool);
2534 }
2535 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2536
2537 static int __init zs_init(void)
2538 {
2539         int ret;
2540
2541         ret = zsmalloc_mount();
2542         if (ret)
2543                 goto out;
2544
2545         ret = zs_register_cpu_notifier();
2546
2547         if (ret)
2548                 goto notifier_fail;
2549
2550         init_zs_size_classes();
2551
2552 #ifdef CONFIG_ZPOOL
2553         zpool_register_driver(&zs_zpool_driver);
2554 #endif
2555
2556         zs_stat_init();
2557
2558         return 0;
2559
2560 notifier_fail:
2561         zs_unregister_cpu_notifier();
2562         zsmalloc_unmount();
2563 out:
2564         return ret;
2565 }
2566
2567 static void __exit zs_exit(void)
2568 {
2569 #ifdef CONFIG_ZPOOL
2570         zpool_unregister_driver(&zs_zpool_driver);
2571 #endif
2572         zsmalloc_unmount();
2573         zs_unregister_cpu_notifier();
2574
2575         zs_stat_exit();
2576 }
2577
2578 module_init(zs_init);
2579 module_exit(zs_exit);
2580
2581 MODULE_LICENSE("Dual BSD/GPL");
2582 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");