sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-block.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shmem_fs.h>
19 #include <linux/blkdev.h>
20 #include <linux/random.h>
21 #include <linux/writeback.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/init.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34 #include <linux/oom.h>
35 #include <linux/frontswap.h>
36 #include <linux/swapfile.h>
37 #include <linux/export.h>
38 #include <linux/swap_slots.h>
39
40 #include <asm/pgtable.h>
41 #include <asm/tlbflush.h>
42 #include <linux/swapops.h>
43 #include <linux/swap_cgroup.h>
44
45 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
46                                  unsigned char);
47 static void free_swap_count_continuations(struct swap_info_struct *);
48 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
49
50 DEFINE_SPINLOCK(swap_lock);
51 static unsigned int nr_swapfiles;
52 atomic_long_t nr_swap_pages;
53 /*
54  * Some modules use swappable objects and may try to swap them out under
55  * memory pressure (via the shrinker). Before doing so, they may wish to
56  * check to see if any swap space is available.
57  */
58 EXPORT_SYMBOL_GPL(nr_swap_pages);
59 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
60 long total_swap_pages;
61 static int least_priority;
62
63 static const char Bad_file[] = "Bad swap file entry ";
64 static const char Unused_file[] = "Unused swap file entry ";
65 static const char Bad_offset[] = "Bad swap offset entry ";
66 static const char Unused_offset[] = "Unused swap offset entry ";
67
68 /*
69  * all active swap_info_structs
70  * protected with swap_lock, and ordered by priority.
71  */
72 PLIST_HEAD(swap_active_head);
73
74 /*
75  * all available (active, not full) swap_info_structs
76  * protected with swap_avail_lock, ordered by priority.
77  * This is used by get_swap_page() instead of swap_active_head
78  * because swap_active_head includes all swap_info_structs,
79  * but get_swap_page() doesn't need to look at full ones.
80  * This uses its own lock instead of swap_lock because when a
81  * swap_info_struct changes between not-full/full, it needs to
82  * add/remove itself to/from this list, but the swap_info_struct->lock
83  * is held and the locking order requires swap_lock to be taken
84  * before any swap_info_struct->lock.
85  */
86 static PLIST_HEAD(swap_avail_head);
87 static DEFINE_SPINLOCK(swap_avail_lock);
88
89 struct swap_info_struct *swap_info[MAX_SWAPFILES];
90
91 static DEFINE_MUTEX(swapon_mutex);
92
93 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
94 /* Activity counter to indicate that a swapon or swapoff has occurred */
95 static atomic_t proc_poll_event = ATOMIC_INIT(0);
96
97 static inline unsigned char swap_count(unsigned char ent)
98 {
99         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
100 }
101
102 /* returns 1 if swap entry is freed */
103 static int
104 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
105 {
106         swp_entry_t entry = swp_entry(si->type, offset);
107         struct page *page;
108         int ret = 0;
109
110         page = find_get_page(swap_address_space(entry), swp_offset(entry));
111         if (!page)
112                 return 0;
113         /*
114          * This function is called from scan_swap_map() and it's called
115          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
116          * We have to use trylock for avoiding deadlock. This is a special
117          * case and you should use try_to_free_swap() with explicit lock_page()
118          * in usual operations.
119          */
120         if (trylock_page(page)) {
121                 ret = try_to_free_swap(page);
122                 unlock_page(page);
123         }
124         put_page(page);
125         return ret;
126 }
127
128 /*
129  * swapon tell device that all the old swap contents can be discarded,
130  * to allow the swap device to optimize its wear-levelling.
131  */
132 static int discard_swap(struct swap_info_struct *si)
133 {
134         struct swap_extent *se;
135         sector_t start_block;
136         sector_t nr_blocks;
137         int err = 0;
138
139         /* Do not discard the swap header page! */
140         se = &si->first_swap_extent;
141         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
142         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
143         if (nr_blocks) {
144                 err = blkdev_issue_discard(si->bdev, start_block,
145                                 nr_blocks, GFP_KERNEL, 0);
146                 if (err)
147                         return err;
148                 cond_resched();
149         }
150
151         list_for_each_entry(se, &si->first_swap_extent.list, list) {
152                 start_block = se->start_block << (PAGE_SHIFT - 9);
153                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154
155                 err = blkdev_issue_discard(si->bdev, start_block,
156                                 nr_blocks, GFP_KERNEL, 0);
157                 if (err)
158                         break;
159
160                 cond_resched();
161         }
162         return err;             /* That will often be -EOPNOTSUPP */
163 }
164
165 /*
166  * swap allocation tell device that a cluster of swap can now be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static void discard_swap_cluster(struct swap_info_struct *si,
170                                  pgoff_t start_page, pgoff_t nr_pages)
171 {
172         struct swap_extent *se = si->curr_swap_extent;
173         int found_extent = 0;
174
175         while (nr_pages) {
176                 if (se->start_page <= start_page &&
177                     start_page < se->start_page + se->nr_pages) {
178                         pgoff_t offset = start_page - se->start_page;
179                         sector_t start_block = se->start_block + offset;
180                         sector_t nr_blocks = se->nr_pages - offset;
181
182                         if (nr_blocks > nr_pages)
183                                 nr_blocks = nr_pages;
184                         start_page += nr_blocks;
185                         nr_pages -= nr_blocks;
186
187                         if (!found_extent++)
188                                 si->curr_swap_extent = se;
189
190                         start_block <<= PAGE_SHIFT - 9;
191                         nr_blocks <<= PAGE_SHIFT - 9;
192                         if (blkdev_issue_discard(si->bdev, start_block,
193                                     nr_blocks, GFP_NOIO, 0))
194                                 break;
195                 }
196
197                 se = list_next_entry(se, list);
198         }
199 }
200
201 #define SWAPFILE_CLUSTER        256
202 #define LATENCY_LIMIT           256
203
204 static inline void cluster_set_flag(struct swap_cluster_info *info,
205         unsigned int flag)
206 {
207         info->flags = flag;
208 }
209
210 static inline unsigned int cluster_count(struct swap_cluster_info *info)
211 {
212         return info->data;
213 }
214
215 static inline void cluster_set_count(struct swap_cluster_info *info,
216                                      unsigned int c)
217 {
218         info->data = c;
219 }
220
221 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
222                                          unsigned int c, unsigned int f)
223 {
224         info->flags = f;
225         info->data = c;
226 }
227
228 static inline unsigned int cluster_next(struct swap_cluster_info *info)
229 {
230         return info->data;
231 }
232
233 static inline void cluster_set_next(struct swap_cluster_info *info,
234                                     unsigned int n)
235 {
236         info->data = n;
237 }
238
239 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
240                                          unsigned int n, unsigned int f)
241 {
242         info->flags = f;
243         info->data = n;
244 }
245
246 static inline bool cluster_is_free(struct swap_cluster_info *info)
247 {
248         return info->flags & CLUSTER_FLAG_FREE;
249 }
250
251 static inline bool cluster_is_null(struct swap_cluster_info *info)
252 {
253         return info->flags & CLUSTER_FLAG_NEXT_NULL;
254 }
255
256 static inline void cluster_set_null(struct swap_cluster_info *info)
257 {
258         info->flags = CLUSTER_FLAG_NEXT_NULL;
259         info->data = 0;
260 }
261
262 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
263                                                      unsigned long offset)
264 {
265         struct swap_cluster_info *ci;
266
267         ci = si->cluster_info;
268         if (ci) {
269                 ci += offset / SWAPFILE_CLUSTER;
270                 spin_lock(&ci->lock);
271         }
272         return ci;
273 }
274
275 static inline void unlock_cluster(struct swap_cluster_info *ci)
276 {
277         if (ci)
278                 spin_unlock(&ci->lock);
279 }
280
281 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
282         struct swap_info_struct *si,
283         unsigned long offset)
284 {
285         struct swap_cluster_info *ci;
286
287         ci = lock_cluster(si, offset);
288         if (!ci)
289                 spin_lock(&si->lock);
290
291         return ci;
292 }
293
294 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
295                                                struct swap_cluster_info *ci)
296 {
297         if (ci)
298                 unlock_cluster(ci);
299         else
300                 spin_unlock(&si->lock);
301 }
302
303 static inline bool cluster_list_empty(struct swap_cluster_list *list)
304 {
305         return cluster_is_null(&list->head);
306 }
307
308 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
309 {
310         return cluster_next(&list->head);
311 }
312
313 static void cluster_list_init(struct swap_cluster_list *list)
314 {
315         cluster_set_null(&list->head);
316         cluster_set_null(&list->tail);
317 }
318
319 static void cluster_list_add_tail(struct swap_cluster_list *list,
320                                   struct swap_cluster_info *ci,
321                                   unsigned int idx)
322 {
323         if (cluster_list_empty(list)) {
324                 cluster_set_next_flag(&list->head, idx, 0);
325                 cluster_set_next_flag(&list->tail, idx, 0);
326         } else {
327                 struct swap_cluster_info *ci_tail;
328                 unsigned int tail = cluster_next(&list->tail);
329
330                 /*
331                  * Nested cluster lock, but both cluster locks are
332                  * only acquired when we held swap_info_struct->lock
333                  */
334                 ci_tail = ci + tail;
335                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
336                 cluster_set_next(ci_tail, idx);
337                 unlock_cluster(ci_tail);
338                 cluster_set_next_flag(&list->tail, idx, 0);
339         }
340 }
341
342 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
343                                            struct swap_cluster_info *ci)
344 {
345         unsigned int idx;
346
347         idx = cluster_next(&list->head);
348         if (cluster_next(&list->tail) == idx) {
349                 cluster_set_null(&list->head);
350                 cluster_set_null(&list->tail);
351         } else
352                 cluster_set_next_flag(&list->head,
353                                       cluster_next(&ci[idx]), 0);
354
355         return idx;
356 }
357
358 /* Add a cluster to discard list and schedule it to do discard */
359 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
360                 unsigned int idx)
361 {
362         /*
363          * If scan_swap_map() can't find a free cluster, it will check
364          * si->swap_map directly. To make sure the discarding cluster isn't
365          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
366          * will be cleared after discard
367          */
368         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
369                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
370
371         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
372
373         schedule_work(&si->discard_work);
374 }
375
376 /*
377  * Doing discard actually. After a cluster discard is finished, the cluster
378  * will be added to free cluster list. caller should hold si->lock.
379 */
380 static void swap_do_scheduled_discard(struct swap_info_struct *si)
381 {
382         struct swap_cluster_info *info, *ci;
383         unsigned int idx;
384
385         info = si->cluster_info;
386
387         while (!cluster_list_empty(&si->discard_clusters)) {
388                 idx = cluster_list_del_first(&si->discard_clusters, info);
389                 spin_unlock(&si->lock);
390
391                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
392                                 SWAPFILE_CLUSTER);
393
394                 spin_lock(&si->lock);
395                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
396                 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
397                 unlock_cluster(ci);
398                 cluster_list_add_tail(&si->free_clusters, info, idx);
399                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
400                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
401                                 0, SWAPFILE_CLUSTER);
402                 unlock_cluster(ci);
403         }
404 }
405
406 static void swap_discard_work(struct work_struct *work)
407 {
408         struct swap_info_struct *si;
409
410         si = container_of(work, struct swap_info_struct, discard_work);
411
412         spin_lock(&si->lock);
413         swap_do_scheduled_discard(si);
414         spin_unlock(&si->lock);
415 }
416
417 /*
418  * The cluster corresponding to page_nr will be used. The cluster will be
419  * removed from free cluster list and its usage counter will be increased.
420  */
421 static void inc_cluster_info_page(struct swap_info_struct *p,
422         struct swap_cluster_info *cluster_info, unsigned long page_nr)
423 {
424         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
425
426         if (!cluster_info)
427                 return;
428         if (cluster_is_free(&cluster_info[idx])) {
429                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
430                 cluster_list_del_first(&p->free_clusters, cluster_info);
431                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
432         }
433
434         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
435         cluster_set_count(&cluster_info[idx],
436                 cluster_count(&cluster_info[idx]) + 1);
437 }
438
439 /*
440  * The cluster corresponding to page_nr decreases one usage. If the usage
441  * counter becomes 0, which means no page in the cluster is in using, we can
442  * optionally discard the cluster and add it to free cluster list.
443  */
444 static void dec_cluster_info_page(struct swap_info_struct *p,
445         struct swap_cluster_info *cluster_info, unsigned long page_nr)
446 {
447         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
448
449         if (!cluster_info)
450                 return;
451
452         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
453         cluster_set_count(&cluster_info[idx],
454                 cluster_count(&cluster_info[idx]) - 1);
455
456         if (cluster_count(&cluster_info[idx]) == 0) {
457                 /*
458                  * If the swap is discardable, prepare discard the cluster
459                  * instead of free it immediately. The cluster will be freed
460                  * after discard.
461                  */
462                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
463                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
464                         swap_cluster_schedule_discard(p, idx);
465                         return;
466                 }
467
468                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
469                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
470         }
471 }
472
473 /*
474  * It's possible scan_swap_map() uses a free cluster in the middle of free
475  * cluster list. Avoiding such abuse to avoid list corruption.
476  */
477 static bool
478 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
479         unsigned long offset)
480 {
481         struct percpu_cluster *percpu_cluster;
482         bool conflict;
483
484         offset /= SWAPFILE_CLUSTER;
485         conflict = !cluster_list_empty(&si->free_clusters) &&
486                 offset != cluster_list_first(&si->free_clusters) &&
487                 cluster_is_free(&si->cluster_info[offset]);
488
489         if (!conflict)
490                 return false;
491
492         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
493         cluster_set_null(&percpu_cluster->index);
494         return true;
495 }
496
497 /*
498  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
499  * might involve allocating a new cluster for current CPU too.
500  */
501 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
502         unsigned long *offset, unsigned long *scan_base)
503 {
504         struct percpu_cluster *cluster;
505         struct swap_cluster_info *ci;
506         bool found_free;
507         unsigned long tmp, max;
508
509 new_cluster:
510         cluster = this_cpu_ptr(si->percpu_cluster);
511         if (cluster_is_null(&cluster->index)) {
512                 if (!cluster_list_empty(&si->free_clusters)) {
513                         cluster->index = si->free_clusters.head;
514                         cluster->next = cluster_next(&cluster->index) *
515                                         SWAPFILE_CLUSTER;
516                 } else if (!cluster_list_empty(&si->discard_clusters)) {
517                         /*
518                          * we don't have free cluster but have some clusters in
519                          * discarding, do discard now and reclaim them
520                          */
521                         swap_do_scheduled_discard(si);
522                         *scan_base = *offset = si->cluster_next;
523                         goto new_cluster;
524                 } else
525                         return false;
526         }
527
528         found_free = false;
529
530         /*
531          * Other CPUs can use our cluster if they can't find a free cluster,
532          * check if there is still free entry in the cluster
533          */
534         tmp = cluster->next;
535         max = min_t(unsigned long, si->max,
536                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
537         if (tmp >= max) {
538                 cluster_set_null(&cluster->index);
539                 goto new_cluster;
540         }
541         ci = lock_cluster(si, tmp);
542         while (tmp < max) {
543                 if (!si->swap_map[tmp]) {
544                         found_free = true;
545                         break;
546                 }
547                 tmp++;
548         }
549         unlock_cluster(ci);
550         if (!found_free) {
551                 cluster_set_null(&cluster->index);
552                 goto new_cluster;
553         }
554         cluster->next = tmp + 1;
555         *offset = tmp;
556         *scan_base = tmp;
557         return found_free;
558 }
559
560 static int scan_swap_map_slots(struct swap_info_struct *si,
561                                unsigned char usage, int nr,
562                                swp_entry_t slots[])
563 {
564         struct swap_cluster_info *ci;
565         unsigned long offset;
566         unsigned long scan_base;
567         unsigned long last_in_cluster = 0;
568         int latency_ration = LATENCY_LIMIT;
569         int n_ret = 0;
570
571         if (nr > SWAP_BATCH)
572                 nr = SWAP_BATCH;
573
574         /*
575          * We try to cluster swap pages by allocating them sequentially
576          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
577          * way, however, we resort to first-free allocation, starting
578          * a new cluster.  This prevents us from scattering swap pages
579          * all over the entire swap partition, so that we reduce
580          * overall disk seek times between swap pages.  -- sct
581          * But we do now try to find an empty cluster.  -Andrea
582          * And we let swap pages go all over an SSD partition.  Hugh
583          */
584
585         si->flags += SWP_SCANNING;
586         scan_base = offset = si->cluster_next;
587
588         /* SSD algorithm */
589         if (si->cluster_info) {
590                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
591                         goto checks;
592                 else
593                         goto scan;
594         }
595
596         if (unlikely(!si->cluster_nr--)) {
597                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
598                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
599                         goto checks;
600                 }
601
602                 spin_unlock(&si->lock);
603
604                 /*
605                  * If seek is expensive, start searching for new cluster from
606                  * start of partition, to minimize the span of allocated swap.
607                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
608                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
609                  */
610                 scan_base = offset = si->lowest_bit;
611                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
612
613                 /* Locate the first empty (unaligned) cluster */
614                 for (; last_in_cluster <= si->highest_bit; offset++) {
615                         if (si->swap_map[offset])
616                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
617                         else if (offset == last_in_cluster) {
618                                 spin_lock(&si->lock);
619                                 offset -= SWAPFILE_CLUSTER - 1;
620                                 si->cluster_next = offset;
621                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
622                                 goto checks;
623                         }
624                         if (unlikely(--latency_ration < 0)) {
625                                 cond_resched();
626                                 latency_ration = LATENCY_LIMIT;
627                         }
628                 }
629
630                 offset = scan_base;
631                 spin_lock(&si->lock);
632                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
633         }
634
635 checks:
636         if (si->cluster_info) {
637                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
638                 /* take a break if we already got some slots */
639                         if (n_ret)
640                                 goto done;
641                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
642                                                         &scan_base))
643                                 goto scan;
644                 }
645         }
646         if (!(si->flags & SWP_WRITEOK))
647                 goto no_page;
648         if (!si->highest_bit)
649                 goto no_page;
650         if (offset > si->highest_bit)
651                 scan_base = offset = si->lowest_bit;
652
653         ci = lock_cluster(si, offset);
654         /* reuse swap entry of cache-only swap if not busy. */
655         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
656                 int swap_was_freed;
657                 unlock_cluster(ci);
658                 spin_unlock(&si->lock);
659                 swap_was_freed = __try_to_reclaim_swap(si, offset);
660                 spin_lock(&si->lock);
661                 /* entry was freed successfully, try to use this again */
662                 if (swap_was_freed)
663                         goto checks;
664                 goto scan; /* check next one */
665         }
666
667         if (si->swap_map[offset]) {
668                 unlock_cluster(ci);
669                 if (!n_ret)
670                         goto scan;
671                 else
672                         goto done;
673         }
674
675         if (offset == si->lowest_bit)
676                 si->lowest_bit++;
677         if (offset == si->highest_bit)
678                 si->highest_bit--;
679         si->inuse_pages++;
680         if (si->inuse_pages == si->pages) {
681                 si->lowest_bit = si->max;
682                 si->highest_bit = 0;
683                 spin_lock(&swap_avail_lock);
684                 plist_del(&si->avail_list, &swap_avail_head);
685                 spin_unlock(&swap_avail_lock);
686         }
687         si->swap_map[offset] = usage;
688         inc_cluster_info_page(si, si->cluster_info, offset);
689         unlock_cluster(ci);
690         si->cluster_next = offset + 1;
691         slots[n_ret++] = swp_entry(si->type, offset);
692
693         /* got enough slots or reach max slots? */
694         if ((n_ret == nr) || (offset >= si->highest_bit))
695                 goto done;
696
697         /* search for next available slot */
698
699         /* time to take a break? */
700         if (unlikely(--latency_ration < 0)) {
701                 if (n_ret)
702                         goto done;
703                 spin_unlock(&si->lock);
704                 cond_resched();
705                 spin_lock(&si->lock);
706                 latency_ration = LATENCY_LIMIT;
707         }
708
709         /* try to get more slots in cluster */
710         if (si->cluster_info) {
711                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
712                         goto checks;
713                 else
714                         goto done;
715         }
716         /* non-ssd case */
717         ++offset;
718
719         /* non-ssd case, still more slots in cluster? */
720         if (si->cluster_nr && !si->swap_map[offset]) {
721                 --si->cluster_nr;
722                 goto checks;
723         }
724
725 done:
726         si->flags -= SWP_SCANNING;
727         return n_ret;
728
729 scan:
730         spin_unlock(&si->lock);
731         while (++offset <= si->highest_bit) {
732                 if (!si->swap_map[offset]) {
733                         spin_lock(&si->lock);
734                         goto checks;
735                 }
736                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
737                         spin_lock(&si->lock);
738                         goto checks;
739                 }
740                 if (unlikely(--latency_ration < 0)) {
741                         cond_resched();
742                         latency_ration = LATENCY_LIMIT;
743                 }
744         }
745         offset = si->lowest_bit;
746         while (offset < scan_base) {
747                 if (!si->swap_map[offset]) {
748                         spin_lock(&si->lock);
749                         goto checks;
750                 }
751                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
752                         spin_lock(&si->lock);
753                         goto checks;
754                 }
755                 if (unlikely(--latency_ration < 0)) {
756                         cond_resched();
757                         latency_ration = LATENCY_LIMIT;
758                 }
759                 offset++;
760         }
761         spin_lock(&si->lock);
762
763 no_page:
764         si->flags -= SWP_SCANNING;
765         return n_ret;
766 }
767
768 static unsigned long scan_swap_map(struct swap_info_struct *si,
769                                    unsigned char usage)
770 {
771         swp_entry_t entry;
772         int n_ret;
773
774         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
775
776         if (n_ret)
777                 return swp_offset(entry);
778         else
779                 return 0;
780
781 }
782
783 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
784 {
785         struct swap_info_struct *si, *next;
786         long avail_pgs;
787         int n_ret = 0;
788
789         avail_pgs = atomic_long_read(&nr_swap_pages);
790         if (avail_pgs <= 0)
791                 goto noswap;
792
793         if (n_goal > SWAP_BATCH)
794                 n_goal = SWAP_BATCH;
795
796         if (n_goal > avail_pgs)
797                 n_goal = avail_pgs;
798
799         atomic_long_sub(n_goal, &nr_swap_pages);
800
801         spin_lock(&swap_avail_lock);
802
803 start_over:
804         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
805                 /* requeue si to after same-priority siblings */
806                 plist_requeue(&si->avail_list, &swap_avail_head);
807                 spin_unlock(&swap_avail_lock);
808                 spin_lock(&si->lock);
809                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
810                         spin_lock(&swap_avail_lock);
811                         if (plist_node_empty(&si->avail_list)) {
812                                 spin_unlock(&si->lock);
813                                 goto nextsi;
814                         }
815                         WARN(!si->highest_bit,
816                              "swap_info %d in list but !highest_bit\n",
817                              si->type);
818                         WARN(!(si->flags & SWP_WRITEOK),
819                              "swap_info %d in list but !SWP_WRITEOK\n",
820                              si->type);
821                         plist_del(&si->avail_list, &swap_avail_head);
822                         spin_unlock(&si->lock);
823                         goto nextsi;
824                 }
825                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
826                                             n_goal, swp_entries);
827                 spin_unlock(&si->lock);
828                 if (n_ret)
829                         goto check_out;
830                 pr_debug("scan_swap_map of si %d failed to find offset\n",
831                         si->type);
832
833                 spin_lock(&swap_avail_lock);
834 nextsi:
835                 /*
836                  * if we got here, it's likely that si was almost full before,
837                  * and since scan_swap_map() can drop the si->lock, multiple
838                  * callers probably all tried to get a page from the same si
839                  * and it filled up before we could get one; or, the si filled
840                  * up between us dropping swap_avail_lock and taking si->lock.
841                  * Since we dropped the swap_avail_lock, the swap_avail_head
842                  * list may have been modified; so if next is still in the
843                  * swap_avail_head list then try it, otherwise start over
844                  * if we have not gotten any slots.
845                  */
846                 if (plist_node_empty(&next->avail_list))
847                         goto start_over;
848         }
849
850         spin_unlock(&swap_avail_lock);
851
852 check_out:
853         if (n_ret < n_goal)
854                 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
855 noswap:
856         return n_ret;
857 }
858
859 /* The only caller of this function is now suspend routine */
860 swp_entry_t get_swap_page_of_type(int type)
861 {
862         struct swap_info_struct *si;
863         pgoff_t offset;
864
865         si = swap_info[type];
866         spin_lock(&si->lock);
867         if (si && (si->flags & SWP_WRITEOK)) {
868                 atomic_long_dec(&nr_swap_pages);
869                 /* This is called for allocating swap entry, not cache */
870                 offset = scan_swap_map(si, 1);
871                 if (offset) {
872                         spin_unlock(&si->lock);
873                         return swp_entry(type, offset);
874                 }
875                 atomic_long_inc(&nr_swap_pages);
876         }
877         spin_unlock(&si->lock);
878         return (swp_entry_t) {0};
879 }
880
881 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
882 {
883         struct swap_info_struct *p;
884         unsigned long offset, type;
885
886         if (!entry.val)
887                 goto out;
888         type = swp_type(entry);
889         if (type >= nr_swapfiles)
890                 goto bad_nofile;
891         p = swap_info[type];
892         if (!(p->flags & SWP_USED))
893                 goto bad_device;
894         offset = swp_offset(entry);
895         if (offset >= p->max)
896                 goto bad_offset;
897         return p;
898
899 bad_offset:
900         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
901         goto out;
902 bad_device:
903         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
904         goto out;
905 bad_nofile:
906         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
907 out:
908         return NULL;
909 }
910
911 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
912 {
913         struct swap_info_struct *p;
914
915         p = __swap_info_get(entry);
916         if (!p)
917                 goto out;
918         if (!p->swap_map[swp_offset(entry)])
919                 goto bad_free;
920         return p;
921
922 bad_free:
923         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
924         goto out;
925 out:
926         return NULL;
927 }
928
929 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
930 {
931         struct swap_info_struct *p;
932
933         p = _swap_info_get(entry);
934         if (p)
935                 spin_lock(&p->lock);
936         return p;
937 }
938
939 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
940                                         struct swap_info_struct *q)
941 {
942         struct swap_info_struct *p;
943
944         p = _swap_info_get(entry);
945
946         if (p != q) {
947                 if (q != NULL)
948                         spin_unlock(&q->lock);
949                 if (p != NULL)
950                         spin_lock(&p->lock);
951         }
952         return p;
953 }
954
955 static unsigned char __swap_entry_free(struct swap_info_struct *p,
956                                        swp_entry_t entry, unsigned char usage)
957 {
958         struct swap_cluster_info *ci;
959         unsigned long offset = swp_offset(entry);
960         unsigned char count;
961         unsigned char has_cache;
962
963         ci = lock_cluster_or_swap_info(p, offset);
964
965         count = p->swap_map[offset];
966
967         has_cache = count & SWAP_HAS_CACHE;
968         count &= ~SWAP_HAS_CACHE;
969
970         if (usage == SWAP_HAS_CACHE) {
971                 VM_BUG_ON(!has_cache);
972                 has_cache = 0;
973         } else if (count == SWAP_MAP_SHMEM) {
974                 /*
975                  * Or we could insist on shmem.c using a special
976                  * swap_shmem_free() and free_shmem_swap_and_cache()...
977                  */
978                 count = 0;
979         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
980                 if (count == COUNT_CONTINUED) {
981                         if (swap_count_continued(p, offset, count))
982                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
983                         else
984                                 count = SWAP_MAP_MAX;
985                 } else
986                         count--;
987         }
988
989         usage = count | has_cache;
990         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
991
992         unlock_cluster_or_swap_info(p, ci);
993
994         return usage;
995 }
996
997 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
998 {
999         struct swap_cluster_info *ci;
1000         unsigned long offset = swp_offset(entry);
1001         unsigned char count;
1002
1003         ci = lock_cluster(p, offset);
1004         count = p->swap_map[offset];
1005         VM_BUG_ON(count != SWAP_HAS_CACHE);
1006         p->swap_map[offset] = 0;
1007         dec_cluster_info_page(p, p->cluster_info, offset);
1008         unlock_cluster(ci);
1009
1010         mem_cgroup_uncharge_swap(entry);
1011         if (offset < p->lowest_bit)
1012                 p->lowest_bit = offset;
1013         if (offset > p->highest_bit) {
1014                 bool was_full = !p->highest_bit;
1015
1016                 p->highest_bit = offset;
1017                 if (was_full && (p->flags & SWP_WRITEOK)) {
1018                         spin_lock(&swap_avail_lock);
1019                         WARN_ON(!plist_node_empty(&p->avail_list));
1020                         if (plist_node_empty(&p->avail_list))
1021                                 plist_add(&p->avail_list,
1022                                           &swap_avail_head);
1023                         spin_unlock(&swap_avail_lock);
1024                 }
1025         }
1026         atomic_long_inc(&nr_swap_pages);
1027         p->inuse_pages--;
1028         frontswap_invalidate_page(p->type, offset);
1029         if (p->flags & SWP_BLKDEV) {
1030                 struct gendisk *disk = p->bdev->bd_disk;
1031
1032                 if (disk->fops->swap_slot_free_notify)
1033                         disk->fops->swap_slot_free_notify(p->bdev,
1034                                                           offset);
1035         }
1036 }
1037
1038 /*
1039  * Caller has made sure that the swap device corresponding to entry
1040  * is still around or has not been recycled.
1041  */
1042 void swap_free(swp_entry_t entry)
1043 {
1044         struct swap_info_struct *p;
1045
1046         p = _swap_info_get(entry);
1047         if (p) {
1048                 if (!__swap_entry_free(p, entry, 1))
1049                         free_swap_slot(entry);
1050         }
1051 }
1052
1053 /*
1054  * Called after dropping swapcache to decrease refcnt to swap entries.
1055  */
1056 void swapcache_free(swp_entry_t entry)
1057 {
1058         struct swap_info_struct *p;
1059
1060         p = _swap_info_get(entry);
1061         if (p) {
1062                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1063                         free_swap_slot(entry);
1064         }
1065 }
1066
1067 void swapcache_free_entries(swp_entry_t *entries, int n)
1068 {
1069         struct swap_info_struct *p, *prev;
1070         int i;
1071
1072         if (n <= 0)
1073                 return;
1074
1075         prev = NULL;
1076         p = NULL;
1077         for (i = 0; i < n; ++i) {
1078                 p = swap_info_get_cont(entries[i], prev);
1079                 if (p)
1080                         swap_entry_free(p, entries[i]);
1081                 else
1082                         break;
1083                 prev = p;
1084         }
1085         if (p)
1086                 spin_unlock(&p->lock);
1087 }
1088
1089 /*
1090  * How many references to page are currently swapped out?
1091  * This does not give an exact answer when swap count is continued,
1092  * but does include the high COUNT_CONTINUED flag to allow for that.
1093  */
1094 int page_swapcount(struct page *page)
1095 {
1096         int count = 0;
1097         struct swap_info_struct *p;
1098         struct swap_cluster_info *ci;
1099         swp_entry_t entry;
1100         unsigned long offset;
1101
1102         entry.val = page_private(page);
1103         p = _swap_info_get(entry);
1104         if (p) {
1105                 offset = swp_offset(entry);
1106                 ci = lock_cluster_or_swap_info(p, offset);
1107                 count = swap_count(p->swap_map[offset]);
1108                 unlock_cluster_or_swap_info(p, ci);
1109         }
1110         return count;
1111 }
1112
1113 /*
1114  * How many references to @entry are currently swapped out?
1115  * This does not give an exact answer when swap count is continued,
1116  * but does include the high COUNT_CONTINUED flag to allow for that.
1117  */
1118 int __swp_swapcount(swp_entry_t entry)
1119 {
1120         int count = 0;
1121         pgoff_t offset;
1122         struct swap_info_struct *si;
1123         struct swap_cluster_info *ci;
1124
1125         si = __swap_info_get(entry);
1126         if (si) {
1127                 offset = swp_offset(entry);
1128                 ci = lock_cluster_or_swap_info(si, offset);
1129                 count = swap_count(si->swap_map[offset]);
1130                 unlock_cluster_or_swap_info(si, ci);
1131         }
1132         return count;
1133 }
1134
1135 /*
1136  * How many references to @entry are currently swapped out?
1137  * This considers COUNT_CONTINUED so it returns exact answer.
1138  */
1139 int swp_swapcount(swp_entry_t entry)
1140 {
1141         int count, tmp_count, n;
1142         struct swap_info_struct *p;
1143         struct swap_cluster_info *ci;
1144         struct page *page;
1145         pgoff_t offset;
1146         unsigned char *map;
1147
1148         p = _swap_info_get(entry);
1149         if (!p)
1150                 return 0;
1151
1152         offset = swp_offset(entry);
1153
1154         ci = lock_cluster_or_swap_info(p, offset);
1155
1156         count = swap_count(p->swap_map[offset]);
1157         if (!(count & COUNT_CONTINUED))
1158                 goto out;
1159
1160         count &= ~COUNT_CONTINUED;
1161         n = SWAP_MAP_MAX + 1;
1162
1163         page = vmalloc_to_page(p->swap_map + offset);
1164         offset &= ~PAGE_MASK;
1165         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1166
1167         do {
1168                 page = list_next_entry(page, lru);
1169                 map = kmap_atomic(page);
1170                 tmp_count = map[offset];
1171                 kunmap_atomic(map);
1172
1173                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1174                 n *= (SWAP_CONT_MAX + 1);
1175         } while (tmp_count & COUNT_CONTINUED);
1176 out:
1177         unlock_cluster_or_swap_info(p, ci);
1178         return count;
1179 }
1180
1181 /*
1182  * We can write to an anon page without COW if there are no other references
1183  * to it.  And as a side-effect, free up its swap: because the old content
1184  * on disk will never be read, and seeking back there to write new content
1185  * later would only waste time away from clustering.
1186  *
1187  * NOTE: total_mapcount should not be relied upon by the caller if
1188  * reuse_swap_page() returns false, but it may be always overwritten
1189  * (see the other implementation for CONFIG_SWAP=n).
1190  */
1191 bool reuse_swap_page(struct page *page, int *total_mapcount)
1192 {
1193         int count;
1194
1195         VM_BUG_ON_PAGE(!PageLocked(page), page);
1196         if (unlikely(PageKsm(page)))
1197                 return false;
1198         count = page_trans_huge_mapcount(page, total_mapcount);
1199         if (count <= 1 && PageSwapCache(page)) {
1200                 count += page_swapcount(page);
1201                 if (count != 1)
1202                         goto out;
1203                 if (!PageWriteback(page)) {
1204                         delete_from_swap_cache(page);
1205                         SetPageDirty(page);
1206                 } else {
1207                         swp_entry_t entry;
1208                         struct swap_info_struct *p;
1209
1210                         entry.val = page_private(page);
1211                         p = swap_info_get(entry);
1212                         if (p->flags & SWP_STABLE_WRITES) {
1213                                 spin_unlock(&p->lock);
1214                                 return false;
1215                         }
1216                         spin_unlock(&p->lock);
1217                 }
1218         }
1219 out:
1220         return count <= 1;
1221 }
1222
1223 /*
1224  * If swap is getting full, or if there are no more mappings of this page,
1225  * then try_to_free_swap is called to free its swap space.
1226  */
1227 int try_to_free_swap(struct page *page)
1228 {
1229         VM_BUG_ON_PAGE(!PageLocked(page), page);
1230
1231         if (!PageSwapCache(page))
1232                 return 0;
1233         if (PageWriteback(page))
1234                 return 0;
1235         if (page_swapcount(page))
1236                 return 0;
1237
1238         /*
1239          * Once hibernation has begun to create its image of memory,
1240          * there's a danger that one of the calls to try_to_free_swap()
1241          * - most probably a call from __try_to_reclaim_swap() while
1242          * hibernation is allocating its own swap pages for the image,
1243          * but conceivably even a call from memory reclaim - will free
1244          * the swap from a page which has already been recorded in the
1245          * image as a clean swapcache page, and then reuse its swap for
1246          * another page of the image.  On waking from hibernation, the
1247          * original page might be freed under memory pressure, then
1248          * later read back in from swap, now with the wrong data.
1249          *
1250          * Hibernation suspends storage while it is writing the image
1251          * to disk so check that here.
1252          */
1253         if (pm_suspended_storage())
1254                 return 0;
1255
1256         delete_from_swap_cache(page);
1257         SetPageDirty(page);
1258         return 1;
1259 }
1260
1261 /*
1262  * Free the swap entry like above, but also try to
1263  * free the page cache entry if it is the last user.
1264  */
1265 int free_swap_and_cache(swp_entry_t entry)
1266 {
1267         struct swap_info_struct *p;
1268         struct page *page = NULL;
1269         unsigned char count;
1270
1271         if (non_swap_entry(entry))
1272                 return 1;
1273
1274         p = _swap_info_get(entry);
1275         if (p) {
1276                 count = __swap_entry_free(p, entry, 1);
1277                 if (count == SWAP_HAS_CACHE) {
1278                         page = find_get_page(swap_address_space(entry),
1279                                              swp_offset(entry));
1280                         if (page && !trylock_page(page)) {
1281                                 put_page(page);
1282                                 page = NULL;
1283                         }
1284                 } else if (!count)
1285                         free_swap_slot(entry);
1286         }
1287         if (page) {
1288                 /*
1289                  * Not mapped elsewhere, or swap space full? Free it!
1290                  * Also recheck PageSwapCache now page is locked (above).
1291                  */
1292                 if (PageSwapCache(page) && !PageWriteback(page) &&
1293                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1294                         delete_from_swap_cache(page);
1295                         SetPageDirty(page);
1296                 }
1297                 unlock_page(page);
1298                 put_page(page);
1299         }
1300         return p != NULL;
1301 }
1302
1303 #ifdef CONFIG_HIBERNATION
1304 /*
1305  * Find the swap type that corresponds to given device (if any).
1306  *
1307  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1308  * from 0, in which the swap header is expected to be located.
1309  *
1310  * This is needed for the suspend to disk (aka swsusp).
1311  */
1312 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1313 {
1314         struct block_device *bdev = NULL;
1315         int type;
1316
1317         if (device)
1318                 bdev = bdget(device);
1319
1320         spin_lock(&swap_lock);
1321         for (type = 0; type < nr_swapfiles; type++) {
1322                 struct swap_info_struct *sis = swap_info[type];
1323
1324                 if (!(sis->flags & SWP_WRITEOK))
1325                         continue;
1326
1327                 if (!bdev) {
1328                         if (bdev_p)
1329                                 *bdev_p = bdgrab(sis->bdev);
1330
1331                         spin_unlock(&swap_lock);
1332                         return type;
1333                 }
1334                 if (bdev == sis->bdev) {
1335                         struct swap_extent *se = &sis->first_swap_extent;
1336
1337                         if (se->start_block == offset) {
1338                                 if (bdev_p)
1339                                         *bdev_p = bdgrab(sis->bdev);
1340
1341                                 spin_unlock(&swap_lock);
1342                                 bdput(bdev);
1343                                 return type;
1344                         }
1345                 }
1346         }
1347         spin_unlock(&swap_lock);
1348         if (bdev)
1349                 bdput(bdev);
1350
1351         return -ENODEV;
1352 }
1353
1354 /*
1355  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1356  * corresponding to given index in swap_info (swap type).
1357  */
1358 sector_t swapdev_block(int type, pgoff_t offset)
1359 {
1360         struct block_device *bdev;
1361
1362         if ((unsigned int)type >= nr_swapfiles)
1363                 return 0;
1364         if (!(swap_info[type]->flags & SWP_WRITEOK))
1365                 return 0;
1366         return map_swap_entry(swp_entry(type, offset), &bdev);
1367 }
1368
1369 /*
1370  * Return either the total number of swap pages of given type, or the number
1371  * of free pages of that type (depending on @free)
1372  *
1373  * This is needed for software suspend
1374  */
1375 unsigned int count_swap_pages(int type, int free)
1376 {
1377         unsigned int n = 0;
1378
1379         spin_lock(&swap_lock);
1380         if ((unsigned int)type < nr_swapfiles) {
1381                 struct swap_info_struct *sis = swap_info[type];
1382
1383                 spin_lock(&sis->lock);
1384                 if (sis->flags & SWP_WRITEOK) {
1385                         n = sis->pages;
1386                         if (free)
1387                                 n -= sis->inuse_pages;
1388                 }
1389                 spin_unlock(&sis->lock);
1390         }
1391         spin_unlock(&swap_lock);
1392         return n;
1393 }
1394 #endif /* CONFIG_HIBERNATION */
1395
1396 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1397 {
1398         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1399 }
1400
1401 /*
1402  * No need to decide whether this PTE shares the swap entry with others,
1403  * just let do_wp_page work it out if a write is requested later - to
1404  * force COW, vm_page_prot omits write permission from any private vma.
1405  */
1406 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1407                 unsigned long addr, swp_entry_t entry, struct page *page)
1408 {
1409         struct page *swapcache;
1410         struct mem_cgroup *memcg;
1411         spinlock_t *ptl;
1412         pte_t *pte;
1413         int ret = 1;
1414
1415         swapcache = page;
1416         page = ksm_might_need_to_copy(page, vma, addr);
1417         if (unlikely(!page))
1418                 return -ENOMEM;
1419
1420         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1421                                 &memcg, false)) {
1422                 ret = -ENOMEM;
1423                 goto out_nolock;
1424         }
1425
1426         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1427         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1428                 mem_cgroup_cancel_charge(page, memcg, false);
1429                 ret = 0;
1430                 goto out;
1431         }
1432
1433         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1434         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1435         get_page(page);
1436         set_pte_at(vma->vm_mm, addr, pte,
1437                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1438         if (page == swapcache) {
1439                 page_add_anon_rmap(page, vma, addr, false);
1440                 mem_cgroup_commit_charge(page, memcg, true, false);
1441         } else { /* ksm created a completely new copy */
1442                 page_add_new_anon_rmap(page, vma, addr, false);
1443                 mem_cgroup_commit_charge(page, memcg, false, false);
1444                 lru_cache_add_active_or_unevictable(page, vma);
1445         }
1446         swap_free(entry);
1447         /*
1448          * Move the page to the active list so it is not
1449          * immediately swapped out again after swapon.
1450          */
1451         activate_page(page);
1452 out:
1453         pte_unmap_unlock(pte, ptl);
1454 out_nolock:
1455         if (page != swapcache) {
1456                 unlock_page(page);
1457                 put_page(page);
1458         }
1459         return ret;
1460 }
1461
1462 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1463                                 unsigned long addr, unsigned long end,
1464                                 swp_entry_t entry, struct page *page)
1465 {
1466         pte_t swp_pte = swp_entry_to_pte(entry);
1467         pte_t *pte;
1468         int ret = 0;
1469
1470         /*
1471          * We don't actually need pte lock while scanning for swp_pte: since
1472          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1473          * page table while we're scanning; though it could get zapped, and on
1474          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1475          * of unmatched parts which look like swp_pte, so unuse_pte must
1476          * recheck under pte lock.  Scanning without pte lock lets it be
1477          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1478          */
1479         pte = pte_offset_map(pmd, addr);
1480         do {
1481                 /*
1482                  * swapoff spends a _lot_ of time in this loop!
1483                  * Test inline before going to call unuse_pte.
1484                  */
1485                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1486                         pte_unmap(pte);
1487                         ret = unuse_pte(vma, pmd, addr, entry, page);
1488                         if (ret)
1489                                 goto out;
1490                         pte = pte_offset_map(pmd, addr);
1491                 }
1492         } while (pte++, addr += PAGE_SIZE, addr != end);
1493         pte_unmap(pte - 1);
1494 out:
1495         return ret;
1496 }
1497
1498 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1499                                 unsigned long addr, unsigned long end,
1500                                 swp_entry_t entry, struct page *page)
1501 {
1502         pmd_t *pmd;
1503         unsigned long next;
1504         int ret;
1505
1506         pmd = pmd_offset(pud, addr);
1507         do {
1508                 cond_resched();
1509                 next = pmd_addr_end(addr, end);
1510                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1511                         continue;
1512                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1513                 if (ret)
1514                         return ret;
1515         } while (pmd++, addr = next, addr != end);
1516         return 0;
1517 }
1518
1519 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1520                                 unsigned long addr, unsigned long end,
1521                                 swp_entry_t entry, struct page *page)
1522 {
1523         pud_t *pud;
1524         unsigned long next;
1525         int ret;
1526
1527         pud = pud_offset(pgd, addr);
1528         do {
1529                 next = pud_addr_end(addr, end);
1530                 if (pud_none_or_clear_bad(pud))
1531                         continue;
1532                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1533                 if (ret)
1534                         return ret;
1535         } while (pud++, addr = next, addr != end);
1536         return 0;
1537 }
1538
1539 static int unuse_vma(struct vm_area_struct *vma,
1540                                 swp_entry_t entry, struct page *page)
1541 {
1542         pgd_t *pgd;
1543         unsigned long addr, end, next;
1544         int ret;
1545
1546         if (page_anon_vma(page)) {
1547                 addr = page_address_in_vma(page, vma);
1548                 if (addr == -EFAULT)
1549                         return 0;
1550                 else
1551                         end = addr + PAGE_SIZE;
1552         } else {
1553                 addr = vma->vm_start;
1554                 end = vma->vm_end;
1555         }
1556
1557         pgd = pgd_offset(vma->vm_mm, addr);
1558         do {
1559                 next = pgd_addr_end(addr, end);
1560                 if (pgd_none_or_clear_bad(pgd))
1561                         continue;
1562                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1563                 if (ret)
1564                         return ret;
1565         } while (pgd++, addr = next, addr != end);
1566         return 0;
1567 }
1568
1569 static int unuse_mm(struct mm_struct *mm,
1570                                 swp_entry_t entry, struct page *page)
1571 {
1572         struct vm_area_struct *vma;
1573         int ret = 0;
1574
1575         if (!down_read_trylock(&mm->mmap_sem)) {
1576                 /*
1577                  * Activate page so shrink_inactive_list is unlikely to unmap
1578                  * its ptes while lock is dropped, so swapoff can make progress.
1579                  */
1580                 activate_page(page);
1581                 unlock_page(page);
1582                 down_read(&mm->mmap_sem);
1583                 lock_page(page);
1584         }
1585         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1586                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1587                         break;
1588                 cond_resched();
1589         }
1590         up_read(&mm->mmap_sem);
1591         return (ret < 0)? ret: 0;
1592 }
1593
1594 /*
1595  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1596  * from current position to next entry still in use.
1597  * Recycle to start on reaching the end, returning 0 when empty.
1598  */
1599 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1600                                         unsigned int prev, bool frontswap)
1601 {
1602         unsigned int max = si->max;
1603         unsigned int i = prev;
1604         unsigned char count;
1605
1606         /*
1607          * No need for swap_lock here: we're just looking
1608          * for whether an entry is in use, not modifying it; false
1609          * hits are okay, and sys_swapoff() has already prevented new
1610          * allocations from this area (while holding swap_lock).
1611          */
1612         for (;;) {
1613                 if (++i >= max) {
1614                         if (!prev) {
1615                                 i = 0;
1616                                 break;
1617                         }
1618                         /*
1619                          * No entries in use at top of swap_map,
1620                          * loop back to start and recheck there.
1621                          */
1622                         max = prev + 1;
1623                         prev = 0;
1624                         i = 1;
1625                 }
1626                 count = READ_ONCE(si->swap_map[i]);
1627                 if (count && swap_count(count) != SWAP_MAP_BAD)
1628                         if (!frontswap || frontswap_test(si, i))
1629                                 break;
1630                 if ((i % LATENCY_LIMIT) == 0)
1631                         cond_resched();
1632         }
1633         return i;
1634 }
1635
1636 /*
1637  * We completely avoid races by reading each swap page in advance,
1638  * and then search for the process using it.  All the necessary
1639  * page table adjustments can then be made atomically.
1640  *
1641  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1642  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1643  */
1644 int try_to_unuse(unsigned int type, bool frontswap,
1645                  unsigned long pages_to_unuse)
1646 {
1647         struct swap_info_struct *si = swap_info[type];
1648         struct mm_struct *start_mm;
1649         volatile unsigned char *swap_map; /* swap_map is accessed without
1650                                            * locking. Mark it as volatile
1651                                            * to prevent compiler doing
1652                                            * something odd.
1653                                            */
1654         unsigned char swcount;
1655         struct page *page;
1656         swp_entry_t entry;
1657         unsigned int i = 0;
1658         int retval = 0;
1659
1660         /*
1661          * When searching mms for an entry, a good strategy is to
1662          * start at the first mm we freed the previous entry from
1663          * (though actually we don't notice whether we or coincidence
1664          * freed the entry).  Initialize this start_mm with a hold.
1665          *
1666          * A simpler strategy would be to start at the last mm we
1667          * freed the previous entry from; but that would take less
1668          * advantage of mmlist ordering, which clusters forked mms
1669          * together, child after parent.  If we race with dup_mmap(), we
1670          * prefer to resolve parent before child, lest we miss entries
1671          * duplicated after we scanned child: using last mm would invert
1672          * that.
1673          */
1674         start_mm = &init_mm;
1675         mmget(&init_mm);
1676
1677         /*
1678          * Keep on scanning until all entries have gone.  Usually,
1679          * one pass through swap_map is enough, but not necessarily:
1680          * there are races when an instance of an entry might be missed.
1681          */
1682         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1683                 if (signal_pending(current)) {
1684                         retval = -EINTR;
1685                         break;
1686                 }
1687
1688                 /*
1689                  * Get a page for the entry, using the existing swap
1690                  * cache page if there is one.  Otherwise, get a clean
1691                  * page and read the swap into it.
1692                  */
1693                 swap_map = &si->swap_map[i];
1694                 entry = swp_entry(type, i);
1695                 page = read_swap_cache_async(entry,
1696                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1697                 if (!page) {
1698                         /*
1699                          * Either swap_duplicate() failed because entry
1700                          * has been freed independently, and will not be
1701                          * reused since sys_swapoff() already disabled
1702                          * allocation from here, or alloc_page() failed.
1703                          */
1704                         swcount = *swap_map;
1705                         /*
1706                          * We don't hold lock here, so the swap entry could be
1707                          * SWAP_MAP_BAD (when the cluster is discarding).
1708                          * Instead of fail out, We can just skip the swap
1709                          * entry because swapoff will wait for discarding
1710                          * finish anyway.
1711                          */
1712                         if (!swcount || swcount == SWAP_MAP_BAD)
1713                                 continue;
1714                         retval = -ENOMEM;
1715                         break;
1716                 }
1717
1718                 /*
1719                  * Don't hold on to start_mm if it looks like exiting.
1720                  */
1721                 if (atomic_read(&start_mm->mm_users) == 1) {
1722                         mmput(start_mm);
1723                         start_mm = &init_mm;
1724                         mmget(&init_mm);
1725                 }
1726
1727                 /*
1728                  * Wait for and lock page.  When do_swap_page races with
1729                  * try_to_unuse, do_swap_page can handle the fault much
1730                  * faster than try_to_unuse can locate the entry.  This
1731                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1732                  * defer to do_swap_page in such a case - in some tests,
1733                  * do_swap_page and try_to_unuse repeatedly compete.
1734                  */
1735                 wait_on_page_locked(page);
1736                 wait_on_page_writeback(page);
1737                 lock_page(page);
1738                 wait_on_page_writeback(page);
1739
1740                 /*
1741                  * Remove all references to entry.
1742                  */
1743                 swcount = *swap_map;
1744                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1745                         retval = shmem_unuse(entry, page);
1746                         /* page has already been unlocked and released */
1747                         if (retval < 0)
1748                                 break;
1749                         continue;
1750                 }
1751                 if (swap_count(swcount) && start_mm != &init_mm)
1752                         retval = unuse_mm(start_mm, entry, page);
1753
1754                 if (swap_count(*swap_map)) {
1755                         int set_start_mm = (*swap_map >= swcount);
1756                         struct list_head *p = &start_mm->mmlist;
1757                         struct mm_struct *new_start_mm = start_mm;
1758                         struct mm_struct *prev_mm = start_mm;
1759                         struct mm_struct *mm;
1760
1761                         mmget(new_start_mm);
1762                         mmget(prev_mm);
1763                         spin_lock(&mmlist_lock);
1764                         while (swap_count(*swap_map) && !retval &&
1765                                         (p = p->next) != &start_mm->mmlist) {
1766                                 mm = list_entry(p, struct mm_struct, mmlist);
1767                                 if (!mmget_not_zero(mm))
1768                                         continue;
1769                                 spin_unlock(&mmlist_lock);
1770                                 mmput(prev_mm);
1771                                 prev_mm = mm;
1772
1773                                 cond_resched();
1774
1775                                 swcount = *swap_map;
1776                                 if (!swap_count(swcount)) /* any usage ? */
1777                                         ;
1778                                 else if (mm == &init_mm)
1779                                         set_start_mm = 1;
1780                                 else
1781                                         retval = unuse_mm(mm, entry, page);
1782
1783                                 if (set_start_mm && *swap_map < swcount) {
1784                                         mmput(new_start_mm);
1785                                         mmget(mm);
1786                                         new_start_mm = mm;
1787                                         set_start_mm = 0;
1788                                 }
1789                                 spin_lock(&mmlist_lock);
1790                         }
1791                         spin_unlock(&mmlist_lock);
1792                         mmput(prev_mm);
1793                         mmput(start_mm);
1794                         start_mm = new_start_mm;
1795                 }
1796                 if (retval) {
1797                         unlock_page(page);
1798                         put_page(page);
1799                         break;
1800                 }
1801
1802                 /*
1803                  * If a reference remains (rare), we would like to leave
1804                  * the page in the swap cache; but try_to_unmap could
1805                  * then re-duplicate the entry once we drop page lock,
1806                  * so we might loop indefinitely; also, that page could
1807                  * not be swapped out to other storage meanwhile.  So:
1808                  * delete from cache even if there's another reference,
1809                  * after ensuring that the data has been saved to disk -
1810                  * since if the reference remains (rarer), it will be
1811                  * read from disk into another page.  Splitting into two
1812                  * pages would be incorrect if swap supported "shared
1813                  * private" pages, but they are handled by tmpfs files.
1814                  *
1815                  * Given how unuse_vma() targets one particular offset
1816                  * in an anon_vma, once the anon_vma has been determined,
1817                  * this splitting happens to be just what is needed to
1818                  * handle where KSM pages have been swapped out: re-reading
1819                  * is unnecessarily slow, but we can fix that later on.
1820                  */
1821                 if (swap_count(*swap_map) &&
1822                      PageDirty(page) && PageSwapCache(page)) {
1823                         struct writeback_control wbc = {
1824                                 .sync_mode = WB_SYNC_NONE,
1825                         };
1826
1827                         swap_writepage(page, &wbc);
1828                         lock_page(page);
1829                         wait_on_page_writeback(page);
1830                 }
1831
1832                 /*
1833                  * It is conceivable that a racing task removed this page from
1834                  * swap cache just before we acquired the page lock at the top,
1835                  * or while we dropped it in unuse_mm().  The page might even
1836                  * be back in swap cache on another swap area: that we must not
1837                  * delete, since it may not have been written out to swap yet.
1838                  */
1839                 if (PageSwapCache(page) &&
1840                     likely(page_private(page) == entry.val))
1841                         delete_from_swap_cache(page);
1842
1843                 /*
1844                  * So we could skip searching mms once swap count went
1845                  * to 1, we did not mark any present ptes as dirty: must
1846                  * mark page dirty so shrink_page_list will preserve it.
1847                  */
1848                 SetPageDirty(page);
1849                 unlock_page(page);
1850                 put_page(page);
1851
1852                 /*
1853                  * Make sure that we aren't completely killing
1854                  * interactive performance.
1855                  */
1856                 cond_resched();
1857                 if (frontswap && pages_to_unuse > 0) {
1858                         if (!--pages_to_unuse)
1859                                 break;
1860                 }
1861         }
1862
1863         mmput(start_mm);
1864         return retval;
1865 }
1866
1867 /*
1868  * After a successful try_to_unuse, if no swap is now in use, we know
1869  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1870  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1871  * added to the mmlist just after page_duplicate - before would be racy.
1872  */
1873 static void drain_mmlist(void)
1874 {
1875         struct list_head *p, *next;
1876         unsigned int type;
1877
1878         for (type = 0; type < nr_swapfiles; type++)
1879                 if (swap_info[type]->inuse_pages)
1880                         return;
1881         spin_lock(&mmlist_lock);
1882         list_for_each_safe(p, next, &init_mm.mmlist)
1883                 list_del_init(p);
1884         spin_unlock(&mmlist_lock);
1885 }
1886
1887 /*
1888  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1889  * corresponds to page offset for the specified swap entry.
1890  * Note that the type of this function is sector_t, but it returns page offset
1891  * into the bdev, not sector offset.
1892  */
1893 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1894 {
1895         struct swap_info_struct *sis;
1896         struct swap_extent *start_se;
1897         struct swap_extent *se;
1898         pgoff_t offset;
1899
1900         sis = swap_info[swp_type(entry)];
1901         *bdev = sis->bdev;
1902
1903         offset = swp_offset(entry);
1904         start_se = sis->curr_swap_extent;
1905         se = start_se;
1906
1907         for ( ; ; ) {
1908                 if (se->start_page <= offset &&
1909                                 offset < (se->start_page + se->nr_pages)) {
1910                         return se->start_block + (offset - se->start_page);
1911                 }
1912                 se = list_next_entry(se, list);
1913                 sis->curr_swap_extent = se;
1914                 BUG_ON(se == start_se);         /* It *must* be present */
1915         }
1916 }
1917
1918 /*
1919  * Returns the page offset into bdev for the specified page's swap entry.
1920  */
1921 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1922 {
1923         swp_entry_t entry;
1924         entry.val = page_private(page);
1925         return map_swap_entry(entry, bdev);
1926 }
1927
1928 /*
1929  * Free all of a swapdev's extent information
1930  */
1931 static void destroy_swap_extents(struct swap_info_struct *sis)
1932 {
1933         while (!list_empty(&sis->first_swap_extent.list)) {
1934                 struct swap_extent *se;
1935
1936                 se = list_first_entry(&sis->first_swap_extent.list,
1937                                 struct swap_extent, list);
1938                 list_del(&se->list);
1939                 kfree(se);
1940         }
1941
1942         if (sis->flags & SWP_FILE) {
1943                 struct file *swap_file = sis->swap_file;
1944                 struct address_space *mapping = swap_file->f_mapping;
1945
1946                 sis->flags &= ~SWP_FILE;
1947                 mapping->a_ops->swap_deactivate(swap_file);
1948         }
1949 }
1950
1951 /*
1952  * Add a block range (and the corresponding page range) into this swapdev's
1953  * extent list.  The extent list is kept sorted in page order.
1954  *
1955  * This function rather assumes that it is called in ascending page order.
1956  */
1957 int
1958 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1959                 unsigned long nr_pages, sector_t start_block)
1960 {
1961         struct swap_extent *se;
1962         struct swap_extent *new_se;
1963         struct list_head *lh;
1964
1965         if (start_page == 0) {
1966                 se = &sis->first_swap_extent;
1967                 sis->curr_swap_extent = se;
1968                 se->start_page = 0;
1969                 se->nr_pages = nr_pages;
1970                 se->start_block = start_block;
1971                 return 1;
1972         } else {
1973                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1974                 se = list_entry(lh, struct swap_extent, list);
1975                 BUG_ON(se->start_page + se->nr_pages != start_page);
1976                 if (se->start_block + se->nr_pages == start_block) {
1977                         /* Merge it */
1978                         se->nr_pages += nr_pages;
1979                         return 0;
1980                 }
1981         }
1982
1983         /*
1984          * No merge.  Insert a new extent, preserving ordering.
1985          */
1986         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1987         if (new_se == NULL)
1988                 return -ENOMEM;
1989         new_se->start_page = start_page;
1990         new_se->nr_pages = nr_pages;
1991         new_se->start_block = start_block;
1992
1993         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1994         return 1;
1995 }
1996
1997 /*
1998  * A `swap extent' is a simple thing which maps a contiguous range of pages
1999  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2000  * is built at swapon time and is then used at swap_writepage/swap_readpage
2001  * time for locating where on disk a page belongs.
2002  *
2003  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2004  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2005  * swap files identically.
2006  *
2007  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2008  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2009  * swapfiles are handled *identically* after swapon time.
2010  *
2011  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2012  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2013  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2014  * requirements, they are simply tossed out - we will never use those blocks
2015  * for swapping.
2016  *
2017  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2018  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2019  * which will scribble on the fs.
2020  *
2021  * The amount of disk space which a single swap extent represents varies.
2022  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2023  * extents in the list.  To avoid much list walking, we cache the previous
2024  * search location in `curr_swap_extent', and start new searches from there.
2025  * This is extremely effective.  The average number of iterations in
2026  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2027  */
2028 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2029 {
2030         struct file *swap_file = sis->swap_file;
2031         struct address_space *mapping = swap_file->f_mapping;
2032         struct inode *inode = mapping->host;
2033         int ret;
2034
2035         if (S_ISBLK(inode->i_mode)) {
2036                 ret = add_swap_extent(sis, 0, sis->max, 0);
2037                 *span = sis->pages;
2038                 return ret;
2039         }
2040
2041         if (mapping->a_ops->swap_activate) {
2042                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2043                 if (!ret) {
2044                         sis->flags |= SWP_FILE;
2045                         ret = add_swap_extent(sis, 0, sis->max, 0);
2046                         *span = sis->pages;
2047                 }
2048                 return ret;
2049         }
2050
2051         return generic_swapfile_activate(sis, swap_file, span);
2052 }
2053
2054 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2055                                 unsigned char *swap_map,
2056                                 struct swap_cluster_info *cluster_info)
2057 {
2058         if (prio >= 0)
2059                 p->prio = prio;
2060         else
2061                 p->prio = --least_priority;
2062         /*
2063          * the plist prio is negated because plist ordering is
2064          * low-to-high, while swap ordering is high-to-low
2065          */
2066         p->list.prio = -p->prio;
2067         p->avail_list.prio = -p->prio;
2068         p->swap_map = swap_map;
2069         p->cluster_info = cluster_info;
2070         p->flags |= SWP_WRITEOK;
2071         atomic_long_add(p->pages, &nr_swap_pages);
2072         total_swap_pages += p->pages;
2073
2074         assert_spin_locked(&swap_lock);
2075         /*
2076          * both lists are plists, and thus priority ordered.
2077          * swap_active_head needs to be priority ordered for swapoff(),
2078          * which on removal of any swap_info_struct with an auto-assigned
2079          * (i.e. negative) priority increments the auto-assigned priority
2080          * of any lower-priority swap_info_structs.
2081          * swap_avail_head needs to be priority ordered for get_swap_page(),
2082          * which allocates swap pages from the highest available priority
2083          * swap_info_struct.
2084          */
2085         plist_add(&p->list, &swap_active_head);
2086         spin_lock(&swap_avail_lock);
2087         plist_add(&p->avail_list, &swap_avail_head);
2088         spin_unlock(&swap_avail_lock);
2089 }
2090
2091 static void enable_swap_info(struct swap_info_struct *p, int prio,
2092                                 unsigned char *swap_map,
2093                                 struct swap_cluster_info *cluster_info,
2094                                 unsigned long *frontswap_map)
2095 {
2096         frontswap_init(p->type, frontswap_map);
2097         spin_lock(&swap_lock);
2098         spin_lock(&p->lock);
2099          _enable_swap_info(p, prio, swap_map, cluster_info);
2100         spin_unlock(&p->lock);
2101         spin_unlock(&swap_lock);
2102 }
2103
2104 static void reinsert_swap_info(struct swap_info_struct *p)
2105 {
2106         spin_lock(&swap_lock);
2107         spin_lock(&p->lock);
2108         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2109         spin_unlock(&p->lock);
2110         spin_unlock(&swap_lock);
2111 }
2112
2113 bool has_usable_swap(void)
2114 {
2115         bool ret = true;
2116
2117         spin_lock(&swap_lock);
2118         if (plist_head_empty(&swap_active_head))
2119                 ret = false;
2120         spin_unlock(&swap_lock);
2121         return ret;
2122 }
2123
2124 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2125 {
2126         struct swap_info_struct *p = NULL;
2127         unsigned char *swap_map;
2128         struct swap_cluster_info *cluster_info;
2129         unsigned long *frontswap_map;
2130         struct file *swap_file, *victim;
2131         struct address_space *mapping;
2132         struct inode *inode;
2133         struct filename *pathname;
2134         int err, found = 0;
2135         unsigned int old_block_size;
2136
2137         if (!capable(CAP_SYS_ADMIN))
2138                 return -EPERM;
2139
2140         BUG_ON(!current->mm);
2141
2142         pathname = getname(specialfile);
2143         if (IS_ERR(pathname))
2144                 return PTR_ERR(pathname);
2145
2146         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2147         err = PTR_ERR(victim);
2148         if (IS_ERR(victim))
2149                 goto out;
2150
2151         mapping = victim->f_mapping;
2152         spin_lock(&swap_lock);
2153         plist_for_each_entry(p, &swap_active_head, list) {
2154                 if (p->flags & SWP_WRITEOK) {
2155                         if (p->swap_file->f_mapping == mapping) {
2156                                 found = 1;
2157                                 break;
2158                         }
2159                 }
2160         }
2161         if (!found) {
2162                 err = -EINVAL;
2163                 spin_unlock(&swap_lock);
2164                 goto out_dput;
2165         }
2166         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2167                 vm_unacct_memory(p->pages);
2168         else {
2169                 err = -ENOMEM;
2170                 spin_unlock(&swap_lock);
2171                 goto out_dput;
2172         }
2173         spin_lock(&swap_avail_lock);
2174         plist_del(&p->avail_list, &swap_avail_head);
2175         spin_unlock(&swap_avail_lock);
2176         spin_lock(&p->lock);
2177         if (p->prio < 0) {
2178                 struct swap_info_struct *si = p;
2179
2180                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2181                         si->prio++;
2182                         si->list.prio--;
2183                         si->avail_list.prio--;
2184                 }
2185                 least_priority++;
2186         }
2187         plist_del(&p->list, &swap_active_head);
2188         atomic_long_sub(p->pages, &nr_swap_pages);
2189         total_swap_pages -= p->pages;
2190         p->flags &= ~SWP_WRITEOK;
2191         spin_unlock(&p->lock);
2192         spin_unlock(&swap_lock);
2193
2194         disable_swap_slots_cache_lock();
2195
2196         set_current_oom_origin();
2197         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2198         clear_current_oom_origin();
2199
2200         if (err) {
2201                 /* re-insert swap space back into swap_list */
2202                 reinsert_swap_info(p);
2203                 reenable_swap_slots_cache_unlock();
2204                 goto out_dput;
2205         }
2206
2207         reenable_swap_slots_cache_unlock();
2208
2209         flush_work(&p->discard_work);
2210
2211         destroy_swap_extents(p);
2212         if (p->flags & SWP_CONTINUED)
2213                 free_swap_count_continuations(p);
2214
2215         mutex_lock(&swapon_mutex);
2216         spin_lock(&swap_lock);
2217         spin_lock(&p->lock);
2218         drain_mmlist();
2219
2220         /* wait for anyone still in scan_swap_map */
2221         p->highest_bit = 0;             /* cuts scans short */
2222         while (p->flags >= SWP_SCANNING) {
2223                 spin_unlock(&p->lock);
2224                 spin_unlock(&swap_lock);
2225                 schedule_timeout_uninterruptible(1);
2226                 spin_lock(&swap_lock);
2227                 spin_lock(&p->lock);
2228         }
2229
2230         swap_file = p->swap_file;
2231         old_block_size = p->old_block_size;
2232         p->swap_file = NULL;
2233         p->max = 0;
2234         swap_map = p->swap_map;
2235         p->swap_map = NULL;
2236         cluster_info = p->cluster_info;
2237         p->cluster_info = NULL;
2238         frontswap_map = frontswap_map_get(p);
2239         spin_unlock(&p->lock);
2240         spin_unlock(&swap_lock);
2241         frontswap_invalidate_area(p->type);
2242         frontswap_map_set(p, NULL);
2243         mutex_unlock(&swapon_mutex);
2244         free_percpu(p->percpu_cluster);
2245         p->percpu_cluster = NULL;
2246         vfree(swap_map);
2247         vfree(cluster_info);
2248         vfree(frontswap_map);
2249         /* Destroy swap account information */
2250         swap_cgroup_swapoff(p->type);
2251         exit_swap_address_space(p->type);
2252
2253         inode = mapping->host;
2254         if (S_ISBLK(inode->i_mode)) {
2255                 struct block_device *bdev = I_BDEV(inode);
2256                 set_blocksize(bdev, old_block_size);
2257                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2258         } else {
2259                 inode_lock(inode);
2260                 inode->i_flags &= ~S_SWAPFILE;
2261                 inode_unlock(inode);
2262         }
2263         filp_close(swap_file, NULL);
2264
2265         /*
2266          * Clear the SWP_USED flag after all resources are freed so that swapon
2267          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2268          * not hold p->lock after we cleared its SWP_WRITEOK.
2269          */
2270         spin_lock(&swap_lock);
2271         p->flags = 0;
2272         spin_unlock(&swap_lock);
2273
2274         err = 0;
2275         atomic_inc(&proc_poll_event);
2276         wake_up_interruptible(&proc_poll_wait);
2277
2278 out_dput:
2279         filp_close(victim, NULL);
2280 out:
2281         putname(pathname);
2282         return err;
2283 }
2284
2285 #ifdef CONFIG_PROC_FS
2286 static unsigned swaps_poll(struct file *file, poll_table *wait)
2287 {
2288         struct seq_file *seq = file->private_data;
2289
2290         poll_wait(file, &proc_poll_wait, wait);
2291
2292         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2293                 seq->poll_event = atomic_read(&proc_poll_event);
2294                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2295         }
2296
2297         return POLLIN | POLLRDNORM;
2298 }
2299
2300 /* iterator */
2301 static void *swap_start(struct seq_file *swap, loff_t *pos)
2302 {
2303         struct swap_info_struct *si;
2304         int type;
2305         loff_t l = *pos;
2306
2307         mutex_lock(&swapon_mutex);
2308
2309         if (!l)
2310                 return SEQ_START_TOKEN;
2311
2312         for (type = 0; type < nr_swapfiles; type++) {
2313                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2314                 si = swap_info[type];
2315                 if (!(si->flags & SWP_USED) || !si->swap_map)
2316                         continue;
2317                 if (!--l)
2318                         return si;
2319         }
2320
2321         return NULL;
2322 }
2323
2324 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2325 {
2326         struct swap_info_struct *si = v;
2327         int type;
2328
2329         if (v == SEQ_START_TOKEN)
2330                 type = 0;
2331         else
2332                 type = si->type + 1;
2333
2334         for (; type < nr_swapfiles; type++) {
2335                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2336                 si = swap_info[type];
2337                 if (!(si->flags & SWP_USED) || !si->swap_map)
2338                         continue;
2339                 ++*pos;
2340                 return si;
2341         }
2342
2343         return NULL;
2344 }
2345
2346 static void swap_stop(struct seq_file *swap, void *v)
2347 {
2348         mutex_unlock(&swapon_mutex);
2349 }
2350
2351 static int swap_show(struct seq_file *swap, void *v)
2352 {
2353         struct swap_info_struct *si = v;
2354         struct file *file;
2355         int len;
2356
2357         if (si == SEQ_START_TOKEN) {
2358                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2359                 return 0;
2360         }
2361
2362         file = si->swap_file;
2363         len = seq_file_path(swap, file, " \t\n\\");
2364         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2365                         len < 40 ? 40 - len : 1, " ",
2366                         S_ISBLK(file_inode(file)->i_mode) ?
2367                                 "partition" : "file\t",
2368                         si->pages << (PAGE_SHIFT - 10),
2369                         si->inuse_pages << (PAGE_SHIFT - 10),
2370                         si->prio);
2371         return 0;
2372 }
2373
2374 static const struct seq_operations swaps_op = {
2375         .start =        swap_start,
2376         .next =         swap_next,
2377         .stop =         swap_stop,
2378         .show =         swap_show
2379 };
2380
2381 static int swaps_open(struct inode *inode, struct file *file)
2382 {
2383         struct seq_file *seq;
2384         int ret;
2385
2386         ret = seq_open(file, &swaps_op);
2387         if (ret)
2388                 return ret;
2389
2390         seq = file->private_data;
2391         seq->poll_event = atomic_read(&proc_poll_event);
2392         return 0;
2393 }
2394
2395 static const struct file_operations proc_swaps_operations = {
2396         .open           = swaps_open,
2397         .read           = seq_read,
2398         .llseek         = seq_lseek,
2399         .release        = seq_release,
2400         .poll           = swaps_poll,
2401 };
2402
2403 static int __init procswaps_init(void)
2404 {
2405         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2406         return 0;
2407 }
2408 __initcall(procswaps_init);
2409 #endif /* CONFIG_PROC_FS */
2410
2411 #ifdef MAX_SWAPFILES_CHECK
2412 static int __init max_swapfiles_check(void)
2413 {
2414         MAX_SWAPFILES_CHECK();
2415         return 0;
2416 }
2417 late_initcall(max_swapfiles_check);
2418 #endif
2419
2420 static struct swap_info_struct *alloc_swap_info(void)
2421 {
2422         struct swap_info_struct *p;
2423         unsigned int type;
2424
2425         p = kzalloc(sizeof(*p), GFP_KERNEL);
2426         if (!p)
2427                 return ERR_PTR(-ENOMEM);
2428
2429         spin_lock(&swap_lock);
2430         for (type = 0; type < nr_swapfiles; type++) {
2431                 if (!(swap_info[type]->flags & SWP_USED))
2432                         break;
2433         }
2434         if (type >= MAX_SWAPFILES) {
2435                 spin_unlock(&swap_lock);
2436                 kfree(p);
2437                 return ERR_PTR(-EPERM);
2438         }
2439         if (type >= nr_swapfiles) {
2440                 p->type = type;
2441                 swap_info[type] = p;
2442                 /*
2443                  * Write swap_info[type] before nr_swapfiles, in case a
2444                  * racing procfs swap_start() or swap_next() is reading them.
2445                  * (We never shrink nr_swapfiles, we never free this entry.)
2446                  */
2447                 smp_wmb();
2448                 nr_swapfiles++;
2449         } else {
2450                 kfree(p);
2451                 p = swap_info[type];
2452                 /*
2453                  * Do not memset this entry: a racing procfs swap_next()
2454                  * would be relying on p->type to remain valid.
2455                  */
2456         }
2457         INIT_LIST_HEAD(&p->first_swap_extent.list);
2458         plist_node_init(&p->list, 0);
2459         plist_node_init(&p->avail_list, 0);
2460         p->flags = SWP_USED;
2461         spin_unlock(&swap_lock);
2462         spin_lock_init(&p->lock);
2463
2464         return p;
2465 }
2466
2467 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2468 {
2469         int error;
2470
2471         if (S_ISBLK(inode->i_mode)) {
2472                 p->bdev = bdgrab(I_BDEV(inode));
2473                 error = blkdev_get(p->bdev,
2474                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2475                 if (error < 0) {
2476                         p->bdev = NULL;
2477                         return error;
2478                 }
2479                 p->old_block_size = block_size(p->bdev);
2480                 error = set_blocksize(p->bdev, PAGE_SIZE);
2481                 if (error < 0)
2482                         return error;
2483                 p->flags |= SWP_BLKDEV;
2484         } else if (S_ISREG(inode->i_mode)) {
2485                 p->bdev = inode->i_sb->s_bdev;
2486                 inode_lock(inode);
2487                 if (IS_SWAPFILE(inode))
2488                         return -EBUSY;
2489         } else
2490                 return -EINVAL;
2491
2492         return 0;
2493 }
2494
2495 static unsigned long read_swap_header(struct swap_info_struct *p,
2496                                         union swap_header *swap_header,
2497                                         struct inode *inode)
2498 {
2499         int i;
2500         unsigned long maxpages;
2501         unsigned long swapfilepages;
2502         unsigned long last_page;
2503
2504         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2505                 pr_err("Unable to find swap-space signature\n");
2506                 return 0;
2507         }
2508
2509         /* swap partition endianess hack... */
2510         if (swab32(swap_header->info.version) == 1) {
2511                 swab32s(&swap_header->info.version);
2512                 swab32s(&swap_header->info.last_page);
2513                 swab32s(&swap_header->info.nr_badpages);
2514                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2515                         return 0;
2516                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2517                         swab32s(&swap_header->info.badpages[i]);
2518         }
2519         /* Check the swap header's sub-version */
2520         if (swap_header->info.version != 1) {
2521                 pr_warn("Unable to handle swap header version %d\n",
2522                         swap_header->info.version);
2523                 return 0;
2524         }
2525
2526         p->lowest_bit  = 1;
2527         p->cluster_next = 1;
2528         p->cluster_nr = 0;
2529
2530         /*
2531          * Find out how many pages are allowed for a single swap
2532          * device. There are two limiting factors: 1) the number
2533          * of bits for the swap offset in the swp_entry_t type, and
2534          * 2) the number of bits in the swap pte as defined by the
2535          * different architectures. In order to find the
2536          * largest possible bit mask, a swap entry with swap type 0
2537          * and swap offset ~0UL is created, encoded to a swap pte,
2538          * decoded to a swp_entry_t again, and finally the swap
2539          * offset is extracted. This will mask all the bits from
2540          * the initial ~0UL mask that can't be encoded in either
2541          * the swp_entry_t or the architecture definition of a
2542          * swap pte.
2543          */
2544         maxpages = swp_offset(pte_to_swp_entry(
2545                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2546         last_page = swap_header->info.last_page;
2547         if (last_page > maxpages) {
2548                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2549                         maxpages << (PAGE_SHIFT - 10),
2550                         last_page << (PAGE_SHIFT - 10));
2551         }
2552         if (maxpages > last_page) {
2553                 maxpages = last_page + 1;
2554                 /* p->max is an unsigned int: don't overflow it */
2555                 if ((unsigned int)maxpages == 0)
2556                         maxpages = UINT_MAX;
2557         }
2558         p->highest_bit = maxpages - 1;
2559
2560         if (!maxpages)
2561                 return 0;
2562         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2563         if (swapfilepages && maxpages > swapfilepages) {
2564                 pr_warn("Swap area shorter than signature indicates\n");
2565                 return 0;
2566         }
2567         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2568                 return 0;
2569         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2570                 return 0;
2571
2572         return maxpages;
2573 }
2574
2575 #define SWAP_CLUSTER_INFO_COLS                                          \
2576         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2577 #define SWAP_CLUSTER_SPACE_COLS                                         \
2578         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2579 #define SWAP_CLUSTER_COLS                                               \
2580         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2581
2582 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2583                                         union swap_header *swap_header,
2584                                         unsigned char *swap_map,
2585                                         struct swap_cluster_info *cluster_info,
2586                                         unsigned long maxpages,
2587                                         sector_t *span)
2588 {
2589         unsigned int j, k;
2590         unsigned int nr_good_pages;
2591         int nr_extents;
2592         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2593         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2594         unsigned long i, idx;
2595
2596         nr_good_pages = maxpages - 1;   /* omit header page */
2597
2598         cluster_list_init(&p->free_clusters);
2599         cluster_list_init(&p->discard_clusters);
2600
2601         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2602                 unsigned int page_nr = swap_header->info.badpages[i];
2603                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2604                         return -EINVAL;
2605                 if (page_nr < maxpages) {
2606                         swap_map[page_nr] = SWAP_MAP_BAD;
2607                         nr_good_pages--;
2608                         /*
2609                          * Haven't marked the cluster free yet, no list
2610                          * operation involved
2611                          */
2612                         inc_cluster_info_page(p, cluster_info, page_nr);
2613                 }
2614         }
2615
2616         /* Haven't marked the cluster free yet, no list operation involved */
2617         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2618                 inc_cluster_info_page(p, cluster_info, i);
2619
2620         if (nr_good_pages) {
2621                 swap_map[0] = SWAP_MAP_BAD;
2622                 /*
2623                  * Not mark the cluster free yet, no list
2624                  * operation involved
2625                  */
2626                 inc_cluster_info_page(p, cluster_info, 0);
2627                 p->max = maxpages;
2628                 p->pages = nr_good_pages;
2629                 nr_extents = setup_swap_extents(p, span);
2630                 if (nr_extents < 0)
2631                         return nr_extents;
2632                 nr_good_pages = p->pages;
2633         }
2634         if (!nr_good_pages) {
2635                 pr_warn("Empty swap-file\n");
2636                 return -EINVAL;
2637         }
2638
2639         if (!cluster_info)
2640                 return nr_extents;
2641
2642
2643         /*
2644          * Reduce false cache line sharing between cluster_info and
2645          * sharing same address space.
2646          */
2647         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2648                 j = (k + col) % SWAP_CLUSTER_COLS;
2649                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2650                         idx = i * SWAP_CLUSTER_COLS + j;
2651                         if (idx >= nr_clusters)
2652                                 continue;
2653                         if (cluster_count(&cluster_info[idx]))
2654                                 continue;
2655                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2656                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2657                                               idx);
2658                 }
2659         }
2660         return nr_extents;
2661 }
2662
2663 /*
2664  * Helper to sys_swapon determining if a given swap
2665  * backing device queue supports DISCARD operations.
2666  */
2667 static bool swap_discardable(struct swap_info_struct *si)
2668 {
2669         struct request_queue *q = bdev_get_queue(si->bdev);
2670
2671         if (!q || !blk_queue_discard(q))
2672                 return false;
2673
2674         return true;
2675 }
2676
2677 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2678 {
2679         struct swap_info_struct *p;
2680         struct filename *name;
2681         struct file *swap_file = NULL;
2682         struct address_space *mapping;
2683         int prio;
2684         int error;
2685         union swap_header *swap_header;
2686         int nr_extents;
2687         sector_t span;
2688         unsigned long maxpages;
2689         unsigned char *swap_map = NULL;
2690         struct swap_cluster_info *cluster_info = NULL;
2691         unsigned long *frontswap_map = NULL;
2692         struct page *page = NULL;
2693         struct inode *inode = NULL;
2694
2695         if (swap_flags & ~SWAP_FLAGS_VALID)
2696                 return -EINVAL;
2697
2698         if (!capable(CAP_SYS_ADMIN))
2699                 return -EPERM;
2700
2701         p = alloc_swap_info();
2702         if (IS_ERR(p))
2703                 return PTR_ERR(p);
2704
2705         INIT_WORK(&p->discard_work, swap_discard_work);
2706
2707         name = getname(specialfile);
2708         if (IS_ERR(name)) {
2709                 error = PTR_ERR(name);
2710                 name = NULL;
2711                 goto bad_swap;
2712         }
2713         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2714         if (IS_ERR(swap_file)) {
2715                 error = PTR_ERR(swap_file);
2716                 swap_file = NULL;
2717                 goto bad_swap;
2718         }
2719
2720         p->swap_file = swap_file;
2721         mapping = swap_file->f_mapping;
2722         inode = mapping->host;
2723
2724         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2725         error = claim_swapfile(p, inode);
2726         if (unlikely(error))
2727                 goto bad_swap;
2728
2729         /*
2730          * Read the swap header.
2731          */
2732         if (!mapping->a_ops->readpage) {
2733                 error = -EINVAL;
2734                 goto bad_swap;
2735         }
2736         page = read_mapping_page(mapping, 0, swap_file);
2737         if (IS_ERR(page)) {
2738                 error = PTR_ERR(page);
2739                 goto bad_swap;
2740         }
2741         swap_header = kmap(page);
2742
2743         maxpages = read_swap_header(p, swap_header, inode);
2744         if (unlikely(!maxpages)) {
2745                 error = -EINVAL;
2746                 goto bad_swap;
2747         }
2748
2749         /* OK, set up the swap map and apply the bad block list */
2750         swap_map = vzalloc(maxpages);
2751         if (!swap_map) {
2752                 error = -ENOMEM;
2753                 goto bad_swap;
2754         }
2755
2756         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2757                 p->flags |= SWP_STABLE_WRITES;
2758
2759         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2760                 int cpu;
2761                 unsigned long ci, nr_cluster;
2762
2763                 p->flags |= SWP_SOLIDSTATE;
2764                 /*
2765                  * select a random position to start with to help wear leveling
2766                  * SSD
2767                  */
2768                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2769                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2770
2771                 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2772                 if (!cluster_info) {
2773                         error = -ENOMEM;
2774                         goto bad_swap;
2775                 }
2776
2777                 for (ci = 0; ci < nr_cluster; ci++)
2778                         spin_lock_init(&((cluster_info + ci)->lock));
2779
2780                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2781                 if (!p->percpu_cluster) {
2782                         error = -ENOMEM;
2783                         goto bad_swap;
2784                 }
2785                 for_each_possible_cpu(cpu) {
2786                         struct percpu_cluster *cluster;
2787                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2788                         cluster_set_null(&cluster->index);
2789                 }
2790         }
2791
2792         error = swap_cgroup_swapon(p->type, maxpages);
2793         if (error)
2794                 goto bad_swap;
2795
2796         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2797                 cluster_info, maxpages, &span);
2798         if (unlikely(nr_extents < 0)) {
2799                 error = nr_extents;
2800                 goto bad_swap;
2801         }
2802         /* frontswap enabled? set up bit-per-page map for frontswap */
2803         if (IS_ENABLED(CONFIG_FRONTSWAP))
2804                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2805
2806         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2807                 /*
2808                  * When discard is enabled for swap with no particular
2809                  * policy flagged, we set all swap discard flags here in
2810                  * order to sustain backward compatibility with older
2811                  * swapon(8) releases.
2812                  */
2813                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2814                              SWP_PAGE_DISCARD);
2815
2816                 /*
2817                  * By flagging sys_swapon, a sysadmin can tell us to
2818                  * either do single-time area discards only, or to just
2819                  * perform discards for released swap page-clusters.
2820                  * Now it's time to adjust the p->flags accordingly.
2821                  */
2822                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2823                         p->flags &= ~SWP_PAGE_DISCARD;
2824                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2825                         p->flags &= ~SWP_AREA_DISCARD;
2826
2827                 /* issue a swapon-time discard if it's still required */
2828                 if (p->flags & SWP_AREA_DISCARD) {
2829                         int err = discard_swap(p);
2830                         if (unlikely(err))
2831                                 pr_err("swapon: discard_swap(%p): %d\n",
2832                                         p, err);
2833                 }
2834         }
2835
2836         error = init_swap_address_space(p->type, maxpages);
2837         if (error)
2838                 goto bad_swap;
2839
2840         mutex_lock(&swapon_mutex);
2841         prio = -1;
2842         if (swap_flags & SWAP_FLAG_PREFER)
2843                 prio =
2844                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2845         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2846
2847         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2848                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2849                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2850                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2851                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2852                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2853                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2854                 (frontswap_map) ? "FS" : "");
2855
2856         mutex_unlock(&swapon_mutex);
2857         atomic_inc(&proc_poll_event);
2858         wake_up_interruptible(&proc_poll_wait);
2859
2860         if (S_ISREG(inode->i_mode))
2861                 inode->i_flags |= S_SWAPFILE;
2862         error = 0;
2863         goto out;
2864 bad_swap:
2865         free_percpu(p->percpu_cluster);
2866         p->percpu_cluster = NULL;
2867         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2868                 set_blocksize(p->bdev, p->old_block_size);
2869                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2870         }
2871         destroy_swap_extents(p);
2872         swap_cgroup_swapoff(p->type);
2873         spin_lock(&swap_lock);
2874         p->swap_file = NULL;
2875         p->flags = 0;
2876         spin_unlock(&swap_lock);
2877         vfree(swap_map);
2878         vfree(cluster_info);
2879         if (swap_file) {
2880                 if (inode && S_ISREG(inode->i_mode)) {
2881                         inode_unlock(inode);
2882                         inode = NULL;
2883                 }
2884                 filp_close(swap_file, NULL);
2885         }
2886 out:
2887         if (page && !IS_ERR(page)) {
2888                 kunmap(page);
2889                 put_page(page);
2890         }
2891         if (name)
2892                 putname(name);
2893         if (inode && S_ISREG(inode->i_mode))
2894                 inode_unlock(inode);
2895         if (!error)
2896                 enable_swap_slots_cache();
2897         return error;
2898 }
2899
2900 void si_swapinfo(struct sysinfo *val)
2901 {
2902         unsigned int type;
2903         unsigned long nr_to_be_unused = 0;
2904
2905         spin_lock(&swap_lock);
2906         for (type = 0; type < nr_swapfiles; type++) {
2907                 struct swap_info_struct *si = swap_info[type];
2908
2909                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2910                         nr_to_be_unused += si->inuse_pages;
2911         }
2912         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2913         val->totalswap = total_swap_pages + nr_to_be_unused;
2914         spin_unlock(&swap_lock);
2915 }
2916
2917 /*
2918  * Verify that a swap entry is valid and increment its swap map count.
2919  *
2920  * Returns error code in following case.
2921  * - success -> 0
2922  * - swp_entry is invalid -> EINVAL
2923  * - swp_entry is migration entry -> EINVAL
2924  * - swap-cache reference is requested but there is already one. -> EEXIST
2925  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2926  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2927  */
2928 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2929 {
2930         struct swap_info_struct *p;
2931         struct swap_cluster_info *ci;
2932         unsigned long offset, type;
2933         unsigned char count;
2934         unsigned char has_cache;
2935         int err = -EINVAL;
2936
2937         if (non_swap_entry(entry))
2938                 goto out;
2939
2940         type = swp_type(entry);
2941         if (type >= nr_swapfiles)
2942                 goto bad_file;
2943         p = swap_info[type];
2944         offset = swp_offset(entry);
2945         if (unlikely(offset >= p->max))
2946                 goto out;
2947
2948         ci = lock_cluster_or_swap_info(p, offset);
2949
2950         count = p->swap_map[offset];
2951
2952         /*
2953          * swapin_readahead() doesn't check if a swap entry is valid, so the
2954          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2955          */
2956         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2957                 err = -ENOENT;
2958                 goto unlock_out;
2959         }
2960
2961         has_cache = count & SWAP_HAS_CACHE;
2962         count &= ~SWAP_HAS_CACHE;
2963         err = 0;
2964
2965         if (usage == SWAP_HAS_CACHE) {
2966
2967                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2968                 if (!has_cache && count)
2969                         has_cache = SWAP_HAS_CACHE;
2970                 else if (has_cache)             /* someone else added cache */
2971                         err = -EEXIST;
2972                 else                            /* no users remaining */
2973                         err = -ENOENT;
2974
2975         } else if (count || has_cache) {
2976
2977                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2978                         count += usage;
2979                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2980                         err = -EINVAL;
2981                 else if (swap_count_continued(p, offset, count))
2982                         count = COUNT_CONTINUED;
2983                 else
2984                         err = -ENOMEM;
2985         } else
2986                 err = -ENOENT;                  /* unused swap entry */
2987
2988         p->swap_map[offset] = count | has_cache;
2989
2990 unlock_out:
2991         unlock_cluster_or_swap_info(p, ci);
2992 out:
2993         return err;
2994
2995 bad_file:
2996         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2997         goto out;
2998 }
2999
3000 /*
3001  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3002  * (in which case its reference count is never incremented).
3003  */
3004 void swap_shmem_alloc(swp_entry_t entry)
3005 {
3006         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3007 }
3008
3009 /*
3010  * Increase reference count of swap entry by 1.
3011  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3012  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3013  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3014  * might occur if a page table entry has got corrupted.
3015  */
3016 int swap_duplicate(swp_entry_t entry)
3017 {
3018         int err = 0;
3019
3020         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3021                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3022         return err;
3023 }
3024
3025 /*
3026  * @entry: swap entry for which we allocate swap cache.
3027  *
3028  * Called when allocating swap cache for existing swap entry,
3029  * This can return error codes. Returns 0 at success.
3030  * -EBUSY means there is a swap cache.
3031  * Note: return code is different from swap_duplicate().
3032  */
3033 int swapcache_prepare(swp_entry_t entry)
3034 {
3035         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3036 }
3037
3038 struct swap_info_struct *page_swap_info(struct page *page)
3039 {
3040         swp_entry_t swap = { .val = page_private(page) };
3041         return swap_info[swp_type(swap)];
3042 }
3043
3044 /*
3045  * out-of-line __page_file_ methods to avoid include hell.
3046  */
3047 struct address_space *__page_file_mapping(struct page *page)
3048 {
3049         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3050         return page_swap_info(page)->swap_file->f_mapping;
3051 }
3052 EXPORT_SYMBOL_GPL(__page_file_mapping);
3053
3054 pgoff_t __page_file_index(struct page *page)
3055 {
3056         swp_entry_t swap = { .val = page_private(page) };
3057         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3058         return swp_offset(swap);
3059 }
3060 EXPORT_SYMBOL_GPL(__page_file_index);
3061
3062 /*
3063  * add_swap_count_continuation - called when a swap count is duplicated
3064  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3065  * page of the original vmalloc'ed swap_map, to hold the continuation count
3066  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3067  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3068  *
3069  * These continuation pages are seldom referenced: the common paths all work
3070  * on the original swap_map, only referring to a continuation page when the
3071  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3072  *
3073  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3074  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3075  * can be called after dropping locks.
3076  */
3077 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3078 {
3079         struct swap_info_struct *si;
3080         struct swap_cluster_info *ci;
3081         struct page *head;
3082         struct page *page;
3083         struct page *list_page;
3084         pgoff_t offset;
3085         unsigned char count;
3086
3087         /*
3088          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3089          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3090          */
3091         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3092
3093         si = swap_info_get(entry);
3094         if (!si) {
3095                 /*
3096                  * An acceptable race has occurred since the failing
3097                  * __swap_duplicate(): the swap entry has been freed,
3098                  * perhaps even the whole swap_map cleared for swapoff.
3099                  */
3100                 goto outer;
3101         }
3102
3103         offset = swp_offset(entry);
3104
3105         ci = lock_cluster(si, offset);
3106
3107         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3108
3109         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3110                 /*
3111                  * The higher the swap count, the more likely it is that tasks
3112                  * will race to add swap count continuation: we need to avoid
3113                  * over-provisioning.
3114                  */
3115                 goto out;
3116         }
3117
3118         if (!page) {
3119                 unlock_cluster(ci);
3120                 spin_unlock(&si->lock);
3121                 return -ENOMEM;
3122         }
3123
3124         /*
3125          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3126          * no architecture is using highmem pages for kernel page tables: so it
3127          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3128          */
3129         head = vmalloc_to_page(si->swap_map + offset);
3130         offset &= ~PAGE_MASK;
3131
3132         /*
3133          * Page allocation does not initialize the page's lru field,
3134          * but it does always reset its private field.
3135          */
3136         if (!page_private(head)) {
3137                 BUG_ON(count & COUNT_CONTINUED);
3138                 INIT_LIST_HEAD(&head->lru);
3139                 set_page_private(head, SWP_CONTINUED);
3140                 si->flags |= SWP_CONTINUED;
3141         }
3142
3143         list_for_each_entry(list_page, &head->lru, lru) {
3144                 unsigned char *map;
3145
3146                 /*
3147                  * If the previous map said no continuation, but we've found
3148                  * a continuation page, free our allocation and use this one.
3149                  */
3150                 if (!(count & COUNT_CONTINUED))
3151                         goto out;
3152
3153                 map = kmap_atomic(list_page) + offset;
3154                 count = *map;
3155                 kunmap_atomic(map);
3156
3157                 /*
3158                  * If this continuation count now has some space in it,
3159                  * free our allocation and use this one.
3160                  */
3161                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3162                         goto out;
3163         }
3164
3165         list_add_tail(&page->lru, &head->lru);
3166         page = NULL;                    /* now it's attached, don't free it */
3167 out:
3168         unlock_cluster(ci);
3169         spin_unlock(&si->lock);
3170 outer:
3171         if (page)
3172                 __free_page(page);
3173         return 0;
3174 }
3175
3176 /*
3177  * swap_count_continued - when the original swap_map count is incremented
3178  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3179  * into, carry if so, or else fail until a new continuation page is allocated;
3180  * when the original swap_map count is decremented from 0 with continuation,
3181  * borrow from the continuation and report whether it still holds more.
3182  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3183  * lock.
3184  */
3185 static bool swap_count_continued(struct swap_info_struct *si,
3186                                  pgoff_t offset, unsigned char count)
3187 {
3188         struct page *head;
3189         struct page *page;
3190         unsigned char *map;
3191
3192         head = vmalloc_to_page(si->swap_map + offset);
3193         if (page_private(head) != SWP_CONTINUED) {
3194                 BUG_ON(count & COUNT_CONTINUED);
3195                 return false;           /* need to add count continuation */
3196         }
3197
3198         offset &= ~PAGE_MASK;
3199         page = list_entry(head->lru.next, struct page, lru);
3200         map = kmap_atomic(page) + offset;
3201
3202         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3203                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3204
3205         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3206                 /*
3207                  * Think of how you add 1 to 999
3208                  */
3209                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3210                         kunmap_atomic(map);
3211                         page = list_entry(page->lru.next, struct page, lru);
3212                         BUG_ON(page == head);
3213                         map = kmap_atomic(page) + offset;
3214                 }
3215                 if (*map == SWAP_CONT_MAX) {
3216                         kunmap_atomic(map);
3217                         page = list_entry(page->lru.next, struct page, lru);
3218                         if (page == head)
3219                                 return false;   /* add count continuation */
3220                         map = kmap_atomic(page) + offset;
3221 init_map:               *map = 0;               /* we didn't zero the page */
3222                 }
3223                 *map += 1;
3224                 kunmap_atomic(map);
3225                 page = list_entry(page->lru.prev, struct page, lru);
3226                 while (page != head) {
3227                         map = kmap_atomic(page) + offset;
3228                         *map = COUNT_CONTINUED;
3229                         kunmap_atomic(map);
3230                         page = list_entry(page->lru.prev, struct page, lru);
3231                 }
3232                 return true;                    /* incremented */
3233
3234         } else {                                /* decrementing */
3235                 /*
3236                  * Think of how you subtract 1 from 1000
3237                  */
3238                 BUG_ON(count != COUNT_CONTINUED);
3239                 while (*map == COUNT_CONTINUED) {
3240                         kunmap_atomic(map);
3241                         page = list_entry(page->lru.next, struct page, lru);
3242                         BUG_ON(page == head);
3243                         map = kmap_atomic(page) + offset;
3244                 }
3245                 BUG_ON(*map == 0);
3246                 *map -= 1;
3247                 if (*map == 0)
3248                         count = 0;
3249                 kunmap_atomic(map);
3250                 page = list_entry(page->lru.prev, struct page, lru);
3251                 while (page != head) {
3252                         map = kmap_atomic(page) + offset;
3253                         *map = SWAP_CONT_MAX | count;
3254                         count = COUNT_CONTINUED;
3255                         kunmap_atomic(map);
3256                         page = list_entry(page->lru.prev, struct page, lru);
3257                 }
3258                 return count == COUNT_CONTINUED;
3259         }
3260 }
3261
3262 /*
3263  * free_swap_count_continuations - swapoff free all the continuation pages
3264  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3265  */
3266 static void free_swap_count_continuations(struct swap_info_struct *si)
3267 {
3268         pgoff_t offset;
3269
3270         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3271                 struct page *head;
3272                 head = vmalloc_to_page(si->swap_map + offset);
3273                 if (page_private(head)) {
3274                         struct page *page, *next;
3275
3276                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3277                                 list_del(&page->lru);
3278                                 __free_page(page);
3279                         }
3280                 }
3281         }
3282 }