1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/blkdev.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 static void swap_entries_free(struct swap_info_struct *si,
56 struct swap_cluster_info *ci,
57 swp_entry_t entry, unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si,
59 unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
62 unsigned long offset);
63 static inline void unlock_cluster(struct swap_cluster_info *ci);
65 static DEFINE_SPINLOCK(swap_lock);
66 static unsigned int nr_swapfiles;
67 atomic_long_t nr_swap_pages;
69 * Some modules use swappable objects and may try to swap them out under
70 * memory pressure (via the shrinker). Before doing so, they may wish to
71 * check to see if any swap space is available.
73 EXPORT_SYMBOL_GPL(nr_swap_pages);
74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
75 long total_swap_pages;
76 static int least_priority = -1;
77 unsigned long swapfile_maximum_size;
78 #ifdef CONFIG_MIGRATION
79 bool swap_migration_ad_supported;
80 #endif /* CONFIG_MIGRATION */
82 static const char Bad_file[] = "Bad swap file entry ";
83 static const char Unused_file[] = "Unused swap file entry ";
84 static const char Bad_offset[] = "Bad swap offset entry ";
85 static const char Unused_offset[] = "Unused swap offset entry ";
88 * all active swap_info_structs
89 * protected with swap_lock, and ordered by priority.
91 static PLIST_HEAD(swap_active_head);
94 * all available (active, not full) swap_info_structs
95 * protected with swap_avail_lock, ordered by priority.
96 * This is used by folio_alloc_swap() instead of swap_active_head
97 * because swap_active_head includes all swap_info_structs,
98 * but folio_alloc_swap() doesn't need to look at full ones.
99 * This uses its own lock instead of swap_lock because when a
100 * swap_info_struct changes between not-full/full, it needs to
101 * add/remove itself to/from this list, but the swap_info_struct->lock
102 * is held and the locking order requires swap_lock to be taken
103 * before any swap_info_struct->lock.
105 static struct plist_head *swap_avail_heads;
106 static DEFINE_SPINLOCK(swap_avail_lock);
108 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
110 static DEFINE_MUTEX(swapon_mutex);
112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
113 /* Activity counter to indicate that a swapon or swapoff has occurred */
114 static atomic_t proc_poll_event = ATOMIC_INIT(0);
116 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
118 struct percpu_swap_cluster {
119 struct swap_info_struct *si[SWAP_NR_ORDERS];
120 unsigned long offset[SWAP_NR_ORDERS];
124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
126 .offset = { SWAP_ENTRY_INVALID },
127 .lock = INIT_LOCAL_LOCK(),
130 static struct swap_info_struct *swap_type_to_swap_info(int type)
132 if (type >= MAX_SWAPFILES)
135 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
138 static inline unsigned char swap_count(unsigned char ent)
140 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
144 * Use the second highest bit of inuse_pages counter as the indicator
145 * if one swap device is on the available plist, so the atomic can
146 * still be updated arithmetically while having special data embedded.
148 * inuse_pages counter is the only thing indicating if a device should
149 * be on avail_lists or not (except swapon / swapoff). By embedding the
150 * off-list bit in the atomic counter, updates no longer need any lock
151 * to check the list status.
153 * This bit will be set if the device is not on the plist and not
154 * usable, will be cleared if the device is on the plist.
156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
158 static long swap_usage_in_pages(struct swap_info_struct *si)
160 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
163 /* Reclaim the swap entry anyway if possible */
164 #define TTRS_ANYWAY 0x1
166 * Reclaim the swap entry if there are no more mappings of the
169 #define TTRS_UNMAPPED 0x2
170 /* Reclaim the swap entry if swap is getting full */
171 #define TTRS_FULL 0x4
173 static bool swap_only_has_cache(struct swap_info_struct *si,
174 unsigned long offset, int nr_pages)
176 unsigned char *map = si->swap_map + offset;
177 unsigned char *map_end = map + nr_pages;
180 VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
181 if (*map != SWAP_HAS_CACHE)
183 } while (++map < map_end);
188 static bool swap_is_last_map(struct swap_info_struct *si,
189 unsigned long offset, int nr_pages, bool *has_cache)
191 unsigned char *map = si->swap_map + offset;
192 unsigned char *map_end = map + nr_pages;
193 unsigned char count = *map;
195 if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
198 while (++map < map_end) {
203 *has_cache = !!(count & SWAP_HAS_CACHE);
208 * returns number of pages in the folio that backs the swap entry. If positive,
209 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
210 * folio was associated with the swap entry.
212 static int __try_to_reclaim_swap(struct swap_info_struct *si,
213 unsigned long offset, unsigned long flags)
215 swp_entry_t entry = swp_entry(si->type, offset);
216 struct address_space *address_space = swap_address_space(entry);
217 struct swap_cluster_info *ci;
223 folio = filemap_get_folio(address_space, swap_cache_index(entry));
227 nr_pages = folio_nr_pages(folio);
231 * When this function is called from scan_swap_map_slots() and it's
232 * called by vmscan.c at reclaiming folios. So we hold a folio lock
233 * here. We have to use trylock for avoiding deadlock. This is a special
234 * case and you should use folio_free_swap() with explicit folio_lock()
235 * in usual operations.
237 if (!folio_trylock(folio))
241 * Offset could point to the middle of a large folio, or folio
242 * may no longer point to the expected offset before it's locked.
245 if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) {
250 offset = swp_offset(entry);
252 need_reclaim = ((flags & TTRS_ANYWAY) ||
253 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
254 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
255 if (!need_reclaim || !folio_swapcache_freeable(folio))
259 * It's safe to delete the folio from swap cache only if the folio's
260 * swap_map is HAS_CACHE only, which means the slots have no page table
261 * reference or pending writeback, and can't be allocated to others.
263 ci = lock_cluster(si, offset);
264 need_reclaim = swap_only_has_cache(si, offset, nr_pages);
269 delete_from_swap_cache(folio);
270 folio_set_dirty(folio);
279 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
281 struct rb_node *rb = rb_first(&sis->swap_extent_root);
282 return rb_entry(rb, struct swap_extent, rb_node);
285 static inline struct swap_extent *next_se(struct swap_extent *se)
287 struct rb_node *rb = rb_next(&se->rb_node);
288 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
292 * swapon tell device that all the old swap contents can be discarded,
293 * to allow the swap device to optimize its wear-levelling.
295 static int discard_swap(struct swap_info_struct *si)
297 struct swap_extent *se;
298 sector_t start_block;
302 /* Do not discard the swap header page! */
304 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
305 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
307 err = blkdev_issue_discard(si->bdev, start_block,
308 nr_blocks, GFP_KERNEL);
314 for (se = next_se(se); se; se = next_se(se)) {
315 start_block = se->start_block << (PAGE_SHIFT - 9);
316 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
318 err = blkdev_issue_discard(si->bdev, start_block,
319 nr_blocks, GFP_KERNEL);
325 return err; /* That will often be -EOPNOTSUPP */
328 static struct swap_extent *
329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
331 struct swap_extent *se;
334 rb = sis->swap_extent_root.rb_node;
336 se = rb_entry(rb, struct swap_extent, rb_node);
337 if (offset < se->start_page)
339 else if (offset >= se->start_page + se->nr_pages)
344 /* It *must* be present */
348 sector_t swap_folio_sector(struct folio *folio)
350 struct swap_info_struct *sis = swp_swap_info(folio->swap);
351 struct swap_extent *se;
355 offset = swp_offset(folio->swap);
356 se = offset_to_swap_extent(sis, offset);
357 sector = se->start_block + (offset - se->start_page);
358 return sector << (PAGE_SHIFT - 9);
362 * swap allocation tell device that a cluster of swap can now be discarded,
363 * to allow the swap device to optimize its wear-levelling.
365 static void discard_swap_cluster(struct swap_info_struct *si,
366 pgoff_t start_page, pgoff_t nr_pages)
368 struct swap_extent *se = offset_to_swap_extent(si, start_page);
371 pgoff_t offset = start_page - se->start_page;
372 sector_t start_block = se->start_block + offset;
373 sector_t nr_blocks = se->nr_pages - offset;
375 if (nr_blocks > nr_pages)
376 nr_blocks = nr_pages;
377 start_page += nr_blocks;
378 nr_pages -= nr_blocks;
380 start_block <<= PAGE_SHIFT - 9;
381 nr_blocks <<= PAGE_SHIFT - 9;
382 if (blkdev_issue_discard(si->bdev, start_block,
383 nr_blocks, GFP_NOIO))
390 #ifdef CONFIG_THP_SWAP
391 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
393 #define swap_entry_order(order) (order)
395 #define SWAPFILE_CLUSTER 256
398 * Define swap_entry_order() as constant to let compiler to optimize
399 * out some code if !CONFIG_THP_SWAP
401 #define swap_entry_order(order) 0
403 #define LATENCY_LIMIT 256
405 static inline bool cluster_is_empty(struct swap_cluster_info *info)
407 return info->count == 0;
410 static inline bool cluster_is_discard(struct swap_cluster_info *info)
412 return info->flags == CLUSTER_FLAG_DISCARD;
415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
417 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
421 return cluster_is_empty(ci) || order == ci->order;
424 static inline unsigned int cluster_index(struct swap_info_struct *si,
425 struct swap_cluster_info *ci)
427 return ci - si->cluster_info;
430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
431 unsigned long offset)
433 return &si->cluster_info[offset / SWAPFILE_CLUSTER];
436 static inline unsigned int cluster_offset(struct swap_info_struct *si,
437 struct swap_cluster_info *ci)
439 return cluster_index(si, ci) * SWAPFILE_CLUSTER;
442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
443 unsigned long offset)
445 struct swap_cluster_info *ci;
447 ci = offset_to_cluster(si, offset);
448 spin_lock(&ci->lock);
453 static inline void unlock_cluster(struct swap_cluster_info *ci)
455 spin_unlock(&ci->lock);
458 static void move_cluster(struct swap_info_struct *si,
459 struct swap_cluster_info *ci, struct list_head *list,
460 enum swap_cluster_flags new_flags)
462 VM_WARN_ON(ci->flags == new_flags);
464 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
465 lockdep_assert_held(&ci->lock);
467 spin_lock(&si->lock);
468 if (ci->flags == CLUSTER_FLAG_NONE)
469 list_add_tail(&ci->list, list);
471 list_move_tail(&ci->list, list);
472 spin_unlock(&si->lock);
474 if (ci->flags == CLUSTER_FLAG_FRAG)
475 atomic_long_dec(&si->frag_cluster_nr[ci->order]);
476 else if (new_flags == CLUSTER_FLAG_FRAG)
477 atomic_long_inc(&si->frag_cluster_nr[ci->order]);
478 ci->flags = new_flags;
481 /* Add a cluster to discard list and schedule it to do discard */
482 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
483 struct swap_cluster_info *ci)
485 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
486 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
487 schedule_work(&si->discard_work);
490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
492 lockdep_assert_held(&ci->lock);
493 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
498 * Isolate and lock the first cluster that is not contented on a list,
499 * clean its flag before taken off-list. Cluster flag must be in sync
500 * with list status, so cluster updaters can always know the cluster
501 * list status without touching si lock.
503 * Note it's possible that all clusters on a list are contented so
504 * this returns NULL for an non-empty list.
506 static struct swap_cluster_info *isolate_lock_cluster(
507 struct swap_info_struct *si, struct list_head *list)
509 struct swap_cluster_info *ci, *ret = NULL;
511 spin_lock(&si->lock);
513 if (unlikely(!(si->flags & SWP_WRITEOK)))
516 list_for_each_entry(ci, list, list) {
517 if (!spin_trylock(&ci->lock))
520 /* We may only isolate and clear flags of following lists */
521 VM_BUG_ON(!ci->flags);
522 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
523 ci->flags != CLUSTER_FLAG_FULL);
526 ci->flags = CLUSTER_FLAG_NONE;
531 spin_unlock(&si->lock);
537 * Doing discard actually. After a cluster discard is finished, the cluster
538 * will be added to free cluster list. Discard cluster is a bit special as
539 * they don't participate in allocation or reclaim, so clusters marked as
540 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
542 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
544 struct swap_cluster_info *ci;
548 spin_lock(&si->lock);
549 while (!list_empty(&si->discard_clusters)) {
550 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
552 * Delete the cluster from list to prepare for discard, but keep
553 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
554 * pointing to it, or ran into by relocate_cluster.
557 idx = cluster_index(si, ci);
558 spin_unlock(&si->lock);
559 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
562 spin_lock(&ci->lock);
564 * Discard is done, clear its flags as it's off-list, then
565 * return the cluster to allocation list.
567 ci->flags = CLUSTER_FLAG_NONE;
568 __free_cluster(si, ci);
569 spin_unlock(&ci->lock);
571 spin_lock(&si->lock);
573 spin_unlock(&si->lock);
577 static void swap_discard_work(struct work_struct *work)
579 struct swap_info_struct *si;
581 si = container_of(work, struct swap_info_struct, discard_work);
583 swap_do_scheduled_discard(si);
586 static void swap_users_ref_free(struct percpu_ref *ref)
588 struct swap_info_struct *si;
590 si = container_of(ref, struct swap_info_struct, users);
595 * Must be called after freeing if ci->count == 0, moves the cluster to free
598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
600 VM_BUG_ON(ci->count != 0);
601 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
602 lockdep_assert_held(&ci->lock);
605 * If the swap is discardable, prepare discard the cluster
606 * instead of free it immediately. The cluster will be freed
609 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
610 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
611 swap_cluster_schedule_discard(si, ci);
615 __free_cluster(si, ci);
619 * Must be called after freeing if ci->count != 0, moves the cluster to
622 static void partial_free_cluster(struct swap_info_struct *si,
623 struct swap_cluster_info *ci)
625 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
626 lockdep_assert_held(&ci->lock);
628 if (ci->flags != CLUSTER_FLAG_NONFULL)
629 move_cluster(si, ci, &si->nonfull_clusters[ci->order],
630 CLUSTER_FLAG_NONFULL);
634 * Must be called after allocation, moves the cluster to full or frag list.
635 * Note: allocation doesn't acquire si lock, and may drop the ci lock for
636 * reclaim, so the cluster could be any where when called.
638 static void relocate_cluster(struct swap_info_struct *si,
639 struct swap_cluster_info *ci)
641 lockdep_assert_held(&ci->lock);
643 /* Discard cluster must remain off-list or on discard list */
644 if (cluster_is_discard(ci))
648 if (ci->flags != CLUSTER_FLAG_FREE)
649 free_cluster(si, ci);
650 } else if (ci->count != SWAPFILE_CLUSTER) {
651 if (ci->flags != CLUSTER_FLAG_FRAG)
652 move_cluster(si, ci, &si->frag_clusters[ci->order],
655 if (ci->flags != CLUSTER_FLAG_FULL)
656 move_cluster(si, ci, &si->full_clusters,
662 * The cluster corresponding to page_nr will be used. The cluster will not be
663 * added to free cluster list and its usage counter will be increased by 1.
664 * Only used for initialization.
666 static void inc_cluster_info_page(struct swap_info_struct *si,
667 struct swap_cluster_info *cluster_info, unsigned long page_nr)
669 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
670 struct swap_cluster_info *ci;
672 ci = cluster_info + idx;
675 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
676 VM_BUG_ON(ci->flags);
679 static bool cluster_reclaim_range(struct swap_info_struct *si,
680 struct swap_cluster_info *ci,
681 unsigned long start, unsigned long end)
683 unsigned char *map = si->swap_map;
684 unsigned long offset = start;
687 spin_unlock(&ci->lock);
689 switch (READ_ONCE(map[offset])) {
694 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
696 offset += nr_reclaim;
703 } while (offset < end);
705 spin_lock(&ci->lock);
707 * Recheck the range no matter reclaim succeeded or not, the slot
708 * could have been be freed while we are not holding the lock.
710 for (offset = start; offset < end; offset++)
711 if (READ_ONCE(map[offset]))
717 static bool cluster_scan_range(struct swap_info_struct *si,
718 struct swap_cluster_info *ci,
719 unsigned long start, unsigned int nr_pages,
722 unsigned long offset, end = start + nr_pages;
723 unsigned char *map = si->swap_map;
725 if (cluster_is_empty(ci))
728 for (offset = start; offset < end; offset++) {
729 switch (READ_ONCE(map[offset])) {
735 *need_reclaim = true;
745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
746 unsigned int start, unsigned char usage,
749 unsigned int nr_pages = 1 << order;
751 lockdep_assert_held(&ci->lock);
753 if (!(si->flags & SWP_WRITEOK))
757 * The first allocation in a cluster makes the
758 * cluster exclusive to this order
760 if (cluster_is_empty(ci))
763 memset(si->swap_map + start, usage, nr_pages);
764 swap_range_alloc(si, nr_pages);
765 ci->count += nr_pages;
770 /* Try use a new cluster for current CPU and allocate from it. */
771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
772 struct swap_cluster_info *ci,
773 unsigned long offset,
777 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
778 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
779 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
780 unsigned int nr_pages = 1 << order;
781 bool need_reclaim, ret;
783 lockdep_assert_held(&ci->lock);
785 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
788 for (end -= nr_pages; offset <= end; offset += nr_pages) {
789 need_reclaim = false;
790 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
793 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
795 * Reclaim drops ci->lock and cluster could be used
796 * by another order. Not checking flag as off-list
797 * cluster has no flag set, and change of list
798 * won't cause fragmentation.
800 if (!cluster_is_usable(ci, order))
802 if (cluster_is_empty(ci))
804 /* Reclaim failed but cluster is usable, try next */
808 if (!cluster_alloc_range(si, ci, offset, usage, order))
812 if (ci->count < SWAPFILE_CLUSTER && offset <= end)
817 relocate_cluster(si, ci);
819 if (si->flags & SWP_SOLIDSTATE) {
820 this_cpu_write(percpu_swap_cluster.offset[order], next);
821 this_cpu_write(percpu_swap_cluster.si[order], si);
823 si->global_cluster->next[order] = next;
828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
831 unsigned long offset, end;
832 struct swap_cluster_info *ci;
833 unsigned char *map = si->swap_map;
837 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
839 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
840 offset = cluster_offset(si, ci);
841 end = min(si->max, offset + SWAPFILE_CLUSTER);
844 while (offset < end) {
845 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
846 spin_unlock(&ci->lock);
847 nr_reclaim = __try_to_reclaim_swap(si, offset,
849 spin_lock(&ci->lock);
851 offset += abs(nr_reclaim);
858 /* in case no swap cache is reclaimed */
859 if (ci->flags == CLUSTER_FLAG_NONE)
860 relocate_cluster(si, ci);
868 static void swap_reclaim_work(struct work_struct *work)
870 struct swap_info_struct *si;
872 si = container_of(work, struct swap_info_struct, reclaim_work);
874 swap_reclaim_full_clusters(si, true);
878 * Try to allocate swap entries with specified order and try set a new
879 * cluster for current CPU too.
881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
884 struct swap_cluster_info *ci;
885 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
888 * Swapfile is not block device so unable
889 * to allocate large entries.
891 if (order && !(si->flags & SWP_BLKDEV))
894 if (!(si->flags & SWP_SOLIDSTATE)) {
895 /* Serialize HDD SWAP allocation for each device. */
896 spin_lock(&si->global_cluster_lock);
897 offset = si->global_cluster->next[order];
898 if (offset == SWAP_ENTRY_INVALID)
901 ci = lock_cluster(si, offset);
902 /* Cluster could have been used by another order */
903 if (cluster_is_usable(ci, order)) {
904 if (cluster_is_empty(ci))
905 offset = cluster_offset(si, ci);
906 found = alloc_swap_scan_cluster(si, ci, offset,
916 ci = isolate_lock_cluster(si, &si->free_clusters);
918 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
924 /* Try reclaim from full clusters if free clusters list is drained */
926 swap_reclaim_full_clusters(si, false);
928 if (order < PMD_ORDER) {
929 unsigned int frags = 0, frags_existing;
931 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
932 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
936 /* Clusters failed to allocate are moved to frag_clusters */
940 frags_existing = atomic_long_read(&si->frag_cluster_nr[order]);
941 while (frags < frags_existing &&
942 (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) {
943 atomic_long_dec(&si->frag_cluster_nr[order]);
945 * Rotate the frag list to iterate, they were all
946 * failing high order allocation or moved here due to
947 * per-CPU usage, but they could contain newly released
948 * reclaimable (eg. lazy-freed swap cache) slots.
950 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
959 * We don't have free cluster but have some clusters in
960 * discarding, do discard now and reclaim them, then
961 * reread cluster_next_cpu since we dropped si->lock
963 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
969 /* Order 0 stealing from higher order */
970 for (int o = 1; o < SWAP_NR_ORDERS; o++) {
972 * Clusters here have at least one usable slots and can't fail order 0
973 * allocation, but reclaim may drop si->lock and race with another user.
975 while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
976 atomic_long_dec(&si->frag_cluster_nr[o]);
977 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
983 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
984 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
991 if (!(si->flags & SWP_SOLIDSTATE))
992 spin_unlock(&si->global_cluster_lock);
996 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
997 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
1000 unsigned long pages;
1002 spin_lock(&swap_avail_lock);
1006 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1007 * swapoff here so it's synchronized by both si->lock and
1008 * swap_avail_lock, to ensure the result can be seen by
1009 * add_to_avail_list.
1011 lockdep_assert_held(&si->lock);
1012 si->flags &= ~SWP_WRITEOK;
1013 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1016 * If not called by swapoff, take it off-list only if it's
1017 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1018 * si->inuse_pages == pages), any concurrent slot freeing,
1019 * or device already removed from plist by someone else
1020 * will make this return false.
1023 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1024 pages | SWAP_USAGE_OFFLIST_BIT))
1029 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1032 spin_unlock(&swap_avail_lock);
1035 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
1036 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1040 unsigned long pages;
1042 spin_lock(&swap_avail_lock);
1044 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1046 lockdep_assert_held(&si->lock);
1047 si->flags |= SWP_WRITEOK;
1049 if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1053 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1056 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1059 * When device is full and device is on the plist, only one updater will
1060 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1061 * that updater happen to be here, just skip adding.
1065 /* Just like the cmpxchg in del_from_avail_list */
1066 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1067 pages | SWAP_USAGE_OFFLIST_BIT))
1072 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1075 spin_unlock(&swap_avail_lock);
1079 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1080 * within each cluster, so the total contribution to the global counter should
1081 * always be positive and cannot exceed the total number of usable slots.
1083 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1085 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1088 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1089 * remove it from the plist.
1091 if (unlikely(val == si->pages)) {
1092 del_from_avail_list(si, false);
1099 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1101 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1104 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1105 * add it to the plist.
1107 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1108 add_to_avail_list(si, false);
1111 static void swap_range_alloc(struct swap_info_struct *si,
1112 unsigned int nr_entries)
1114 if (swap_usage_add(si, nr_entries)) {
1116 schedule_work(&si->reclaim_work);
1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1121 unsigned int nr_entries)
1123 unsigned long begin = offset;
1124 unsigned long end = offset + nr_entries - 1;
1125 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1129 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1130 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1132 for (i = 0; i < nr_entries; i++) {
1133 clear_bit(offset + i, si->zeromap);
1134 zswap_invalidate(swp_entry(si->type, offset + i));
1137 if (si->flags & SWP_BLKDEV)
1138 swap_slot_free_notify =
1139 si->bdev->bd_disk->fops->swap_slot_free_notify;
1141 swap_slot_free_notify = NULL;
1142 while (offset <= end) {
1143 arch_swap_invalidate_page(si->type, offset);
1144 if (swap_slot_free_notify)
1145 swap_slot_free_notify(si->bdev, offset);
1148 clear_shadow_from_swap_cache(si->type, begin, end);
1151 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1152 * only after the above cleanups are done.
1155 atomic_long_add(nr_entries, &nr_swap_pages);
1156 swap_usage_sub(si, nr_entries);
1159 static bool get_swap_device_info(struct swap_info_struct *si)
1161 if (!percpu_ref_tryget_live(&si->users))
1164 * Guarantee the si->users are checked before accessing other
1165 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1168 * Paired with the spin_unlock() after setup_swap_info() in
1169 * enable_swap_info(), and smp_wmb() in swapoff.
1176 * Fast path try to get swap entries with specified order from current
1177 * CPU's swap entry pool (a cluster).
1179 static bool swap_alloc_fast(swp_entry_t *entry,
1182 struct swap_cluster_info *ci;
1183 struct swap_info_struct *si;
1184 unsigned int offset, found = SWAP_ENTRY_INVALID;
1187 * Once allocated, swap_info_struct will never be completely freed,
1188 * so checking it's liveness by get_swap_device_info is enough.
1190 si = this_cpu_read(percpu_swap_cluster.si[order]);
1191 offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1192 if (!si || !offset || !get_swap_device_info(si))
1195 ci = lock_cluster(si, offset);
1196 if (cluster_is_usable(ci, order)) {
1197 if (cluster_is_empty(ci))
1198 offset = cluster_offset(si, ci);
1199 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1201 *entry = swp_entry(si->type, found);
1206 put_swap_device(si);
1210 /* Rotate the device and switch to a new cluster */
1211 static bool swap_alloc_slow(swp_entry_t *entry,
1215 unsigned long offset;
1216 struct swap_info_struct *si, *next;
1218 node = numa_node_id();
1219 spin_lock(&swap_avail_lock);
1221 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1222 /* Rotate the device and switch to a new cluster */
1223 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1224 spin_unlock(&swap_avail_lock);
1225 if (get_swap_device_info(si)) {
1226 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1227 put_swap_device(si);
1229 *entry = swp_entry(si->type, offset);
1236 spin_lock(&swap_avail_lock);
1238 * if we got here, it's likely that si was almost full before,
1239 * and since scan_swap_map_slots() can drop the si->lock,
1240 * multiple callers probably all tried to get a page from the
1241 * same si and it filled up before we could get one; or, the si
1242 * filled up between us dropping swap_avail_lock and taking
1243 * si->lock. Since we dropped the swap_avail_lock, the
1244 * swap_avail_head list may have been modified; so if next is
1245 * still in the swap_avail_head list then try it, otherwise
1246 * start over if we have not gotten any slots.
1248 if (plist_node_empty(&next->avail_lists[node]))
1251 spin_unlock(&swap_avail_lock);
1256 * folio_alloc_swap - allocate swap space for a folio
1257 * @folio: folio we want to move to swap
1258 * @gfp: gfp mask for shadow nodes
1260 * Allocate swap space for the folio and add the folio to the
1263 * Context: Caller needs to hold the folio lock.
1264 * Return: Whether the folio was added to the swap cache.
1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp)
1268 unsigned int order = folio_order(folio);
1269 unsigned int size = 1 << order;
1270 swp_entry_t entry = {};
1272 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1273 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1277 * Reject large allocation when THP_SWAP is disabled,
1278 * the caller should split the folio and try again.
1280 if (!IS_ENABLED(CONFIG_THP_SWAP))
1284 * Allocation size should never exceed cluster size
1287 if (size > SWAPFILE_CLUSTER) {
1293 local_lock(&percpu_swap_cluster.lock);
1294 if (!swap_alloc_fast(&entry, order))
1295 swap_alloc_slow(&entry, order);
1296 local_unlock(&percpu_swap_cluster.lock);
1298 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1299 if (mem_cgroup_try_charge_swap(folio, entry))
1306 * XArray node allocations from PF_MEMALLOC contexts could
1307 * completely exhaust the page allocator. __GFP_NOMEMALLOC
1308 * stops emergency reserves from being allocated.
1310 * TODO: this could cause a theoretical memory reclaim
1311 * deadlock in the swap out path.
1313 if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL))
1316 atomic_long_sub(size, &nr_swap_pages);
1320 put_swap_folio(folio, entry);
1324 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1326 struct swap_info_struct *si;
1327 unsigned long offset;
1331 si = swp_swap_info(entry);
1334 if (data_race(!(si->flags & SWP_USED)))
1336 offset = swp_offset(entry);
1337 if (offset >= si->max)
1339 if (data_race(!si->swap_map[swp_offset(entry)]))
1344 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1347 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1350 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1353 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1358 static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
1359 struct swap_cluster_info *ci,
1361 unsigned char usage)
1363 unsigned long offset = swp_offset(entry);
1364 unsigned char count;
1365 unsigned char has_cache;
1367 count = si->swap_map[offset];
1369 has_cache = count & SWAP_HAS_CACHE;
1370 count &= ~SWAP_HAS_CACHE;
1372 if (usage == SWAP_HAS_CACHE) {
1373 VM_BUG_ON(!has_cache);
1375 } else if (count == SWAP_MAP_SHMEM) {
1377 * Or we could insist on shmem.c using a special
1378 * swap_shmem_free() and free_shmem_swap_and_cache()...
1381 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1382 if (count == COUNT_CONTINUED) {
1383 if (swap_count_continued(si, offset, count))
1384 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1386 count = SWAP_MAP_MAX;
1391 usage = count | has_cache;
1393 WRITE_ONCE(si->swap_map[offset], usage);
1395 swap_entries_free(si, ci, entry, 1);
1401 * When we get a swap entry, if there aren't some other ways to
1402 * prevent swapoff, such as the folio in swap cache is locked, RCU
1403 * reader side is locked, etc., the swap entry may become invalid
1404 * because of swapoff. Then, we need to enclose all swap related
1405 * functions with get_swap_device() and put_swap_device(), unless the
1406 * swap functions call get/put_swap_device() by themselves.
1408 * RCU reader side lock (including any spinlock) is sufficient to
1409 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1410 * before freeing data structures.
1412 * Check whether swap entry is valid in the swap device. If so,
1413 * return pointer to swap_info_struct, and keep the swap entry valid
1414 * via preventing the swap device from being swapoff, until
1415 * put_swap_device() is called. Otherwise return NULL.
1417 * Notice that swapoff or swapoff+swapon can still happen before the
1418 * percpu_ref_tryget_live() in get_swap_device() or after the
1419 * percpu_ref_put() in put_swap_device() if there isn't any other way
1420 * to prevent swapoff. The caller must be prepared for that. For
1421 * example, the following situation is possible.
1425 * ... swapoff+swapon
1426 * __read_swap_cache_async()
1427 * swapcache_prepare()
1428 * __swap_duplicate()
1430 * // verify PTE not changed
1432 * In __swap_duplicate(), the swap_map need to be checked before
1433 * changing partly because the specified swap entry may be for another
1434 * swap device which has been swapoff. And in do_swap_page(), after
1435 * the page is read from the swap device, the PTE is verified not
1436 * changed with the page table locked to check whether the swap device
1437 * has been swapoff or swapoff+swapon.
1439 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1441 struct swap_info_struct *si;
1442 unsigned long offset;
1446 si = swp_swap_info(entry);
1449 if (!get_swap_device_info(si))
1451 offset = swp_offset(entry);
1452 if (offset >= si->max)
1457 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1461 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1462 percpu_ref_put(&si->users);
1466 static void swap_entries_put_cache(struct swap_info_struct *si,
1467 swp_entry_t entry, int nr)
1469 unsigned long offset = swp_offset(entry);
1470 struct swap_cluster_info *ci;
1472 ci = lock_cluster(si, offset);
1473 if (swap_only_has_cache(si, offset, nr))
1474 swap_entries_free(si, ci, entry, nr);
1476 for (int i = 0; i < nr; i++, entry.val++)
1477 swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
1482 static bool swap_entries_put_map(struct swap_info_struct *si,
1483 swp_entry_t entry, int nr)
1485 unsigned long offset = swp_offset(entry);
1486 struct swap_cluster_info *ci;
1487 bool has_cache = false;
1488 unsigned char count;
1493 count = swap_count(data_race(si->swap_map[offset]));
1494 if (count != 1 && count != SWAP_MAP_SHMEM)
1497 ci = lock_cluster(si, offset);
1498 if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1499 goto locked_fallback;
1502 swap_entries_free(si, ci, entry, nr);
1504 for (i = 0; i < nr; i++)
1505 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1511 ci = lock_cluster(si, offset);
1513 for (i = 0; i < nr; i++, entry.val++) {
1514 count = swap_entry_put_locked(si, ci, entry, 1);
1515 if (count == SWAP_HAS_CACHE)
1524 * Only functions with "_nr" suffix are able to free entries spanning
1525 * cross multi clusters, so ensure the range is within a single cluster
1526 * when freeing entries with functions without "_nr" suffix.
1528 static bool swap_entries_put_map_nr(struct swap_info_struct *si,
1529 swp_entry_t entry, int nr)
1531 int cluster_nr, cluster_rest;
1532 unsigned long offset = swp_offset(entry);
1533 bool has_cache = false;
1535 cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
1537 cluster_nr = min(nr, cluster_rest);
1538 has_cache |= swap_entries_put_map(si, entry, cluster_nr);
1539 cluster_rest = SWAPFILE_CLUSTER;
1541 entry.val += cluster_nr;
1548 * Check if it's the last ref of swap entry in the freeing path.
1549 * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
1551 static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
1553 return (count == SWAP_HAS_CACHE) || (count == 1) ||
1554 (count == SWAP_MAP_SHMEM);
1558 * Drop the last ref of swap entries, caller have to ensure all entries
1559 * belong to the same cgroup and cluster.
1561 static void swap_entries_free(struct swap_info_struct *si,
1562 struct swap_cluster_info *ci,
1563 swp_entry_t entry, unsigned int nr_pages)
1565 unsigned long offset = swp_offset(entry);
1566 unsigned char *map = si->swap_map + offset;
1567 unsigned char *map_end = map + nr_pages;
1569 /* It should never free entries across different clusters */
1570 VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1571 VM_BUG_ON(cluster_is_empty(ci));
1572 VM_BUG_ON(ci->count < nr_pages);
1574 ci->count -= nr_pages;
1576 VM_BUG_ON(!swap_is_last_ref(*map));
1578 } while (++map < map_end);
1580 mem_cgroup_uncharge_swap(entry, nr_pages);
1581 swap_range_free(si, offset, nr_pages);
1584 free_cluster(si, ci);
1586 partial_free_cluster(si, ci);
1590 * Caller has made sure that the swap device corresponding to entry
1591 * is still around or has not been recycled.
1593 void swap_free_nr(swp_entry_t entry, int nr_pages)
1596 struct swap_info_struct *sis;
1597 unsigned long offset = swp_offset(entry);
1599 sis = _swap_info_get(entry);
1604 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1605 swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
1612 * Called after dropping swapcache to decrease refcnt to swap entries.
1614 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1616 struct swap_info_struct *si;
1617 int size = 1 << swap_entry_order(folio_order(folio));
1619 si = _swap_info_get(entry);
1623 swap_entries_put_cache(si, entry, size);
1626 int __swap_count(swp_entry_t entry)
1628 struct swap_info_struct *si = swp_swap_info(entry);
1629 pgoff_t offset = swp_offset(entry);
1631 return swap_count(si->swap_map[offset]);
1635 * How many references to @entry are currently swapped out?
1636 * This does not give an exact answer when swap count is continued,
1637 * but does include the high COUNT_CONTINUED flag to allow for that.
1639 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1641 pgoff_t offset = swp_offset(entry);
1642 struct swap_cluster_info *ci;
1645 ci = lock_cluster(si, offset);
1646 count = swap_count(si->swap_map[offset]);
1652 * How many references to @entry are currently swapped out?
1653 * This considers COUNT_CONTINUED so it returns exact answer.
1655 int swp_swapcount(swp_entry_t entry)
1657 int count, tmp_count, n;
1658 struct swap_info_struct *si;
1659 struct swap_cluster_info *ci;
1664 si = _swap_info_get(entry);
1668 offset = swp_offset(entry);
1670 ci = lock_cluster(si, offset);
1672 count = swap_count(si->swap_map[offset]);
1673 if (!(count & COUNT_CONTINUED))
1676 count &= ~COUNT_CONTINUED;
1677 n = SWAP_MAP_MAX + 1;
1679 page = vmalloc_to_page(si->swap_map + offset);
1680 offset &= ~PAGE_MASK;
1681 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1684 page = list_next_entry(page, lru);
1685 map = kmap_local_page(page);
1686 tmp_count = map[offset];
1689 count += (tmp_count & ~COUNT_CONTINUED) * n;
1690 n *= (SWAP_CONT_MAX + 1);
1691 } while (tmp_count & COUNT_CONTINUED);
1697 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1698 swp_entry_t entry, int order)
1700 struct swap_cluster_info *ci;
1701 unsigned char *map = si->swap_map;
1702 unsigned int nr_pages = 1 << order;
1703 unsigned long roffset = swp_offset(entry);
1704 unsigned long offset = round_down(roffset, nr_pages);
1708 ci = lock_cluster(si, offset);
1709 if (nr_pages == 1) {
1710 if (swap_count(map[roffset]))
1714 for (i = 0; i < nr_pages; i++) {
1715 if (swap_count(map[offset + i])) {
1725 static bool folio_swapped(struct folio *folio)
1727 swp_entry_t entry = folio->swap;
1728 struct swap_info_struct *si = _swap_info_get(entry);
1733 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1734 return swap_entry_swapped(si, entry);
1736 return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1739 static bool folio_swapcache_freeable(struct folio *folio)
1741 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1743 if (!folio_test_swapcache(folio))
1745 if (folio_test_writeback(folio))
1749 * Once hibernation has begun to create its image of memory,
1750 * there's a danger that one of the calls to folio_free_swap()
1751 * - most probably a call from __try_to_reclaim_swap() while
1752 * hibernation is allocating its own swap pages for the image,
1753 * but conceivably even a call from memory reclaim - will free
1754 * the swap from a folio which has already been recorded in the
1755 * image as a clean swapcache folio, and then reuse its swap for
1756 * another page of the image. On waking from hibernation, the
1757 * original folio might be freed under memory pressure, then
1758 * later read back in from swap, now with the wrong data.
1760 * Hibernation suspends storage while it is writing the image
1761 * to disk so check that here.
1763 if (pm_suspended_storage())
1770 * folio_free_swap() - Free the swap space used for this folio.
1771 * @folio: The folio to remove.
1773 * If swap is getting full, or if there are no more mappings of this folio,
1774 * then call folio_free_swap to free its swap space.
1776 * Return: true if we were able to release the swap space.
1778 bool folio_free_swap(struct folio *folio)
1780 if (!folio_swapcache_freeable(folio))
1782 if (folio_swapped(folio))
1785 delete_from_swap_cache(folio);
1786 folio_set_dirty(folio);
1791 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1792 * reclaim their cache if no more references remain.
1793 * @entry: First entry of range.
1794 * @nr: Number of entries in range.
1796 * For each swap entry in the contiguous range, release a reference. If any swap
1797 * entries become free, try to reclaim their underlying folios, if present. The
1798 * offset range is defined by [entry.offset, entry.offset + nr).
1800 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1802 const unsigned long start_offset = swp_offset(entry);
1803 const unsigned long end_offset = start_offset + nr;
1804 struct swap_info_struct *si;
1805 bool any_only_cache = false;
1806 unsigned long offset;
1808 si = get_swap_device(entry);
1812 if (WARN_ON(end_offset > si->max))
1816 * First free all entries in the range.
1818 any_only_cache = swap_entries_put_map_nr(si, entry, nr);
1821 * Short-circuit the below loop if none of the entries had their
1822 * reference drop to zero.
1824 if (!any_only_cache)
1828 * Now go back over the range trying to reclaim the swap cache.
1830 for (offset = start_offset; offset < end_offset; offset += nr) {
1832 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1834 * Folios are always naturally aligned in swap so
1835 * advance forward to the next boundary. Zero means no
1836 * folio was found for the swap entry, so advance by 1
1837 * in this case. Negative value means folio was found
1838 * but could not be reclaimed. Here we can still advance
1839 * to the next boundary.
1841 nr = __try_to_reclaim_swap(si, offset,
1842 TTRS_UNMAPPED | TTRS_FULL);
1847 nr = ALIGN(offset + 1, nr) - offset;
1852 put_swap_device(si);
1855 #ifdef CONFIG_HIBERNATION
1857 swp_entry_t get_swap_page_of_type(int type)
1859 struct swap_info_struct *si = swap_type_to_swap_info(type);
1860 unsigned long offset;
1861 swp_entry_t entry = {0};
1866 /* This is called for allocating swap entry, not cache */
1867 if (get_swap_device_info(si)) {
1868 if (si->flags & SWP_WRITEOK) {
1869 offset = cluster_alloc_swap_entry(si, 0, 1);
1871 entry = swp_entry(si->type, offset);
1872 atomic_long_dec(&nr_swap_pages);
1875 put_swap_device(si);
1882 * Find the swap type that corresponds to given device (if any).
1884 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1885 * from 0, in which the swap header is expected to be located.
1887 * This is needed for the suspend to disk (aka swsusp).
1889 int swap_type_of(dev_t device, sector_t offset)
1896 spin_lock(&swap_lock);
1897 for (type = 0; type < nr_swapfiles; type++) {
1898 struct swap_info_struct *sis = swap_info[type];
1900 if (!(sis->flags & SWP_WRITEOK))
1903 if (device == sis->bdev->bd_dev) {
1904 struct swap_extent *se = first_se(sis);
1906 if (se->start_block == offset) {
1907 spin_unlock(&swap_lock);
1912 spin_unlock(&swap_lock);
1916 int find_first_swap(dev_t *device)
1920 spin_lock(&swap_lock);
1921 for (type = 0; type < nr_swapfiles; type++) {
1922 struct swap_info_struct *sis = swap_info[type];
1924 if (!(sis->flags & SWP_WRITEOK))
1926 *device = sis->bdev->bd_dev;
1927 spin_unlock(&swap_lock);
1930 spin_unlock(&swap_lock);
1935 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1936 * corresponding to given index in swap_info (swap type).
1938 sector_t swapdev_block(int type, pgoff_t offset)
1940 struct swap_info_struct *si = swap_type_to_swap_info(type);
1941 struct swap_extent *se;
1943 if (!si || !(si->flags & SWP_WRITEOK))
1945 se = offset_to_swap_extent(si, offset);
1946 return se->start_block + (offset - se->start_page);
1950 * Return either the total number of swap pages of given type, or the number
1951 * of free pages of that type (depending on @free)
1953 * This is needed for software suspend
1955 unsigned int count_swap_pages(int type, int free)
1959 spin_lock(&swap_lock);
1960 if ((unsigned int)type < nr_swapfiles) {
1961 struct swap_info_struct *sis = swap_info[type];
1963 spin_lock(&sis->lock);
1964 if (sis->flags & SWP_WRITEOK) {
1967 n -= swap_usage_in_pages(sis);
1969 spin_unlock(&sis->lock);
1971 spin_unlock(&swap_lock);
1974 #endif /* CONFIG_HIBERNATION */
1976 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1978 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1982 * No need to decide whether this PTE shares the swap entry with others,
1983 * just let do_wp_page work it out if a write is requested later - to
1984 * force COW, vm_page_prot omits write permission from any private vma.
1986 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1987 unsigned long addr, swp_entry_t entry, struct folio *folio)
1990 struct folio *swapcache;
1992 pte_t *pte, new_pte, old_pte;
1993 bool hwpoisoned = false;
1997 folio = ksm_might_need_to_copy(folio, vma, addr);
1998 if (unlikely(!folio))
2000 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2005 page = folio_file_page(folio, swp_offset(entry));
2006 if (PageHWPoison(page))
2009 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2010 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2011 swp_entry_to_pte(entry)))) {
2016 old_pte = ptep_get(pte);
2018 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2019 swp_entry_t swp_entry;
2021 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2023 swp_entry = make_hwpoison_entry(page);
2025 swp_entry = make_poisoned_swp_entry();
2027 new_pte = swp_entry_to_pte(swp_entry);
2033 * Some architectures may have to restore extra metadata to the page
2034 * when reading from swap. This metadata may be indexed by swap entry
2035 * so this must be called before swap_free().
2037 arch_swap_restore(folio_swap(entry, folio), folio);
2039 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2040 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2042 if (folio == swapcache) {
2043 rmap_t rmap_flags = RMAP_NONE;
2046 * See do_swap_page(): writeback would be problematic.
2047 * However, we do a folio_wait_writeback() just before this
2048 * call and have the folio locked.
2050 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2051 if (pte_swp_exclusive(old_pte))
2052 rmap_flags |= RMAP_EXCLUSIVE;
2054 * We currently only expect small !anon folios, which are either
2055 * fully exclusive or fully shared. If we ever get large folios
2056 * here, we have to be careful.
2058 if (!folio_test_anon(folio)) {
2059 VM_WARN_ON_ONCE(folio_test_large(folio));
2060 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2061 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2063 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2065 } else { /* ksm created a completely new copy */
2066 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2067 folio_add_lru_vma(folio, vma);
2069 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2070 if (pte_swp_soft_dirty(old_pte))
2071 new_pte = pte_mksoft_dirty(new_pte);
2072 if (pte_swp_uffd_wp(old_pte))
2073 new_pte = pte_mkuffd_wp(new_pte);
2075 set_pte_at(vma->vm_mm, addr, pte, new_pte);
2079 pte_unmap_unlock(pte, ptl);
2080 if (folio != swapcache) {
2081 folio_unlock(folio);
2087 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2088 unsigned long addr, unsigned long end,
2092 struct swap_info_struct *si;
2094 si = swap_info[type];
2096 struct folio *folio;
2097 unsigned long offset;
2098 unsigned char swp_count;
2104 pte = pte_offset_map(pmd, addr);
2109 ptent = ptep_get_lockless(pte);
2111 if (!is_swap_pte(ptent))
2114 entry = pte_to_swp_entry(ptent);
2115 if (swp_type(entry) != type)
2118 offset = swp_offset(entry);
2122 folio = swap_cache_get_folio(entry, vma, addr);
2124 struct vm_fault vmf = {
2127 .real_address = addr,
2131 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2135 swp_count = READ_ONCE(si->swap_map[offset]);
2136 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2142 folio_wait_writeback(folio);
2143 ret = unuse_pte(vma, pmd, addr, entry, folio);
2145 folio_unlock(folio);
2150 folio_free_swap(folio);
2151 folio_unlock(folio);
2153 } while (addr += PAGE_SIZE, addr != end);
2160 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2161 unsigned long addr, unsigned long end,
2168 pmd = pmd_offset(pud, addr);
2171 next = pmd_addr_end(addr, end);
2172 ret = unuse_pte_range(vma, pmd, addr, next, type);
2175 } while (pmd++, addr = next, addr != end);
2179 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2180 unsigned long addr, unsigned long end,
2187 pud = pud_offset(p4d, addr);
2189 next = pud_addr_end(addr, end);
2190 if (pud_none_or_clear_bad(pud))
2192 ret = unuse_pmd_range(vma, pud, addr, next, type);
2195 } while (pud++, addr = next, addr != end);
2199 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2200 unsigned long addr, unsigned long end,
2207 p4d = p4d_offset(pgd, addr);
2209 next = p4d_addr_end(addr, end);
2210 if (p4d_none_or_clear_bad(p4d))
2212 ret = unuse_pud_range(vma, p4d, addr, next, type);
2215 } while (p4d++, addr = next, addr != end);
2219 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2222 unsigned long addr, end, next;
2225 addr = vma->vm_start;
2228 pgd = pgd_offset(vma->vm_mm, addr);
2230 next = pgd_addr_end(addr, end);
2231 if (pgd_none_or_clear_bad(pgd))
2233 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2236 } while (pgd++, addr = next, addr != end);
2240 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2242 struct vm_area_struct *vma;
2244 VMA_ITERATOR(vmi, mm, 0);
2247 for_each_vma(vmi, vma) {
2248 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2249 ret = unuse_vma(vma, type);
2256 mmap_read_unlock(mm);
2261 * Scan swap_map from current position to next entry still in use.
2262 * Return 0 if there are no inuse entries after prev till end of
2265 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2269 unsigned char count;
2272 * No need for swap_lock here: we're just looking
2273 * for whether an entry is in use, not modifying it; false
2274 * hits are okay, and sys_swapoff() has already prevented new
2275 * allocations from this area (while holding swap_lock).
2277 for (i = prev + 1; i < si->max; i++) {
2278 count = READ_ONCE(si->swap_map[i]);
2279 if (count && swap_count(count) != SWAP_MAP_BAD)
2281 if ((i % LATENCY_LIMIT) == 0)
2291 static int try_to_unuse(unsigned int type)
2293 struct mm_struct *prev_mm;
2294 struct mm_struct *mm;
2295 struct list_head *p;
2297 struct swap_info_struct *si = swap_info[type];
2298 struct folio *folio;
2302 if (!swap_usage_in_pages(si))
2306 retval = shmem_unuse(type);
2313 spin_lock(&mmlist_lock);
2314 p = &init_mm.mmlist;
2315 while (swap_usage_in_pages(si) &&
2316 !signal_pending(current) &&
2317 (p = p->next) != &init_mm.mmlist) {
2319 mm = list_entry(p, struct mm_struct, mmlist);
2320 if (!mmget_not_zero(mm))
2322 spin_unlock(&mmlist_lock);
2325 retval = unuse_mm(mm, type);
2332 * Make sure that we aren't completely killing
2333 * interactive performance.
2336 spin_lock(&mmlist_lock);
2338 spin_unlock(&mmlist_lock);
2343 while (swap_usage_in_pages(si) &&
2344 !signal_pending(current) &&
2345 (i = find_next_to_unuse(si, i)) != 0) {
2347 entry = swp_entry(type, i);
2348 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2353 * It is conceivable that a racing task removed this folio from
2354 * swap cache just before we acquired the page lock. The folio
2355 * might even be back in swap cache on another swap area. But
2356 * that is okay, folio_free_swap() only removes stale folios.
2359 folio_wait_writeback(folio);
2360 folio_free_swap(folio);
2361 folio_unlock(folio);
2366 * Lets check again to see if there are still swap entries in the map.
2367 * If yes, we would need to do retry the unuse logic again.
2368 * Under global memory pressure, swap entries can be reinserted back
2369 * into process space after the mmlist loop above passes over them.
2371 * Limit the number of retries? No: when mmget_not_zero()
2372 * above fails, that mm is likely to be freeing swap from
2373 * exit_mmap(), which proceeds at its own independent pace;
2374 * and even shmem_writeout() could have been preempted after
2375 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2376 * and robust (though cpu-intensive) just to keep retrying.
2378 if (swap_usage_in_pages(si)) {
2379 if (!signal_pending(current))
2386 * Make sure that further cleanups after try_to_unuse() returns happen
2387 * after swap_range_free() reduces si->inuse_pages to 0.
2394 * After a successful try_to_unuse, if no swap is now in use, we know
2395 * we can empty the mmlist. swap_lock must be held on entry and exit.
2396 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2397 * added to the mmlist just after page_duplicate - before would be racy.
2399 static void drain_mmlist(void)
2401 struct list_head *p, *next;
2404 for (type = 0; type < nr_swapfiles; type++)
2405 if (swap_usage_in_pages(swap_info[type]))
2407 spin_lock(&mmlist_lock);
2408 list_for_each_safe(p, next, &init_mm.mmlist)
2410 spin_unlock(&mmlist_lock);
2414 * Free all of a swapdev's extent information
2416 static void destroy_swap_extents(struct swap_info_struct *sis)
2418 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2419 struct rb_node *rb = sis->swap_extent_root.rb_node;
2420 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2422 rb_erase(rb, &sis->swap_extent_root);
2426 if (sis->flags & SWP_ACTIVATED) {
2427 struct file *swap_file = sis->swap_file;
2428 struct address_space *mapping = swap_file->f_mapping;
2430 sis->flags &= ~SWP_ACTIVATED;
2431 if (mapping->a_ops->swap_deactivate)
2432 mapping->a_ops->swap_deactivate(swap_file);
2437 * Add a block range (and the corresponding page range) into this swapdev's
2440 * This function rather assumes that it is called in ascending page order.
2443 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2444 unsigned long nr_pages, sector_t start_block)
2446 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2447 struct swap_extent *se;
2448 struct swap_extent *new_se;
2451 * place the new node at the right most since the
2452 * function is called in ascending page order.
2456 link = &parent->rb_right;
2460 se = rb_entry(parent, struct swap_extent, rb_node);
2461 BUG_ON(se->start_page + se->nr_pages != start_page);
2462 if (se->start_block + se->nr_pages == start_block) {
2464 se->nr_pages += nr_pages;
2469 /* No merge, insert a new extent. */
2470 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2473 new_se->start_page = start_page;
2474 new_se->nr_pages = nr_pages;
2475 new_se->start_block = start_block;
2477 rb_link_node(&new_se->rb_node, parent, link);
2478 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2481 EXPORT_SYMBOL_GPL(add_swap_extent);
2484 * A `swap extent' is a simple thing which maps a contiguous range of pages
2485 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2486 * built at swapon time and is then used at swap_writepage/swap_read_folio
2487 * time for locating where on disk a page belongs.
2489 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2490 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2491 * swap files identically.
2493 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2494 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2495 * swapfiles are handled *identically* after swapon time.
2497 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2498 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2499 * blocks are found which do not fall within the PAGE_SIZE alignment
2500 * requirements, they are simply tossed out - we will never use those blocks
2503 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2504 * prevents users from writing to the swap device, which will corrupt memory.
2506 * The amount of disk space which a single swap extent represents varies.
2507 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2508 * extents in the rbtree. - akpm.
2510 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2512 struct file *swap_file = sis->swap_file;
2513 struct address_space *mapping = swap_file->f_mapping;
2514 struct inode *inode = mapping->host;
2517 if (S_ISBLK(inode->i_mode)) {
2518 ret = add_swap_extent(sis, 0, sis->max, 0);
2523 if (mapping->a_ops->swap_activate) {
2524 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2527 sis->flags |= SWP_ACTIVATED;
2528 if ((sis->flags & SWP_FS_OPS) &&
2529 sio_pool_init() != 0) {
2530 destroy_swap_extents(sis);
2536 return generic_swapfile_activate(sis, swap_file, span);
2539 static int swap_node(struct swap_info_struct *si)
2541 struct block_device *bdev;
2546 bdev = si->swap_file->f_inode->i_sb->s_bdev;
2548 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2551 static void setup_swap_info(struct swap_info_struct *si, int prio,
2552 unsigned char *swap_map,
2553 struct swap_cluster_info *cluster_info,
2554 unsigned long *zeromap)
2561 si->prio = --least_priority;
2563 * the plist prio is negated because plist ordering is
2564 * low-to-high, while swap ordering is high-to-low
2566 si->list.prio = -si->prio;
2569 si->avail_lists[i].prio = -si->prio;
2571 if (swap_node(si) == i)
2572 si->avail_lists[i].prio = 1;
2574 si->avail_lists[i].prio = -si->prio;
2577 si->swap_map = swap_map;
2578 si->cluster_info = cluster_info;
2579 si->zeromap = zeromap;
2582 static void _enable_swap_info(struct swap_info_struct *si)
2584 atomic_long_add(si->pages, &nr_swap_pages);
2585 total_swap_pages += si->pages;
2587 assert_spin_locked(&swap_lock);
2589 * both lists are plists, and thus priority ordered.
2590 * swap_active_head needs to be priority ordered for swapoff(),
2591 * which on removal of any swap_info_struct with an auto-assigned
2592 * (i.e. negative) priority increments the auto-assigned priority
2593 * of any lower-priority swap_info_structs.
2594 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2595 * which allocates swap pages from the highest available priority
2598 plist_add(&si->list, &swap_active_head);
2600 /* Add back to available list */
2601 add_to_avail_list(si, true);
2604 static void enable_swap_info(struct swap_info_struct *si, int prio,
2605 unsigned char *swap_map,
2606 struct swap_cluster_info *cluster_info,
2607 unsigned long *zeromap)
2609 spin_lock(&swap_lock);
2610 spin_lock(&si->lock);
2611 setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2612 spin_unlock(&si->lock);
2613 spin_unlock(&swap_lock);
2615 * Finished initializing swap device, now it's safe to reference it.
2617 percpu_ref_resurrect(&si->users);
2618 spin_lock(&swap_lock);
2619 spin_lock(&si->lock);
2620 _enable_swap_info(si);
2621 spin_unlock(&si->lock);
2622 spin_unlock(&swap_lock);
2625 static void reinsert_swap_info(struct swap_info_struct *si)
2627 spin_lock(&swap_lock);
2628 spin_lock(&si->lock);
2629 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2630 _enable_swap_info(si);
2631 spin_unlock(&si->lock);
2632 spin_unlock(&swap_lock);
2636 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2637 * see the updated flags, so there will be no more allocations.
2639 static void wait_for_allocation(struct swap_info_struct *si)
2641 unsigned long offset;
2642 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2643 struct swap_cluster_info *ci;
2645 BUG_ON(si->flags & SWP_WRITEOK);
2647 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2648 ci = lock_cluster(si, offset);
2654 * Called after swap device's reference count is dead, so
2655 * neither scan nor allocation will use it.
2657 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2660 struct swap_info_struct **pcp_si;
2662 for_each_possible_cpu(cpu) {
2663 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2665 * Invalidate the percpu swap cluster cache, si->users
2666 * is dead, so no new user will point to it, just flush
2667 * any existing user.
2669 for (i = 0; i < SWAP_NR_ORDERS; i++)
2670 cmpxchg(&pcp_si[i], si, NULL);
2675 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2677 struct swap_info_struct *p = NULL;
2678 unsigned char *swap_map;
2679 unsigned long *zeromap;
2680 struct swap_cluster_info *cluster_info;
2681 struct file *swap_file, *victim;
2682 struct address_space *mapping;
2683 struct inode *inode;
2684 struct filename *pathname;
2687 if (!capable(CAP_SYS_ADMIN))
2690 BUG_ON(!current->mm);
2692 pathname = getname(specialfile);
2693 if (IS_ERR(pathname))
2694 return PTR_ERR(pathname);
2696 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2697 err = PTR_ERR(victim);
2701 mapping = victim->f_mapping;
2702 spin_lock(&swap_lock);
2703 plist_for_each_entry(p, &swap_active_head, list) {
2704 if (p->flags & SWP_WRITEOK) {
2705 if (p->swap_file->f_mapping == mapping) {
2713 spin_unlock(&swap_lock);
2716 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2717 vm_unacct_memory(p->pages);
2720 spin_unlock(&swap_lock);
2723 spin_lock(&p->lock);
2724 del_from_avail_list(p, true);
2726 struct swap_info_struct *si = p;
2729 plist_for_each_entry_continue(si, &swap_active_head, list) {
2732 for_each_node(nid) {
2733 if (si->avail_lists[nid].prio != 1)
2734 si->avail_lists[nid].prio--;
2739 plist_del(&p->list, &swap_active_head);
2740 atomic_long_sub(p->pages, &nr_swap_pages);
2741 total_swap_pages -= p->pages;
2742 spin_unlock(&p->lock);
2743 spin_unlock(&swap_lock);
2745 wait_for_allocation(p);
2747 set_current_oom_origin();
2748 err = try_to_unuse(p->type);
2749 clear_current_oom_origin();
2752 /* re-insert swap space back into swap_list */
2753 reinsert_swap_info(p);
2758 * Wait for swap operations protected by get/put_swap_device()
2759 * to complete. Because of synchronize_rcu() here, all swap
2760 * operations protected by RCU reader side lock (including any
2761 * spinlock) will be waited too. This makes it easy to
2762 * prevent folio_test_swapcache() and the following swap cache
2763 * operations from racing with swapoff.
2765 percpu_ref_kill(&p->users);
2767 wait_for_completion(&p->comp);
2769 flush_work(&p->discard_work);
2770 flush_work(&p->reclaim_work);
2771 flush_percpu_swap_cluster(p);
2773 destroy_swap_extents(p);
2774 if (p->flags & SWP_CONTINUED)
2775 free_swap_count_continuations(p);
2777 if (!p->bdev || !bdev_nonrot(p->bdev))
2778 atomic_dec(&nr_rotate_swap);
2780 mutex_lock(&swapon_mutex);
2781 spin_lock(&swap_lock);
2782 spin_lock(&p->lock);
2785 swap_file = p->swap_file;
2786 p->swap_file = NULL;
2788 swap_map = p->swap_map;
2790 zeromap = p->zeromap;
2792 cluster_info = p->cluster_info;
2793 p->cluster_info = NULL;
2794 spin_unlock(&p->lock);
2795 spin_unlock(&swap_lock);
2796 arch_swap_invalidate_area(p->type);
2797 zswap_swapoff(p->type);
2798 mutex_unlock(&swapon_mutex);
2799 kfree(p->global_cluster);
2800 p->global_cluster = NULL;
2803 kvfree(cluster_info);
2804 /* Destroy swap account information */
2805 swap_cgroup_swapoff(p->type);
2806 exit_swap_address_space(p->type);
2808 inode = mapping->host;
2811 inode->i_flags &= ~S_SWAPFILE;
2812 inode_unlock(inode);
2813 filp_close(swap_file, NULL);
2816 * Clear the SWP_USED flag after all resources are freed so that swapon
2817 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2818 * not hold p->lock after we cleared its SWP_WRITEOK.
2820 spin_lock(&swap_lock);
2822 spin_unlock(&swap_lock);
2825 atomic_inc(&proc_poll_event);
2826 wake_up_interruptible(&proc_poll_wait);
2829 filp_close(victim, NULL);
2835 #ifdef CONFIG_PROC_FS
2836 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2838 struct seq_file *seq = file->private_data;
2840 poll_wait(file, &proc_poll_wait, wait);
2842 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2843 seq->poll_event = atomic_read(&proc_poll_event);
2844 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2847 return EPOLLIN | EPOLLRDNORM;
2851 static void *swap_start(struct seq_file *swap, loff_t *pos)
2853 struct swap_info_struct *si;
2857 mutex_lock(&swapon_mutex);
2860 return SEQ_START_TOKEN;
2862 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2863 if (!(si->flags & SWP_USED) || !si->swap_map)
2872 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2874 struct swap_info_struct *si = v;
2877 if (v == SEQ_START_TOKEN)
2880 type = si->type + 1;
2883 for (; (si = swap_type_to_swap_info(type)); type++) {
2884 if (!(si->flags & SWP_USED) || !si->swap_map)
2892 static void swap_stop(struct seq_file *swap, void *v)
2894 mutex_unlock(&swapon_mutex);
2897 static int swap_show(struct seq_file *swap, void *v)
2899 struct swap_info_struct *si = v;
2902 unsigned long bytes, inuse;
2904 if (si == SEQ_START_TOKEN) {
2905 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2909 bytes = K(si->pages);
2910 inuse = K(swap_usage_in_pages(si));
2912 file = si->swap_file;
2913 len = seq_file_path(swap, file, " \t\n\\");
2914 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2915 len < 40 ? 40 - len : 1, " ",
2916 S_ISBLK(file_inode(file)->i_mode) ?
2917 "partition" : "file\t",
2918 bytes, bytes < 10000000 ? "\t" : "",
2919 inuse, inuse < 10000000 ? "\t" : "",
2924 static const struct seq_operations swaps_op = {
2925 .start = swap_start,
2931 static int swaps_open(struct inode *inode, struct file *file)
2933 struct seq_file *seq;
2936 ret = seq_open(file, &swaps_op);
2940 seq = file->private_data;
2941 seq->poll_event = atomic_read(&proc_poll_event);
2945 static const struct proc_ops swaps_proc_ops = {
2946 .proc_flags = PROC_ENTRY_PERMANENT,
2947 .proc_open = swaps_open,
2948 .proc_read = seq_read,
2949 .proc_lseek = seq_lseek,
2950 .proc_release = seq_release,
2951 .proc_poll = swaps_poll,
2954 static int __init procswaps_init(void)
2956 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2959 __initcall(procswaps_init);
2960 #endif /* CONFIG_PROC_FS */
2962 #ifdef MAX_SWAPFILES_CHECK
2963 static int __init max_swapfiles_check(void)
2965 MAX_SWAPFILES_CHECK();
2968 late_initcall(max_swapfiles_check);
2971 static struct swap_info_struct *alloc_swap_info(void)
2973 struct swap_info_struct *p;
2974 struct swap_info_struct *defer = NULL;
2978 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2980 return ERR_PTR(-ENOMEM);
2982 if (percpu_ref_init(&p->users, swap_users_ref_free,
2983 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2985 return ERR_PTR(-ENOMEM);
2988 spin_lock(&swap_lock);
2989 for (type = 0; type < nr_swapfiles; type++) {
2990 if (!(swap_info[type]->flags & SWP_USED))
2993 if (type >= MAX_SWAPFILES) {
2994 spin_unlock(&swap_lock);
2995 percpu_ref_exit(&p->users);
2997 return ERR_PTR(-EPERM);
2999 if (type >= nr_swapfiles) {
3002 * Publish the swap_info_struct after initializing it.
3003 * Note that kvzalloc() above zeroes all its fields.
3005 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3009 p = swap_info[type];
3011 * Do not memset this entry: a racing procfs swap_next()
3012 * would be relying on p->type to remain valid.
3015 p->swap_extent_root = RB_ROOT;
3016 plist_node_init(&p->list, 0);
3018 plist_node_init(&p->avail_lists[i], 0);
3019 p->flags = SWP_USED;
3020 spin_unlock(&swap_lock);
3022 percpu_ref_exit(&defer->users);
3025 spin_lock_init(&p->lock);
3026 spin_lock_init(&p->cont_lock);
3027 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3028 init_completion(&p->comp);
3033 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3035 if (S_ISBLK(inode->i_mode)) {
3036 si->bdev = I_BDEV(inode);
3038 * Zoned block devices contain zones that have a sequential
3039 * write only restriction. Hence zoned block devices are not
3040 * suitable for swapping. Disallow them here.
3042 if (bdev_is_zoned(si->bdev))
3044 si->flags |= SWP_BLKDEV;
3045 } else if (S_ISREG(inode->i_mode)) {
3046 si->bdev = inode->i_sb->s_bdev;
3054 * Find out how many pages are allowed for a single swap device. There
3055 * are two limiting factors:
3056 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3057 * 2) the number of bits in the swap pte, as defined by the different
3060 * In order to find the largest possible bit mask, a swap entry with
3061 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3062 * decoded to a swp_entry_t again, and finally the swap offset is
3065 * This will mask all the bits from the initial ~0UL mask that can't
3066 * be encoded in either the swp_entry_t or the architecture definition
3069 unsigned long generic_max_swapfile_size(void)
3071 return swp_offset(pte_to_swp_entry(
3072 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3075 /* Can be overridden by an architecture for additional checks. */
3076 __weak unsigned long arch_max_swapfile_size(void)
3078 return generic_max_swapfile_size();
3081 static unsigned long read_swap_header(struct swap_info_struct *si,
3082 union swap_header *swap_header,
3083 struct inode *inode)
3086 unsigned long maxpages;
3087 unsigned long swapfilepages;
3088 unsigned long last_page;
3090 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3091 pr_err("Unable to find swap-space signature\n");
3095 /* swap partition endianness hack... */
3096 if (swab32(swap_header->info.version) == 1) {
3097 swab32s(&swap_header->info.version);
3098 swab32s(&swap_header->info.last_page);
3099 swab32s(&swap_header->info.nr_badpages);
3100 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3102 for (i = 0; i < swap_header->info.nr_badpages; i++)
3103 swab32s(&swap_header->info.badpages[i]);
3105 /* Check the swap header's sub-version */
3106 if (swap_header->info.version != 1) {
3107 pr_warn("Unable to handle swap header version %d\n",
3108 swap_header->info.version);
3112 maxpages = swapfile_maximum_size;
3113 last_page = swap_header->info.last_page;
3115 pr_warn("Empty swap-file\n");
3118 if (last_page > maxpages) {
3119 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3120 K(maxpages), K(last_page));
3122 if (maxpages > last_page) {
3123 maxpages = last_page + 1;
3124 /* p->max is an unsigned int: don't overflow it */
3125 if ((unsigned int)maxpages == 0)
3126 maxpages = UINT_MAX;
3131 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3132 if (swapfilepages && maxpages > swapfilepages) {
3133 pr_warn("Swap area shorter than signature indicates\n");
3136 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3138 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3144 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3145 union swap_header *swap_header,
3146 unsigned char *swap_map,
3147 unsigned long maxpages,
3150 unsigned int nr_good_pages;
3154 nr_good_pages = maxpages - 1; /* omit header page */
3156 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3157 unsigned int page_nr = swap_header->info.badpages[i];
3158 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3160 if (page_nr < maxpages) {
3161 swap_map[page_nr] = SWAP_MAP_BAD;
3166 if (nr_good_pages) {
3167 swap_map[0] = SWAP_MAP_BAD;
3169 si->pages = nr_good_pages;
3170 nr_extents = setup_swap_extents(si, span);
3173 nr_good_pages = si->pages;
3175 if (!nr_good_pages) {
3176 pr_warn("Empty swap-file\n");
3183 #define SWAP_CLUSTER_INFO_COLS \
3184 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3185 #define SWAP_CLUSTER_SPACE_COLS \
3186 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3187 #define SWAP_CLUSTER_COLS \
3188 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3190 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3191 union swap_header *swap_header,
3192 unsigned long maxpages)
3194 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3195 struct swap_cluster_info *cluster_info;
3196 unsigned long i, j, idx;
3199 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3203 for (i = 0; i < nr_clusters; i++)
3204 spin_lock_init(&cluster_info[i].lock);
3206 if (!(si->flags & SWP_SOLIDSTATE)) {
3207 si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3209 if (!si->global_cluster)
3211 for (i = 0; i < SWAP_NR_ORDERS; i++)
3212 si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3213 spin_lock_init(&si->global_cluster_lock);
3217 * Mark unusable pages as unavailable. The clusters aren't
3218 * marked free yet, so no list operations are involved yet.
3220 * See setup_swap_map_and_extents(): header page, bad pages,
3221 * and the EOF part of the last cluster.
3223 inc_cluster_info_page(si, cluster_info, 0);
3224 for (i = 0; i < swap_header->info.nr_badpages; i++)
3225 inc_cluster_info_page(si, cluster_info,
3226 swap_header->info.badpages[i]);
3227 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3228 inc_cluster_info_page(si, cluster_info, i);
3230 INIT_LIST_HEAD(&si->free_clusters);
3231 INIT_LIST_HEAD(&si->full_clusters);
3232 INIT_LIST_HEAD(&si->discard_clusters);
3234 for (i = 0; i < SWAP_NR_ORDERS; i++) {
3235 INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3236 INIT_LIST_HEAD(&si->frag_clusters[i]);
3237 atomic_long_set(&si->frag_cluster_nr[i], 0);
3241 * Reduce false cache line sharing between cluster_info and
3242 * sharing same address space.
3244 for (j = 0; j < SWAP_CLUSTER_COLS; j++) {
3245 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3246 struct swap_cluster_info *ci;
3247 idx = i * SWAP_CLUSTER_COLS + j;
3248 ci = cluster_info + idx;
3249 if (idx >= nr_clusters)
3252 ci->flags = CLUSTER_FLAG_NONFULL;
3253 list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3256 ci->flags = CLUSTER_FLAG_FREE;
3257 list_add_tail(&ci->list, &si->free_clusters);
3261 return cluster_info;
3264 kvfree(cluster_info);
3266 return ERR_PTR(err);
3269 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3271 struct swap_info_struct *si;
3272 struct filename *name;
3273 struct file *swap_file = NULL;
3274 struct address_space *mapping;
3275 struct dentry *dentry;
3278 union swap_header *swap_header;
3281 unsigned long maxpages;
3282 unsigned char *swap_map = NULL;
3283 unsigned long *zeromap = NULL;
3284 struct swap_cluster_info *cluster_info = NULL;
3285 struct folio *folio = NULL;
3286 struct inode *inode = NULL;
3287 bool inced_nr_rotate_swap = false;
3289 if (swap_flags & ~SWAP_FLAGS_VALID)
3292 if (!capable(CAP_SYS_ADMIN))
3295 if (!swap_avail_heads)
3298 si = alloc_swap_info();
3302 INIT_WORK(&si->discard_work, swap_discard_work);
3303 INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3305 name = getname(specialfile);
3307 error = PTR_ERR(name);
3311 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3312 if (IS_ERR(swap_file)) {
3313 error = PTR_ERR(swap_file);
3318 si->swap_file = swap_file;
3319 mapping = swap_file->f_mapping;
3320 dentry = swap_file->f_path.dentry;
3321 inode = mapping->host;
3323 error = claim_swapfile(si, inode);
3324 if (unlikely(error))
3328 if (d_unlinked(dentry) || cant_mount(dentry)) {
3330 goto bad_swap_unlock_inode;
3332 if (IS_SWAPFILE(inode)) {
3334 goto bad_swap_unlock_inode;
3338 * The swap subsystem needs a major overhaul to support this.
3339 * It doesn't work yet so just disable it for now.
3341 if (mapping_min_folio_order(mapping) > 0) {
3343 goto bad_swap_unlock_inode;
3347 * Read the swap header.
3349 if (!mapping->a_ops->read_folio) {
3351 goto bad_swap_unlock_inode;
3353 folio = read_mapping_folio(mapping, 0, swap_file);
3354 if (IS_ERR(folio)) {
3355 error = PTR_ERR(folio);
3356 goto bad_swap_unlock_inode;
3358 swap_header = kmap_local_folio(folio, 0);
3360 maxpages = read_swap_header(si, swap_header, inode);
3361 if (unlikely(!maxpages)) {
3363 goto bad_swap_unlock_inode;
3366 /* OK, set up the swap map and apply the bad block list */
3367 swap_map = vzalloc(maxpages);
3370 goto bad_swap_unlock_inode;
3373 error = swap_cgroup_swapon(si->type, maxpages);
3375 goto bad_swap_unlock_inode;
3377 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3379 if (unlikely(nr_extents < 0)) {
3381 goto bad_swap_unlock_inode;
3385 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3386 * be above MAX_PAGE_ORDER incase of a large swap file.
3388 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3389 GFP_KERNEL | __GFP_ZERO);
3392 goto bad_swap_unlock_inode;
3395 if (si->bdev && bdev_stable_writes(si->bdev))
3396 si->flags |= SWP_STABLE_WRITES;
3398 if (si->bdev && bdev_synchronous(si->bdev))
3399 si->flags |= SWP_SYNCHRONOUS_IO;
3401 if (si->bdev && bdev_nonrot(si->bdev)) {
3402 si->flags |= SWP_SOLIDSTATE;
3404 atomic_inc(&nr_rotate_swap);
3405 inced_nr_rotate_swap = true;
3408 cluster_info = setup_clusters(si, swap_header, maxpages);
3409 if (IS_ERR(cluster_info)) {
3410 error = PTR_ERR(cluster_info);
3411 cluster_info = NULL;
3412 goto bad_swap_unlock_inode;
3415 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3416 si->bdev && bdev_max_discard_sectors(si->bdev)) {
3418 * When discard is enabled for swap with no particular
3419 * policy flagged, we set all swap discard flags here in
3420 * order to sustain backward compatibility with older
3421 * swapon(8) releases.
3423 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3427 * By flagging sys_swapon, a sysadmin can tell us to
3428 * either do single-time area discards only, or to just
3429 * perform discards for released swap page-clusters.
3430 * Now it's time to adjust the p->flags accordingly.
3432 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3433 si->flags &= ~SWP_PAGE_DISCARD;
3434 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3435 si->flags &= ~SWP_AREA_DISCARD;
3437 /* issue a swapon-time discard if it's still required */
3438 if (si->flags & SWP_AREA_DISCARD) {
3439 int err = discard_swap(si);
3441 pr_err("swapon: discard_swap(%p): %d\n",
3446 error = init_swap_address_space(si->type, maxpages);
3448 goto bad_swap_unlock_inode;
3450 error = zswap_swapon(si->type, maxpages);
3452 goto free_swap_address_space;
3455 * Flush any pending IO and dirty mappings before we start using this
3458 inode->i_flags |= S_SWAPFILE;
3459 error = inode_drain_writes(inode);
3461 inode->i_flags &= ~S_SWAPFILE;
3462 goto free_swap_zswap;
3465 mutex_lock(&swapon_mutex);
3467 if (swap_flags & SWAP_FLAG_PREFER)
3468 prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3469 enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3471 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3472 K(si->pages), name->name, si->prio, nr_extents,
3473 K((unsigned long long)span),
3474 (si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3475 (si->flags & SWP_DISCARDABLE) ? "D" : "",
3476 (si->flags & SWP_AREA_DISCARD) ? "s" : "",
3477 (si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3479 mutex_unlock(&swapon_mutex);
3480 atomic_inc(&proc_poll_event);
3481 wake_up_interruptible(&proc_poll_wait);
3486 zswap_swapoff(si->type);
3487 free_swap_address_space:
3488 exit_swap_address_space(si->type);
3489 bad_swap_unlock_inode:
3490 inode_unlock(inode);
3492 kfree(si->global_cluster);
3493 si->global_cluster = NULL;
3495 destroy_swap_extents(si);
3496 swap_cgroup_swapoff(si->type);
3497 spin_lock(&swap_lock);
3498 si->swap_file = NULL;
3500 spin_unlock(&swap_lock);
3503 kvfree(cluster_info);
3504 if (inced_nr_rotate_swap)
3505 atomic_dec(&nr_rotate_swap);
3507 filp_close(swap_file, NULL);
3509 if (!IS_ERR_OR_NULL(folio))
3510 folio_release_kmap(folio, swap_header);
3514 inode_unlock(inode);
3518 void si_swapinfo(struct sysinfo *val)
3521 unsigned long nr_to_be_unused = 0;
3523 spin_lock(&swap_lock);
3524 for (type = 0; type < nr_swapfiles; type++) {
3525 struct swap_info_struct *si = swap_info[type];
3527 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3528 nr_to_be_unused += swap_usage_in_pages(si);
3530 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3531 val->totalswap = total_swap_pages + nr_to_be_unused;
3532 spin_unlock(&swap_lock);
3536 * Verify that nr swap entries are valid and increment their swap map counts.
3538 * Returns error code in following case.
3540 * - swp_entry is invalid -> EINVAL
3541 * - swap-cache reference is requested but there is already one. -> EEXIST
3542 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3543 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3545 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3547 struct swap_info_struct *si;
3548 struct swap_cluster_info *ci;
3549 unsigned long offset;
3550 unsigned char count;
3551 unsigned char has_cache;
3554 si = swp_swap_info(entry);
3555 if (WARN_ON_ONCE(!si)) {
3556 pr_err("%s%08lx\n", Bad_file, entry.val);
3560 offset = swp_offset(entry);
3561 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3562 VM_WARN_ON(usage == 1 && nr > 1);
3563 ci = lock_cluster(si, offset);
3566 for (i = 0; i < nr; i++) {
3567 count = si->swap_map[offset + i];
3570 * swapin_readahead() doesn't check if a swap entry is valid, so the
3571 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3573 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3578 has_cache = count & SWAP_HAS_CACHE;
3579 count &= ~SWAP_HAS_CACHE;
3581 if (!count && !has_cache) {
3583 } else if (usage == SWAP_HAS_CACHE) {
3586 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3594 for (i = 0; i < nr; i++) {
3595 count = si->swap_map[offset + i];
3596 has_cache = count & SWAP_HAS_CACHE;
3597 count &= ~SWAP_HAS_CACHE;
3599 if (usage == SWAP_HAS_CACHE)
3600 has_cache = SWAP_HAS_CACHE;
3601 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3603 else if (swap_count_continued(si, offset + i, count))
3604 count = COUNT_CONTINUED;
3607 * Don't need to rollback changes, because if
3608 * usage == 1, there must be nr == 1.
3614 WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3623 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3624 * (in which case its reference count is never incremented).
3626 void swap_shmem_alloc(swp_entry_t entry, int nr)
3628 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3632 * Increase reference count of swap entry by 1.
3633 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3634 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3635 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3636 * might occur if a page table entry has got corrupted.
3638 int swap_duplicate(swp_entry_t entry)
3642 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3643 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3648 * @entry: first swap entry from which we allocate nr swap cache.
3650 * Called when allocating swap cache for existing swap entries,
3651 * This can return error codes. Returns 0 at success.
3652 * -EEXIST means there is a swap cache.
3653 * Note: return code is different from swap_duplicate().
3655 int swapcache_prepare(swp_entry_t entry, int nr)
3657 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3661 * Caller should ensure entries belong to the same folio so
3662 * the entries won't span cross cluster boundary.
3664 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3666 swap_entries_put_cache(si, entry, nr);
3669 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3671 return swap_type_to_swap_info(swp_type(entry));
3675 * add_swap_count_continuation - called when a swap count is duplicated
3676 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3677 * page of the original vmalloc'ed swap_map, to hold the continuation count
3678 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3679 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3681 * These continuation pages are seldom referenced: the common paths all work
3682 * on the original swap_map, only referring to a continuation page when the
3683 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3685 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3686 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3687 * can be called after dropping locks.
3689 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3691 struct swap_info_struct *si;
3692 struct swap_cluster_info *ci;
3695 struct page *list_page;
3697 unsigned char count;
3701 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3702 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3704 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3706 si = get_swap_device(entry);
3709 * An acceptable race has occurred since the failing
3710 * __swap_duplicate(): the swap device may be swapoff
3715 offset = swp_offset(entry);
3717 ci = lock_cluster(si, offset);
3719 count = swap_count(si->swap_map[offset]);
3721 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3723 * The higher the swap count, the more likely it is that tasks
3724 * will race to add swap count continuation: we need to avoid
3725 * over-provisioning.
3735 head = vmalloc_to_page(si->swap_map + offset);
3736 offset &= ~PAGE_MASK;
3738 spin_lock(&si->cont_lock);
3740 * Page allocation does not initialize the page's lru field,
3741 * but it does always reset its private field.
3743 if (!page_private(head)) {
3744 BUG_ON(count & COUNT_CONTINUED);
3745 INIT_LIST_HEAD(&head->lru);
3746 set_page_private(head, SWP_CONTINUED);
3747 si->flags |= SWP_CONTINUED;
3750 list_for_each_entry(list_page, &head->lru, lru) {
3754 * If the previous map said no continuation, but we've found
3755 * a continuation page, free our allocation and use this one.
3757 if (!(count & COUNT_CONTINUED))
3758 goto out_unlock_cont;
3760 map = kmap_local_page(list_page) + offset;
3765 * If this continuation count now has some space in it,
3766 * free our allocation and use this one.
3768 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3769 goto out_unlock_cont;
3772 list_add_tail(&page->lru, &head->lru);
3773 page = NULL; /* now it's attached, don't free it */
3775 spin_unlock(&si->cont_lock);
3778 put_swap_device(si);
3786 * swap_count_continued - when the original swap_map count is incremented
3787 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3788 * into, carry if so, or else fail until a new continuation page is allocated;
3789 * when the original swap_map count is decremented from 0 with continuation,
3790 * borrow from the continuation and report whether it still holds more.
3791 * Called while __swap_duplicate() or caller of swap_entry_put_locked()
3792 * holds cluster lock.
3794 static bool swap_count_continued(struct swap_info_struct *si,
3795 pgoff_t offset, unsigned char count)
3802 head = vmalloc_to_page(si->swap_map + offset);
3803 if (page_private(head) != SWP_CONTINUED) {
3804 BUG_ON(count & COUNT_CONTINUED);
3805 return false; /* need to add count continuation */
3808 spin_lock(&si->cont_lock);
3809 offset &= ~PAGE_MASK;
3810 page = list_next_entry(head, lru);
3811 map = kmap_local_page(page) + offset;
3813 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3814 goto init_map; /* jump over SWAP_CONT_MAX checks */
3816 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3818 * Think of how you add 1 to 999
3820 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3822 page = list_next_entry(page, lru);
3823 BUG_ON(page == head);
3824 map = kmap_local_page(page) + offset;
3826 if (*map == SWAP_CONT_MAX) {
3828 page = list_next_entry(page, lru);
3830 ret = false; /* add count continuation */
3833 map = kmap_local_page(page) + offset;
3834 init_map: *map = 0; /* we didn't zero the page */
3838 while ((page = list_prev_entry(page, lru)) != head) {
3839 map = kmap_local_page(page) + offset;
3840 *map = COUNT_CONTINUED;
3843 ret = true; /* incremented */
3845 } else { /* decrementing */
3847 * Think of how you subtract 1 from 1000
3849 BUG_ON(count != COUNT_CONTINUED);
3850 while (*map == COUNT_CONTINUED) {
3852 page = list_next_entry(page, lru);
3853 BUG_ON(page == head);
3854 map = kmap_local_page(page) + offset;
3861 while ((page = list_prev_entry(page, lru)) != head) {
3862 map = kmap_local_page(page) + offset;
3863 *map = SWAP_CONT_MAX | count;
3864 count = COUNT_CONTINUED;
3867 ret = count == COUNT_CONTINUED;
3870 spin_unlock(&si->cont_lock);
3875 * free_swap_count_continuations - swapoff free all the continuation pages
3876 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3878 static void free_swap_count_continuations(struct swap_info_struct *si)
3882 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3884 head = vmalloc_to_page(si->swap_map + offset);
3885 if (page_private(head)) {
3886 struct page *page, *next;
3888 list_for_each_entry_safe(page, next, &head->lru, lru) {
3889 list_del(&page->lru);
3896 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3897 static bool __has_usable_swap(void)
3899 return !plist_head_empty(&swap_active_head);
3902 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3904 struct swap_info_struct *si, *next;
3905 int nid = folio_nid(folio);
3907 if (!(gfp & __GFP_IO))
3910 if (!__has_usable_swap())
3913 if (!blk_cgroup_congested())
3917 * We've already scheduled a throttle, avoid taking the global swap
3920 if (current->throttle_disk)
3923 spin_lock(&swap_avail_lock);
3924 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3927 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3931 spin_unlock(&swap_avail_lock);
3935 static int __init swapfile_init(void)
3939 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3941 if (!swap_avail_heads) {
3942 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3947 plist_head_init(&swap_avail_heads[nid]);
3949 swapfile_maximum_size = arch_max_swapfile_size();
3951 #ifdef CONFIG_MIGRATION
3952 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3953 swap_migration_ad_supported = true;
3954 #endif /* CONFIG_MIGRATION */
3958 subsys_initcall(swapfile_init);