1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
12 #include <linux/vmalloc.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
44 struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
50 static void __vunmap(const void *, int);
52 static void free_work(struct work_struct *w)
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 struct llist_node *t, *llnode;
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
61 /*** Page table manipulation functions ***/
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
67 pte = pte_offset_kernel(pmd, addr);
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
79 pmd = pmd_offset(pud, addr);
81 next = pmd_addr_end(addr, end);
82 if (pmd_clear_huge(pmd))
84 if (pmd_none_or_clear_bad(pmd))
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
95 pud = pud_offset(p4d, addr);
97 next = pud_addr_end(addr, end);
98 if (pud_clear_huge(pud))
100 if (pud_none_or_clear_bad(pud))
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
111 p4d = p4d_offset(pgd, addr);
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
116 if (p4d_none_or_clear_bad(p4d))
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
128 pgd = pgd_offset_k(addr);
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
133 vunmap_p4d_range(pgd, addr, next);
134 } while (pgd++, addr = next, addr != end);
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
147 pte = pte_alloc_kernel(pmd, addr);
151 struct page *page = pages[*nr];
153 if (WARN_ON(!pte_none(*pte)))
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
159 } while (pte++, addr += PAGE_SIZE, addr != end);
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
169 pmd = pmd_alloc(&init_mm, pud, addr);
173 next = pmd_addr_end(addr, end);
174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
176 } while (pmd++, addr = next, addr != end);
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
186 pud = pud_alloc(&init_mm, p4d, addr);
190 next = pud_addr_end(addr, end);
191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
193 } while (pud++, addr = next, addr != end);
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
203 p4d = p4d_alloc(&init_mm, pgd, addr);
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
210 } while (p4d++, addr = next, addr != end);
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
225 unsigned long addr = start;
230 pgd = pgd_offset_k(addr);
232 next = pgd_addr_end(addr, end);
233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
236 } while (pgd++, addr = next, addr != end);
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
251 int is_vmalloc_or_module_addr(const void *x)
254 * ARM, x86-64 and sparc64 put modules in a special place,
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
263 return is_vmalloc_addr(x);
267 * Walk a vmap address to the struct page it maps.
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
271 unsigned long addr = (unsigned long) vmalloc_addr;
272 struct page *page = NULL;
273 pgd_t *pgd = pgd_offset_k(addr);
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
287 p4d = p4d_offset(pgd, addr);
290 pud = pud_offset(p4d, addr);
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
303 pmd = pmd_offset(pud, addr);
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
308 ptep = pte_offset_map(pmd, addr);
310 if (pte_present(pte))
311 page = pte_page(pte);
315 EXPORT_SYMBOL(vmalloc_to_page);
318 * Map a vmalloc()-space virtual address to the physical page frame number.
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
324 EXPORT_SYMBOL(vmalloc_to_pfn);
327 /*** Global kva allocator ***/
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
332 #define VM_LAZY_FREE 0x02
333 #define VM_VM_AREA 0x04
335 static DEFINE_SPINLOCK(vmap_area_lock);
336 /* Export for kexec only */
337 LIST_HEAD(vmap_area_list);
338 static LLIST_HEAD(vmap_purge_list);
339 static struct rb_root vmap_area_root = RB_ROOT;
340 static bool vmap_initialized __read_mostly;
343 * This kmem_cache is used for vmap_area objects. Instead of
344 * allocating from slab we reuse an object from this cache to
345 * make things faster. Especially in "no edge" splitting of
348 static struct kmem_cache *vmap_area_cachep;
351 * This linked list is used in pair with free_vmap_area_root.
352 * It gives O(1) access to prev/next to perform fast coalescing.
354 static LIST_HEAD(free_vmap_area_list);
357 * This augment red-black tree represents the free vmap space.
358 * All vmap_area objects in this tree are sorted by va->va_start
359 * address. It is used for allocation and merging when a vmap
360 * object is released.
362 * Each vmap_area node contains a maximum available free block
363 * of its sub-tree, right or left. Therefore it is possible to
364 * find a lowest match of free area.
366 static struct rb_root free_vmap_area_root = RB_ROOT;
369 * Preload a CPU with one object for "no edge" split case. The
370 * aim is to get rid of allocations from the atomic context, thus
371 * to use more permissive allocation masks.
373 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
375 static __always_inline unsigned long
376 va_size(struct vmap_area *va)
378 return (va->va_end - va->va_start);
381 static __always_inline unsigned long
382 get_subtree_max_size(struct rb_node *node)
384 struct vmap_area *va;
386 va = rb_entry_safe(node, struct vmap_area, rb_node);
387 return va ? va->subtree_max_size : 0;
391 * Gets called when remove the node and rotate.
393 static __always_inline unsigned long
394 compute_subtree_max_size(struct vmap_area *va)
396 return max3(va_size(va),
397 get_subtree_max_size(va->rb_node.rb_left),
398 get_subtree_max_size(va->rb_node.rb_right));
401 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
402 struct vmap_area, rb_node, unsigned long, subtree_max_size,
403 compute_subtree_max_size)
405 static void purge_vmap_area_lazy(void);
406 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
407 static unsigned long lazy_max_pages(void);
409 static struct vmap_area *__find_vmap_area(unsigned long addr)
411 struct rb_node *n = vmap_area_root.rb_node;
414 struct vmap_area *va;
416 va = rb_entry(n, struct vmap_area, rb_node);
417 if (addr < va->va_start)
419 else if (addr >= va->va_end)
429 * This function returns back addresses of parent node
430 * and its left or right link for further processing.
432 static __always_inline struct rb_node **
433 find_va_links(struct vmap_area *va,
434 struct rb_root *root, struct rb_node *from,
435 struct rb_node **parent)
437 struct vmap_area *tmp_va;
438 struct rb_node **link;
441 link = &root->rb_node;
442 if (unlikely(!*link)) {
451 * Go to the bottom of the tree. When we hit the last point
452 * we end up with parent rb_node and correct direction, i name
453 * it link, where the new va->rb_node will be attached to.
456 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
459 * During the traversal we also do some sanity check.
460 * Trigger the BUG() if there are sides(left/right)
463 if (va->va_start < tmp_va->va_end &&
464 va->va_end <= tmp_va->va_start)
465 link = &(*link)->rb_left;
466 else if (va->va_end > tmp_va->va_start &&
467 va->va_start >= tmp_va->va_end)
468 link = &(*link)->rb_right;
473 *parent = &tmp_va->rb_node;
477 static __always_inline struct list_head *
478 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
480 struct list_head *list;
482 if (unlikely(!parent))
484 * The red-black tree where we try to find VA neighbors
485 * before merging or inserting is empty, i.e. it means
486 * there is no free vmap space. Normally it does not
487 * happen but we handle this case anyway.
491 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
492 return (&parent->rb_right == link ? list->next : list);
495 static __always_inline void
496 link_va(struct vmap_area *va, struct rb_root *root,
497 struct rb_node *parent, struct rb_node **link, struct list_head *head)
500 * VA is still not in the list, but we can
501 * identify its future previous list_head node.
503 if (likely(parent)) {
504 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
505 if (&parent->rb_right != link)
509 /* Insert to the rb-tree */
510 rb_link_node(&va->rb_node, parent, link);
511 if (root == &free_vmap_area_root) {
513 * Some explanation here. Just perform simple insertion
514 * to the tree. We do not set va->subtree_max_size to
515 * its current size before calling rb_insert_augmented().
516 * It is because of we populate the tree from the bottom
517 * to parent levels when the node _is_ in the tree.
519 * Therefore we set subtree_max_size to zero after insertion,
520 * to let __augment_tree_propagate_from() puts everything to
521 * the correct order later on.
523 rb_insert_augmented(&va->rb_node,
524 root, &free_vmap_area_rb_augment_cb);
525 va->subtree_max_size = 0;
527 rb_insert_color(&va->rb_node, root);
530 /* Address-sort this list */
531 list_add(&va->list, head);
534 static __always_inline void
535 unlink_va(struct vmap_area *va, struct rb_root *root)
537 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
540 if (root == &free_vmap_area_root)
541 rb_erase_augmented(&va->rb_node,
542 root, &free_vmap_area_rb_augment_cb);
544 rb_erase(&va->rb_node, root);
547 RB_CLEAR_NODE(&va->rb_node);
550 #if DEBUG_AUGMENT_PROPAGATE_CHECK
552 augment_tree_propagate_check(struct rb_node *n)
554 struct vmap_area *va;
555 struct rb_node *node;
562 va = rb_entry(n, struct vmap_area, rb_node);
563 size = va->subtree_max_size;
567 va = rb_entry(node, struct vmap_area, rb_node);
569 if (get_subtree_max_size(node->rb_left) == size) {
570 node = node->rb_left;
572 if (va_size(va) == size) {
577 node = node->rb_right;
582 va = rb_entry(n, struct vmap_area, rb_node);
583 pr_emerg("tree is corrupted: %lu, %lu\n",
584 va_size(va), va->subtree_max_size);
587 augment_tree_propagate_check(n->rb_left);
588 augment_tree_propagate_check(n->rb_right);
593 * This function populates subtree_max_size from bottom to upper
594 * levels starting from VA point. The propagation must be done
595 * when VA size is modified by changing its va_start/va_end. Or
596 * in case of newly inserting of VA to the tree.
598 * It means that __augment_tree_propagate_from() must be called:
599 * - After VA has been inserted to the tree(free path);
600 * - After VA has been shrunk(allocation path);
601 * - After VA has been increased(merging path).
603 * Please note that, it does not mean that upper parent nodes
604 * and their subtree_max_size are recalculated all the time up
613 * For example if we modify the node 4, shrinking it to 2, then
614 * no any modification is required. If we shrink the node 2 to 1
615 * its subtree_max_size is updated only, and set to 1. If we shrink
616 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
619 static __always_inline void
620 augment_tree_propagate_from(struct vmap_area *va)
622 struct rb_node *node = &va->rb_node;
623 unsigned long new_va_sub_max_size;
626 va = rb_entry(node, struct vmap_area, rb_node);
627 new_va_sub_max_size = compute_subtree_max_size(va);
630 * If the newly calculated maximum available size of the
631 * subtree is equal to the current one, then it means that
632 * the tree is propagated correctly. So we have to stop at
633 * this point to save cycles.
635 if (va->subtree_max_size == new_va_sub_max_size)
638 va->subtree_max_size = new_va_sub_max_size;
639 node = rb_parent(&va->rb_node);
642 #if DEBUG_AUGMENT_PROPAGATE_CHECK
643 augment_tree_propagate_check(free_vmap_area_root.rb_node);
648 insert_vmap_area(struct vmap_area *va,
649 struct rb_root *root, struct list_head *head)
651 struct rb_node **link;
652 struct rb_node *parent;
654 link = find_va_links(va, root, NULL, &parent);
655 link_va(va, root, parent, link, head);
659 insert_vmap_area_augment(struct vmap_area *va,
660 struct rb_node *from, struct rb_root *root,
661 struct list_head *head)
663 struct rb_node **link;
664 struct rb_node *parent;
667 link = find_va_links(va, NULL, from, &parent);
669 link = find_va_links(va, root, NULL, &parent);
671 link_va(va, root, parent, link, head);
672 augment_tree_propagate_from(va);
676 * Merge de-allocated chunk of VA memory with previous
677 * and next free blocks. If coalesce is not done a new
678 * free area is inserted. If VA has been merged, it is
681 static __always_inline void
682 merge_or_add_vmap_area(struct vmap_area *va,
683 struct rb_root *root, struct list_head *head)
685 struct vmap_area *sibling;
686 struct list_head *next;
687 struct rb_node **link;
688 struct rb_node *parent;
692 * Find a place in the tree where VA potentially will be
693 * inserted, unless it is merged with its sibling/siblings.
695 link = find_va_links(va, root, NULL, &parent);
698 * Get next node of VA to check if merging can be done.
700 next = get_va_next_sibling(parent, link);
701 if (unlikely(next == NULL))
707 * |<------VA------>|<-----Next----->|
712 sibling = list_entry(next, struct vmap_area, list);
713 if (sibling->va_start == va->va_end) {
714 sibling->va_start = va->va_start;
716 /* Check and update the tree if needed. */
717 augment_tree_propagate_from(sibling);
719 /* Free vmap_area object. */
720 kmem_cache_free(vmap_area_cachep, va);
722 /* Point to the new merged area. */
731 * |<-----Prev----->|<------VA------>|
735 if (next->prev != head) {
736 sibling = list_entry(next->prev, struct vmap_area, list);
737 if (sibling->va_end == va->va_start) {
738 sibling->va_end = va->va_end;
740 /* Check and update the tree if needed. */
741 augment_tree_propagate_from(sibling);
746 /* Free vmap_area object. */
747 kmem_cache_free(vmap_area_cachep, va);
754 link_va(va, root, parent, link, head);
755 augment_tree_propagate_from(va);
759 static __always_inline bool
760 is_within_this_va(struct vmap_area *va, unsigned long size,
761 unsigned long align, unsigned long vstart)
763 unsigned long nva_start_addr;
765 if (va->va_start > vstart)
766 nva_start_addr = ALIGN(va->va_start, align);
768 nva_start_addr = ALIGN(vstart, align);
770 /* Can be overflowed due to big size or alignment. */
771 if (nva_start_addr + size < nva_start_addr ||
772 nva_start_addr < vstart)
775 return (nva_start_addr + size <= va->va_end);
779 * Find the first free block(lowest start address) in the tree,
780 * that will accomplish the request corresponding to passing
783 static __always_inline struct vmap_area *
784 find_vmap_lowest_match(unsigned long size,
785 unsigned long align, unsigned long vstart)
787 struct vmap_area *va;
788 struct rb_node *node;
789 unsigned long length;
791 /* Start from the root. */
792 node = free_vmap_area_root.rb_node;
794 /* Adjust the search size for alignment overhead. */
795 length = size + align - 1;
798 va = rb_entry(node, struct vmap_area, rb_node);
800 if (get_subtree_max_size(node->rb_left) >= length &&
801 vstart < va->va_start) {
802 node = node->rb_left;
804 if (is_within_this_va(va, size, align, vstart))
808 * Does not make sense to go deeper towards the right
809 * sub-tree if it does not have a free block that is
810 * equal or bigger to the requested search length.
812 if (get_subtree_max_size(node->rb_right) >= length) {
813 node = node->rb_right;
818 * OK. We roll back and find the first right sub-tree,
819 * that will satisfy the search criteria. It can happen
820 * only once due to "vstart" restriction.
822 while ((node = rb_parent(node))) {
823 va = rb_entry(node, struct vmap_area, rb_node);
824 if (is_within_this_va(va, size, align, vstart))
827 if (get_subtree_max_size(node->rb_right) >= length &&
828 vstart <= va->va_start) {
829 node = node->rb_right;
839 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
840 #include <linux/random.h>
842 static struct vmap_area *
843 find_vmap_lowest_linear_match(unsigned long size,
844 unsigned long align, unsigned long vstart)
846 struct vmap_area *va;
848 list_for_each_entry(va, &free_vmap_area_list, list) {
849 if (!is_within_this_va(va, size, align, vstart))
859 find_vmap_lowest_match_check(unsigned long size)
861 struct vmap_area *va_1, *va_2;
862 unsigned long vstart;
865 get_random_bytes(&rnd, sizeof(rnd));
866 vstart = VMALLOC_START + rnd;
868 va_1 = find_vmap_lowest_match(size, 1, vstart);
869 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
872 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
879 FL_FIT_TYPE = 1, /* full fit */
880 LE_FIT_TYPE = 2, /* left edge fit */
881 RE_FIT_TYPE = 3, /* right edge fit */
882 NE_FIT_TYPE = 4 /* no edge fit */
885 static __always_inline enum fit_type
886 classify_va_fit_type(struct vmap_area *va,
887 unsigned long nva_start_addr, unsigned long size)
891 /* Check if it is within VA. */
892 if (nva_start_addr < va->va_start ||
893 nva_start_addr + size > va->va_end)
897 if (va->va_start == nva_start_addr) {
898 if (va->va_end == nva_start_addr + size)
902 } else if (va->va_end == nva_start_addr + size) {
911 static __always_inline int
912 adjust_va_to_fit_type(struct vmap_area *va,
913 unsigned long nva_start_addr, unsigned long size,
916 struct vmap_area *lva = NULL;
918 if (type == FL_FIT_TYPE) {
920 * No need to split VA, it fully fits.
926 unlink_va(va, &free_vmap_area_root);
927 kmem_cache_free(vmap_area_cachep, va);
928 } else if (type == LE_FIT_TYPE) {
930 * Split left edge of fit VA.
936 va->va_start += size;
937 } else if (type == RE_FIT_TYPE) {
939 * Split right edge of fit VA.
945 va->va_end = nva_start_addr;
946 } else if (type == NE_FIT_TYPE) {
948 * Split no edge of fit VA.
954 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
955 if (unlikely(!lva)) {
957 * For percpu allocator we do not do any pre-allocation
958 * and leave it as it is. The reason is it most likely
959 * never ends up with NE_FIT_TYPE splitting. In case of
960 * percpu allocations offsets and sizes are aligned to
961 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
962 * are its main fitting cases.
964 * There are a few exceptions though, as an example it is
965 * a first allocation (early boot up) when we have "one"
966 * big free space that has to be split.
968 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
974 * Build the remainder.
976 lva->va_start = va->va_start;
977 lva->va_end = nva_start_addr;
980 * Shrink this VA to remaining size.
982 va->va_start = nva_start_addr + size;
987 if (type != FL_FIT_TYPE) {
988 augment_tree_propagate_from(va);
990 if (lva) /* type == NE_FIT_TYPE */
991 insert_vmap_area_augment(lva, &va->rb_node,
992 &free_vmap_area_root, &free_vmap_area_list);
999 * Returns a start address of the newly allocated area, if success.
1000 * Otherwise a vend is returned that indicates failure.
1002 static __always_inline unsigned long
1003 __alloc_vmap_area(unsigned long size, unsigned long align,
1004 unsigned long vstart, unsigned long vend)
1006 unsigned long nva_start_addr;
1007 struct vmap_area *va;
1011 va = find_vmap_lowest_match(size, align, vstart);
1015 if (va->va_start > vstart)
1016 nva_start_addr = ALIGN(va->va_start, align);
1018 nva_start_addr = ALIGN(vstart, align);
1020 /* Check the "vend" restriction. */
1021 if (nva_start_addr + size > vend)
1024 /* Classify what we have found. */
1025 type = classify_va_fit_type(va, nva_start_addr, size);
1026 if (WARN_ON_ONCE(type == NOTHING_FIT))
1029 /* Update the free vmap_area. */
1030 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1034 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1035 find_vmap_lowest_match_check(size);
1038 return nva_start_addr;
1042 * Allocate a region of KVA of the specified size and alignment, within the
1045 static struct vmap_area *alloc_vmap_area(unsigned long size,
1046 unsigned long align,
1047 unsigned long vstart, unsigned long vend,
1048 int node, gfp_t gfp_mask)
1050 struct vmap_area *va, *pva;
1055 BUG_ON(offset_in_page(size));
1056 BUG_ON(!is_power_of_2(align));
1058 if (unlikely(!vmap_initialized))
1059 return ERR_PTR(-EBUSY);
1063 va = kmem_cache_alloc_node(vmap_area_cachep,
1064 gfp_mask & GFP_RECLAIM_MASK, node);
1066 return ERR_PTR(-ENOMEM);
1069 * Only scan the relevant parts containing pointers to other objects
1070 * to avoid false negatives.
1072 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1076 * Preload this CPU with one extra vmap_area object to ensure
1077 * that we have it available when fit type of free area is
1080 * The preload is done in non-atomic context, thus it allows us
1081 * to use more permissive allocation masks to be more stable under
1082 * low memory condition and high memory pressure.
1084 * Even if it fails we do not really care about that. Just proceed
1085 * as it is. "overflow" path will refill the cache we allocate from.
1088 if (!__this_cpu_read(ne_fit_preload_node)) {
1090 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1093 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1095 kmem_cache_free(vmap_area_cachep, pva);
1099 spin_lock(&vmap_area_lock);
1103 * If an allocation fails, the "vend" address is
1104 * returned. Therefore trigger the overflow path.
1106 addr = __alloc_vmap_area(size, align, vstart, vend);
1107 if (unlikely(addr == vend))
1110 va->va_start = addr;
1111 va->va_end = addr + size;
1113 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1115 spin_unlock(&vmap_area_lock);
1117 BUG_ON(!IS_ALIGNED(va->va_start, align));
1118 BUG_ON(va->va_start < vstart);
1119 BUG_ON(va->va_end > vend);
1124 spin_unlock(&vmap_area_lock);
1126 purge_vmap_area_lazy();
1131 if (gfpflags_allow_blocking(gfp_mask)) {
1132 unsigned long freed = 0;
1133 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1140 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1141 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1144 kmem_cache_free(vmap_area_cachep, va);
1145 return ERR_PTR(-EBUSY);
1148 int register_vmap_purge_notifier(struct notifier_block *nb)
1150 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1152 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1154 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1156 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1158 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1160 static void __free_vmap_area(struct vmap_area *va)
1163 * Remove from the busy tree/list.
1165 unlink_va(va, &vmap_area_root);
1168 * Merge VA with its neighbors, otherwise just add it.
1170 merge_or_add_vmap_area(va,
1171 &free_vmap_area_root, &free_vmap_area_list);
1175 * Free a region of KVA allocated by alloc_vmap_area
1177 static void free_vmap_area(struct vmap_area *va)
1179 spin_lock(&vmap_area_lock);
1180 __free_vmap_area(va);
1181 spin_unlock(&vmap_area_lock);
1185 * Clear the pagetable entries of a given vmap_area
1187 static void unmap_vmap_area(struct vmap_area *va)
1189 vunmap_page_range(va->va_start, va->va_end);
1193 * lazy_max_pages is the maximum amount of virtual address space we gather up
1194 * before attempting to purge with a TLB flush.
1196 * There is a tradeoff here: a larger number will cover more kernel page tables
1197 * and take slightly longer to purge, but it will linearly reduce the number of
1198 * global TLB flushes that must be performed. It would seem natural to scale
1199 * this number up linearly with the number of CPUs (because vmapping activity
1200 * could also scale linearly with the number of CPUs), however it is likely
1201 * that in practice, workloads might be constrained in other ways that mean
1202 * vmap activity will not scale linearly with CPUs. Also, I want to be
1203 * conservative and not introduce a big latency on huge systems, so go with
1204 * a less aggressive log scale. It will still be an improvement over the old
1205 * code, and it will be simple to change the scale factor if we find that it
1206 * becomes a problem on bigger systems.
1208 static unsigned long lazy_max_pages(void)
1212 log = fls(num_online_cpus());
1214 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1217 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1220 * Serialize vmap purging. There is no actual criticial section protected
1221 * by this look, but we want to avoid concurrent calls for performance
1222 * reasons and to make the pcpu_get_vm_areas more deterministic.
1224 static DEFINE_MUTEX(vmap_purge_lock);
1226 /* for per-CPU blocks */
1227 static void purge_fragmented_blocks_allcpus(void);
1230 * called before a call to iounmap() if the caller wants vm_area_struct's
1231 * immediately freed.
1233 void set_iounmap_nonlazy(void)
1235 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1239 * Purges all lazily-freed vmap areas.
1241 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1243 unsigned long resched_threshold;
1244 struct llist_node *valist;
1245 struct vmap_area *va;
1246 struct vmap_area *n_va;
1248 lockdep_assert_held(&vmap_purge_lock);
1250 valist = llist_del_all(&vmap_purge_list);
1251 if (unlikely(valist == NULL))
1255 * TODO: to calculate a flush range without looping.
1256 * The list can be up to lazy_max_pages() elements.
1258 llist_for_each_entry(va, valist, purge_list) {
1259 if (va->va_start < start)
1260 start = va->va_start;
1261 if (va->va_end > end)
1265 flush_tlb_kernel_range(start, end);
1266 resched_threshold = lazy_max_pages() << 1;
1268 spin_lock(&vmap_area_lock);
1269 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1270 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1272 __free_vmap_area(va);
1273 atomic_long_sub(nr, &vmap_lazy_nr);
1275 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1276 cond_resched_lock(&vmap_area_lock);
1278 spin_unlock(&vmap_area_lock);
1283 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1284 * is already purging.
1286 static void try_purge_vmap_area_lazy(void)
1288 if (mutex_trylock(&vmap_purge_lock)) {
1289 __purge_vmap_area_lazy(ULONG_MAX, 0);
1290 mutex_unlock(&vmap_purge_lock);
1295 * Kick off a purge of the outstanding lazy areas.
1297 static void purge_vmap_area_lazy(void)
1299 mutex_lock(&vmap_purge_lock);
1300 purge_fragmented_blocks_allcpus();
1301 __purge_vmap_area_lazy(ULONG_MAX, 0);
1302 mutex_unlock(&vmap_purge_lock);
1306 * Free a vmap area, caller ensuring that the area has been unmapped
1307 * and flush_cache_vunmap had been called for the correct range
1310 static void free_vmap_area_noflush(struct vmap_area *va)
1312 unsigned long nr_lazy;
1314 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1315 PAGE_SHIFT, &vmap_lazy_nr);
1317 /* After this point, we may free va at any time */
1318 llist_add(&va->purge_list, &vmap_purge_list);
1320 if (unlikely(nr_lazy > lazy_max_pages()))
1321 try_purge_vmap_area_lazy();
1325 * Free and unmap a vmap area
1327 static void free_unmap_vmap_area(struct vmap_area *va)
1329 flush_cache_vunmap(va->va_start, va->va_end);
1330 unmap_vmap_area(va);
1331 if (debug_pagealloc_enabled())
1332 flush_tlb_kernel_range(va->va_start, va->va_end);
1334 free_vmap_area_noflush(va);
1337 static struct vmap_area *find_vmap_area(unsigned long addr)
1339 struct vmap_area *va;
1341 spin_lock(&vmap_area_lock);
1342 va = __find_vmap_area(addr);
1343 spin_unlock(&vmap_area_lock);
1348 /*** Per cpu kva allocator ***/
1351 * vmap space is limited especially on 32 bit architectures. Ensure there is
1352 * room for at least 16 percpu vmap blocks per CPU.
1355 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1356 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1357 * instead (we just need a rough idea)
1359 #if BITS_PER_LONG == 32
1360 #define VMALLOC_SPACE (128UL*1024*1024)
1362 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1365 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1366 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1367 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1368 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1369 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1370 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1371 #define VMAP_BBMAP_BITS \
1372 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1373 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1374 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1376 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1378 struct vmap_block_queue {
1380 struct list_head free;
1385 struct vmap_area *va;
1386 unsigned long free, dirty;
1387 unsigned long dirty_min, dirty_max; /*< dirty range */
1388 struct list_head free_list;
1389 struct rcu_head rcu_head;
1390 struct list_head purge;
1393 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1394 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1397 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1398 * in the free path. Could get rid of this if we change the API to return a
1399 * "cookie" from alloc, to be passed to free. But no big deal yet.
1401 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1402 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1405 * We should probably have a fallback mechanism to allocate virtual memory
1406 * out of partially filled vmap blocks. However vmap block sizing should be
1407 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1411 static unsigned long addr_to_vb_idx(unsigned long addr)
1413 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1414 addr /= VMAP_BLOCK_SIZE;
1418 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1422 addr = va_start + (pages_off << PAGE_SHIFT);
1423 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1424 return (void *)addr;
1428 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1429 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1430 * @order: how many 2^order pages should be occupied in newly allocated block
1431 * @gfp_mask: flags for the page level allocator
1433 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1435 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1437 struct vmap_block_queue *vbq;
1438 struct vmap_block *vb;
1439 struct vmap_area *va;
1440 unsigned long vb_idx;
1444 node = numa_node_id();
1446 vb = kmalloc_node(sizeof(struct vmap_block),
1447 gfp_mask & GFP_RECLAIM_MASK, node);
1449 return ERR_PTR(-ENOMEM);
1451 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1452 VMALLOC_START, VMALLOC_END,
1456 return ERR_CAST(va);
1459 err = radix_tree_preload(gfp_mask);
1460 if (unlikely(err)) {
1463 return ERR_PTR(err);
1466 vaddr = vmap_block_vaddr(va->va_start, 0);
1467 spin_lock_init(&vb->lock);
1469 /* At least something should be left free */
1470 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1471 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1473 vb->dirty_min = VMAP_BBMAP_BITS;
1475 INIT_LIST_HEAD(&vb->free_list);
1477 vb_idx = addr_to_vb_idx(va->va_start);
1478 spin_lock(&vmap_block_tree_lock);
1479 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1480 spin_unlock(&vmap_block_tree_lock);
1482 radix_tree_preload_end();
1484 vbq = &get_cpu_var(vmap_block_queue);
1485 spin_lock(&vbq->lock);
1486 list_add_tail_rcu(&vb->free_list, &vbq->free);
1487 spin_unlock(&vbq->lock);
1488 put_cpu_var(vmap_block_queue);
1493 static void free_vmap_block(struct vmap_block *vb)
1495 struct vmap_block *tmp;
1496 unsigned long vb_idx;
1498 vb_idx = addr_to_vb_idx(vb->va->va_start);
1499 spin_lock(&vmap_block_tree_lock);
1500 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1501 spin_unlock(&vmap_block_tree_lock);
1504 free_vmap_area_noflush(vb->va);
1505 kfree_rcu(vb, rcu_head);
1508 static void purge_fragmented_blocks(int cpu)
1511 struct vmap_block *vb;
1512 struct vmap_block *n_vb;
1513 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1516 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1518 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1521 spin_lock(&vb->lock);
1522 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1523 vb->free = 0; /* prevent further allocs after releasing lock */
1524 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1526 vb->dirty_max = VMAP_BBMAP_BITS;
1527 spin_lock(&vbq->lock);
1528 list_del_rcu(&vb->free_list);
1529 spin_unlock(&vbq->lock);
1530 spin_unlock(&vb->lock);
1531 list_add_tail(&vb->purge, &purge);
1533 spin_unlock(&vb->lock);
1537 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1538 list_del(&vb->purge);
1539 free_vmap_block(vb);
1543 static void purge_fragmented_blocks_allcpus(void)
1547 for_each_possible_cpu(cpu)
1548 purge_fragmented_blocks(cpu);
1551 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1553 struct vmap_block_queue *vbq;
1554 struct vmap_block *vb;
1558 BUG_ON(offset_in_page(size));
1559 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1560 if (WARN_ON(size == 0)) {
1562 * Allocating 0 bytes isn't what caller wants since
1563 * get_order(0) returns funny result. Just warn and terminate
1568 order = get_order(size);
1571 vbq = &get_cpu_var(vmap_block_queue);
1572 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1573 unsigned long pages_off;
1575 spin_lock(&vb->lock);
1576 if (vb->free < (1UL << order)) {
1577 spin_unlock(&vb->lock);
1581 pages_off = VMAP_BBMAP_BITS - vb->free;
1582 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1583 vb->free -= 1UL << order;
1584 if (vb->free == 0) {
1585 spin_lock(&vbq->lock);
1586 list_del_rcu(&vb->free_list);
1587 spin_unlock(&vbq->lock);
1590 spin_unlock(&vb->lock);
1594 put_cpu_var(vmap_block_queue);
1597 /* Allocate new block if nothing was found */
1599 vaddr = new_vmap_block(order, gfp_mask);
1604 static void vb_free(const void *addr, unsigned long size)
1606 unsigned long offset;
1607 unsigned long vb_idx;
1609 struct vmap_block *vb;
1611 BUG_ON(offset_in_page(size));
1612 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1614 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1616 order = get_order(size);
1618 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1619 offset >>= PAGE_SHIFT;
1621 vb_idx = addr_to_vb_idx((unsigned long)addr);
1623 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1627 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1629 if (debug_pagealloc_enabled())
1630 flush_tlb_kernel_range((unsigned long)addr,
1631 (unsigned long)addr + size);
1633 spin_lock(&vb->lock);
1635 /* Expand dirty range */
1636 vb->dirty_min = min(vb->dirty_min, offset);
1637 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1639 vb->dirty += 1UL << order;
1640 if (vb->dirty == VMAP_BBMAP_BITS) {
1642 spin_unlock(&vb->lock);
1643 free_vmap_block(vb);
1645 spin_unlock(&vb->lock);
1648 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1652 if (unlikely(!vmap_initialized))
1657 for_each_possible_cpu(cpu) {
1658 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1659 struct vmap_block *vb;
1662 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1663 spin_lock(&vb->lock);
1665 unsigned long va_start = vb->va->va_start;
1668 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1669 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1671 start = min(s, start);
1676 spin_unlock(&vb->lock);
1681 mutex_lock(&vmap_purge_lock);
1682 purge_fragmented_blocks_allcpus();
1683 if (!__purge_vmap_area_lazy(start, end) && flush)
1684 flush_tlb_kernel_range(start, end);
1685 mutex_unlock(&vmap_purge_lock);
1689 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1691 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1692 * to amortize TLB flushing overheads. What this means is that any page you
1693 * have now, may, in a former life, have been mapped into kernel virtual
1694 * address by the vmap layer and so there might be some CPUs with TLB entries
1695 * still referencing that page (additional to the regular 1:1 kernel mapping).
1697 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1698 * be sure that none of the pages we have control over will have any aliases
1699 * from the vmap layer.
1701 void vm_unmap_aliases(void)
1703 unsigned long start = ULONG_MAX, end = 0;
1706 _vm_unmap_aliases(start, end, flush);
1708 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1711 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1712 * @mem: the pointer returned by vm_map_ram
1713 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1715 void vm_unmap_ram(const void *mem, unsigned int count)
1717 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1718 unsigned long addr = (unsigned long)mem;
1719 struct vmap_area *va;
1723 BUG_ON(addr < VMALLOC_START);
1724 BUG_ON(addr > VMALLOC_END);
1725 BUG_ON(!PAGE_ALIGNED(addr));
1727 if (likely(count <= VMAP_MAX_ALLOC)) {
1728 debug_check_no_locks_freed(mem, size);
1733 va = find_vmap_area(addr);
1735 debug_check_no_locks_freed((void *)va->va_start,
1736 (va->va_end - va->va_start));
1737 free_unmap_vmap_area(va);
1739 EXPORT_SYMBOL(vm_unmap_ram);
1742 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1743 * @pages: an array of pointers to the pages to be mapped
1744 * @count: number of pages
1745 * @node: prefer to allocate data structures on this node
1746 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1748 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1749 * faster than vmap so it's good. But if you mix long-life and short-life
1750 * objects with vm_map_ram(), it could consume lots of address space through
1751 * fragmentation (especially on a 32bit machine). You could see failures in
1752 * the end. Please use this function for short-lived objects.
1754 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1756 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1758 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1762 if (likely(count <= VMAP_MAX_ALLOC)) {
1763 mem = vb_alloc(size, GFP_KERNEL);
1766 addr = (unsigned long)mem;
1768 struct vmap_area *va;
1769 va = alloc_vmap_area(size, PAGE_SIZE,
1770 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1774 addr = va->va_start;
1777 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1778 vm_unmap_ram(mem, count);
1783 EXPORT_SYMBOL(vm_map_ram);
1785 static struct vm_struct *vmlist __initdata;
1788 * vm_area_add_early - add vmap area early during boot
1789 * @vm: vm_struct to add
1791 * This function is used to add fixed kernel vm area to vmlist before
1792 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1793 * should contain proper values and the other fields should be zero.
1795 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1797 void __init vm_area_add_early(struct vm_struct *vm)
1799 struct vm_struct *tmp, **p;
1801 BUG_ON(vmap_initialized);
1802 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1803 if (tmp->addr >= vm->addr) {
1804 BUG_ON(tmp->addr < vm->addr + vm->size);
1807 BUG_ON(tmp->addr + tmp->size > vm->addr);
1814 * vm_area_register_early - register vmap area early during boot
1815 * @vm: vm_struct to register
1816 * @align: requested alignment
1818 * This function is used to register kernel vm area before
1819 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1820 * proper values on entry and other fields should be zero. On return,
1821 * vm->addr contains the allocated address.
1823 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1825 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1827 static size_t vm_init_off __initdata;
1830 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1831 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1833 vm->addr = (void *)addr;
1835 vm_area_add_early(vm);
1838 static void vmap_init_free_space(void)
1840 unsigned long vmap_start = 1;
1841 const unsigned long vmap_end = ULONG_MAX;
1842 struct vmap_area *busy, *free;
1846 * -|-----|.....|-----|-----|-----|.....|-
1848 * |<--------------------------------->|
1850 list_for_each_entry(busy, &vmap_area_list, list) {
1851 if (busy->va_start - vmap_start > 0) {
1852 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1853 if (!WARN_ON_ONCE(!free)) {
1854 free->va_start = vmap_start;
1855 free->va_end = busy->va_start;
1857 insert_vmap_area_augment(free, NULL,
1858 &free_vmap_area_root,
1859 &free_vmap_area_list);
1863 vmap_start = busy->va_end;
1866 if (vmap_end - vmap_start > 0) {
1867 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1868 if (!WARN_ON_ONCE(!free)) {
1869 free->va_start = vmap_start;
1870 free->va_end = vmap_end;
1872 insert_vmap_area_augment(free, NULL,
1873 &free_vmap_area_root,
1874 &free_vmap_area_list);
1879 void __init vmalloc_init(void)
1881 struct vmap_area *va;
1882 struct vm_struct *tmp;
1886 * Create the cache for vmap_area objects.
1888 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1890 for_each_possible_cpu(i) {
1891 struct vmap_block_queue *vbq;
1892 struct vfree_deferred *p;
1894 vbq = &per_cpu(vmap_block_queue, i);
1895 spin_lock_init(&vbq->lock);
1896 INIT_LIST_HEAD(&vbq->free);
1897 p = &per_cpu(vfree_deferred, i);
1898 init_llist_head(&p->list);
1899 INIT_WORK(&p->wq, free_work);
1902 /* Import existing vmlist entries. */
1903 for (tmp = vmlist; tmp; tmp = tmp->next) {
1904 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1905 if (WARN_ON_ONCE(!va))
1908 va->flags = VM_VM_AREA;
1909 va->va_start = (unsigned long)tmp->addr;
1910 va->va_end = va->va_start + tmp->size;
1912 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1916 * Now we can initialize a free vmap space.
1918 vmap_init_free_space();
1919 vmap_initialized = true;
1923 * map_kernel_range_noflush - map kernel VM area with the specified pages
1924 * @addr: start of the VM area to map
1925 * @size: size of the VM area to map
1926 * @prot: page protection flags to use
1927 * @pages: pages to map
1929 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1930 * specify should have been allocated using get_vm_area() and its
1934 * This function does NOT do any cache flushing. The caller is
1935 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1936 * before calling this function.
1939 * The number of pages mapped on success, -errno on failure.
1941 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1942 pgprot_t prot, struct page **pages)
1944 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1948 * unmap_kernel_range_noflush - unmap kernel VM area
1949 * @addr: start of the VM area to unmap
1950 * @size: size of the VM area to unmap
1952 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1953 * specify should have been allocated using get_vm_area() and its
1957 * This function does NOT do any cache flushing. The caller is
1958 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1959 * before calling this function and flush_tlb_kernel_range() after.
1961 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1963 vunmap_page_range(addr, addr + size);
1965 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1968 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1969 * @addr: start of the VM area to unmap
1970 * @size: size of the VM area to unmap
1972 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1973 * the unmapping and tlb after.
1975 void unmap_kernel_range(unsigned long addr, unsigned long size)
1977 unsigned long end = addr + size;
1979 flush_cache_vunmap(addr, end);
1980 vunmap_page_range(addr, end);
1981 flush_tlb_kernel_range(addr, end);
1983 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1985 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1987 unsigned long addr = (unsigned long)area->addr;
1988 unsigned long end = addr + get_vm_area_size(area);
1991 err = vmap_page_range(addr, end, prot, pages);
1993 return err > 0 ? 0 : err;
1995 EXPORT_SYMBOL_GPL(map_vm_area);
1997 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1998 unsigned long flags, const void *caller)
2000 spin_lock(&vmap_area_lock);
2002 vm->addr = (void *)va->va_start;
2003 vm->size = va->va_end - va->va_start;
2004 vm->caller = caller;
2006 va->flags |= VM_VM_AREA;
2007 spin_unlock(&vmap_area_lock);
2010 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2013 * Before removing VM_UNINITIALIZED,
2014 * we should make sure that vm has proper values.
2015 * Pair with smp_rmb() in show_numa_info().
2018 vm->flags &= ~VM_UNINITIALIZED;
2021 static struct vm_struct *__get_vm_area_node(unsigned long size,
2022 unsigned long align, unsigned long flags, unsigned long start,
2023 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2025 struct vmap_area *va;
2026 struct vm_struct *area;
2028 BUG_ON(in_interrupt());
2029 size = PAGE_ALIGN(size);
2030 if (unlikely(!size))
2033 if (flags & VM_IOREMAP)
2034 align = 1ul << clamp_t(int, get_count_order_long(size),
2035 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2037 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2038 if (unlikely(!area))
2041 if (!(flags & VM_NO_GUARD))
2044 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2050 setup_vmalloc_vm(area, va, flags, caller);
2055 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2056 unsigned long start, unsigned long end)
2058 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2059 GFP_KERNEL, __builtin_return_address(0));
2061 EXPORT_SYMBOL_GPL(__get_vm_area);
2063 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2064 unsigned long start, unsigned long end,
2067 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2068 GFP_KERNEL, caller);
2072 * get_vm_area - reserve a contiguous kernel virtual area
2073 * @size: size of the area
2074 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2076 * Search an area of @size in the kernel virtual mapping area,
2077 * and reserved it for out purposes. Returns the area descriptor
2078 * on success or %NULL on failure.
2080 * Return: the area descriptor on success or %NULL on failure.
2082 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2084 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2085 NUMA_NO_NODE, GFP_KERNEL,
2086 __builtin_return_address(0));
2089 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2092 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2093 NUMA_NO_NODE, GFP_KERNEL, caller);
2097 * find_vm_area - find a continuous kernel virtual area
2098 * @addr: base address
2100 * Search for the kernel VM area starting at @addr, and return it.
2101 * It is up to the caller to do all required locking to keep the returned
2104 * Return: pointer to the found area or %NULL on faulure
2106 struct vm_struct *find_vm_area(const void *addr)
2108 struct vmap_area *va;
2110 va = find_vmap_area((unsigned long)addr);
2111 if (va && va->flags & VM_VM_AREA)
2118 * remove_vm_area - find and remove a continuous kernel virtual area
2119 * @addr: base address
2121 * Search for the kernel VM area starting at @addr, and remove it.
2122 * This function returns the found VM area, but using it is NOT safe
2123 * on SMP machines, except for its size or flags.
2125 * Return: pointer to the found area or %NULL on faulure
2127 struct vm_struct *remove_vm_area(const void *addr)
2129 struct vmap_area *va;
2133 va = find_vmap_area((unsigned long)addr);
2134 if (va && va->flags & VM_VM_AREA) {
2135 struct vm_struct *vm = va->vm;
2137 spin_lock(&vmap_area_lock);
2139 va->flags &= ~VM_VM_AREA;
2140 va->flags |= VM_LAZY_FREE;
2141 spin_unlock(&vmap_area_lock);
2143 kasan_free_shadow(vm);
2144 free_unmap_vmap_area(va);
2151 static inline void set_area_direct_map(const struct vm_struct *area,
2152 int (*set_direct_map)(struct page *page))
2156 for (i = 0; i < area->nr_pages; i++)
2157 if (page_address(area->pages[i]))
2158 set_direct_map(area->pages[i]);
2161 /* Handle removing and resetting vm mappings related to the vm_struct. */
2162 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2164 unsigned long start = ULONG_MAX, end = 0;
2165 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2169 remove_vm_area(area->addr);
2171 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2176 * If not deallocating pages, just do the flush of the VM area and
2179 if (!deallocate_pages) {
2185 * If execution gets here, flush the vm mapping and reset the direct
2186 * map. Find the start and end range of the direct mappings to make sure
2187 * the vm_unmap_aliases() flush includes the direct map.
2189 for (i = 0; i < area->nr_pages; i++) {
2190 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2192 start = min(addr, start);
2193 end = max(addr + PAGE_SIZE, end);
2199 * Set direct map to something invalid so that it won't be cached if
2200 * there are any accesses after the TLB flush, then flush the TLB and
2201 * reset the direct map permissions to the default.
2203 set_area_direct_map(area, set_direct_map_invalid_noflush);
2204 _vm_unmap_aliases(start, end, flush_dmap);
2205 set_area_direct_map(area, set_direct_map_default_noflush);
2208 static void __vunmap(const void *addr, int deallocate_pages)
2210 struct vm_struct *area;
2215 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2219 area = find_vm_area(addr);
2220 if (unlikely(!area)) {
2221 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2226 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2227 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2229 vm_remove_mappings(area, deallocate_pages);
2231 if (deallocate_pages) {
2234 for (i = 0; i < area->nr_pages; i++) {
2235 struct page *page = area->pages[i];
2238 __free_pages(page, 0);
2241 kvfree(area->pages);
2248 static inline void __vfree_deferred(const void *addr)
2251 * Use raw_cpu_ptr() because this can be called from preemptible
2252 * context. Preemption is absolutely fine here, because the llist_add()
2253 * implementation is lockless, so it works even if we are adding to
2254 * nother cpu's list. schedule_work() should be fine with this too.
2256 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2258 if (llist_add((struct llist_node *)addr, &p->list))
2259 schedule_work(&p->wq);
2263 * vfree_atomic - release memory allocated by vmalloc()
2264 * @addr: memory base address
2266 * This one is just like vfree() but can be called in any atomic context
2269 void vfree_atomic(const void *addr)
2273 kmemleak_free(addr);
2277 __vfree_deferred(addr);
2280 static void __vfree(const void *addr)
2282 if (unlikely(in_interrupt()))
2283 __vfree_deferred(addr);
2289 * vfree - release memory allocated by vmalloc()
2290 * @addr: memory base address
2292 * Free the virtually continuous memory area starting at @addr, as
2293 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2294 * NULL, no operation is performed.
2296 * Must not be called in NMI context (strictly speaking, only if we don't
2297 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2298 * conventions for vfree() arch-depenedent would be a really bad idea)
2300 * May sleep if called *not* from interrupt context.
2302 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2304 void vfree(const void *addr)
2308 kmemleak_free(addr);
2310 might_sleep_if(!in_interrupt());
2317 EXPORT_SYMBOL(vfree);
2320 * vunmap - release virtual mapping obtained by vmap()
2321 * @addr: memory base address
2323 * Free the virtually contiguous memory area starting at @addr,
2324 * which was created from the page array passed to vmap().
2326 * Must not be called in interrupt context.
2328 void vunmap(const void *addr)
2330 BUG_ON(in_interrupt());
2335 EXPORT_SYMBOL(vunmap);
2338 * vmap - map an array of pages into virtually contiguous space
2339 * @pages: array of page pointers
2340 * @count: number of pages to map
2341 * @flags: vm_area->flags
2342 * @prot: page protection for the mapping
2344 * Maps @count pages from @pages into contiguous kernel virtual
2347 * Return: the address of the area or %NULL on failure
2349 void *vmap(struct page **pages, unsigned int count,
2350 unsigned long flags, pgprot_t prot)
2352 struct vm_struct *area;
2353 unsigned long size; /* In bytes */
2357 if (count > totalram_pages())
2360 size = (unsigned long)count << PAGE_SHIFT;
2361 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2365 if (map_vm_area(area, prot, pages)) {
2372 EXPORT_SYMBOL(vmap);
2374 static void *__vmalloc_node(unsigned long size, unsigned long align,
2375 gfp_t gfp_mask, pgprot_t prot,
2376 int node, const void *caller);
2377 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2378 pgprot_t prot, int node)
2380 struct page **pages;
2381 unsigned int nr_pages, array_size, i;
2382 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2383 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2384 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2388 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2389 array_size = (nr_pages * sizeof(struct page *));
2391 area->nr_pages = nr_pages;
2392 /* Please note that the recursion is strictly bounded. */
2393 if (array_size > PAGE_SIZE) {
2394 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2395 PAGE_KERNEL, node, area->caller);
2397 pages = kmalloc_node(array_size, nested_gfp, node);
2399 area->pages = pages;
2401 remove_vm_area(area->addr);
2406 for (i = 0; i < area->nr_pages; i++) {
2409 if (node == NUMA_NO_NODE)
2410 page = alloc_page(alloc_mask|highmem_mask);
2412 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2414 if (unlikely(!page)) {
2415 /* Successfully allocated i pages, free them in __vunmap() */
2419 area->pages[i] = page;
2420 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2424 if (map_vm_area(area, prot, pages))
2429 warn_alloc(gfp_mask, NULL,
2430 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2431 (area->nr_pages*PAGE_SIZE), area->size);
2432 __vfree(area->addr);
2437 * __vmalloc_node_range - allocate virtually contiguous memory
2438 * @size: allocation size
2439 * @align: desired alignment
2440 * @start: vm area range start
2441 * @end: vm area range end
2442 * @gfp_mask: flags for the page level allocator
2443 * @prot: protection mask for the allocated pages
2444 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2445 * @node: node to use for allocation or NUMA_NO_NODE
2446 * @caller: caller's return address
2448 * Allocate enough pages to cover @size from the page level
2449 * allocator with @gfp_mask flags. Map them into contiguous
2450 * kernel virtual space, using a pagetable protection of @prot.
2452 * Return: the address of the area or %NULL on failure
2454 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2455 unsigned long start, unsigned long end, gfp_t gfp_mask,
2456 pgprot_t prot, unsigned long vm_flags, int node,
2459 struct vm_struct *area;
2461 unsigned long real_size = size;
2463 size = PAGE_ALIGN(size);
2464 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2467 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2468 vm_flags, start, end, node, gfp_mask, caller);
2472 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2477 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2478 * flag. It means that vm_struct is not fully initialized.
2479 * Now, it is fully initialized, so remove this flag here.
2481 clear_vm_uninitialized_flag(area);
2483 kmemleak_vmalloc(area, size, gfp_mask);
2488 warn_alloc(gfp_mask, NULL,
2489 "vmalloc: allocation failure: %lu bytes", real_size);
2494 * This is only for performance analysis of vmalloc and stress purpose.
2495 * It is required by vmalloc test module, therefore do not use it other
2498 #ifdef CONFIG_TEST_VMALLOC_MODULE
2499 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2503 * __vmalloc_node - allocate virtually contiguous memory
2504 * @size: allocation size
2505 * @align: desired alignment
2506 * @gfp_mask: flags for the page level allocator
2507 * @prot: protection mask for the allocated pages
2508 * @node: node to use for allocation or NUMA_NO_NODE
2509 * @caller: caller's return address
2511 * Allocate enough pages to cover @size from the page level
2512 * allocator with @gfp_mask flags. Map them into contiguous
2513 * kernel virtual space, using a pagetable protection of @prot.
2515 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2516 * and __GFP_NOFAIL are not supported
2518 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2521 * Return: pointer to the allocated memory or %NULL on error
2523 static void *__vmalloc_node(unsigned long size, unsigned long align,
2524 gfp_t gfp_mask, pgprot_t prot,
2525 int node, const void *caller)
2527 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2528 gfp_mask, prot, 0, node, caller);
2531 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2533 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2534 __builtin_return_address(0));
2536 EXPORT_SYMBOL(__vmalloc);
2538 static inline void *__vmalloc_node_flags(unsigned long size,
2539 int node, gfp_t flags)
2541 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2542 node, __builtin_return_address(0));
2546 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2549 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2553 * vmalloc - allocate virtually contiguous memory
2554 * @size: allocation size
2556 * Allocate enough pages to cover @size from the page level
2557 * allocator and map them into contiguous kernel virtual space.
2559 * For tight control over page level allocator and protection flags
2560 * use __vmalloc() instead.
2562 * Return: pointer to the allocated memory or %NULL on error
2564 void *vmalloc(unsigned long size)
2566 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2569 EXPORT_SYMBOL(vmalloc);
2572 * vzalloc - allocate virtually contiguous memory with zero fill
2573 * @size: allocation size
2575 * Allocate enough pages to cover @size from the page level
2576 * allocator and map them into contiguous kernel virtual space.
2577 * The memory allocated is set to zero.
2579 * For tight control over page level allocator and protection flags
2580 * use __vmalloc() instead.
2582 * Return: pointer to the allocated memory or %NULL on error
2584 void *vzalloc(unsigned long size)
2586 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2587 GFP_KERNEL | __GFP_ZERO);
2589 EXPORT_SYMBOL(vzalloc);
2592 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2593 * @size: allocation size
2595 * The resulting memory area is zeroed so it can be mapped to userspace
2596 * without leaking data.
2598 * Return: pointer to the allocated memory or %NULL on error
2600 void *vmalloc_user(unsigned long size)
2602 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2603 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2604 VM_USERMAP, NUMA_NO_NODE,
2605 __builtin_return_address(0));
2607 EXPORT_SYMBOL(vmalloc_user);
2610 * vmalloc_node - allocate memory on a specific node
2611 * @size: allocation size
2614 * Allocate enough pages to cover @size from the page level
2615 * allocator and map them into contiguous kernel virtual space.
2617 * For tight control over page level allocator and protection flags
2618 * use __vmalloc() instead.
2620 * Return: pointer to the allocated memory or %NULL on error
2622 void *vmalloc_node(unsigned long size, int node)
2624 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2625 node, __builtin_return_address(0));
2627 EXPORT_SYMBOL(vmalloc_node);
2630 * vzalloc_node - allocate memory on a specific node with zero fill
2631 * @size: allocation size
2634 * Allocate enough pages to cover @size from the page level
2635 * allocator and map them into contiguous kernel virtual space.
2636 * The memory allocated is set to zero.
2638 * For tight control over page level allocator and protection flags
2639 * use __vmalloc_node() instead.
2641 * Return: pointer to the allocated memory or %NULL on error
2643 void *vzalloc_node(unsigned long size, int node)
2645 return __vmalloc_node_flags(size, node,
2646 GFP_KERNEL | __GFP_ZERO);
2648 EXPORT_SYMBOL(vzalloc_node);
2651 * vmalloc_exec - allocate virtually contiguous, executable memory
2652 * @size: allocation size
2654 * Kernel-internal function to allocate enough pages to cover @size
2655 * the page level allocator and map them into contiguous and
2656 * executable kernel virtual space.
2658 * For tight control over page level allocator and protection flags
2659 * use __vmalloc() instead.
2661 * Return: pointer to the allocated memory or %NULL on error
2663 void *vmalloc_exec(unsigned long size)
2665 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2666 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2667 NUMA_NO_NODE, __builtin_return_address(0));
2670 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2671 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2672 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2673 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2676 * 64b systems should always have either DMA or DMA32 zones. For others
2677 * GFP_DMA32 should do the right thing and use the normal zone.
2679 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2683 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2684 * @size: allocation size
2686 * Allocate enough 32bit PA addressable pages to cover @size from the
2687 * page level allocator and map them into contiguous kernel virtual space.
2689 * Return: pointer to the allocated memory or %NULL on error
2691 void *vmalloc_32(unsigned long size)
2693 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2694 NUMA_NO_NODE, __builtin_return_address(0));
2696 EXPORT_SYMBOL(vmalloc_32);
2699 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2700 * @size: allocation size
2702 * The resulting memory area is 32bit addressable and zeroed so it can be
2703 * mapped to userspace without leaking data.
2705 * Return: pointer to the allocated memory or %NULL on error
2707 void *vmalloc_32_user(unsigned long size)
2709 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2710 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2711 VM_USERMAP, NUMA_NO_NODE,
2712 __builtin_return_address(0));
2714 EXPORT_SYMBOL(vmalloc_32_user);
2717 * small helper routine , copy contents to buf from addr.
2718 * If the page is not present, fill zero.
2721 static int aligned_vread(char *buf, char *addr, unsigned long count)
2727 unsigned long offset, length;
2729 offset = offset_in_page(addr);
2730 length = PAGE_SIZE - offset;
2733 p = vmalloc_to_page(addr);
2735 * To do safe access to this _mapped_ area, we need
2736 * lock. But adding lock here means that we need to add
2737 * overhead of vmalloc()/vfree() calles for this _debug_
2738 * interface, rarely used. Instead of that, we'll use
2739 * kmap() and get small overhead in this access function.
2743 * we can expect USER0 is not used (see vread/vwrite's
2744 * function description)
2746 void *map = kmap_atomic(p);
2747 memcpy(buf, map + offset, length);
2750 memset(buf, 0, length);
2760 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2766 unsigned long offset, length;
2768 offset = offset_in_page(addr);
2769 length = PAGE_SIZE - offset;
2772 p = vmalloc_to_page(addr);
2774 * To do safe access to this _mapped_ area, we need
2775 * lock. But adding lock here means that we need to add
2776 * overhead of vmalloc()/vfree() calles for this _debug_
2777 * interface, rarely used. Instead of that, we'll use
2778 * kmap() and get small overhead in this access function.
2782 * we can expect USER0 is not used (see vread/vwrite's
2783 * function description)
2785 void *map = kmap_atomic(p);
2786 memcpy(map + offset, buf, length);
2798 * vread() - read vmalloc area in a safe way.
2799 * @buf: buffer for reading data
2800 * @addr: vm address.
2801 * @count: number of bytes to be read.
2803 * This function checks that addr is a valid vmalloc'ed area, and
2804 * copy data from that area to a given buffer. If the given memory range
2805 * of [addr...addr+count) includes some valid address, data is copied to
2806 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2807 * IOREMAP area is treated as memory hole and no copy is done.
2809 * If [addr...addr+count) doesn't includes any intersects with alive
2810 * vm_struct area, returns 0. @buf should be kernel's buffer.
2812 * Note: In usual ops, vread() is never necessary because the caller
2813 * should know vmalloc() area is valid and can use memcpy().
2814 * This is for routines which have to access vmalloc area without
2815 * any informaion, as /dev/kmem.
2817 * Return: number of bytes for which addr and buf should be increased
2818 * (same number as @count) or %0 if [addr...addr+count) doesn't
2819 * include any intersection with valid vmalloc area
2821 long vread(char *buf, char *addr, unsigned long count)
2823 struct vmap_area *va;
2824 struct vm_struct *vm;
2825 char *vaddr, *buf_start = buf;
2826 unsigned long buflen = count;
2829 /* Don't allow overflow */
2830 if ((unsigned long) addr + count < count)
2831 count = -(unsigned long) addr;
2833 spin_lock(&vmap_area_lock);
2834 list_for_each_entry(va, &vmap_area_list, list) {
2838 if (!(va->flags & VM_VM_AREA))
2842 vaddr = (char *) vm->addr;
2843 if (addr >= vaddr + get_vm_area_size(vm))
2845 while (addr < vaddr) {
2853 n = vaddr + get_vm_area_size(vm) - addr;
2856 if (!(vm->flags & VM_IOREMAP))
2857 aligned_vread(buf, addr, n);
2858 else /* IOREMAP area is treated as memory hole */
2865 spin_unlock(&vmap_area_lock);
2867 if (buf == buf_start)
2869 /* zero-fill memory holes */
2870 if (buf != buf_start + buflen)
2871 memset(buf, 0, buflen - (buf - buf_start));
2877 * vwrite() - write vmalloc area in a safe way.
2878 * @buf: buffer for source data
2879 * @addr: vm address.
2880 * @count: number of bytes to be read.
2882 * This function checks that addr is a valid vmalloc'ed area, and
2883 * copy data from a buffer to the given addr. If specified range of
2884 * [addr...addr+count) includes some valid address, data is copied from
2885 * proper area of @buf. If there are memory holes, no copy to hole.
2886 * IOREMAP area is treated as memory hole and no copy is done.
2888 * If [addr...addr+count) doesn't includes any intersects with alive
2889 * vm_struct area, returns 0. @buf should be kernel's buffer.
2891 * Note: In usual ops, vwrite() is never necessary because the caller
2892 * should know vmalloc() area is valid and can use memcpy().
2893 * This is for routines which have to access vmalloc area without
2894 * any informaion, as /dev/kmem.
2896 * Return: number of bytes for which addr and buf should be
2897 * increased (same number as @count) or %0 if [addr...addr+count)
2898 * doesn't include any intersection with valid vmalloc area
2900 long vwrite(char *buf, char *addr, unsigned long count)
2902 struct vmap_area *va;
2903 struct vm_struct *vm;
2905 unsigned long n, buflen;
2908 /* Don't allow overflow */
2909 if ((unsigned long) addr + count < count)
2910 count = -(unsigned long) addr;
2913 spin_lock(&vmap_area_lock);
2914 list_for_each_entry(va, &vmap_area_list, list) {
2918 if (!(va->flags & VM_VM_AREA))
2922 vaddr = (char *) vm->addr;
2923 if (addr >= vaddr + get_vm_area_size(vm))
2925 while (addr < vaddr) {
2932 n = vaddr + get_vm_area_size(vm) - addr;
2935 if (!(vm->flags & VM_IOREMAP)) {
2936 aligned_vwrite(buf, addr, n);
2944 spin_unlock(&vmap_area_lock);
2951 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2952 * @vma: vma to cover
2953 * @uaddr: target user address to start at
2954 * @kaddr: virtual address of vmalloc kernel memory
2955 * @size: size of map area
2957 * Returns: 0 for success, -Exxx on failure
2959 * This function checks that @kaddr is a valid vmalloc'ed area,
2960 * and that it is big enough to cover the range starting at
2961 * @uaddr in @vma. Will return failure if that criteria isn't
2964 * Similar to remap_pfn_range() (see mm/memory.c)
2966 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2967 void *kaddr, unsigned long size)
2969 struct vm_struct *area;
2971 size = PAGE_ALIGN(size);
2973 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2976 area = find_vm_area(kaddr);
2980 if (!(area->flags & VM_USERMAP))
2983 if (kaddr + size > area->addr + get_vm_area_size(area))
2987 struct page *page = vmalloc_to_page(kaddr);
2990 ret = vm_insert_page(vma, uaddr, page);
2999 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3003 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3006 * remap_vmalloc_range - map vmalloc pages to userspace
3007 * @vma: vma to cover (map full range of vma)
3008 * @addr: vmalloc memory
3009 * @pgoff: number of pages into addr before first page to map
3011 * Returns: 0 for success, -Exxx on failure
3013 * This function checks that addr is a valid vmalloc'ed area, and
3014 * that it is big enough to cover the vma. Will return failure if
3015 * that criteria isn't met.
3017 * Similar to remap_pfn_range() (see mm/memory.c)
3019 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3020 unsigned long pgoff)
3022 return remap_vmalloc_range_partial(vma, vma->vm_start,
3023 addr + (pgoff << PAGE_SHIFT),
3024 vma->vm_end - vma->vm_start);
3026 EXPORT_SYMBOL(remap_vmalloc_range);
3029 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3032 void __weak vmalloc_sync_all(void)
3037 static int f(pte_t *pte, unsigned long addr, void *data)
3049 * alloc_vm_area - allocate a range of kernel address space
3050 * @size: size of the area
3051 * @ptes: returns the PTEs for the address space
3053 * Returns: NULL on failure, vm_struct on success
3055 * This function reserves a range of kernel address space, and
3056 * allocates pagetables to map that range. No actual mappings
3059 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3060 * allocated for the VM area are returned.
3062 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3064 struct vm_struct *area;
3066 area = get_vm_area_caller(size, VM_IOREMAP,
3067 __builtin_return_address(0));
3072 * This ensures that page tables are constructed for this region
3073 * of kernel virtual address space and mapped into init_mm.
3075 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3076 size, f, ptes ? &ptes : NULL)) {
3083 EXPORT_SYMBOL_GPL(alloc_vm_area);
3085 void free_vm_area(struct vm_struct *area)
3087 struct vm_struct *ret;
3088 ret = remove_vm_area(area->addr);
3089 BUG_ON(ret != area);
3092 EXPORT_SYMBOL_GPL(free_vm_area);
3095 static struct vmap_area *node_to_va(struct rb_node *n)
3097 return rb_entry_safe(n, struct vmap_area, rb_node);
3101 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3102 * @addr: target address
3104 * Returns: vmap_area if it is found. If there is no such area
3105 * the first highest(reverse order) vmap_area is returned
3106 * i.e. va->va_start < addr && va->va_end < addr or NULL
3107 * if there are no any areas before @addr.
3109 static struct vmap_area *
3110 pvm_find_va_enclose_addr(unsigned long addr)
3112 struct vmap_area *va, *tmp;
3115 n = free_vmap_area_root.rb_node;
3119 tmp = rb_entry(n, struct vmap_area, rb_node);
3120 if (tmp->va_start <= addr) {
3122 if (tmp->va_end >= addr)
3135 * pvm_determine_end_from_reverse - find the highest aligned address
3136 * of free block below VMALLOC_END
3138 * in - the VA we start the search(reverse order);
3139 * out - the VA with the highest aligned end address.
3141 * Returns: determined end address within vmap_area
3143 static unsigned long
3144 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3146 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3150 list_for_each_entry_from_reverse((*va),
3151 &free_vmap_area_list, list) {
3152 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3153 if ((*va)->va_start < addr)
3162 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3163 * @offsets: array containing offset of each area
3164 * @sizes: array containing size of each area
3165 * @nr_vms: the number of areas to allocate
3166 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3168 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3169 * vm_structs on success, %NULL on failure
3171 * Percpu allocator wants to use congruent vm areas so that it can
3172 * maintain the offsets among percpu areas. This function allocates
3173 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3174 * be scattered pretty far, distance between two areas easily going up
3175 * to gigabytes. To avoid interacting with regular vmallocs, these
3176 * areas are allocated from top.
3178 * Despite its complicated look, this allocator is rather simple. It
3179 * does everything top-down and scans free blocks from the end looking
3180 * for matching base. While scanning, if any of the areas do not fit the
3181 * base address is pulled down to fit the area. Scanning is repeated till
3182 * all the areas fit and then all necessary data structures are inserted
3183 * and the result is returned.
3185 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3186 const size_t *sizes, int nr_vms,
3189 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3190 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3191 struct vmap_area **vas, *va;
3192 struct vm_struct **vms;
3193 int area, area2, last_area, term_area;
3194 unsigned long base, start, size, end, last_end;
3195 bool purged = false;
3198 /* verify parameters and allocate data structures */
3199 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3200 for (last_area = 0, area = 0; area < nr_vms; area++) {
3201 start = offsets[area];
3202 end = start + sizes[area];
3204 /* is everything aligned properly? */
3205 BUG_ON(!IS_ALIGNED(offsets[area], align));
3206 BUG_ON(!IS_ALIGNED(sizes[area], align));
3208 /* detect the area with the highest address */
3209 if (start > offsets[last_area])
3212 for (area2 = area + 1; area2 < nr_vms; area2++) {
3213 unsigned long start2 = offsets[area2];
3214 unsigned long end2 = start2 + sizes[area2];
3216 BUG_ON(start2 < end && start < end2);
3219 last_end = offsets[last_area] + sizes[last_area];
3221 if (vmalloc_end - vmalloc_start < last_end) {
3226 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3227 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3231 for (area = 0; area < nr_vms; area++) {
3232 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3233 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3234 if (!vas[area] || !vms[area])
3238 spin_lock(&vmap_area_lock);
3240 /* start scanning - we scan from the top, begin with the last area */
3241 area = term_area = last_area;
3242 start = offsets[area];
3243 end = start + sizes[area];
3245 va = pvm_find_va_enclose_addr(vmalloc_end);
3246 base = pvm_determine_end_from_reverse(&va, align) - end;
3250 * base might have underflowed, add last_end before
3253 if (base + last_end < vmalloc_start + last_end)
3257 * Fitting base has not been found.
3263 * If this VA does not fit, move base downwards and recheck.
3265 if (base + start < va->va_start || base + end > va->va_end) {
3266 va = node_to_va(rb_prev(&va->rb_node));
3267 base = pvm_determine_end_from_reverse(&va, align) - end;
3273 * This area fits, move on to the previous one. If
3274 * the previous one is the terminal one, we're done.
3276 area = (area + nr_vms - 1) % nr_vms;
3277 if (area == term_area)
3280 start = offsets[area];
3281 end = start + sizes[area];
3282 va = pvm_find_va_enclose_addr(base + end);
3285 /* we've found a fitting base, insert all va's */
3286 for (area = 0; area < nr_vms; area++) {
3289 start = base + offsets[area];
3292 va = pvm_find_va_enclose_addr(start);
3293 if (WARN_ON_ONCE(va == NULL))
3294 /* It is a BUG(), but trigger recovery instead. */
3297 type = classify_va_fit_type(va, start, size);
3298 if (WARN_ON_ONCE(type == NOTHING_FIT))
3299 /* It is a BUG(), but trigger recovery instead. */
3302 ret = adjust_va_to_fit_type(va, start, size, type);
3306 /* Allocated area. */
3308 va->va_start = start;
3309 va->va_end = start + size;
3311 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3314 spin_unlock(&vmap_area_lock);
3316 /* insert all vm's */
3317 for (area = 0; area < nr_vms; area++)
3318 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3325 /* Remove previously inserted areas. */
3327 __free_vmap_area(vas[area]);
3332 spin_unlock(&vmap_area_lock);
3334 purge_vmap_area_lazy();
3337 /* Before "retry", check if we recover. */
3338 for (area = 0; area < nr_vms; area++) {
3342 vas[area] = kmem_cache_zalloc(
3343 vmap_area_cachep, GFP_KERNEL);
3352 for (area = 0; area < nr_vms; area++) {
3354 kmem_cache_free(vmap_area_cachep, vas[area]);
3365 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3366 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3367 * @nr_vms: the number of allocated areas
3369 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3371 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3375 for (i = 0; i < nr_vms; i++)
3376 free_vm_area(vms[i]);
3379 #endif /* CONFIG_SMP */
3381 #ifdef CONFIG_PROC_FS
3382 static void *s_start(struct seq_file *m, loff_t *pos)
3383 __acquires(&vmap_area_lock)
3385 spin_lock(&vmap_area_lock);
3386 return seq_list_start(&vmap_area_list, *pos);
3389 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3391 return seq_list_next(p, &vmap_area_list, pos);
3394 static void s_stop(struct seq_file *m, void *p)
3395 __releases(&vmap_area_lock)
3397 spin_unlock(&vmap_area_lock);
3400 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3402 if (IS_ENABLED(CONFIG_NUMA)) {
3403 unsigned int nr, *counters = m->private;
3408 if (v->flags & VM_UNINITIALIZED)
3410 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3413 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3415 for (nr = 0; nr < v->nr_pages; nr++)
3416 counters[page_to_nid(v->pages[nr])]++;
3418 for_each_node_state(nr, N_HIGH_MEMORY)
3420 seq_printf(m, " N%u=%u", nr, counters[nr]);
3424 static int s_show(struct seq_file *m, void *p)
3426 struct vmap_area *va;
3427 struct vm_struct *v;
3429 va = list_entry(p, struct vmap_area, list);
3432 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3433 * behalf of vmap area is being tear down or vm_map_ram allocation.
3435 if (!(va->flags & VM_VM_AREA)) {
3436 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3437 (void *)va->va_start, (void *)va->va_end,
3438 va->va_end - va->va_start,
3439 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3446 seq_printf(m, "0x%pK-0x%pK %7ld",
3447 v->addr, v->addr + v->size, v->size);
3450 seq_printf(m, " %pS", v->caller);
3453 seq_printf(m, " pages=%d", v->nr_pages);
3456 seq_printf(m, " phys=%pa", &v->phys_addr);
3458 if (v->flags & VM_IOREMAP)
3459 seq_puts(m, " ioremap");
3461 if (v->flags & VM_ALLOC)
3462 seq_puts(m, " vmalloc");
3464 if (v->flags & VM_MAP)
3465 seq_puts(m, " vmap");
3467 if (v->flags & VM_USERMAP)
3468 seq_puts(m, " user");
3470 if (is_vmalloc_addr(v->pages))
3471 seq_puts(m, " vpages");
3473 show_numa_info(m, v);
3478 static const struct seq_operations vmalloc_op = {
3485 static int __init proc_vmalloc_init(void)
3487 if (IS_ENABLED(CONFIG_NUMA))
3488 proc_create_seq_private("vmallocinfo", 0400, NULL,
3490 nr_node_ids * sizeof(unsigned int), NULL);
3492 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3495 module_init(proc_vmalloc_init);