blk-mq: don't insert passthrough request into sw queue
[linux-block.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 #include "swap.h"
49
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51                                  unsigned char);
52 static void free_swap_count_continuations(struct swap_info_struct *);
53
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
57 /*
58  * Some modules use swappable objects and may try to swap them out under
59  * memory pressure (via the shrinker). Before doing so, they may wish to
60  * check to see if any swap space is available.
61  */
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66 unsigned long swapfile_maximum_size;
67 #ifdef CONFIG_MIGRATION
68 bool swap_migration_ad_supported;
69 #endif  /* CONFIG_MIGRATION */
70
71 static const char Bad_file[] = "Bad swap file entry ";
72 static const char Unused_file[] = "Unused swap file entry ";
73 static const char Bad_offset[] = "Bad swap offset entry ";
74 static const char Unused_offset[] = "Unused swap offset entry ";
75
76 /*
77  * all active swap_info_structs
78  * protected with swap_lock, and ordered by priority.
79  */
80 static PLIST_HEAD(swap_active_head);
81
82 /*
83  * all available (active, not full) swap_info_structs
84  * protected with swap_avail_lock, ordered by priority.
85  * This is used by folio_alloc_swap() instead of swap_active_head
86  * because swap_active_head includes all swap_info_structs,
87  * but folio_alloc_swap() doesn't need to look at full ones.
88  * This uses its own lock instead of swap_lock because when a
89  * swap_info_struct changes between not-full/full, it needs to
90  * add/remove itself to/from this list, but the swap_info_struct->lock
91  * is held and the locking order requires swap_lock to be taken
92  * before any swap_info_struct->lock.
93  */
94 static struct plist_head *swap_avail_heads;
95 static DEFINE_SPINLOCK(swap_avail_lock);
96
97 struct swap_info_struct *swap_info[MAX_SWAPFILES];
98
99 static DEFINE_MUTEX(swapon_mutex);
100
101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
102 /* Activity counter to indicate that a swapon or swapoff has occurred */
103 static atomic_t proc_poll_event = ATOMIC_INIT(0);
104
105 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
106
107 static struct swap_info_struct *swap_type_to_swap_info(int type)
108 {
109         if (type >= MAX_SWAPFILES)
110                 return NULL;
111
112         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
113 }
114
115 static inline unsigned char swap_count(unsigned char ent)
116 {
117         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
118 }
119
120 /* Reclaim the swap entry anyway if possible */
121 #define TTRS_ANYWAY             0x1
122 /*
123  * Reclaim the swap entry if there are no more mappings of the
124  * corresponding page
125  */
126 #define TTRS_UNMAPPED           0x2
127 /* Reclaim the swap entry if swap is getting full*/
128 #define TTRS_FULL               0x4
129
130 /* returns 1 if swap entry is freed */
131 static int __try_to_reclaim_swap(struct swap_info_struct *si,
132                                  unsigned long offset, unsigned long flags)
133 {
134         swp_entry_t entry = swp_entry(si->type, offset);
135         struct folio *folio;
136         int ret = 0;
137
138         folio = filemap_get_folio(swap_address_space(entry), offset);
139         if (IS_ERR(folio))
140                 return 0;
141         /*
142          * When this function is called from scan_swap_map_slots() and it's
143          * called by vmscan.c at reclaiming folios. So we hold a folio lock
144          * here. We have to use trylock for avoiding deadlock. This is a special
145          * case and you should use folio_free_swap() with explicit folio_lock()
146          * in usual operations.
147          */
148         if (folio_trylock(folio)) {
149                 if ((flags & TTRS_ANYWAY) ||
150                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
151                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
152                         ret = folio_free_swap(folio);
153                 folio_unlock(folio);
154         }
155         folio_put(folio);
156         return ret;
157 }
158
159 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
160 {
161         struct rb_node *rb = rb_first(&sis->swap_extent_root);
162         return rb_entry(rb, struct swap_extent, rb_node);
163 }
164
165 static inline struct swap_extent *next_se(struct swap_extent *se)
166 {
167         struct rb_node *rb = rb_next(&se->rb_node);
168         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
169 }
170
171 /*
172  * swapon tell device that all the old swap contents can be discarded,
173  * to allow the swap device to optimize its wear-levelling.
174  */
175 static int discard_swap(struct swap_info_struct *si)
176 {
177         struct swap_extent *se;
178         sector_t start_block;
179         sector_t nr_blocks;
180         int err = 0;
181
182         /* Do not discard the swap header page! */
183         se = first_se(si);
184         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
185         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
186         if (nr_blocks) {
187                 err = blkdev_issue_discard(si->bdev, start_block,
188                                 nr_blocks, GFP_KERNEL);
189                 if (err)
190                         return err;
191                 cond_resched();
192         }
193
194         for (se = next_se(se); se; se = next_se(se)) {
195                 start_block = se->start_block << (PAGE_SHIFT - 9);
196                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
197
198                 err = blkdev_issue_discard(si->bdev, start_block,
199                                 nr_blocks, GFP_KERNEL);
200                 if (err)
201                         break;
202
203                 cond_resched();
204         }
205         return err;             /* That will often be -EOPNOTSUPP */
206 }
207
208 static struct swap_extent *
209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
210 {
211         struct swap_extent *se;
212         struct rb_node *rb;
213
214         rb = sis->swap_extent_root.rb_node;
215         while (rb) {
216                 se = rb_entry(rb, struct swap_extent, rb_node);
217                 if (offset < se->start_page)
218                         rb = rb->rb_left;
219                 else if (offset >= se->start_page + se->nr_pages)
220                         rb = rb->rb_right;
221                 else
222                         return se;
223         }
224         /* It *must* be present */
225         BUG();
226 }
227
228 sector_t swap_page_sector(struct page *page)
229 {
230         struct swap_info_struct *sis = page_swap_info(page);
231         struct swap_extent *se;
232         sector_t sector;
233         pgoff_t offset;
234
235         offset = __page_file_index(page);
236         se = offset_to_swap_extent(sis, offset);
237         sector = se->start_block + (offset - se->start_page);
238         return sector << (PAGE_SHIFT - 9);
239 }
240
241 /*
242  * swap allocation tell device that a cluster of swap can now be discarded,
243  * to allow the swap device to optimize its wear-levelling.
244  */
245 static void discard_swap_cluster(struct swap_info_struct *si,
246                                  pgoff_t start_page, pgoff_t nr_pages)
247 {
248         struct swap_extent *se = offset_to_swap_extent(si, start_page);
249
250         while (nr_pages) {
251                 pgoff_t offset = start_page - se->start_page;
252                 sector_t start_block = se->start_block + offset;
253                 sector_t nr_blocks = se->nr_pages - offset;
254
255                 if (nr_blocks > nr_pages)
256                         nr_blocks = nr_pages;
257                 start_page += nr_blocks;
258                 nr_pages -= nr_blocks;
259
260                 start_block <<= PAGE_SHIFT - 9;
261                 nr_blocks <<= PAGE_SHIFT - 9;
262                 if (blkdev_issue_discard(si->bdev, start_block,
263                                         nr_blocks, GFP_NOIO))
264                         break;
265
266                 se = next_se(se);
267         }
268 }
269
270 #ifdef CONFIG_THP_SWAP
271 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
272
273 #define swap_entry_size(size)   (size)
274 #else
275 #define SWAPFILE_CLUSTER        256
276
277 /*
278  * Define swap_entry_size() as constant to let compiler to optimize
279  * out some code if !CONFIG_THP_SWAP
280  */
281 #define swap_entry_size(size)   1
282 #endif
283 #define LATENCY_LIMIT           256
284
285 static inline void cluster_set_flag(struct swap_cluster_info *info,
286         unsigned int flag)
287 {
288         info->flags = flag;
289 }
290
291 static inline unsigned int cluster_count(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_count(struct swap_cluster_info *info,
297                                      unsigned int c)
298 {
299         info->data = c;
300 }
301
302 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
303                                          unsigned int c, unsigned int f)
304 {
305         info->flags = f;
306         info->data = c;
307 }
308
309 static inline unsigned int cluster_next(struct swap_cluster_info *info)
310 {
311         return info->data;
312 }
313
314 static inline void cluster_set_next(struct swap_cluster_info *info,
315                                     unsigned int n)
316 {
317         info->data = n;
318 }
319
320 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
321                                          unsigned int n, unsigned int f)
322 {
323         info->flags = f;
324         info->data = n;
325 }
326
327 static inline bool cluster_is_free(struct swap_cluster_info *info)
328 {
329         return info->flags & CLUSTER_FLAG_FREE;
330 }
331
332 static inline bool cluster_is_null(struct swap_cluster_info *info)
333 {
334         return info->flags & CLUSTER_FLAG_NEXT_NULL;
335 }
336
337 static inline void cluster_set_null(struct swap_cluster_info *info)
338 {
339         info->flags = CLUSTER_FLAG_NEXT_NULL;
340         info->data = 0;
341 }
342
343 static inline bool cluster_is_huge(struct swap_cluster_info *info)
344 {
345         if (IS_ENABLED(CONFIG_THP_SWAP))
346                 return info->flags & CLUSTER_FLAG_HUGE;
347         return false;
348 }
349
350 static inline void cluster_clear_huge(struct swap_cluster_info *info)
351 {
352         info->flags &= ~CLUSTER_FLAG_HUGE;
353 }
354
355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
356                                                      unsigned long offset)
357 {
358         struct swap_cluster_info *ci;
359
360         ci = si->cluster_info;
361         if (ci) {
362                 ci += offset / SWAPFILE_CLUSTER;
363                 spin_lock(&ci->lock);
364         }
365         return ci;
366 }
367
368 static inline void unlock_cluster(struct swap_cluster_info *ci)
369 {
370         if (ci)
371                 spin_unlock(&ci->lock);
372 }
373
374 /*
375  * Determine the locking method in use for this device.  Return
376  * swap_cluster_info if SSD-style cluster-based locking is in place.
377  */
378 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
379                 struct swap_info_struct *si, unsigned long offset)
380 {
381         struct swap_cluster_info *ci;
382
383         /* Try to use fine-grained SSD-style locking if available: */
384         ci = lock_cluster(si, offset);
385         /* Otherwise, fall back to traditional, coarse locking: */
386         if (!ci)
387                 spin_lock(&si->lock);
388
389         return ci;
390 }
391
392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
393                                                struct swap_cluster_info *ci)
394 {
395         if (ci)
396                 unlock_cluster(ci);
397         else
398                 spin_unlock(&si->lock);
399 }
400
401 static inline bool cluster_list_empty(struct swap_cluster_list *list)
402 {
403         return cluster_is_null(&list->head);
404 }
405
406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
407 {
408         return cluster_next(&list->head);
409 }
410
411 static void cluster_list_init(struct swap_cluster_list *list)
412 {
413         cluster_set_null(&list->head);
414         cluster_set_null(&list->tail);
415 }
416
417 static void cluster_list_add_tail(struct swap_cluster_list *list,
418                                   struct swap_cluster_info *ci,
419                                   unsigned int idx)
420 {
421         if (cluster_list_empty(list)) {
422                 cluster_set_next_flag(&list->head, idx, 0);
423                 cluster_set_next_flag(&list->tail, idx, 0);
424         } else {
425                 struct swap_cluster_info *ci_tail;
426                 unsigned int tail = cluster_next(&list->tail);
427
428                 /*
429                  * Nested cluster lock, but both cluster locks are
430                  * only acquired when we held swap_info_struct->lock
431                  */
432                 ci_tail = ci + tail;
433                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
434                 cluster_set_next(ci_tail, idx);
435                 spin_unlock(&ci_tail->lock);
436                 cluster_set_next_flag(&list->tail, idx, 0);
437         }
438 }
439
440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
441                                            struct swap_cluster_info *ci)
442 {
443         unsigned int idx;
444
445         idx = cluster_next(&list->head);
446         if (cluster_next(&list->tail) == idx) {
447                 cluster_set_null(&list->head);
448                 cluster_set_null(&list->tail);
449         } else
450                 cluster_set_next_flag(&list->head,
451                                       cluster_next(&ci[idx]), 0);
452
453         return idx;
454 }
455
456 /* Add a cluster to discard list and schedule it to do discard */
457 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
458                 unsigned int idx)
459 {
460         /*
461          * If scan_swap_map_slots() can't find a free cluster, it will check
462          * si->swap_map directly. To make sure the discarding cluster isn't
463          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
464          * It will be cleared after discard
465          */
466         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
467                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
468
469         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
470
471         schedule_work(&si->discard_work);
472 }
473
474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
475 {
476         struct swap_cluster_info *ci = si->cluster_info;
477
478         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
479         cluster_list_add_tail(&si->free_clusters, ci, idx);
480 }
481
482 /*
483  * Doing discard actually. After a cluster discard is finished, the cluster
484  * will be added to free cluster list. caller should hold si->lock.
485 */
486 static void swap_do_scheduled_discard(struct swap_info_struct *si)
487 {
488         struct swap_cluster_info *info, *ci;
489         unsigned int idx;
490
491         info = si->cluster_info;
492
493         while (!cluster_list_empty(&si->discard_clusters)) {
494                 idx = cluster_list_del_first(&si->discard_clusters, info);
495                 spin_unlock(&si->lock);
496
497                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
498                                 SWAPFILE_CLUSTER);
499
500                 spin_lock(&si->lock);
501                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
502                 __free_cluster(si, idx);
503                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
504                                 0, SWAPFILE_CLUSTER);
505                 unlock_cluster(ci);
506         }
507 }
508
509 static void swap_discard_work(struct work_struct *work)
510 {
511         struct swap_info_struct *si;
512
513         si = container_of(work, struct swap_info_struct, discard_work);
514
515         spin_lock(&si->lock);
516         swap_do_scheduled_discard(si);
517         spin_unlock(&si->lock);
518 }
519
520 static void swap_users_ref_free(struct percpu_ref *ref)
521 {
522         struct swap_info_struct *si;
523
524         si = container_of(ref, struct swap_info_struct, users);
525         complete(&si->comp);
526 }
527
528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
529 {
530         struct swap_cluster_info *ci = si->cluster_info;
531
532         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
533         cluster_list_del_first(&si->free_clusters, ci);
534         cluster_set_count_flag(ci + idx, 0, 0);
535 }
536
537 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
538 {
539         struct swap_cluster_info *ci = si->cluster_info + idx;
540
541         VM_BUG_ON(cluster_count(ci) != 0);
542         /*
543          * If the swap is discardable, prepare discard the cluster
544          * instead of free it immediately. The cluster will be freed
545          * after discard.
546          */
547         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
548             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
549                 swap_cluster_schedule_discard(si, idx);
550                 return;
551         }
552
553         __free_cluster(si, idx);
554 }
555
556 /*
557  * The cluster corresponding to page_nr will be used. The cluster will be
558  * removed from free cluster list and its usage counter will be increased.
559  */
560 static void inc_cluster_info_page(struct swap_info_struct *p,
561         struct swap_cluster_info *cluster_info, unsigned long page_nr)
562 {
563         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
564
565         if (!cluster_info)
566                 return;
567         if (cluster_is_free(&cluster_info[idx]))
568                 alloc_cluster(p, idx);
569
570         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
571         cluster_set_count(&cluster_info[idx],
572                 cluster_count(&cluster_info[idx]) + 1);
573 }
574
575 /*
576  * The cluster corresponding to page_nr decreases one usage. If the usage
577  * counter becomes 0, which means no page in the cluster is in using, we can
578  * optionally discard the cluster and add it to free cluster list.
579  */
580 static void dec_cluster_info_page(struct swap_info_struct *p,
581         struct swap_cluster_info *cluster_info, unsigned long page_nr)
582 {
583         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
584
585         if (!cluster_info)
586                 return;
587
588         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
589         cluster_set_count(&cluster_info[idx],
590                 cluster_count(&cluster_info[idx]) - 1);
591
592         if (cluster_count(&cluster_info[idx]) == 0)
593                 free_cluster(p, idx);
594 }
595
596 /*
597  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
598  * cluster list. Avoiding such abuse to avoid list corruption.
599  */
600 static bool
601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
602         unsigned long offset)
603 {
604         struct percpu_cluster *percpu_cluster;
605         bool conflict;
606
607         offset /= SWAPFILE_CLUSTER;
608         conflict = !cluster_list_empty(&si->free_clusters) &&
609                 offset != cluster_list_first(&si->free_clusters) &&
610                 cluster_is_free(&si->cluster_info[offset]);
611
612         if (!conflict)
613                 return false;
614
615         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
616         cluster_set_null(&percpu_cluster->index);
617         return true;
618 }
619
620 /*
621  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
622  * might involve allocating a new cluster for current CPU too.
623  */
624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
625         unsigned long *offset, unsigned long *scan_base)
626 {
627         struct percpu_cluster *cluster;
628         struct swap_cluster_info *ci;
629         unsigned long tmp, max;
630
631 new_cluster:
632         cluster = this_cpu_ptr(si->percpu_cluster);
633         if (cluster_is_null(&cluster->index)) {
634                 if (!cluster_list_empty(&si->free_clusters)) {
635                         cluster->index = si->free_clusters.head;
636                         cluster->next = cluster_next(&cluster->index) *
637                                         SWAPFILE_CLUSTER;
638                 } else if (!cluster_list_empty(&si->discard_clusters)) {
639                         /*
640                          * we don't have free cluster but have some clusters in
641                          * discarding, do discard now and reclaim them, then
642                          * reread cluster_next_cpu since we dropped si->lock
643                          */
644                         swap_do_scheduled_discard(si);
645                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
646                         *offset = *scan_base;
647                         goto new_cluster;
648                 } else
649                         return false;
650         }
651
652         /*
653          * Other CPUs can use our cluster if they can't find a free cluster,
654          * check if there is still free entry in the cluster
655          */
656         tmp = cluster->next;
657         max = min_t(unsigned long, si->max,
658                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
659         if (tmp < max) {
660                 ci = lock_cluster(si, tmp);
661                 while (tmp < max) {
662                         if (!si->swap_map[tmp])
663                                 break;
664                         tmp++;
665                 }
666                 unlock_cluster(ci);
667         }
668         if (tmp >= max) {
669                 cluster_set_null(&cluster->index);
670                 goto new_cluster;
671         }
672         cluster->next = tmp + 1;
673         *offset = tmp;
674         *scan_base = tmp;
675         return true;
676 }
677
678 static void __del_from_avail_list(struct swap_info_struct *p)
679 {
680         int nid;
681
682         assert_spin_locked(&p->lock);
683         for_each_node(nid)
684                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
685 }
686
687 static void del_from_avail_list(struct swap_info_struct *p)
688 {
689         spin_lock(&swap_avail_lock);
690         __del_from_avail_list(p);
691         spin_unlock(&swap_avail_lock);
692 }
693
694 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
695                              unsigned int nr_entries)
696 {
697         unsigned int end = offset + nr_entries - 1;
698
699         if (offset == si->lowest_bit)
700                 si->lowest_bit += nr_entries;
701         if (end == si->highest_bit)
702                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
703         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
704         if (si->inuse_pages == si->pages) {
705                 si->lowest_bit = si->max;
706                 si->highest_bit = 0;
707                 del_from_avail_list(si);
708         }
709 }
710
711 static void add_to_avail_list(struct swap_info_struct *p)
712 {
713         int nid;
714
715         spin_lock(&swap_avail_lock);
716         for_each_node(nid) {
717                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
718                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
719         }
720         spin_unlock(&swap_avail_lock);
721 }
722
723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
724                             unsigned int nr_entries)
725 {
726         unsigned long begin = offset;
727         unsigned long end = offset + nr_entries - 1;
728         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729
730         if (offset < si->lowest_bit)
731                 si->lowest_bit = offset;
732         if (end > si->highest_bit) {
733                 bool was_full = !si->highest_bit;
734
735                 WRITE_ONCE(si->highest_bit, end);
736                 if (was_full && (si->flags & SWP_WRITEOK))
737                         add_to_avail_list(si);
738         }
739         atomic_long_add(nr_entries, &nr_swap_pages);
740         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
741         if (si->flags & SWP_BLKDEV)
742                 swap_slot_free_notify =
743                         si->bdev->bd_disk->fops->swap_slot_free_notify;
744         else
745                 swap_slot_free_notify = NULL;
746         while (offset <= end) {
747                 arch_swap_invalidate_page(si->type, offset);
748                 frontswap_invalidate_page(si->type, offset);
749                 if (swap_slot_free_notify)
750                         swap_slot_free_notify(si->bdev, offset);
751                 offset++;
752         }
753         clear_shadow_from_swap_cache(si->type, begin, end);
754 }
755
756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
757 {
758         unsigned long prev;
759
760         if (!(si->flags & SWP_SOLIDSTATE)) {
761                 si->cluster_next = next;
762                 return;
763         }
764
765         prev = this_cpu_read(*si->cluster_next_cpu);
766         /*
767          * Cross the swap address space size aligned trunk, choose
768          * another trunk randomly to avoid lock contention on swap
769          * address space if possible.
770          */
771         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
772             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
773                 /* No free swap slots available */
774                 if (si->highest_bit <= si->lowest_bit)
775                         return;
776                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
777                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778                 next = max_t(unsigned int, next, si->lowest_bit);
779         }
780         this_cpu_write(*si->cluster_next_cpu, next);
781 }
782
783 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784                                              unsigned long offset)
785 {
786         if (data_race(!si->swap_map[offset])) {
787                 spin_lock(&si->lock);
788                 return true;
789         }
790
791         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792                 spin_lock(&si->lock);
793                 return true;
794         }
795
796         return false;
797 }
798
799 static int scan_swap_map_slots(struct swap_info_struct *si,
800                                unsigned char usage, int nr,
801                                swp_entry_t slots[])
802 {
803         struct swap_cluster_info *ci;
804         unsigned long offset;
805         unsigned long scan_base;
806         unsigned long last_in_cluster = 0;
807         int latency_ration = LATENCY_LIMIT;
808         int n_ret = 0;
809         bool scanned_many = false;
810
811         /*
812          * We try to cluster swap pages by allocating them sequentially
813          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
814          * way, however, we resort to first-free allocation, starting
815          * a new cluster.  This prevents us from scattering swap pages
816          * all over the entire swap partition, so that we reduce
817          * overall disk seek times between swap pages.  -- sct
818          * But we do now try to find an empty cluster.  -Andrea
819          * And we let swap pages go all over an SSD partition.  Hugh
820          */
821
822         si->flags += SWP_SCANNING;
823         /*
824          * Use percpu scan base for SSD to reduce lock contention on
825          * cluster and swap cache.  For HDD, sequential access is more
826          * important.
827          */
828         if (si->flags & SWP_SOLIDSTATE)
829                 scan_base = this_cpu_read(*si->cluster_next_cpu);
830         else
831                 scan_base = si->cluster_next;
832         offset = scan_base;
833
834         /* SSD algorithm */
835         if (si->cluster_info) {
836                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
837                         goto scan;
838         } else if (unlikely(!si->cluster_nr--)) {
839                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
841                         goto checks;
842                 }
843
844                 spin_unlock(&si->lock);
845
846                 /*
847                  * If seek is expensive, start searching for new cluster from
848                  * start of partition, to minimize the span of allocated swap.
849                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
851                  */
852                 scan_base = offset = si->lowest_bit;
853                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
854
855                 /* Locate the first empty (unaligned) cluster */
856                 for (; last_in_cluster <= si->highest_bit; offset++) {
857                         if (si->swap_map[offset])
858                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
859                         else if (offset == last_in_cluster) {
860                                 spin_lock(&si->lock);
861                                 offset -= SWAPFILE_CLUSTER - 1;
862                                 si->cluster_next = offset;
863                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
864                                 goto checks;
865                         }
866                         if (unlikely(--latency_ration < 0)) {
867                                 cond_resched();
868                                 latency_ration = LATENCY_LIMIT;
869                         }
870                 }
871
872                 offset = scan_base;
873                 spin_lock(&si->lock);
874                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
875         }
876
877 checks:
878         if (si->cluster_info) {
879                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880                 /* take a break if we already got some slots */
881                         if (n_ret)
882                                 goto done;
883                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
884                                                         &scan_base))
885                                 goto scan;
886                 }
887         }
888         if (!(si->flags & SWP_WRITEOK))
889                 goto no_page;
890         if (!si->highest_bit)
891                 goto no_page;
892         if (offset > si->highest_bit)
893                 scan_base = offset = si->lowest_bit;
894
895         ci = lock_cluster(si, offset);
896         /* reuse swap entry of cache-only swap if not busy. */
897         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898                 int swap_was_freed;
899                 unlock_cluster(ci);
900                 spin_unlock(&si->lock);
901                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
902                 spin_lock(&si->lock);
903                 /* entry was freed successfully, try to use this again */
904                 if (swap_was_freed)
905                         goto checks;
906                 goto scan; /* check next one */
907         }
908
909         if (si->swap_map[offset]) {
910                 unlock_cluster(ci);
911                 if (!n_ret)
912                         goto scan;
913                 else
914                         goto done;
915         }
916         WRITE_ONCE(si->swap_map[offset], usage);
917         inc_cluster_info_page(si, si->cluster_info, offset);
918         unlock_cluster(ci);
919
920         swap_range_alloc(si, offset, 1);
921         slots[n_ret++] = swp_entry(si->type, offset);
922
923         /* got enough slots or reach max slots? */
924         if ((n_ret == nr) || (offset >= si->highest_bit))
925                 goto done;
926
927         /* search for next available slot */
928
929         /* time to take a break? */
930         if (unlikely(--latency_ration < 0)) {
931                 if (n_ret)
932                         goto done;
933                 spin_unlock(&si->lock);
934                 cond_resched();
935                 spin_lock(&si->lock);
936                 latency_ration = LATENCY_LIMIT;
937         }
938
939         /* try to get more slots in cluster */
940         if (si->cluster_info) {
941                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
942                         goto checks;
943         } else if (si->cluster_nr && !si->swap_map[++offset]) {
944                 /* non-ssd case, still more slots in cluster? */
945                 --si->cluster_nr;
946                 goto checks;
947         }
948
949         /*
950          * Even if there's no free clusters available (fragmented),
951          * try to scan a little more quickly with lock held unless we
952          * have scanned too many slots already.
953          */
954         if (!scanned_many) {
955                 unsigned long scan_limit;
956
957                 if (offset < scan_base)
958                         scan_limit = scan_base;
959                 else
960                         scan_limit = si->highest_bit;
961                 for (; offset <= scan_limit && --latency_ration > 0;
962                      offset++) {
963                         if (!si->swap_map[offset])
964                                 goto checks;
965                 }
966         }
967
968 done:
969         set_cluster_next(si, offset + 1);
970         si->flags -= SWP_SCANNING;
971         return n_ret;
972
973 scan:
974         spin_unlock(&si->lock);
975         while (++offset <= READ_ONCE(si->highest_bit)) {
976                 if (unlikely(--latency_ration < 0)) {
977                         cond_resched();
978                         latency_ration = LATENCY_LIMIT;
979                         scanned_many = true;
980                 }
981                 if (swap_offset_available_and_locked(si, offset))
982                         goto checks;
983         }
984         offset = si->lowest_bit;
985         while (offset < scan_base) {
986                 if (unlikely(--latency_ration < 0)) {
987                         cond_resched();
988                         latency_ration = LATENCY_LIMIT;
989                         scanned_many = true;
990                 }
991                 if (swap_offset_available_and_locked(si, offset))
992                         goto checks;
993                 offset++;
994         }
995         spin_lock(&si->lock);
996
997 no_page:
998         si->flags -= SWP_SCANNING;
999         return n_ret;
1000 }
1001
1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1003 {
1004         unsigned long idx;
1005         struct swap_cluster_info *ci;
1006         unsigned long offset;
1007
1008         /*
1009          * Should not even be attempting cluster allocations when huge
1010          * page swap is disabled.  Warn and fail the allocation.
1011          */
1012         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013                 VM_WARN_ON_ONCE(1);
1014                 return 0;
1015         }
1016
1017         if (cluster_list_empty(&si->free_clusters))
1018                 return 0;
1019
1020         idx = cluster_list_first(&si->free_clusters);
1021         offset = idx * SWAPFILE_CLUSTER;
1022         ci = lock_cluster(si, offset);
1023         alloc_cluster(si, idx);
1024         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1025
1026         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1027         unlock_cluster(ci);
1028         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029         *slot = swp_entry(si->type, offset);
1030
1031         return 1;
1032 }
1033
1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1035 {
1036         unsigned long offset = idx * SWAPFILE_CLUSTER;
1037         struct swap_cluster_info *ci;
1038
1039         ci = lock_cluster(si, offset);
1040         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1041         cluster_set_count_flag(ci, 0, 0);
1042         free_cluster(si, idx);
1043         unlock_cluster(ci);
1044         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1045 }
1046
1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 {
1049         unsigned long size = swap_entry_size(entry_size);
1050         struct swap_info_struct *si, *next;
1051         long avail_pgs;
1052         int n_ret = 0;
1053         int node;
1054
1055         /* Only single cluster request supported */
1056         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057
1058         spin_lock(&swap_avail_lock);
1059
1060         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061         if (avail_pgs <= 0) {
1062                 spin_unlock(&swap_avail_lock);
1063                 goto noswap;
1064         }
1065
1066         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067
1068         atomic_long_sub(n_goal * size, &nr_swap_pages);
1069
1070 start_over:
1071         node = numa_node_id();
1072         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073                 /* requeue si to after same-priority siblings */
1074                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075                 spin_unlock(&swap_avail_lock);
1076                 spin_lock(&si->lock);
1077                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078                         spin_lock(&swap_avail_lock);
1079                         if (plist_node_empty(&si->avail_lists[node])) {
1080                                 spin_unlock(&si->lock);
1081                                 goto nextsi;
1082                         }
1083                         WARN(!si->highest_bit,
1084                              "swap_info %d in list but !highest_bit\n",
1085                              si->type);
1086                         WARN(!(si->flags & SWP_WRITEOK),
1087                              "swap_info %d in list but !SWP_WRITEOK\n",
1088                              si->type);
1089                         __del_from_avail_list(si);
1090                         spin_unlock(&si->lock);
1091                         goto nextsi;
1092                 }
1093                 if (size == SWAPFILE_CLUSTER) {
1094                         if (si->flags & SWP_BLKDEV)
1095                                 n_ret = swap_alloc_cluster(si, swp_entries);
1096                 } else
1097                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098                                                     n_goal, swp_entries);
1099                 spin_unlock(&si->lock);
1100                 if (n_ret || size == SWAPFILE_CLUSTER)
1101                         goto check_out;
1102                 cond_resched();
1103
1104                 spin_lock(&swap_avail_lock);
1105 nextsi:
1106                 /*
1107                  * if we got here, it's likely that si was almost full before,
1108                  * and since scan_swap_map_slots() can drop the si->lock,
1109                  * multiple callers probably all tried to get a page from the
1110                  * same si and it filled up before we could get one; or, the si
1111                  * filled up between us dropping swap_avail_lock and taking
1112                  * si->lock. Since we dropped the swap_avail_lock, the
1113                  * swap_avail_head list may have been modified; so if next is
1114                  * still in the swap_avail_head list then try it, otherwise
1115                  * start over if we have not gotten any slots.
1116                  */
1117                 if (plist_node_empty(&next->avail_lists[node]))
1118                         goto start_over;
1119         }
1120
1121         spin_unlock(&swap_avail_lock);
1122
1123 check_out:
1124         if (n_ret < n_goal)
1125                 atomic_long_add((long)(n_goal - n_ret) * size,
1126                                 &nr_swap_pages);
1127 noswap:
1128         return n_ret;
1129 }
1130
1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133         struct swap_info_struct *p;
1134         unsigned long offset;
1135
1136         if (!entry.val)
1137                 goto out;
1138         p = swp_swap_info(entry);
1139         if (!p)
1140                 goto bad_nofile;
1141         if (data_race(!(p->flags & SWP_USED)))
1142                 goto bad_device;
1143         offset = swp_offset(entry);
1144         if (offset >= p->max)
1145                 goto bad_offset;
1146         if (data_race(!p->swap_map[swp_offset(entry)]))
1147                 goto bad_free;
1148         return p;
1149
1150 bad_free:
1151         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1152         goto out;
1153 bad_offset:
1154         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1155         goto out;
1156 bad_device:
1157         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1158         goto out;
1159 bad_nofile:
1160         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1161 out:
1162         return NULL;
1163 }
1164
1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1166                                         struct swap_info_struct *q)
1167 {
1168         struct swap_info_struct *p;
1169
1170         p = _swap_info_get(entry);
1171
1172         if (p != q) {
1173                 if (q != NULL)
1174                         spin_unlock(&q->lock);
1175                 if (p != NULL)
1176                         spin_lock(&p->lock);
1177         }
1178         return p;
1179 }
1180
1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1182                                               unsigned long offset,
1183                                               unsigned char usage)
1184 {
1185         unsigned char count;
1186         unsigned char has_cache;
1187
1188         count = p->swap_map[offset];
1189
1190         has_cache = count & SWAP_HAS_CACHE;
1191         count &= ~SWAP_HAS_CACHE;
1192
1193         if (usage == SWAP_HAS_CACHE) {
1194                 VM_BUG_ON(!has_cache);
1195                 has_cache = 0;
1196         } else if (count == SWAP_MAP_SHMEM) {
1197                 /*
1198                  * Or we could insist on shmem.c using a special
1199                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1200                  */
1201                 count = 0;
1202         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1203                 if (count == COUNT_CONTINUED) {
1204                         if (swap_count_continued(p, offset, count))
1205                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1206                         else
1207                                 count = SWAP_MAP_MAX;
1208                 } else
1209                         count--;
1210         }
1211
1212         usage = count | has_cache;
1213         if (usage)
1214                 WRITE_ONCE(p->swap_map[offset], usage);
1215         else
1216                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1217
1218         return usage;
1219 }
1220
1221 /*
1222  * Check whether swap entry is valid in the swap device.  If so,
1223  * return pointer to swap_info_struct, and keep the swap entry valid
1224  * via preventing the swap device from being swapoff, until
1225  * put_swap_device() is called.  Otherwise return NULL.
1226  *
1227  * Notice that swapoff or swapoff+swapon can still happen before the
1228  * percpu_ref_tryget_live() in get_swap_device() or after the
1229  * percpu_ref_put() in put_swap_device() if there isn't any other way
1230  * to prevent swapoff, such as page lock, page table lock, etc.  The
1231  * caller must be prepared for that.  For example, the following
1232  * situation is possible.
1233  *
1234  *   CPU1                               CPU2
1235  *   do_swap_page()
1236  *     ...                              swapoff+swapon
1237  *     __read_swap_cache_async()
1238  *       swapcache_prepare()
1239  *         __swap_duplicate()
1240  *           // check swap_map
1241  *     // verify PTE not changed
1242  *
1243  * In __swap_duplicate(), the swap_map need to be checked before
1244  * changing partly because the specified swap entry may be for another
1245  * swap device which has been swapoff.  And in do_swap_page(), after
1246  * the page is read from the swap device, the PTE is verified not
1247  * changed with the page table locked to check whether the swap device
1248  * has been swapoff or swapoff+swapon.
1249  */
1250 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1251 {
1252         struct swap_info_struct *si;
1253         unsigned long offset;
1254
1255         if (!entry.val)
1256                 goto out;
1257         si = swp_swap_info(entry);
1258         if (!si)
1259                 goto bad_nofile;
1260         if (!percpu_ref_tryget_live(&si->users))
1261                 goto out;
1262         /*
1263          * Guarantee the si->users are checked before accessing other
1264          * fields of swap_info_struct.
1265          *
1266          * Paired with the spin_unlock() after setup_swap_info() in
1267          * enable_swap_info().
1268          */
1269         smp_rmb();
1270         offset = swp_offset(entry);
1271         if (offset >= si->max)
1272                 goto put_out;
1273
1274         return si;
1275 bad_nofile:
1276         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1277 out:
1278         return NULL;
1279 put_out:
1280         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1281         percpu_ref_put(&si->users);
1282         return NULL;
1283 }
1284
1285 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1286                                        swp_entry_t entry)
1287 {
1288         struct swap_cluster_info *ci;
1289         unsigned long offset = swp_offset(entry);
1290         unsigned char usage;
1291
1292         ci = lock_cluster_or_swap_info(p, offset);
1293         usage = __swap_entry_free_locked(p, offset, 1);
1294         unlock_cluster_or_swap_info(p, ci);
1295         if (!usage)
1296                 free_swap_slot(entry);
1297
1298         return usage;
1299 }
1300
1301 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1302 {
1303         struct swap_cluster_info *ci;
1304         unsigned long offset = swp_offset(entry);
1305         unsigned char count;
1306
1307         ci = lock_cluster(p, offset);
1308         count = p->swap_map[offset];
1309         VM_BUG_ON(count != SWAP_HAS_CACHE);
1310         p->swap_map[offset] = 0;
1311         dec_cluster_info_page(p, p->cluster_info, offset);
1312         unlock_cluster(ci);
1313
1314         mem_cgroup_uncharge_swap(entry, 1);
1315         swap_range_free(p, offset, 1);
1316 }
1317
1318 /*
1319  * Caller has made sure that the swap device corresponding to entry
1320  * is still around or has not been recycled.
1321  */
1322 void swap_free(swp_entry_t entry)
1323 {
1324         struct swap_info_struct *p;
1325
1326         p = _swap_info_get(entry);
1327         if (p)
1328                 __swap_entry_free(p, entry);
1329 }
1330
1331 /*
1332  * Called after dropping swapcache to decrease refcnt to swap entries.
1333  */
1334 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1335 {
1336         unsigned long offset = swp_offset(entry);
1337         unsigned long idx = offset / SWAPFILE_CLUSTER;
1338         struct swap_cluster_info *ci;
1339         struct swap_info_struct *si;
1340         unsigned char *map;
1341         unsigned int i, free_entries = 0;
1342         unsigned char val;
1343         int size = swap_entry_size(folio_nr_pages(folio));
1344
1345         si = _swap_info_get(entry);
1346         if (!si)
1347                 return;
1348
1349         ci = lock_cluster_or_swap_info(si, offset);
1350         if (size == SWAPFILE_CLUSTER) {
1351                 VM_BUG_ON(!cluster_is_huge(ci));
1352                 map = si->swap_map + offset;
1353                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1354                         val = map[i];
1355                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1356                         if (val == SWAP_HAS_CACHE)
1357                                 free_entries++;
1358                 }
1359                 cluster_clear_huge(ci);
1360                 if (free_entries == SWAPFILE_CLUSTER) {
1361                         unlock_cluster_or_swap_info(si, ci);
1362                         spin_lock(&si->lock);
1363                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1364                         swap_free_cluster(si, idx);
1365                         spin_unlock(&si->lock);
1366                         return;
1367                 }
1368         }
1369         for (i = 0; i < size; i++, entry.val++) {
1370                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1371                         unlock_cluster_or_swap_info(si, ci);
1372                         free_swap_slot(entry);
1373                         if (i == size - 1)
1374                                 return;
1375                         lock_cluster_or_swap_info(si, offset);
1376                 }
1377         }
1378         unlock_cluster_or_swap_info(si, ci);
1379 }
1380
1381 #ifdef CONFIG_THP_SWAP
1382 int split_swap_cluster(swp_entry_t entry)
1383 {
1384         struct swap_info_struct *si;
1385         struct swap_cluster_info *ci;
1386         unsigned long offset = swp_offset(entry);
1387
1388         si = _swap_info_get(entry);
1389         if (!si)
1390                 return -EBUSY;
1391         ci = lock_cluster(si, offset);
1392         cluster_clear_huge(ci);
1393         unlock_cluster(ci);
1394         return 0;
1395 }
1396 #endif
1397
1398 static int swp_entry_cmp(const void *ent1, const void *ent2)
1399 {
1400         const swp_entry_t *e1 = ent1, *e2 = ent2;
1401
1402         return (int)swp_type(*e1) - (int)swp_type(*e2);
1403 }
1404
1405 void swapcache_free_entries(swp_entry_t *entries, int n)
1406 {
1407         struct swap_info_struct *p, *prev;
1408         int i;
1409
1410         if (n <= 0)
1411                 return;
1412
1413         prev = NULL;
1414         p = NULL;
1415
1416         /*
1417          * Sort swap entries by swap device, so each lock is only taken once.
1418          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1419          * so low that it isn't necessary to optimize further.
1420          */
1421         if (nr_swapfiles > 1)
1422                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1423         for (i = 0; i < n; ++i) {
1424                 p = swap_info_get_cont(entries[i], prev);
1425                 if (p)
1426                         swap_entry_free(p, entries[i]);
1427                 prev = p;
1428         }
1429         if (p)
1430                 spin_unlock(&p->lock);
1431 }
1432
1433 int __swap_count(swp_entry_t entry)
1434 {
1435         struct swap_info_struct *si;
1436         pgoff_t offset = swp_offset(entry);
1437         int count = 0;
1438
1439         si = get_swap_device(entry);
1440         if (si) {
1441                 count = swap_count(si->swap_map[offset]);
1442                 put_swap_device(si);
1443         }
1444         return count;
1445 }
1446
1447 /*
1448  * How many references to @entry are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1453 {
1454         pgoff_t offset = swp_offset(entry);
1455         struct swap_cluster_info *ci;
1456         int count;
1457
1458         ci = lock_cluster_or_swap_info(si, offset);
1459         count = swap_count(si->swap_map[offset]);
1460         unlock_cluster_or_swap_info(si, ci);
1461         return count;
1462 }
1463
1464 /*
1465  * How many references to @entry are currently swapped out?
1466  * This does not give an exact answer when swap count is continued,
1467  * but does include the high COUNT_CONTINUED flag to allow for that.
1468  */
1469 int __swp_swapcount(swp_entry_t entry)
1470 {
1471         int count = 0;
1472         struct swap_info_struct *si;
1473
1474         si = get_swap_device(entry);
1475         if (si) {
1476                 count = swap_swapcount(si, entry);
1477                 put_swap_device(si);
1478         }
1479         return count;
1480 }
1481
1482 /*
1483  * How many references to @entry are currently swapped out?
1484  * This considers COUNT_CONTINUED so it returns exact answer.
1485  */
1486 int swp_swapcount(swp_entry_t entry)
1487 {
1488         int count, tmp_count, n;
1489         struct swap_info_struct *p;
1490         struct swap_cluster_info *ci;
1491         struct page *page;
1492         pgoff_t offset;
1493         unsigned char *map;
1494
1495         p = _swap_info_get(entry);
1496         if (!p)
1497                 return 0;
1498
1499         offset = swp_offset(entry);
1500
1501         ci = lock_cluster_or_swap_info(p, offset);
1502
1503         count = swap_count(p->swap_map[offset]);
1504         if (!(count & COUNT_CONTINUED))
1505                 goto out;
1506
1507         count &= ~COUNT_CONTINUED;
1508         n = SWAP_MAP_MAX + 1;
1509
1510         page = vmalloc_to_page(p->swap_map + offset);
1511         offset &= ~PAGE_MASK;
1512         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1513
1514         do {
1515                 page = list_next_entry(page, lru);
1516                 map = kmap_atomic(page);
1517                 tmp_count = map[offset];
1518                 kunmap_atomic(map);
1519
1520                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1521                 n *= (SWAP_CONT_MAX + 1);
1522         } while (tmp_count & COUNT_CONTINUED);
1523 out:
1524         unlock_cluster_or_swap_info(p, ci);
1525         return count;
1526 }
1527
1528 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1529                                          swp_entry_t entry)
1530 {
1531         struct swap_cluster_info *ci;
1532         unsigned char *map = si->swap_map;
1533         unsigned long roffset = swp_offset(entry);
1534         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1535         int i;
1536         bool ret = false;
1537
1538         ci = lock_cluster_or_swap_info(si, offset);
1539         if (!ci || !cluster_is_huge(ci)) {
1540                 if (swap_count(map[roffset]))
1541                         ret = true;
1542                 goto unlock_out;
1543         }
1544         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1545                 if (swap_count(map[offset + i])) {
1546                         ret = true;
1547                         break;
1548                 }
1549         }
1550 unlock_out:
1551         unlock_cluster_or_swap_info(si, ci);
1552         return ret;
1553 }
1554
1555 static bool folio_swapped(struct folio *folio)
1556 {
1557         swp_entry_t entry = folio_swap_entry(folio);
1558         struct swap_info_struct *si = _swap_info_get(entry);
1559
1560         if (!si)
1561                 return false;
1562
1563         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1564                 return swap_swapcount(si, entry) != 0;
1565
1566         return swap_page_trans_huge_swapped(si, entry);
1567 }
1568
1569 /**
1570  * folio_free_swap() - Free the swap space used for this folio.
1571  * @folio: The folio to remove.
1572  *
1573  * If swap is getting full, or if there are no more mappings of this folio,
1574  * then call folio_free_swap to free its swap space.
1575  *
1576  * Return: true if we were able to release the swap space.
1577  */
1578 bool folio_free_swap(struct folio *folio)
1579 {
1580         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1581
1582         if (!folio_test_swapcache(folio))
1583                 return false;
1584         if (folio_test_writeback(folio))
1585                 return false;
1586         if (folio_swapped(folio))
1587                 return false;
1588
1589         /*
1590          * Once hibernation has begun to create its image of memory,
1591          * there's a danger that one of the calls to folio_free_swap()
1592          * - most probably a call from __try_to_reclaim_swap() while
1593          * hibernation is allocating its own swap pages for the image,
1594          * but conceivably even a call from memory reclaim - will free
1595          * the swap from a folio which has already been recorded in the
1596          * image as a clean swapcache folio, and then reuse its swap for
1597          * another page of the image.  On waking from hibernation, the
1598          * original folio might be freed under memory pressure, then
1599          * later read back in from swap, now with the wrong data.
1600          *
1601          * Hibernation suspends storage while it is writing the image
1602          * to disk so check that here.
1603          */
1604         if (pm_suspended_storage())
1605                 return false;
1606
1607         delete_from_swap_cache(folio);
1608         folio_set_dirty(folio);
1609         return true;
1610 }
1611
1612 /*
1613  * Free the swap entry like above, but also try to
1614  * free the page cache entry if it is the last user.
1615  */
1616 int free_swap_and_cache(swp_entry_t entry)
1617 {
1618         struct swap_info_struct *p;
1619         unsigned char count;
1620
1621         if (non_swap_entry(entry))
1622                 return 1;
1623
1624         p = _swap_info_get(entry);
1625         if (p) {
1626                 count = __swap_entry_free(p, entry);
1627                 if (count == SWAP_HAS_CACHE &&
1628                     !swap_page_trans_huge_swapped(p, entry))
1629                         __try_to_reclaim_swap(p, swp_offset(entry),
1630                                               TTRS_UNMAPPED | TTRS_FULL);
1631         }
1632         return p != NULL;
1633 }
1634
1635 #ifdef CONFIG_HIBERNATION
1636
1637 swp_entry_t get_swap_page_of_type(int type)
1638 {
1639         struct swap_info_struct *si = swap_type_to_swap_info(type);
1640         swp_entry_t entry = {0};
1641
1642         if (!si)
1643                 goto fail;
1644
1645         /* This is called for allocating swap entry, not cache */
1646         spin_lock(&si->lock);
1647         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1648                 atomic_long_dec(&nr_swap_pages);
1649         spin_unlock(&si->lock);
1650 fail:
1651         return entry;
1652 }
1653
1654 /*
1655  * Find the swap type that corresponds to given device (if any).
1656  *
1657  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1658  * from 0, in which the swap header is expected to be located.
1659  *
1660  * This is needed for the suspend to disk (aka swsusp).
1661  */
1662 int swap_type_of(dev_t device, sector_t offset)
1663 {
1664         int type;
1665
1666         if (!device)
1667                 return -1;
1668
1669         spin_lock(&swap_lock);
1670         for (type = 0; type < nr_swapfiles; type++) {
1671                 struct swap_info_struct *sis = swap_info[type];
1672
1673                 if (!(sis->flags & SWP_WRITEOK))
1674                         continue;
1675
1676                 if (device == sis->bdev->bd_dev) {
1677                         struct swap_extent *se = first_se(sis);
1678
1679                         if (se->start_block == offset) {
1680                                 spin_unlock(&swap_lock);
1681                                 return type;
1682                         }
1683                 }
1684         }
1685         spin_unlock(&swap_lock);
1686         return -ENODEV;
1687 }
1688
1689 int find_first_swap(dev_t *device)
1690 {
1691         int type;
1692
1693         spin_lock(&swap_lock);
1694         for (type = 0; type < nr_swapfiles; type++) {
1695                 struct swap_info_struct *sis = swap_info[type];
1696
1697                 if (!(sis->flags & SWP_WRITEOK))
1698                         continue;
1699                 *device = sis->bdev->bd_dev;
1700                 spin_unlock(&swap_lock);
1701                 return type;
1702         }
1703         spin_unlock(&swap_lock);
1704         return -ENODEV;
1705 }
1706
1707 /*
1708  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1709  * corresponding to given index in swap_info (swap type).
1710  */
1711 sector_t swapdev_block(int type, pgoff_t offset)
1712 {
1713         struct swap_info_struct *si = swap_type_to_swap_info(type);
1714         struct swap_extent *se;
1715
1716         if (!si || !(si->flags & SWP_WRITEOK))
1717                 return 0;
1718         se = offset_to_swap_extent(si, offset);
1719         return se->start_block + (offset - se->start_page);
1720 }
1721
1722 /*
1723  * Return either the total number of swap pages of given type, or the number
1724  * of free pages of that type (depending on @free)
1725  *
1726  * This is needed for software suspend
1727  */
1728 unsigned int count_swap_pages(int type, int free)
1729 {
1730         unsigned int n = 0;
1731
1732         spin_lock(&swap_lock);
1733         if ((unsigned int)type < nr_swapfiles) {
1734                 struct swap_info_struct *sis = swap_info[type];
1735
1736                 spin_lock(&sis->lock);
1737                 if (sis->flags & SWP_WRITEOK) {
1738                         n = sis->pages;
1739                         if (free)
1740                                 n -= sis->inuse_pages;
1741                 }
1742                 spin_unlock(&sis->lock);
1743         }
1744         spin_unlock(&swap_lock);
1745         return n;
1746 }
1747 #endif /* CONFIG_HIBERNATION */
1748
1749 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1750 {
1751         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1752 }
1753
1754 /*
1755  * No need to decide whether this PTE shares the swap entry with others,
1756  * just let do_wp_page work it out if a write is requested later - to
1757  * force COW, vm_page_prot omits write permission from any private vma.
1758  */
1759 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1760                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1761 {
1762         struct page *page = folio_file_page(folio, swp_offset(entry));
1763         struct page *swapcache;
1764         spinlock_t *ptl;
1765         pte_t *pte, new_pte;
1766         bool hwposioned = false;
1767         int ret = 1;
1768
1769         swapcache = page;
1770         page = ksm_might_need_to_copy(page, vma, addr);
1771         if (unlikely(!page))
1772                 return -ENOMEM;
1773         else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1774                 hwposioned = true;
1775
1776         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1777         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1778                 ret = 0;
1779                 goto out;
1780         }
1781
1782         if (unlikely(hwposioned || !PageUptodate(page))) {
1783                 swp_entry_t swp_entry;
1784
1785                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1786                 if (hwposioned) {
1787                         swp_entry = make_hwpoison_entry(swapcache);
1788                         page = swapcache;
1789                 } else {
1790                         swp_entry = make_swapin_error_entry();
1791                 }
1792                 new_pte = swp_entry_to_pte(swp_entry);
1793                 ret = 0;
1794                 goto setpte;
1795         }
1796
1797         /* See do_swap_page() */
1798         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1799         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1800
1801         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1802         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1803         get_page(page);
1804         if (page == swapcache) {
1805                 rmap_t rmap_flags = RMAP_NONE;
1806
1807                 /*
1808                  * See do_swap_page(): PageWriteback() would be problematic.
1809                  * However, we do a wait_on_page_writeback() just before this
1810                  * call and have the page locked.
1811                  */
1812                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1813                 if (pte_swp_exclusive(*pte))
1814                         rmap_flags |= RMAP_EXCLUSIVE;
1815
1816                 page_add_anon_rmap(page, vma, addr, rmap_flags);
1817         } else { /* ksm created a completely new copy */
1818                 page_add_new_anon_rmap(page, vma, addr);
1819                 lru_cache_add_inactive_or_unevictable(page, vma);
1820         }
1821         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1822         if (pte_swp_soft_dirty(*pte))
1823                 new_pte = pte_mksoft_dirty(new_pte);
1824         if (pte_swp_uffd_wp(*pte))
1825                 new_pte = pte_mkuffd_wp(new_pte);
1826 setpte:
1827         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1828         swap_free(entry);
1829 out:
1830         pte_unmap_unlock(pte, ptl);
1831         if (page != swapcache) {
1832                 unlock_page(page);
1833                 put_page(page);
1834         }
1835         return ret;
1836 }
1837
1838 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1839                         unsigned long addr, unsigned long end,
1840                         unsigned int type)
1841 {
1842         swp_entry_t entry;
1843         pte_t *pte;
1844         struct swap_info_struct *si;
1845         int ret = 0;
1846
1847         si = swap_info[type];
1848         pte = pte_offset_map(pmd, addr);
1849         do {
1850                 struct folio *folio;
1851                 unsigned long offset;
1852                 unsigned char swp_count;
1853
1854                 if (!is_swap_pte(*pte))
1855                         continue;
1856
1857                 entry = pte_to_swp_entry(*pte);
1858                 if (swp_type(entry) != type)
1859                         continue;
1860
1861                 offset = swp_offset(entry);
1862                 pte_unmap(pte);
1863                 folio = swap_cache_get_folio(entry, vma, addr);
1864                 if (!folio) {
1865                         struct page *page;
1866                         struct vm_fault vmf = {
1867                                 .vma = vma,
1868                                 .address = addr,
1869                                 .real_address = addr,
1870                                 .pmd = pmd,
1871                         };
1872
1873                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1874                                                 &vmf);
1875                         if (page)
1876                                 folio = page_folio(page);
1877                 }
1878                 if (!folio) {
1879                         swp_count = READ_ONCE(si->swap_map[offset]);
1880                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1881                                 goto try_next;
1882
1883                         return -ENOMEM;
1884                 }
1885
1886                 folio_lock(folio);
1887                 folio_wait_writeback(folio);
1888                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1889                 if (ret < 0) {
1890                         folio_unlock(folio);
1891                         folio_put(folio);
1892                         goto out;
1893                 }
1894
1895                 folio_free_swap(folio);
1896                 folio_unlock(folio);
1897                 folio_put(folio);
1898 try_next:
1899                 pte = pte_offset_map(pmd, addr);
1900         } while (pte++, addr += PAGE_SIZE, addr != end);
1901         pte_unmap(pte - 1);
1902
1903         ret = 0;
1904 out:
1905         return ret;
1906 }
1907
1908 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1909                                 unsigned long addr, unsigned long end,
1910                                 unsigned int type)
1911 {
1912         pmd_t *pmd;
1913         unsigned long next;
1914         int ret;
1915
1916         pmd = pmd_offset(pud, addr);
1917         do {
1918                 cond_resched();
1919                 next = pmd_addr_end(addr, end);
1920                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1921                         continue;
1922                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1923                 if (ret)
1924                         return ret;
1925         } while (pmd++, addr = next, addr != end);
1926         return 0;
1927 }
1928
1929 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1930                                 unsigned long addr, unsigned long end,
1931                                 unsigned int type)
1932 {
1933         pud_t *pud;
1934         unsigned long next;
1935         int ret;
1936
1937         pud = pud_offset(p4d, addr);
1938         do {
1939                 next = pud_addr_end(addr, end);
1940                 if (pud_none_or_clear_bad(pud))
1941                         continue;
1942                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1943                 if (ret)
1944                         return ret;
1945         } while (pud++, addr = next, addr != end);
1946         return 0;
1947 }
1948
1949 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1950                                 unsigned long addr, unsigned long end,
1951                                 unsigned int type)
1952 {
1953         p4d_t *p4d;
1954         unsigned long next;
1955         int ret;
1956
1957         p4d = p4d_offset(pgd, addr);
1958         do {
1959                 next = p4d_addr_end(addr, end);
1960                 if (p4d_none_or_clear_bad(p4d))
1961                         continue;
1962                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1963                 if (ret)
1964                         return ret;
1965         } while (p4d++, addr = next, addr != end);
1966         return 0;
1967 }
1968
1969 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1970 {
1971         pgd_t *pgd;
1972         unsigned long addr, end, next;
1973         int ret;
1974
1975         addr = vma->vm_start;
1976         end = vma->vm_end;
1977
1978         pgd = pgd_offset(vma->vm_mm, addr);
1979         do {
1980                 next = pgd_addr_end(addr, end);
1981                 if (pgd_none_or_clear_bad(pgd))
1982                         continue;
1983                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1984                 if (ret)
1985                         return ret;
1986         } while (pgd++, addr = next, addr != end);
1987         return 0;
1988 }
1989
1990 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1991 {
1992         struct vm_area_struct *vma;
1993         int ret = 0;
1994         VMA_ITERATOR(vmi, mm, 0);
1995
1996         mmap_read_lock(mm);
1997         for_each_vma(vmi, vma) {
1998                 if (vma->anon_vma) {
1999                         ret = unuse_vma(vma, type);
2000                         if (ret)
2001                                 break;
2002                 }
2003
2004                 cond_resched();
2005         }
2006         mmap_read_unlock(mm);
2007         return ret;
2008 }
2009
2010 /*
2011  * Scan swap_map from current position to next entry still in use.
2012  * Return 0 if there are no inuse entries after prev till end of
2013  * the map.
2014  */
2015 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2016                                         unsigned int prev)
2017 {
2018         unsigned int i;
2019         unsigned char count;
2020
2021         /*
2022          * No need for swap_lock here: we're just looking
2023          * for whether an entry is in use, not modifying it; false
2024          * hits are okay, and sys_swapoff() has already prevented new
2025          * allocations from this area (while holding swap_lock).
2026          */
2027         for (i = prev + 1; i < si->max; i++) {
2028                 count = READ_ONCE(si->swap_map[i]);
2029                 if (count && swap_count(count) != SWAP_MAP_BAD)
2030                         break;
2031                 if ((i % LATENCY_LIMIT) == 0)
2032                         cond_resched();
2033         }
2034
2035         if (i == si->max)
2036                 i = 0;
2037
2038         return i;
2039 }
2040
2041 static int try_to_unuse(unsigned int type)
2042 {
2043         struct mm_struct *prev_mm;
2044         struct mm_struct *mm;
2045         struct list_head *p;
2046         int retval = 0;
2047         struct swap_info_struct *si = swap_info[type];
2048         struct folio *folio;
2049         swp_entry_t entry;
2050         unsigned int i;
2051
2052         if (!READ_ONCE(si->inuse_pages))
2053                 return 0;
2054
2055 retry:
2056         retval = shmem_unuse(type);
2057         if (retval)
2058                 return retval;
2059
2060         prev_mm = &init_mm;
2061         mmget(prev_mm);
2062
2063         spin_lock(&mmlist_lock);
2064         p = &init_mm.mmlist;
2065         while (READ_ONCE(si->inuse_pages) &&
2066                !signal_pending(current) &&
2067                (p = p->next) != &init_mm.mmlist) {
2068
2069                 mm = list_entry(p, struct mm_struct, mmlist);
2070                 if (!mmget_not_zero(mm))
2071                         continue;
2072                 spin_unlock(&mmlist_lock);
2073                 mmput(prev_mm);
2074                 prev_mm = mm;
2075                 retval = unuse_mm(mm, type);
2076                 if (retval) {
2077                         mmput(prev_mm);
2078                         return retval;
2079                 }
2080
2081                 /*
2082                  * Make sure that we aren't completely killing
2083                  * interactive performance.
2084                  */
2085                 cond_resched();
2086                 spin_lock(&mmlist_lock);
2087         }
2088         spin_unlock(&mmlist_lock);
2089
2090         mmput(prev_mm);
2091
2092         i = 0;
2093         while (READ_ONCE(si->inuse_pages) &&
2094                !signal_pending(current) &&
2095                (i = find_next_to_unuse(si, i)) != 0) {
2096
2097                 entry = swp_entry(type, i);
2098                 folio = filemap_get_folio(swap_address_space(entry), i);
2099                 if (IS_ERR(folio))
2100                         continue;
2101
2102                 /*
2103                  * It is conceivable that a racing task removed this folio from
2104                  * swap cache just before we acquired the page lock. The folio
2105                  * might even be back in swap cache on another swap area. But
2106                  * that is okay, folio_free_swap() only removes stale folios.
2107                  */
2108                 folio_lock(folio);
2109                 folio_wait_writeback(folio);
2110                 folio_free_swap(folio);
2111                 folio_unlock(folio);
2112                 folio_put(folio);
2113         }
2114
2115         /*
2116          * Lets check again to see if there are still swap entries in the map.
2117          * If yes, we would need to do retry the unuse logic again.
2118          * Under global memory pressure, swap entries can be reinserted back
2119          * into process space after the mmlist loop above passes over them.
2120          *
2121          * Limit the number of retries? No: when mmget_not_zero()
2122          * above fails, that mm is likely to be freeing swap from
2123          * exit_mmap(), which proceeds at its own independent pace;
2124          * and even shmem_writepage() could have been preempted after
2125          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2126          * and robust (though cpu-intensive) just to keep retrying.
2127          */
2128         if (READ_ONCE(si->inuse_pages)) {
2129                 if (!signal_pending(current))
2130                         goto retry;
2131                 return -EINTR;
2132         }
2133
2134         return 0;
2135 }
2136
2137 /*
2138  * After a successful try_to_unuse, if no swap is now in use, we know
2139  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2140  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2141  * added to the mmlist just after page_duplicate - before would be racy.
2142  */
2143 static void drain_mmlist(void)
2144 {
2145         struct list_head *p, *next;
2146         unsigned int type;
2147
2148         for (type = 0; type < nr_swapfiles; type++)
2149                 if (swap_info[type]->inuse_pages)
2150                         return;
2151         spin_lock(&mmlist_lock);
2152         list_for_each_safe(p, next, &init_mm.mmlist)
2153                 list_del_init(p);
2154         spin_unlock(&mmlist_lock);
2155 }
2156
2157 /*
2158  * Free all of a swapdev's extent information
2159  */
2160 static void destroy_swap_extents(struct swap_info_struct *sis)
2161 {
2162         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2163                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2164                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2165
2166                 rb_erase(rb, &sis->swap_extent_root);
2167                 kfree(se);
2168         }
2169
2170         if (sis->flags & SWP_ACTIVATED) {
2171                 struct file *swap_file = sis->swap_file;
2172                 struct address_space *mapping = swap_file->f_mapping;
2173
2174                 sis->flags &= ~SWP_ACTIVATED;
2175                 if (mapping->a_ops->swap_deactivate)
2176                         mapping->a_ops->swap_deactivate(swap_file);
2177         }
2178 }
2179
2180 /*
2181  * Add a block range (and the corresponding page range) into this swapdev's
2182  * extent tree.
2183  *
2184  * This function rather assumes that it is called in ascending page order.
2185  */
2186 int
2187 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2188                 unsigned long nr_pages, sector_t start_block)
2189 {
2190         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2191         struct swap_extent *se;
2192         struct swap_extent *new_se;
2193
2194         /*
2195          * place the new node at the right most since the
2196          * function is called in ascending page order.
2197          */
2198         while (*link) {
2199                 parent = *link;
2200                 link = &parent->rb_right;
2201         }
2202
2203         if (parent) {
2204                 se = rb_entry(parent, struct swap_extent, rb_node);
2205                 BUG_ON(se->start_page + se->nr_pages != start_page);
2206                 if (se->start_block + se->nr_pages == start_block) {
2207                         /* Merge it */
2208                         se->nr_pages += nr_pages;
2209                         return 0;
2210                 }
2211         }
2212
2213         /* No merge, insert a new extent. */
2214         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2215         if (new_se == NULL)
2216                 return -ENOMEM;
2217         new_se->start_page = start_page;
2218         new_se->nr_pages = nr_pages;
2219         new_se->start_block = start_block;
2220
2221         rb_link_node(&new_se->rb_node, parent, link);
2222         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2223         return 1;
2224 }
2225 EXPORT_SYMBOL_GPL(add_swap_extent);
2226
2227 /*
2228  * A `swap extent' is a simple thing which maps a contiguous range of pages
2229  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2230  * built at swapon time and is then used at swap_writepage/swap_readpage
2231  * time for locating where on disk a page belongs.
2232  *
2233  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2234  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2235  * swap files identically.
2236  *
2237  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2238  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2239  * swapfiles are handled *identically* after swapon time.
2240  *
2241  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2242  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2243  * blocks are found which do not fall within the PAGE_SIZE alignment
2244  * requirements, they are simply tossed out - we will never use those blocks
2245  * for swapping.
2246  *
2247  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2248  * prevents users from writing to the swap device, which will corrupt memory.
2249  *
2250  * The amount of disk space which a single swap extent represents varies.
2251  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2252  * extents in the rbtree. - akpm.
2253  */
2254 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2255 {
2256         struct file *swap_file = sis->swap_file;
2257         struct address_space *mapping = swap_file->f_mapping;
2258         struct inode *inode = mapping->host;
2259         int ret;
2260
2261         if (S_ISBLK(inode->i_mode)) {
2262                 ret = add_swap_extent(sis, 0, sis->max, 0);
2263                 *span = sis->pages;
2264                 return ret;
2265         }
2266
2267         if (mapping->a_ops->swap_activate) {
2268                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2269                 if (ret < 0)
2270                         return ret;
2271                 sis->flags |= SWP_ACTIVATED;
2272                 if ((sis->flags & SWP_FS_OPS) &&
2273                     sio_pool_init() != 0) {
2274                         destroy_swap_extents(sis);
2275                         return -ENOMEM;
2276                 }
2277                 return ret;
2278         }
2279
2280         return generic_swapfile_activate(sis, swap_file, span);
2281 }
2282
2283 static int swap_node(struct swap_info_struct *p)
2284 {
2285         struct block_device *bdev;
2286
2287         if (p->bdev)
2288                 bdev = p->bdev;
2289         else
2290                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2291
2292         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2293 }
2294
2295 static void setup_swap_info(struct swap_info_struct *p, int prio,
2296                             unsigned char *swap_map,
2297                             struct swap_cluster_info *cluster_info)
2298 {
2299         int i;
2300
2301         if (prio >= 0)
2302                 p->prio = prio;
2303         else
2304                 p->prio = --least_priority;
2305         /*
2306          * the plist prio is negated because plist ordering is
2307          * low-to-high, while swap ordering is high-to-low
2308          */
2309         p->list.prio = -p->prio;
2310         for_each_node(i) {
2311                 if (p->prio >= 0)
2312                         p->avail_lists[i].prio = -p->prio;
2313                 else {
2314                         if (swap_node(p) == i)
2315                                 p->avail_lists[i].prio = 1;
2316                         else
2317                                 p->avail_lists[i].prio = -p->prio;
2318                 }
2319         }
2320         p->swap_map = swap_map;
2321         p->cluster_info = cluster_info;
2322 }
2323
2324 static void _enable_swap_info(struct swap_info_struct *p)
2325 {
2326         p->flags |= SWP_WRITEOK;
2327         atomic_long_add(p->pages, &nr_swap_pages);
2328         total_swap_pages += p->pages;
2329
2330         assert_spin_locked(&swap_lock);
2331         /*
2332          * both lists are plists, and thus priority ordered.
2333          * swap_active_head needs to be priority ordered for swapoff(),
2334          * which on removal of any swap_info_struct with an auto-assigned
2335          * (i.e. negative) priority increments the auto-assigned priority
2336          * of any lower-priority swap_info_structs.
2337          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2338          * which allocates swap pages from the highest available priority
2339          * swap_info_struct.
2340          */
2341         plist_add(&p->list, &swap_active_head);
2342         add_to_avail_list(p);
2343 }
2344
2345 static void enable_swap_info(struct swap_info_struct *p, int prio,
2346                                 unsigned char *swap_map,
2347                                 struct swap_cluster_info *cluster_info,
2348                                 unsigned long *frontswap_map)
2349 {
2350         if (IS_ENABLED(CONFIG_FRONTSWAP))
2351                 frontswap_init(p->type, frontswap_map);
2352         spin_lock(&swap_lock);
2353         spin_lock(&p->lock);
2354         setup_swap_info(p, prio, swap_map, cluster_info);
2355         spin_unlock(&p->lock);
2356         spin_unlock(&swap_lock);
2357         /*
2358          * Finished initializing swap device, now it's safe to reference it.
2359          */
2360         percpu_ref_resurrect(&p->users);
2361         spin_lock(&swap_lock);
2362         spin_lock(&p->lock);
2363         _enable_swap_info(p);
2364         spin_unlock(&p->lock);
2365         spin_unlock(&swap_lock);
2366 }
2367
2368 static void reinsert_swap_info(struct swap_info_struct *p)
2369 {
2370         spin_lock(&swap_lock);
2371         spin_lock(&p->lock);
2372         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2373         _enable_swap_info(p);
2374         spin_unlock(&p->lock);
2375         spin_unlock(&swap_lock);
2376 }
2377
2378 bool has_usable_swap(void)
2379 {
2380         bool ret = true;
2381
2382         spin_lock(&swap_lock);
2383         if (plist_head_empty(&swap_active_head))
2384                 ret = false;
2385         spin_unlock(&swap_lock);
2386         return ret;
2387 }
2388
2389 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2390 {
2391         struct swap_info_struct *p = NULL;
2392         unsigned char *swap_map;
2393         struct swap_cluster_info *cluster_info;
2394         unsigned long *frontswap_map;
2395         struct file *swap_file, *victim;
2396         struct address_space *mapping;
2397         struct inode *inode;
2398         struct filename *pathname;
2399         int err, found = 0;
2400         unsigned int old_block_size;
2401
2402         if (!capable(CAP_SYS_ADMIN))
2403                 return -EPERM;
2404
2405         BUG_ON(!current->mm);
2406
2407         pathname = getname(specialfile);
2408         if (IS_ERR(pathname))
2409                 return PTR_ERR(pathname);
2410
2411         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2412         err = PTR_ERR(victim);
2413         if (IS_ERR(victim))
2414                 goto out;
2415
2416         mapping = victim->f_mapping;
2417         spin_lock(&swap_lock);
2418         plist_for_each_entry(p, &swap_active_head, list) {
2419                 if (p->flags & SWP_WRITEOK) {
2420                         if (p->swap_file->f_mapping == mapping) {
2421                                 found = 1;
2422                                 break;
2423                         }
2424                 }
2425         }
2426         if (!found) {
2427                 err = -EINVAL;
2428                 spin_unlock(&swap_lock);
2429                 goto out_dput;
2430         }
2431         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2432                 vm_unacct_memory(p->pages);
2433         else {
2434                 err = -ENOMEM;
2435                 spin_unlock(&swap_lock);
2436                 goto out_dput;
2437         }
2438         spin_lock(&p->lock);
2439         del_from_avail_list(p);
2440         if (p->prio < 0) {
2441                 struct swap_info_struct *si = p;
2442                 int nid;
2443
2444                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2445                         si->prio++;
2446                         si->list.prio--;
2447                         for_each_node(nid) {
2448                                 if (si->avail_lists[nid].prio != 1)
2449                                         si->avail_lists[nid].prio--;
2450                         }
2451                 }
2452                 least_priority++;
2453         }
2454         plist_del(&p->list, &swap_active_head);
2455         atomic_long_sub(p->pages, &nr_swap_pages);
2456         total_swap_pages -= p->pages;
2457         p->flags &= ~SWP_WRITEOK;
2458         spin_unlock(&p->lock);
2459         spin_unlock(&swap_lock);
2460
2461         disable_swap_slots_cache_lock();
2462
2463         set_current_oom_origin();
2464         err = try_to_unuse(p->type);
2465         clear_current_oom_origin();
2466
2467         if (err) {
2468                 /* re-insert swap space back into swap_list */
2469                 reinsert_swap_info(p);
2470                 reenable_swap_slots_cache_unlock();
2471                 goto out_dput;
2472         }
2473
2474         reenable_swap_slots_cache_unlock();
2475
2476         /*
2477          * Wait for swap operations protected by get/put_swap_device()
2478          * to complete.
2479          *
2480          * We need synchronize_rcu() here to protect the accessing to
2481          * the swap cache data structure.
2482          */
2483         percpu_ref_kill(&p->users);
2484         synchronize_rcu();
2485         wait_for_completion(&p->comp);
2486
2487         flush_work(&p->discard_work);
2488
2489         destroy_swap_extents(p);
2490         if (p->flags & SWP_CONTINUED)
2491                 free_swap_count_continuations(p);
2492
2493         if (!p->bdev || !bdev_nonrot(p->bdev))
2494                 atomic_dec(&nr_rotate_swap);
2495
2496         mutex_lock(&swapon_mutex);
2497         spin_lock(&swap_lock);
2498         spin_lock(&p->lock);
2499         drain_mmlist();
2500
2501         /* wait for anyone still in scan_swap_map_slots */
2502         p->highest_bit = 0;             /* cuts scans short */
2503         while (p->flags >= SWP_SCANNING) {
2504                 spin_unlock(&p->lock);
2505                 spin_unlock(&swap_lock);
2506                 schedule_timeout_uninterruptible(1);
2507                 spin_lock(&swap_lock);
2508                 spin_lock(&p->lock);
2509         }
2510
2511         swap_file = p->swap_file;
2512         old_block_size = p->old_block_size;
2513         p->swap_file = NULL;
2514         p->max = 0;
2515         swap_map = p->swap_map;
2516         p->swap_map = NULL;
2517         cluster_info = p->cluster_info;
2518         p->cluster_info = NULL;
2519         frontswap_map = frontswap_map_get(p);
2520         spin_unlock(&p->lock);
2521         spin_unlock(&swap_lock);
2522         arch_swap_invalidate_area(p->type);
2523         frontswap_invalidate_area(p->type);
2524         frontswap_map_set(p, NULL);
2525         mutex_unlock(&swapon_mutex);
2526         free_percpu(p->percpu_cluster);
2527         p->percpu_cluster = NULL;
2528         free_percpu(p->cluster_next_cpu);
2529         p->cluster_next_cpu = NULL;
2530         vfree(swap_map);
2531         kvfree(cluster_info);
2532         kvfree(frontswap_map);
2533         /* Destroy swap account information */
2534         swap_cgroup_swapoff(p->type);
2535         exit_swap_address_space(p->type);
2536
2537         inode = mapping->host;
2538         if (S_ISBLK(inode->i_mode)) {
2539                 struct block_device *bdev = I_BDEV(inode);
2540
2541                 set_blocksize(bdev, old_block_size);
2542                 blkdev_put(bdev, p);
2543         }
2544
2545         inode_lock(inode);
2546         inode->i_flags &= ~S_SWAPFILE;
2547         inode_unlock(inode);
2548         filp_close(swap_file, NULL);
2549
2550         /*
2551          * Clear the SWP_USED flag after all resources are freed so that swapon
2552          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2553          * not hold p->lock after we cleared its SWP_WRITEOK.
2554          */
2555         spin_lock(&swap_lock);
2556         p->flags = 0;
2557         spin_unlock(&swap_lock);
2558
2559         err = 0;
2560         atomic_inc(&proc_poll_event);
2561         wake_up_interruptible(&proc_poll_wait);
2562
2563 out_dput:
2564         filp_close(victim, NULL);
2565 out:
2566         putname(pathname);
2567         return err;
2568 }
2569
2570 #ifdef CONFIG_PROC_FS
2571 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2572 {
2573         struct seq_file *seq = file->private_data;
2574
2575         poll_wait(file, &proc_poll_wait, wait);
2576
2577         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2578                 seq->poll_event = atomic_read(&proc_poll_event);
2579                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2580         }
2581
2582         return EPOLLIN | EPOLLRDNORM;
2583 }
2584
2585 /* iterator */
2586 static void *swap_start(struct seq_file *swap, loff_t *pos)
2587 {
2588         struct swap_info_struct *si;
2589         int type;
2590         loff_t l = *pos;
2591
2592         mutex_lock(&swapon_mutex);
2593
2594         if (!l)
2595                 return SEQ_START_TOKEN;
2596
2597         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2598                 if (!(si->flags & SWP_USED) || !si->swap_map)
2599                         continue;
2600                 if (!--l)
2601                         return si;
2602         }
2603
2604         return NULL;
2605 }
2606
2607 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2608 {
2609         struct swap_info_struct *si = v;
2610         int type;
2611
2612         if (v == SEQ_START_TOKEN)
2613                 type = 0;
2614         else
2615                 type = si->type + 1;
2616
2617         ++(*pos);
2618         for (; (si = swap_type_to_swap_info(type)); type++) {
2619                 if (!(si->flags & SWP_USED) || !si->swap_map)
2620                         continue;
2621                 return si;
2622         }
2623
2624         return NULL;
2625 }
2626
2627 static void swap_stop(struct seq_file *swap, void *v)
2628 {
2629         mutex_unlock(&swapon_mutex);
2630 }
2631
2632 static int swap_show(struct seq_file *swap, void *v)
2633 {
2634         struct swap_info_struct *si = v;
2635         struct file *file;
2636         int len;
2637         unsigned long bytes, inuse;
2638
2639         if (si == SEQ_START_TOKEN) {
2640                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2641                 return 0;
2642         }
2643
2644         bytes = si->pages << (PAGE_SHIFT - 10);
2645         inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2646
2647         file = si->swap_file;
2648         len = seq_file_path(swap, file, " \t\n\\");
2649         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2650                         len < 40 ? 40 - len : 1, " ",
2651                         S_ISBLK(file_inode(file)->i_mode) ?
2652                                 "partition" : "file\t",
2653                         bytes, bytes < 10000000 ? "\t" : "",
2654                         inuse, inuse < 10000000 ? "\t" : "",
2655                         si->prio);
2656         return 0;
2657 }
2658
2659 static const struct seq_operations swaps_op = {
2660         .start =        swap_start,
2661         .next =         swap_next,
2662         .stop =         swap_stop,
2663         .show =         swap_show
2664 };
2665
2666 static int swaps_open(struct inode *inode, struct file *file)
2667 {
2668         struct seq_file *seq;
2669         int ret;
2670
2671         ret = seq_open(file, &swaps_op);
2672         if (ret)
2673                 return ret;
2674
2675         seq = file->private_data;
2676         seq->poll_event = atomic_read(&proc_poll_event);
2677         return 0;
2678 }
2679
2680 static const struct proc_ops swaps_proc_ops = {
2681         .proc_flags     = PROC_ENTRY_PERMANENT,
2682         .proc_open      = swaps_open,
2683         .proc_read      = seq_read,
2684         .proc_lseek     = seq_lseek,
2685         .proc_release   = seq_release,
2686         .proc_poll      = swaps_poll,
2687 };
2688
2689 static int __init procswaps_init(void)
2690 {
2691         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2692         return 0;
2693 }
2694 __initcall(procswaps_init);
2695 #endif /* CONFIG_PROC_FS */
2696
2697 #ifdef MAX_SWAPFILES_CHECK
2698 static int __init max_swapfiles_check(void)
2699 {
2700         MAX_SWAPFILES_CHECK();
2701         return 0;
2702 }
2703 late_initcall(max_swapfiles_check);
2704 #endif
2705
2706 static struct swap_info_struct *alloc_swap_info(void)
2707 {
2708         struct swap_info_struct *p;
2709         struct swap_info_struct *defer = NULL;
2710         unsigned int type;
2711         int i;
2712
2713         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2714         if (!p)
2715                 return ERR_PTR(-ENOMEM);
2716
2717         if (percpu_ref_init(&p->users, swap_users_ref_free,
2718                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2719                 kvfree(p);
2720                 return ERR_PTR(-ENOMEM);
2721         }
2722
2723         spin_lock(&swap_lock);
2724         for (type = 0; type < nr_swapfiles; type++) {
2725                 if (!(swap_info[type]->flags & SWP_USED))
2726                         break;
2727         }
2728         if (type >= MAX_SWAPFILES) {
2729                 spin_unlock(&swap_lock);
2730                 percpu_ref_exit(&p->users);
2731                 kvfree(p);
2732                 return ERR_PTR(-EPERM);
2733         }
2734         if (type >= nr_swapfiles) {
2735                 p->type = type;
2736                 /*
2737                  * Publish the swap_info_struct after initializing it.
2738                  * Note that kvzalloc() above zeroes all its fields.
2739                  */
2740                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2741                 nr_swapfiles++;
2742         } else {
2743                 defer = p;
2744                 p = swap_info[type];
2745                 /*
2746                  * Do not memset this entry: a racing procfs swap_next()
2747                  * would be relying on p->type to remain valid.
2748                  */
2749         }
2750         p->swap_extent_root = RB_ROOT;
2751         plist_node_init(&p->list, 0);
2752         for_each_node(i)
2753                 plist_node_init(&p->avail_lists[i], 0);
2754         p->flags = SWP_USED;
2755         spin_unlock(&swap_lock);
2756         if (defer) {
2757                 percpu_ref_exit(&defer->users);
2758                 kvfree(defer);
2759         }
2760         spin_lock_init(&p->lock);
2761         spin_lock_init(&p->cont_lock);
2762         init_completion(&p->comp);
2763
2764         return p;
2765 }
2766
2767 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2768 {
2769         int error;
2770
2771         if (S_ISBLK(inode->i_mode)) {
2772                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2773                                 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2774                 if (IS_ERR(p->bdev)) {
2775                         error = PTR_ERR(p->bdev);
2776                         p->bdev = NULL;
2777                         return error;
2778                 }
2779                 p->old_block_size = block_size(p->bdev);
2780                 error = set_blocksize(p->bdev, PAGE_SIZE);
2781                 if (error < 0)
2782                         return error;
2783                 /*
2784                  * Zoned block devices contain zones that have a sequential
2785                  * write only restriction.  Hence zoned block devices are not
2786                  * suitable for swapping.  Disallow them here.
2787                  */
2788                 if (bdev_is_zoned(p->bdev))
2789                         return -EINVAL;
2790                 p->flags |= SWP_BLKDEV;
2791         } else if (S_ISREG(inode->i_mode)) {
2792                 p->bdev = inode->i_sb->s_bdev;
2793         }
2794
2795         return 0;
2796 }
2797
2798
2799 /*
2800  * Find out how many pages are allowed for a single swap device. There
2801  * are two limiting factors:
2802  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2803  * 2) the number of bits in the swap pte, as defined by the different
2804  * architectures.
2805  *
2806  * In order to find the largest possible bit mask, a swap entry with
2807  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2808  * decoded to a swp_entry_t again, and finally the swap offset is
2809  * extracted.
2810  *
2811  * This will mask all the bits from the initial ~0UL mask that can't
2812  * be encoded in either the swp_entry_t or the architecture definition
2813  * of a swap pte.
2814  */
2815 unsigned long generic_max_swapfile_size(void)
2816 {
2817         return swp_offset(pte_to_swp_entry(
2818                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2819 }
2820
2821 /* Can be overridden by an architecture for additional checks. */
2822 __weak unsigned long arch_max_swapfile_size(void)
2823 {
2824         return generic_max_swapfile_size();
2825 }
2826
2827 static unsigned long read_swap_header(struct swap_info_struct *p,
2828                                         union swap_header *swap_header,
2829                                         struct inode *inode)
2830 {
2831         int i;
2832         unsigned long maxpages;
2833         unsigned long swapfilepages;
2834         unsigned long last_page;
2835
2836         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2837                 pr_err("Unable to find swap-space signature\n");
2838                 return 0;
2839         }
2840
2841         /* swap partition endianness hack... */
2842         if (swab32(swap_header->info.version) == 1) {
2843                 swab32s(&swap_header->info.version);
2844                 swab32s(&swap_header->info.last_page);
2845                 swab32s(&swap_header->info.nr_badpages);
2846                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2847                         return 0;
2848                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2849                         swab32s(&swap_header->info.badpages[i]);
2850         }
2851         /* Check the swap header's sub-version */
2852         if (swap_header->info.version != 1) {
2853                 pr_warn("Unable to handle swap header version %d\n",
2854                         swap_header->info.version);
2855                 return 0;
2856         }
2857
2858         p->lowest_bit  = 1;
2859         p->cluster_next = 1;
2860         p->cluster_nr = 0;
2861
2862         maxpages = swapfile_maximum_size;
2863         last_page = swap_header->info.last_page;
2864         if (!last_page) {
2865                 pr_warn("Empty swap-file\n");
2866                 return 0;
2867         }
2868         if (last_page > maxpages) {
2869                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2870                         maxpages << (PAGE_SHIFT - 10),
2871                         last_page << (PAGE_SHIFT - 10));
2872         }
2873         if (maxpages > last_page) {
2874                 maxpages = last_page + 1;
2875                 /* p->max is an unsigned int: don't overflow it */
2876                 if ((unsigned int)maxpages == 0)
2877                         maxpages = UINT_MAX;
2878         }
2879         p->highest_bit = maxpages - 1;
2880
2881         if (!maxpages)
2882                 return 0;
2883         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2884         if (swapfilepages && maxpages > swapfilepages) {
2885                 pr_warn("Swap area shorter than signature indicates\n");
2886                 return 0;
2887         }
2888         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2889                 return 0;
2890         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2891                 return 0;
2892
2893         return maxpages;
2894 }
2895
2896 #define SWAP_CLUSTER_INFO_COLS                                          \
2897         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2898 #define SWAP_CLUSTER_SPACE_COLS                                         \
2899         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2900 #define SWAP_CLUSTER_COLS                                               \
2901         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2902
2903 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2904                                         union swap_header *swap_header,
2905                                         unsigned char *swap_map,
2906                                         struct swap_cluster_info *cluster_info,
2907                                         unsigned long maxpages,
2908                                         sector_t *span)
2909 {
2910         unsigned int j, k;
2911         unsigned int nr_good_pages;
2912         int nr_extents;
2913         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2914         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2915         unsigned long i, idx;
2916
2917         nr_good_pages = maxpages - 1;   /* omit header page */
2918
2919         cluster_list_init(&p->free_clusters);
2920         cluster_list_init(&p->discard_clusters);
2921
2922         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2923                 unsigned int page_nr = swap_header->info.badpages[i];
2924                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2925                         return -EINVAL;
2926                 if (page_nr < maxpages) {
2927                         swap_map[page_nr] = SWAP_MAP_BAD;
2928                         nr_good_pages--;
2929                         /*
2930                          * Haven't marked the cluster free yet, no list
2931                          * operation involved
2932                          */
2933                         inc_cluster_info_page(p, cluster_info, page_nr);
2934                 }
2935         }
2936
2937         /* Haven't marked the cluster free yet, no list operation involved */
2938         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2939                 inc_cluster_info_page(p, cluster_info, i);
2940
2941         if (nr_good_pages) {
2942                 swap_map[0] = SWAP_MAP_BAD;
2943                 /*
2944                  * Not mark the cluster free yet, no list
2945                  * operation involved
2946                  */
2947                 inc_cluster_info_page(p, cluster_info, 0);
2948                 p->max = maxpages;
2949                 p->pages = nr_good_pages;
2950                 nr_extents = setup_swap_extents(p, span);
2951                 if (nr_extents < 0)
2952                         return nr_extents;
2953                 nr_good_pages = p->pages;
2954         }
2955         if (!nr_good_pages) {
2956                 pr_warn("Empty swap-file\n");
2957                 return -EINVAL;
2958         }
2959
2960         if (!cluster_info)
2961                 return nr_extents;
2962
2963
2964         /*
2965          * Reduce false cache line sharing between cluster_info and
2966          * sharing same address space.
2967          */
2968         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2969                 j = (k + col) % SWAP_CLUSTER_COLS;
2970                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2971                         idx = i * SWAP_CLUSTER_COLS + j;
2972                         if (idx >= nr_clusters)
2973                                 continue;
2974                         if (cluster_count(&cluster_info[idx]))
2975                                 continue;
2976                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2977                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2978                                               idx);
2979                 }
2980         }
2981         return nr_extents;
2982 }
2983
2984 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2985 {
2986         struct swap_info_struct *p;
2987         struct filename *name;
2988         struct file *swap_file = NULL;
2989         struct address_space *mapping;
2990         struct dentry *dentry;
2991         int prio;
2992         int error;
2993         union swap_header *swap_header;
2994         int nr_extents;
2995         sector_t span;
2996         unsigned long maxpages;
2997         unsigned char *swap_map = NULL;
2998         struct swap_cluster_info *cluster_info = NULL;
2999         unsigned long *frontswap_map = NULL;
3000         struct page *page = NULL;
3001         struct inode *inode = NULL;
3002         bool inced_nr_rotate_swap = false;
3003
3004         if (swap_flags & ~SWAP_FLAGS_VALID)
3005                 return -EINVAL;
3006
3007         if (!capable(CAP_SYS_ADMIN))
3008                 return -EPERM;
3009
3010         if (!swap_avail_heads)
3011                 return -ENOMEM;
3012
3013         p = alloc_swap_info();
3014         if (IS_ERR(p))
3015                 return PTR_ERR(p);
3016
3017         INIT_WORK(&p->discard_work, swap_discard_work);
3018
3019         name = getname(specialfile);
3020         if (IS_ERR(name)) {
3021                 error = PTR_ERR(name);
3022                 name = NULL;
3023                 goto bad_swap;
3024         }
3025         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3026         if (IS_ERR(swap_file)) {
3027                 error = PTR_ERR(swap_file);
3028                 swap_file = NULL;
3029                 goto bad_swap;
3030         }
3031
3032         p->swap_file = swap_file;
3033         mapping = swap_file->f_mapping;
3034         dentry = swap_file->f_path.dentry;
3035         inode = mapping->host;
3036
3037         error = claim_swapfile(p, inode);
3038         if (unlikely(error))
3039                 goto bad_swap;
3040
3041         inode_lock(inode);
3042         if (d_unlinked(dentry) || cant_mount(dentry)) {
3043                 error = -ENOENT;
3044                 goto bad_swap_unlock_inode;
3045         }
3046         if (IS_SWAPFILE(inode)) {
3047                 error = -EBUSY;
3048                 goto bad_swap_unlock_inode;
3049         }
3050
3051         /*
3052          * Read the swap header.
3053          */
3054         if (!mapping->a_ops->read_folio) {
3055                 error = -EINVAL;
3056                 goto bad_swap_unlock_inode;
3057         }
3058         page = read_mapping_page(mapping, 0, swap_file);
3059         if (IS_ERR(page)) {
3060                 error = PTR_ERR(page);
3061                 goto bad_swap_unlock_inode;
3062         }
3063         swap_header = kmap(page);
3064
3065         maxpages = read_swap_header(p, swap_header, inode);
3066         if (unlikely(!maxpages)) {
3067                 error = -EINVAL;
3068                 goto bad_swap_unlock_inode;
3069         }
3070
3071         /* OK, set up the swap map and apply the bad block list */
3072         swap_map = vzalloc(maxpages);
3073         if (!swap_map) {
3074                 error = -ENOMEM;
3075                 goto bad_swap_unlock_inode;
3076         }
3077
3078         if (p->bdev && bdev_stable_writes(p->bdev))
3079                 p->flags |= SWP_STABLE_WRITES;
3080
3081         if (p->bdev && bdev_synchronous(p->bdev))
3082                 p->flags |= SWP_SYNCHRONOUS_IO;
3083
3084         if (p->bdev && bdev_nonrot(p->bdev)) {
3085                 int cpu;
3086                 unsigned long ci, nr_cluster;
3087
3088                 p->flags |= SWP_SOLIDSTATE;
3089                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3090                 if (!p->cluster_next_cpu) {
3091                         error = -ENOMEM;
3092                         goto bad_swap_unlock_inode;
3093                 }
3094                 /*
3095                  * select a random position to start with to help wear leveling
3096                  * SSD
3097                  */
3098                 for_each_possible_cpu(cpu) {
3099                         per_cpu(*p->cluster_next_cpu, cpu) =
3100                                 get_random_u32_inclusive(1, p->highest_bit);
3101                 }
3102                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3103
3104                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3105                                         GFP_KERNEL);
3106                 if (!cluster_info) {
3107                         error = -ENOMEM;
3108                         goto bad_swap_unlock_inode;
3109                 }
3110
3111                 for (ci = 0; ci < nr_cluster; ci++)
3112                         spin_lock_init(&((cluster_info + ci)->lock));
3113
3114                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3115                 if (!p->percpu_cluster) {
3116                         error = -ENOMEM;
3117                         goto bad_swap_unlock_inode;
3118                 }
3119                 for_each_possible_cpu(cpu) {
3120                         struct percpu_cluster *cluster;
3121                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3122                         cluster_set_null(&cluster->index);
3123                 }
3124         } else {
3125                 atomic_inc(&nr_rotate_swap);
3126                 inced_nr_rotate_swap = true;
3127         }
3128
3129         error = swap_cgroup_swapon(p->type, maxpages);
3130         if (error)
3131                 goto bad_swap_unlock_inode;
3132
3133         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3134                 cluster_info, maxpages, &span);
3135         if (unlikely(nr_extents < 0)) {
3136                 error = nr_extents;
3137                 goto bad_swap_unlock_inode;
3138         }
3139         /* frontswap enabled? set up bit-per-page map for frontswap */
3140         if (IS_ENABLED(CONFIG_FRONTSWAP))
3141                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3142                                          sizeof(long),
3143                                          GFP_KERNEL);
3144
3145         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3146             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3147                 /*
3148                  * When discard is enabled for swap with no particular
3149                  * policy flagged, we set all swap discard flags here in
3150                  * order to sustain backward compatibility with older
3151                  * swapon(8) releases.
3152                  */
3153                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3154                              SWP_PAGE_DISCARD);
3155
3156                 /*
3157                  * By flagging sys_swapon, a sysadmin can tell us to
3158                  * either do single-time area discards only, or to just
3159                  * perform discards for released swap page-clusters.
3160                  * Now it's time to adjust the p->flags accordingly.
3161                  */
3162                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3163                         p->flags &= ~SWP_PAGE_DISCARD;
3164                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3165                         p->flags &= ~SWP_AREA_DISCARD;
3166
3167                 /* issue a swapon-time discard if it's still required */
3168                 if (p->flags & SWP_AREA_DISCARD) {
3169                         int err = discard_swap(p);
3170                         if (unlikely(err))
3171                                 pr_err("swapon: discard_swap(%p): %d\n",
3172                                         p, err);
3173                 }
3174         }
3175
3176         error = init_swap_address_space(p->type, maxpages);
3177         if (error)
3178                 goto bad_swap_unlock_inode;
3179
3180         /*
3181          * Flush any pending IO and dirty mappings before we start using this
3182          * swap device.
3183          */
3184         inode->i_flags |= S_SWAPFILE;
3185         error = inode_drain_writes(inode);
3186         if (error) {
3187                 inode->i_flags &= ~S_SWAPFILE;
3188                 goto free_swap_address_space;
3189         }
3190
3191         mutex_lock(&swapon_mutex);
3192         prio = -1;
3193         if (swap_flags & SWAP_FLAG_PREFER)
3194                 prio =
3195                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3196         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3197
3198         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3199                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3200                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3201                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3202                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3203                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3204                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3205                 (frontswap_map) ? "FS" : "");
3206
3207         mutex_unlock(&swapon_mutex);
3208         atomic_inc(&proc_poll_event);
3209         wake_up_interruptible(&proc_poll_wait);
3210
3211         error = 0;
3212         goto out;
3213 free_swap_address_space:
3214         exit_swap_address_space(p->type);
3215 bad_swap_unlock_inode:
3216         inode_unlock(inode);
3217 bad_swap:
3218         free_percpu(p->percpu_cluster);
3219         p->percpu_cluster = NULL;
3220         free_percpu(p->cluster_next_cpu);
3221         p->cluster_next_cpu = NULL;
3222         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3223                 set_blocksize(p->bdev, p->old_block_size);
3224                 blkdev_put(p->bdev, p);
3225         }
3226         inode = NULL;
3227         destroy_swap_extents(p);
3228         swap_cgroup_swapoff(p->type);
3229         spin_lock(&swap_lock);
3230         p->swap_file = NULL;
3231         p->flags = 0;
3232         spin_unlock(&swap_lock);
3233         vfree(swap_map);
3234         kvfree(cluster_info);
3235         kvfree(frontswap_map);
3236         if (inced_nr_rotate_swap)
3237                 atomic_dec(&nr_rotate_swap);
3238         if (swap_file)
3239                 filp_close(swap_file, NULL);
3240 out:
3241         if (page && !IS_ERR(page)) {
3242                 kunmap(page);
3243                 put_page(page);
3244         }
3245         if (name)
3246                 putname(name);
3247         if (inode)
3248                 inode_unlock(inode);
3249         if (!error)
3250                 enable_swap_slots_cache();
3251         return error;
3252 }
3253
3254 void si_swapinfo(struct sysinfo *val)
3255 {
3256         unsigned int type;
3257         unsigned long nr_to_be_unused = 0;
3258
3259         spin_lock(&swap_lock);
3260         for (type = 0; type < nr_swapfiles; type++) {
3261                 struct swap_info_struct *si = swap_info[type];
3262
3263                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3264                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3265         }
3266         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3267         val->totalswap = total_swap_pages + nr_to_be_unused;
3268         spin_unlock(&swap_lock);
3269 }
3270
3271 /*
3272  * Verify that a swap entry is valid and increment its swap map count.
3273  *
3274  * Returns error code in following case.
3275  * - success -> 0
3276  * - swp_entry is invalid -> EINVAL
3277  * - swp_entry is migration entry -> EINVAL
3278  * - swap-cache reference is requested but there is already one. -> EEXIST
3279  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3280  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3281  */
3282 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3283 {
3284         struct swap_info_struct *p;
3285         struct swap_cluster_info *ci;
3286         unsigned long offset;
3287         unsigned char count;
3288         unsigned char has_cache;
3289         int err;
3290
3291         p = get_swap_device(entry);
3292         if (!p)
3293                 return -EINVAL;
3294
3295         offset = swp_offset(entry);
3296         ci = lock_cluster_or_swap_info(p, offset);
3297
3298         count = p->swap_map[offset];
3299
3300         /*
3301          * swapin_readahead() doesn't check if a swap entry is valid, so the
3302          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3303          */
3304         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3305                 err = -ENOENT;
3306                 goto unlock_out;
3307         }
3308
3309         has_cache = count & SWAP_HAS_CACHE;
3310         count &= ~SWAP_HAS_CACHE;
3311         err = 0;
3312
3313         if (usage == SWAP_HAS_CACHE) {
3314
3315                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3316                 if (!has_cache && count)
3317                         has_cache = SWAP_HAS_CACHE;
3318                 else if (has_cache)             /* someone else added cache */
3319                         err = -EEXIST;
3320                 else                            /* no users remaining */
3321                         err = -ENOENT;
3322
3323         } else if (count || has_cache) {
3324
3325                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3326                         count += usage;
3327                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3328                         err = -EINVAL;
3329                 else if (swap_count_continued(p, offset, count))
3330                         count = COUNT_CONTINUED;
3331                 else
3332                         err = -ENOMEM;
3333         } else
3334                 err = -ENOENT;                  /* unused swap entry */
3335
3336         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3337
3338 unlock_out:
3339         unlock_cluster_or_swap_info(p, ci);
3340         put_swap_device(p);
3341         return err;
3342 }
3343
3344 /*
3345  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3346  * (in which case its reference count is never incremented).
3347  */
3348 void swap_shmem_alloc(swp_entry_t entry)
3349 {
3350         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3351 }
3352
3353 /*
3354  * Increase reference count of swap entry by 1.
3355  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3356  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3357  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3358  * might occur if a page table entry has got corrupted.
3359  */
3360 int swap_duplicate(swp_entry_t entry)
3361 {
3362         int err = 0;
3363
3364         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3365                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3366         return err;
3367 }
3368
3369 /*
3370  * @entry: swap entry for which we allocate swap cache.
3371  *
3372  * Called when allocating swap cache for existing swap entry,
3373  * This can return error codes. Returns 0 at success.
3374  * -EEXIST means there is a swap cache.
3375  * Note: return code is different from swap_duplicate().
3376  */
3377 int swapcache_prepare(swp_entry_t entry)
3378 {
3379         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3380 }
3381
3382 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3383 {
3384         return swap_type_to_swap_info(swp_type(entry));
3385 }
3386
3387 struct swap_info_struct *page_swap_info(struct page *page)
3388 {
3389         swp_entry_t entry = { .val = page_private(page) };
3390         return swp_swap_info(entry);
3391 }
3392
3393 /*
3394  * out-of-line methods to avoid include hell.
3395  */
3396 struct address_space *swapcache_mapping(struct folio *folio)
3397 {
3398         return page_swap_info(&folio->page)->swap_file->f_mapping;
3399 }
3400 EXPORT_SYMBOL_GPL(swapcache_mapping);
3401
3402 pgoff_t __page_file_index(struct page *page)
3403 {
3404         swp_entry_t swap = { .val = page_private(page) };
3405         return swp_offset(swap);
3406 }
3407 EXPORT_SYMBOL_GPL(__page_file_index);
3408
3409 /*
3410  * add_swap_count_continuation - called when a swap count is duplicated
3411  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3412  * page of the original vmalloc'ed swap_map, to hold the continuation count
3413  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3414  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3415  *
3416  * These continuation pages are seldom referenced: the common paths all work
3417  * on the original swap_map, only referring to a continuation page when the
3418  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3419  *
3420  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3421  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3422  * can be called after dropping locks.
3423  */
3424 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3425 {
3426         struct swap_info_struct *si;
3427         struct swap_cluster_info *ci;
3428         struct page *head;
3429         struct page *page;
3430         struct page *list_page;
3431         pgoff_t offset;
3432         unsigned char count;
3433         int ret = 0;
3434
3435         /*
3436          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3437          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3438          */
3439         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3440
3441         si = get_swap_device(entry);
3442         if (!si) {
3443                 /*
3444                  * An acceptable race has occurred since the failing
3445                  * __swap_duplicate(): the swap device may be swapoff
3446                  */
3447                 goto outer;
3448         }
3449         spin_lock(&si->lock);
3450
3451         offset = swp_offset(entry);
3452
3453         ci = lock_cluster(si, offset);
3454
3455         count = swap_count(si->swap_map[offset]);
3456
3457         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3458                 /*
3459                  * The higher the swap count, the more likely it is that tasks
3460                  * will race to add swap count continuation: we need to avoid
3461                  * over-provisioning.
3462                  */
3463                 goto out;
3464         }
3465
3466         if (!page) {
3467                 ret = -ENOMEM;
3468                 goto out;
3469         }
3470
3471         /*
3472          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3473          * no architecture is using highmem pages for kernel page tables: so it
3474          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3475          */
3476         head = vmalloc_to_page(si->swap_map + offset);
3477         offset &= ~PAGE_MASK;
3478
3479         spin_lock(&si->cont_lock);
3480         /*
3481          * Page allocation does not initialize the page's lru field,
3482          * but it does always reset its private field.
3483          */
3484         if (!page_private(head)) {
3485                 BUG_ON(count & COUNT_CONTINUED);
3486                 INIT_LIST_HEAD(&head->lru);
3487                 set_page_private(head, SWP_CONTINUED);
3488                 si->flags |= SWP_CONTINUED;
3489         }
3490
3491         list_for_each_entry(list_page, &head->lru, lru) {
3492                 unsigned char *map;
3493
3494                 /*
3495                  * If the previous map said no continuation, but we've found
3496                  * a continuation page, free our allocation and use this one.
3497                  */
3498                 if (!(count & COUNT_CONTINUED))
3499                         goto out_unlock_cont;
3500
3501                 map = kmap_atomic(list_page) + offset;
3502                 count = *map;
3503                 kunmap_atomic(map);
3504
3505                 /*
3506                  * If this continuation count now has some space in it,
3507                  * free our allocation and use this one.
3508                  */
3509                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3510                         goto out_unlock_cont;
3511         }
3512
3513         list_add_tail(&page->lru, &head->lru);
3514         page = NULL;                    /* now it's attached, don't free it */
3515 out_unlock_cont:
3516         spin_unlock(&si->cont_lock);
3517 out:
3518         unlock_cluster(ci);
3519         spin_unlock(&si->lock);
3520         put_swap_device(si);
3521 outer:
3522         if (page)
3523                 __free_page(page);
3524         return ret;
3525 }
3526
3527 /*
3528  * swap_count_continued - when the original swap_map count is incremented
3529  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3530  * into, carry if so, or else fail until a new continuation page is allocated;
3531  * when the original swap_map count is decremented from 0 with continuation,
3532  * borrow from the continuation and report whether it still holds more.
3533  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3534  * lock.
3535  */
3536 static bool swap_count_continued(struct swap_info_struct *si,
3537                                  pgoff_t offset, unsigned char count)
3538 {
3539         struct page *head;
3540         struct page *page;
3541         unsigned char *map;
3542         bool ret;
3543
3544         head = vmalloc_to_page(si->swap_map + offset);
3545         if (page_private(head) != SWP_CONTINUED) {
3546                 BUG_ON(count & COUNT_CONTINUED);
3547                 return false;           /* need to add count continuation */
3548         }
3549
3550         spin_lock(&si->cont_lock);
3551         offset &= ~PAGE_MASK;
3552         page = list_next_entry(head, lru);
3553         map = kmap_atomic(page) + offset;
3554
3555         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3556                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3557
3558         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3559                 /*
3560                  * Think of how you add 1 to 999
3561                  */
3562                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3563                         kunmap_atomic(map);
3564                         page = list_next_entry(page, lru);
3565                         BUG_ON(page == head);
3566                         map = kmap_atomic(page) + offset;
3567                 }
3568                 if (*map == SWAP_CONT_MAX) {
3569                         kunmap_atomic(map);
3570                         page = list_next_entry(page, lru);
3571                         if (page == head) {
3572                                 ret = false;    /* add count continuation */
3573                                 goto out;
3574                         }
3575                         map = kmap_atomic(page) + offset;
3576 init_map:               *map = 0;               /* we didn't zero the page */
3577                 }
3578                 *map += 1;
3579                 kunmap_atomic(map);
3580                 while ((page = list_prev_entry(page, lru)) != head) {
3581                         map = kmap_atomic(page) + offset;
3582                         *map = COUNT_CONTINUED;
3583                         kunmap_atomic(map);
3584                 }
3585                 ret = true;                     /* incremented */
3586
3587         } else {                                /* decrementing */
3588                 /*
3589                  * Think of how you subtract 1 from 1000
3590                  */
3591                 BUG_ON(count != COUNT_CONTINUED);
3592                 while (*map == COUNT_CONTINUED) {
3593                         kunmap_atomic(map);
3594                         page = list_next_entry(page, lru);
3595                         BUG_ON(page == head);
3596                         map = kmap_atomic(page) + offset;
3597                 }
3598                 BUG_ON(*map == 0);
3599                 *map -= 1;
3600                 if (*map == 0)
3601                         count = 0;
3602                 kunmap_atomic(map);
3603                 while ((page = list_prev_entry(page, lru)) != head) {
3604                         map = kmap_atomic(page) + offset;
3605                         *map = SWAP_CONT_MAX | count;
3606                         count = COUNT_CONTINUED;
3607                         kunmap_atomic(map);
3608                 }
3609                 ret = count == COUNT_CONTINUED;
3610         }
3611 out:
3612         spin_unlock(&si->cont_lock);
3613         return ret;
3614 }
3615
3616 /*
3617  * free_swap_count_continuations - swapoff free all the continuation pages
3618  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3619  */
3620 static void free_swap_count_continuations(struct swap_info_struct *si)
3621 {
3622         pgoff_t offset;
3623
3624         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3625                 struct page *head;
3626                 head = vmalloc_to_page(si->swap_map + offset);
3627                 if (page_private(head)) {
3628                         struct page *page, *next;
3629
3630                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3631                                 list_del(&page->lru);
3632                                 __free_page(page);
3633                         }
3634                 }
3635         }
3636 }
3637
3638 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3639 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3640 {
3641         struct swap_info_struct *si, *next;
3642         int nid = folio_nid(folio);
3643
3644         if (!(gfp & __GFP_IO))
3645                 return;
3646
3647         if (!blk_cgroup_congested())
3648                 return;
3649
3650         /*
3651          * We've already scheduled a throttle, avoid taking the global swap
3652          * lock.
3653          */
3654         if (current->throttle_disk)
3655                 return;
3656
3657         spin_lock(&swap_avail_lock);
3658         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3659                                   avail_lists[nid]) {
3660                 if (si->bdev) {
3661                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3662                         break;
3663                 }
3664         }
3665         spin_unlock(&swap_avail_lock);
3666 }
3667 #endif
3668
3669 static int __init swapfile_init(void)
3670 {
3671         int nid;
3672
3673         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3674                                          GFP_KERNEL);
3675         if (!swap_avail_heads) {
3676                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3677                 return -ENOMEM;
3678         }
3679
3680         for_each_node(nid)
3681                 plist_head_init(&swap_avail_heads[nid]);
3682
3683         swapfile_maximum_size = arch_max_swapfile_size();
3684
3685 #ifdef CONFIG_MIGRATION
3686         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3687                 swap_migration_ad_supported = true;
3688 #endif  /* CONFIG_MIGRATION */
3689
3690         return 0;
3691 }
3692 subsys_initcall(swapfile_init);