1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
12 #include <linux/vmalloc.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
44 struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
50 static void __vunmap(const void *, int);
52 static void free_work(struct work_struct *w)
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 struct llist_node *t, *llnode;
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
61 /*** Page table manipulation functions ***/
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
67 pte = pte_offset_kernel(pmd, addr);
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
79 pmd = pmd_offset(pud, addr);
81 next = pmd_addr_end(addr, end);
82 if (pmd_clear_huge(pmd))
84 if (pmd_none_or_clear_bad(pmd))
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
95 pud = pud_offset(p4d, addr);
97 next = pud_addr_end(addr, end);
98 if (pud_clear_huge(pud))
100 if (pud_none_or_clear_bad(pud))
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
111 p4d = p4d_offset(pgd, addr);
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
116 if (p4d_none_or_clear_bad(p4d))
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
128 pgd = pgd_offset_k(addr);
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
133 vunmap_p4d_range(pgd, addr, next);
134 } while (pgd++, addr = next, addr != end);
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
147 pte = pte_alloc_kernel(pmd, addr);
151 struct page *page = pages[*nr];
153 if (WARN_ON(!pte_none(*pte)))
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
159 } while (pte++, addr += PAGE_SIZE, addr != end);
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
169 pmd = pmd_alloc(&init_mm, pud, addr);
173 next = pmd_addr_end(addr, end);
174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
176 } while (pmd++, addr = next, addr != end);
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
186 pud = pud_alloc(&init_mm, p4d, addr);
190 next = pud_addr_end(addr, end);
191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
193 } while (pud++, addr = next, addr != end);
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
203 p4d = p4d_alloc(&init_mm, pgd, addr);
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
210 } while (p4d++, addr = next, addr != end);
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
225 unsigned long addr = start;
230 pgd = pgd_offset_k(addr);
232 next = pgd_addr_end(addr, end);
233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
236 } while (pgd++, addr = next, addr != end);
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
251 int is_vmalloc_or_module_addr(const void *x)
254 * ARM, x86-64 and sparc64 put modules in a special place,
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
263 return is_vmalloc_addr(x);
267 * Walk a vmap address to the struct page it maps.
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
271 unsigned long addr = (unsigned long) vmalloc_addr;
272 struct page *page = NULL;
273 pgd_t *pgd = pgd_offset_k(addr);
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
287 p4d = p4d_offset(pgd, addr);
290 pud = pud_offset(p4d, addr);
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
303 pmd = pmd_offset(pud, addr);
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
308 ptep = pte_offset_map(pmd, addr);
310 if (pte_present(pte))
311 page = pte_page(pte);
315 EXPORT_SYMBOL(vmalloc_to_page);
318 * Map a vmalloc()-space virtual address to the physical page frame number.
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
324 EXPORT_SYMBOL(vmalloc_to_pfn);
327 /*** Global kva allocator ***/
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
332 #define VM_LAZY_FREE 0x02
333 #define VM_VM_AREA 0x04
335 static DEFINE_SPINLOCK(vmap_area_lock);
336 /* Export for kexec only */
337 LIST_HEAD(vmap_area_list);
338 static LLIST_HEAD(vmap_purge_list);
339 static struct rb_root vmap_area_root = RB_ROOT;
340 static bool vmap_initialized __read_mostly;
343 * This kmem_cache is used for vmap_area objects. Instead of
344 * allocating from slab we reuse an object from this cache to
345 * make things faster. Especially in "no edge" splitting of
348 static struct kmem_cache *vmap_area_cachep;
351 * This linked list is used in pair with free_vmap_area_root.
352 * It gives O(1) access to prev/next to perform fast coalescing.
354 static LIST_HEAD(free_vmap_area_list);
357 * This augment red-black tree represents the free vmap space.
358 * All vmap_area objects in this tree are sorted by va->va_start
359 * address. It is used for allocation and merging when a vmap
360 * object is released.
362 * Each vmap_area node contains a maximum available free block
363 * of its sub-tree, right or left. Therefore it is possible to
364 * find a lowest match of free area.
366 static struct rb_root free_vmap_area_root = RB_ROOT;
369 * Preload a CPU with one object for "no edge" split case. The
370 * aim is to get rid of allocations from the atomic context, thus
371 * to use more permissive allocation masks.
373 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
375 static __always_inline unsigned long
376 va_size(struct vmap_area *va)
378 return (va->va_end - va->va_start);
381 static __always_inline unsigned long
382 get_subtree_max_size(struct rb_node *node)
384 struct vmap_area *va;
386 va = rb_entry_safe(node, struct vmap_area, rb_node);
387 return va ? va->subtree_max_size : 0;
391 * Gets called when remove the node and rotate.
393 static __always_inline unsigned long
394 compute_subtree_max_size(struct vmap_area *va)
396 return max3(va_size(va),
397 get_subtree_max_size(va->rb_node.rb_left),
398 get_subtree_max_size(va->rb_node.rb_right));
401 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
402 struct vmap_area, rb_node, unsigned long, subtree_max_size,
403 compute_subtree_max_size)
405 static void purge_vmap_area_lazy(void);
406 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
407 static unsigned long lazy_max_pages(void);
409 static atomic_long_t nr_vmalloc_pages;
411 unsigned long vmalloc_nr_pages(void)
413 return atomic_long_read(&nr_vmalloc_pages);
416 static struct vmap_area *__find_vmap_area(unsigned long addr)
418 struct rb_node *n = vmap_area_root.rb_node;
421 struct vmap_area *va;
423 va = rb_entry(n, struct vmap_area, rb_node);
424 if (addr < va->va_start)
426 else if (addr >= va->va_end)
436 * This function returns back addresses of parent node
437 * and its left or right link for further processing.
439 static __always_inline struct rb_node **
440 find_va_links(struct vmap_area *va,
441 struct rb_root *root, struct rb_node *from,
442 struct rb_node **parent)
444 struct vmap_area *tmp_va;
445 struct rb_node **link;
448 link = &root->rb_node;
449 if (unlikely(!*link)) {
458 * Go to the bottom of the tree. When we hit the last point
459 * we end up with parent rb_node and correct direction, i name
460 * it link, where the new va->rb_node will be attached to.
463 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
466 * During the traversal we also do some sanity check.
467 * Trigger the BUG() if there are sides(left/right)
470 if (va->va_start < tmp_va->va_end &&
471 va->va_end <= tmp_va->va_start)
472 link = &(*link)->rb_left;
473 else if (va->va_end > tmp_va->va_start &&
474 va->va_start >= tmp_va->va_end)
475 link = &(*link)->rb_right;
480 *parent = &tmp_va->rb_node;
484 static __always_inline struct list_head *
485 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
487 struct list_head *list;
489 if (unlikely(!parent))
491 * The red-black tree where we try to find VA neighbors
492 * before merging or inserting is empty, i.e. it means
493 * there is no free vmap space. Normally it does not
494 * happen but we handle this case anyway.
498 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
499 return (&parent->rb_right == link ? list->next : list);
502 static __always_inline void
503 link_va(struct vmap_area *va, struct rb_root *root,
504 struct rb_node *parent, struct rb_node **link, struct list_head *head)
507 * VA is still not in the list, but we can
508 * identify its future previous list_head node.
510 if (likely(parent)) {
511 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
512 if (&parent->rb_right != link)
516 /* Insert to the rb-tree */
517 rb_link_node(&va->rb_node, parent, link);
518 if (root == &free_vmap_area_root) {
520 * Some explanation here. Just perform simple insertion
521 * to the tree. We do not set va->subtree_max_size to
522 * its current size before calling rb_insert_augmented().
523 * It is because of we populate the tree from the bottom
524 * to parent levels when the node _is_ in the tree.
526 * Therefore we set subtree_max_size to zero after insertion,
527 * to let __augment_tree_propagate_from() puts everything to
528 * the correct order later on.
530 rb_insert_augmented(&va->rb_node,
531 root, &free_vmap_area_rb_augment_cb);
532 va->subtree_max_size = 0;
534 rb_insert_color(&va->rb_node, root);
537 /* Address-sort this list */
538 list_add(&va->list, head);
541 static __always_inline void
542 unlink_va(struct vmap_area *va, struct rb_root *root)
544 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
547 if (root == &free_vmap_area_root)
548 rb_erase_augmented(&va->rb_node,
549 root, &free_vmap_area_rb_augment_cb);
551 rb_erase(&va->rb_node, root);
554 RB_CLEAR_NODE(&va->rb_node);
557 #if DEBUG_AUGMENT_PROPAGATE_CHECK
559 augment_tree_propagate_check(struct rb_node *n)
561 struct vmap_area *va;
562 struct rb_node *node;
569 va = rb_entry(n, struct vmap_area, rb_node);
570 size = va->subtree_max_size;
574 va = rb_entry(node, struct vmap_area, rb_node);
576 if (get_subtree_max_size(node->rb_left) == size) {
577 node = node->rb_left;
579 if (va_size(va) == size) {
584 node = node->rb_right;
589 va = rb_entry(n, struct vmap_area, rb_node);
590 pr_emerg("tree is corrupted: %lu, %lu\n",
591 va_size(va), va->subtree_max_size);
594 augment_tree_propagate_check(n->rb_left);
595 augment_tree_propagate_check(n->rb_right);
600 * This function populates subtree_max_size from bottom to upper
601 * levels starting from VA point. The propagation must be done
602 * when VA size is modified by changing its va_start/va_end. Or
603 * in case of newly inserting of VA to the tree.
605 * It means that __augment_tree_propagate_from() must be called:
606 * - After VA has been inserted to the tree(free path);
607 * - After VA has been shrunk(allocation path);
608 * - After VA has been increased(merging path).
610 * Please note that, it does not mean that upper parent nodes
611 * and their subtree_max_size are recalculated all the time up
620 * For example if we modify the node 4, shrinking it to 2, then
621 * no any modification is required. If we shrink the node 2 to 1
622 * its subtree_max_size is updated only, and set to 1. If we shrink
623 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
626 static __always_inline void
627 augment_tree_propagate_from(struct vmap_area *va)
629 struct rb_node *node = &va->rb_node;
630 unsigned long new_va_sub_max_size;
633 va = rb_entry(node, struct vmap_area, rb_node);
634 new_va_sub_max_size = compute_subtree_max_size(va);
637 * If the newly calculated maximum available size of the
638 * subtree is equal to the current one, then it means that
639 * the tree is propagated correctly. So we have to stop at
640 * this point to save cycles.
642 if (va->subtree_max_size == new_va_sub_max_size)
645 va->subtree_max_size = new_va_sub_max_size;
646 node = rb_parent(&va->rb_node);
649 #if DEBUG_AUGMENT_PROPAGATE_CHECK
650 augment_tree_propagate_check(free_vmap_area_root.rb_node);
655 insert_vmap_area(struct vmap_area *va,
656 struct rb_root *root, struct list_head *head)
658 struct rb_node **link;
659 struct rb_node *parent;
661 link = find_va_links(va, root, NULL, &parent);
662 link_va(va, root, parent, link, head);
666 insert_vmap_area_augment(struct vmap_area *va,
667 struct rb_node *from, struct rb_root *root,
668 struct list_head *head)
670 struct rb_node **link;
671 struct rb_node *parent;
674 link = find_va_links(va, NULL, from, &parent);
676 link = find_va_links(va, root, NULL, &parent);
678 link_va(va, root, parent, link, head);
679 augment_tree_propagate_from(va);
683 * Merge de-allocated chunk of VA memory with previous
684 * and next free blocks. If coalesce is not done a new
685 * free area is inserted. If VA has been merged, it is
688 static __always_inline void
689 merge_or_add_vmap_area(struct vmap_area *va,
690 struct rb_root *root, struct list_head *head)
692 struct vmap_area *sibling;
693 struct list_head *next;
694 struct rb_node **link;
695 struct rb_node *parent;
699 * Find a place in the tree where VA potentially will be
700 * inserted, unless it is merged with its sibling/siblings.
702 link = find_va_links(va, root, NULL, &parent);
705 * Get next node of VA to check if merging can be done.
707 next = get_va_next_sibling(parent, link);
708 if (unlikely(next == NULL))
714 * |<------VA------>|<-----Next----->|
719 sibling = list_entry(next, struct vmap_area, list);
720 if (sibling->va_start == va->va_end) {
721 sibling->va_start = va->va_start;
723 /* Check and update the tree if needed. */
724 augment_tree_propagate_from(sibling);
726 /* Free vmap_area object. */
727 kmem_cache_free(vmap_area_cachep, va);
729 /* Point to the new merged area. */
738 * |<-----Prev----->|<------VA------>|
742 if (next->prev != head) {
743 sibling = list_entry(next->prev, struct vmap_area, list);
744 if (sibling->va_end == va->va_start) {
745 sibling->va_end = va->va_end;
747 /* Check and update the tree if needed. */
748 augment_tree_propagate_from(sibling);
753 /* Free vmap_area object. */
754 kmem_cache_free(vmap_area_cachep, va);
761 link_va(va, root, parent, link, head);
762 augment_tree_propagate_from(va);
766 static __always_inline bool
767 is_within_this_va(struct vmap_area *va, unsigned long size,
768 unsigned long align, unsigned long vstart)
770 unsigned long nva_start_addr;
772 if (va->va_start > vstart)
773 nva_start_addr = ALIGN(va->va_start, align);
775 nva_start_addr = ALIGN(vstart, align);
777 /* Can be overflowed due to big size or alignment. */
778 if (nva_start_addr + size < nva_start_addr ||
779 nva_start_addr < vstart)
782 return (nva_start_addr + size <= va->va_end);
786 * Find the first free block(lowest start address) in the tree,
787 * that will accomplish the request corresponding to passing
790 static __always_inline struct vmap_area *
791 find_vmap_lowest_match(unsigned long size,
792 unsigned long align, unsigned long vstart)
794 struct vmap_area *va;
795 struct rb_node *node;
796 unsigned long length;
798 /* Start from the root. */
799 node = free_vmap_area_root.rb_node;
801 /* Adjust the search size for alignment overhead. */
802 length = size + align - 1;
805 va = rb_entry(node, struct vmap_area, rb_node);
807 if (get_subtree_max_size(node->rb_left) >= length &&
808 vstart < va->va_start) {
809 node = node->rb_left;
811 if (is_within_this_va(va, size, align, vstart))
815 * Does not make sense to go deeper towards the right
816 * sub-tree if it does not have a free block that is
817 * equal or bigger to the requested search length.
819 if (get_subtree_max_size(node->rb_right) >= length) {
820 node = node->rb_right;
825 * OK. We roll back and find the first right sub-tree,
826 * that will satisfy the search criteria. It can happen
827 * only once due to "vstart" restriction.
829 while ((node = rb_parent(node))) {
830 va = rb_entry(node, struct vmap_area, rb_node);
831 if (is_within_this_va(va, size, align, vstart))
834 if (get_subtree_max_size(node->rb_right) >= length &&
835 vstart <= va->va_start) {
836 node = node->rb_right;
846 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
847 #include <linux/random.h>
849 static struct vmap_area *
850 find_vmap_lowest_linear_match(unsigned long size,
851 unsigned long align, unsigned long vstart)
853 struct vmap_area *va;
855 list_for_each_entry(va, &free_vmap_area_list, list) {
856 if (!is_within_this_va(va, size, align, vstart))
866 find_vmap_lowest_match_check(unsigned long size)
868 struct vmap_area *va_1, *va_2;
869 unsigned long vstart;
872 get_random_bytes(&rnd, sizeof(rnd));
873 vstart = VMALLOC_START + rnd;
875 va_1 = find_vmap_lowest_match(size, 1, vstart);
876 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
879 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
886 FL_FIT_TYPE = 1, /* full fit */
887 LE_FIT_TYPE = 2, /* left edge fit */
888 RE_FIT_TYPE = 3, /* right edge fit */
889 NE_FIT_TYPE = 4 /* no edge fit */
892 static __always_inline enum fit_type
893 classify_va_fit_type(struct vmap_area *va,
894 unsigned long nva_start_addr, unsigned long size)
898 /* Check if it is within VA. */
899 if (nva_start_addr < va->va_start ||
900 nva_start_addr + size > va->va_end)
904 if (va->va_start == nva_start_addr) {
905 if (va->va_end == nva_start_addr + size)
909 } else if (va->va_end == nva_start_addr + size) {
918 static __always_inline int
919 adjust_va_to_fit_type(struct vmap_area *va,
920 unsigned long nva_start_addr, unsigned long size,
923 struct vmap_area *lva = NULL;
925 if (type == FL_FIT_TYPE) {
927 * No need to split VA, it fully fits.
933 unlink_va(va, &free_vmap_area_root);
934 kmem_cache_free(vmap_area_cachep, va);
935 } else if (type == LE_FIT_TYPE) {
937 * Split left edge of fit VA.
943 va->va_start += size;
944 } else if (type == RE_FIT_TYPE) {
946 * Split right edge of fit VA.
952 va->va_end = nva_start_addr;
953 } else if (type == NE_FIT_TYPE) {
955 * Split no edge of fit VA.
961 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
962 if (unlikely(!lva)) {
964 * For percpu allocator we do not do any pre-allocation
965 * and leave it as it is. The reason is it most likely
966 * never ends up with NE_FIT_TYPE splitting. In case of
967 * percpu allocations offsets and sizes are aligned to
968 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
969 * are its main fitting cases.
971 * There are a few exceptions though, as an example it is
972 * a first allocation (early boot up) when we have "one"
973 * big free space that has to be split.
975 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
981 * Build the remainder.
983 lva->va_start = va->va_start;
984 lva->va_end = nva_start_addr;
987 * Shrink this VA to remaining size.
989 va->va_start = nva_start_addr + size;
994 if (type != FL_FIT_TYPE) {
995 augment_tree_propagate_from(va);
997 if (lva) /* type == NE_FIT_TYPE */
998 insert_vmap_area_augment(lva, &va->rb_node,
999 &free_vmap_area_root, &free_vmap_area_list);
1006 * Returns a start address of the newly allocated area, if success.
1007 * Otherwise a vend is returned that indicates failure.
1009 static __always_inline unsigned long
1010 __alloc_vmap_area(unsigned long size, unsigned long align,
1011 unsigned long vstart, unsigned long vend)
1013 unsigned long nva_start_addr;
1014 struct vmap_area *va;
1018 va = find_vmap_lowest_match(size, align, vstart);
1022 if (va->va_start > vstart)
1023 nva_start_addr = ALIGN(va->va_start, align);
1025 nva_start_addr = ALIGN(vstart, align);
1027 /* Check the "vend" restriction. */
1028 if (nva_start_addr + size > vend)
1031 /* Classify what we have found. */
1032 type = classify_va_fit_type(va, nva_start_addr, size);
1033 if (WARN_ON_ONCE(type == NOTHING_FIT))
1036 /* Update the free vmap_area. */
1037 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1041 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1042 find_vmap_lowest_match_check(size);
1045 return nva_start_addr;
1049 * Allocate a region of KVA of the specified size and alignment, within the
1052 static struct vmap_area *alloc_vmap_area(unsigned long size,
1053 unsigned long align,
1054 unsigned long vstart, unsigned long vend,
1055 int node, gfp_t gfp_mask)
1057 struct vmap_area *va, *pva;
1062 BUG_ON(offset_in_page(size));
1063 BUG_ON(!is_power_of_2(align));
1065 if (unlikely(!vmap_initialized))
1066 return ERR_PTR(-EBUSY);
1070 va = kmem_cache_alloc_node(vmap_area_cachep,
1071 gfp_mask & GFP_RECLAIM_MASK, node);
1073 return ERR_PTR(-ENOMEM);
1076 * Only scan the relevant parts containing pointers to other objects
1077 * to avoid false negatives.
1079 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1083 * Preload this CPU with one extra vmap_area object to ensure
1084 * that we have it available when fit type of free area is
1087 * The preload is done in non-atomic context, thus it allows us
1088 * to use more permissive allocation masks to be more stable under
1089 * low memory condition and high memory pressure.
1091 * Even if it fails we do not really care about that. Just proceed
1092 * as it is. "overflow" path will refill the cache we allocate from.
1095 if (!__this_cpu_read(ne_fit_preload_node)) {
1097 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1100 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1102 kmem_cache_free(vmap_area_cachep, pva);
1106 spin_lock(&vmap_area_lock);
1110 * If an allocation fails, the "vend" address is
1111 * returned. Therefore trigger the overflow path.
1113 addr = __alloc_vmap_area(size, align, vstart, vend);
1114 if (unlikely(addr == vend))
1117 va->va_start = addr;
1118 va->va_end = addr + size;
1120 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1122 spin_unlock(&vmap_area_lock);
1124 BUG_ON(!IS_ALIGNED(va->va_start, align));
1125 BUG_ON(va->va_start < vstart);
1126 BUG_ON(va->va_end > vend);
1131 spin_unlock(&vmap_area_lock);
1133 purge_vmap_area_lazy();
1138 if (gfpflags_allow_blocking(gfp_mask)) {
1139 unsigned long freed = 0;
1140 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1147 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1148 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1151 kmem_cache_free(vmap_area_cachep, va);
1152 return ERR_PTR(-EBUSY);
1155 int register_vmap_purge_notifier(struct notifier_block *nb)
1157 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1159 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1161 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1163 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1165 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1167 static void __free_vmap_area(struct vmap_area *va)
1170 * Remove from the busy tree/list.
1172 unlink_va(va, &vmap_area_root);
1175 * Merge VA with its neighbors, otherwise just add it.
1177 merge_or_add_vmap_area(va,
1178 &free_vmap_area_root, &free_vmap_area_list);
1182 * Free a region of KVA allocated by alloc_vmap_area
1184 static void free_vmap_area(struct vmap_area *va)
1186 spin_lock(&vmap_area_lock);
1187 __free_vmap_area(va);
1188 spin_unlock(&vmap_area_lock);
1192 * Clear the pagetable entries of a given vmap_area
1194 static void unmap_vmap_area(struct vmap_area *va)
1196 vunmap_page_range(va->va_start, va->va_end);
1200 * lazy_max_pages is the maximum amount of virtual address space we gather up
1201 * before attempting to purge with a TLB flush.
1203 * There is a tradeoff here: a larger number will cover more kernel page tables
1204 * and take slightly longer to purge, but it will linearly reduce the number of
1205 * global TLB flushes that must be performed. It would seem natural to scale
1206 * this number up linearly with the number of CPUs (because vmapping activity
1207 * could also scale linearly with the number of CPUs), however it is likely
1208 * that in practice, workloads might be constrained in other ways that mean
1209 * vmap activity will not scale linearly with CPUs. Also, I want to be
1210 * conservative and not introduce a big latency on huge systems, so go with
1211 * a less aggressive log scale. It will still be an improvement over the old
1212 * code, and it will be simple to change the scale factor if we find that it
1213 * becomes a problem on bigger systems.
1215 static unsigned long lazy_max_pages(void)
1219 log = fls(num_online_cpus());
1221 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1224 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1227 * Serialize vmap purging. There is no actual criticial section protected
1228 * by this look, but we want to avoid concurrent calls for performance
1229 * reasons and to make the pcpu_get_vm_areas more deterministic.
1231 static DEFINE_MUTEX(vmap_purge_lock);
1233 /* for per-CPU blocks */
1234 static void purge_fragmented_blocks_allcpus(void);
1237 * called before a call to iounmap() if the caller wants vm_area_struct's
1238 * immediately freed.
1240 void set_iounmap_nonlazy(void)
1242 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1246 * Purges all lazily-freed vmap areas.
1248 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1250 unsigned long resched_threshold;
1251 struct llist_node *valist;
1252 struct vmap_area *va;
1253 struct vmap_area *n_va;
1255 lockdep_assert_held(&vmap_purge_lock);
1257 valist = llist_del_all(&vmap_purge_list);
1258 if (unlikely(valist == NULL))
1262 * TODO: to calculate a flush range without looping.
1263 * The list can be up to lazy_max_pages() elements.
1265 llist_for_each_entry(va, valist, purge_list) {
1266 if (va->va_start < start)
1267 start = va->va_start;
1268 if (va->va_end > end)
1272 flush_tlb_kernel_range(start, end);
1273 resched_threshold = lazy_max_pages() << 1;
1275 spin_lock(&vmap_area_lock);
1276 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1277 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1279 __free_vmap_area(va);
1280 atomic_long_sub(nr, &vmap_lazy_nr);
1282 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1283 cond_resched_lock(&vmap_area_lock);
1285 spin_unlock(&vmap_area_lock);
1290 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1291 * is already purging.
1293 static void try_purge_vmap_area_lazy(void)
1295 if (mutex_trylock(&vmap_purge_lock)) {
1296 __purge_vmap_area_lazy(ULONG_MAX, 0);
1297 mutex_unlock(&vmap_purge_lock);
1302 * Kick off a purge of the outstanding lazy areas.
1304 static void purge_vmap_area_lazy(void)
1306 mutex_lock(&vmap_purge_lock);
1307 purge_fragmented_blocks_allcpus();
1308 __purge_vmap_area_lazy(ULONG_MAX, 0);
1309 mutex_unlock(&vmap_purge_lock);
1313 * Free a vmap area, caller ensuring that the area has been unmapped
1314 * and flush_cache_vunmap had been called for the correct range
1317 static void free_vmap_area_noflush(struct vmap_area *va)
1319 unsigned long nr_lazy;
1321 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1322 PAGE_SHIFT, &vmap_lazy_nr);
1324 /* After this point, we may free va at any time */
1325 llist_add(&va->purge_list, &vmap_purge_list);
1327 if (unlikely(nr_lazy > lazy_max_pages()))
1328 try_purge_vmap_area_lazy();
1332 * Free and unmap a vmap area
1334 static void free_unmap_vmap_area(struct vmap_area *va)
1336 flush_cache_vunmap(va->va_start, va->va_end);
1337 unmap_vmap_area(va);
1338 if (debug_pagealloc_enabled())
1339 flush_tlb_kernel_range(va->va_start, va->va_end);
1341 free_vmap_area_noflush(va);
1344 static struct vmap_area *find_vmap_area(unsigned long addr)
1346 struct vmap_area *va;
1348 spin_lock(&vmap_area_lock);
1349 va = __find_vmap_area(addr);
1350 spin_unlock(&vmap_area_lock);
1355 /*** Per cpu kva allocator ***/
1358 * vmap space is limited especially on 32 bit architectures. Ensure there is
1359 * room for at least 16 percpu vmap blocks per CPU.
1362 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1363 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1364 * instead (we just need a rough idea)
1366 #if BITS_PER_LONG == 32
1367 #define VMALLOC_SPACE (128UL*1024*1024)
1369 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1372 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1373 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1374 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1375 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1376 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1377 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1378 #define VMAP_BBMAP_BITS \
1379 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1380 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1381 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1383 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1385 struct vmap_block_queue {
1387 struct list_head free;
1392 struct vmap_area *va;
1393 unsigned long free, dirty;
1394 unsigned long dirty_min, dirty_max; /*< dirty range */
1395 struct list_head free_list;
1396 struct rcu_head rcu_head;
1397 struct list_head purge;
1400 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1401 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1404 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1405 * in the free path. Could get rid of this if we change the API to return a
1406 * "cookie" from alloc, to be passed to free. But no big deal yet.
1408 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1409 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1412 * We should probably have a fallback mechanism to allocate virtual memory
1413 * out of partially filled vmap blocks. However vmap block sizing should be
1414 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1418 static unsigned long addr_to_vb_idx(unsigned long addr)
1420 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1421 addr /= VMAP_BLOCK_SIZE;
1425 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1429 addr = va_start + (pages_off << PAGE_SHIFT);
1430 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1431 return (void *)addr;
1435 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1436 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1437 * @order: how many 2^order pages should be occupied in newly allocated block
1438 * @gfp_mask: flags for the page level allocator
1440 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1442 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1444 struct vmap_block_queue *vbq;
1445 struct vmap_block *vb;
1446 struct vmap_area *va;
1447 unsigned long vb_idx;
1451 node = numa_node_id();
1453 vb = kmalloc_node(sizeof(struct vmap_block),
1454 gfp_mask & GFP_RECLAIM_MASK, node);
1456 return ERR_PTR(-ENOMEM);
1458 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1459 VMALLOC_START, VMALLOC_END,
1463 return ERR_CAST(va);
1466 err = radix_tree_preload(gfp_mask);
1467 if (unlikely(err)) {
1470 return ERR_PTR(err);
1473 vaddr = vmap_block_vaddr(va->va_start, 0);
1474 spin_lock_init(&vb->lock);
1476 /* At least something should be left free */
1477 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1478 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1480 vb->dirty_min = VMAP_BBMAP_BITS;
1482 INIT_LIST_HEAD(&vb->free_list);
1484 vb_idx = addr_to_vb_idx(va->va_start);
1485 spin_lock(&vmap_block_tree_lock);
1486 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1487 spin_unlock(&vmap_block_tree_lock);
1489 radix_tree_preload_end();
1491 vbq = &get_cpu_var(vmap_block_queue);
1492 spin_lock(&vbq->lock);
1493 list_add_tail_rcu(&vb->free_list, &vbq->free);
1494 spin_unlock(&vbq->lock);
1495 put_cpu_var(vmap_block_queue);
1500 static void free_vmap_block(struct vmap_block *vb)
1502 struct vmap_block *tmp;
1503 unsigned long vb_idx;
1505 vb_idx = addr_to_vb_idx(vb->va->va_start);
1506 spin_lock(&vmap_block_tree_lock);
1507 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1508 spin_unlock(&vmap_block_tree_lock);
1511 free_vmap_area_noflush(vb->va);
1512 kfree_rcu(vb, rcu_head);
1515 static void purge_fragmented_blocks(int cpu)
1518 struct vmap_block *vb;
1519 struct vmap_block *n_vb;
1520 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1523 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1525 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1528 spin_lock(&vb->lock);
1529 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1530 vb->free = 0; /* prevent further allocs after releasing lock */
1531 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1533 vb->dirty_max = VMAP_BBMAP_BITS;
1534 spin_lock(&vbq->lock);
1535 list_del_rcu(&vb->free_list);
1536 spin_unlock(&vbq->lock);
1537 spin_unlock(&vb->lock);
1538 list_add_tail(&vb->purge, &purge);
1540 spin_unlock(&vb->lock);
1544 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1545 list_del(&vb->purge);
1546 free_vmap_block(vb);
1550 static void purge_fragmented_blocks_allcpus(void)
1554 for_each_possible_cpu(cpu)
1555 purge_fragmented_blocks(cpu);
1558 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1560 struct vmap_block_queue *vbq;
1561 struct vmap_block *vb;
1565 BUG_ON(offset_in_page(size));
1566 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1567 if (WARN_ON(size == 0)) {
1569 * Allocating 0 bytes isn't what caller wants since
1570 * get_order(0) returns funny result. Just warn and terminate
1575 order = get_order(size);
1578 vbq = &get_cpu_var(vmap_block_queue);
1579 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1580 unsigned long pages_off;
1582 spin_lock(&vb->lock);
1583 if (vb->free < (1UL << order)) {
1584 spin_unlock(&vb->lock);
1588 pages_off = VMAP_BBMAP_BITS - vb->free;
1589 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1590 vb->free -= 1UL << order;
1591 if (vb->free == 0) {
1592 spin_lock(&vbq->lock);
1593 list_del_rcu(&vb->free_list);
1594 spin_unlock(&vbq->lock);
1597 spin_unlock(&vb->lock);
1601 put_cpu_var(vmap_block_queue);
1604 /* Allocate new block if nothing was found */
1606 vaddr = new_vmap_block(order, gfp_mask);
1611 static void vb_free(const void *addr, unsigned long size)
1613 unsigned long offset;
1614 unsigned long vb_idx;
1616 struct vmap_block *vb;
1618 BUG_ON(offset_in_page(size));
1619 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1621 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1623 order = get_order(size);
1625 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1626 offset >>= PAGE_SHIFT;
1628 vb_idx = addr_to_vb_idx((unsigned long)addr);
1630 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1634 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1636 if (debug_pagealloc_enabled())
1637 flush_tlb_kernel_range((unsigned long)addr,
1638 (unsigned long)addr + size);
1640 spin_lock(&vb->lock);
1642 /* Expand dirty range */
1643 vb->dirty_min = min(vb->dirty_min, offset);
1644 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1646 vb->dirty += 1UL << order;
1647 if (vb->dirty == VMAP_BBMAP_BITS) {
1649 spin_unlock(&vb->lock);
1650 free_vmap_block(vb);
1652 spin_unlock(&vb->lock);
1655 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1659 if (unlikely(!vmap_initialized))
1664 for_each_possible_cpu(cpu) {
1665 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1666 struct vmap_block *vb;
1669 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1670 spin_lock(&vb->lock);
1672 unsigned long va_start = vb->va->va_start;
1675 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1676 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1678 start = min(s, start);
1683 spin_unlock(&vb->lock);
1688 mutex_lock(&vmap_purge_lock);
1689 purge_fragmented_blocks_allcpus();
1690 if (!__purge_vmap_area_lazy(start, end) && flush)
1691 flush_tlb_kernel_range(start, end);
1692 mutex_unlock(&vmap_purge_lock);
1696 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1698 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1699 * to amortize TLB flushing overheads. What this means is that any page you
1700 * have now, may, in a former life, have been mapped into kernel virtual
1701 * address by the vmap layer and so there might be some CPUs with TLB entries
1702 * still referencing that page (additional to the regular 1:1 kernel mapping).
1704 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1705 * be sure that none of the pages we have control over will have any aliases
1706 * from the vmap layer.
1708 void vm_unmap_aliases(void)
1710 unsigned long start = ULONG_MAX, end = 0;
1713 _vm_unmap_aliases(start, end, flush);
1715 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1718 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1719 * @mem: the pointer returned by vm_map_ram
1720 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1722 void vm_unmap_ram(const void *mem, unsigned int count)
1724 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1725 unsigned long addr = (unsigned long)mem;
1726 struct vmap_area *va;
1730 BUG_ON(addr < VMALLOC_START);
1731 BUG_ON(addr > VMALLOC_END);
1732 BUG_ON(!PAGE_ALIGNED(addr));
1734 if (likely(count <= VMAP_MAX_ALLOC)) {
1735 debug_check_no_locks_freed(mem, size);
1740 va = find_vmap_area(addr);
1742 debug_check_no_locks_freed((void *)va->va_start,
1743 (va->va_end - va->va_start));
1744 free_unmap_vmap_area(va);
1746 EXPORT_SYMBOL(vm_unmap_ram);
1749 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1750 * @pages: an array of pointers to the pages to be mapped
1751 * @count: number of pages
1752 * @node: prefer to allocate data structures on this node
1753 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1755 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1756 * faster than vmap so it's good. But if you mix long-life and short-life
1757 * objects with vm_map_ram(), it could consume lots of address space through
1758 * fragmentation (especially on a 32bit machine). You could see failures in
1759 * the end. Please use this function for short-lived objects.
1761 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1763 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1765 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1769 if (likely(count <= VMAP_MAX_ALLOC)) {
1770 mem = vb_alloc(size, GFP_KERNEL);
1773 addr = (unsigned long)mem;
1775 struct vmap_area *va;
1776 va = alloc_vmap_area(size, PAGE_SIZE,
1777 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1781 addr = va->va_start;
1784 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1785 vm_unmap_ram(mem, count);
1790 EXPORT_SYMBOL(vm_map_ram);
1792 static struct vm_struct *vmlist __initdata;
1795 * vm_area_add_early - add vmap area early during boot
1796 * @vm: vm_struct to add
1798 * This function is used to add fixed kernel vm area to vmlist before
1799 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1800 * should contain proper values and the other fields should be zero.
1802 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1804 void __init vm_area_add_early(struct vm_struct *vm)
1806 struct vm_struct *tmp, **p;
1808 BUG_ON(vmap_initialized);
1809 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1810 if (tmp->addr >= vm->addr) {
1811 BUG_ON(tmp->addr < vm->addr + vm->size);
1814 BUG_ON(tmp->addr + tmp->size > vm->addr);
1821 * vm_area_register_early - register vmap area early during boot
1822 * @vm: vm_struct to register
1823 * @align: requested alignment
1825 * This function is used to register kernel vm area before
1826 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1827 * proper values on entry and other fields should be zero. On return,
1828 * vm->addr contains the allocated address.
1830 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1832 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1834 static size_t vm_init_off __initdata;
1837 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1838 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1840 vm->addr = (void *)addr;
1842 vm_area_add_early(vm);
1845 static void vmap_init_free_space(void)
1847 unsigned long vmap_start = 1;
1848 const unsigned long vmap_end = ULONG_MAX;
1849 struct vmap_area *busy, *free;
1853 * -|-----|.....|-----|-----|-----|.....|-
1855 * |<--------------------------------->|
1857 list_for_each_entry(busy, &vmap_area_list, list) {
1858 if (busy->va_start - vmap_start > 0) {
1859 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1860 if (!WARN_ON_ONCE(!free)) {
1861 free->va_start = vmap_start;
1862 free->va_end = busy->va_start;
1864 insert_vmap_area_augment(free, NULL,
1865 &free_vmap_area_root,
1866 &free_vmap_area_list);
1870 vmap_start = busy->va_end;
1873 if (vmap_end - vmap_start > 0) {
1874 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1875 if (!WARN_ON_ONCE(!free)) {
1876 free->va_start = vmap_start;
1877 free->va_end = vmap_end;
1879 insert_vmap_area_augment(free, NULL,
1880 &free_vmap_area_root,
1881 &free_vmap_area_list);
1886 void __init vmalloc_init(void)
1888 struct vmap_area *va;
1889 struct vm_struct *tmp;
1893 * Create the cache for vmap_area objects.
1895 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1897 for_each_possible_cpu(i) {
1898 struct vmap_block_queue *vbq;
1899 struct vfree_deferred *p;
1901 vbq = &per_cpu(vmap_block_queue, i);
1902 spin_lock_init(&vbq->lock);
1903 INIT_LIST_HEAD(&vbq->free);
1904 p = &per_cpu(vfree_deferred, i);
1905 init_llist_head(&p->list);
1906 INIT_WORK(&p->wq, free_work);
1909 /* Import existing vmlist entries. */
1910 for (tmp = vmlist; tmp; tmp = tmp->next) {
1911 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1912 if (WARN_ON_ONCE(!va))
1915 va->flags = VM_VM_AREA;
1916 va->va_start = (unsigned long)tmp->addr;
1917 va->va_end = va->va_start + tmp->size;
1919 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1923 * Now we can initialize a free vmap space.
1925 vmap_init_free_space();
1926 vmap_initialized = true;
1930 * map_kernel_range_noflush - map kernel VM area with the specified pages
1931 * @addr: start of the VM area to map
1932 * @size: size of the VM area to map
1933 * @prot: page protection flags to use
1934 * @pages: pages to map
1936 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1937 * specify should have been allocated using get_vm_area() and its
1941 * This function does NOT do any cache flushing. The caller is
1942 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1943 * before calling this function.
1946 * The number of pages mapped on success, -errno on failure.
1948 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1949 pgprot_t prot, struct page **pages)
1951 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1955 * unmap_kernel_range_noflush - unmap kernel VM area
1956 * @addr: start of the VM area to unmap
1957 * @size: size of the VM area to unmap
1959 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1960 * specify should have been allocated using get_vm_area() and its
1964 * This function does NOT do any cache flushing. The caller is
1965 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1966 * before calling this function and flush_tlb_kernel_range() after.
1968 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1970 vunmap_page_range(addr, addr + size);
1972 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1975 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1976 * @addr: start of the VM area to unmap
1977 * @size: size of the VM area to unmap
1979 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1980 * the unmapping and tlb after.
1982 void unmap_kernel_range(unsigned long addr, unsigned long size)
1984 unsigned long end = addr + size;
1986 flush_cache_vunmap(addr, end);
1987 vunmap_page_range(addr, end);
1988 flush_tlb_kernel_range(addr, end);
1990 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1992 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1994 unsigned long addr = (unsigned long)area->addr;
1995 unsigned long end = addr + get_vm_area_size(area);
1998 err = vmap_page_range(addr, end, prot, pages);
2000 return err > 0 ? 0 : err;
2002 EXPORT_SYMBOL_GPL(map_vm_area);
2004 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2005 unsigned long flags, const void *caller)
2007 spin_lock(&vmap_area_lock);
2009 vm->addr = (void *)va->va_start;
2010 vm->size = va->va_end - va->va_start;
2011 vm->caller = caller;
2013 va->flags |= VM_VM_AREA;
2014 spin_unlock(&vmap_area_lock);
2017 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2020 * Before removing VM_UNINITIALIZED,
2021 * we should make sure that vm has proper values.
2022 * Pair with smp_rmb() in show_numa_info().
2025 vm->flags &= ~VM_UNINITIALIZED;
2028 static struct vm_struct *__get_vm_area_node(unsigned long size,
2029 unsigned long align, unsigned long flags, unsigned long start,
2030 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2032 struct vmap_area *va;
2033 struct vm_struct *area;
2035 BUG_ON(in_interrupt());
2036 size = PAGE_ALIGN(size);
2037 if (unlikely(!size))
2040 if (flags & VM_IOREMAP)
2041 align = 1ul << clamp_t(int, get_count_order_long(size),
2042 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2044 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2045 if (unlikely(!area))
2048 if (!(flags & VM_NO_GUARD))
2051 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2057 setup_vmalloc_vm(area, va, flags, caller);
2062 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2063 unsigned long start, unsigned long end)
2065 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2066 GFP_KERNEL, __builtin_return_address(0));
2068 EXPORT_SYMBOL_GPL(__get_vm_area);
2070 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2071 unsigned long start, unsigned long end,
2074 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2075 GFP_KERNEL, caller);
2079 * get_vm_area - reserve a contiguous kernel virtual area
2080 * @size: size of the area
2081 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2083 * Search an area of @size in the kernel virtual mapping area,
2084 * and reserved it for out purposes. Returns the area descriptor
2085 * on success or %NULL on failure.
2087 * Return: the area descriptor on success or %NULL on failure.
2089 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2091 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2092 NUMA_NO_NODE, GFP_KERNEL,
2093 __builtin_return_address(0));
2096 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2099 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2100 NUMA_NO_NODE, GFP_KERNEL, caller);
2104 * find_vm_area - find a continuous kernel virtual area
2105 * @addr: base address
2107 * Search for the kernel VM area starting at @addr, and return it.
2108 * It is up to the caller to do all required locking to keep the returned
2111 * Return: pointer to the found area or %NULL on faulure
2113 struct vm_struct *find_vm_area(const void *addr)
2115 struct vmap_area *va;
2117 va = find_vmap_area((unsigned long)addr);
2118 if (va && va->flags & VM_VM_AREA)
2125 * remove_vm_area - find and remove a continuous kernel virtual area
2126 * @addr: base address
2128 * Search for the kernel VM area starting at @addr, and remove it.
2129 * This function returns the found VM area, but using it is NOT safe
2130 * on SMP machines, except for its size or flags.
2132 * Return: pointer to the found area or %NULL on faulure
2134 struct vm_struct *remove_vm_area(const void *addr)
2136 struct vmap_area *va;
2140 va = find_vmap_area((unsigned long)addr);
2141 if (va && va->flags & VM_VM_AREA) {
2142 struct vm_struct *vm = va->vm;
2144 spin_lock(&vmap_area_lock);
2146 va->flags &= ~VM_VM_AREA;
2147 va->flags |= VM_LAZY_FREE;
2148 spin_unlock(&vmap_area_lock);
2150 kasan_free_shadow(vm);
2151 free_unmap_vmap_area(va);
2158 static inline void set_area_direct_map(const struct vm_struct *area,
2159 int (*set_direct_map)(struct page *page))
2163 for (i = 0; i < area->nr_pages; i++)
2164 if (page_address(area->pages[i]))
2165 set_direct_map(area->pages[i]);
2168 /* Handle removing and resetting vm mappings related to the vm_struct. */
2169 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2171 unsigned long start = ULONG_MAX, end = 0;
2172 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2176 remove_vm_area(area->addr);
2178 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2183 * If not deallocating pages, just do the flush of the VM area and
2186 if (!deallocate_pages) {
2192 * If execution gets here, flush the vm mapping and reset the direct
2193 * map. Find the start and end range of the direct mappings to make sure
2194 * the vm_unmap_aliases() flush includes the direct map.
2196 for (i = 0; i < area->nr_pages; i++) {
2197 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2199 start = min(addr, start);
2200 end = max(addr + PAGE_SIZE, end);
2206 * Set direct map to something invalid so that it won't be cached if
2207 * there are any accesses after the TLB flush, then flush the TLB and
2208 * reset the direct map permissions to the default.
2210 set_area_direct_map(area, set_direct_map_invalid_noflush);
2211 _vm_unmap_aliases(start, end, flush_dmap);
2212 set_area_direct_map(area, set_direct_map_default_noflush);
2215 static void __vunmap(const void *addr, int deallocate_pages)
2217 struct vm_struct *area;
2222 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2226 area = find_vm_area(addr);
2227 if (unlikely(!area)) {
2228 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2233 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2234 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2236 vm_remove_mappings(area, deallocate_pages);
2238 if (deallocate_pages) {
2241 for (i = 0; i < area->nr_pages; i++) {
2242 struct page *page = area->pages[i];
2245 __free_pages(page, 0);
2247 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2249 kvfree(area->pages);
2256 static inline void __vfree_deferred(const void *addr)
2259 * Use raw_cpu_ptr() because this can be called from preemptible
2260 * context. Preemption is absolutely fine here, because the llist_add()
2261 * implementation is lockless, so it works even if we are adding to
2262 * nother cpu's list. schedule_work() should be fine with this too.
2264 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2266 if (llist_add((struct llist_node *)addr, &p->list))
2267 schedule_work(&p->wq);
2271 * vfree_atomic - release memory allocated by vmalloc()
2272 * @addr: memory base address
2274 * This one is just like vfree() but can be called in any atomic context
2277 void vfree_atomic(const void *addr)
2281 kmemleak_free(addr);
2285 __vfree_deferred(addr);
2288 static void __vfree(const void *addr)
2290 if (unlikely(in_interrupt()))
2291 __vfree_deferred(addr);
2297 * vfree - release memory allocated by vmalloc()
2298 * @addr: memory base address
2300 * Free the virtually continuous memory area starting at @addr, as
2301 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2302 * NULL, no operation is performed.
2304 * Must not be called in NMI context (strictly speaking, only if we don't
2305 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2306 * conventions for vfree() arch-depenedent would be a really bad idea)
2308 * May sleep if called *not* from interrupt context.
2310 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2312 void vfree(const void *addr)
2316 kmemleak_free(addr);
2318 might_sleep_if(!in_interrupt());
2325 EXPORT_SYMBOL(vfree);
2328 * vunmap - release virtual mapping obtained by vmap()
2329 * @addr: memory base address
2331 * Free the virtually contiguous memory area starting at @addr,
2332 * which was created from the page array passed to vmap().
2334 * Must not be called in interrupt context.
2336 void vunmap(const void *addr)
2338 BUG_ON(in_interrupt());
2343 EXPORT_SYMBOL(vunmap);
2346 * vmap - map an array of pages into virtually contiguous space
2347 * @pages: array of page pointers
2348 * @count: number of pages to map
2349 * @flags: vm_area->flags
2350 * @prot: page protection for the mapping
2352 * Maps @count pages from @pages into contiguous kernel virtual
2355 * Return: the address of the area or %NULL on failure
2357 void *vmap(struct page **pages, unsigned int count,
2358 unsigned long flags, pgprot_t prot)
2360 struct vm_struct *area;
2361 unsigned long size; /* In bytes */
2365 if (count > totalram_pages())
2368 size = (unsigned long)count << PAGE_SHIFT;
2369 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2373 if (map_vm_area(area, prot, pages)) {
2380 EXPORT_SYMBOL(vmap);
2382 static void *__vmalloc_node(unsigned long size, unsigned long align,
2383 gfp_t gfp_mask, pgprot_t prot,
2384 int node, const void *caller);
2385 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2386 pgprot_t prot, int node)
2388 struct page **pages;
2389 unsigned int nr_pages, array_size, i;
2390 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2391 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2392 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2396 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2397 array_size = (nr_pages * sizeof(struct page *));
2399 area->nr_pages = nr_pages;
2400 /* Please note that the recursion is strictly bounded. */
2401 if (array_size > PAGE_SIZE) {
2402 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2403 PAGE_KERNEL, node, area->caller);
2405 pages = kmalloc_node(array_size, nested_gfp, node);
2407 area->pages = pages;
2409 remove_vm_area(area->addr);
2414 for (i = 0; i < area->nr_pages; i++) {
2417 if (node == NUMA_NO_NODE)
2418 page = alloc_page(alloc_mask|highmem_mask);
2420 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2422 if (unlikely(!page)) {
2423 /* Successfully allocated i pages, free them in __vunmap() */
2425 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2428 area->pages[i] = page;
2429 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2432 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2434 if (map_vm_area(area, prot, pages))
2439 warn_alloc(gfp_mask, NULL,
2440 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2441 (area->nr_pages*PAGE_SIZE), area->size);
2442 __vfree(area->addr);
2447 * __vmalloc_node_range - allocate virtually contiguous memory
2448 * @size: allocation size
2449 * @align: desired alignment
2450 * @start: vm area range start
2451 * @end: vm area range end
2452 * @gfp_mask: flags for the page level allocator
2453 * @prot: protection mask for the allocated pages
2454 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2455 * @node: node to use for allocation or NUMA_NO_NODE
2456 * @caller: caller's return address
2458 * Allocate enough pages to cover @size from the page level
2459 * allocator with @gfp_mask flags. Map them into contiguous
2460 * kernel virtual space, using a pagetable protection of @prot.
2462 * Return: the address of the area or %NULL on failure
2464 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2465 unsigned long start, unsigned long end, gfp_t gfp_mask,
2466 pgprot_t prot, unsigned long vm_flags, int node,
2469 struct vm_struct *area;
2471 unsigned long real_size = size;
2473 size = PAGE_ALIGN(size);
2474 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2477 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2478 vm_flags, start, end, node, gfp_mask, caller);
2482 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2487 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2488 * flag. It means that vm_struct is not fully initialized.
2489 * Now, it is fully initialized, so remove this flag here.
2491 clear_vm_uninitialized_flag(area);
2493 kmemleak_vmalloc(area, size, gfp_mask);
2498 warn_alloc(gfp_mask, NULL,
2499 "vmalloc: allocation failure: %lu bytes", real_size);
2504 * This is only for performance analysis of vmalloc and stress purpose.
2505 * It is required by vmalloc test module, therefore do not use it other
2508 #ifdef CONFIG_TEST_VMALLOC_MODULE
2509 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2513 * __vmalloc_node - allocate virtually contiguous memory
2514 * @size: allocation size
2515 * @align: desired alignment
2516 * @gfp_mask: flags for the page level allocator
2517 * @prot: protection mask for the allocated pages
2518 * @node: node to use for allocation or NUMA_NO_NODE
2519 * @caller: caller's return address
2521 * Allocate enough pages to cover @size from the page level
2522 * allocator with @gfp_mask flags. Map them into contiguous
2523 * kernel virtual space, using a pagetable protection of @prot.
2525 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2526 * and __GFP_NOFAIL are not supported
2528 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2531 * Return: pointer to the allocated memory or %NULL on error
2533 static void *__vmalloc_node(unsigned long size, unsigned long align,
2534 gfp_t gfp_mask, pgprot_t prot,
2535 int node, const void *caller)
2537 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2538 gfp_mask, prot, 0, node, caller);
2541 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2543 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2544 __builtin_return_address(0));
2546 EXPORT_SYMBOL(__vmalloc);
2548 static inline void *__vmalloc_node_flags(unsigned long size,
2549 int node, gfp_t flags)
2551 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2552 node, __builtin_return_address(0));
2556 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2559 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2563 * vmalloc - allocate virtually contiguous memory
2564 * @size: allocation size
2566 * Allocate enough pages to cover @size from the page level
2567 * allocator and map them into contiguous kernel virtual space.
2569 * For tight control over page level allocator and protection flags
2570 * use __vmalloc() instead.
2572 * Return: pointer to the allocated memory or %NULL on error
2574 void *vmalloc(unsigned long size)
2576 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2579 EXPORT_SYMBOL(vmalloc);
2582 * vzalloc - allocate virtually contiguous memory with zero fill
2583 * @size: allocation size
2585 * Allocate enough pages to cover @size from the page level
2586 * allocator and map them into contiguous kernel virtual space.
2587 * The memory allocated is set to zero.
2589 * For tight control over page level allocator and protection flags
2590 * use __vmalloc() instead.
2592 * Return: pointer to the allocated memory or %NULL on error
2594 void *vzalloc(unsigned long size)
2596 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2597 GFP_KERNEL | __GFP_ZERO);
2599 EXPORT_SYMBOL(vzalloc);
2602 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2603 * @size: allocation size
2605 * The resulting memory area is zeroed so it can be mapped to userspace
2606 * without leaking data.
2608 * Return: pointer to the allocated memory or %NULL on error
2610 void *vmalloc_user(unsigned long size)
2612 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2613 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2614 VM_USERMAP, NUMA_NO_NODE,
2615 __builtin_return_address(0));
2617 EXPORT_SYMBOL(vmalloc_user);
2620 * vmalloc_node - allocate memory on a specific node
2621 * @size: allocation size
2624 * Allocate enough pages to cover @size from the page level
2625 * allocator and map them into contiguous kernel virtual space.
2627 * For tight control over page level allocator and protection flags
2628 * use __vmalloc() instead.
2630 * Return: pointer to the allocated memory or %NULL on error
2632 void *vmalloc_node(unsigned long size, int node)
2634 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2635 node, __builtin_return_address(0));
2637 EXPORT_SYMBOL(vmalloc_node);
2640 * vzalloc_node - allocate memory on a specific node with zero fill
2641 * @size: allocation size
2644 * Allocate enough pages to cover @size from the page level
2645 * allocator and map them into contiguous kernel virtual space.
2646 * The memory allocated is set to zero.
2648 * For tight control over page level allocator and protection flags
2649 * use __vmalloc_node() instead.
2651 * Return: pointer to the allocated memory or %NULL on error
2653 void *vzalloc_node(unsigned long size, int node)
2655 return __vmalloc_node_flags(size, node,
2656 GFP_KERNEL | __GFP_ZERO);
2658 EXPORT_SYMBOL(vzalloc_node);
2661 * vmalloc_exec - allocate virtually contiguous, executable memory
2662 * @size: allocation size
2664 * Kernel-internal function to allocate enough pages to cover @size
2665 * the page level allocator and map them into contiguous and
2666 * executable kernel virtual space.
2668 * For tight control over page level allocator and protection flags
2669 * use __vmalloc() instead.
2671 * Return: pointer to the allocated memory or %NULL on error
2673 void *vmalloc_exec(unsigned long size)
2675 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2676 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2677 NUMA_NO_NODE, __builtin_return_address(0));
2680 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2681 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2682 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2683 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2686 * 64b systems should always have either DMA or DMA32 zones. For others
2687 * GFP_DMA32 should do the right thing and use the normal zone.
2689 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2693 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2694 * @size: allocation size
2696 * Allocate enough 32bit PA addressable pages to cover @size from the
2697 * page level allocator and map them into contiguous kernel virtual space.
2699 * Return: pointer to the allocated memory or %NULL on error
2701 void *vmalloc_32(unsigned long size)
2703 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2704 NUMA_NO_NODE, __builtin_return_address(0));
2706 EXPORT_SYMBOL(vmalloc_32);
2709 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2710 * @size: allocation size
2712 * The resulting memory area is 32bit addressable and zeroed so it can be
2713 * mapped to userspace without leaking data.
2715 * Return: pointer to the allocated memory or %NULL on error
2717 void *vmalloc_32_user(unsigned long size)
2719 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2720 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2721 VM_USERMAP, NUMA_NO_NODE,
2722 __builtin_return_address(0));
2724 EXPORT_SYMBOL(vmalloc_32_user);
2727 * small helper routine , copy contents to buf from addr.
2728 * If the page is not present, fill zero.
2731 static int aligned_vread(char *buf, char *addr, unsigned long count)
2737 unsigned long offset, length;
2739 offset = offset_in_page(addr);
2740 length = PAGE_SIZE - offset;
2743 p = vmalloc_to_page(addr);
2745 * To do safe access to this _mapped_ area, we need
2746 * lock. But adding lock here means that we need to add
2747 * overhead of vmalloc()/vfree() calles for this _debug_
2748 * interface, rarely used. Instead of that, we'll use
2749 * kmap() and get small overhead in this access function.
2753 * we can expect USER0 is not used (see vread/vwrite's
2754 * function description)
2756 void *map = kmap_atomic(p);
2757 memcpy(buf, map + offset, length);
2760 memset(buf, 0, length);
2770 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2776 unsigned long offset, length;
2778 offset = offset_in_page(addr);
2779 length = PAGE_SIZE - offset;
2782 p = vmalloc_to_page(addr);
2784 * To do safe access to this _mapped_ area, we need
2785 * lock. But adding lock here means that we need to add
2786 * overhead of vmalloc()/vfree() calles for this _debug_
2787 * interface, rarely used. Instead of that, we'll use
2788 * kmap() and get small overhead in this access function.
2792 * we can expect USER0 is not used (see vread/vwrite's
2793 * function description)
2795 void *map = kmap_atomic(p);
2796 memcpy(map + offset, buf, length);
2808 * vread() - read vmalloc area in a safe way.
2809 * @buf: buffer for reading data
2810 * @addr: vm address.
2811 * @count: number of bytes to be read.
2813 * This function checks that addr is a valid vmalloc'ed area, and
2814 * copy data from that area to a given buffer. If the given memory range
2815 * of [addr...addr+count) includes some valid address, data is copied to
2816 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2817 * IOREMAP area is treated as memory hole and no copy is done.
2819 * If [addr...addr+count) doesn't includes any intersects with alive
2820 * vm_struct area, returns 0. @buf should be kernel's buffer.
2822 * Note: In usual ops, vread() is never necessary because the caller
2823 * should know vmalloc() area is valid and can use memcpy().
2824 * This is for routines which have to access vmalloc area without
2825 * any information, as /dev/kmem.
2827 * Return: number of bytes for which addr and buf should be increased
2828 * (same number as @count) or %0 if [addr...addr+count) doesn't
2829 * include any intersection with valid vmalloc area
2831 long vread(char *buf, char *addr, unsigned long count)
2833 struct vmap_area *va;
2834 struct vm_struct *vm;
2835 char *vaddr, *buf_start = buf;
2836 unsigned long buflen = count;
2839 /* Don't allow overflow */
2840 if ((unsigned long) addr + count < count)
2841 count = -(unsigned long) addr;
2843 spin_lock(&vmap_area_lock);
2844 list_for_each_entry(va, &vmap_area_list, list) {
2848 if (!(va->flags & VM_VM_AREA))
2852 vaddr = (char *) vm->addr;
2853 if (addr >= vaddr + get_vm_area_size(vm))
2855 while (addr < vaddr) {
2863 n = vaddr + get_vm_area_size(vm) - addr;
2866 if (!(vm->flags & VM_IOREMAP))
2867 aligned_vread(buf, addr, n);
2868 else /* IOREMAP area is treated as memory hole */
2875 spin_unlock(&vmap_area_lock);
2877 if (buf == buf_start)
2879 /* zero-fill memory holes */
2880 if (buf != buf_start + buflen)
2881 memset(buf, 0, buflen - (buf - buf_start));
2887 * vwrite() - write vmalloc area in a safe way.
2888 * @buf: buffer for source data
2889 * @addr: vm address.
2890 * @count: number of bytes to be read.
2892 * This function checks that addr is a valid vmalloc'ed area, and
2893 * copy data from a buffer to the given addr. If specified range of
2894 * [addr...addr+count) includes some valid address, data is copied from
2895 * proper area of @buf. If there are memory holes, no copy to hole.
2896 * IOREMAP area is treated as memory hole and no copy is done.
2898 * If [addr...addr+count) doesn't includes any intersects with alive
2899 * vm_struct area, returns 0. @buf should be kernel's buffer.
2901 * Note: In usual ops, vwrite() is never necessary because the caller
2902 * should know vmalloc() area is valid and can use memcpy().
2903 * This is for routines which have to access vmalloc area without
2904 * any information, as /dev/kmem.
2906 * Return: number of bytes for which addr and buf should be
2907 * increased (same number as @count) or %0 if [addr...addr+count)
2908 * doesn't include any intersection with valid vmalloc area
2910 long vwrite(char *buf, char *addr, unsigned long count)
2912 struct vmap_area *va;
2913 struct vm_struct *vm;
2915 unsigned long n, buflen;
2918 /* Don't allow overflow */
2919 if ((unsigned long) addr + count < count)
2920 count = -(unsigned long) addr;
2923 spin_lock(&vmap_area_lock);
2924 list_for_each_entry(va, &vmap_area_list, list) {
2928 if (!(va->flags & VM_VM_AREA))
2932 vaddr = (char *) vm->addr;
2933 if (addr >= vaddr + get_vm_area_size(vm))
2935 while (addr < vaddr) {
2942 n = vaddr + get_vm_area_size(vm) - addr;
2945 if (!(vm->flags & VM_IOREMAP)) {
2946 aligned_vwrite(buf, addr, n);
2954 spin_unlock(&vmap_area_lock);
2961 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2962 * @vma: vma to cover
2963 * @uaddr: target user address to start at
2964 * @kaddr: virtual address of vmalloc kernel memory
2965 * @size: size of map area
2967 * Returns: 0 for success, -Exxx on failure
2969 * This function checks that @kaddr is a valid vmalloc'ed area,
2970 * and that it is big enough to cover the range starting at
2971 * @uaddr in @vma. Will return failure if that criteria isn't
2974 * Similar to remap_pfn_range() (see mm/memory.c)
2976 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2977 void *kaddr, unsigned long size)
2979 struct vm_struct *area;
2981 size = PAGE_ALIGN(size);
2983 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2986 area = find_vm_area(kaddr);
2990 if (!(area->flags & VM_USERMAP))
2993 if (kaddr + size > area->addr + get_vm_area_size(area))
2997 struct page *page = vmalloc_to_page(kaddr);
3000 ret = vm_insert_page(vma, uaddr, page);
3009 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3013 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3016 * remap_vmalloc_range - map vmalloc pages to userspace
3017 * @vma: vma to cover (map full range of vma)
3018 * @addr: vmalloc memory
3019 * @pgoff: number of pages into addr before first page to map
3021 * Returns: 0 for success, -Exxx on failure
3023 * This function checks that addr is a valid vmalloc'ed area, and
3024 * that it is big enough to cover the vma. Will return failure if
3025 * that criteria isn't met.
3027 * Similar to remap_pfn_range() (see mm/memory.c)
3029 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3030 unsigned long pgoff)
3032 return remap_vmalloc_range_partial(vma, vma->vm_start,
3033 addr + (pgoff << PAGE_SHIFT),
3034 vma->vm_end - vma->vm_start);
3036 EXPORT_SYMBOL(remap_vmalloc_range);
3039 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3042 void __weak vmalloc_sync_all(void)
3047 static int f(pte_t *pte, unsigned long addr, void *data)
3059 * alloc_vm_area - allocate a range of kernel address space
3060 * @size: size of the area
3061 * @ptes: returns the PTEs for the address space
3063 * Returns: NULL on failure, vm_struct on success
3065 * This function reserves a range of kernel address space, and
3066 * allocates pagetables to map that range. No actual mappings
3069 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3070 * allocated for the VM area are returned.
3072 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3074 struct vm_struct *area;
3076 area = get_vm_area_caller(size, VM_IOREMAP,
3077 __builtin_return_address(0));
3082 * This ensures that page tables are constructed for this region
3083 * of kernel virtual address space and mapped into init_mm.
3085 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3086 size, f, ptes ? &ptes : NULL)) {
3093 EXPORT_SYMBOL_GPL(alloc_vm_area);
3095 void free_vm_area(struct vm_struct *area)
3097 struct vm_struct *ret;
3098 ret = remove_vm_area(area->addr);
3099 BUG_ON(ret != area);
3102 EXPORT_SYMBOL_GPL(free_vm_area);
3105 static struct vmap_area *node_to_va(struct rb_node *n)
3107 return rb_entry_safe(n, struct vmap_area, rb_node);
3111 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3112 * @addr: target address
3114 * Returns: vmap_area if it is found. If there is no such area
3115 * the first highest(reverse order) vmap_area is returned
3116 * i.e. va->va_start < addr && va->va_end < addr or NULL
3117 * if there are no any areas before @addr.
3119 static struct vmap_area *
3120 pvm_find_va_enclose_addr(unsigned long addr)
3122 struct vmap_area *va, *tmp;
3125 n = free_vmap_area_root.rb_node;
3129 tmp = rb_entry(n, struct vmap_area, rb_node);
3130 if (tmp->va_start <= addr) {
3132 if (tmp->va_end >= addr)
3145 * pvm_determine_end_from_reverse - find the highest aligned address
3146 * of free block below VMALLOC_END
3148 * in - the VA we start the search(reverse order);
3149 * out - the VA with the highest aligned end address.
3151 * Returns: determined end address within vmap_area
3153 static unsigned long
3154 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3156 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3160 list_for_each_entry_from_reverse((*va),
3161 &free_vmap_area_list, list) {
3162 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3163 if ((*va)->va_start < addr)
3172 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3173 * @offsets: array containing offset of each area
3174 * @sizes: array containing size of each area
3175 * @nr_vms: the number of areas to allocate
3176 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3178 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3179 * vm_structs on success, %NULL on failure
3181 * Percpu allocator wants to use congruent vm areas so that it can
3182 * maintain the offsets among percpu areas. This function allocates
3183 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3184 * be scattered pretty far, distance between two areas easily going up
3185 * to gigabytes. To avoid interacting with regular vmallocs, these
3186 * areas are allocated from top.
3188 * Despite its complicated look, this allocator is rather simple. It
3189 * does everything top-down and scans free blocks from the end looking
3190 * for matching base. While scanning, if any of the areas do not fit the
3191 * base address is pulled down to fit the area. Scanning is repeated till
3192 * all the areas fit and then all necessary data structures are inserted
3193 * and the result is returned.
3195 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3196 const size_t *sizes, int nr_vms,
3199 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3200 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3201 struct vmap_area **vas, *va;
3202 struct vm_struct **vms;
3203 int area, area2, last_area, term_area;
3204 unsigned long base, start, size, end, last_end;
3205 bool purged = false;
3208 /* verify parameters and allocate data structures */
3209 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3210 for (last_area = 0, area = 0; area < nr_vms; area++) {
3211 start = offsets[area];
3212 end = start + sizes[area];
3214 /* is everything aligned properly? */
3215 BUG_ON(!IS_ALIGNED(offsets[area], align));
3216 BUG_ON(!IS_ALIGNED(sizes[area], align));
3218 /* detect the area with the highest address */
3219 if (start > offsets[last_area])
3222 for (area2 = area + 1; area2 < nr_vms; area2++) {
3223 unsigned long start2 = offsets[area2];
3224 unsigned long end2 = start2 + sizes[area2];
3226 BUG_ON(start2 < end && start < end2);
3229 last_end = offsets[last_area] + sizes[last_area];
3231 if (vmalloc_end - vmalloc_start < last_end) {
3236 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3237 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3241 for (area = 0; area < nr_vms; area++) {
3242 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3243 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3244 if (!vas[area] || !vms[area])
3248 spin_lock(&vmap_area_lock);
3250 /* start scanning - we scan from the top, begin with the last area */
3251 area = term_area = last_area;
3252 start = offsets[area];
3253 end = start + sizes[area];
3255 va = pvm_find_va_enclose_addr(vmalloc_end);
3256 base = pvm_determine_end_from_reverse(&va, align) - end;
3260 * base might have underflowed, add last_end before
3263 if (base + last_end < vmalloc_start + last_end)
3267 * Fitting base has not been found.
3273 * If this VA does not fit, move base downwards and recheck.
3275 if (base + start < va->va_start || base + end > va->va_end) {
3276 va = node_to_va(rb_prev(&va->rb_node));
3277 base = pvm_determine_end_from_reverse(&va, align) - end;
3283 * This area fits, move on to the previous one. If
3284 * the previous one is the terminal one, we're done.
3286 area = (area + nr_vms - 1) % nr_vms;
3287 if (area == term_area)
3290 start = offsets[area];
3291 end = start + sizes[area];
3292 va = pvm_find_va_enclose_addr(base + end);
3295 /* we've found a fitting base, insert all va's */
3296 for (area = 0; area < nr_vms; area++) {
3299 start = base + offsets[area];
3302 va = pvm_find_va_enclose_addr(start);
3303 if (WARN_ON_ONCE(va == NULL))
3304 /* It is a BUG(), but trigger recovery instead. */
3307 type = classify_va_fit_type(va, start, size);
3308 if (WARN_ON_ONCE(type == NOTHING_FIT))
3309 /* It is a BUG(), but trigger recovery instead. */
3312 ret = adjust_va_to_fit_type(va, start, size, type);
3316 /* Allocated area. */
3318 va->va_start = start;
3319 va->va_end = start + size;
3321 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3324 spin_unlock(&vmap_area_lock);
3326 /* insert all vm's */
3327 for (area = 0; area < nr_vms; area++)
3328 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3335 /* Remove previously inserted areas. */
3337 __free_vmap_area(vas[area]);
3342 spin_unlock(&vmap_area_lock);
3344 purge_vmap_area_lazy();
3347 /* Before "retry", check if we recover. */
3348 for (area = 0; area < nr_vms; area++) {
3352 vas[area] = kmem_cache_zalloc(
3353 vmap_area_cachep, GFP_KERNEL);
3362 for (area = 0; area < nr_vms; area++) {
3364 kmem_cache_free(vmap_area_cachep, vas[area]);
3375 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3376 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3377 * @nr_vms: the number of allocated areas
3379 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3381 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3385 for (i = 0; i < nr_vms; i++)
3386 free_vm_area(vms[i]);
3389 #endif /* CONFIG_SMP */
3391 #ifdef CONFIG_PROC_FS
3392 static void *s_start(struct seq_file *m, loff_t *pos)
3393 __acquires(&vmap_area_lock)
3395 spin_lock(&vmap_area_lock);
3396 return seq_list_start(&vmap_area_list, *pos);
3399 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3401 return seq_list_next(p, &vmap_area_list, pos);
3404 static void s_stop(struct seq_file *m, void *p)
3405 __releases(&vmap_area_lock)
3407 spin_unlock(&vmap_area_lock);
3410 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3412 if (IS_ENABLED(CONFIG_NUMA)) {
3413 unsigned int nr, *counters = m->private;
3418 if (v->flags & VM_UNINITIALIZED)
3420 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3423 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3425 for (nr = 0; nr < v->nr_pages; nr++)
3426 counters[page_to_nid(v->pages[nr])]++;
3428 for_each_node_state(nr, N_HIGH_MEMORY)
3430 seq_printf(m, " N%u=%u", nr, counters[nr]);
3434 static int s_show(struct seq_file *m, void *p)
3436 struct vmap_area *va;
3437 struct vm_struct *v;
3439 va = list_entry(p, struct vmap_area, list);
3442 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3443 * behalf of vmap area is being tear down or vm_map_ram allocation.
3445 if (!(va->flags & VM_VM_AREA)) {
3446 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3447 (void *)va->va_start, (void *)va->va_end,
3448 va->va_end - va->va_start,
3449 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3456 seq_printf(m, "0x%pK-0x%pK %7ld",
3457 v->addr, v->addr + v->size, v->size);
3460 seq_printf(m, " %pS", v->caller);
3463 seq_printf(m, " pages=%d", v->nr_pages);
3466 seq_printf(m, " phys=%pa", &v->phys_addr);
3468 if (v->flags & VM_IOREMAP)
3469 seq_puts(m, " ioremap");
3471 if (v->flags & VM_ALLOC)
3472 seq_puts(m, " vmalloc");
3474 if (v->flags & VM_MAP)
3475 seq_puts(m, " vmap");
3477 if (v->flags & VM_USERMAP)
3478 seq_puts(m, " user");
3480 if (is_vmalloc_addr(v->pages))
3481 seq_puts(m, " vpages");
3483 show_numa_info(m, v);
3488 static const struct seq_operations vmalloc_op = {
3495 static int __init proc_vmalloc_init(void)
3497 if (IS_ENABLED(CONFIG_NUMA))
3498 proc_create_seq_private("vmallocinfo", 0400, NULL,
3500 nr_node_ids * sizeof(unsigned int), NULL);
3502 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3505 module_init(proc_vmalloc_init);