zpool: add malloc_support_movable to zpool_driver
[linux-2.6-block.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC    0x58
62
63 /*
64  * This must be power of 2 and greater than of equal to sizeof(link_free).
65  * These two conditions ensure that any 'struct link_free' itself doesn't
66  * span more than 1 page which avoids complex case of mapping 2 pages simply
67  * to restore link_free pointer values.
68  */
69 #define ZS_ALIGN                8
70
71 /*
72  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74  */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * as single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104  * Memory for allocating for handle keeps object position by
105  * encoding <page, obj_idx> and the encoded value has a room
106  * in least bit(ie, look at obj_to_location).
107  * We use the bit to synchronize between object access by
108  * user and migration.
109  */
110 #define HANDLE_PIN_BIT  0
111
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define FULLNESS_BITS   2
125 #define CLASS_BITS      8
126 #define ISOLATED_BITS   3
127 #define MAGIC_VAL_BITS  8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
135
136 /*
137  * On systems with 4K page size, this gives 255 size classes! There is a
138  * trader-off here:
139  *  - Large number of size classes is potentially wasteful as free page are
140  *    spread across these classes
141  *  - Small number of size classes causes large internal fragmentation
142  *  - Probably its better to use specific size classes (empirically
143  *    determined). NOTE: all those class sizes must be set as multiple of
144  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145  *
146  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147  *  (reason above)
148  */
149 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151                                       ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154         ZS_EMPTY,
155         ZS_ALMOST_EMPTY,
156         ZS_ALMOST_FULL,
157         ZS_FULL,
158         NR_ZS_FULLNESS,
159 };
160
161 enum zs_stat_type {
162         CLASS_EMPTY,
163         CLASS_ALMOST_EMPTY,
164         CLASS_ALMOST_FULL,
165         CLASS_FULL,
166         OBJ_ALLOCATED,
167         OBJ_USED,
168         NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172         unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185  *      n <= N / f, where
186  * n = number of allocated objects
187  * N = total number of objects zspage can store
188  * f = fullness_threshold_frac
189  *
190  * Similarly, we assign zspage to:
191  *      ZS_ALMOST_FULL  when n > N / f
192  *      ZS_EMPTY        when n == 0
193  *      ZS_FULL         when n == N
194  *
195  * (see: fix_fullness_group())
196  */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201         spinlock_t lock;
202         struct list_head fullness_list[NR_ZS_FULLNESS];
203         /*
204          * Size of objects stored in this class. Must be multiple
205          * of ZS_ALIGN.
206          */
207         int size;
208         int objs_per_zspage;
209         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210         int pages_per_zspage;
211
212         unsigned int index;
213         struct zs_size_stat stats;
214 };
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
218 {
219         SetPageOwnerPriv1(page);
220 }
221
222 static void ClearPageHugeObject(struct page *page)
223 {
224         ClearPageOwnerPriv1(page);
225 }
226
227 static int PageHugeObject(struct page *page)
228 {
229         return PageOwnerPriv1(page);
230 }
231
232 /*
233  * Placed within free objects to form a singly linked list.
234  * For every zspage, zspage->freeobj gives head of this list.
235  *
236  * This must be power of 2 and less than or equal to ZS_ALIGN
237  */
238 struct link_free {
239         union {
240                 /*
241                  * Free object index;
242                  * It's valid for non-allocated object
243                  */
244                 unsigned long next;
245                 /*
246                  * Handle of allocated object.
247                  */
248                 unsigned long handle;
249         };
250 };
251
252 struct zs_pool {
253         const char *name;
254
255         struct size_class *size_class[ZS_SIZE_CLASSES];
256         struct kmem_cache *handle_cachep;
257         struct kmem_cache *zspage_cachep;
258
259         atomic_long_t pages_allocated;
260
261         struct zs_pool_stats stats;
262
263         /* Compact classes */
264         struct shrinker shrinker;
265
266 #ifdef CONFIG_ZSMALLOC_STAT
267         struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270         struct inode *inode;
271         struct work_struct free_work;
272         /* A wait queue for when migration races with async_free_zspage() */
273         struct wait_queue_head migration_wait;
274         atomic_long_t isolated_pages;
275         bool destroying;
276 #endif
277 };
278
279 struct zspage {
280         struct {
281                 unsigned int fullness:FULLNESS_BITS;
282                 unsigned int class:CLASS_BITS + 1;
283                 unsigned int isolated:ISOLATED_BITS;
284                 unsigned int magic:MAGIC_VAL_BITS;
285         };
286         unsigned int inuse;
287         unsigned int freeobj;
288         struct page *first_page;
289         struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291         rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296 #ifdef CONFIG_PGTABLE_MAPPING
297         struct vm_struct *vm; /* vm area for mapping object that span pages */
298 #else
299         char *vm_buf; /* copy buffer for objects that span pages */
300 #endif
301         char *vm_addr; /* address of kmap_atomic()'ed pages */
302         enum zs_mapmode vm_mm; /* mapping mode */
303 };
304
305 #ifdef CONFIG_COMPACTION
306 static int zs_register_migration(struct zs_pool *pool);
307 static void zs_unregister_migration(struct zs_pool *pool);
308 static void migrate_lock_init(struct zspage *zspage);
309 static void migrate_read_lock(struct zspage *zspage);
310 static void migrate_read_unlock(struct zspage *zspage);
311 static void kick_deferred_free(struct zs_pool *pool);
312 static void init_deferred_free(struct zs_pool *pool);
313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
314 #else
315 static int zsmalloc_mount(void) { return 0; }
316 static void zsmalloc_unmount(void) {}
317 static int zs_register_migration(struct zs_pool *pool) { return 0; }
318 static void zs_unregister_migration(struct zs_pool *pool) {}
319 static void migrate_lock_init(struct zspage *zspage) {}
320 static void migrate_read_lock(struct zspage *zspage) {}
321 static void migrate_read_unlock(struct zspage *zspage) {}
322 static void kick_deferred_free(struct zs_pool *pool) {}
323 static void init_deferred_free(struct zs_pool *pool) {}
324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
325 #endif
326
327 static int create_cache(struct zs_pool *pool)
328 {
329         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
330                                         0, 0, NULL);
331         if (!pool->handle_cachep)
332                 return 1;
333
334         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
335                                         0, 0, NULL);
336         if (!pool->zspage_cachep) {
337                 kmem_cache_destroy(pool->handle_cachep);
338                 pool->handle_cachep = NULL;
339                 return 1;
340         }
341
342         return 0;
343 }
344
345 static void destroy_cache(struct zs_pool *pool)
346 {
347         kmem_cache_destroy(pool->handle_cachep);
348         kmem_cache_destroy(pool->zspage_cachep);
349 }
350
351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
352 {
353         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
354                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
355 }
356
357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
358 {
359         kmem_cache_free(pool->handle_cachep, (void *)handle);
360 }
361
362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
363 {
364         return kmem_cache_alloc(pool->zspage_cachep,
365                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
366 }
367
368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
369 {
370         kmem_cache_free(pool->zspage_cachep, zspage);
371 }
372
373 static void record_obj(unsigned long handle, unsigned long obj)
374 {
375         /*
376          * lsb of @obj represents handle lock while other bits
377          * represent object value the handle is pointing so
378          * updating shouldn't do store tearing.
379          */
380         WRITE_ONCE(*(unsigned long *)handle, obj);
381 }
382
383 /* zpool driver */
384
385 #ifdef CONFIG_ZPOOL
386
387 static void *zs_zpool_create(const char *name, gfp_t gfp,
388                              const struct zpool_ops *zpool_ops,
389                              struct zpool *zpool)
390 {
391         /*
392          * Ignore global gfp flags: zs_malloc() may be invoked from
393          * different contexts and its caller must provide a valid
394          * gfp mask.
395          */
396         return zs_create_pool(name);
397 }
398
399 static void zs_zpool_destroy(void *pool)
400 {
401         zs_destroy_pool(pool);
402 }
403
404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
405                         unsigned long *handle)
406 {
407         *handle = zs_malloc(pool, size, gfp);
408         return *handle ? 0 : -1;
409 }
410 static void zs_zpool_free(void *pool, unsigned long handle)
411 {
412         zs_free(pool, handle);
413 }
414
415 static void *zs_zpool_map(void *pool, unsigned long handle,
416                         enum zpool_mapmode mm)
417 {
418         enum zs_mapmode zs_mm;
419
420         switch (mm) {
421         case ZPOOL_MM_RO:
422                 zs_mm = ZS_MM_RO;
423                 break;
424         case ZPOOL_MM_WO:
425                 zs_mm = ZS_MM_WO;
426                 break;
427         case ZPOOL_MM_RW: /* fall through */
428         default:
429                 zs_mm = ZS_MM_RW;
430                 break;
431         }
432
433         return zs_map_object(pool, handle, zs_mm);
434 }
435 static void zs_zpool_unmap(void *pool, unsigned long handle)
436 {
437         zs_unmap_object(pool, handle);
438 }
439
440 static u64 zs_zpool_total_size(void *pool)
441 {
442         return zs_get_total_pages(pool) << PAGE_SHIFT;
443 }
444
445 static struct zpool_driver zs_zpool_driver = {
446         .type =                   "zsmalloc",
447         .owner =                  THIS_MODULE,
448         .create =                 zs_zpool_create,
449         .destroy =                zs_zpool_destroy,
450         .malloc_support_movable = true,
451         .malloc =                 zs_zpool_malloc,
452         .free =                   zs_zpool_free,
453         .map =                    zs_zpool_map,
454         .unmap =                  zs_zpool_unmap,
455         .total_size =             zs_zpool_total_size,
456 };
457
458 MODULE_ALIAS("zpool-zsmalloc");
459 #endif /* CONFIG_ZPOOL */
460
461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
463
464 static bool is_zspage_isolated(struct zspage *zspage)
465 {
466         return zspage->isolated;
467 }
468
469 static __maybe_unused int is_first_page(struct page *page)
470 {
471         return PagePrivate(page);
472 }
473
474 /* Protected by class->lock */
475 static inline int get_zspage_inuse(struct zspage *zspage)
476 {
477         return zspage->inuse;
478 }
479
480 static inline void set_zspage_inuse(struct zspage *zspage, int val)
481 {
482         zspage->inuse = val;
483 }
484
485 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
486 {
487         zspage->inuse += val;
488 }
489
490 static inline struct page *get_first_page(struct zspage *zspage)
491 {
492         struct page *first_page = zspage->first_page;
493
494         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
495         return first_page;
496 }
497
498 static inline int get_first_obj_offset(struct page *page)
499 {
500         return page->units;
501 }
502
503 static inline void set_first_obj_offset(struct page *page, int offset)
504 {
505         page->units = offset;
506 }
507
508 static inline unsigned int get_freeobj(struct zspage *zspage)
509 {
510         return zspage->freeobj;
511 }
512
513 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
514 {
515         zspage->freeobj = obj;
516 }
517
518 static void get_zspage_mapping(struct zspage *zspage,
519                                 unsigned int *class_idx,
520                                 enum fullness_group *fullness)
521 {
522         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
523
524         *fullness = zspage->fullness;
525         *class_idx = zspage->class;
526 }
527
528 static void set_zspage_mapping(struct zspage *zspage,
529                                 unsigned int class_idx,
530                                 enum fullness_group fullness)
531 {
532         zspage->class = class_idx;
533         zspage->fullness = fullness;
534 }
535
536 /*
537  * zsmalloc divides the pool into various size classes where each
538  * class maintains a list of zspages where each zspage is divided
539  * into equal sized chunks. Each allocation falls into one of these
540  * classes depending on its size. This function returns index of the
541  * size class which has chunk size big enough to hold the give size.
542  */
543 static int get_size_class_index(int size)
544 {
545         int idx = 0;
546
547         if (likely(size > ZS_MIN_ALLOC_SIZE))
548                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
549                                 ZS_SIZE_CLASS_DELTA);
550
551         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
552 }
553
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_inc(struct size_class *class,
556                                 int type, unsigned long cnt)
557 {
558         class->stats.objs[type] += cnt;
559 }
560
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline void zs_stat_dec(struct size_class *class,
563                                 int type, unsigned long cnt)
564 {
565         class->stats.objs[type] -= cnt;
566 }
567
568 /* type can be of enum type zs_stat_type or fullness_group */
569 static inline unsigned long zs_stat_get(struct size_class *class,
570                                 int type)
571 {
572         return class->stats.objs[type];
573 }
574
575 #ifdef CONFIG_ZSMALLOC_STAT
576
577 static void __init zs_stat_init(void)
578 {
579         if (!debugfs_initialized()) {
580                 pr_warn("debugfs not available, stat dir not created\n");
581                 return;
582         }
583
584         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
585 }
586
587 static void __exit zs_stat_exit(void)
588 {
589         debugfs_remove_recursive(zs_stat_root);
590 }
591
592 static unsigned long zs_can_compact(struct size_class *class);
593
594 static int zs_stats_size_show(struct seq_file *s, void *v)
595 {
596         int i;
597         struct zs_pool *pool = s->private;
598         struct size_class *class;
599         int objs_per_zspage;
600         unsigned long class_almost_full, class_almost_empty;
601         unsigned long obj_allocated, obj_used, pages_used, freeable;
602         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
603         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
604         unsigned long total_freeable = 0;
605
606         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
607                         "class", "size", "almost_full", "almost_empty",
608                         "obj_allocated", "obj_used", "pages_used",
609                         "pages_per_zspage", "freeable");
610
611         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
612                 class = pool->size_class[i];
613
614                 if (class->index != i)
615                         continue;
616
617                 spin_lock(&class->lock);
618                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
619                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
620                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
621                 obj_used = zs_stat_get(class, OBJ_USED);
622                 freeable = zs_can_compact(class);
623                 spin_unlock(&class->lock);
624
625                 objs_per_zspage = class->objs_per_zspage;
626                 pages_used = obj_allocated / objs_per_zspage *
627                                 class->pages_per_zspage;
628
629                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
630                                 " %10lu %10lu %16d %8lu\n",
631                         i, class->size, class_almost_full, class_almost_empty,
632                         obj_allocated, obj_used, pages_used,
633                         class->pages_per_zspage, freeable);
634
635                 total_class_almost_full += class_almost_full;
636                 total_class_almost_empty += class_almost_empty;
637                 total_objs += obj_allocated;
638                 total_used_objs += obj_used;
639                 total_pages += pages_used;
640                 total_freeable += freeable;
641         }
642
643         seq_puts(s, "\n");
644         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
645                         "Total", "", total_class_almost_full,
646                         total_class_almost_empty, total_objs,
647                         total_used_objs, total_pages, "", total_freeable);
648
649         return 0;
650 }
651 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
652
653 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
654 {
655         if (!zs_stat_root) {
656                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
657                 return;
658         }
659
660         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
661
662         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
663                             &zs_stats_size_fops);
664 }
665
666 static void zs_pool_stat_destroy(struct zs_pool *pool)
667 {
668         debugfs_remove_recursive(pool->stat_dentry);
669 }
670
671 #else /* CONFIG_ZSMALLOC_STAT */
672 static void __init zs_stat_init(void)
673 {
674 }
675
676 static void __exit zs_stat_exit(void)
677 {
678 }
679
680 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
681 {
682 }
683
684 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
685 {
686 }
687 #endif
688
689
690 /*
691  * For each size class, zspages are divided into different groups
692  * depending on how "full" they are. This was done so that we could
693  * easily find empty or nearly empty zspages when we try to shrink
694  * the pool (not yet implemented). This function returns fullness
695  * status of the given page.
696  */
697 static enum fullness_group get_fullness_group(struct size_class *class,
698                                                 struct zspage *zspage)
699 {
700         int inuse, objs_per_zspage;
701         enum fullness_group fg;
702
703         inuse = get_zspage_inuse(zspage);
704         objs_per_zspage = class->objs_per_zspage;
705
706         if (inuse == 0)
707                 fg = ZS_EMPTY;
708         else if (inuse == objs_per_zspage)
709                 fg = ZS_FULL;
710         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
711                 fg = ZS_ALMOST_EMPTY;
712         else
713                 fg = ZS_ALMOST_FULL;
714
715         return fg;
716 }
717
718 /*
719  * Each size class maintains various freelists and zspages are assigned
720  * to one of these freelists based on the number of live objects they
721  * have. This functions inserts the given zspage into the freelist
722  * identified by <class, fullness_group>.
723  */
724 static void insert_zspage(struct size_class *class,
725                                 struct zspage *zspage,
726                                 enum fullness_group fullness)
727 {
728         struct zspage *head;
729
730         zs_stat_inc(class, fullness, 1);
731         head = list_first_entry_or_null(&class->fullness_list[fullness],
732                                         struct zspage, list);
733         /*
734          * We want to see more ZS_FULL pages and less almost empty/full.
735          * Put pages with higher ->inuse first.
736          */
737         if (head) {
738                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
739                         list_add(&zspage->list, &head->list);
740                         return;
741                 }
742         }
743         list_add(&zspage->list, &class->fullness_list[fullness]);
744 }
745
746 /*
747  * This function removes the given zspage from the freelist identified
748  * by <class, fullness_group>.
749  */
750 static void remove_zspage(struct size_class *class,
751                                 struct zspage *zspage,
752                                 enum fullness_group fullness)
753 {
754         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
755         VM_BUG_ON(is_zspage_isolated(zspage));
756
757         list_del_init(&zspage->list);
758         zs_stat_dec(class, fullness, 1);
759 }
760
761 /*
762  * Each size class maintains zspages in different fullness groups depending
763  * on the number of live objects they contain. When allocating or freeing
764  * objects, the fullness status of the page can change, say, from ALMOST_FULL
765  * to ALMOST_EMPTY when freeing an object. This function checks if such
766  * a status change has occurred for the given page and accordingly moves the
767  * page from the freelist of the old fullness group to that of the new
768  * fullness group.
769  */
770 static enum fullness_group fix_fullness_group(struct size_class *class,
771                                                 struct zspage *zspage)
772 {
773         int class_idx;
774         enum fullness_group currfg, newfg;
775
776         get_zspage_mapping(zspage, &class_idx, &currfg);
777         newfg = get_fullness_group(class, zspage);
778         if (newfg == currfg)
779                 goto out;
780
781         if (!is_zspage_isolated(zspage)) {
782                 remove_zspage(class, zspage, currfg);
783                 insert_zspage(class, zspage, newfg);
784         }
785
786         set_zspage_mapping(zspage, class_idx, newfg);
787
788 out:
789         return newfg;
790 }
791
792 /*
793  * We have to decide on how many pages to link together
794  * to form a zspage for each size class. This is important
795  * to reduce wastage due to unusable space left at end of
796  * each zspage which is given as:
797  *     wastage = Zp % class_size
798  *     usage = Zp - wastage
799  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
800  *
801  * For example, for size class of 3/8 * PAGE_SIZE, we should
802  * link together 3 PAGE_SIZE sized pages to form a zspage
803  * since then we can perfectly fit in 8 such objects.
804  */
805 static int get_pages_per_zspage(int class_size)
806 {
807         int i, max_usedpc = 0;
808         /* zspage order which gives maximum used size per KB */
809         int max_usedpc_order = 1;
810
811         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
812                 int zspage_size;
813                 int waste, usedpc;
814
815                 zspage_size = i * PAGE_SIZE;
816                 waste = zspage_size % class_size;
817                 usedpc = (zspage_size - waste) * 100 / zspage_size;
818
819                 if (usedpc > max_usedpc) {
820                         max_usedpc = usedpc;
821                         max_usedpc_order = i;
822                 }
823         }
824
825         return max_usedpc_order;
826 }
827
828 static struct zspage *get_zspage(struct page *page)
829 {
830         struct zspage *zspage = (struct zspage *)page->private;
831
832         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
833         return zspage;
834 }
835
836 static struct page *get_next_page(struct page *page)
837 {
838         if (unlikely(PageHugeObject(page)))
839                 return NULL;
840
841         return page->freelist;
842 }
843
844 /**
845  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
846  * @obj: the encoded object value
847  * @page: page object resides in zspage
848  * @obj_idx: object index
849  */
850 static void obj_to_location(unsigned long obj, struct page **page,
851                                 unsigned int *obj_idx)
852 {
853         obj >>= OBJ_TAG_BITS;
854         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
855         *obj_idx = (obj & OBJ_INDEX_MASK);
856 }
857
858 /**
859  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
860  * @page: page object resides in zspage
861  * @obj_idx: object index
862  */
863 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
864 {
865         unsigned long obj;
866
867         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
868         obj |= obj_idx & OBJ_INDEX_MASK;
869         obj <<= OBJ_TAG_BITS;
870
871         return obj;
872 }
873
874 static unsigned long handle_to_obj(unsigned long handle)
875 {
876         return *(unsigned long *)handle;
877 }
878
879 static unsigned long obj_to_head(struct page *page, void *obj)
880 {
881         if (unlikely(PageHugeObject(page))) {
882                 VM_BUG_ON_PAGE(!is_first_page(page), page);
883                 return page->index;
884         } else
885                 return *(unsigned long *)obj;
886 }
887
888 static inline int testpin_tag(unsigned long handle)
889 {
890         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
891 }
892
893 static inline int trypin_tag(unsigned long handle)
894 {
895         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
896 }
897
898 static void pin_tag(unsigned long handle)
899 {
900         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
901 }
902
903 static void unpin_tag(unsigned long handle)
904 {
905         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
906 }
907
908 static void reset_page(struct page *page)
909 {
910         __ClearPageMovable(page);
911         ClearPagePrivate(page);
912         set_page_private(page, 0);
913         page_mapcount_reset(page);
914         ClearPageHugeObject(page);
915         page->freelist = NULL;
916 }
917
918 static int trylock_zspage(struct zspage *zspage)
919 {
920         struct page *cursor, *fail;
921
922         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
923                                         get_next_page(cursor)) {
924                 if (!trylock_page(cursor)) {
925                         fail = cursor;
926                         goto unlock;
927                 }
928         }
929
930         return 1;
931 unlock:
932         for (cursor = get_first_page(zspage); cursor != fail; cursor =
933                                         get_next_page(cursor))
934                 unlock_page(cursor);
935
936         return 0;
937 }
938
939 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
940                                 struct zspage *zspage)
941 {
942         struct page *page, *next;
943         enum fullness_group fg;
944         unsigned int class_idx;
945
946         get_zspage_mapping(zspage, &class_idx, &fg);
947
948         assert_spin_locked(&class->lock);
949
950         VM_BUG_ON(get_zspage_inuse(zspage));
951         VM_BUG_ON(fg != ZS_EMPTY);
952
953         next = page = get_first_page(zspage);
954         do {
955                 VM_BUG_ON_PAGE(!PageLocked(page), page);
956                 next = get_next_page(page);
957                 reset_page(page);
958                 unlock_page(page);
959                 dec_zone_page_state(page, NR_ZSPAGES);
960                 put_page(page);
961                 page = next;
962         } while (page != NULL);
963
964         cache_free_zspage(pool, zspage);
965
966         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
967         atomic_long_sub(class->pages_per_zspage,
968                                         &pool->pages_allocated);
969 }
970
971 static void free_zspage(struct zs_pool *pool, struct size_class *class,
972                                 struct zspage *zspage)
973 {
974         VM_BUG_ON(get_zspage_inuse(zspage));
975         VM_BUG_ON(list_empty(&zspage->list));
976
977         if (!trylock_zspage(zspage)) {
978                 kick_deferred_free(pool);
979                 return;
980         }
981
982         remove_zspage(class, zspage, ZS_EMPTY);
983         __free_zspage(pool, class, zspage);
984 }
985
986 /* Initialize a newly allocated zspage */
987 static void init_zspage(struct size_class *class, struct zspage *zspage)
988 {
989         unsigned int freeobj = 1;
990         unsigned long off = 0;
991         struct page *page = get_first_page(zspage);
992
993         while (page) {
994                 struct page *next_page;
995                 struct link_free *link;
996                 void *vaddr;
997
998                 set_first_obj_offset(page, off);
999
1000                 vaddr = kmap_atomic(page);
1001                 link = (struct link_free *)vaddr + off / sizeof(*link);
1002
1003                 while ((off += class->size) < PAGE_SIZE) {
1004                         link->next = freeobj++ << OBJ_TAG_BITS;
1005                         link += class->size / sizeof(*link);
1006                 }
1007
1008                 /*
1009                  * We now come to the last (full or partial) object on this
1010                  * page, which must point to the first object on the next
1011                  * page (if present)
1012                  */
1013                 next_page = get_next_page(page);
1014                 if (next_page) {
1015                         link->next = freeobj++ << OBJ_TAG_BITS;
1016                 } else {
1017                         /*
1018                          * Reset OBJ_TAG_BITS bit to last link to tell
1019                          * whether it's allocated object or not.
1020                          */
1021                         link->next = -1UL << OBJ_TAG_BITS;
1022                 }
1023                 kunmap_atomic(vaddr);
1024                 page = next_page;
1025                 off %= PAGE_SIZE;
1026         }
1027
1028         set_freeobj(zspage, 0);
1029 }
1030
1031 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1032                                 struct page *pages[])
1033 {
1034         int i;
1035         struct page *page;
1036         struct page *prev_page = NULL;
1037         int nr_pages = class->pages_per_zspage;
1038
1039         /*
1040          * Allocate individual pages and link them together as:
1041          * 1. all pages are linked together using page->freelist
1042          * 2. each sub-page point to zspage using page->private
1043          *
1044          * we set PG_private to identify the first page (i.e. no other sub-page
1045          * has this flag set).
1046          */
1047         for (i = 0; i < nr_pages; i++) {
1048                 page = pages[i];
1049                 set_page_private(page, (unsigned long)zspage);
1050                 page->freelist = NULL;
1051                 if (i == 0) {
1052                         zspage->first_page = page;
1053                         SetPagePrivate(page);
1054                         if (unlikely(class->objs_per_zspage == 1 &&
1055                                         class->pages_per_zspage == 1))
1056                                 SetPageHugeObject(page);
1057                 } else {
1058                         prev_page->freelist = page;
1059                 }
1060                 prev_page = page;
1061         }
1062 }
1063
1064 /*
1065  * Allocate a zspage for the given size class
1066  */
1067 static struct zspage *alloc_zspage(struct zs_pool *pool,
1068                                         struct size_class *class,
1069                                         gfp_t gfp)
1070 {
1071         int i;
1072         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1073         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1074
1075         if (!zspage)
1076                 return NULL;
1077
1078         memset(zspage, 0, sizeof(struct zspage));
1079         zspage->magic = ZSPAGE_MAGIC;
1080         migrate_lock_init(zspage);
1081
1082         for (i = 0; i < class->pages_per_zspage; i++) {
1083                 struct page *page;
1084
1085                 page = alloc_page(gfp);
1086                 if (!page) {
1087                         while (--i >= 0) {
1088                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1089                                 __free_page(pages[i]);
1090                         }
1091                         cache_free_zspage(pool, zspage);
1092                         return NULL;
1093                 }
1094
1095                 inc_zone_page_state(page, NR_ZSPAGES);
1096                 pages[i] = page;
1097         }
1098
1099         create_page_chain(class, zspage, pages);
1100         init_zspage(class, zspage);
1101
1102         return zspage;
1103 }
1104
1105 static struct zspage *find_get_zspage(struct size_class *class)
1106 {
1107         int i;
1108         struct zspage *zspage;
1109
1110         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1111                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1112                                 struct zspage, list);
1113                 if (zspage)
1114                         break;
1115         }
1116
1117         return zspage;
1118 }
1119
1120 #ifdef CONFIG_PGTABLE_MAPPING
1121 static inline int __zs_cpu_up(struct mapping_area *area)
1122 {
1123         /*
1124          * Make sure we don't leak memory if a cpu UP notification
1125          * and zs_init() race and both call zs_cpu_up() on the same cpu
1126          */
1127         if (area->vm)
1128                 return 0;
1129         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1130         if (!area->vm)
1131                 return -ENOMEM;
1132         return 0;
1133 }
1134
1135 static inline void __zs_cpu_down(struct mapping_area *area)
1136 {
1137         if (area->vm)
1138                 free_vm_area(area->vm);
1139         area->vm = NULL;
1140 }
1141
1142 static inline void *__zs_map_object(struct mapping_area *area,
1143                                 struct page *pages[2], int off, int size)
1144 {
1145         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1146         area->vm_addr = area->vm->addr;
1147         return area->vm_addr + off;
1148 }
1149
1150 static inline void __zs_unmap_object(struct mapping_area *area,
1151                                 struct page *pages[2], int off, int size)
1152 {
1153         unsigned long addr = (unsigned long)area->vm_addr;
1154
1155         unmap_kernel_range(addr, PAGE_SIZE * 2);
1156 }
1157
1158 #else /* CONFIG_PGTABLE_MAPPING */
1159
1160 static inline int __zs_cpu_up(struct mapping_area *area)
1161 {
1162         /*
1163          * Make sure we don't leak memory if a cpu UP notification
1164          * and zs_init() race and both call zs_cpu_up() on the same cpu
1165          */
1166         if (area->vm_buf)
1167                 return 0;
1168         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1169         if (!area->vm_buf)
1170                 return -ENOMEM;
1171         return 0;
1172 }
1173
1174 static inline void __zs_cpu_down(struct mapping_area *area)
1175 {
1176         kfree(area->vm_buf);
1177         area->vm_buf = NULL;
1178 }
1179
1180 static void *__zs_map_object(struct mapping_area *area,
1181                         struct page *pages[2], int off, int size)
1182 {
1183         int sizes[2];
1184         void *addr;
1185         char *buf = area->vm_buf;
1186
1187         /* disable page faults to match kmap_atomic() return conditions */
1188         pagefault_disable();
1189
1190         /* no read fastpath */
1191         if (area->vm_mm == ZS_MM_WO)
1192                 goto out;
1193
1194         sizes[0] = PAGE_SIZE - off;
1195         sizes[1] = size - sizes[0];
1196
1197         /* copy object to per-cpu buffer */
1198         addr = kmap_atomic(pages[0]);
1199         memcpy(buf, addr + off, sizes[0]);
1200         kunmap_atomic(addr);
1201         addr = kmap_atomic(pages[1]);
1202         memcpy(buf + sizes[0], addr, sizes[1]);
1203         kunmap_atomic(addr);
1204 out:
1205         return area->vm_buf;
1206 }
1207
1208 static void __zs_unmap_object(struct mapping_area *area,
1209                         struct page *pages[2], int off, int size)
1210 {
1211         int sizes[2];
1212         void *addr;
1213         char *buf;
1214
1215         /* no write fastpath */
1216         if (area->vm_mm == ZS_MM_RO)
1217                 goto out;
1218
1219         buf = area->vm_buf;
1220         buf = buf + ZS_HANDLE_SIZE;
1221         size -= ZS_HANDLE_SIZE;
1222         off += ZS_HANDLE_SIZE;
1223
1224         sizes[0] = PAGE_SIZE - off;
1225         sizes[1] = size - sizes[0];
1226
1227         /* copy per-cpu buffer to object */
1228         addr = kmap_atomic(pages[0]);
1229         memcpy(addr + off, buf, sizes[0]);
1230         kunmap_atomic(addr);
1231         addr = kmap_atomic(pages[1]);
1232         memcpy(addr, buf + sizes[0], sizes[1]);
1233         kunmap_atomic(addr);
1234
1235 out:
1236         /* enable page faults to match kunmap_atomic() return conditions */
1237         pagefault_enable();
1238 }
1239
1240 #endif /* CONFIG_PGTABLE_MAPPING */
1241
1242 static int zs_cpu_prepare(unsigned int cpu)
1243 {
1244         struct mapping_area *area;
1245
1246         area = &per_cpu(zs_map_area, cpu);
1247         return __zs_cpu_up(area);
1248 }
1249
1250 static int zs_cpu_dead(unsigned int cpu)
1251 {
1252         struct mapping_area *area;
1253
1254         area = &per_cpu(zs_map_area, cpu);
1255         __zs_cpu_down(area);
1256         return 0;
1257 }
1258
1259 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1260                                         int objs_per_zspage)
1261 {
1262         if (prev->pages_per_zspage == pages_per_zspage &&
1263                 prev->objs_per_zspage == objs_per_zspage)
1264                 return true;
1265
1266         return false;
1267 }
1268
1269 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1270 {
1271         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1272 }
1273
1274 unsigned long zs_get_total_pages(struct zs_pool *pool)
1275 {
1276         return atomic_long_read(&pool->pages_allocated);
1277 }
1278 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1279
1280 /**
1281  * zs_map_object - get address of allocated object from handle.
1282  * @pool: pool from which the object was allocated
1283  * @handle: handle returned from zs_malloc
1284  * @mm: maping mode to use
1285  *
1286  * Before using an object allocated from zs_malloc, it must be mapped using
1287  * this function. When done with the object, it must be unmapped using
1288  * zs_unmap_object.
1289  *
1290  * Only one object can be mapped per cpu at a time. There is no protection
1291  * against nested mappings.
1292  *
1293  * This function returns with preemption and page faults disabled.
1294  */
1295 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1296                         enum zs_mapmode mm)
1297 {
1298         struct zspage *zspage;
1299         struct page *page;
1300         unsigned long obj, off;
1301         unsigned int obj_idx;
1302
1303         unsigned int class_idx;
1304         enum fullness_group fg;
1305         struct size_class *class;
1306         struct mapping_area *area;
1307         struct page *pages[2];
1308         void *ret;
1309
1310         /*
1311          * Because we use per-cpu mapping areas shared among the
1312          * pools/users, we can't allow mapping in interrupt context
1313          * because it can corrupt another users mappings.
1314          */
1315         BUG_ON(in_interrupt());
1316
1317         /* From now on, migration cannot move the object */
1318         pin_tag(handle);
1319
1320         obj = handle_to_obj(handle);
1321         obj_to_location(obj, &page, &obj_idx);
1322         zspage = get_zspage(page);
1323
1324         /* migration cannot move any subpage in this zspage */
1325         migrate_read_lock(zspage);
1326
1327         get_zspage_mapping(zspage, &class_idx, &fg);
1328         class = pool->size_class[class_idx];
1329         off = (class->size * obj_idx) & ~PAGE_MASK;
1330
1331         area = &get_cpu_var(zs_map_area);
1332         area->vm_mm = mm;
1333         if (off + class->size <= PAGE_SIZE) {
1334                 /* this object is contained entirely within a page */
1335                 area->vm_addr = kmap_atomic(page);
1336                 ret = area->vm_addr + off;
1337                 goto out;
1338         }
1339
1340         /* this object spans two pages */
1341         pages[0] = page;
1342         pages[1] = get_next_page(page);
1343         BUG_ON(!pages[1]);
1344
1345         ret = __zs_map_object(area, pages, off, class->size);
1346 out:
1347         if (likely(!PageHugeObject(page)))
1348                 ret += ZS_HANDLE_SIZE;
1349
1350         return ret;
1351 }
1352 EXPORT_SYMBOL_GPL(zs_map_object);
1353
1354 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1355 {
1356         struct zspage *zspage;
1357         struct page *page;
1358         unsigned long obj, off;
1359         unsigned int obj_idx;
1360
1361         unsigned int class_idx;
1362         enum fullness_group fg;
1363         struct size_class *class;
1364         struct mapping_area *area;
1365
1366         obj = handle_to_obj(handle);
1367         obj_to_location(obj, &page, &obj_idx);
1368         zspage = get_zspage(page);
1369         get_zspage_mapping(zspage, &class_idx, &fg);
1370         class = pool->size_class[class_idx];
1371         off = (class->size * obj_idx) & ~PAGE_MASK;
1372
1373         area = this_cpu_ptr(&zs_map_area);
1374         if (off + class->size <= PAGE_SIZE)
1375                 kunmap_atomic(area->vm_addr);
1376         else {
1377                 struct page *pages[2];
1378
1379                 pages[0] = page;
1380                 pages[1] = get_next_page(page);
1381                 BUG_ON(!pages[1]);
1382
1383                 __zs_unmap_object(area, pages, off, class->size);
1384         }
1385         put_cpu_var(zs_map_area);
1386
1387         migrate_read_unlock(zspage);
1388         unpin_tag(handle);
1389 }
1390 EXPORT_SYMBOL_GPL(zs_unmap_object);
1391
1392 /**
1393  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1394  *                        zsmalloc &size_class.
1395  * @pool: zsmalloc pool to use
1396  *
1397  * The function returns the size of the first huge class - any object of equal
1398  * or bigger size will be stored in zspage consisting of a single physical
1399  * page.
1400  *
1401  * Context: Any context.
1402  *
1403  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1404  */
1405 size_t zs_huge_class_size(struct zs_pool *pool)
1406 {
1407         return huge_class_size;
1408 }
1409 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1410
1411 static unsigned long obj_malloc(struct size_class *class,
1412                                 struct zspage *zspage, unsigned long handle)
1413 {
1414         int i, nr_page, offset;
1415         unsigned long obj;
1416         struct link_free *link;
1417
1418         struct page *m_page;
1419         unsigned long m_offset;
1420         void *vaddr;
1421
1422         handle |= OBJ_ALLOCATED_TAG;
1423         obj = get_freeobj(zspage);
1424
1425         offset = obj * class->size;
1426         nr_page = offset >> PAGE_SHIFT;
1427         m_offset = offset & ~PAGE_MASK;
1428         m_page = get_first_page(zspage);
1429
1430         for (i = 0; i < nr_page; i++)
1431                 m_page = get_next_page(m_page);
1432
1433         vaddr = kmap_atomic(m_page);
1434         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1435         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1436         if (likely(!PageHugeObject(m_page)))
1437                 /* record handle in the header of allocated chunk */
1438                 link->handle = handle;
1439         else
1440                 /* record handle to page->index */
1441                 zspage->first_page->index = handle;
1442
1443         kunmap_atomic(vaddr);
1444         mod_zspage_inuse(zspage, 1);
1445         zs_stat_inc(class, OBJ_USED, 1);
1446
1447         obj = location_to_obj(m_page, obj);
1448
1449         return obj;
1450 }
1451
1452
1453 /**
1454  * zs_malloc - Allocate block of given size from pool.
1455  * @pool: pool to allocate from
1456  * @size: size of block to allocate
1457  * @gfp: gfp flags when allocating object
1458  *
1459  * On success, handle to the allocated object is returned,
1460  * otherwise 0.
1461  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1462  */
1463 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1464 {
1465         unsigned long handle, obj;
1466         struct size_class *class;
1467         enum fullness_group newfg;
1468         struct zspage *zspage;
1469
1470         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1471                 return 0;
1472
1473         handle = cache_alloc_handle(pool, gfp);
1474         if (!handle)
1475                 return 0;
1476
1477         /* extra space in chunk to keep the handle */
1478         size += ZS_HANDLE_SIZE;
1479         class = pool->size_class[get_size_class_index(size)];
1480
1481         spin_lock(&class->lock);
1482         zspage = find_get_zspage(class);
1483         if (likely(zspage)) {
1484                 obj = obj_malloc(class, zspage, handle);
1485                 /* Now move the zspage to another fullness group, if required */
1486                 fix_fullness_group(class, zspage);
1487                 record_obj(handle, obj);
1488                 spin_unlock(&class->lock);
1489
1490                 return handle;
1491         }
1492
1493         spin_unlock(&class->lock);
1494
1495         zspage = alloc_zspage(pool, class, gfp);
1496         if (!zspage) {
1497                 cache_free_handle(pool, handle);
1498                 return 0;
1499         }
1500
1501         spin_lock(&class->lock);
1502         obj = obj_malloc(class, zspage, handle);
1503         newfg = get_fullness_group(class, zspage);
1504         insert_zspage(class, zspage, newfg);
1505         set_zspage_mapping(zspage, class->index, newfg);
1506         record_obj(handle, obj);
1507         atomic_long_add(class->pages_per_zspage,
1508                                 &pool->pages_allocated);
1509         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1510
1511         /* We completely set up zspage so mark them as movable */
1512         SetZsPageMovable(pool, zspage);
1513         spin_unlock(&class->lock);
1514
1515         return handle;
1516 }
1517 EXPORT_SYMBOL_GPL(zs_malloc);
1518
1519 static void obj_free(struct size_class *class, unsigned long obj)
1520 {
1521         struct link_free *link;
1522         struct zspage *zspage;
1523         struct page *f_page;
1524         unsigned long f_offset;
1525         unsigned int f_objidx;
1526         void *vaddr;
1527
1528         obj &= ~OBJ_ALLOCATED_TAG;
1529         obj_to_location(obj, &f_page, &f_objidx);
1530         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1531         zspage = get_zspage(f_page);
1532
1533         vaddr = kmap_atomic(f_page);
1534
1535         /* Insert this object in containing zspage's freelist */
1536         link = (struct link_free *)(vaddr + f_offset);
1537         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1538         kunmap_atomic(vaddr);
1539         set_freeobj(zspage, f_objidx);
1540         mod_zspage_inuse(zspage, -1);
1541         zs_stat_dec(class, OBJ_USED, 1);
1542 }
1543
1544 void zs_free(struct zs_pool *pool, unsigned long handle)
1545 {
1546         struct zspage *zspage;
1547         struct page *f_page;
1548         unsigned long obj;
1549         unsigned int f_objidx;
1550         int class_idx;
1551         struct size_class *class;
1552         enum fullness_group fullness;
1553         bool isolated;
1554
1555         if (unlikely(!handle))
1556                 return;
1557
1558         pin_tag(handle);
1559         obj = handle_to_obj(handle);
1560         obj_to_location(obj, &f_page, &f_objidx);
1561         zspage = get_zspage(f_page);
1562
1563         migrate_read_lock(zspage);
1564
1565         get_zspage_mapping(zspage, &class_idx, &fullness);
1566         class = pool->size_class[class_idx];
1567
1568         spin_lock(&class->lock);
1569         obj_free(class, obj);
1570         fullness = fix_fullness_group(class, zspage);
1571         if (fullness != ZS_EMPTY) {
1572                 migrate_read_unlock(zspage);
1573                 goto out;
1574         }
1575
1576         isolated = is_zspage_isolated(zspage);
1577         migrate_read_unlock(zspage);
1578         /* If zspage is isolated, zs_page_putback will free the zspage */
1579         if (likely(!isolated))
1580                 free_zspage(pool, class, zspage);
1581 out:
1582
1583         spin_unlock(&class->lock);
1584         unpin_tag(handle);
1585         cache_free_handle(pool, handle);
1586 }
1587 EXPORT_SYMBOL_GPL(zs_free);
1588
1589 static void zs_object_copy(struct size_class *class, unsigned long dst,
1590                                 unsigned long src)
1591 {
1592         struct page *s_page, *d_page;
1593         unsigned int s_objidx, d_objidx;
1594         unsigned long s_off, d_off;
1595         void *s_addr, *d_addr;
1596         int s_size, d_size, size;
1597         int written = 0;
1598
1599         s_size = d_size = class->size;
1600
1601         obj_to_location(src, &s_page, &s_objidx);
1602         obj_to_location(dst, &d_page, &d_objidx);
1603
1604         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1605         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1606
1607         if (s_off + class->size > PAGE_SIZE)
1608                 s_size = PAGE_SIZE - s_off;
1609
1610         if (d_off + class->size > PAGE_SIZE)
1611                 d_size = PAGE_SIZE - d_off;
1612
1613         s_addr = kmap_atomic(s_page);
1614         d_addr = kmap_atomic(d_page);
1615
1616         while (1) {
1617                 size = min(s_size, d_size);
1618                 memcpy(d_addr + d_off, s_addr + s_off, size);
1619                 written += size;
1620
1621                 if (written == class->size)
1622                         break;
1623
1624                 s_off += size;
1625                 s_size -= size;
1626                 d_off += size;
1627                 d_size -= size;
1628
1629                 if (s_off >= PAGE_SIZE) {
1630                         kunmap_atomic(d_addr);
1631                         kunmap_atomic(s_addr);
1632                         s_page = get_next_page(s_page);
1633                         s_addr = kmap_atomic(s_page);
1634                         d_addr = kmap_atomic(d_page);
1635                         s_size = class->size - written;
1636                         s_off = 0;
1637                 }
1638
1639                 if (d_off >= PAGE_SIZE) {
1640                         kunmap_atomic(d_addr);
1641                         d_page = get_next_page(d_page);
1642                         d_addr = kmap_atomic(d_page);
1643                         d_size = class->size - written;
1644                         d_off = 0;
1645                 }
1646         }
1647
1648         kunmap_atomic(d_addr);
1649         kunmap_atomic(s_addr);
1650 }
1651
1652 /*
1653  * Find alloced object in zspage from index object and
1654  * return handle.
1655  */
1656 static unsigned long find_alloced_obj(struct size_class *class,
1657                                         struct page *page, int *obj_idx)
1658 {
1659         unsigned long head;
1660         int offset = 0;
1661         int index = *obj_idx;
1662         unsigned long handle = 0;
1663         void *addr = kmap_atomic(page);
1664
1665         offset = get_first_obj_offset(page);
1666         offset += class->size * index;
1667
1668         while (offset < PAGE_SIZE) {
1669                 head = obj_to_head(page, addr + offset);
1670                 if (head & OBJ_ALLOCATED_TAG) {
1671                         handle = head & ~OBJ_ALLOCATED_TAG;
1672                         if (trypin_tag(handle))
1673                                 break;
1674                         handle = 0;
1675                 }
1676
1677                 offset += class->size;
1678                 index++;
1679         }
1680
1681         kunmap_atomic(addr);
1682
1683         *obj_idx = index;
1684
1685         return handle;
1686 }
1687
1688 struct zs_compact_control {
1689         /* Source spage for migration which could be a subpage of zspage */
1690         struct page *s_page;
1691         /* Destination page for migration which should be a first page
1692          * of zspage. */
1693         struct page *d_page;
1694          /* Starting object index within @s_page which used for live object
1695           * in the subpage. */
1696         int obj_idx;
1697 };
1698
1699 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1700                                 struct zs_compact_control *cc)
1701 {
1702         unsigned long used_obj, free_obj;
1703         unsigned long handle;
1704         struct page *s_page = cc->s_page;
1705         struct page *d_page = cc->d_page;
1706         int obj_idx = cc->obj_idx;
1707         int ret = 0;
1708
1709         while (1) {
1710                 handle = find_alloced_obj(class, s_page, &obj_idx);
1711                 if (!handle) {
1712                         s_page = get_next_page(s_page);
1713                         if (!s_page)
1714                                 break;
1715                         obj_idx = 0;
1716                         continue;
1717                 }
1718
1719                 /* Stop if there is no more space */
1720                 if (zspage_full(class, get_zspage(d_page))) {
1721                         unpin_tag(handle);
1722                         ret = -ENOMEM;
1723                         break;
1724                 }
1725
1726                 used_obj = handle_to_obj(handle);
1727                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1728                 zs_object_copy(class, free_obj, used_obj);
1729                 obj_idx++;
1730                 /*
1731                  * record_obj updates handle's value to free_obj and it will
1732                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1733                  * breaks synchronization using pin_tag(e,g, zs_free) so
1734                  * let's keep the lock bit.
1735                  */
1736                 free_obj |= BIT(HANDLE_PIN_BIT);
1737                 record_obj(handle, free_obj);
1738                 unpin_tag(handle);
1739                 obj_free(class, used_obj);
1740         }
1741
1742         /* Remember last position in this iteration */
1743         cc->s_page = s_page;
1744         cc->obj_idx = obj_idx;
1745
1746         return ret;
1747 }
1748
1749 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1750 {
1751         int i;
1752         struct zspage *zspage;
1753         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1754
1755         if (!source) {
1756                 fg[0] = ZS_ALMOST_FULL;
1757                 fg[1] = ZS_ALMOST_EMPTY;
1758         }
1759
1760         for (i = 0; i < 2; i++) {
1761                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1762                                                         struct zspage, list);
1763                 if (zspage) {
1764                         VM_BUG_ON(is_zspage_isolated(zspage));
1765                         remove_zspage(class, zspage, fg[i]);
1766                         return zspage;
1767                 }
1768         }
1769
1770         return zspage;
1771 }
1772
1773 /*
1774  * putback_zspage - add @zspage into right class's fullness list
1775  * @class: destination class
1776  * @zspage: target page
1777  *
1778  * Return @zspage's fullness_group
1779  */
1780 static enum fullness_group putback_zspage(struct size_class *class,
1781                         struct zspage *zspage)
1782 {
1783         enum fullness_group fullness;
1784
1785         VM_BUG_ON(is_zspage_isolated(zspage));
1786
1787         fullness = get_fullness_group(class, zspage);
1788         insert_zspage(class, zspage, fullness);
1789         set_zspage_mapping(zspage, class->index, fullness);
1790
1791         return fullness;
1792 }
1793
1794 #ifdef CONFIG_COMPACTION
1795 /*
1796  * To prevent zspage destroy during migration, zspage freeing should
1797  * hold locks of all pages in the zspage.
1798  */
1799 static void lock_zspage(struct zspage *zspage)
1800 {
1801         struct page *page = get_first_page(zspage);
1802
1803         do {
1804                 lock_page(page);
1805         } while ((page = get_next_page(page)) != NULL);
1806 }
1807
1808 static int zs_init_fs_context(struct fs_context *fc)
1809 {
1810         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1811 }
1812
1813 static struct file_system_type zsmalloc_fs = {
1814         .name           = "zsmalloc",
1815         .init_fs_context = zs_init_fs_context,
1816         .kill_sb        = kill_anon_super,
1817 };
1818
1819 static int zsmalloc_mount(void)
1820 {
1821         int ret = 0;
1822
1823         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1824         if (IS_ERR(zsmalloc_mnt))
1825                 ret = PTR_ERR(zsmalloc_mnt);
1826
1827         return ret;
1828 }
1829
1830 static void zsmalloc_unmount(void)
1831 {
1832         kern_unmount(zsmalloc_mnt);
1833 }
1834
1835 static void migrate_lock_init(struct zspage *zspage)
1836 {
1837         rwlock_init(&zspage->lock);
1838 }
1839
1840 static void migrate_read_lock(struct zspage *zspage)
1841 {
1842         read_lock(&zspage->lock);
1843 }
1844
1845 static void migrate_read_unlock(struct zspage *zspage)
1846 {
1847         read_unlock(&zspage->lock);
1848 }
1849
1850 static void migrate_write_lock(struct zspage *zspage)
1851 {
1852         write_lock(&zspage->lock);
1853 }
1854
1855 static void migrate_write_unlock(struct zspage *zspage)
1856 {
1857         write_unlock(&zspage->lock);
1858 }
1859
1860 /* Number of isolated subpage for *page migration* in this zspage */
1861 static void inc_zspage_isolation(struct zspage *zspage)
1862 {
1863         zspage->isolated++;
1864 }
1865
1866 static void dec_zspage_isolation(struct zspage *zspage)
1867 {
1868         zspage->isolated--;
1869 }
1870
1871 static void putback_zspage_deferred(struct zs_pool *pool,
1872                                     struct size_class *class,
1873                                     struct zspage *zspage)
1874 {
1875         enum fullness_group fg;
1876
1877         fg = putback_zspage(class, zspage);
1878         if (fg == ZS_EMPTY)
1879                 schedule_work(&pool->free_work);
1880
1881 }
1882
1883 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1884 {
1885         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1886         atomic_long_dec(&pool->isolated_pages);
1887         /*
1888          * There's no possibility of racing, since wait_for_isolated_drain()
1889          * checks the isolated count under &class->lock after enqueuing
1890          * on migration_wait.
1891          */
1892         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1893                 wake_up_all(&pool->migration_wait);
1894 }
1895
1896 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1897                                 struct page *newpage, struct page *oldpage)
1898 {
1899         struct page *page;
1900         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1901         int idx = 0;
1902
1903         page = get_first_page(zspage);
1904         do {
1905                 if (page == oldpage)
1906                         pages[idx] = newpage;
1907                 else
1908                         pages[idx] = page;
1909                 idx++;
1910         } while ((page = get_next_page(page)) != NULL);
1911
1912         create_page_chain(class, zspage, pages);
1913         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1914         if (unlikely(PageHugeObject(oldpage)))
1915                 newpage->index = oldpage->index;
1916         __SetPageMovable(newpage, page_mapping(oldpage));
1917 }
1918
1919 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1920 {
1921         struct zs_pool *pool;
1922         struct size_class *class;
1923         int class_idx;
1924         enum fullness_group fullness;
1925         struct zspage *zspage;
1926         struct address_space *mapping;
1927
1928         /*
1929          * Page is locked so zspage couldn't be destroyed. For detail, look at
1930          * lock_zspage in free_zspage.
1931          */
1932         VM_BUG_ON_PAGE(!PageMovable(page), page);
1933         VM_BUG_ON_PAGE(PageIsolated(page), page);
1934
1935         zspage = get_zspage(page);
1936
1937         /*
1938          * Without class lock, fullness could be stale while class_idx is okay
1939          * because class_idx is constant unless page is freed so we should get
1940          * fullness again under class lock.
1941          */
1942         get_zspage_mapping(zspage, &class_idx, &fullness);
1943         mapping = page_mapping(page);
1944         pool = mapping->private_data;
1945         class = pool->size_class[class_idx];
1946
1947         spin_lock(&class->lock);
1948         if (get_zspage_inuse(zspage) == 0) {
1949                 spin_unlock(&class->lock);
1950                 return false;
1951         }
1952
1953         /* zspage is isolated for object migration */
1954         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1955                 spin_unlock(&class->lock);
1956                 return false;
1957         }
1958
1959         /*
1960          * If this is first time isolation for the zspage, isolate zspage from
1961          * size_class to prevent further object allocation from the zspage.
1962          */
1963         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1964                 get_zspage_mapping(zspage, &class_idx, &fullness);
1965                 atomic_long_inc(&pool->isolated_pages);
1966                 remove_zspage(class, zspage, fullness);
1967         }
1968
1969         inc_zspage_isolation(zspage);
1970         spin_unlock(&class->lock);
1971
1972         return true;
1973 }
1974
1975 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1976                 struct page *page, enum migrate_mode mode)
1977 {
1978         struct zs_pool *pool;
1979         struct size_class *class;
1980         int class_idx;
1981         enum fullness_group fullness;
1982         struct zspage *zspage;
1983         struct page *dummy;
1984         void *s_addr, *d_addr, *addr;
1985         int offset, pos;
1986         unsigned long handle, head;
1987         unsigned long old_obj, new_obj;
1988         unsigned int obj_idx;
1989         int ret = -EAGAIN;
1990
1991         /*
1992          * We cannot support the _NO_COPY case here, because copy needs to
1993          * happen under the zs lock, which does not work with
1994          * MIGRATE_SYNC_NO_COPY workflow.
1995          */
1996         if (mode == MIGRATE_SYNC_NO_COPY)
1997                 return -EINVAL;
1998
1999         VM_BUG_ON_PAGE(!PageMovable(page), page);
2000         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2001
2002         zspage = get_zspage(page);
2003
2004         /* Concurrent compactor cannot migrate any subpage in zspage */
2005         migrate_write_lock(zspage);
2006         get_zspage_mapping(zspage, &class_idx, &fullness);
2007         pool = mapping->private_data;
2008         class = pool->size_class[class_idx];
2009         offset = get_first_obj_offset(page);
2010
2011         spin_lock(&class->lock);
2012         if (!get_zspage_inuse(zspage)) {
2013                 /*
2014                  * Set "offset" to end of the page so that every loops
2015                  * skips unnecessary object scanning.
2016                  */
2017                 offset = PAGE_SIZE;
2018         }
2019
2020         pos = offset;
2021         s_addr = kmap_atomic(page);
2022         while (pos < PAGE_SIZE) {
2023                 head = obj_to_head(page, s_addr + pos);
2024                 if (head & OBJ_ALLOCATED_TAG) {
2025                         handle = head & ~OBJ_ALLOCATED_TAG;
2026                         if (!trypin_tag(handle))
2027                                 goto unpin_objects;
2028                 }
2029                 pos += class->size;
2030         }
2031
2032         /*
2033          * Here, any user cannot access all objects in the zspage so let's move.
2034          */
2035         d_addr = kmap_atomic(newpage);
2036         memcpy(d_addr, s_addr, PAGE_SIZE);
2037         kunmap_atomic(d_addr);
2038
2039         for (addr = s_addr + offset; addr < s_addr + pos;
2040                                         addr += class->size) {
2041                 head = obj_to_head(page, addr);
2042                 if (head & OBJ_ALLOCATED_TAG) {
2043                         handle = head & ~OBJ_ALLOCATED_TAG;
2044                         if (!testpin_tag(handle))
2045                                 BUG();
2046
2047                         old_obj = handle_to_obj(handle);
2048                         obj_to_location(old_obj, &dummy, &obj_idx);
2049                         new_obj = (unsigned long)location_to_obj(newpage,
2050                                                                 obj_idx);
2051                         new_obj |= BIT(HANDLE_PIN_BIT);
2052                         record_obj(handle, new_obj);
2053                 }
2054         }
2055
2056         replace_sub_page(class, zspage, newpage, page);
2057         get_page(newpage);
2058
2059         dec_zspage_isolation(zspage);
2060
2061         /*
2062          * Page migration is done so let's putback isolated zspage to
2063          * the list if @page is final isolated subpage in the zspage.
2064          */
2065         if (!is_zspage_isolated(zspage)) {
2066                 /*
2067                  * We cannot race with zs_destroy_pool() here because we wait
2068                  * for isolation to hit zero before we start destroying.
2069                  * Also, we ensure that everyone can see pool->destroying before
2070                  * we start waiting.
2071                  */
2072                 putback_zspage_deferred(pool, class, zspage);
2073                 zs_pool_dec_isolated(pool);
2074         }
2075
2076         reset_page(page);
2077         put_page(page);
2078         page = newpage;
2079
2080         ret = MIGRATEPAGE_SUCCESS;
2081 unpin_objects:
2082         for (addr = s_addr + offset; addr < s_addr + pos;
2083                                                 addr += class->size) {
2084                 head = obj_to_head(page, addr);
2085                 if (head & OBJ_ALLOCATED_TAG) {
2086                         handle = head & ~OBJ_ALLOCATED_TAG;
2087                         if (!testpin_tag(handle))
2088                                 BUG();
2089                         unpin_tag(handle);
2090                 }
2091         }
2092         kunmap_atomic(s_addr);
2093         spin_unlock(&class->lock);
2094         migrate_write_unlock(zspage);
2095
2096         return ret;
2097 }
2098
2099 static void zs_page_putback(struct page *page)
2100 {
2101         struct zs_pool *pool;
2102         struct size_class *class;
2103         int class_idx;
2104         enum fullness_group fg;
2105         struct address_space *mapping;
2106         struct zspage *zspage;
2107
2108         VM_BUG_ON_PAGE(!PageMovable(page), page);
2109         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2110
2111         zspage = get_zspage(page);
2112         get_zspage_mapping(zspage, &class_idx, &fg);
2113         mapping = page_mapping(page);
2114         pool = mapping->private_data;
2115         class = pool->size_class[class_idx];
2116
2117         spin_lock(&class->lock);
2118         dec_zspage_isolation(zspage);
2119         if (!is_zspage_isolated(zspage)) {
2120                 /*
2121                  * Due to page_lock, we cannot free zspage immediately
2122                  * so let's defer.
2123                  */
2124                 putback_zspage_deferred(pool, class, zspage);
2125                 zs_pool_dec_isolated(pool);
2126         }
2127         spin_unlock(&class->lock);
2128 }
2129
2130 static const struct address_space_operations zsmalloc_aops = {
2131         .isolate_page = zs_page_isolate,
2132         .migratepage = zs_page_migrate,
2133         .putback_page = zs_page_putback,
2134 };
2135
2136 static int zs_register_migration(struct zs_pool *pool)
2137 {
2138         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2139         if (IS_ERR(pool->inode)) {
2140                 pool->inode = NULL;
2141                 return 1;
2142         }
2143
2144         pool->inode->i_mapping->private_data = pool;
2145         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2146         return 0;
2147 }
2148
2149 static bool pool_isolated_are_drained(struct zs_pool *pool)
2150 {
2151         return atomic_long_read(&pool->isolated_pages) == 0;
2152 }
2153
2154 /* Function for resolving migration */
2155 static void wait_for_isolated_drain(struct zs_pool *pool)
2156 {
2157
2158         /*
2159          * We're in the process of destroying the pool, so there are no
2160          * active allocations. zs_page_isolate() fails for completely free
2161          * zspages, so we need only wait for the zs_pool's isolated
2162          * count to hit zero.
2163          */
2164         wait_event(pool->migration_wait,
2165                    pool_isolated_are_drained(pool));
2166 }
2167
2168 static void zs_unregister_migration(struct zs_pool *pool)
2169 {
2170         pool->destroying = true;
2171         /*
2172          * We need a memory barrier here to ensure global visibility of
2173          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2174          * case we don't care, or it will be > 0 and pool->destroying will
2175          * ensure that we wake up once isolation hits 0.
2176          */
2177         smp_mb();
2178         wait_for_isolated_drain(pool); /* This can block */
2179         flush_work(&pool->free_work);
2180         iput(pool->inode);
2181 }
2182
2183 /*
2184  * Caller should hold page_lock of all pages in the zspage
2185  * In here, we cannot use zspage meta data.
2186  */
2187 static void async_free_zspage(struct work_struct *work)
2188 {
2189         int i;
2190         struct size_class *class;
2191         unsigned int class_idx;
2192         enum fullness_group fullness;
2193         struct zspage *zspage, *tmp;
2194         LIST_HEAD(free_pages);
2195         struct zs_pool *pool = container_of(work, struct zs_pool,
2196                                         free_work);
2197
2198         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2199                 class = pool->size_class[i];
2200                 if (class->index != i)
2201                         continue;
2202
2203                 spin_lock(&class->lock);
2204                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2205                 spin_unlock(&class->lock);
2206         }
2207
2208
2209         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2210                 list_del(&zspage->list);
2211                 lock_zspage(zspage);
2212
2213                 get_zspage_mapping(zspage, &class_idx, &fullness);
2214                 VM_BUG_ON(fullness != ZS_EMPTY);
2215                 class = pool->size_class[class_idx];
2216                 spin_lock(&class->lock);
2217                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2218                 spin_unlock(&class->lock);
2219         }
2220 };
2221
2222 static void kick_deferred_free(struct zs_pool *pool)
2223 {
2224         schedule_work(&pool->free_work);
2225 }
2226
2227 static void init_deferred_free(struct zs_pool *pool)
2228 {
2229         INIT_WORK(&pool->free_work, async_free_zspage);
2230 }
2231
2232 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2233 {
2234         struct page *page = get_first_page(zspage);
2235
2236         do {
2237                 WARN_ON(!trylock_page(page));
2238                 __SetPageMovable(page, pool->inode->i_mapping);
2239                 unlock_page(page);
2240         } while ((page = get_next_page(page)) != NULL);
2241 }
2242 #endif
2243
2244 /*
2245  *
2246  * Based on the number of unused allocated objects calculate
2247  * and return the number of pages that we can free.
2248  */
2249 static unsigned long zs_can_compact(struct size_class *class)
2250 {
2251         unsigned long obj_wasted;
2252         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2253         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2254
2255         if (obj_allocated <= obj_used)
2256                 return 0;
2257
2258         obj_wasted = obj_allocated - obj_used;
2259         obj_wasted /= class->objs_per_zspage;
2260
2261         return obj_wasted * class->pages_per_zspage;
2262 }
2263
2264 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2265 {
2266         struct zs_compact_control cc;
2267         struct zspage *src_zspage;
2268         struct zspage *dst_zspage = NULL;
2269
2270         spin_lock(&class->lock);
2271         while ((src_zspage = isolate_zspage(class, true))) {
2272
2273                 if (!zs_can_compact(class))
2274                         break;
2275
2276                 cc.obj_idx = 0;
2277                 cc.s_page = get_first_page(src_zspage);
2278
2279                 while ((dst_zspage = isolate_zspage(class, false))) {
2280                         cc.d_page = get_first_page(dst_zspage);
2281                         /*
2282                          * If there is no more space in dst_page, resched
2283                          * and see if anyone had allocated another zspage.
2284                          */
2285                         if (!migrate_zspage(pool, class, &cc))
2286                                 break;
2287
2288                         putback_zspage(class, dst_zspage);
2289                 }
2290
2291                 /* Stop if we couldn't find slot */
2292                 if (dst_zspage == NULL)
2293                         break;
2294
2295                 putback_zspage(class, dst_zspage);
2296                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2297                         free_zspage(pool, class, src_zspage);
2298                         pool->stats.pages_compacted += class->pages_per_zspage;
2299                 }
2300                 spin_unlock(&class->lock);
2301                 cond_resched();
2302                 spin_lock(&class->lock);
2303         }
2304
2305         if (src_zspage)
2306                 putback_zspage(class, src_zspage);
2307
2308         spin_unlock(&class->lock);
2309 }
2310
2311 unsigned long zs_compact(struct zs_pool *pool)
2312 {
2313         int i;
2314         struct size_class *class;
2315
2316         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2317                 class = pool->size_class[i];
2318                 if (!class)
2319                         continue;
2320                 if (class->index != i)
2321                         continue;
2322                 __zs_compact(pool, class);
2323         }
2324
2325         return pool->stats.pages_compacted;
2326 }
2327 EXPORT_SYMBOL_GPL(zs_compact);
2328
2329 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2330 {
2331         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2332 }
2333 EXPORT_SYMBOL_GPL(zs_pool_stats);
2334
2335 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2336                 struct shrink_control *sc)
2337 {
2338         unsigned long pages_freed;
2339         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2340                         shrinker);
2341
2342         pages_freed = pool->stats.pages_compacted;
2343         /*
2344          * Compact classes and calculate compaction delta.
2345          * Can run concurrently with a manually triggered
2346          * (by user) compaction.
2347          */
2348         pages_freed = zs_compact(pool) - pages_freed;
2349
2350         return pages_freed ? pages_freed : SHRINK_STOP;
2351 }
2352
2353 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2354                 struct shrink_control *sc)
2355 {
2356         int i;
2357         struct size_class *class;
2358         unsigned long pages_to_free = 0;
2359         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2360                         shrinker);
2361
2362         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2363                 class = pool->size_class[i];
2364                 if (!class)
2365                         continue;
2366                 if (class->index != i)
2367                         continue;
2368
2369                 pages_to_free += zs_can_compact(class);
2370         }
2371
2372         return pages_to_free;
2373 }
2374
2375 static void zs_unregister_shrinker(struct zs_pool *pool)
2376 {
2377         unregister_shrinker(&pool->shrinker);
2378 }
2379
2380 static int zs_register_shrinker(struct zs_pool *pool)
2381 {
2382         pool->shrinker.scan_objects = zs_shrinker_scan;
2383         pool->shrinker.count_objects = zs_shrinker_count;
2384         pool->shrinker.batch = 0;
2385         pool->shrinker.seeks = DEFAULT_SEEKS;
2386
2387         return register_shrinker(&pool->shrinker);
2388 }
2389
2390 /**
2391  * zs_create_pool - Creates an allocation pool to work from.
2392  * @name: pool name to be created
2393  *
2394  * This function must be called before anything when using
2395  * the zsmalloc allocator.
2396  *
2397  * On success, a pointer to the newly created pool is returned,
2398  * otherwise NULL.
2399  */
2400 struct zs_pool *zs_create_pool(const char *name)
2401 {
2402         int i;
2403         struct zs_pool *pool;
2404         struct size_class *prev_class = NULL;
2405
2406         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2407         if (!pool)
2408                 return NULL;
2409
2410         init_deferred_free(pool);
2411
2412         pool->name = kstrdup(name, GFP_KERNEL);
2413         if (!pool->name)
2414                 goto err;
2415
2416 #ifdef CONFIG_COMPACTION
2417         init_waitqueue_head(&pool->migration_wait);
2418 #endif
2419
2420         if (create_cache(pool))
2421                 goto err;
2422
2423         /*
2424          * Iterate reversely, because, size of size_class that we want to use
2425          * for merging should be larger or equal to current size.
2426          */
2427         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2428                 int size;
2429                 int pages_per_zspage;
2430                 int objs_per_zspage;
2431                 struct size_class *class;
2432                 int fullness = 0;
2433
2434                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2435                 if (size > ZS_MAX_ALLOC_SIZE)
2436                         size = ZS_MAX_ALLOC_SIZE;
2437                 pages_per_zspage = get_pages_per_zspage(size);
2438                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2439
2440                 /*
2441                  * We iterate from biggest down to smallest classes,
2442                  * so huge_class_size holds the size of the first huge
2443                  * class. Any object bigger than or equal to that will
2444                  * endup in the huge class.
2445                  */
2446                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2447                                 !huge_class_size) {
2448                         huge_class_size = size;
2449                         /*
2450                          * The object uses ZS_HANDLE_SIZE bytes to store the
2451                          * handle. We need to subtract it, because zs_malloc()
2452                          * unconditionally adds handle size before it performs
2453                          * size class search - so object may be smaller than
2454                          * huge class size, yet it still can end up in the huge
2455                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2456                          * right before class lookup.
2457                          */
2458                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2459                 }
2460
2461                 /*
2462                  * size_class is used for normal zsmalloc operation such
2463                  * as alloc/free for that size. Although it is natural that we
2464                  * have one size_class for each size, there is a chance that we
2465                  * can get more memory utilization if we use one size_class for
2466                  * many different sizes whose size_class have same
2467                  * characteristics. So, we makes size_class point to
2468                  * previous size_class if possible.
2469                  */
2470                 if (prev_class) {
2471                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2472                                 pool->size_class[i] = prev_class;
2473                                 continue;
2474                         }
2475                 }
2476
2477                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2478                 if (!class)
2479                         goto err;
2480
2481                 class->size = size;
2482                 class->index = i;
2483                 class->pages_per_zspage = pages_per_zspage;
2484                 class->objs_per_zspage = objs_per_zspage;
2485                 spin_lock_init(&class->lock);
2486                 pool->size_class[i] = class;
2487                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2488                                                         fullness++)
2489                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2490
2491                 prev_class = class;
2492         }
2493
2494         /* debug only, don't abort if it fails */
2495         zs_pool_stat_create(pool, name);
2496
2497         if (zs_register_migration(pool))
2498                 goto err;
2499
2500         /*
2501          * Not critical since shrinker is only used to trigger internal
2502          * defragmentation of the pool which is pretty optional thing.  If
2503          * registration fails we still can use the pool normally and user can
2504          * trigger compaction manually. Thus, ignore return code.
2505          */
2506         zs_register_shrinker(pool);
2507
2508         return pool;
2509
2510 err:
2511         zs_destroy_pool(pool);
2512         return NULL;
2513 }
2514 EXPORT_SYMBOL_GPL(zs_create_pool);
2515
2516 void zs_destroy_pool(struct zs_pool *pool)
2517 {
2518         int i;
2519
2520         zs_unregister_shrinker(pool);
2521         zs_unregister_migration(pool);
2522         zs_pool_stat_destroy(pool);
2523
2524         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2525                 int fg;
2526                 struct size_class *class = pool->size_class[i];
2527
2528                 if (!class)
2529                         continue;
2530
2531                 if (class->index != i)
2532                         continue;
2533
2534                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2535                         if (!list_empty(&class->fullness_list[fg])) {
2536                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2537                                         class->size, fg);
2538                         }
2539                 }
2540                 kfree(class);
2541         }
2542
2543         destroy_cache(pool);
2544         kfree(pool->name);
2545         kfree(pool);
2546 }
2547 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2548
2549 static int __init zs_init(void)
2550 {
2551         int ret;
2552
2553         ret = zsmalloc_mount();
2554         if (ret)
2555                 goto out;
2556
2557         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2558                                 zs_cpu_prepare, zs_cpu_dead);
2559         if (ret)
2560                 goto hp_setup_fail;
2561
2562 #ifdef CONFIG_ZPOOL
2563         zpool_register_driver(&zs_zpool_driver);
2564 #endif
2565
2566         zs_stat_init();
2567
2568         return 0;
2569
2570 hp_setup_fail:
2571         zsmalloc_unmount();
2572 out:
2573         return ret;
2574 }
2575
2576 static void __exit zs_exit(void)
2577 {
2578 #ifdef CONFIG_ZPOOL
2579         zpool_unregister_driver(&zs_zpool_driver);
2580 #endif
2581         zsmalloc_unmount();
2582         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2583
2584         zs_stat_exit();
2585 }
2586
2587 module_init(zs_init);
2588 module_exit(zs_exit);
2589
2590 MODULE_LICENSE("Dual BSD/GPL");
2591 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");