Merge tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / truncate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002    Andrew Morton
8  *              Initial version.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25
26 /*
27  * Regular page slots are stabilized by the page lock even without the tree
28  * itself locked.  These unlocked entries need verification under the tree
29  * lock.
30  */
31 static inline void __clear_shadow_entry(struct address_space *mapping,
32                                 pgoff_t index, void *entry)
33 {
34         XA_STATE(xas, &mapping->i_pages, index);
35
36         xas_set_update(&xas, workingset_update_node);
37         if (xas_load(&xas) != entry)
38                 return;
39         xas_store(&xas, NULL);
40 }
41
42 static void clear_shadow_entries(struct address_space *mapping,
43                                  struct folio_batch *fbatch, pgoff_t *indices)
44 {
45         int i;
46
47         /* Handled by shmem itself, or for DAX we do nothing. */
48         if (shmem_mapping(mapping) || dax_mapping(mapping))
49                 return;
50
51         spin_lock(&mapping->host->i_lock);
52         xa_lock_irq(&mapping->i_pages);
53
54         for (i = 0; i < folio_batch_count(fbatch); i++) {
55                 struct folio *folio = fbatch->folios[i];
56
57                 if (xa_is_value(folio))
58                         __clear_shadow_entry(mapping, indices[i], folio);
59         }
60
61         xa_unlock_irq(&mapping->i_pages);
62         if (mapping_shrinkable(mapping))
63                 inode_add_lru(mapping->host);
64         spin_unlock(&mapping->host->i_lock);
65 }
66
67 /*
68  * Unconditionally remove exceptional entries. Usually called from truncate
69  * path. Note that the folio_batch may be altered by this function by removing
70  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
71  */
72 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
73                                 struct folio_batch *fbatch, pgoff_t *indices)
74 {
75         int i, j;
76         bool dax;
77
78         /* Handled by shmem itself */
79         if (shmem_mapping(mapping))
80                 return;
81
82         for (j = 0; j < folio_batch_count(fbatch); j++)
83                 if (xa_is_value(fbatch->folios[j]))
84                         break;
85
86         if (j == folio_batch_count(fbatch))
87                 return;
88
89         dax = dax_mapping(mapping);
90         if (!dax) {
91                 spin_lock(&mapping->host->i_lock);
92                 xa_lock_irq(&mapping->i_pages);
93         }
94
95         for (i = j; i < folio_batch_count(fbatch); i++) {
96                 struct folio *folio = fbatch->folios[i];
97                 pgoff_t index = indices[i];
98
99                 if (!xa_is_value(folio)) {
100                         fbatch->folios[j++] = folio;
101                         continue;
102                 }
103
104                 if (unlikely(dax)) {
105                         dax_delete_mapping_entry(mapping, index);
106                         continue;
107                 }
108
109                 __clear_shadow_entry(mapping, index, folio);
110         }
111
112         if (!dax) {
113                 xa_unlock_irq(&mapping->i_pages);
114                 if (mapping_shrinkable(mapping))
115                         inode_add_lru(mapping->host);
116                 spin_unlock(&mapping->host->i_lock);
117         }
118         fbatch->nr = j;
119 }
120
121 /**
122  * folio_invalidate - Invalidate part or all of a folio.
123  * @folio: The folio which is affected.
124  * @offset: start of the range to invalidate
125  * @length: length of the range to invalidate
126  *
127  * folio_invalidate() is called when all or part of the folio has become
128  * invalidated by a truncate operation.
129  *
130  * folio_invalidate() does not have to release all buffers, but it must
131  * ensure that no dirty buffer is left outside @offset and that no I/O
132  * is underway against any of the blocks which are outside the truncation
133  * point.  Because the caller is about to free (and possibly reuse) those
134  * blocks on-disk.
135  */
136 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
137 {
138         const struct address_space_operations *aops = folio->mapping->a_ops;
139
140         if (aops->invalidate_folio)
141                 aops->invalidate_folio(folio, offset, length);
142 }
143 EXPORT_SYMBOL_GPL(folio_invalidate);
144
145 /*
146  * If truncate cannot remove the fs-private metadata from the page, the page
147  * becomes orphaned.  It will be left on the LRU and may even be mapped into
148  * user pagetables if we're racing with filemap_fault().
149  *
150  * We need to bail out if page->mapping is no longer equal to the original
151  * mapping.  This happens a) when the VM reclaimed the page while we waited on
152  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
153  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
154  */
155 static void truncate_cleanup_folio(struct folio *folio)
156 {
157         if (folio_mapped(folio))
158                 unmap_mapping_folio(folio);
159
160         if (folio_needs_release(folio))
161                 folio_invalidate(folio, 0, folio_size(folio));
162
163         /*
164          * Some filesystems seem to re-dirty the page even after
165          * the VM has canceled the dirty bit (eg ext3 journaling).
166          * Hence dirty accounting check is placed after invalidation.
167          */
168         folio_cancel_dirty(folio);
169         folio_clear_mappedtodisk(folio);
170 }
171
172 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
173 {
174         if (folio->mapping != mapping)
175                 return -EIO;
176
177         truncate_cleanup_folio(folio);
178         filemap_remove_folio(folio);
179         return 0;
180 }
181
182 /*
183  * Handle partial folios.  The folio may be entirely within the
184  * range if a split has raced with us.  If not, we zero the part of the
185  * folio that's within the [start, end] range, and then split the folio if
186  * it's large.  split_page_range() will discard pages which now lie beyond
187  * i_size, and we rely on the caller to discard pages which lie within a
188  * newly created hole.
189  *
190  * Returns false if splitting failed so the caller can avoid
191  * discarding the entire folio which is stubbornly unsplit.
192  */
193 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
194 {
195         loff_t pos = folio_pos(folio);
196         unsigned int offset, length;
197
198         if (pos < start)
199                 offset = start - pos;
200         else
201                 offset = 0;
202         length = folio_size(folio);
203         if (pos + length <= (u64)end)
204                 length = length - offset;
205         else
206                 length = end + 1 - pos - offset;
207
208         folio_wait_writeback(folio);
209         if (length == folio_size(folio)) {
210                 truncate_inode_folio(folio->mapping, folio);
211                 return true;
212         }
213
214         /*
215          * We may be zeroing pages we're about to discard, but it avoids
216          * doing a complex calculation here, and then doing the zeroing
217          * anyway if the page split fails.
218          */
219         if (!mapping_inaccessible(folio->mapping))
220                 folio_zero_range(folio, offset, length);
221
222         if (folio_needs_release(folio))
223                 folio_invalidate(folio, offset, length);
224         if (!folio_test_large(folio))
225                 return true;
226         if (split_folio(folio) == 0)
227                 return true;
228         if (folio_test_dirty(folio))
229                 return false;
230         truncate_inode_folio(folio->mapping, folio);
231         return true;
232 }
233
234 /*
235  * Used to get rid of pages on hardware memory corruption.
236  */
237 int generic_error_remove_folio(struct address_space *mapping,
238                 struct folio *folio)
239 {
240         if (!mapping)
241                 return -EINVAL;
242         /*
243          * Only punch for normal data pages for now.
244          * Handling other types like directories would need more auditing.
245          */
246         if (!S_ISREG(mapping->host->i_mode))
247                 return -EIO;
248         return truncate_inode_folio(mapping, folio);
249 }
250 EXPORT_SYMBOL(generic_error_remove_folio);
251
252 /**
253  * mapping_evict_folio() - Remove an unused folio from the page-cache.
254  * @mapping: The mapping this folio belongs to.
255  * @folio: The folio to remove.
256  *
257  * Safely remove one folio from the page cache.
258  * It only drops clean, unused folios.
259  *
260  * Context: Folio must be locked.
261  * Return: The number of pages successfully removed.
262  */
263 long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
264 {
265         /* The page may have been truncated before it was locked */
266         if (!mapping)
267                 return 0;
268         if (folio_test_dirty(folio) || folio_test_writeback(folio))
269                 return 0;
270         /* The refcount will be elevated if any page in the folio is mapped */
271         if (folio_ref_count(folio) >
272                         folio_nr_pages(folio) + folio_has_private(folio) + 1)
273                 return 0;
274         if (!filemap_release_folio(folio, 0))
275                 return 0;
276
277         return remove_mapping(mapping, folio);
278 }
279
280 /**
281  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
282  * @mapping: mapping to truncate
283  * @lstart: offset from which to truncate
284  * @lend: offset to which to truncate (inclusive)
285  *
286  * Truncate the page cache, removing the pages that are between
287  * specified offsets (and zeroing out partial pages
288  * if lstart or lend + 1 is not page aligned).
289  *
290  * Truncate takes two passes - the first pass is nonblocking.  It will not
291  * block on page locks and it will not block on writeback.  The second pass
292  * will wait.  This is to prevent as much IO as possible in the affected region.
293  * The first pass will remove most pages, so the search cost of the second pass
294  * is low.
295  *
296  * We pass down the cache-hot hint to the page freeing code.  Even if the
297  * mapping is large, it is probably the case that the final pages are the most
298  * recently touched, and freeing happens in ascending file offset order.
299  *
300  * Note that since ->invalidate_folio() accepts range to invalidate
301  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
302  * page aligned properly.
303  */
304 void truncate_inode_pages_range(struct address_space *mapping,
305                                 loff_t lstart, loff_t lend)
306 {
307         pgoff_t         start;          /* inclusive */
308         pgoff_t         end;            /* exclusive */
309         struct folio_batch fbatch;
310         pgoff_t         indices[PAGEVEC_SIZE];
311         pgoff_t         index;
312         int             i;
313         struct folio    *folio;
314         bool            same_folio;
315
316         if (mapping_empty(mapping))
317                 return;
318
319         /*
320          * 'start' and 'end' always covers the range of pages to be fully
321          * truncated. Partial pages are covered with 'partial_start' at the
322          * start of the range and 'partial_end' at the end of the range.
323          * Note that 'end' is exclusive while 'lend' is inclusive.
324          */
325         start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
326         if (lend == -1)
327                 /*
328                  * lend == -1 indicates end-of-file so we have to set 'end'
329                  * to the highest possible pgoff_t and since the type is
330                  * unsigned we're using -1.
331                  */
332                 end = -1;
333         else
334                 end = (lend + 1) >> PAGE_SHIFT;
335
336         folio_batch_init(&fbatch);
337         index = start;
338         while (index < end && find_lock_entries(mapping, &index, end - 1,
339                         &fbatch, indices)) {
340                 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
341                 for (i = 0; i < folio_batch_count(&fbatch); i++)
342                         truncate_cleanup_folio(fbatch.folios[i]);
343                 delete_from_page_cache_batch(mapping, &fbatch);
344                 for (i = 0; i < folio_batch_count(&fbatch); i++)
345                         folio_unlock(fbatch.folios[i]);
346                 folio_batch_release(&fbatch);
347                 cond_resched();
348         }
349
350         same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
351         folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
352         if (!IS_ERR(folio)) {
353                 same_folio = lend < folio_pos(folio) + folio_size(folio);
354                 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
355                         start = folio_next_index(folio);
356                         if (same_folio)
357                                 end = folio->index;
358                 }
359                 folio_unlock(folio);
360                 folio_put(folio);
361                 folio = NULL;
362         }
363
364         if (!same_folio) {
365                 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
366                                                 FGP_LOCK, 0);
367                 if (!IS_ERR(folio)) {
368                         if (!truncate_inode_partial_folio(folio, lstart, lend))
369                                 end = folio->index;
370                         folio_unlock(folio);
371                         folio_put(folio);
372                 }
373         }
374
375         index = start;
376         while (index < end) {
377                 cond_resched();
378                 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
379                                 indices)) {
380                         /* If all gone from start onwards, we're done */
381                         if (index == start)
382                                 break;
383                         /* Otherwise restart to make sure all gone */
384                         index = start;
385                         continue;
386                 }
387
388                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
389                         struct folio *folio = fbatch.folios[i];
390
391                         /* We rely upon deletion not changing page->index */
392
393                         if (xa_is_value(folio))
394                                 continue;
395
396                         folio_lock(folio);
397                         VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
398                         folio_wait_writeback(folio);
399                         truncate_inode_folio(mapping, folio);
400                         folio_unlock(folio);
401                 }
402                 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
403                 folio_batch_release(&fbatch);
404         }
405 }
406 EXPORT_SYMBOL(truncate_inode_pages_range);
407
408 /**
409  * truncate_inode_pages - truncate *all* the pages from an offset
410  * @mapping: mapping to truncate
411  * @lstart: offset from which to truncate
412  *
413  * Called under (and serialised by) inode->i_rwsem and
414  * mapping->invalidate_lock.
415  *
416  * Note: When this function returns, there can be a page in the process of
417  * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
418  * mapping->nrpages can be non-zero when this function returns even after
419  * truncation of the whole mapping.
420  */
421 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
422 {
423         truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
424 }
425 EXPORT_SYMBOL(truncate_inode_pages);
426
427 /**
428  * truncate_inode_pages_final - truncate *all* pages before inode dies
429  * @mapping: mapping to truncate
430  *
431  * Called under (and serialized by) inode->i_rwsem.
432  *
433  * Filesystems have to use this in the .evict_inode path to inform the
434  * VM that this is the final truncate and the inode is going away.
435  */
436 void truncate_inode_pages_final(struct address_space *mapping)
437 {
438         /*
439          * Page reclaim can not participate in regular inode lifetime
440          * management (can't call iput()) and thus can race with the
441          * inode teardown.  Tell it when the address space is exiting,
442          * so that it does not install eviction information after the
443          * final truncate has begun.
444          */
445         mapping_set_exiting(mapping);
446
447         if (!mapping_empty(mapping)) {
448                 /*
449                  * As truncation uses a lockless tree lookup, cycle
450                  * the tree lock to make sure any ongoing tree
451                  * modification that does not see AS_EXITING is
452                  * completed before starting the final truncate.
453                  */
454                 xa_lock_irq(&mapping->i_pages);
455                 xa_unlock_irq(&mapping->i_pages);
456         }
457
458         truncate_inode_pages(mapping, 0);
459 }
460 EXPORT_SYMBOL(truncate_inode_pages_final);
461
462 /**
463  * mapping_try_invalidate - Invalidate all the evictable folios of one inode
464  * @mapping: the address_space which holds the folios to invalidate
465  * @start: the offset 'from' which to invalidate
466  * @end: the offset 'to' which to invalidate (inclusive)
467  * @nr_failed: How many folio invalidations failed
468  *
469  * This function is similar to invalidate_mapping_pages(), except that it
470  * returns the number of folios which could not be evicted in @nr_failed.
471  */
472 unsigned long mapping_try_invalidate(struct address_space *mapping,
473                 pgoff_t start, pgoff_t end, unsigned long *nr_failed)
474 {
475         pgoff_t indices[PAGEVEC_SIZE];
476         struct folio_batch fbatch;
477         pgoff_t index = start;
478         unsigned long ret;
479         unsigned long count = 0;
480         int i;
481         bool xa_has_values = false;
482
483         folio_batch_init(&fbatch);
484         while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
485                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
486                         struct folio *folio = fbatch.folios[i];
487
488                         /* We rely upon deletion not changing folio->index */
489
490                         if (xa_is_value(folio)) {
491                                 xa_has_values = true;
492                                 count++;
493                                 continue;
494                         }
495
496                         ret = mapping_evict_folio(mapping, folio);
497                         folio_unlock(folio);
498                         /*
499                          * Invalidation is a hint that the folio is no longer
500                          * of interest and try to speed up its reclaim.
501                          */
502                         if (!ret) {
503                                 deactivate_file_folio(folio);
504                                 /* Likely in the lru cache of a remote CPU */
505                                 if (nr_failed)
506                                         (*nr_failed)++;
507                         }
508                         count += ret;
509                 }
510
511                 if (xa_has_values)
512                         clear_shadow_entries(mapping, &fbatch, indices);
513
514                 folio_batch_remove_exceptionals(&fbatch);
515                 folio_batch_release(&fbatch);
516                 cond_resched();
517         }
518         return count;
519 }
520
521 /**
522  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
523  * @mapping: the address_space which holds the cache to invalidate
524  * @start: the offset 'from' which to invalidate
525  * @end: the offset 'to' which to invalidate (inclusive)
526  *
527  * This function removes pages that are clean, unmapped and unlocked,
528  * as well as shadow entries. It will not block on IO activity.
529  *
530  * If you want to remove all the pages of one inode, regardless of
531  * their use and writeback state, use truncate_inode_pages().
532  *
533  * Return: The number of indices that had their contents invalidated
534  */
535 unsigned long invalidate_mapping_pages(struct address_space *mapping,
536                 pgoff_t start, pgoff_t end)
537 {
538         return mapping_try_invalidate(mapping, start, end, NULL);
539 }
540 EXPORT_SYMBOL(invalidate_mapping_pages);
541
542 /*
543  * This is like mapping_evict_folio(), except it ignores the folio's
544  * refcount.  We do this because invalidate_inode_pages2() needs stronger
545  * invalidation guarantees, and cannot afford to leave folios behind because
546  * shrink_folio_list() has a temp ref on them, or because they're transiently
547  * sitting in the folio_add_lru() caches.
548  */
549 static int invalidate_complete_folio2(struct address_space *mapping,
550                                         struct folio *folio)
551 {
552         if (folio->mapping != mapping)
553                 return 0;
554
555         if (!filemap_release_folio(folio, GFP_KERNEL))
556                 return 0;
557
558         spin_lock(&mapping->host->i_lock);
559         xa_lock_irq(&mapping->i_pages);
560         if (folio_test_dirty(folio))
561                 goto failed;
562
563         BUG_ON(folio_has_private(folio));
564         __filemap_remove_folio(folio, NULL);
565         xa_unlock_irq(&mapping->i_pages);
566         if (mapping_shrinkable(mapping))
567                 inode_add_lru(mapping->host);
568         spin_unlock(&mapping->host->i_lock);
569
570         filemap_free_folio(mapping, folio);
571         return 1;
572 failed:
573         xa_unlock_irq(&mapping->i_pages);
574         spin_unlock(&mapping->host->i_lock);
575         return 0;
576 }
577
578 static int folio_launder(struct address_space *mapping, struct folio *folio)
579 {
580         if (!folio_test_dirty(folio))
581                 return 0;
582         if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
583                 return 0;
584         return mapping->a_ops->launder_folio(folio);
585 }
586
587 /**
588  * invalidate_inode_pages2_range - remove range of pages from an address_space
589  * @mapping: the address_space
590  * @start: the page offset 'from' which to invalidate
591  * @end: the page offset 'to' which to invalidate (inclusive)
592  *
593  * Any pages which are found to be mapped into pagetables are unmapped prior to
594  * invalidation.
595  *
596  * Return: -EBUSY if any pages could not be invalidated.
597  */
598 int invalidate_inode_pages2_range(struct address_space *mapping,
599                                   pgoff_t start, pgoff_t end)
600 {
601         pgoff_t indices[PAGEVEC_SIZE];
602         struct folio_batch fbatch;
603         pgoff_t index;
604         int i;
605         int ret = 0;
606         int ret2 = 0;
607         int did_range_unmap = 0;
608         bool xa_has_values = false;
609
610         if (mapping_empty(mapping))
611                 return 0;
612
613         folio_batch_init(&fbatch);
614         index = start;
615         while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
616                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
617                         struct folio *folio = fbatch.folios[i];
618
619                         /* We rely upon deletion not changing folio->index */
620
621                         if (xa_is_value(folio)) {
622                                 xa_has_values = true;
623                                 if (dax_mapping(mapping) &&
624                                     !dax_invalidate_mapping_entry_sync(mapping, indices[i]))
625                                         ret = -EBUSY;
626                                 continue;
627                         }
628
629                         if (!did_range_unmap && folio_mapped(folio)) {
630                                 /*
631                                  * If folio is mapped, before taking its lock,
632                                  * zap the rest of the file in one hit.
633                                  */
634                                 unmap_mapping_pages(mapping, indices[i],
635                                                 (1 + end - indices[i]), false);
636                                 did_range_unmap = 1;
637                         }
638
639                         folio_lock(folio);
640                         if (unlikely(folio->mapping != mapping)) {
641                                 folio_unlock(folio);
642                                 continue;
643                         }
644                         VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
645                         folio_wait_writeback(folio);
646
647                         if (folio_mapped(folio))
648                                 unmap_mapping_folio(folio);
649                         BUG_ON(folio_mapped(folio));
650
651                         ret2 = folio_launder(mapping, folio);
652                         if (ret2 == 0) {
653                                 if (!invalidate_complete_folio2(mapping, folio))
654                                         ret2 = -EBUSY;
655                         }
656                         if (ret2 < 0)
657                                 ret = ret2;
658                         folio_unlock(folio);
659                 }
660
661                 if (xa_has_values)
662                         clear_shadow_entries(mapping, &fbatch, indices);
663
664                 folio_batch_remove_exceptionals(&fbatch);
665                 folio_batch_release(&fbatch);
666                 cond_resched();
667         }
668         /*
669          * For DAX we invalidate page tables after invalidating page cache.  We
670          * could invalidate page tables while invalidating each entry however
671          * that would be expensive. And doing range unmapping before doesn't
672          * work as we have no cheap way to find whether page cache entry didn't
673          * get remapped later.
674          */
675         if (dax_mapping(mapping)) {
676                 unmap_mapping_pages(mapping, start, end - start + 1, false);
677         }
678         return ret;
679 }
680 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
681
682 /**
683  * invalidate_inode_pages2 - remove all pages from an address_space
684  * @mapping: the address_space
685  *
686  * Any pages which are found to be mapped into pagetables are unmapped prior to
687  * invalidation.
688  *
689  * Return: -EBUSY if any pages could not be invalidated.
690  */
691 int invalidate_inode_pages2(struct address_space *mapping)
692 {
693         return invalidate_inode_pages2_range(mapping, 0, -1);
694 }
695 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
696
697 /**
698  * truncate_pagecache - unmap and remove pagecache that has been truncated
699  * @inode: inode
700  * @newsize: new file size
701  *
702  * inode's new i_size must already be written before truncate_pagecache
703  * is called.
704  *
705  * This function should typically be called before the filesystem
706  * releases resources associated with the freed range (eg. deallocates
707  * blocks). This way, pagecache will always stay logically coherent
708  * with on-disk format, and the filesystem would not have to deal with
709  * situations such as writepage being called for a page that has already
710  * had its underlying blocks deallocated.
711  */
712 void truncate_pagecache(struct inode *inode, loff_t newsize)
713 {
714         struct address_space *mapping = inode->i_mapping;
715         loff_t holebegin = round_up(newsize, PAGE_SIZE);
716
717         /*
718          * unmap_mapping_range is called twice, first simply for
719          * efficiency so that truncate_inode_pages does fewer
720          * single-page unmaps.  However after this first call, and
721          * before truncate_inode_pages finishes, it is possible for
722          * private pages to be COWed, which remain after
723          * truncate_inode_pages finishes, hence the second
724          * unmap_mapping_range call must be made for correctness.
725          */
726         unmap_mapping_range(mapping, holebegin, 0, 1);
727         truncate_inode_pages(mapping, newsize);
728         unmap_mapping_range(mapping, holebegin, 0, 1);
729 }
730 EXPORT_SYMBOL(truncate_pagecache);
731
732 /**
733  * truncate_setsize - update inode and pagecache for a new file size
734  * @inode: inode
735  * @newsize: new file size
736  *
737  * truncate_setsize updates i_size and performs pagecache truncation (if
738  * necessary) to @newsize. It will be typically be called from the filesystem's
739  * setattr function when ATTR_SIZE is passed in.
740  *
741  * Must be called with a lock serializing truncates and writes (generally
742  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
743  * specific block truncation has been performed.
744  */
745 void truncate_setsize(struct inode *inode, loff_t newsize)
746 {
747         loff_t oldsize = inode->i_size;
748
749         i_size_write(inode, newsize);
750         if (newsize > oldsize)
751                 pagecache_isize_extended(inode, oldsize, newsize);
752         truncate_pagecache(inode, newsize);
753 }
754 EXPORT_SYMBOL(truncate_setsize);
755
756 /**
757  * pagecache_isize_extended - update pagecache after extension of i_size
758  * @inode:      inode for which i_size was extended
759  * @from:       original inode size
760  * @to:         new inode size
761  *
762  * Handle extension of inode size either caused by extending truncate or
763  * by write starting after current i_size.  We mark the page straddling
764  * current i_size RO so that page_mkwrite() is called on the first
765  * write access to the page.  The filesystem will update its per-block
766  * information before user writes to the page via mmap after the i_size
767  * has been changed.
768  *
769  * The function must be called after i_size is updated so that page fault
770  * coming after we unlock the folio will already see the new i_size.
771  * The function must be called while we still hold i_rwsem - this not only
772  * makes sure i_size is stable but also that userspace cannot observe new
773  * i_size value before we are prepared to store mmap writes at new inode size.
774  */
775 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
776 {
777         int bsize = i_blocksize(inode);
778         loff_t rounded_from;
779         struct folio *folio;
780
781         WARN_ON(to > inode->i_size);
782
783         if (from >= to || bsize >= PAGE_SIZE)
784                 return;
785         /* Page straddling @from will not have any hole block created? */
786         rounded_from = round_up(from, bsize);
787         if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
788                 return;
789
790         folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE);
791         /* Folio not cached? Nothing to do */
792         if (IS_ERR(folio))
793                 return;
794         /*
795          * See folio_clear_dirty_for_io() for details why folio_mark_dirty()
796          * is needed.
797          */
798         if (folio_mkclean(folio))
799                 folio_mark_dirty(folio);
800         folio_unlock(folio);
801         folio_put(folio);
802 }
803 EXPORT_SYMBOL(pagecache_isize_extended);
804
805 /**
806  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
807  * @inode: inode
808  * @lstart: offset of beginning of hole
809  * @lend: offset of last byte of hole
810  *
811  * This function should typically be called before the filesystem
812  * releases resources associated with the freed range (eg. deallocates
813  * blocks). This way, pagecache will always stay logically coherent
814  * with on-disk format, and the filesystem would not have to deal with
815  * situations such as writepage being called for a page that has already
816  * had its underlying blocks deallocated.
817  */
818 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
819 {
820         struct address_space *mapping = inode->i_mapping;
821         loff_t unmap_start = round_up(lstart, PAGE_SIZE);
822         loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
823         /*
824          * This rounding is currently just for example: unmap_mapping_range
825          * expands its hole outwards, whereas we want it to contract the hole
826          * inwards.  However, existing callers of truncate_pagecache_range are
827          * doing their own page rounding first.  Note that unmap_mapping_range
828          * allows holelen 0 for all, and we allow lend -1 for end of file.
829          */
830
831         /*
832          * Unlike in truncate_pagecache, unmap_mapping_range is called only
833          * once (before truncating pagecache), and without "even_cows" flag:
834          * hole-punching should not remove private COWed pages from the hole.
835          */
836         if ((u64)unmap_end > (u64)unmap_start)
837                 unmap_mapping_range(mapping, unmap_start,
838                                     1 + unmap_end - unmap_start, 0);
839         truncate_inode_pages_range(mapping, lstart, lend);
840 }
841 EXPORT_SYMBOL(truncate_pagecache_range);