mm/swapfile: use percpu_ref to serialize against concurrent swapoff
[linux-2.6-block.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 sector_t swap_page_sector(struct page *page)
224 {
225         struct swap_info_struct *sis = page_swap_info(page);
226         struct swap_extent *se;
227         sector_t sector;
228         pgoff_t offset;
229
230         offset = __page_file_index(page);
231         se = offset_to_swap_extent(sis, offset);
232         sector = se->start_block + (offset - se->start_page);
233         return sector << (PAGE_SHIFT - 9);
234 }
235
236 /*
237  * swap allocation tell device that a cluster of swap can now be discarded,
238  * to allow the swap device to optimize its wear-levelling.
239  */
240 static void discard_swap_cluster(struct swap_info_struct *si,
241                                  pgoff_t start_page, pgoff_t nr_pages)
242 {
243         struct swap_extent *se = offset_to_swap_extent(si, start_page);
244
245         while (nr_pages) {
246                 pgoff_t offset = start_page - se->start_page;
247                 sector_t start_block = se->start_block + offset;
248                 sector_t nr_blocks = se->nr_pages - offset;
249
250                 if (nr_blocks > nr_pages)
251                         nr_blocks = nr_pages;
252                 start_page += nr_blocks;
253                 nr_pages -= nr_blocks;
254
255                 start_block <<= PAGE_SHIFT - 9;
256                 nr_blocks <<= PAGE_SHIFT - 9;
257                 if (blkdev_issue_discard(si->bdev, start_block,
258                                         nr_blocks, GFP_NOIO, 0))
259                         break;
260
261                 se = next_se(se);
262         }
263 }
264
265 #ifdef CONFIG_THP_SWAP
266 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
267
268 #define swap_entry_size(size)   (size)
269 #else
270 #define SWAPFILE_CLUSTER        256
271
272 /*
273  * Define swap_entry_size() as constant to let compiler to optimize
274  * out some code if !CONFIG_THP_SWAP
275  */
276 #define swap_entry_size(size)   1
277 #endif
278 #define LATENCY_LIMIT           256
279
280 static inline void cluster_set_flag(struct swap_cluster_info *info,
281         unsigned int flag)
282 {
283         info->flags = flag;
284 }
285
286 static inline unsigned int cluster_count(struct swap_cluster_info *info)
287 {
288         return info->data;
289 }
290
291 static inline void cluster_set_count(struct swap_cluster_info *info,
292                                      unsigned int c)
293 {
294         info->data = c;
295 }
296
297 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298                                          unsigned int c, unsigned int f)
299 {
300         info->flags = f;
301         info->data = c;
302 }
303
304 static inline unsigned int cluster_next(struct swap_cluster_info *info)
305 {
306         return info->data;
307 }
308
309 static inline void cluster_set_next(struct swap_cluster_info *info,
310                                     unsigned int n)
311 {
312         info->data = n;
313 }
314
315 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316                                          unsigned int n, unsigned int f)
317 {
318         info->flags = f;
319         info->data = n;
320 }
321
322 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 {
324         return info->flags & CLUSTER_FLAG_FREE;
325 }
326
327 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 {
329         return info->flags & CLUSTER_FLAG_NEXT_NULL;
330 }
331
332 static inline void cluster_set_null(struct swap_cluster_info *info)
333 {
334         info->flags = CLUSTER_FLAG_NEXT_NULL;
335         info->data = 0;
336 }
337
338 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 {
340         if (IS_ENABLED(CONFIG_THP_SWAP))
341                 return info->flags & CLUSTER_FLAG_HUGE;
342         return false;
343 }
344
345 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 {
347         info->flags &= ~CLUSTER_FLAG_HUGE;
348 }
349
350 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351                                                      unsigned long offset)
352 {
353         struct swap_cluster_info *ci;
354
355         ci = si->cluster_info;
356         if (ci) {
357                 ci += offset / SWAPFILE_CLUSTER;
358                 spin_lock(&ci->lock);
359         }
360         return ci;
361 }
362
363 static inline void unlock_cluster(struct swap_cluster_info *ci)
364 {
365         if (ci)
366                 spin_unlock(&ci->lock);
367 }
368
369 /*
370  * Determine the locking method in use for this device.  Return
371  * swap_cluster_info if SSD-style cluster-based locking is in place.
372  */
373 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
374                 struct swap_info_struct *si, unsigned long offset)
375 {
376         struct swap_cluster_info *ci;
377
378         /* Try to use fine-grained SSD-style locking if available: */
379         ci = lock_cluster(si, offset);
380         /* Otherwise, fall back to traditional, coarse locking: */
381         if (!ci)
382                 spin_lock(&si->lock);
383
384         return ci;
385 }
386
387 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388                                                struct swap_cluster_info *ci)
389 {
390         if (ci)
391                 unlock_cluster(ci);
392         else
393                 spin_unlock(&si->lock);
394 }
395
396 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 {
398         return cluster_is_null(&list->head);
399 }
400
401 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 {
403         return cluster_next(&list->head);
404 }
405
406 static void cluster_list_init(struct swap_cluster_list *list)
407 {
408         cluster_set_null(&list->head);
409         cluster_set_null(&list->tail);
410 }
411
412 static void cluster_list_add_tail(struct swap_cluster_list *list,
413                                   struct swap_cluster_info *ci,
414                                   unsigned int idx)
415 {
416         if (cluster_list_empty(list)) {
417                 cluster_set_next_flag(&list->head, idx, 0);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         } else {
420                 struct swap_cluster_info *ci_tail;
421                 unsigned int tail = cluster_next(&list->tail);
422
423                 /*
424                  * Nested cluster lock, but both cluster locks are
425                  * only acquired when we held swap_info_struct->lock
426                  */
427                 ci_tail = ci + tail;
428                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429                 cluster_set_next(ci_tail, idx);
430                 spin_unlock(&ci_tail->lock);
431                 cluster_set_next_flag(&list->tail, idx, 0);
432         }
433 }
434
435 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436                                            struct swap_cluster_info *ci)
437 {
438         unsigned int idx;
439
440         idx = cluster_next(&list->head);
441         if (cluster_next(&list->tail) == idx) {
442                 cluster_set_null(&list->head);
443                 cluster_set_null(&list->tail);
444         } else
445                 cluster_set_next_flag(&list->head,
446                                       cluster_next(&ci[idx]), 0);
447
448         return idx;
449 }
450
451 /* Add a cluster to discard list and schedule it to do discard */
452 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453                 unsigned int idx)
454 {
455         /*
456          * If scan_swap_map() can't find a free cluster, it will check
457          * si->swap_map directly. To make sure the discarding cluster isn't
458          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
459          * will be cleared after discard
460          */
461         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463
464         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465
466         schedule_work(&si->discard_work);
467 }
468
469 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 {
471         struct swap_cluster_info *ci = si->cluster_info;
472
473         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474         cluster_list_add_tail(&si->free_clusters, ci, idx);
475 }
476
477 /*
478  * Doing discard actually. After a cluster discard is finished, the cluster
479  * will be added to free cluster list. caller should hold si->lock.
480 */
481 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 {
483         struct swap_cluster_info *info, *ci;
484         unsigned int idx;
485
486         info = si->cluster_info;
487
488         while (!cluster_list_empty(&si->discard_clusters)) {
489                 idx = cluster_list_del_first(&si->discard_clusters, info);
490                 spin_unlock(&si->lock);
491
492                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493                                 SWAPFILE_CLUSTER);
494
495                 spin_lock(&si->lock);
496                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
497                 __free_cluster(si, idx);
498                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499                                 0, SWAPFILE_CLUSTER);
500                 unlock_cluster(ci);
501         }
502 }
503
504 static void swap_discard_work(struct work_struct *work)
505 {
506         struct swap_info_struct *si;
507
508         si = container_of(work, struct swap_info_struct, discard_work);
509
510         spin_lock(&si->lock);
511         swap_do_scheduled_discard(si);
512         spin_unlock(&si->lock);
513 }
514
515 static void swap_users_ref_free(struct percpu_ref *ref)
516 {
517         struct swap_info_struct *si;
518
519         si = container_of(ref, struct swap_info_struct, users);
520         complete(&si->comp);
521 }
522
523 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
524 {
525         struct swap_cluster_info *ci = si->cluster_info;
526
527         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
528         cluster_list_del_first(&si->free_clusters, ci);
529         cluster_set_count_flag(ci + idx, 0, 0);
530 }
531
532 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
533 {
534         struct swap_cluster_info *ci = si->cluster_info + idx;
535
536         VM_BUG_ON(cluster_count(ci) != 0);
537         /*
538          * If the swap is discardable, prepare discard the cluster
539          * instead of free it immediately. The cluster will be freed
540          * after discard.
541          */
542         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
543             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
544                 swap_cluster_schedule_discard(si, idx);
545                 return;
546         }
547
548         __free_cluster(si, idx);
549 }
550
551 /*
552  * The cluster corresponding to page_nr will be used. The cluster will be
553  * removed from free cluster list and its usage counter will be increased.
554  */
555 static void inc_cluster_info_page(struct swap_info_struct *p,
556         struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560         if (!cluster_info)
561                 return;
562         if (cluster_is_free(&cluster_info[idx]))
563                 alloc_cluster(p, idx);
564
565         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
566         cluster_set_count(&cluster_info[idx],
567                 cluster_count(&cluster_info[idx]) + 1);
568 }
569
570 /*
571  * The cluster corresponding to page_nr decreases one usage. If the usage
572  * counter becomes 0, which means no page in the cluster is in using, we can
573  * optionally discard the cluster and add it to free cluster list.
574  */
575 static void dec_cluster_info_page(struct swap_info_struct *p,
576         struct swap_cluster_info *cluster_info, unsigned long page_nr)
577 {
578         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
579
580         if (!cluster_info)
581                 return;
582
583         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
584         cluster_set_count(&cluster_info[idx],
585                 cluster_count(&cluster_info[idx]) - 1);
586
587         if (cluster_count(&cluster_info[idx]) == 0)
588                 free_cluster(p, idx);
589 }
590
591 /*
592  * It's possible scan_swap_map() uses a free cluster in the middle of free
593  * cluster list. Avoiding such abuse to avoid list corruption.
594  */
595 static bool
596 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
597         unsigned long offset)
598 {
599         struct percpu_cluster *percpu_cluster;
600         bool conflict;
601
602         offset /= SWAPFILE_CLUSTER;
603         conflict = !cluster_list_empty(&si->free_clusters) &&
604                 offset != cluster_list_first(&si->free_clusters) &&
605                 cluster_is_free(&si->cluster_info[offset]);
606
607         if (!conflict)
608                 return false;
609
610         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
611         cluster_set_null(&percpu_cluster->index);
612         return true;
613 }
614
615 /*
616  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
617  * might involve allocating a new cluster for current CPU too.
618  */
619 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
620         unsigned long *offset, unsigned long *scan_base)
621 {
622         struct percpu_cluster *cluster;
623         struct swap_cluster_info *ci;
624         unsigned long tmp, max;
625
626 new_cluster:
627         cluster = this_cpu_ptr(si->percpu_cluster);
628         if (cluster_is_null(&cluster->index)) {
629                 if (!cluster_list_empty(&si->free_clusters)) {
630                         cluster->index = si->free_clusters.head;
631                         cluster->next = cluster_next(&cluster->index) *
632                                         SWAPFILE_CLUSTER;
633                 } else if (!cluster_list_empty(&si->discard_clusters)) {
634                         /*
635                          * we don't have free cluster but have some clusters in
636                          * discarding, do discard now and reclaim them, then
637                          * reread cluster_next_cpu since we dropped si->lock
638                          */
639                         swap_do_scheduled_discard(si);
640                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
641                         *offset = *scan_base;
642                         goto new_cluster;
643                 } else
644                         return false;
645         }
646
647         /*
648          * Other CPUs can use our cluster if they can't find a free cluster,
649          * check if there is still free entry in the cluster
650          */
651         tmp = cluster->next;
652         max = min_t(unsigned long, si->max,
653                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
654         if (tmp < max) {
655                 ci = lock_cluster(si, tmp);
656                 while (tmp < max) {
657                         if (!si->swap_map[tmp])
658                                 break;
659                         tmp++;
660                 }
661                 unlock_cluster(ci);
662         }
663         if (tmp >= max) {
664                 cluster_set_null(&cluster->index);
665                 goto new_cluster;
666         }
667         cluster->next = tmp + 1;
668         *offset = tmp;
669         *scan_base = tmp;
670         return true;
671 }
672
673 static void __del_from_avail_list(struct swap_info_struct *p)
674 {
675         int nid;
676
677         for_each_node(nid)
678                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679 }
680
681 static void del_from_avail_list(struct swap_info_struct *p)
682 {
683         spin_lock(&swap_avail_lock);
684         __del_from_avail_list(p);
685         spin_unlock(&swap_avail_lock);
686 }
687
688 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689                              unsigned int nr_entries)
690 {
691         unsigned int end = offset + nr_entries - 1;
692
693         if (offset == si->lowest_bit)
694                 si->lowest_bit += nr_entries;
695         if (end == si->highest_bit)
696                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
697         si->inuse_pages += nr_entries;
698         if (si->inuse_pages == si->pages) {
699                 si->lowest_bit = si->max;
700                 si->highest_bit = 0;
701                 del_from_avail_list(si);
702         }
703 }
704
705 static void add_to_avail_list(struct swap_info_struct *p)
706 {
707         int nid;
708
709         spin_lock(&swap_avail_lock);
710         for_each_node(nid) {
711                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713         }
714         spin_unlock(&swap_avail_lock);
715 }
716
717 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718                             unsigned int nr_entries)
719 {
720         unsigned long begin = offset;
721         unsigned long end = offset + nr_entries - 1;
722         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723
724         if (offset < si->lowest_bit)
725                 si->lowest_bit = offset;
726         if (end > si->highest_bit) {
727                 bool was_full = !si->highest_bit;
728
729                 WRITE_ONCE(si->highest_bit, end);
730                 if (was_full && (si->flags & SWP_WRITEOK))
731                         add_to_avail_list(si);
732         }
733         atomic_long_add(nr_entries, &nr_swap_pages);
734         si->inuse_pages -= nr_entries;
735         if (si->flags & SWP_BLKDEV)
736                 swap_slot_free_notify =
737                         si->bdev->bd_disk->fops->swap_slot_free_notify;
738         else
739                 swap_slot_free_notify = NULL;
740         while (offset <= end) {
741                 arch_swap_invalidate_page(si->type, offset);
742                 frontswap_invalidate_page(si->type, offset);
743                 if (swap_slot_free_notify)
744                         swap_slot_free_notify(si->bdev, offset);
745                 offset++;
746         }
747         clear_shadow_from_swap_cache(si->type, begin, end);
748 }
749
750 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751 {
752         unsigned long prev;
753
754         if (!(si->flags & SWP_SOLIDSTATE)) {
755                 si->cluster_next = next;
756                 return;
757         }
758
759         prev = this_cpu_read(*si->cluster_next_cpu);
760         /*
761          * Cross the swap address space size aligned trunk, choose
762          * another trunk randomly to avoid lock contention on swap
763          * address space if possible.
764          */
765         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767                 /* No free swap slots available */
768                 if (si->highest_bit <= si->lowest_bit)
769                         return;
770                 next = si->lowest_bit +
771                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773                 next = max_t(unsigned int, next, si->lowest_bit);
774         }
775         this_cpu_write(*si->cluster_next_cpu, next);
776 }
777
778 static int scan_swap_map_slots(struct swap_info_struct *si,
779                                unsigned char usage, int nr,
780                                swp_entry_t slots[])
781 {
782         struct swap_cluster_info *ci;
783         unsigned long offset;
784         unsigned long scan_base;
785         unsigned long last_in_cluster = 0;
786         int latency_ration = LATENCY_LIMIT;
787         int n_ret = 0;
788         bool scanned_many = false;
789
790         /*
791          * We try to cluster swap pages by allocating them sequentially
792          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
793          * way, however, we resort to first-free allocation, starting
794          * a new cluster.  This prevents us from scattering swap pages
795          * all over the entire swap partition, so that we reduce
796          * overall disk seek times between swap pages.  -- sct
797          * But we do now try to find an empty cluster.  -Andrea
798          * And we let swap pages go all over an SSD partition.  Hugh
799          */
800
801         si->flags += SWP_SCANNING;
802         /*
803          * Use percpu scan base for SSD to reduce lock contention on
804          * cluster and swap cache.  For HDD, sequential access is more
805          * important.
806          */
807         if (si->flags & SWP_SOLIDSTATE)
808                 scan_base = this_cpu_read(*si->cluster_next_cpu);
809         else
810                 scan_base = si->cluster_next;
811         offset = scan_base;
812
813         /* SSD algorithm */
814         if (si->cluster_info) {
815                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
816                         goto scan;
817         } else if (unlikely(!si->cluster_nr--)) {
818                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
819                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
820                         goto checks;
821                 }
822
823                 spin_unlock(&si->lock);
824
825                 /*
826                  * If seek is expensive, start searching for new cluster from
827                  * start of partition, to minimize the span of allocated swap.
828                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
829                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
830                  */
831                 scan_base = offset = si->lowest_bit;
832                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833
834                 /* Locate the first empty (unaligned) cluster */
835                 for (; last_in_cluster <= si->highest_bit; offset++) {
836                         if (si->swap_map[offset])
837                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
838                         else if (offset == last_in_cluster) {
839                                 spin_lock(&si->lock);
840                                 offset -= SWAPFILE_CLUSTER - 1;
841                                 si->cluster_next = offset;
842                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
843                                 goto checks;
844                         }
845                         if (unlikely(--latency_ration < 0)) {
846                                 cond_resched();
847                                 latency_ration = LATENCY_LIMIT;
848                         }
849                 }
850
851                 offset = scan_base;
852                 spin_lock(&si->lock);
853                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
854         }
855
856 checks:
857         if (si->cluster_info) {
858                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
859                 /* take a break if we already got some slots */
860                         if (n_ret)
861                                 goto done;
862                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
863                                                         &scan_base))
864                                 goto scan;
865                 }
866         }
867         if (!(si->flags & SWP_WRITEOK))
868                 goto no_page;
869         if (!si->highest_bit)
870                 goto no_page;
871         if (offset > si->highest_bit)
872                 scan_base = offset = si->lowest_bit;
873
874         ci = lock_cluster(si, offset);
875         /* reuse swap entry of cache-only swap if not busy. */
876         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
877                 int swap_was_freed;
878                 unlock_cluster(ci);
879                 spin_unlock(&si->lock);
880                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
881                 spin_lock(&si->lock);
882                 /* entry was freed successfully, try to use this again */
883                 if (swap_was_freed)
884                         goto checks;
885                 goto scan; /* check next one */
886         }
887
888         if (si->swap_map[offset]) {
889                 unlock_cluster(ci);
890                 if (!n_ret)
891                         goto scan;
892                 else
893                         goto done;
894         }
895         WRITE_ONCE(si->swap_map[offset], usage);
896         inc_cluster_info_page(si, si->cluster_info, offset);
897         unlock_cluster(ci);
898
899         swap_range_alloc(si, offset, 1);
900         slots[n_ret++] = swp_entry(si->type, offset);
901
902         /* got enough slots or reach max slots? */
903         if ((n_ret == nr) || (offset >= si->highest_bit))
904                 goto done;
905
906         /* search for next available slot */
907
908         /* time to take a break? */
909         if (unlikely(--latency_ration < 0)) {
910                 if (n_ret)
911                         goto done;
912                 spin_unlock(&si->lock);
913                 cond_resched();
914                 spin_lock(&si->lock);
915                 latency_ration = LATENCY_LIMIT;
916         }
917
918         /* try to get more slots in cluster */
919         if (si->cluster_info) {
920                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921                         goto checks;
922         } else if (si->cluster_nr && !si->swap_map[++offset]) {
923                 /* non-ssd case, still more slots in cluster? */
924                 --si->cluster_nr;
925                 goto checks;
926         }
927
928         /*
929          * Even if there's no free clusters available (fragmented),
930          * try to scan a little more quickly with lock held unless we
931          * have scanned too many slots already.
932          */
933         if (!scanned_many) {
934                 unsigned long scan_limit;
935
936                 if (offset < scan_base)
937                         scan_limit = scan_base;
938                 else
939                         scan_limit = si->highest_bit;
940                 for (; offset <= scan_limit && --latency_ration > 0;
941                      offset++) {
942                         if (!si->swap_map[offset])
943                                 goto checks;
944                 }
945         }
946
947 done:
948         set_cluster_next(si, offset + 1);
949         si->flags -= SWP_SCANNING;
950         return n_ret;
951
952 scan:
953         spin_unlock(&si->lock);
954         while (++offset <= READ_ONCE(si->highest_bit)) {
955                 if (data_race(!si->swap_map[offset])) {
956                         spin_lock(&si->lock);
957                         goto checks;
958                 }
959                 if (vm_swap_full() &&
960                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
961                         spin_lock(&si->lock);
962                         goto checks;
963                 }
964                 if (unlikely(--latency_ration < 0)) {
965                         cond_resched();
966                         latency_ration = LATENCY_LIMIT;
967                         scanned_many = true;
968                 }
969         }
970         offset = si->lowest_bit;
971         while (offset < scan_base) {
972                 if (data_race(!si->swap_map[offset])) {
973                         spin_lock(&si->lock);
974                         goto checks;
975                 }
976                 if (vm_swap_full() &&
977                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
978                         spin_lock(&si->lock);
979                         goto checks;
980                 }
981                 if (unlikely(--latency_ration < 0)) {
982                         cond_resched();
983                         latency_ration = LATENCY_LIMIT;
984                         scanned_many = true;
985                 }
986                 offset++;
987         }
988         spin_lock(&si->lock);
989
990 no_page:
991         si->flags -= SWP_SCANNING;
992         return n_ret;
993 }
994
995 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
996 {
997         unsigned long idx;
998         struct swap_cluster_info *ci;
999         unsigned long offset;
1000
1001         /*
1002          * Should not even be attempting cluster allocations when huge
1003          * page swap is disabled.  Warn and fail the allocation.
1004          */
1005         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1006                 VM_WARN_ON_ONCE(1);
1007                 return 0;
1008         }
1009
1010         if (cluster_list_empty(&si->free_clusters))
1011                 return 0;
1012
1013         idx = cluster_list_first(&si->free_clusters);
1014         offset = idx * SWAPFILE_CLUSTER;
1015         ci = lock_cluster(si, offset);
1016         alloc_cluster(si, idx);
1017         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1018
1019         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1020         unlock_cluster(ci);
1021         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1022         *slot = swp_entry(si->type, offset);
1023
1024         return 1;
1025 }
1026
1027 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028 {
1029         unsigned long offset = idx * SWAPFILE_CLUSTER;
1030         struct swap_cluster_info *ci;
1031
1032         ci = lock_cluster(si, offset);
1033         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1034         cluster_set_count_flag(ci, 0, 0);
1035         free_cluster(si, idx);
1036         unlock_cluster(ci);
1037         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1038 }
1039
1040 static unsigned long scan_swap_map(struct swap_info_struct *si,
1041                                    unsigned char usage)
1042 {
1043         swp_entry_t entry;
1044         int n_ret;
1045
1046         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1047
1048         if (n_ret)
1049                 return swp_offset(entry);
1050         else
1051                 return 0;
1052
1053 }
1054
1055 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1056 {
1057         unsigned long size = swap_entry_size(entry_size);
1058         struct swap_info_struct *si, *next;
1059         long avail_pgs;
1060         int n_ret = 0;
1061         int node;
1062
1063         /* Only single cluster request supported */
1064         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1065
1066         spin_lock(&swap_avail_lock);
1067
1068         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1069         if (avail_pgs <= 0) {
1070                 spin_unlock(&swap_avail_lock);
1071                 goto noswap;
1072         }
1073
1074         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1075
1076         atomic_long_sub(n_goal * size, &nr_swap_pages);
1077
1078 start_over:
1079         node = numa_node_id();
1080         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1081                 /* requeue si to after same-priority siblings */
1082                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1083                 spin_unlock(&swap_avail_lock);
1084                 spin_lock(&si->lock);
1085                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1086                         spin_lock(&swap_avail_lock);
1087                         if (plist_node_empty(&si->avail_lists[node])) {
1088                                 spin_unlock(&si->lock);
1089                                 goto nextsi;
1090                         }
1091                         WARN(!si->highest_bit,
1092                              "swap_info %d in list but !highest_bit\n",
1093                              si->type);
1094                         WARN(!(si->flags & SWP_WRITEOK),
1095                              "swap_info %d in list but !SWP_WRITEOK\n",
1096                              si->type);
1097                         __del_from_avail_list(si);
1098                         spin_unlock(&si->lock);
1099                         goto nextsi;
1100                 }
1101                 if (size == SWAPFILE_CLUSTER) {
1102                         if (si->flags & SWP_BLKDEV)
1103                                 n_ret = swap_alloc_cluster(si, swp_entries);
1104                 } else
1105                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1106                                                     n_goal, swp_entries);
1107                 spin_unlock(&si->lock);
1108                 if (n_ret || size == SWAPFILE_CLUSTER)
1109                         goto check_out;
1110                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1111                         si->type);
1112
1113                 spin_lock(&swap_avail_lock);
1114 nextsi:
1115                 /*
1116                  * if we got here, it's likely that si was almost full before,
1117                  * and since scan_swap_map() can drop the si->lock, multiple
1118                  * callers probably all tried to get a page from the same si
1119                  * and it filled up before we could get one; or, the si filled
1120                  * up between us dropping swap_avail_lock and taking si->lock.
1121                  * Since we dropped the swap_avail_lock, the swap_avail_head
1122                  * list may have been modified; so if next is still in the
1123                  * swap_avail_head list then try it, otherwise start over
1124                  * if we have not gotten any slots.
1125                  */
1126                 if (plist_node_empty(&next->avail_lists[node]))
1127                         goto start_over;
1128         }
1129
1130         spin_unlock(&swap_avail_lock);
1131
1132 check_out:
1133         if (n_ret < n_goal)
1134                 atomic_long_add((long)(n_goal - n_ret) * size,
1135                                 &nr_swap_pages);
1136 noswap:
1137         return n_ret;
1138 }
1139
1140 /* The only caller of this function is now suspend routine */
1141 swp_entry_t get_swap_page_of_type(int type)
1142 {
1143         struct swap_info_struct *si = swap_type_to_swap_info(type);
1144         pgoff_t offset;
1145
1146         if (!si)
1147                 goto fail;
1148
1149         spin_lock(&si->lock);
1150         if (si->flags & SWP_WRITEOK) {
1151                 /* This is called for allocating swap entry, not cache */
1152                 offset = scan_swap_map(si, 1);
1153                 if (offset) {
1154                         atomic_long_dec(&nr_swap_pages);
1155                         spin_unlock(&si->lock);
1156                         return swp_entry(type, offset);
1157                 }
1158         }
1159         spin_unlock(&si->lock);
1160 fail:
1161         return (swp_entry_t) {0};
1162 }
1163
1164 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1165 {
1166         struct swap_info_struct *p;
1167         unsigned long offset;
1168
1169         if (!entry.val)
1170                 goto out;
1171         p = swp_swap_info(entry);
1172         if (!p)
1173                 goto bad_nofile;
1174         if (data_race(!(p->flags & SWP_USED)))
1175                 goto bad_device;
1176         offset = swp_offset(entry);
1177         if (offset >= p->max)
1178                 goto bad_offset;
1179         return p;
1180
1181 bad_offset:
1182         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1183         goto out;
1184 bad_device:
1185         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1186         goto out;
1187 bad_nofile:
1188         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1189 out:
1190         return NULL;
1191 }
1192
1193 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1194 {
1195         struct swap_info_struct *p;
1196
1197         p = __swap_info_get(entry);
1198         if (!p)
1199                 goto out;
1200         if (data_race(!p->swap_map[swp_offset(entry)]))
1201                 goto bad_free;
1202         return p;
1203
1204 bad_free:
1205         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1206 out:
1207         return NULL;
1208 }
1209
1210 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1211 {
1212         struct swap_info_struct *p;
1213
1214         p = _swap_info_get(entry);
1215         if (p)
1216                 spin_lock(&p->lock);
1217         return p;
1218 }
1219
1220 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1221                                         struct swap_info_struct *q)
1222 {
1223         struct swap_info_struct *p;
1224
1225         p = _swap_info_get(entry);
1226
1227         if (p != q) {
1228                 if (q != NULL)
1229                         spin_unlock(&q->lock);
1230                 if (p != NULL)
1231                         spin_lock(&p->lock);
1232         }
1233         return p;
1234 }
1235
1236 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1237                                               unsigned long offset,
1238                                               unsigned char usage)
1239 {
1240         unsigned char count;
1241         unsigned char has_cache;
1242
1243         count = p->swap_map[offset];
1244
1245         has_cache = count & SWAP_HAS_CACHE;
1246         count &= ~SWAP_HAS_CACHE;
1247
1248         if (usage == SWAP_HAS_CACHE) {
1249                 VM_BUG_ON(!has_cache);
1250                 has_cache = 0;
1251         } else if (count == SWAP_MAP_SHMEM) {
1252                 /*
1253                  * Or we could insist on shmem.c using a special
1254                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1255                  */
1256                 count = 0;
1257         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1258                 if (count == COUNT_CONTINUED) {
1259                         if (swap_count_continued(p, offset, count))
1260                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1261                         else
1262                                 count = SWAP_MAP_MAX;
1263                 } else
1264                         count--;
1265         }
1266
1267         usage = count | has_cache;
1268         if (usage)
1269                 WRITE_ONCE(p->swap_map[offset], usage);
1270         else
1271                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1272
1273         return usage;
1274 }
1275
1276 /*
1277  * Check whether swap entry is valid in the swap device.  If so,
1278  * return pointer to swap_info_struct, and keep the swap entry valid
1279  * via preventing the swap device from being swapoff, until
1280  * put_swap_device() is called.  Otherwise return NULL.
1281  *
1282  * Notice that swapoff or swapoff+swapon can still happen before the
1283  * percpu_ref_tryget_live() in get_swap_device() or after the
1284  * percpu_ref_put() in put_swap_device() if there isn't any other way
1285  * to prevent swapoff, such as page lock, page table lock, etc.  The
1286  * caller must be prepared for that.  For example, the following
1287  * situation is possible.
1288  *
1289  *   CPU1                               CPU2
1290  *   do_swap_page()
1291  *     ...                              swapoff+swapon
1292  *     __read_swap_cache_async()
1293  *       swapcache_prepare()
1294  *         __swap_duplicate()
1295  *           // check swap_map
1296  *     // verify PTE not changed
1297  *
1298  * In __swap_duplicate(), the swap_map need to be checked before
1299  * changing partly because the specified swap entry may be for another
1300  * swap device which has been swapoff.  And in do_swap_page(), after
1301  * the page is read from the swap device, the PTE is verified not
1302  * changed with the page table locked to check whether the swap device
1303  * has been swapoff or swapoff+swapon.
1304  */
1305 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1306 {
1307         struct swap_info_struct *si;
1308         unsigned long offset;
1309
1310         if (!entry.val)
1311                 goto out;
1312         si = swp_swap_info(entry);
1313         if (!si)
1314                 goto bad_nofile;
1315         if (!percpu_ref_tryget_live(&si->users))
1316                 goto out;
1317         /*
1318          * Guarantee the si->users are checked before accessing other
1319          * fields of swap_info_struct.
1320          *
1321          * Paired with the spin_unlock() after setup_swap_info() in
1322          * enable_swap_info().
1323          */
1324         smp_rmb();
1325         offset = swp_offset(entry);
1326         if (offset >= si->max)
1327                 goto put_out;
1328
1329         return si;
1330 bad_nofile:
1331         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1332 out:
1333         return NULL;
1334 put_out:
1335         percpu_ref_put(&si->users);
1336         return NULL;
1337 }
1338
1339 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1340                                        swp_entry_t entry)
1341 {
1342         struct swap_cluster_info *ci;
1343         unsigned long offset = swp_offset(entry);
1344         unsigned char usage;
1345
1346         ci = lock_cluster_or_swap_info(p, offset);
1347         usage = __swap_entry_free_locked(p, offset, 1);
1348         unlock_cluster_or_swap_info(p, ci);
1349         if (!usage)
1350                 free_swap_slot(entry);
1351
1352         return usage;
1353 }
1354
1355 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1356 {
1357         struct swap_cluster_info *ci;
1358         unsigned long offset = swp_offset(entry);
1359         unsigned char count;
1360
1361         ci = lock_cluster(p, offset);
1362         count = p->swap_map[offset];
1363         VM_BUG_ON(count != SWAP_HAS_CACHE);
1364         p->swap_map[offset] = 0;
1365         dec_cluster_info_page(p, p->cluster_info, offset);
1366         unlock_cluster(ci);
1367
1368         mem_cgroup_uncharge_swap(entry, 1);
1369         swap_range_free(p, offset, 1);
1370 }
1371
1372 /*
1373  * Caller has made sure that the swap device corresponding to entry
1374  * is still around or has not been recycled.
1375  */
1376 void swap_free(swp_entry_t entry)
1377 {
1378         struct swap_info_struct *p;
1379
1380         p = _swap_info_get(entry);
1381         if (p)
1382                 __swap_entry_free(p, entry);
1383 }
1384
1385 /*
1386  * Called after dropping swapcache to decrease refcnt to swap entries.
1387  */
1388 void put_swap_page(struct page *page, swp_entry_t entry)
1389 {
1390         unsigned long offset = swp_offset(entry);
1391         unsigned long idx = offset / SWAPFILE_CLUSTER;
1392         struct swap_cluster_info *ci;
1393         struct swap_info_struct *si;
1394         unsigned char *map;
1395         unsigned int i, free_entries = 0;
1396         unsigned char val;
1397         int size = swap_entry_size(thp_nr_pages(page));
1398
1399         si = _swap_info_get(entry);
1400         if (!si)
1401                 return;
1402
1403         ci = lock_cluster_or_swap_info(si, offset);
1404         if (size == SWAPFILE_CLUSTER) {
1405                 VM_BUG_ON(!cluster_is_huge(ci));
1406                 map = si->swap_map + offset;
1407                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1408                         val = map[i];
1409                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1410                         if (val == SWAP_HAS_CACHE)
1411                                 free_entries++;
1412                 }
1413                 cluster_clear_huge(ci);
1414                 if (free_entries == SWAPFILE_CLUSTER) {
1415                         unlock_cluster_or_swap_info(si, ci);
1416                         spin_lock(&si->lock);
1417                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1418                         swap_free_cluster(si, idx);
1419                         spin_unlock(&si->lock);
1420                         return;
1421                 }
1422         }
1423         for (i = 0; i < size; i++, entry.val++) {
1424                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1425                         unlock_cluster_or_swap_info(si, ci);
1426                         free_swap_slot(entry);
1427                         if (i == size - 1)
1428                                 return;
1429                         lock_cluster_or_swap_info(si, offset);
1430                 }
1431         }
1432         unlock_cluster_or_swap_info(si, ci);
1433 }
1434
1435 #ifdef CONFIG_THP_SWAP
1436 int split_swap_cluster(swp_entry_t entry)
1437 {
1438         struct swap_info_struct *si;
1439         struct swap_cluster_info *ci;
1440         unsigned long offset = swp_offset(entry);
1441
1442         si = _swap_info_get(entry);
1443         if (!si)
1444                 return -EBUSY;
1445         ci = lock_cluster(si, offset);
1446         cluster_clear_huge(ci);
1447         unlock_cluster(ci);
1448         return 0;
1449 }
1450 #endif
1451
1452 static int swp_entry_cmp(const void *ent1, const void *ent2)
1453 {
1454         const swp_entry_t *e1 = ent1, *e2 = ent2;
1455
1456         return (int)swp_type(*e1) - (int)swp_type(*e2);
1457 }
1458
1459 void swapcache_free_entries(swp_entry_t *entries, int n)
1460 {
1461         struct swap_info_struct *p, *prev;
1462         int i;
1463
1464         if (n <= 0)
1465                 return;
1466
1467         prev = NULL;
1468         p = NULL;
1469
1470         /*
1471          * Sort swap entries by swap device, so each lock is only taken once.
1472          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1473          * so low that it isn't necessary to optimize further.
1474          */
1475         if (nr_swapfiles > 1)
1476                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1477         for (i = 0; i < n; ++i) {
1478                 p = swap_info_get_cont(entries[i], prev);
1479                 if (p)
1480                         swap_entry_free(p, entries[i]);
1481                 prev = p;
1482         }
1483         if (p)
1484                 spin_unlock(&p->lock);
1485 }
1486
1487 /*
1488  * How many references to page are currently swapped out?
1489  * This does not give an exact answer when swap count is continued,
1490  * but does include the high COUNT_CONTINUED flag to allow for that.
1491  */
1492 int page_swapcount(struct page *page)
1493 {
1494         int count = 0;
1495         struct swap_info_struct *p;
1496         struct swap_cluster_info *ci;
1497         swp_entry_t entry;
1498         unsigned long offset;
1499
1500         entry.val = page_private(page);
1501         p = _swap_info_get(entry);
1502         if (p) {
1503                 offset = swp_offset(entry);
1504                 ci = lock_cluster_or_swap_info(p, offset);
1505                 count = swap_count(p->swap_map[offset]);
1506                 unlock_cluster_or_swap_info(p, ci);
1507         }
1508         return count;
1509 }
1510
1511 int __swap_count(swp_entry_t entry)
1512 {
1513         struct swap_info_struct *si;
1514         pgoff_t offset = swp_offset(entry);
1515         int count = 0;
1516
1517         si = get_swap_device(entry);
1518         if (si) {
1519                 count = swap_count(si->swap_map[offset]);
1520                 put_swap_device(si);
1521         }
1522         return count;
1523 }
1524
1525 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1526 {
1527         int count = 0;
1528         pgoff_t offset = swp_offset(entry);
1529         struct swap_cluster_info *ci;
1530
1531         ci = lock_cluster_or_swap_info(si, offset);
1532         count = swap_count(si->swap_map[offset]);
1533         unlock_cluster_or_swap_info(si, ci);
1534         return count;
1535 }
1536
1537 /*
1538  * How many references to @entry are currently swapped out?
1539  * This does not give an exact answer when swap count is continued,
1540  * but does include the high COUNT_CONTINUED flag to allow for that.
1541  */
1542 int __swp_swapcount(swp_entry_t entry)
1543 {
1544         int count = 0;
1545         struct swap_info_struct *si;
1546
1547         si = get_swap_device(entry);
1548         if (si) {
1549                 count = swap_swapcount(si, entry);
1550                 put_swap_device(si);
1551         }
1552         return count;
1553 }
1554
1555 /*
1556  * How many references to @entry are currently swapped out?
1557  * This considers COUNT_CONTINUED so it returns exact answer.
1558  */
1559 int swp_swapcount(swp_entry_t entry)
1560 {
1561         int count, tmp_count, n;
1562         struct swap_info_struct *p;
1563         struct swap_cluster_info *ci;
1564         struct page *page;
1565         pgoff_t offset;
1566         unsigned char *map;
1567
1568         p = _swap_info_get(entry);
1569         if (!p)
1570                 return 0;
1571
1572         offset = swp_offset(entry);
1573
1574         ci = lock_cluster_or_swap_info(p, offset);
1575
1576         count = swap_count(p->swap_map[offset]);
1577         if (!(count & COUNT_CONTINUED))
1578                 goto out;
1579
1580         count &= ~COUNT_CONTINUED;
1581         n = SWAP_MAP_MAX + 1;
1582
1583         page = vmalloc_to_page(p->swap_map + offset);
1584         offset &= ~PAGE_MASK;
1585         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1586
1587         do {
1588                 page = list_next_entry(page, lru);
1589                 map = kmap_atomic(page);
1590                 tmp_count = map[offset];
1591                 kunmap_atomic(map);
1592
1593                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1594                 n *= (SWAP_CONT_MAX + 1);
1595         } while (tmp_count & COUNT_CONTINUED);
1596 out:
1597         unlock_cluster_or_swap_info(p, ci);
1598         return count;
1599 }
1600
1601 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1602                                          swp_entry_t entry)
1603 {
1604         struct swap_cluster_info *ci;
1605         unsigned char *map = si->swap_map;
1606         unsigned long roffset = swp_offset(entry);
1607         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1608         int i;
1609         bool ret = false;
1610
1611         ci = lock_cluster_or_swap_info(si, offset);
1612         if (!ci || !cluster_is_huge(ci)) {
1613                 if (swap_count(map[roffset]))
1614                         ret = true;
1615                 goto unlock_out;
1616         }
1617         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1618                 if (swap_count(map[offset + i])) {
1619                         ret = true;
1620                         break;
1621                 }
1622         }
1623 unlock_out:
1624         unlock_cluster_or_swap_info(si, ci);
1625         return ret;
1626 }
1627
1628 static bool page_swapped(struct page *page)
1629 {
1630         swp_entry_t entry;
1631         struct swap_info_struct *si;
1632
1633         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1634                 return page_swapcount(page) != 0;
1635
1636         page = compound_head(page);
1637         entry.val = page_private(page);
1638         si = _swap_info_get(entry);
1639         if (si)
1640                 return swap_page_trans_huge_swapped(si, entry);
1641         return false;
1642 }
1643
1644 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1645                                          int *total_swapcount)
1646 {
1647         int i, map_swapcount, _total_mapcount, _total_swapcount;
1648         unsigned long offset = 0;
1649         struct swap_info_struct *si;
1650         struct swap_cluster_info *ci = NULL;
1651         unsigned char *map = NULL;
1652         int mapcount, swapcount = 0;
1653
1654         /* hugetlbfs shouldn't call it */
1655         VM_BUG_ON_PAGE(PageHuge(page), page);
1656
1657         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1658                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1659                 if (PageSwapCache(page))
1660                         swapcount = page_swapcount(page);
1661                 if (total_swapcount)
1662                         *total_swapcount = swapcount;
1663                 return mapcount + swapcount;
1664         }
1665
1666         page = compound_head(page);
1667
1668         _total_mapcount = _total_swapcount = map_swapcount = 0;
1669         if (PageSwapCache(page)) {
1670                 swp_entry_t entry;
1671
1672                 entry.val = page_private(page);
1673                 si = _swap_info_get(entry);
1674                 if (si) {
1675                         map = si->swap_map;
1676                         offset = swp_offset(entry);
1677                 }
1678         }
1679         if (map)
1680                 ci = lock_cluster(si, offset);
1681         for (i = 0; i < HPAGE_PMD_NR; i++) {
1682                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1683                 _total_mapcount += mapcount;
1684                 if (map) {
1685                         swapcount = swap_count(map[offset + i]);
1686                         _total_swapcount += swapcount;
1687                 }
1688                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1689         }
1690         unlock_cluster(ci);
1691         if (PageDoubleMap(page)) {
1692                 map_swapcount -= 1;
1693                 _total_mapcount -= HPAGE_PMD_NR;
1694         }
1695         mapcount = compound_mapcount(page);
1696         map_swapcount += mapcount;
1697         _total_mapcount += mapcount;
1698         if (total_mapcount)
1699                 *total_mapcount = _total_mapcount;
1700         if (total_swapcount)
1701                 *total_swapcount = _total_swapcount;
1702
1703         return map_swapcount;
1704 }
1705
1706 /*
1707  * We can write to an anon page without COW if there are no other references
1708  * to it.  And as a side-effect, free up its swap: because the old content
1709  * on disk will never be read, and seeking back there to write new content
1710  * later would only waste time away from clustering.
1711  *
1712  * NOTE: total_map_swapcount should not be relied upon by the caller if
1713  * reuse_swap_page() returns false, but it may be always overwritten
1714  * (see the other implementation for CONFIG_SWAP=n).
1715  */
1716 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1717 {
1718         int count, total_mapcount, total_swapcount;
1719
1720         VM_BUG_ON_PAGE(!PageLocked(page), page);
1721         if (unlikely(PageKsm(page)))
1722                 return false;
1723         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1724                                               &total_swapcount);
1725         if (total_map_swapcount)
1726                 *total_map_swapcount = total_mapcount + total_swapcount;
1727         if (count == 1 && PageSwapCache(page) &&
1728             (likely(!PageTransCompound(page)) ||
1729              /* The remaining swap count will be freed soon */
1730              total_swapcount == page_swapcount(page))) {
1731                 if (!PageWriteback(page)) {
1732                         page = compound_head(page);
1733                         delete_from_swap_cache(page);
1734                         SetPageDirty(page);
1735                 } else {
1736                         swp_entry_t entry;
1737                         struct swap_info_struct *p;
1738
1739                         entry.val = page_private(page);
1740                         p = swap_info_get(entry);
1741                         if (p->flags & SWP_STABLE_WRITES) {
1742                                 spin_unlock(&p->lock);
1743                                 return false;
1744                         }
1745                         spin_unlock(&p->lock);
1746                 }
1747         }
1748
1749         return count <= 1;
1750 }
1751
1752 /*
1753  * If swap is getting full, or if there are no more mappings of this page,
1754  * then try_to_free_swap is called to free its swap space.
1755  */
1756 int try_to_free_swap(struct page *page)
1757 {
1758         VM_BUG_ON_PAGE(!PageLocked(page), page);
1759
1760         if (!PageSwapCache(page))
1761                 return 0;
1762         if (PageWriteback(page))
1763                 return 0;
1764         if (page_swapped(page))
1765                 return 0;
1766
1767         /*
1768          * Once hibernation has begun to create its image of memory,
1769          * there's a danger that one of the calls to try_to_free_swap()
1770          * - most probably a call from __try_to_reclaim_swap() while
1771          * hibernation is allocating its own swap pages for the image,
1772          * but conceivably even a call from memory reclaim - will free
1773          * the swap from a page which has already been recorded in the
1774          * image as a clean swapcache page, and then reuse its swap for
1775          * another page of the image.  On waking from hibernation, the
1776          * original page might be freed under memory pressure, then
1777          * later read back in from swap, now with the wrong data.
1778          *
1779          * Hibernation suspends storage while it is writing the image
1780          * to disk so check that here.
1781          */
1782         if (pm_suspended_storage())
1783                 return 0;
1784
1785         page = compound_head(page);
1786         delete_from_swap_cache(page);
1787         SetPageDirty(page);
1788         return 1;
1789 }
1790
1791 /*
1792  * Free the swap entry like above, but also try to
1793  * free the page cache entry if it is the last user.
1794  */
1795 int free_swap_and_cache(swp_entry_t entry)
1796 {
1797         struct swap_info_struct *p;
1798         unsigned char count;
1799
1800         if (non_swap_entry(entry))
1801                 return 1;
1802
1803         p = _swap_info_get(entry);
1804         if (p) {
1805                 count = __swap_entry_free(p, entry);
1806                 if (count == SWAP_HAS_CACHE &&
1807                     !swap_page_trans_huge_swapped(p, entry))
1808                         __try_to_reclaim_swap(p, swp_offset(entry),
1809                                               TTRS_UNMAPPED | TTRS_FULL);
1810         }
1811         return p != NULL;
1812 }
1813
1814 #ifdef CONFIG_HIBERNATION
1815 /*
1816  * Find the swap type that corresponds to given device (if any).
1817  *
1818  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1819  * from 0, in which the swap header is expected to be located.
1820  *
1821  * This is needed for the suspend to disk (aka swsusp).
1822  */
1823 int swap_type_of(dev_t device, sector_t offset)
1824 {
1825         int type;
1826
1827         if (!device)
1828                 return -1;
1829
1830         spin_lock(&swap_lock);
1831         for (type = 0; type < nr_swapfiles; type++) {
1832                 struct swap_info_struct *sis = swap_info[type];
1833
1834                 if (!(sis->flags & SWP_WRITEOK))
1835                         continue;
1836
1837                 if (device == sis->bdev->bd_dev) {
1838                         struct swap_extent *se = first_se(sis);
1839
1840                         if (se->start_block == offset) {
1841                                 spin_unlock(&swap_lock);
1842                                 return type;
1843                         }
1844                 }
1845         }
1846         spin_unlock(&swap_lock);
1847         return -ENODEV;
1848 }
1849
1850 int find_first_swap(dev_t *device)
1851 {
1852         int type;
1853
1854         spin_lock(&swap_lock);
1855         for (type = 0; type < nr_swapfiles; type++) {
1856                 struct swap_info_struct *sis = swap_info[type];
1857
1858                 if (!(sis->flags & SWP_WRITEOK))
1859                         continue;
1860                 *device = sis->bdev->bd_dev;
1861                 spin_unlock(&swap_lock);
1862                 return type;
1863         }
1864         spin_unlock(&swap_lock);
1865         return -ENODEV;
1866 }
1867
1868 /*
1869  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1870  * corresponding to given index in swap_info (swap type).
1871  */
1872 sector_t swapdev_block(int type, pgoff_t offset)
1873 {
1874         struct swap_info_struct *si = swap_type_to_swap_info(type);
1875         struct swap_extent *se;
1876
1877         if (!si || !(si->flags & SWP_WRITEOK))
1878                 return 0;
1879         se = offset_to_swap_extent(si, offset);
1880         return se->start_block + (offset - se->start_page);
1881 }
1882
1883 /*
1884  * Return either the total number of swap pages of given type, or the number
1885  * of free pages of that type (depending on @free)
1886  *
1887  * This is needed for software suspend
1888  */
1889 unsigned int count_swap_pages(int type, int free)
1890 {
1891         unsigned int n = 0;
1892
1893         spin_lock(&swap_lock);
1894         if ((unsigned int)type < nr_swapfiles) {
1895                 struct swap_info_struct *sis = swap_info[type];
1896
1897                 spin_lock(&sis->lock);
1898                 if (sis->flags & SWP_WRITEOK) {
1899                         n = sis->pages;
1900                         if (free)
1901                                 n -= sis->inuse_pages;
1902                 }
1903                 spin_unlock(&sis->lock);
1904         }
1905         spin_unlock(&swap_lock);
1906         return n;
1907 }
1908 #endif /* CONFIG_HIBERNATION */
1909
1910 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1911 {
1912         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1913 }
1914
1915 /*
1916  * No need to decide whether this PTE shares the swap entry with others,
1917  * just let do_wp_page work it out if a write is requested later - to
1918  * force COW, vm_page_prot omits write permission from any private vma.
1919  */
1920 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1921                 unsigned long addr, swp_entry_t entry, struct page *page)
1922 {
1923         struct page *swapcache;
1924         spinlock_t *ptl;
1925         pte_t *pte;
1926         int ret = 1;
1927
1928         swapcache = page;
1929         page = ksm_might_need_to_copy(page, vma, addr);
1930         if (unlikely(!page))
1931                 return -ENOMEM;
1932
1933         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1934         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1935                 ret = 0;
1936                 goto out;
1937         }
1938
1939         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1940         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1941         get_page(page);
1942         set_pte_at(vma->vm_mm, addr, pte,
1943                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1944         if (page == swapcache) {
1945                 page_add_anon_rmap(page, vma, addr, false);
1946         } else { /* ksm created a completely new copy */
1947                 page_add_new_anon_rmap(page, vma, addr, false);
1948                 lru_cache_add_inactive_or_unevictable(page, vma);
1949         }
1950         swap_free(entry);
1951 out:
1952         pte_unmap_unlock(pte, ptl);
1953         if (page != swapcache) {
1954                 unlock_page(page);
1955                 put_page(page);
1956         }
1957         return ret;
1958 }
1959
1960 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1961                         unsigned long addr, unsigned long end,
1962                         unsigned int type, bool frontswap,
1963                         unsigned long *fs_pages_to_unuse)
1964 {
1965         struct page *page;
1966         swp_entry_t entry;
1967         pte_t *pte;
1968         struct swap_info_struct *si;
1969         unsigned long offset;
1970         int ret = 0;
1971         volatile unsigned char *swap_map;
1972
1973         si = swap_info[type];
1974         pte = pte_offset_map(pmd, addr);
1975         do {
1976                 if (!is_swap_pte(*pte))
1977                         continue;
1978
1979                 entry = pte_to_swp_entry(*pte);
1980                 if (swp_type(entry) != type)
1981                         continue;
1982
1983                 offset = swp_offset(entry);
1984                 if (frontswap && !frontswap_test(si, offset))
1985                         continue;
1986
1987                 pte_unmap(pte);
1988                 swap_map = &si->swap_map[offset];
1989                 page = lookup_swap_cache(entry, vma, addr);
1990                 if (!page) {
1991                         struct vm_fault vmf = {
1992                                 .vma = vma,
1993                                 .address = addr,
1994                                 .pmd = pmd,
1995                         };
1996
1997                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1998                                                 &vmf);
1999                 }
2000                 if (!page) {
2001                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
2002                                 goto try_next;
2003                         return -ENOMEM;
2004                 }
2005
2006                 lock_page(page);
2007                 wait_on_page_writeback(page);
2008                 ret = unuse_pte(vma, pmd, addr, entry, page);
2009                 if (ret < 0) {
2010                         unlock_page(page);
2011                         put_page(page);
2012                         goto out;
2013                 }
2014
2015                 try_to_free_swap(page);
2016                 unlock_page(page);
2017                 put_page(page);
2018
2019                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2020                         ret = FRONTSWAP_PAGES_UNUSED;
2021                         goto out;
2022                 }
2023 try_next:
2024                 pte = pte_offset_map(pmd, addr);
2025         } while (pte++, addr += PAGE_SIZE, addr != end);
2026         pte_unmap(pte - 1);
2027
2028         ret = 0;
2029 out:
2030         return ret;
2031 }
2032
2033 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2034                                 unsigned long addr, unsigned long end,
2035                                 unsigned int type, bool frontswap,
2036                                 unsigned long *fs_pages_to_unuse)
2037 {
2038         pmd_t *pmd;
2039         unsigned long next;
2040         int ret;
2041
2042         pmd = pmd_offset(pud, addr);
2043         do {
2044                 cond_resched();
2045                 next = pmd_addr_end(addr, end);
2046                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2047                         continue;
2048                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2049                                       frontswap, fs_pages_to_unuse);
2050                 if (ret)
2051                         return ret;
2052         } while (pmd++, addr = next, addr != end);
2053         return 0;
2054 }
2055
2056 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2057                                 unsigned long addr, unsigned long end,
2058                                 unsigned int type, bool frontswap,
2059                                 unsigned long *fs_pages_to_unuse)
2060 {
2061         pud_t *pud;
2062         unsigned long next;
2063         int ret;
2064
2065         pud = pud_offset(p4d, addr);
2066         do {
2067                 next = pud_addr_end(addr, end);
2068                 if (pud_none_or_clear_bad(pud))
2069                         continue;
2070                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2071                                       frontswap, fs_pages_to_unuse);
2072                 if (ret)
2073                         return ret;
2074         } while (pud++, addr = next, addr != end);
2075         return 0;
2076 }
2077
2078 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2079                                 unsigned long addr, unsigned long end,
2080                                 unsigned int type, bool frontswap,
2081                                 unsigned long *fs_pages_to_unuse)
2082 {
2083         p4d_t *p4d;
2084         unsigned long next;
2085         int ret;
2086
2087         p4d = p4d_offset(pgd, addr);
2088         do {
2089                 next = p4d_addr_end(addr, end);
2090                 if (p4d_none_or_clear_bad(p4d))
2091                         continue;
2092                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2093                                       frontswap, fs_pages_to_unuse);
2094                 if (ret)
2095                         return ret;
2096         } while (p4d++, addr = next, addr != end);
2097         return 0;
2098 }
2099
2100 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2101                      bool frontswap, unsigned long *fs_pages_to_unuse)
2102 {
2103         pgd_t *pgd;
2104         unsigned long addr, end, next;
2105         int ret;
2106
2107         addr = vma->vm_start;
2108         end = vma->vm_end;
2109
2110         pgd = pgd_offset(vma->vm_mm, addr);
2111         do {
2112                 next = pgd_addr_end(addr, end);
2113                 if (pgd_none_or_clear_bad(pgd))
2114                         continue;
2115                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2116                                       frontswap, fs_pages_to_unuse);
2117                 if (ret)
2118                         return ret;
2119         } while (pgd++, addr = next, addr != end);
2120         return 0;
2121 }
2122
2123 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2124                     bool frontswap, unsigned long *fs_pages_to_unuse)
2125 {
2126         struct vm_area_struct *vma;
2127         int ret = 0;
2128
2129         mmap_read_lock(mm);
2130         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2131                 if (vma->anon_vma) {
2132                         ret = unuse_vma(vma, type, frontswap,
2133                                         fs_pages_to_unuse);
2134                         if (ret)
2135                                 break;
2136                 }
2137                 cond_resched();
2138         }
2139         mmap_read_unlock(mm);
2140         return ret;
2141 }
2142
2143 /*
2144  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2145  * from current position to next entry still in use. Return 0
2146  * if there are no inuse entries after prev till end of the map.
2147  */
2148 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2149                                         unsigned int prev, bool frontswap)
2150 {
2151         unsigned int i;
2152         unsigned char count;
2153
2154         /*
2155          * No need for swap_lock here: we're just looking
2156          * for whether an entry is in use, not modifying it; false
2157          * hits are okay, and sys_swapoff() has already prevented new
2158          * allocations from this area (while holding swap_lock).
2159          */
2160         for (i = prev + 1; i < si->max; i++) {
2161                 count = READ_ONCE(si->swap_map[i]);
2162                 if (count && swap_count(count) != SWAP_MAP_BAD)
2163                         if (!frontswap || frontswap_test(si, i))
2164                                 break;
2165                 if ((i % LATENCY_LIMIT) == 0)
2166                         cond_resched();
2167         }
2168
2169         if (i == si->max)
2170                 i = 0;
2171
2172         return i;
2173 }
2174
2175 /*
2176  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2177  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2178  */
2179 int try_to_unuse(unsigned int type, bool frontswap,
2180                  unsigned long pages_to_unuse)
2181 {
2182         struct mm_struct *prev_mm;
2183         struct mm_struct *mm;
2184         struct list_head *p;
2185         int retval = 0;
2186         struct swap_info_struct *si = swap_info[type];
2187         struct page *page;
2188         swp_entry_t entry;
2189         unsigned int i;
2190
2191         if (!READ_ONCE(si->inuse_pages))
2192                 return 0;
2193
2194         if (!frontswap)
2195                 pages_to_unuse = 0;
2196
2197 retry:
2198         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2199         if (retval)
2200                 goto out;
2201
2202         prev_mm = &init_mm;
2203         mmget(prev_mm);
2204
2205         spin_lock(&mmlist_lock);
2206         p = &init_mm.mmlist;
2207         while (READ_ONCE(si->inuse_pages) &&
2208                !signal_pending(current) &&
2209                (p = p->next) != &init_mm.mmlist) {
2210
2211                 mm = list_entry(p, struct mm_struct, mmlist);
2212                 if (!mmget_not_zero(mm))
2213                         continue;
2214                 spin_unlock(&mmlist_lock);
2215                 mmput(prev_mm);
2216                 prev_mm = mm;
2217                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2218
2219                 if (retval) {
2220                         mmput(prev_mm);
2221                         goto out;
2222                 }
2223
2224                 /*
2225                  * Make sure that we aren't completely killing
2226                  * interactive performance.
2227                  */
2228                 cond_resched();
2229                 spin_lock(&mmlist_lock);
2230         }
2231         spin_unlock(&mmlist_lock);
2232
2233         mmput(prev_mm);
2234
2235         i = 0;
2236         while (READ_ONCE(si->inuse_pages) &&
2237                !signal_pending(current) &&
2238                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2239
2240                 entry = swp_entry(type, i);
2241                 page = find_get_page(swap_address_space(entry), i);
2242                 if (!page)
2243                         continue;
2244
2245                 /*
2246                  * It is conceivable that a racing task removed this page from
2247                  * swap cache just before we acquired the page lock. The page
2248                  * might even be back in swap cache on another swap area. But
2249                  * that is okay, try_to_free_swap() only removes stale pages.
2250                  */
2251                 lock_page(page);
2252                 wait_on_page_writeback(page);
2253                 try_to_free_swap(page);
2254                 unlock_page(page);
2255                 put_page(page);
2256
2257                 /*
2258                  * For frontswap, we just need to unuse pages_to_unuse, if
2259                  * it was specified. Need not check frontswap again here as
2260                  * we already zeroed out pages_to_unuse if not frontswap.
2261                  */
2262                 if (pages_to_unuse && --pages_to_unuse == 0)
2263                         goto out;
2264         }
2265
2266         /*
2267          * Lets check again to see if there are still swap entries in the map.
2268          * If yes, we would need to do retry the unuse logic again.
2269          * Under global memory pressure, swap entries can be reinserted back
2270          * into process space after the mmlist loop above passes over them.
2271          *
2272          * Limit the number of retries? No: when mmget_not_zero() above fails,
2273          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2274          * at its own independent pace; and even shmem_writepage() could have
2275          * been preempted after get_swap_page(), temporarily hiding that swap.
2276          * It's easy and robust (though cpu-intensive) just to keep retrying.
2277          */
2278         if (READ_ONCE(si->inuse_pages)) {
2279                 if (!signal_pending(current))
2280                         goto retry;
2281                 retval = -EINTR;
2282         }
2283 out:
2284         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2285 }
2286
2287 /*
2288  * After a successful try_to_unuse, if no swap is now in use, we know
2289  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2290  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2291  * added to the mmlist just after page_duplicate - before would be racy.
2292  */
2293 static void drain_mmlist(void)
2294 {
2295         struct list_head *p, *next;
2296         unsigned int type;
2297
2298         for (type = 0; type < nr_swapfiles; type++)
2299                 if (swap_info[type]->inuse_pages)
2300                         return;
2301         spin_lock(&mmlist_lock);
2302         list_for_each_safe(p, next, &init_mm.mmlist)
2303                 list_del_init(p);
2304         spin_unlock(&mmlist_lock);
2305 }
2306
2307 /*
2308  * Free all of a swapdev's extent information
2309  */
2310 static void destroy_swap_extents(struct swap_info_struct *sis)
2311 {
2312         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2313                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2314                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2315
2316                 rb_erase(rb, &sis->swap_extent_root);
2317                 kfree(se);
2318         }
2319
2320         if (sis->flags & SWP_ACTIVATED) {
2321                 struct file *swap_file = sis->swap_file;
2322                 struct address_space *mapping = swap_file->f_mapping;
2323
2324                 sis->flags &= ~SWP_ACTIVATED;
2325                 if (mapping->a_ops->swap_deactivate)
2326                         mapping->a_ops->swap_deactivate(swap_file);
2327         }
2328 }
2329
2330 /*
2331  * Add a block range (and the corresponding page range) into this swapdev's
2332  * extent tree.
2333  *
2334  * This function rather assumes that it is called in ascending page order.
2335  */
2336 int
2337 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2338                 unsigned long nr_pages, sector_t start_block)
2339 {
2340         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2341         struct swap_extent *se;
2342         struct swap_extent *new_se;
2343
2344         /*
2345          * place the new node at the right most since the
2346          * function is called in ascending page order.
2347          */
2348         while (*link) {
2349                 parent = *link;
2350                 link = &parent->rb_right;
2351         }
2352
2353         if (parent) {
2354                 se = rb_entry(parent, struct swap_extent, rb_node);
2355                 BUG_ON(se->start_page + se->nr_pages != start_page);
2356                 if (se->start_block + se->nr_pages == start_block) {
2357                         /* Merge it */
2358                         se->nr_pages += nr_pages;
2359                         return 0;
2360                 }
2361         }
2362
2363         /* No merge, insert a new extent. */
2364         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2365         if (new_se == NULL)
2366                 return -ENOMEM;
2367         new_se->start_page = start_page;
2368         new_se->nr_pages = nr_pages;
2369         new_se->start_block = start_block;
2370
2371         rb_link_node(&new_se->rb_node, parent, link);
2372         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2373         return 1;
2374 }
2375 EXPORT_SYMBOL_GPL(add_swap_extent);
2376
2377 /*
2378  * A `swap extent' is a simple thing which maps a contiguous range of pages
2379  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2380  * is built at swapon time and is then used at swap_writepage/swap_readpage
2381  * time for locating where on disk a page belongs.
2382  *
2383  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2384  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2385  * swap files identically.
2386  *
2387  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2388  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2389  * swapfiles are handled *identically* after swapon time.
2390  *
2391  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2392  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2393  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2394  * requirements, they are simply tossed out - we will never use those blocks
2395  * for swapping.
2396  *
2397  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2398  * prevents users from writing to the swap device, which will corrupt memory.
2399  *
2400  * The amount of disk space which a single swap extent represents varies.
2401  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2402  * extents in the list.  To avoid much list walking, we cache the previous
2403  * search location in `curr_swap_extent', and start new searches from there.
2404  * This is extremely effective.  The average number of iterations in
2405  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2406  */
2407 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2408 {
2409         struct file *swap_file = sis->swap_file;
2410         struct address_space *mapping = swap_file->f_mapping;
2411         struct inode *inode = mapping->host;
2412         int ret;
2413
2414         if (S_ISBLK(inode->i_mode)) {
2415                 ret = add_swap_extent(sis, 0, sis->max, 0);
2416                 *span = sis->pages;
2417                 return ret;
2418         }
2419
2420         if (mapping->a_ops->swap_activate) {
2421                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2422                 if (ret >= 0)
2423                         sis->flags |= SWP_ACTIVATED;
2424                 if (!ret) {
2425                         sis->flags |= SWP_FS_OPS;
2426                         ret = add_swap_extent(sis, 0, sis->max, 0);
2427                         *span = sis->pages;
2428                 }
2429                 return ret;
2430         }
2431
2432         return generic_swapfile_activate(sis, swap_file, span);
2433 }
2434
2435 static int swap_node(struct swap_info_struct *p)
2436 {
2437         struct block_device *bdev;
2438
2439         if (p->bdev)
2440                 bdev = p->bdev;
2441         else
2442                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2443
2444         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2445 }
2446
2447 static void setup_swap_info(struct swap_info_struct *p, int prio,
2448                             unsigned char *swap_map,
2449                             struct swap_cluster_info *cluster_info)
2450 {
2451         int i;
2452
2453         if (prio >= 0)
2454                 p->prio = prio;
2455         else
2456                 p->prio = --least_priority;
2457         /*
2458          * the plist prio is negated because plist ordering is
2459          * low-to-high, while swap ordering is high-to-low
2460          */
2461         p->list.prio = -p->prio;
2462         for_each_node(i) {
2463                 if (p->prio >= 0)
2464                         p->avail_lists[i].prio = -p->prio;
2465                 else {
2466                         if (swap_node(p) == i)
2467                                 p->avail_lists[i].prio = 1;
2468                         else
2469                                 p->avail_lists[i].prio = -p->prio;
2470                 }
2471         }
2472         p->swap_map = swap_map;
2473         p->cluster_info = cluster_info;
2474 }
2475
2476 static void _enable_swap_info(struct swap_info_struct *p)
2477 {
2478         p->flags |= SWP_WRITEOK;
2479         atomic_long_add(p->pages, &nr_swap_pages);
2480         total_swap_pages += p->pages;
2481
2482         assert_spin_locked(&swap_lock);
2483         /*
2484          * both lists are plists, and thus priority ordered.
2485          * swap_active_head needs to be priority ordered for swapoff(),
2486          * which on removal of any swap_info_struct with an auto-assigned
2487          * (i.e. negative) priority increments the auto-assigned priority
2488          * of any lower-priority swap_info_structs.
2489          * swap_avail_head needs to be priority ordered for get_swap_page(),
2490          * which allocates swap pages from the highest available priority
2491          * swap_info_struct.
2492          */
2493         plist_add(&p->list, &swap_active_head);
2494         add_to_avail_list(p);
2495 }
2496
2497 static void enable_swap_info(struct swap_info_struct *p, int prio,
2498                                 unsigned char *swap_map,
2499                                 struct swap_cluster_info *cluster_info,
2500                                 unsigned long *frontswap_map)
2501 {
2502         frontswap_init(p->type, frontswap_map);
2503         spin_lock(&swap_lock);
2504         spin_lock(&p->lock);
2505         setup_swap_info(p, prio, swap_map, cluster_info);
2506         spin_unlock(&p->lock);
2507         spin_unlock(&swap_lock);
2508         /*
2509          * Finished initializing swap device, now it's safe to reference it.
2510          */
2511         percpu_ref_resurrect(&p->users);
2512         spin_lock(&swap_lock);
2513         spin_lock(&p->lock);
2514         _enable_swap_info(p);
2515         spin_unlock(&p->lock);
2516         spin_unlock(&swap_lock);
2517 }
2518
2519 static void reinsert_swap_info(struct swap_info_struct *p)
2520 {
2521         spin_lock(&swap_lock);
2522         spin_lock(&p->lock);
2523         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2524         _enable_swap_info(p);
2525         spin_unlock(&p->lock);
2526         spin_unlock(&swap_lock);
2527 }
2528
2529 bool has_usable_swap(void)
2530 {
2531         bool ret = true;
2532
2533         spin_lock(&swap_lock);
2534         if (plist_head_empty(&swap_active_head))
2535                 ret = false;
2536         spin_unlock(&swap_lock);
2537         return ret;
2538 }
2539
2540 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2541 {
2542         struct swap_info_struct *p = NULL;
2543         unsigned char *swap_map;
2544         struct swap_cluster_info *cluster_info;
2545         unsigned long *frontswap_map;
2546         struct file *swap_file, *victim;
2547         struct address_space *mapping;
2548         struct inode *inode;
2549         struct filename *pathname;
2550         int err, found = 0;
2551         unsigned int old_block_size;
2552
2553         if (!capable(CAP_SYS_ADMIN))
2554                 return -EPERM;
2555
2556         BUG_ON(!current->mm);
2557
2558         pathname = getname(specialfile);
2559         if (IS_ERR(pathname))
2560                 return PTR_ERR(pathname);
2561
2562         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2563         err = PTR_ERR(victim);
2564         if (IS_ERR(victim))
2565                 goto out;
2566
2567         mapping = victim->f_mapping;
2568         spin_lock(&swap_lock);
2569         plist_for_each_entry(p, &swap_active_head, list) {
2570                 if (p->flags & SWP_WRITEOK) {
2571                         if (p->swap_file->f_mapping == mapping) {
2572                                 found = 1;
2573                                 break;
2574                         }
2575                 }
2576         }
2577         if (!found) {
2578                 err = -EINVAL;
2579                 spin_unlock(&swap_lock);
2580                 goto out_dput;
2581         }
2582         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2583                 vm_unacct_memory(p->pages);
2584         else {
2585                 err = -ENOMEM;
2586                 spin_unlock(&swap_lock);
2587                 goto out_dput;
2588         }
2589         del_from_avail_list(p);
2590         spin_lock(&p->lock);
2591         if (p->prio < 0) {
2592                 struct swap_info_struct *si = p;
2593                 int nid;
2594
2595                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2596                         si->prio++;
2597                         si->list.prio--;
2598                         for_each_node(nid) {
2599                                 if (si->avail_lists[nid].prio != 1)
2600                                         si->avail_lists[nid].prio--;
2601                         }
2602                 }
2603                 least_priority++;
2604         }
2605         plist_del(&p->list, &swap_active_head);
2606         atomic_long_sub(p->pages, &nr_swap_pages);
2607         total_swap_pages -= p->pages;
2608         p->flags &= ~SWP_WRITEOK;
2609         spin_unlock(&p->lock);
2610         spin_unlock(&swap_lock);
2611
2612         disable_swap_slots_cache_lock();
2613
2614         set_current_oom_origin();
2615         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2616         clear_current_oom_origin();
2617
2618         if (err) {
2619                 /* re-insert swap space back into swap_list */
2620                 reinsert_swap_info(p);
2621                 reenable_swap_slots_cache_unlock();
2622                 goto out_dput;
2623         }
2624
2625         reenable_swap_slots_cache_unlock();
2626
2627         /*
2628          * Wait for swap operations protected by get/put_swap_device()
2629          * to complete.
2630          *
2631          * We need synchronize_rcu() here to protect the accessing to
2632          * the swap cache data structure.
2633          */
2634         percpu_ref_kill(&p->users);
2635         synchronize_rcu();
2636         wait_for_completion(&p->comp);
2637
2638         flush_work(&p->discard_work);
2639
2640         destroy_swap_extents(p);
2641         if (p->flags & SWP_CONTINUED)
2642                 free_swap_count_continuations(p);
2643
2644         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2645                 atomic_dec(&nr_rotate_swap);
2646
2647         mutex_lock(&swapon_mutex);
2648         spin_lock(&swap_lock);
2649         spin_lock(&p->lock);
2650         drain_mmlist();
2651
2652         /* wait for anyone still in scan_swap_map */
2653         p->highest_bit = 0;             /* cuts scans short */
2654         while (p->flags >= SWP_SCANNING) {
2655                 spin_unlock(&p->lock);
2656                 spin_unlock(&swap_lock);
2657                 schedule_timeout_uninterruptible(1);
2658                 spin_lock(&swap_lock);
2659                 spin_lock(&p->lock);
2660         }
2661
2662         swap_file = p->swap_file;
2663         old_block_size = p->old_block_size;
2664         p->swap_file = NULL;
2665         p->max = 0;
2666         swap_map = p->swap_map;
2667         p->swap_map = NULL;
2668         cluster_info = p->cluster_info;
2669         p->cluster_info = NULL;
2670         frontswap_map = frontswap_map_get(p);
2671         spin_unlock(&p->lock);
2672         spin_unlock(&swap_lock);
2673         arch_swap_invalidate_area(p->type);
2674         frontswap_invalidate_area(p->type);
2675         frontswap_map_set(p, NULL);
2676         mutex_unlock(&swapon_mutex);
2677         free_percpu(p->percpu_cluster);
2678         p->percpu_cluster = NULL;
2679         free_percpu(p->cluster_next_cpu);
2680         p->cluster_next_cpu = NULL;
2681         vfree(swap_map);
2682         kvfree(cluster_info);
2683         kvfree(frontswap_map);
2684         /* Destroy swap account information */
2685         swap_cgroup_swapoff(p->type);
2686         exit_swap_address_space(p->type);
2687
2688         inode = mapping->host;
2689         if (S_ISBLK(inode->i_mode)) {
2690                 struct block_device *bdev = I_BDEV(inode);
2691
2692                 set_blocksize(bdev, old_block_size);
2693                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2694         }
2695
2696         inode_lock(inode);
2697         inode->i_flags &= ~S_SWAPFILE;
2698         inode_unlock(inode);
2699         filp_close(swap_file, NULL);
2700
2701         /*
2702          * Clear the SWP_USED flag after all resources are freed so that swapon
2703          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2704          * not hold p->lock after we cleared its SWP_WRITEOK.
2705          */
2706         spin_lock(&swap_lock);
2707         p->flags = 0;
2708         spin_unlock(&swap_lock);
2709
2710         err = 0;
2711         atomic_inc(&proc_poll_event);
2712         wake_up_interruptible(&proc_poll_wait);
2713
2714 out_dput:
2715         filp_close(victim, NULL);
2716 out:
2717         putname(pathname);
2718         return err;
2719 }
2720
2721 #ifdef CONFIG_PROC_FS
2722 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2723 {
2724         struct seq_file *seq = file->private_data;
2725
2726         poll_wait(file, &proc_poll_wait, wait);
2727
2728         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2729                 seq->poll_event = atomic_read(&proc_poll_event);
2730                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2731         }
2732
2733         return EPOLLIN | EPOLLRDNORM;
2734 }
2735
2736 /* iterator */
2737 static void *swap_start(struct seq_file *swap, loff_t *pos)
2738 {
2739         struct swap_info_struct *si;
2740         int type;
2741         loff_t l = *pos;
2742
2743         mutex_lock(&swapon_mutex);
2744
2745         if (!l)
2746                 return SEQ_START_TOKEN;
2747
2748         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2749                 if (!(si->flags & SWP_USED) || !si->swap_map)
2750                         continue;
2751                 if (!--l)
2752                         return si;
2753         }
2754
2755         return NULL;
2756 }
2757
2758 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2759 {
2760         struct swap_info_struct *si = v;
2761         int type;
2762
2763         if (v == SEQ_START_TOKEN)
2764                 type = 0;
2765         else
2766                 type = si->type + 1;
2767
2768         ++(*pos);
2769         for (; (si = swap_type_to_swap_info(type)); type++) {
2770                 if (!(si->flags & SWP_USED) || !si->swap_map)
2771                         continue;
2772                 return si;
2773         }
2774
2775         return NULL;
2776 }
2777
2778 static void swap_stop(struct seq_file *swap, void *v)
2779 {
2780         mutex_unlock(&swapon_mutex);
2781 }
2782
2783 static int swap_show(struct seq_file *swap, void *v)
2784 {
2785         struct swap_info_struct *si = v;
2786         struct file *file;
2787         int len;
2788         unsigned int bytes, inuse;
2789
2790         if (si == SEQ_START_TOKEN) {
2791                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2792                 return 0;
2793         }
2794
2795         bytes = si->pages << (PAGE_SHIFT - 10);
2796         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2797
2798         file = si->swap_file;
2799         len = seq_file_path(swap, file, " \t\n\\");
2800         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2801                         len < 40 ? 40 - len : 1, " ",
2802                         S_ISBLK(file_inode(file)->i_mode) ?
2803                                 "partition" : "file\t",
2804                         bytes, bytes < 10000000 ? "\t" : "",
2805                         inuse, inuse < 10000000 ? "\t" : "",
2806                         si->prio);
2807         return 0;
2808 }
2809
2810 static const struct seq_operations swaps_op = {
2811         .start =        swap_start,
2812         .next =         swap_next,
2813         .stop =         swap_stop,
2814         .show =         swap_show
2815 };
2816
2817 static int swaps_open(struct inode *inode, struct file *file)
2818 {
2819         struct seq_file *seq;
2820         int ret;
2821
2822         ret = seq_open(file, &swaps_op);
2823         if (ret)
2824                 return ret;
2825
2826         seq = file->private_data;
2827         seq->poll_event = atomic_read(&proc_poll_event);
2828         return 0;
2829 }
2830
2831 static const struct proc_ops swaps_proc_ops = {
2832         .proc_flags     = PROC_ENTRY_PERMANENT,
2833         .proc_open      = swaps_open,
2834         .proc_read      = seq_read,
2835         .proc_lseek     = seq_lseek,
2836         .proc_release   = seq_release,
2837         .proc_poll      = swaps_poll,
2838 };
2839
2840 static int __init procswaps_init(void)
2841 {
2842         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2843         return 0;
2844 }
2845 __initcall(procswaps_init);
2846 #endif /* CONFIG_PROC_FS */
2847
2848 #ifdef MAX_SWAPFILES_CHECK
2849 static int __init max_swapfiles_check(void)
2850 {
2851         MAX_SWAPFILES_CHECK();
2852         return 0;
2853 }
2854 late_initcall(max_swapfiles_check);
2855 #endif
2856
2857 static struct swap_info_struct *alloc_swap_info(void)
2858 {
2859         struct swap_info_struct *p;
2860         struct swap_info_struct *defer = NULL;
2861         unsigned int type;
2862         int i;
2863
2864         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2865         if (!p)
2866                 return ERR_PTR(-ENOMEM);
2867
2868         if (percpu_ref_init(&p->users, swap_users_ref_free,
2869                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2870                 kvfree(p);
2871                 return ERR_PTR(-ENOMEM);
2872         }
2873
2874         spin_lock(&swap_lock);
2875         for (type = 0; type < nr_swapfiles; type++) {
2876                 if (!(swap_info[type]->flags & SWP_USED))
2877                         break;
2878         }
2879         if (type >= MAX_SWAPFILES) {
2880                 spin_unlock(&swap_lock);
2881                 percpu_ref_exit(&p->users);
2882                 kvfree(p);
2883                 return ERR_PTR(-EPERM);
2884         }
2885         if (type >= nr_swapfiles) {
2886                 p->type = type;
2887                 WRITE_ONCE(swap_info[type], p);
2888                 /*
2889                  * Write swap_info[type] before nr_swapfiles, in case a
2890                  * racing procfs swap_start() or swap_next() is reading them.
2891                  * (We never shrink nr_swapfiles, we never free this entry.)
2892                  */
2893                 smp_wmb();
2894                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2895         } else {
2896                 defer = p;
2897                 p = swap_info[type];
2898                 /*
2899                  * Do not memset this entry: a racing procfs swap_next()
2900                  * would be relying on p->type to remain valid.
2901                  */
2902         }
2903         p->swap_extent_root = RB_ROOT;
2904         plist_node_init(&p->list, 0);
2905         for_each_node(i)
2906                 plist_node_init(&p->avail_lists[i], 0);
2907         p->flags = SWP_USED;
2908         spin_unlock(&swap_lock);
2909         if (defer) {
2910                 percpu_ref_exit(&defer->users);
2911                 kvfree(defer);
2912         }
2913         spin_lock_init(&p->lock);
2914         spin_lock_init(&p->cont_lock);
2915         init_completion(&p->comp);
2916
2917         return p;
2918 }
2919
2920 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2921 {
2922         int error;
2923
2924         if (S_ISBLK(inode->i_mode)) {
2925                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2926                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2927                 if (IS_ERR(p->bdev)) {
2928                         error = PTR_ERR(p->bdev);
2929                         p->bdev = NULL;
2930                         return error;
2931                 }
2932                 p->old_block_size = block_size(p->bdev);
2933                 error = set_blocksize(p->bdev, PAGE_SIZE);
2934                 if (error < 0)
2935                         return error;
2936                 /*
2937                  * Zoned block devices contain zones that have a sequential
2938                  * write only restriction.  Hence zoned block devices are not
2939                  * suitable for swapping.  Disallow them here.
2940                  */
2941                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2942                         return -EINVAL;
2943                 p->flags |= SWP_BLKDEV;
2944         } else if (S_ISREG(inode->i_mode)) {
2945                 p->bdev = inode->i_sb->s_bdev;
2946         }
2947
2948         return 0;
2949 }
2950
2951
2952 /*
2953  * Find out how many pages are allowed for a single swap device. There
2954  * are two limiting factors:
2955  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2956  * 2) the number of bits in the swap pte, as defined by the different
2957  * architectures.
2958  *
2959  * In order to find the largest possible bit mask, a swap entry with
2960  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2961  * decoded to a swp_entry_t again, and finally the swap offset is
2962  * extracted.
2963  *
2964  * This will mask all the bits from the initial ~0UL mask that can't
2965  * be encoded in either the swp_entry_t or the architecture definition
2966  * of a swap pte.
2967  */
2968 unsigned long generic_max_swapfile_size(void)
2969 {
2970         return swp_offset(pte_to_swp_entry(
2971                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2972 }
2973
2974 /* Can be overridden by an architecture for additional checks. */
2975 __weak unsigned long max_swapfile_size(void)
2976 {
2977         return generic_max_swapfile_size();
2978 }
2979
2980 static unsigned long read_swap_header(struct swap_info_struct *p,
2981                                         union swap_header *swap_header,
2982                                         struct inode *inode)
2983 {
2984         int i;
2985         unsigned long maxpages;
2986         unsigned long swapfilepages;
2987         unsigned long last_page;
2988
2989         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2990                 pr_err("Unable to find swap-space signature\n");
2991                 return 0;
2992         }
2993
2994         /* swap partition endianess hack... */
2995         if (swab32(swap_header->info.version) == 1) {
2996                 swab32s(&swap_header->info.version);
2997                 swab32s(&swap_header->info.last_page);
2998                 swab32s(&swap_header->info.nr_badpages);
2999                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3000                         return 0;
3001                 for (i = 0; i < swap_header->info.nr_badpages; i++)
3002                         swab32s(&swap_header->info.badpages[i]);
3003         }
3004         /* Check the swap header's sub-version */
3005         if (swap_header->info.version != 1) {
3006                 pr_warn("Unable to handle swap header version %d\n",
3007                         swap_header->info.version);
3008                 return 0;
3009         }
3010
3011         p->lowest_bit  = 1;
3012         p->cluster_next = 1;
3013         p->cluster_nr = 0;
3014
3015         maxpages = max_swapfile_size();
3016         last_page = swap_header->info.last_page;
3017         if (!last_page) {
3018                 pr_warn("Empty swap-file\n");
3019                 return 0;
3020         }
3021         if (last_page > maxpages) {
3022                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3023                         maxpages << (PAGE_SHIFT - 10),
3024                         last_page << (PAGE_SHIFT - 10));
3025         }
3026         if (maxpages > last_page) {
3027                 maxpages = last_page + 1;
3028                 /* p->max is an unsigned int: don't overflow it */
3029                 if ((unsigned int)maxpages == 0)
3030                         maxpages = UINT_MAX;
3031         }
3032         p->highest_bit = maxpages - 1;
3033
3034         if (!maxpages)
3035                 return 0;
3036         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3037         if (swapfilepages && maxpages > swapfilepages) {
3038                 pr_warn("Swap area shorter than signature indicates\n");
3039                 return 0;
3040         }
3041         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3042                 return 0;
3043         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3044                 return 0;
3045
3046         return maxpages;
3047 }
3048
3049 #define SWAP_CLUSTER_INFO_COLS                                          \
3050         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3051 #define SWAP_CLUSTER_SPACE_COLS                                         \
3052         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3053 #define SWAP_CLUSTER_COLS                                               \
3054         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3055
3056 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3057                                         union swap_header *swap_header,
3058                                         unsigned char *swap_map,
3059                                         struct swap_cluster_info *cluster_info,
3060                                         unsigned long maxpages,
3061                                         sector_t *span)
3062 {
3063         unsigned int j, k;
3064         unsigned int nr_good_pages;
3065         int nr_extents;
3066         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3067         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3068         unsigned long i, idx;
3069
3070         nr_good_pages = maxpages - 1;   /* omit header page */
3071
3072         cluster_list_init(&p->free_clusters);
3073         cluster_list_init(&p->discard_clusters);
3074
3075         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3076                 unsigned int page_nr = swap_header->info.badpages[i];
3077                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3078                         return -EINVAL;
3079                 if (page_nr < maxpages) {
3080                         swap_map[page_nr] = SWAP_MAP_BAD;
3081                         nr_good_pages--;
3082                         /*
3083                          * Haven't marked the cluster free yet, no list
3084                          * operation involved
3085                          */
3086                         inc_cluster_info_page(p, cluster_info, page_nr);
3087                 }
3088         }
3089
3090         /* Haven't marked the cluster free yet, no list operation involved */
3091         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3092                 inc_cluster_info_page(p, cluster_info, i);
3093
3094         if (nr_good_pages) {
3095                 swap_map[0] = SWAP_MAP_BAD;
3096                 /*
3097                  * Not mark the cluster free yet, no list
3098                  * operation involved
3099                  */
3100                 inc_cluster_info_page(p, cluster_info, 0);
3101                 p->max = maxpages;
3102                 p->pages = nr_good_pages;
3103                 nr_extents = setup_swap_extents(p, span);
3104                 if (nr_extents < 0)
3105                         return nr_extents;
3106                 nr_good_pages = p->pages;
3107         }
3108         if (!nr_good_pages) {
3109                 pr_warn("Empty swap-file\n");
3110                 return -EINVAL;
3111         }
3112
3113         if (!cluster_info)
3114                 return nr_extents;
3115
3116
3117         /*
3118          * Reduce false cache line sharing between cluster_info and
3119          * sharing same address space.
3120          */
3121         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3122                 j = (k + col) % SWAP_CLUSTER_COLS;
3123                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3124                         idx = i * SWAP_CLUSTER_COLS + j;
3125                         if (idx >= nr_clusters)
3126                                 continue;
3127                         if (cluster_count(&cluster_info[idx]))
3128                                 continue;
3129                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3130                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3131                                               idx);
3132                 }
3133         }
3134         return nr_extents;
3135 }
3136
3137 /*
3138  * Helper to sys_swapon determining if a given swap
3139  * backing device queue supports DISCARD operations.
3140  */
3141 static bool swap_discardable(struct swap_info_struct *si)
3142 {
3143         struct request_queue *q = bdev_get_queue(si->bdev);
3144
3145         if (!q || !blk_queue_discard(q))
3146                 return false;
3147
3148         return true;
3149 }
3150
3151 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3152 {
3153         struct swap_info_struct *p;
3154         struct filename *name;
3155         struct file *swap_file = NULL;
3156         struct address_space *mapping;
3157         int prio;
3158         int error;
3159         union swap_header *swap_header;
3160         int nr_extents;
3161         sector_t span;
3162         unsigned long maxpages;
3163         unsigned char *swap_map = NULL;
3164         struct swap_cluster_info *cluster_info = NULL;
3165         unsigned long *frontswap_map = NULL;
3166         struct page *page = NULL;
3167         struct inode *inode = NULL;
3168         bool inced_nr_rotate_swap = false;
3169
3170         if (swap_flags & ~SWAP_FLAGS_VALID)
3171                 return -EINVAL;
3172
3173         if (!capable(CAP_SYS_ADMIN))
3174                 return -EPERM;
3175
3176         if (!swap_avail_heads)
3177                 return -ENOMEM;
3178
3179         p = alloc_swap_info();
3180         if (IS_ERR(p))
3181                 return PTR_ERR(p);
3182
3183         INIT_WORK(&p->discard_work, swap_discard_work);
3184
3185         name = getname(specialfile);
3186         if (IS_ERR(name)) {
3187                 error = PTR_ERR(name);
3188                 name = NULL;
3189                 goto bad_swap;
3190         }
3191         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3192         if (IS_ERR(swap_file)) {
3193                 error = PTR_ERR(swap_file);
3194                 swap_file = NULL;
3195                 goto bad_swap;
3196         }
3197
3198         p->swap_file = swap_file;
3199         mapping = swap_file->f_mapping;
3200         inode = mapping->host;
3201
3202         error = claim_swapfile(p, inode);
3203         if (unlikely(error))
3204                 goto bad_swap;
3205
3206         inode_lock(inode);
3207         if (IS_SWAPFILE(inode)) {
3208                 error = -EBUSY;
3209                 goto bad_swap_unlock_inode;
3210         }
3211
3212         /*
3213          * Read the swap header.
3214          */
3215         if (!mapping->a_ops->readpage) {
3216                 error = -EINVAL;
3217                 goto bad_swap_unlock_inode;
3218         }
3219         page = read_mapping_page(mapping, 0, swap_file);
3220         if (IS_ERR(page)) {
3221                 error = PTR_ERR(page);
3222                 goto bad_swap_unlock_inode;
3223         }
3224         swap_header = kmap(page);
3225
3226         maxpages = read_swap_header(p, swap_header, inode);
3227         if (unlikely(!maxpages)) {
3228                 error = -EINVAL;
3229                 goto bad_swap_unlock_inode;
3230         }
3231
3232         /* OK, set up the swap map and apply the bad block list */
3233         swap_map = vzalloc(maxpages);
3234         if (!swap_map) {
3235                 error = -ENOMEM;
3236                 goto bad_swap_unlock_inode;
3237         }
3238
3239         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3240                 p->flags |= SWP_STABLE_WRITES;
3241
3242         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3243                 p->flags |= SWP_SYNCHRONOUS_IO;
3244
3245         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3246                 int cpu;
3247                 unsigned long ci, nr_cluster;
3248
3249                 p->flags |= SWP_SOLIDSTATE;
3250                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3251                 if (!p->cluster_next_cpu) {
3252                         error = -ENOMEM;
3253                         goto bad_swap_unlock_inode;
3254                 }
3255                 /*
3256                  * select a random position to start with to help wear leveling
3257                  * SSD
3258                  */
3259                 for_each_possible_cpu(cpu) {
3260                         per_cpu(*p->cluster_next_cpu, cpu) =
3261                                 1 + prandom_u32_max(p->highest_bit);
3262                 }
3263                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3264
3265                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3266                                         GFP_KERNEL);
3267                 if (!cluster_info) {
3268                         error = -ENOMEM;
3269                         goto bad_swap_unlock_inode;
3270                 }
3271
3272                 for (ci = 0; ci < nr_cluster; ci++)
3273                         spin_lock_init(&((cluster_info + ci)->lock));
3274
3275                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3276                 if (!p->percpu_cluster) {
3277                         error = -ENOMEM;
3278                         goto bad_swap_unlock_inode;
3279                 }
3280                 for_each_possible_cpu(cpu) {
3281                         struct percpu_cluster *cluster;
3282                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3283                         cluster_set_null(&cluster->index);
3284                 }
3285         } else {
3286                 atomic_inc(&nr_rotate_swap);
3287                 inced_nr_rotate_swap = true;
3288         }
3289
3290         error = swap_cgroup_swapon(p->type, maxpages);
3291         if (error)
3292                 goto bad_swap_unlock_inode;
3293
3294         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3295                 cluster_info, maxpages, &span);
3296         if (unlikely(nr_extents < 0)) {
3297                 error = nr_extents;
3298                 goto bad_swap_unlock_inode;
3299         }
3300         /* frontswap enabled? set up bit-per-page map for frontswap */
3301         if (IS_ENABLED(CONFIG_FRONTSWAP))
3302                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3303                                          sizeof(long),
3304                                          GFP_KERNEL);
3305
3306         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3307                 /*
3308                  * When discard is enabled for swap with no particular
3309                  * policy flagged, we set all swap discard flags here in
3310                  * order to sustain backward compatibility with older
3311                  * swapon(8) releases.
3312                  */
3313                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3314                              SWP_PAGE_DISCARD);
3315
3316                 /*
3317                  * By flagging sys_swapon, a sysadmin can tell us to
3318                  * either do single-time area discards only, or to just
3319                  * perform discards for released swap page-clusters.
3320                  * Now it's time to adjust the p->flags accordingly.
3321                  */
3322                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3323                         p->flags &= ~SWP_PAGE_DISCARD;
3324                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3325                         p->flags &= ~SWP_AREA_DISCARD;
3326
3327                 /* issue a swapon-time discard if it's still required */
3328                 if (p->flags & SWP_AREA_DISCARD) {
3329                         int err = discard_swap(p);
3330                         if (unlikely(err))
3331                                 pr_err("swapon: discard_swap(%p): %d\n",
3332                                         p, err);
3333                 }
3334         }
3335
3336         error = init_swap_address_space(p->type, maxpages);
3337         if (error)
3338                 goto bad_swap_unlock_inode;
3339
3340         /*
3341          * Flush any pending IO and dirty mappings before we start using this
3342          * swap device.
3343          */
3344         inode->i_flags |= S_SWAPFILE;
3345         error = inode_drain_writes(inode);
3346         if (error) {
3347                 inode->i_flags &= ~S_SWAPFILE;
3348                 goto free_swap_address_space;
3349         }
3350
3351         mutex_lock(&swapon_mutex);
3352         prio = -1;
3353         if (swap_flags & SWAP_FLAG_PREFER)
3354                 prio =
3355                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3356         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3357
3358         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3359                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3360                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3361                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3362                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3363                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3364                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3365                 (frontswap_map) ? "FS" : "");
3366
3367         mutex_unlock(&swapon_mutex);
3368         atomic_inc(&proc_poll_event);
3369         wake_up_interruptible(&proc_poll_wait);
3370
3371         error = 0;
3372         goto out;
3373 free_swap_address_space:
3374         exit_swap_address_space(p->type);
3375 bad_swap_unlock_inode:
3376         inode_unlock(inode);
3377 bad_swap:
3378         free_percpu(p->percpu_cluster);
3379         p->percpu_cluster = NULL;
3380         free_percpu(p->cluster_next_cpu);
3381         p->cluster_next_cpu = NULL;
3382         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3383                 set_blocksize(p->bdev, p->old_block_size);
3384                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3385         }
3386         inode = NULL;
3387         destroy_swap_extents(p);
3388         swap_cgroup_swapoff(p->type);
3389         spin_lock(&swap_lock);
3390         p->swap_file = NULL;
3391         p->flags = 0;
3392         spin_unlock(&swap_lock);
3393         vfree(swap_map);
3394         kvfree(cluster_info);
3395         kvfree(frontswap_map);
3396         if (inced_nr_rotate_swap)
3397                 atomic_dec(&nr_rotate_swap);
3398         if (swap_file)
3399                 filp_close(swap_file, NULL);
3400 out:
3401         if (page && !IS_ERR(page)) {
3402                 kunmap(page);
3403                 put_page(page);
3404         }
3405         if (name)
3406                 putname(name);
3407         if (inode)
3408                 inode_unlock(inode);
3409         if (!error)
3410                 enable_swap_slots_cache();
3411         return error;
3412 }
3413
3414 void si_swapinfo(struct sysinfo *val)
3415 {
3416         unsigned int type;
3417         unsigned long nr_to_be_unused = 0;
3418
3419         spin_lock(&swap_lock);
3420         for (type = 0; type < nr_swapfiles; type++) {
3421                 struct swap_info_struct *si = swap_info[type];
3422
3423                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3424                         nr_to_be_unused += si->inuse_pages;
3425         }
3426         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3427         val->totalswap = total_swap_pages + nr_to_be_unused;
3428         spin_unlock(&swap_lock);
3429 }
3430
3431 /*
3432  * Verify that a swap entry is valid and increment its swap map count.
3433  *
3434  * Returns error code in following case.
3435  * - success -> 0
3436  * - swp_entry is invalid -> EINVAL
3437  * - swp_entry is migration entry -> EINVAL
3438  * - swap-cache reference is requested but there is already one. -> EEXIST
3439  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3440  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3441  */
3442 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3443 {
3444         struct swap_info_struct *p;
3445         struct swap_cluster_info *ci;
3446         unsigned long offset;
3447         unsigned char count;
3448         unsigned char has_cache;
3449         int err;
3450
3451         p = get_swap_device(entry);
3452         if (!p)
3453                 return -EINVAL;
3454
3455         offset = swp_offset(entry);
3456         ci = lock_cluster_or_swap_info(p, offset);
3457
3458         count = p->swap_map[offset];
3459
3460         /*
3461          * swapin_readahead() doesn't check if a swap entry is valid, so the
3462          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3463          */
3464         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3465                 err = -ENOENT;
3466                 goto unlock_out;
3467         }
3468
3469         has_cache = count & SWAP_HAS_CACHE;
3470         count &= ~SWAP_HAS_CACHE;
3471         err = 0;
3472
3473         if (usage == SWAP_HAS_CACHE) {
3474
3475                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3476                 if (!has_cache && count)
3477                         has_cache = SWAP_HAS_CACHE;
3478                 else if (has_cache)             /* someone else added cache */
3479                         err = -EEXIST;
3480                 else                            /* no users remaining */
3481                         err = -ENOENT;
3482
3483         } else if (count || has_cache) {
3484
3485                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3486                         count += usage;
3487                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3488                         err = -EINVAL;
3489                 else if (swap_count_continued(p, offset, count))
3490                         count = COUNT_CONTINUED;
3491                 else
3492                         err = -ENOMEM;
3493         } else
3494                 err = -ENOENT;                  /* unused swap entry */
3495
3496         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3497
3498 unlock_out:
3499         unlock_cluster_or_swap_info(p, ci);
3500         if (p)
3501                 put_swap_device(p);
3502         return err;
3503 }
3504
3505 /*
3506  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3507  * (in which case its reference count is never incremented).
3508  */
3509 void swap_shmem_alloc(swp_entry_t entry)
3510 {
3511         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3512 }
3513
3514 /*
3515  * Increase reference count of swap entry by 1.
3516  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3517  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3518  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3519  * might occur if a page table entry has got corrupted.
3520  */
3521 int swap_duplicate(swp_entry_t entry)
3522 {
3523         int err = 0;
3524
3525         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3526                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3527         return err;
3528 }
3529
3530 /*
3531  * @entry: swap entry for which we allocate swap cache.
3532  *
3533  * Called when allocating swap cache for existing swap entry,
3534  * This can return error codes. Returns 0 at success.
3535  * -EEXIST means there is a swap cache.
3536  * Note: return code is different from swap_duplicate().
3537  */
3538 int swapcache_prepare(swp_entry_t entry)
3539 {
3540         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3541 }
3542
3543 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3544 {
3545         return swap_type_to_swap_info(swp_type(entry));
3546 }
3547
3548 struct swap_info_struct *page_swap_info(struct page *page)
3549 {
3550         swp_entry_t entry = { .val = page_private(page) };
3551         return swp_swap_info(entry);
3552 }
3553
3554 /*
3555  * out-of-line __page_file_ methods to avoid include hell.
3556  */
3557 struct address_space *__page_file_mapping(struct page *page)
3558 {
3559         return page_swap_info(page)->swap_file->f_mapping;
3560 }
3561 EXPORT_SYMBOL_GPL(__page_file_mapping);
3562
3563 pgoff_t __page_file_index(struct page *page)
3564 {
3565         swp_entry_t swap = { .val = page_private(page) };
3566         return swp_offset(swap);
3567 }
3568 EXPORT_SYMBOL_GPL(__page_file_index);
3569
3570 /*
3571  * add_swap_count_continuation - called when a swap count is duplicated
3572  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3573  * page of the original vmalloc'ed swap_map, to hold the continuation count
3574  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3575  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3576  *
3577  * These continuation pages are seldom referenced: the common paths all work
3578  * on the original swap_map, only referring to a continuation page when the
3579  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3580  *
3581  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3582  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3583  * can be called after dropping locks.
3584  */
3585 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3586 {
3587         struct swap_info_struct *si;
3588         struct swap_cluster_info *ci;
3589         struct page *head;
3590         struct page *page;
3591         struct page *list_page;
3592         pgoff_t offset;
3593         unsigned char count;
3594         int ret = 0;
3595
3596         /*
3597          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3598          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3599          */
3600         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3601
3602         si = get_swap_device(entry);
3603         if (!si) {
3604                 /*
3605                  * An acceptable race has occurred since the failing
3606                  * __swap_duplicate(): the swap device may be swapoff
3607                  */
3608                 goto outer;
3609         }
3610         spin_lock(&si->lock);
3611
3612         offset = swp_offset(entry);
3613
3614         ci = lock_cluster(si, offset);
3615
3616         count = swap_count(si->swap_map[offset]);
3617
3618         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3619                 /*
3620                  * The higher the swap count, the more likely it is that tasks
3621                  * will race to add swap count continuation: we need to avoid
3622                  * over-provisioning.
3623                  */
3624                 goto out;
3625         }
3626
3627         if (!page) {
3628                 ret = -ENOMEM;
3629                 goto out;
3630         }
3631
3632         /*
3633          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3634          * no architecture is using highmem pages for kernel page tables: so it
3635          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3636          */
3637         head = vmalloc_to_page(si->swap_map + offset);
3638         offset &= ~PAGE_MASK;
3639
3640         spin_lock(&si->cont_lock);
3641         /*
3642          * Page allocation does not initialize the page's lru field,
3643          * but it does always reset its private field.
3644          */
3645         if (!page_private(head)) {
3646                 BUG_ON(count & COUNT_CONTINUED);
3647                 INIT_LIST_HEAD(&head->lru);
3648                 set_page_private(head, SWP_CONTINUED);
3649                 si->flags |= SWP_CONTINUED;
3650         }
3651
3652         list_for_each_entry(list_page, &head->lru, lru) {
3653                 unsigned char *map;
3654
3655                 /*
3656                  * If the previous map said no continuation, but we've found
3657                  * a continuation page, free our allocation and use this one.
3658                  */
3659                 if (!(count & COUNT_CONTINUED))
3660                         goto out_unlock_cont;
3661
3662                 map = kmap_atomic(list_page) + offset;
3663                 count = *map;
3664                 kunmap_atomic(map);
3665
3666                 /*
3667                  * If this continuation count now has some space in it,
3668                  * free our allocation and use this one.
3669                  */
3670                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3671                         goto out_unlock_cont;
3672         }
3673
3674         list_add_tail(&page->lru, &head->lru);
3675         page = NULL;                    /* now it's attached, don't free it */
3676 out_unlock_cont:
3677         spin_unlock(&si->cont_lock);
3678 out:
3679         unlock_cluster(ci);
3680         spin_unlock(&si->lock);
3681         put_swap_device(si);
3682 outer:
3683         if (page)
3684                 __free_page(page);
3685         return ret;
3686 }
3687
3688 /*
3689  * swap_count_continued - when the original swap_map count is incremented
3690  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3691  * into, carry if so, or else fail until a new continuation page is allocated;
3692  * when the original swap_map count is decremented from 0 with continuation,
3693  * borrow from the continuation and report whether it still holds more.
3694  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3695  * lock.
3696  */
3697 static bool swap_count_continued(struct swap_info_struct *si,
3698                                  pgoff_t offset, unsigned char count)
3699 {
3700         struct page *head;
3701         struct page *page;
3702         unsigned char *map;
3703         bool ret;
3704
3705         head = vmalloc_to_page(si->swap_map + offset);
3706         if (page_private(head) != SWP_CONTINUED) {
3707                 BUG_ON(count & COUNT_CONTINUED);
3708                 return false;           /* need to add count continuation */
3709         }
3710
3711         spin_lock(&si->cont_lock);
3712         offset &= ~PAGE_MASK;
3713         page = list_next_entry(head, lru);
3714         map = kmap_atomic(page) + offset;
3715
3716         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3717                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3718
3719         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3720                 /*
3721                  * Think of how you add 1 to 999
3722                  */
3723                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3724                         kunmap_atomic(map);
3725                         page = list_next_entry(page, lru);
3726                         BUG_ON(page == head);
3727                         map = kmap_atomic(page) + offset;
3728                 }
3729                 if (*map == SWAP_CONT_MAX) {
3730                         kunmap_atomic(map);
3731                         page = list_next_entry(page, lru);
3732                         if (page == head) {
3733                                 ret = false;    /* add count continuation */
3734                                 goto out;
3735                         }
3736                         map = kmap_atomic(page) + offset;
3737 init_map:               *map = 0;               /* we didn't zero the page */
3738                 }
3739                 *map += 1;
3740                 kunmap_atomic(map);
3741                 while ((page = list_prev_entry(page, lru)) != head) {
3742                         map = kmap_atomic(page) + offset;
3743                         *map = COUNT_CONTINUED;
3744                         kunmap_atomic(map);
3745                 }
3746                 ret = true;                     /* incremented */
3747
3748         } else {                                /* decrementing */
3749                 /*
3750                  * Think of how you subtract 1 from 1000
3751                  */
3752                 BUG_ON(count != COUNT_CONTINUED);
3753                 while (*map == COUNT_CONTINUED) {
3754                         kunmap_atomic(map);
3755                         page = list_next_entry(page, lru);
3756                         BUG_ON(page == head);
3757                         map = kmap_atomic(page) + offset;
3758                 }
3759                 BUG_ON(*map == 0);
3760                 *map -= 1;
3761                 if (*map == 0)
3762                         count = 0;
3763                 kunmap_atomic(map);
3764                 while ((page = list_prev_entry(page, lru)) != head) {
3765                         map = kmap_atomic(page) + offset;
3766                         *map = SWAP_CONT_MAX | count;
3767                         count = COUNT_CONTINUED;
3768                         kunmap_atomic(map);
3769                 }
3770                 ret = count == COUNT_CONTINUED;
3771         }
3772 out:
3773         spin_unlock(&si->cont_lock);
3774         return ret;
3775 }
3776
3777 /*
3778  * free_swap_count_continuations - swapoff free all the continuation pages
3779  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3780  */
3781 static void free_swap_count_continuations(struct swap_info_struct *si)
3782 {
3783         pgoff_t offset;
3784
3785         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3786                 struct page *head;
3787                 head = vmalloc_to_page(si->swap_map + offset);
3788                 if (page_private(head)) {
3789                         struct page *page, *next;
3790
3791                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3792                                 list_del(&page->lru);
3793                                 __free_page(page);
3794                         }
3795                 }
3796         }
3797 }
3798
3799 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3800 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3801 {
3802         struct swap_info_struct *si, *next;
3803         int nid = page_to_nid(page);
3804
3805         if (!(gfp_mask & __GFP_IO))
3806                 return;
3807
3808         if (!blk_cgroup_congested())
3809                 return;
3810
3811         /*
3812          * We've already scheduled a throttle, avoid taking the global swap
3813          * lock.
3814          */
3815         if (current->throttle_queue)
3816                 return;
3817
3818         spin_lock(&swap_avail_lock);
3819         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3820                                   avail_lists[nid]) {
3821                 if (si->bdev) {
3822                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3823                         break;
3824                 }
3825         }
3826         spin_unlock(&swap_avail_lock);
3827 }
3828 #endif
3829
3830 static int __init swapfile_init(void)
3831 {
3832         int nid;
3833
3834         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3835                                          GFP_KERNEL);
3836         if (!swap_avail_heads) {
3837                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3838                 return -ENOMEM;
3839         }
3840
3841         for_each_node(nid)
3842                 plist_head_init(&swap_avail_heads[nid]);
3843
3844         return 0;
3845 }
3846 subsys_initcall(swapfile_init);