mm, THP, swap: support splitting THP for THP swap out
[linux-block.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static PLIST_HEAD(swap_avail_head);
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 static inline unsigned char swap_count(unsigned char ent)
100 {
101         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
102 }
103
104 /* returns 1 if swap entry is freed */
105 static int
106 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
107 {
108         swp_entry_t entry = swp_entry(si->type, offset);
109         struct page *page;
110         int ret = 0;
111
112         page = find_get_page(swap_address_space(entry), swp_offset(entry));
113         if (!page)
114                 return 0;
115         /*
116          * This function is called from scan_swap_map() and it's called
117          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
118          * We have to use trylock for avoiding deadlock. This is a special
119          * case and you should use try_to_free_swap() with explicit lock_page()
120          * in usual operations.
121          */
122         if (trylock_page(page)) {
123                 ret = try_to_free_swap(page);
124                 unlock_page(page);
125         }
126         put_page(page);
127         return ret;
128 }
129
130 /*
131  * swapon tell device that all the old swap contents can be discarded,
132  * to allow the swap device to optimize its wear-levelling.
133  */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136         struct swap_extent *se;
137         sector_t start_block;
138         sector_t nr_blocks;
139         int err = 0;
140
141         /* Do not discard the swap header page! */
142         se = &si->first_swap_extent;
143         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145         if (nr_blocks) {
146                 err = blkdev_issue_discard(si->bdev, start_block,
147                                 nr_blocks, GFP_KERNEL, 0);
148                 if (err)
149                         return err;
150                 cond_resched();
151         }
152
153         list_for_each_entry(se, &si->first_swap_extent.list, list) {
154                 start_block = se->start_block << (PAGE_SHIFT - 9);
155                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156
157                 err = blkdev_issue_discard(si->bdev, start_block,
158                                 nr_blocks, GFP_KERNEL, 0);
159                 if (err)
160                         break;
161
162                 cond_resched();
163         }
164         return err;             /* That will often be -EOPNOTSUPP */
165 }
166
167 /*
168  * swap allocation tell device that a cluster of swap can now be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172                                  pgoff_t start_page, pgoff_t nr_pages)
173 {
174         struct swap_extent *se = si->curr_swap_extent;
175         int found_extent = 0;
176
177         while (nr_pages) {
178                 if (se->start_page <= start_page &&
179                     start_page < se->start_page + se->nr_pages) {
180                         pgoff_t offset = start_page - se->start_page;
181                         sector_t start_block = se->start_block + offset;
182                         sector_t nr_blocks = se->nr_pages - offset;
183
184                         if (nr_blocks > nr_pages)
185                                 nr_blocks = nr_pages;
186                         start_page += nr_blocks;
187                         nr_pages -= nr_blocks;
188
189                         if (!found_extent++)
190                                 si->curr_swap_extent = se;
191
192                         start_block <<= PAGE_SHIFT - 9;
193                         nr_blocks <<= PAGE_SHIFT - 9;
194                         if (blkdev_issue_discard(si->bdev, start_block,
195                                     nr_blocks, GFP_NOIO, 0))
196                                 break;
197                 }
198
199                 se = list_next_entry(se, list);
200         }
201 }
202
203 #ifdef CONFIG_THP_SWAP
204 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
205 #else
206 #define SWAPFILE_CLUSTER        256
207 #endif
208 #define LATENCY_LIMIT           256
209
210 static inline void cluster_set_flag(struct swap_cluster_info *info,
211         unsigned int flag)
212 {
213         info->flags = flag;
214 }
215
216 static inline unsigned int cluster_count(struct swap_cluster_info *info)
217 {
218         return info->data;
219 }
220
221 static inline void cluster_set_count(struct swap_cluster_info *info,
222                                      unsigned int c)
223 {
224         info->data = c;
225 }
226
227 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
228                                          unsigned int c, unsigned int f)
229 {
230         info->flags = f;
231         info->data = c;
232 }
233
234 static inline unsigned int cluster_next(struct swap_cluster_info *info)
235 {
236         return info->data;
237 }
238
239 static inline void cluster_set_next(struct swap_cluster_info *info,
240                                     unsigned int n)
241 {
242         info->data = n;
243 }
244
245 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
246                                          unsigned int n, unsigned int f)
247 {
248         info->flags = f;
249         info->data = n;
250 }
251
252 static inline bool cluster_is_free(struct swap_cluster_info *info)
253 {
254         return info->flags & CLUSTER_FLAG_FREE;
255 }
256
257 static inline bool cluster_is_null(struct swap_cluster_info *info)
258 {
259         return info->flags & CLUSTER_FLAG_NEXT_NULL;
260 }
261
262 static inline void cluster_set_null(struct swap_cluster_info *info)
263 {
264         info->flags = CLUSTER_FLAG_NEXT_NULL;
265         info->data = 0;
266 }
267
268 static inline bool cluster_is_huge(struct swap_cluster_info *info)
269 {
270         return info->flags & CLUSTER_FLAG_HUGE;
271 }
272
273 static inline void cluster_clear_huge(struct swap_cluster_info *info)
274 {
275         info->flags &= ~CLUSTER_FLAG_HUGE;
276 }
277
278 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
279                                                      unsigned long offset)
280 {
281         struct swap_cluster_info *ci;
282
283         ci = si->cluster_info;
284         if (ci) {
285                 ci += offset / SWAPFILE_CLUSTER;
286                 spin_lock(&ci->lock);
287         }
288         return ci;
289 }
290
291 static inline void unlock_cluster(struct swap_cluster_info *ci)
292 {
293         if (ci)
294                 spin_unlock(&ci->lock);
295 }
296
297 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
298         struct swap_info_struct *si,
299         unsigned long offset)
300 {
301         struct swap_cluster_info *ci;
302
303         ci = lock_cluster(si, offset);
304         if (!ci)
305                 spin_lock(&si->lock);
306
307         return ci;
308 }
309
310 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
311                                                struct swap_cluster_info *ci)
312 {
313         if (ci)
314                 unlock_cluster(ci);
315         else
316                 spin_unlock(&si->lock);
317 }
318
319 static inline bool cluster_list_empty(struct swap_cluster_list *list)
320 {
321         return cluster_is_null(&list->head);
322 }
323
324 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
325 {
326         return cluster_next(&list->head);
327 }
328
329 static void cluster_list_init(struct swap_cluster_list *list)
330 {
331         cluster_set_null(&list->head);
332         cluster_set_null(&list->tail);
333 }
334
335 static void cluster_list_add_tail(struct swap_cluster_list *list,
336                                   struct swap_cluster_info *ci,
337                                   unsigned int idx)
338 {
339         if (cluster_list_empty(list)) {
340                 cluster_set_next_flag(&list->head, idx, 0);
341                 cluster_set_next_flag(&list->tail, idx, 0);
342         } else {
343                 struct swap_cluster_info *ci_tail;
344                 unsigned int tail = cluster_next(&list->tail);
345
346                 /*
347                  * Nested cluster lock, but both cluster locks are
348                  * only acquired when we held swap_info_struct->lock
349                  */
350                 ci_tail = ci + tail;
351                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
352                 cluster_set_next(ci_tail, idx);
353                 spin_unlock(&ci_tail->lock);
354                 cluster_set_next_flag(&list->tail, idx, 0);
355         }
356 }
357
358 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
359                                            struct swap_cluster_info *ci)
360 {
361         unsigned int idx;
362
363         idx = cluster_next(&list->head);
364         if (cluster_next(&list->tail) == idx) {
365                 cluster_set_null(&list->head);
366                 cluster_set_null(&list->tail);
367         } else
368                 cluster_set_next_flag(&list->head,
369                                       cluster_next(&ci[idx]), 0);
370
371         return idx;
372 }
373
374 /* Add a cluster to discard list and schedule it to do discard */
375 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
376                 unsigned int idx)
377 {
378         /*
379          * If scan_swap_map() can't find a free cluster, it will check
380          * si->swap_map directly. To make sure the discarding cluster isn't
381          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
382          * will be cleared after discard
383          */
384         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
385                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
386
387         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
388
389         schedule_work(&si->discard_work);
390 }
391
392 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
393 {
394         struct swap_cluster_info *ci = si->cluster_info;
395
396         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
397         cluster_list_add_tail(&si->free_clusters, ci, idx);
398 }
399
400 /*
401  * Doing discard actually. After a cluster discard is finished, the cluster
402  * will be added to free cluster list. caller should hold si->lock.
403 */
404 static void swap_do_scheduled_discard(struct swap_info_struct *si)
405 {
406         struct swap_cluster_info *info, *ci;
407         unsigned int idx;
408
409         info = si->cluster_info;
410
411         while (!cluster_list_empty(&si->discard_clusters)) {
412                 idx = cluster_list_del_first(&si->discard_clusters, info);
413                 spin_unlock(&si->lock);
414
415                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
416                                 SWAPFILE_CLUSTER);
417
418                 spin_lock(&si->lock);
419                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
420                 __free_cluster(si, idx);
421                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
422                                 0, SWAPFILE_CLUSTER);
423                 unlock_cluster(ci);
424         }
425 }
426
427 static void swap_discard_work(struct work_struct *work)
428 {
429         struct swap_info_struct *si;
430
431         si = container_of(work, struct swap_info_struct, discard_work);
432
433         spin_lock(&si->lock);
434         swap_do_scheduled_discard(si);
435         spin_unlock(&si->lock);
436 }
437
438 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
439 {
440         struct swap_cluster_info *ci = si->cluster_info;
441
442         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
443         cluster_list_del_first(&si->free_clusters, ci);
444         cluster_set_count_flag(ci + idx, 0, 0);
445 }
446
447 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
448 {
449         struct swap_cluster_info *ci = si->cluster_info + idx;
450
451         VM_BUG_ON(cluster_count(ci) != 0);
452         /*
453          * If the swap is discardable, prepare discard the cluster
454          * instead of free it immediately. The cluster will be freed
455          * after discard.
456          */
457         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
458             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
459                 swap_cluster_schedule_discard(si, idx);
460                 return;
461         }
462
463         __free_cluster(si, idx);
464 }
465
466 /*
467  * The cluster corresponding to page_nr will be used. The cluster will be
468  * removed from free cluster list and its usage counter will be increased.
469  */
470 static void inc_cluster_info_page(struct swap_info_struct *p,
471         struct swap_cluster_info *cluster_info, unsigned long page_nr)
472 {
473         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
474
475         if (!cluster_info)
476                 return;
477         if (cluster_is_free(&cluster_info[idx]))
478                 alloc_cluster(p, idx);
479
480         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
481         cluster_set_count(&cluster_info[idx],
482                 cluster_count(&cluster_info[idx]) + 1);
483 }
484
485 /*
486  * The cluster corresponding to page_nr decreases one usage. If the usage
487  * counter becomes 0, which means no page in the cluster is in using, we can
488  * optionally discard the cluster and add it to free cluster list.
489  */
490 static void dec_cluster_info_page(struct swap_info_struct *p,
491         struct swap_cluster_info *cluster_info, unsigned long page_nr)
492 {
493         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
494
495         if (!cluster_info)
496                 return;
497
498         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
499         cluster_set_count(&cluster_info[idx],
500                 cluster_count(&cluster_info[idx]) - 1);
501
502         if (cluster_count(&cluster_info[idx]) == 0)
503                 free_cluster(p, idx);
504 }
505
506 /*
507  * It's possible scan_swap_map() uses a free cluster in the middle of free
508  * cluster list. Avoiding such abuse to avoid list corruption.
509  */
510 static bool
511 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
512         unsigned long offset)
513 {
514         struct percpu_cluster *percpu_cluster;
515         bool conflict;
516
517         offset /= SWAPFILE_CLUSTER;
518         conflict = !cluster_list_empty(&si->free_clusters) &&
519                 offset != cluster_list_first(&si->free_clusters) &&
520                 cluster_is_free(&si->cluster_info[offset]);
521
522         if (!conflict)
523                 return false;
524
525         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
526         cluster_set_null(&percpu_cluster->index);
527         return true;
528 }
529
530 /*
531  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
532  * might involve allocating a new cluster for current CPU too.
533  */
534 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
535         unsigned long *offset, unsigned long *scan_base)
536 {
537         struct percpu_cluster *cluster;
538         struct swap_cluster_info *ci;
539         bool found_free;
540         unsigned long tmp, max;
541
542 new_cluster:
543         cluster = this_cpu_ptr(si->percpu_cluster);
544         if (cluster_is_null(&cluster->index)) {
545                 if (!cluster_list_empty(&si->free_clusters)) {
546                         cluster->index = si->free_clusters.head;
547                         cluster->next = cluster_next(&cluster->index) *
548                                         SWAPFILE_CLUSTER;
549                 } else if (!cluster_list_empty(&si->discard_clusters)) {
550                         /*
551                          * we don't have free cluster but have some clusters in
552                          * discarding, do discard now and reclaim them
553                          */
554                         swap_do_scheduled_discard(si);
555                         *scan_base = *offset = si->cluster_next;
556                         goto new_cluster;
557                 } else
558                         return false;
559         }
560
561         found_free = false;
562
563         /*
564          * Other CPUs can use our cluster if they can't find a free cluster,
565          * check if there is still free entry in the cluster
566          */
567         tmp = cluster->next;
568         max = min_t(unsigned long, si->max,
569                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
570         if (tmp >= max) {
571                 cluster_set_null(&cluster->index);
572                 goto new_cluster;
573         }
574         ci = lock_cluster(si, tmp);
575         while (tmp < max) {
576                 if (!si->swap_map[tmp]) {
577                         found_free = true;
578                         break;
579                 }
580                 tmp++;
581         }
582         unlock_cluster(ci);
583         if (!found_free) {
584                 cluster_set_null(&cluster->index);
585                 goto new_cluster;
586         }
587         cluster->next = tmp + 1;
588         *offset = tmp;
589         *scan_base = tmp;
590         return found_free;
591 }
592
593 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
594                              unsigned int nr_entries)
595 {
596         unsigned int end = offset + nr_entries - 1;
597
598         if (offset == si->lowest_bit)
599                 si->lowest_bit += nr_entries;
600         if (end == si->highest_bit)
601                 si->highest_bit -= nr_entries;
602         si->inuse_pages += nr_entries;
603         if (si->inuse_pages == si->pages) {
604                 si->lowest_bit = si->max;
605                 si->highest_bit = 0;
606                 spin_lock(&swap_avail_lock);
607                 plist_del(&si->avail_list, &swap_avail_head);
608                 spin_unlock(&swap_avail_lock);
609         }
610 }
611
612 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
613                             unsigned int nr_entries)
614 {
615         unsigned long end = offset + nr_entries - 1;
616         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
617
618         if (offset < si->lowest_bit)
619                 si->lowest_bit = offset;
620         if (end > si->highest_bit) {
621                 bool was_full = !si->highest_bit;
622
623                 si->highest_bit = end;
624                 if (was_full && (si->flags & SWP_WRITEOK)) {
625                         spin_lock(&swap_avail_lock);
626                         WARN_ON(!plist_node_empty(&si->avail_list));
627                         if (plist_node_empty(&si->avail_list))
628                                 plist_add(&si->avail_list, &swap_avail_head);
629                         spin_unlock(&swap_avail_lock);
630                 }
631         }
632         atomic_long_add(nr_entries, &nr_swap_pages);
633         si->inuse_pages -= nr_entries;
634         if (si->flags & SWP_BLKDEV)
635                 swap_slot_free_notify =
636                         si->bdev->bd_disk->fops->swap_slot_free_notify;
637         else
638                 swap_slot_free_notify = NULL;
639         while (offset <= end) {
640                 frontswap_invalidate_page(si->type, offset);
641                 if (swap_slot_free_notify)
642                         swap_slot_free_notify(si->bdev, offset);
643                 offset++;
644         }
645 }
646
647 static int scan_swap_map_slots(struct swap_info_struct *si,
648                                unsigned char usage, int nr,
649                                swp_entry_t slots[])
650 {
651         struct swap_cluster_info *ci;
652         unsigned long offset;
653         unsigned long scan_base;
654         unsigned long last_in_cluster = 0;
655         int latency_ration = LATENCY_LIMIT;
656         int n_ret = 0;
657
658         if (nr > SWAP_BATCH)
659                 nr = SWAP_BATCH;
660
661         /*
662          * We try to cluster swap pages by allocating them sequentially
663          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
664          * way, however, we resort to first-free allocation, starting
665          * a new cluster.  This prevents us from scattering swap pages
666          * all over the entire swap partition, so that we reduce
667          * overall disk seek times between swap pages.  -- sct
668          * But we do now try to find an empty cluster.  -Andrea
669          * And we let swap pages go all over an SSD partition.  Hugh
670          */
671
672         si->flags += SWP_SCANNING;
673         scan_base = offset = si->cluster_next;
674
675         /* SSD algorithm */
676         if (si->cluster_info) {
677                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
678                         goto checks;
679                 else
680                         goto scan;
681         }
682
683         if (unlikely(!si->cluster_nr--)) {
684                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
685                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
686                         goto checks;
687                 }
688
689                 spin_unlock(&si->lock);
690
691                 /*
692                  * If seek is expensive, start searching for new cluster from
693                  * start of partition, to minimize the span of allocated swap.
694                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
695                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
696                  */
697                 scan_base = offset = si->lowest_bit;
698                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
699
700                 /* Locate the first empty (unaligned) cluster */
701                 for (; last_in_cluster <= si->highest_bit; offset++) {
702                         if (si->swap_map[offset])
703                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
704                         else if (offset == last_in_cluster) {
705                                 spin_lock(&si->lock);
706                                 offset -= SWAPFILE_CLUSTER - 1;
707                                 si->cluster_next = offset;
708                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
709                                 goto checks;
710                         }
711                         if (unlikely(--latency_ration < 0)) {
712                                 cond_resched();
713                                 latency_ration = LATENCY_LIMIT;
714                         }
715                 }
716
717                 offset = scan_base;
718                 spin_lock(&si->lock);
719                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
720         }
721
722 checks:
723         if (si->cluster_info) {
724                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
725                 /* take a break if we already got some slots */
726                         if (n_ret)
727                                 goto done;
728                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
729                                                         &scan_base))
730                                 goto scan;
731                 }
732         }
733         if (!(si->flags & SWP_WRITEOK))
734                 goto no_page;
735         if (!si->highest_bit)
736                 goto no_page;
737         if (offset > si->highest_bit)
738                 scan_base = offset = si->lowest_bit;
739
740         ci = lock_cluster(si, offset);
741         /* reuse swap entry of cache-only swap if not busy. */
742         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
743                 int swap_was_freed;
744                 unlock_cluster(ci);
745                 spin_unlock(&si->lock);
746                 swap_was_freed = __try_to_reclaim_swap(si, offset);
747                 spin_lock(&si->lock);
748                 /* entry was freed successfully, try to use this again */
749                 if (swap_was_freed)
750                         goto checks;
751                 goto scan; /* check next one */
752         }
753
754         if (si->swap_map[offset]) {
755                 unlock_cluster(ci);
756                 if (!n_ret)
757                         goto scan;
758                 else
759                         goto done;
760         }
761         si->swap_map[offset] = usage;
762         inc_cluster_info_page(si, si->cluster_info, offset);
763         unlock_cluster(ci);
764
765         swap_range_alloc(si, offset, 1);
766         si->cluster_next = offset + 1;
767         slots[n_ret++] = swp_entry(si->type, offset);
768
769         /* got enough slots or reach max slots? */
770         if ((n_ret == nr) || (offset >= si->highest_bit))
771                 goto done;
772
773         /* search for next available slot */
774
775         /* time to take a break? */
776         if (unlikely(--latency_ration < 0)) {
777                 if (n_ret)
778                         goto done;
779                 spin_unlock(&si->lock);
780                 cond_resched();
781                 spin_lock(&si->lock);
782                 latency_ration = LATENCY_LIMIT;
783         }
784
785         /* try to get more slots in cluster */
786         if (si->cluster_info) {
787                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
788                         goto checks;
789                 else
790                         goto done;
791         }
792         /* non-ssd case */
793         ++offset;
794
795         /* non-ssd case, still more slots in cluster? */
796         if (si->cluster_nr && !si->swap_map[offset]) {
797                 --si->cluster_nr;
798                 goto checks;
799         }
800
801 done:
802         si->flags -= SWP_SCANNING;
803         return n_ret;
804
805 scan:
806         spin_unlock(&si->lock);
807         while (++offset <= si->highest_bit) {
808                 if (!si->swap_map[offset]) {
809                         spin_lock(&si->lock);
810                         goto checks;
811                 }
812                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
813                         spin_lock(&si->lock);
814                         goto checks;
815                 }
816                 if (unlikely(--latency_ration < 0)) {
817                         cond_resched();
818                         latency_ration = LATENCY_LIMIT;
819                 }
820         }
821         offset = si->lowest_bit;
822         while (offset < scan_base) {
823                 if (!si->swap_map[offset]) {
824                         spin_lock(&si->lock);
825                         goto checks;
826                 }
827                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
828                         spin_lock(&si->lock);
829                         goto checks;
830                 }
831                 if (unlikely(--latency_ration < 0)) {
832                         cond_resched();
833                         latency_ration = LATENCY_LIMIT;
834                 }
835                 offset++;
836         }
837         spin_lock(&si->lock);
838
839 no_page:
840         si->flags -= SWP_SCANNING;
841         return n_ret;
842 }
843
844 #ifdef CONFIG_THP_SWAP
845 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
846 {
847         unsigned long idx;
848         struct swap_cluster_info *ci;
849         unsigned long offset, i;
850         unsigned char *map;
851
852         if (cluster_list_empty(&si->free_clusters))
853                 return 0;
854
855         idx = cluster_list_first(&si->free_clusters);
856         offset = idx * SWAPFILE_CLUSTER;
857         ci = lock_cluster(si, offset);
858         alloc_cluster(si, idx);
859         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
860
861         map = si->swap_map + offset;
862         for (i = 0; i < SWAPFILE_CLUSTER; i++)
863                 map[i] = SWAP_HAS_CACHE;
864         unlock_cluster(ci);
865         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
866         *slot = swp_entry(si->type, offset);
867
868         return 1;
869 }
870
871 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
872 {
873         unsigned long offset = idx * SWAPFILE_CLUSTER;
874         struct swap_cluster_info *ci;
875
876         ci = lock_cluster(si, offset);
877         cluster_set_count_flag(ci, 0, 0);
878         free_cluster(si, idx);
879         unlock_cluster(ci);
880         swap_range_free(si, offset, SWAPFILE_CLUSTER);
881 }
882 #else
883 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
884 {
885         VM_WARN_ON_ONCE(1);
886         return 0;
887 }
888 #endif /* CONFIG_THP_SWAP */
889
890 static unsigned long scan_swap_map(struct swap_info_struct *si,
891                                    unsigned char usage)
892 {
893         swp_entry_t entry;
894         int n_ret;
895
896         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
897
898         if (n_ret)
899                 return swp_offset(entry);
900         else
901                 return 0;
902
903 }
904
905 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
906 {
907         unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
908         struct swap_info_struct *si, *next;
909         long avail_pgs;
910         int n_ret = 0;
911
912         /* Only single cluster request supported */
913         WARN_ON_ONCE(n_goal > 1 && cluster);
914
915         avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
916         if (avail_pgs <= 0)
917                 goto noswap;
918
919         if (n_goal > SWAP_BATCH)
920                 n_goal = SWAP_BATCH;
921
922         if (n_goal > avail_pgs)
923                 n_goal = avail_pgs;
924
925         atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
926
927         spin_lock(&swap_avail_lock);
928
929 start_over:
930         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
931                 /* requeue si to after same-priority siblings */
932                 plist_requeue(&si->avail_list, &swap_avail_head);
933                 spin_unlock(&swap_avail_lock);
934                 spin_lock(&si->lock);
935                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
936                         spin_lock(&swap_avail_lock);
937                         if (plist_node_empty(&si->avail_list)) {
938                                 spin_unlock(&si->lock);
939                                 goto nextsi;
940                         }
941                         WARN(!si->highest_bit,
942                              "swap_info %d in list but !highest_bit\n",
943                              si->type);
944                         WARN(!(si->flags & SWP_WRITEOK),
945                              "swap_info %d in list but !SWP_WRITEOK\n",
946                              si->type);
947                         plist_del(&si->avail_list, &swap_avail_head);
948                         spin_unlock(&si->lock);
949                         goto nextsi;
950                 }
951                 if (cluster) {
952                         if (!(si->flags & SWP_FILE))
953                                 n_ret = swap_alloc_cluster(si, swp_entries);
954                 } else
955                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
956                                                     n_goal, swp_entries);
957                 spin_unlock(&si->lock);
958                 if (n_ret || cluster)
959                         goto check_out;
960                 pr_debug("scan_swap_map of si %d failed to find offset\n",
961                         si->type);
962
963                 spin_lock(&swap_avail_lock);
964 nextsi:
965                 /*
966                  * if we got here, it's likely that si was almost full before,
967                  * and since scan_swap_map() can drop the si->lock, multiple
968                  * callers probably all tried to get a page from the same si
969                  * and it filled up before we could get one; or, the si filled
970                  * up between us dropping swap_avail_lock and taking si->lock.
971                  * Since we dropped the swap_avail_lock, the swap_avail_head
972                  * list may have been modified; so if next is still in the
973                  * swap_avail_head list then try it, otherwise start over
974                  * if we have not gotten any slots.
975                  */
976                 if (plist_node_empty(&next->avail_list))
977                         goto start_over;
978         }
979
980         spin_unlock(&swap_avail_lock);
981
982 check_out:
983         if (n_ret < n_goal)
984                 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
985                                 &nr_swap_pages);
986 noswap:
987         return n_ret;
988 }
989
990 /* The only caller of this function is now suspend routine */
991 swp_entry_t get_swap_page_of_type(int type)
992 {
993         struct swap_info_struct *si;
994         pgoff_t offset;
995
996         si = swap_info[type];
997         spin_lock(&si->lock);
998         if (si && (si->flags & SWP_WRITEOK)) {
999                 atomic_long_dec(&nr_swap_pages);
1000                 /* This is called for allocating swap entry, not cache */
1001                 offset = scan_swap_map(si, 1);
1002                 if (offset) {
1003                         spin_unlock(&si->lock);
1004                         return swp_entry(type, offset);
1005                 }
1006                 atomic_long_inc(&nr_swap_pages);
1007         }
1008         spin_unlock(&si->lock);
1009         return (swp_entry_t) {0};
1010 }
1011
1012 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1013 {
1014         struct swap_info_struct *p;
1015         unsigned long offset, type;
1016
1017         if (!entry.val)
1018                 goto out;
1019         type = swp_type(entry);
1020         if (type >= nr_swapfiles)
1021                 goto bad_nofile;
1022         p = swap_info[type];
1023         if (!(p->flags & SWP_USED))
1024                 goto bad_device;
1025         offset = swp_offset(entry);
1026         if (offset >= p->max)
1027                 goto bad_offset;
1028         return p;
1029
1030 bad_offset:
1031         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1032         goto out;
1033 bad_device:
1034         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1035         goto out;
1036 bad_nofile:
1037         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1038 out:
1039         return NULL;
1040 }
1041
1042 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1043 {
1044         struct swap_info_struct *p;
1045
1046         p = __swap_info_get(entry);
1047         if (!p)
1048                 goto out;
1049         if (!p->swap_map[swp_offset(entry)])
1050                 goto bad_free;
1051         return p;
1052
1053 bad_free:
1054         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1055         goto out;
1056 out:
1057         return NULL;
1058 }
1059
1060 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1061 {
1062         struct swap_info_struct *p;
1063
1064         p = _swap_info_get(entry);
1065         if (p)
1066                 spin_lock(&p->lock);
1067         return p;
1068 }
1069
1070 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1071                                         struct swap_info_struct *q)
1072 {
1073         struct swap_info_struct *p;
1074
1075         p = _swap_info_get(entry);
1076
1077         if (p != q) {
1078                 if (q != NULL)
1079                         spin_unlock(&q->lock);
1080                 if (p != NULL)
1081                         spin_lock(&p->lock);
1082         }
1083         return p;
1084 }
1085
1086 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1087                                        swp_entry_t entry, unsigned char usage)
1088 {
1089         struct swap_cluster_info *ci;
1090         unsigned long offset = swp_offset(entry);
1091         unsigned char count;
1092         unsigned char has_cache;
1093
1094         ci = lock_cluster_or_swap_info(p, offset);
1095
1096         count = p->swap_map[offset];
1097
1098         has_cache = count & SWAP_HAS_CACHE;
1099         count &= ~SWAP_HAS_CACHE;
1100
1101         if (usage == SWAP_HAS_CACHE) {
1102                 VM_BUG_ON(!has_cache);
1103                 has_cache = 0;
1104         } else if (count == SWAP_MAP_SHMEM) {
1105                 /*
1106                  * Or we could insist on shmem.c using a special
1107                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1108                  */
1109                 count = 0;
1110         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1111                 if (count == COUNT_CONTINUED) {
1112                         if (swap_count_continued(p, offset, count))
1113                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1114                         else
1115                                 count = SWAP_MAP_MAX;
1116                 } else
1117                         count--;
1118         }
1119
1120         usage = count | has_cache;
1121         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1122
1123         unlock_cluster_or_swap_info(p, ci);
1124
1125         return usage;
1126 }
1127
1128 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1129 {
1130         struct swap_cluster_info *ci;
1131         unsigned long offset = swp_offset(entry);
1132         unsigned char count;
1133
1134         ci = lock_cluster(p, offset);
1135         count = p->swap_map[offset];
1136         VM_BUG_ON(count != SWAP_HAS_CACHE);
1137         p->swap_map[offset] = 0;
1138         dec_cluster_info_page(p, p->cluster_info, offset);
1139         unlock_cluster(ci);
1140
1141         mem_cgroup_uncharge_swap(entry, 1);
1142         swap_range_free(p, offset, 1);
1143 }
1144
1145 /*
1146  * Caller has made sure that the swap device corresponding to entry
1147  * is still around or has not been recycled.
1148  */
1149 void swap_free(swp_entry_t entry)
1150 {
1151         struct swap_info_struct *p;
1152
1153         p = _swap_info_get(entry);
1154         if (p) {
1155                 if (!__swap_entry_free(p, entry, 1))
1156                         free_swap_slot(entry);
1157         }
1158 }
1159
1160 /*
1161  * Called after dropping swapcache to decrease refcnt to swap entries.
1162  */
1163 static void swapcache_free(swp_entry_t entry)
1164 {
1165         struct swap_info_struct *p;
1166
1167         p = _swap_info_get(entry);
1168         if (p) {
1169                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1170                         free_swap_slot(entry);
1171         }
1172 }
1173
1174 #ifdef CONFIG_THP_SWAP
1175 static void swapcache_free_cluster(swp_entry_t entry)
1176 {
1177         unsigned long offset = swp_offset(entry);
1178         unsigned long idx = offset / SWAPFILE_CLUSTER;
1179         struct swap_cluster_info *ci;
1180         struct swap_info_struct *si;
1181         unsigned char *map;
1182         unsigned int i, free_entries = 0;
1183         unsigned char val;
1184
1185         si = _swap_info_get(entry);
1186         if (!si)
1187                 return;
1188
1189         ci = lock_cluster(si, offset);
1190         VM_BUG_ON(!cluster_is_huge(ci));
1191         map = si->swap_map + offset;
1192         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1193                 val = map[i];
1194                 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1195                 if (val == SWAP_HAS_CACHE)
1196                         free_entries++;
1197         }
1198         if (!free_entries) {
1199                 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1200                         map[i] &= ~SWAP_HAS_CACHE;
1201         }
1202         cluster_clear_huge(ci);
1203         unlock_cluster(ci);
1204         if (free_entries == SWAPFILE_CLUSTER) {
1205                 spin_lock(&si->lock);
1206                 ci = lock_cluster(si, offset);
1207                 memset(map, 0, SWAPFILE_CLUSTER);
1208                 unlock_cluster(ci);
1209                 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1210                 swap_free_cluster(si, idx);
1211                 spin_unlock(&si->lock);
1212         } else if (free_entries) {
1213                 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1214                         if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1215                                 free_swap_slot(entry);
1216                 }
1217         }
1218 }
1219
1220 int split_swap_cluster(swp_entry_t entry)
1221 {
1222         struct swap_info_struct *si;
1223         struct swap_cluster_info *ci;
1224         unsigned long offset = swp_offset(entry);
1225
1226         si = _swap_info_get(entry);
1227         if (!si)
1228                 return -EBUSY;
1229         ci = lock_cluster(si, offset);
1230         cluster_clear_huge(ci);
1231         unlock_cluster(ci);
1232         return 0;
1233 }
1234 #else
1235 static inline void swapcache_free_cluster(swp_entry_t entry)
1236 {
1237 }
1238 #endif /* CONFIG_THP_SWAP */
1239
1240 void put_swap_page(struct page *page, swp_entry_t entry)
1241 {
1242         if (!PageTransHuge(page))
1243                 swapcache_free(entry);
1244         else
1245                 swapcache_free_cluster(entry);
1246 }
1247
1248 static int swp_entry_cmp(const void *ent1, const void *ent2)
1249 {
1250         const swp_entry_t *e1 = ent1, *e2 = ent2;
1251
1252         return (int)swp_type(*e1) - (int)swp_type(*e2);
1253 }
1254
1255 void swapcache_free_entries(swp_entry_t *entries, int n)
1256 {
1257         struct swap_info_struct *p, *prev;
1258         int i;
1259
1260         if (n <= 0)
1261                 return;
1262
1263         prev = NULL;
1264         p = NULL;
1265
1266         /*
1267          * Sort swap entries by swap device, so each lock is only taken once.
1268          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1269          * so low that it isn't necessary to optimize further.
1270          */
1271         if (nr_swapfiles > 1)
1272                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1273         for (i = 0; i < n; ++i) {
1274                 p = swap_info_get_cont(entries[i], prev);
1275                 if (p)
1276                         swap_entry_free(p, entries[i]);
1277                 prev = p;
1278         }
1279         if (p)
1280                 spin_unlock(&p->lock);
1281 }
1282
1283 /*
1284  * How many references to page are currently swapped out?
1285  * This does not give an exact answer when swap count is continued,
1286  * but does include the high COUNT_CONTINUED flag to allow for that.
1287  */
1288 int page_swapcount(struct page *page)
1289 {
1290         int count = 0;
1291         struct swap_info_struct *p;
1292         struct swap_cluster_info *ci;
1293         swp_entry_t entry;
1294         unsigned long offset;
1295
1296         entry.val = page_private(page);
1297         p = _swap_info_get(entry);
1298         if (p) {
1299                 offset = swp_offset(entry);
1300                 ci = lock_cluster_or_swap_info(p, offset);
1301                 count = swap_count(p->swap_map[offset]);
1302                 unlock_cluster_or_swap_info(p, ci);
1303         }
1304         return count;
1305 }
1306
1307 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1308 {
1309         int count = 0;
1310         pgoff_t offset = swp_offset(entry);
1311         struct swap_cluster_info *ci;
1312
1313         ci = lock_cluster_or_swap_info(si, offset);
1314         count = swap_count(si->swap_map[offset]);
1315         unlock_cluster_or_swap_info(si, ci);
1316         return count;
1317 }
1318
1319 /*
1320  * How many references to @entry are currently swapped out?
1321  * This does not give an exact answer when swap count is continued,
1322  * but does include the high COUNT_CONTINUED flag to allow for that.
1323  */
1324 int __swp_swapcount(swp_entry_t entry)
1325 {
1326         int count = 0;
1327         struct swap_info_struct *si;
1328
1329         si = __swap_info_get(entry);
1330         if (si)
1331                 count = swap_swapcount(si, entry);
1332         return count;
1333 }
1334
1335 /*
1336  * How many references to @entry are currently swapped out?
1337  * This considers COUNT_CONTINUED so it returns exact answer.
1338  */
1339 int swp_swapcount(swp_entry_t entry)
1340 {
1341         int count, tmp_count, n;
1342         struct swap_info_struct *p;
1343         struct swap_cluster_info *ci;
1344         struct page *page;
1345         pgoff_t offset;
1346         unsigned char *map;
1347
1348         p = _swap_info_get(entry);
1349         if (!p)
1350                 return 0;
1351
1352         offset = swp_offset(entry);
1353
1354         ci = lock_cluster_or_swap_info(p, offset);
1355
1356         count = swap_count(p->swap_map[offset]);
1357         if (!(count & COUNT_CONTINUED))
1358                 goto out;
1359
1360         count &= ~COUNT_CONTINUED;
1361         n = SWAP_MAP_MAX + 1;
1362
1363         page = vmalloc_to_page(p->swap_map + offset);
1364         offset &= ~PAGE_MASK;
1365         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1366
1367         do {
1368                 page = list_next_entry(page, lru);
1369                 map = kmap_atomic(page);
1370                 tmp_count = map[offset];
1371                 kunmap_atomic(map);
1372
1373                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1374                 n *= (SWAP_CONT_MAX + 1);
1375         } while (tmp_count & COUNT_CONTINUED);
1376 out:
1377         unlock_cluster_or_swap_info(p, ci);
1378         return count;
1379 }
1380
1381 #ifdef CONFIG_THP_SWAP
1382 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1383                                          swp_entry_t entry)
1384 {
1385         struct swap_cluster_info *ci;
1386         unsigned char *map = si->swap_map;
1387         unsigned long roffset = swp_offset(entry);
1388         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1389         int i;
1390         bool ret = false;
1391
1392         ci = lock_cluster_or_swap_info(si, offset);
1393         if (!ci || !cluster_is_huge(ci)) {
1394                 if (map[roffset] != SWAP_HAS_CACHE)
1395                         ret = true;
1396                 goto unlock_out;
1397         }
1398         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1399                 if (map[offset + i] != SWAP_HAS_CACHE) {
1400                         ret = true;
1401                         break;
1402                 }
1403         }
1404 unlock_out:
1405         unlock_cluster_or_swap_info(si, ci);
1406         return ret;
1407 }
1408
1409 static bool page_swapped(struct page *page)
1410 {
1411         swp_entry_t entry;
1412         struct swap_info_struct *si;
1413
1414         if (likely(!PageTransCompound(page)))
1415                 return page_swapcount(page) != 0;
1416
1417         page = compound_head(page);
1418         entry.val = page_private(page);
1419         si = _swap_info_get(entry);
1420         if (si)
1421                 return swap_page_trans_huge_swapped(si, entry);
1422         return false;
1423 }
1424
1425 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1426                                          int *total_swapcount)
1427 {
1428         int i, map_swapcount, _total_mapcount, _total_swapcount;
1429         unsigned long offset = 0;
1430         struct swap_info_struct *si;
1431         struct swap_cluster_info *ci = NULL;
1432         unsigned char *map = NULL;
1433         int mapcount, swapcount = 0;
1434
1435         /* hugetlbfs shouldn't call it */
1436         VM_BUG_ON_PAGE(PageHuge(page), page);
1437
1438         if (likely(!PageTransCompound(page))) {
1439                 mapcount = atomic_read(&page->_mapcount) + 1;
1440                 if (total_mapcount)
1441                         *total_mapcount = mapcount;
1442                 if (PageSwapCache(page))
1443                         swapcount = page_swapcount(page);
1444                 if (total_swapcount)
1445                         *total_swapcount = swapcount;
1446                 return mapcount + swapcount;
1447         }
1448
1449         page = compound_head(page);
1450
1451         _total_mapcount = _total_swapcount = map_swapcount = 0;
1452         if (PageSwapCache(page)) {
1453                 swp_entry_t entry;
1454
1455                 entry.val = page_private(page);
1456                 si = _swap_info_get(entry);
1457                 if (si) {
1458                         map = si->swap_map;
1459                         offset = swp_offset(entry);
1460                 }
1461         }
1462         if (map)
1463                 ci = lock_cluster(si, offset);
1464         for (i = 0; i < HPAGE_PMD_NR; i++) {
1465                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1466                 _total_mapcount += mapcount;
1467                 if (map) {
1468                         swapcount = swap_count(map[offset + i]);
1469                         _total_swapcount += swapcount;
1470                 }
1471                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1472         }
1473         unlock_cluster(ci);
1474         if (PageDoubleMap(page)) {
1475                 map_swapcount -= 1;
1476                 _total_mapcount -= HPAGE_PMD_NR;
1477         }
1478         mapcount = compound_mapcount(page);
1479         map_swapcount += mapcount;
1480         _total_mapcount += mapcount;
1481         if (total_mapcount)
1482                 *total_mapcount = _total_mapcount;
1483         if (total_swapcount)
1484                 *total_swapcount = _total_swapcount;
1485
1486         return map_swapcount;
1487 }
1488 #else
1489 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1490 #define page_swapped(page)                      (page_swapcount(page) != 0)
1491
1492 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1493                                          int *total_swapcount)
1494 {
1495         int mapcount, swapcount = 0;
1496
1497         /* hugetlbfs shouldn't call it */
1498         VM_BUG_ON_PAGE(PageHuge(page), page);
1499
1500         mapcount = page_trans_huge_mapcount(page, total_mapcount);
1501         if (PageSwapCache(page))
1502                 swapcount = page_swapcount(page);
1503         if (total_swapcount)
1504                 *total_swapcount = swapcount;
1505         return mapcount + swapcount;
1506 }
1507 #endif
1508
1509 /*
1510  * We can write to an anon page without COW if there are no other references
1511  * to it.  And as a side-effect, free up its swap: because the old content
1512  * on disk will never be read, and seeking back there to write new content
1513  * later would only waste time away from clustering.
1514  *
1515  * NOTE: total_map_swapcount should not be relied upon by the caller if
1516  * reuse_swap_page() returns false, but it may be always overwritten
1517  * (see the other implementation for CONFIG_SWAP=n).
1518  */
1519 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1520 {
1521         int count, total_mapcount, total_swapcount;
1522
1523         VM_BUG_ON_PAGE(!PageLocked(page), page);
1524         if (unlikely(PageKsm(page)))
1525                 return false;
1526         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1527                                               &total_swapcount);
1528         if (total_map_swapcount)
1529                 *total_map_swapcount = total_mapcount + total_swapcount;
1530         if (count == 1 && PageSwapCache(page) &&
1531             (likely(!PageTransCompound(page)) ||
1532              /* The remaining swap count will be freed soon */
1533              total_swapcount == page_swapcount(page))) {
1534                 if (!PageWriteback(page)) {
1535                         page = compound_head(page);
1536                         delete_from_swap_cache(page);
1537                         SetPageDirty(page);
1538                 } else {
1539                         swp_entry_t entry;
1540                         struct swap_info_struct *p;
1541
1542                         entry.val = page_private(page);
1543                         p = swap_info_get(entry);
1544                         if (p->flags & SWP_STABLE_WRITES) {
1545                                 spin_unlock(&p->lock);
1546                                 return false;
1547                         }
1548                         spin_unlock(&p->lock);
1549                 }
1550         }
1551
1552         return count <= 1;
1553 }
1554
1555 /*
1556  * If swap is getting full, or if there are no more mappings of this page,
1557  * then try_to_free_swap is called to free its swap space.
1558  */
1559 int try_to_free_swap(struct page *page)
1560 {
1561         VM_BUG_ON_PAGE(!PageLocked(page), page);
1562
1563         if (!PageSwapCache(page))
1564                 return 0;
1565         if (PageWriteback(page))
1566                 return 0;
1567         if (page_swapped(page))
1568                 return 0;
1569
1570         /*
1571          * Once hibernation has begun to create its image of memory,
1572          * there's a danger that one of the calls to try_to_free_swap()
1573          * - most probably a call from __try_to_reclaim_swap() while
1574          * hibernation is allocating its own swap pages for the image,
1575          * but conceivably even a call from memory reclaim - will free
1576          * the swap from a page which has already been recorded in the
1577          * image as a clean swapcache page, and then reuse its swap for
1578          * another page of the image.  On waking from hibernation, the
1579          * original page might be freed under memory pressure, then
1580          * later read back in from swap, now with the wrong data.
1581          *
1582          * Hibernation suspends storage while it is writing the image
1583          * to disk so check that here.
1584          */
1585         if (pm_suspended_storage())
1586                 return 0;
1587
1588         page = compound_head(page);
1589         delete_from_swap_cache(page);
1590         SetPageDirty(page);
1591         return 1;
1592 }
1593
1594 /*
1595  * Free the swap entry like above, but also try to
1596  * free the page cache entry if it is the last user.
1597  */
1598 int free_swap_and_cache(swp_entry_t entry)
1599 {
1600         struct swap_info_struct *p;
1601         struct page *page = NULL;
1602         unsigned char count;
1603
1604         if (non_swap_entry(entry))
1605                 return 1;
1606
1607         p = _swap_info_get(entry);
1608         if (p) {
1609                 count = __swap_entry_free(p, entry, 1);
1610                 if (count == SWAP_HAS_CACHE &&
1611                     !swap_page_trans_huge_swapped(p, entry)) {
1612                         page = find_get_page(swap_address_space(entry),
1613                                              swp_offset(entry));
1614                         if (page && !trylock_page(page)) {
1615                                 put_page(page);
1616                                 page = NULL;
1617                         }
1618                 } else if (!count)
1619                         free_swap_slot(entry);
1620         }
1621         if (page) {
1622                 /*
1623                  * Not mapped elsewhere, or swap space full? Free it!
1624                  * Also recheck PageSwapCache now page is locked (above).
1625                  */
1626                 if (PageSwapCache(page) && !PageWriteback(page) &&
1627                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1628                     !swap_page_trans_huge_swapped(p, entry)) {
1629                         page = compound_head(page);
1630                         delete_from_swap_cache(page);
1631                         SetPageDirty(page);
1632                 }
1633                 unlock_page(page);
1634                 put_page(page);
1635         }
1636         return p != NULL;
1637 }
1638
1639 #ifdef CONFIG_HIBERNATION
1640 /*
1641  * Find the swap type that corresponds to given device (if any).
1642  *
1643  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1644  * from 0, in which the swap header is expected to be located.
1645  *
1646  * This is needed for the suspend to disk (aka swsusp).
1647  */
1648 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1649 {
1650         struct block_device *bdev = NULL;
1651         int type;
1652
1653         if (device)
1654                 bdev = bdget(device);
1655
1656         spin_lock(&swap_lock);
1657         for (type = 0; type < nr_swapfiles; type++) {
1658                 struct swap_info_struct *sis = swap_info[type];
1659
1660                 if (!(sis->flags & SWP_WRITEOK))
1661                         continue;
1662
1663                 if (!bdev) {
1664                         if (bdev_p)
1665                                 *bdev_p = bdgrab(sis->bdev);
1666
1667                         spin_unlock(&swap_lock);
1668                         return type;
1669                 }
1670                 if (bdev == sis->bdev) {
1671                         struct swap_extent *se = &sis->first_swap_extent;
1672
1673                         if (se->start_block == offset) {
1674                                 if (bdev_p)
1675                                         *bdev_p = bdgrab(sis->bdev);
1676
1677                                 spin_unlock(&swap_lock);
1678                                 bdput(bdev);
1679                                 return type;
1680                         }
1681                 }
1682         }
1683         spin_unlock(&swap_lock);
1684         if (bdev)
1685                 bdput(bdev);
1686
1687         return -ENODEV;
1688 }
1689
1690 /*
1691  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1692  * corresponding to given index in swap_info (swap type).
1693  */
1694 sector_t swapdev_block(int type, pgoff_t offset)
1695 {
1696         struct block_device *bdev;
1697
1698         if ((unsigned int)type >= nr_swapfiles)
1699                 return 0;
1700         if (!(swap_info[type]->flags & SWP_WRITEOK))
1701                 return 0;
1702         return map_swap_entry(swp_entry(type, offset), &bdev);
1703 }
1704
1705 /*
1706  * Return either the total number of swap pages of given type, or the number
1707  * of free pages of that type (depending on @free)
1708  *
1709  * This is needed for software suspend
1710  */
1711 unsigned int count_swap_pages(int type, int free)
1712 {
1713         unsigned int n = 0;
1714
1715         spin_lock(&swap_lock);
1716         if ((unsigned int)type < nr_swapfiles) {
1717                 struct swap_info_struct *sis = swap_info[type];
1718
1719                 spin_lock(&sis->lock);
1720                 if (sis->flags & SWP_WRITEOK) {
1721                         n = sis->pages;
1722                         if (free)
1723                                 n -= sis->inuse_pages;
1724                 }
1725                 spin_unlock(&sis->lock);
1726         }
1727         spin_unlock(&swap_lock);
1728         return n;
1729 }
1730 #endif /* CONFIG_HIBERNATION */
1731
1732 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1733 {
1734         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1735 }
1736
1737 /*
1738  * No need to decide whether this PTE shares the swap entry with others,
1739  * just let do_wp_page work it out if a write is requested later - to
1740  * force COW, vm_page_prot omits write permission from any private vma.
1741  */
1742 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1743                 unsigned long addr, swp_entry_t entry, struct page *page)
1744 {
1745         struct page *swapcache;
1746         struct mem_cgroup *memcg;
1747         spinlock_t *ptl;
1748         pte_t *pte;
1749         int ret = 1;
1750
1751         swapcache = page;
1752         page = ksm_might_need_to_copy(page, vma, addr);
1753         if (unlikely(!page))
1754                 return -ENOMEM;
1755
1756         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1757                                 &memcg, false)) {
1758                 ret = -ENOMEM;
1759                 goto out_nolock;
1760         }
1761
1762         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1763         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1764                 mem_cgroup_cancel_charge(page, memcg, false);
1765                 ret = 0;
1766                 goto out;
1767         }
1768
1769         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1770         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1771         get_page(page);
1772         set_pte_at(vma->vm_mm, addr, pte,
1773                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1774         if (page == swapcache) {
1775                 page_add_anon_rmap(page, vma, addr, false);
1776                 mem_cgroup_commit_charge(page, memcg, true, false);
1777         } else { /* ksm created a completely new copy */
1778                 page_add_new_anon_rmap(page, vma, addr, false);
1779                 mem_cgroup_commit_charge(page, memcg, false, false);
1780                 lru_cache_add_active_or_unevictable(page, vma);
1781         }
1782         swap_free(entry);
1783         /*
1784          * Move the page to the active list so it is not
1785          * immediately swapped out again after swapon.
1786          */
1787         activate_page(page);
1788 out:
1789         pte_unmap_unlock(pte, ptl);
1790 out_nolock:
1791         if (page != swapcache) {
1792                 unlock_page(page);
1793                 put_page(page);
1794         }
1795         return ret;
1796 }
1797
1798 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1799                                 unsigned long addr, unsigned long end,
1800                                 swp_entry_t entry, struct page *page)
1801 {
1802         pte_t swp_pte = swp_entry_to_pte(entry);
1803         pte_t *pte;
1804         int ret = 0;
1805
1806         /*
1807          * We don't actually need pte lock while scanning for swp_pte: since
1808          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1809          * page table while we're scanning; though it could get zapped, and on
1810          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1811          * of unmatched parts which look like swp_pte, so unuse_pte must
1812          * recheck under pte lock.  Scanning without pte lock lets it be
1813          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1814          */
1815         pte = pte_offset_map(pmd, addr);
1816         do {
1817                 /*
1818                  * swapoff spends a _lot_ of time in this loop!
1819                  * Test inline before going to call unuse_pte.
1820                  */
1821                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1822                         pte_unmap(pte);
1823                         ret = unuse_pte(vma, pmd, addr, entry, page);
1824                         if (ret)
1825                                 goto out;
1826                         pte = pte_offset_map(pmd, addr);
1827                 }
1828         } while (pte++, addr += PAGE_SIZE, addr != end);
1829         pte_unmap(pte - 1);
1830 out:
1831         return ret;
1832 }
1833
1834 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1835                                 unsigned long addr, unsigned long end,
1836                                 swp_entry_t entry, struct page *page)
1837 {
1838         pmd_t *pmd;
1839         unsigned long next;
1840         int ret;
1841
1842         pmd = pmd_offset(pud, addr);
1843         do {
1844                 cond_resched();
1845                 next = pmd_addr_end(addr, end);
1846                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1847                         continue;
1848                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1849                 if (ret)
1850                         return ret;
1851         } while (pmd++, addr = next, addr != end);
1852         return 0;
1853 }
1854
1855 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1856                                 unsigned long addr, unsigned long end,
1857                                 swp_entry_t entry, struct page *page)
1858 {
1859         pud_t *pud;
1860         unsigned long next;
1861         int ret;
1862
1863         pud = pud_offset(p4d, addr);
1864         do {
1865                 next = pud_addr_end(addr, end);
1866                 if (pud_none_or_clear_bad(pud))
1867                         continue;
1868                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1869                 if (ret)
1870                         return ret;
1871         } while (pud++, addr = next, addr != end);
1872         return 0;
1873 }
1874
1875 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1876                                 unsigned long addr, unsigned long end,
1877                                 swp_entry_t entry, struct page *page)
1878 {
1879         p4d_t *p4d;
1880         unsigned long next;
1881         int ret;
1882
1883         p4d = p4d_offset(pgd, addr);
1884         do {
1885                 next = p4d_addr_end(addr, end);
1886                 if (p4d_none_or_clear_bad(p4d))
1887                         continue;
1888                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1889                 if (ret)
1890                         return ret;
1891         } while (p4d++, addr = next, addr != end);
1892         return 0;
1893 }
1894
1895 static int unuse_vma(struct vm_area_struct *vma,
1896                                 swp_entry_t entry, struct page *page)
1897 {
1898         pgd_t *pgd;
1899         unsigned long addr, end, next;
1900         int ret;
1901
1902         if (page_anon_vma(page)) {
1903                 addr = page_address_in_vma(page, vma);
1904                 if (addr == -EFAULT)
1905                         return 0;
1906                 else
1907                         end = addr + PAGE_SIZE;
1908         } else {
1909                 addr = vma->vm_start;
1910                 end = vma->vm_end;
1911         }
1912
1913         pgd = pgd_offset(vma->vm_mm, addr);
1914         do {
1915                 next = pgd_addr_end(addr, end);
1916                 if (pgd_none_or_clear_bad(pgd))
1917                         continue;
1918                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1919                 if (ret)
1920                         return ret;
1921         } while (pgd++, addr = next, addr != end);
1922         return 0;
1923 }
1924
1925 static int unuse_mm(struct mm_struct *mm,
1926                                 swp_entry_t entry, struct page *page)
1927 {
1928         struct vm_area_struct *vma;
1929         int ret = 0;
1930
1931         if (!down_read_trylock(&mm->mmap_sem)) {
1932                 /*
1933                  * Activate page so shrink_inactive_list is unlikely to unmap
1934                  * its ptes while lock is dropped, so swapoff can make progress.
1935                  */
1936                 activate_page(page);
1937                 unlock_page(page);
1938                 down_read(&mm->mmap_sem);
1939                 lock_page(page);
1940         }
1941         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1942                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1943                         break;
1944                 cond_resched();
1945         }
1946         up_read(&mm->mmap_sem);
1947         return (ret < 0)? ret: 0;
1948 }
1949
1950 /*
1951  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1952  * from current position to next entry still in use.
1953  * Recycle to start on reaching the end, returning 0 when empty.
1954  */
1955 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1956                                         unsigned int prev, bool frontswap)
1957 {
1958         unsigned int max = si->max;
1959         unsigned int i = prev;
1960         unsigned char count;
1961
1962         /*
1963          * No need for swap_lock here: we're just looking
1964          * for whether an entry is in use, not modifying it; false
1965          * hits are okay, and sys_swapoff() has already prevented new
1966          * allocations from this area (while holding swap_lock).
1967          */
1968         for (;;) {
1969                 if (++i >= max) {
1970                         if (!prev) {
1971                                 i = 0;
1972                                 break;
1973                         }
1974                         /*
1975                          * No entries in use at top of swap_map,
1976                          * loop back to start and recheck there.
1977                          */
1978                         max = prev + 1;
1979                         prev = 0;
1980                         i = 1;
1981                 }
1982                 count = READ_ONCE(si->swap_map[i]);
1983                 if (count && swap_count(count) != SWAP_MAP_BAD)
1984                         if (!frontswap || frontswap_test(si, i))
1985                                 break;
1986                 if ((i % LATENCY_LIMIT) == 0)
1987                         cond_resched();
1988         }
1989         return i;
1990 }
1991
1992 /*
1993  * We completely avoid races by reading each swap page in advance,
1994  * and then search for the process using it.  All the necessary
1995  * page table adjustments can then be made atomically.
1996  *
1997  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1998  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1999  */
2000 int try_to_unuse(unsigned int type, bool frontswap,
2001                  unsigned long pages_to_unuse)
2002 {
2003         struct swap_info_struct *si = swap_info[type];
2004         struct mm_struct *start_mm;
2005         volatile unsigned char *swap_map; /* swap_map is accessed without
2006                                            * locking. Mark it as volatile
2007                                            * to prevent compiler doing
2008                                            * something odd.
2009                                            */
2010         unsigned char swcount;
2011         struct page *page;
2012         swp_entry_t entry;
2013         unsigned int i = 0;
2014         int retval = 0;
2015
2016         /*
2017          * When searching mms for an entry, a good strategy is to
2018          * start at the first mm we freed the previous entry from
2019          * (though actually we don't notice whether we or coincidence
2020          * freed the entry).  Initialize this start_mm with a hold.
2021          *
2022          * A simpler strategy would be to start at the last mm we
2023          * freed the previous entry from; but that would take less
2024          * advantage of mmlist ordering, which clusters forked mms
2025          * together, child after parent.  If we race with dup_mmap(), we
2026          * prefer to resolve parent before child, lest we miss entries
2027          * duplicated after we scanned child: using last mm would invert
2028          * that.
2029          */
2030         start_mm = &init_mm;
2031         mmget(&init_mm);
2032
2033         /*
2034          * Keep on scanning until all entries have gone.  Usually,
2035          * one pass through swap_map is enough, but not necessarily:
2036          * there are races when an instance of an entry might be missed.
2037          */
2038         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2039                 if (signal_pending(current)) {
2040                         retval = -EINTR;
2041                         break;
2042                 }
2043
2044                 /*
2045                  * Get a page for the entry, using the existing swap
2046                  * cache page if there is one.  Otherwise, get a clean
2047                  * page and read the swap into it.
2048                  */
2049                 swap_map = &si->swap_map[i];
2050                 entry = swp_entry(type, i);
2051                 page = read_swap_cache_async(entry,
2052                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2053                 if (!page) {
2054                         /*
2055                          * Either swap_duplicate() failed because entry
2056                          * has been freed independently, and will not be
2057                          * reused since sys_swapoff() already disabled
2058                          * allocation from here, or alloc_page() failed.
2059                          */
2060                         swcount = *swap_map;
2061                         /*
2062                          * We don't hold lock here, so the swap entry could be
2063                          * SWAP_MAP_BAD (when the cluster is discarding).
2064                          * Instead of fail out, We can just skip the swap
2065                          * entry because swapoff will wait for discarding
2066                          * finish anyway.
2067                          */
2068                         if (!swcount || swcount == SWAP_MAP_BAD)
2069                                 continue;
2070                         retval = -ENOMEM;
2071                         break;
2072                 }
2073
2074                 /*
2075                  * Don't hold on to start_mm if it looks like exiting.
2076                  */
2077                 if (atomic_read(&start_mm->mm_users) == 1) {
2078                         mmput(start_mm);
2079                         start_mm = &init_mm;
2080                         mmget(&init_mm);
2081                 }
2082
2083                 /*
2084                  * Wait for and lock page.  When do_swap_page races with
2085                  * try_to_unuse, do_swap_page can handle the fault much
2086                  * faster than try_to_unuse can locate the entry.  This
2087                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
2088                  * defer to do_swap_page in such a case - in some tests,
2089                  * do_swap_page and try_to_unuse repeatedly compete.
2090                  */
2091                 wait_on_page_locked(page);
2092                 wait_on_page_writeback(page);
2093                 lock_page(page);
2094                 wait_on_page_writeback(page);
2095
2096                 /*
2097                  * Remove all references to entry.
2098                  */
2099                 swcount = *swap_map;
2100                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2101                         retval = shmem_unuse(entry, page);
2102                         /* page has already been unlocked and released */
2103                         if (retval < 0)
2104                                 break;
2105                         continue;
2106                 }
2107                 if (swap_count(swcount) && start_mm != &init_mm)
2108                         retval = unuse_mm(start_mm, entry, page);
2109
2110                 if (swap_count(*swap_map)) {
2111                         int set_start_mm = (*swap_map >= swcount);
2112                         struct list_head *p = &start_mm->mmlist;
2113                         struct mm_struct *new_start_mm = start_mm;
2114                         struct mm_struct *prev_mm = start_mm;
2115                         struct mm_struct *mm;
2116
2117                         mmget(new_start_mm);
2118                         mmget(prev_mm);
2119                         spin_lock(&mmlist_lock);
2120                         while (swap_count(*swap_map) && !retval &&
2121                                         (p = p->next) != &start_mm->mmlist) {
2122                                 mm = list_entry(p, struct mm_struct, mmlist);
2123                                 if (!mmget_not_zero(mm))
2124                                         continue;
2125                                 spin_unlock(&mmlist_lock);
2126                                 mmput(prev_mm);
2127                                 prev_mm = mm;
2128
2129                                 cond_resched();
2130
2131                                 swcount = *swap_map;
2132                                 if (!swap_count(swcount)) /* any usage ? */
2133                                         ;
2134                                 else if (mm == &init_mm)
2135                                         set_start_mm = 1;
2136                                 else
2137                                         retval = unuse_mm(mm, entry, page);
2138
2139                                 if (set_start_mm && *swap_map < swcount) {
2140                                         mmput(new_start_mm);
2141                                         mmget(mm);
2142                                         new_start_mm = mm;
2143                                         set_start_mm = 0;
2144                                 }
2145                                 spin_lock(&mmlist_lock);
2146                         }
2147                         spin_unlock(&mmlist_lock);
2148                         mmput(prev_mm);
2149                         mmput(start_mm);
2150                         start_mm = new_start_mm;
2151                 }
2152                 if (retval) {
2153                         unlock_page(page);
2154                         put_page(page);
2155                         break;
2156                 }
2157
2158                 /*
2159                  * If a reference remains (rare), we would like to leave
2160                  * the page in the swap cache; but try_to_unmap could
2161                  * then re-duplicate the entry once we drop page lock,
2162                  * so we might loop indefinitely; also, that page could
2163                  * not be swapped out to other storage meanwhile.  So:
2164                  * delete from cache even if there's another reference,
2165                  * after ensuring that the data has been saved to disk -
2166                  * since if the reference remains (rarer), it will be
2167                  * read from disk into another page.  Splitting into two
2168                  * pages would be incorrect if swap supported "shared
2169                  * private" pages, but they are handled by tmpfs files.
2170                  *
2171                  * Given how unuse_vma() targets one particular offset
2172                  * in an anon_vma, once the anon_vma has been determined,
2173                  * this splitting happens to be just what is needed to
2174                  * handle where KSM pages have been swapped out: re-reading
2175                  * is unnecessarily slow, but we can fix that later on.
2176                  */
2177                 if (swap_count(*swap_map) &&
2178                      PageDirty(page) && PageSwapCache(page)) {
2179                         struct writeback_control wbc = {
2180                                 .sync_mode = WB_SYNC_NONE,
2181                         };
2182
2183                         swap_writepage(compound_head(page), &wbc);
2184                         lock_page(page);
2185                         wait_on_page_writeback(page);
2186                 }
2187
2188                 /*
2189                  * It is conceivable that a racing task removed this page from
2190                  * swap cache just before we acquired the page lock at the top,
2191                  * or while we dropped it in unuse_mm().  The page might even
2192                  * be back in swap cache on another swap area: that we must not
2193                  * delete, since it may not have been written out to swap yet.
2194                  */
2195                 if (PageSwapCache(page) &&
2196                     likely(page_private(page) == entry.val) &&
2197                     !page_swapped(page))
2198                         delete_from_swap_cache(compound_head(page));
2199
2200                 /*
2201                  * So we could skip searching mms once swap count went
2202                  * to 1, we did not mark any present ptes as dirty: must
2203                  * mark page dirty so shrink_page_list will preserve it.
2204                  */
2205                 SetPageDirty(page);
2206                 unlock_page(page);
2207                 put_page(page);
2208
2209                 /*
2210                  * Make sure that we aren't completely killing
2211                  * interactive performance.
2212                  */
2213                 cond_resched();
2214                 if (frontswap && pages_to_unuse > 0) {
2215                         if (!--pages_to_unuse)
2216                                 break;
2217                 }
2218         }
2219
2220         mmput(start_mm);
2221         return retval;
2222 }
2223
2224 /*
2225  * After a successful try_to_unuse, if no swap is now in use, we know
2226  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2227  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2228  * added to the mmlist just after page_duplicate - before would be racy.
2229  */
2230 static void drain_mmlist(void)
2231 {
2232         struct list_head *p, *next;
2233         unsigned int type;
2234
2235         for (type = 0; type < nr_swapfiles; type++)
2236                 if (swap_info[type]->inuse_pages)
2237                         return;
2238         spin_lock(&mmlist_lock);
2239         list_for_each_safe(p, next, &init_mm.mmlist)
2240                 list_del_init(p);
2241         spin_unlock(&mmlist_lock);
2242 }
2243
2244 /*
2245  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2246  * corresponds to page offset for the specified swap entry.
2247  * Note that the type of this function is sector_t, but it returns page offset
2248  * into the bdev, not sector offset.
2249  */
2250 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2251 {
2252         struct swap_info_struct *sis;
2253         struct swap_extent *start_se;
2254         struct swap_extent *se;
2255         pgoff_t offset;
2256
2257         sis = swap_info[swp_type(entry)];
2258         *bdev = sis->bdev;
2259
2260         offset = swp_offset(entry);
2261         start_se = sis->curr_swap_extent;
2262         se = start_se;
2263
2264         for ( ; ; ) {
2265                 if (se->start_page <= offset &&
2266                                 offset < (se->start_page + se->nr_pages)) {
2267                         return se->start_block + (offset - se->start_page);
2268                 }
2269                 se = list_next_entry(se, list);
2270                 sis->curr_swap_extent = se;
2271                 BUG_ON(se == start_se);         /* It *must* be present */
2272         }
2273 }
2274
2275 /*
2276  * Returns the page offset into bdev for the specified page's swap entry.
2277  */
2278 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2279 {
2280         swp_entry_t entry;
2281         entry.val = page_private(page);
2282         return map_swap_entry(entry, bdev);
2283 }
2284
2285 /*
2286  * Free all of a swapdev's extent information
2287  */
2288 static void destroy_swap_extents(struct swap_info_struct *sis)
2289 {
2290         while (!list_empty(&sis->first_swap_extent.list)) {
2291                 struct swap_extent *se;
2292
2293                 se = list_first_entry(&sis->first_swap_extent.list,
2294                                 struct swap_extent, list);
2295                 list_del(&se->list);
2296                 kfree(se);
2297         }
2298
2299         if (sis->flags & SWP_FILE) {
2300                 struct file *swap_file = sis->swap_file;
2301                 struct address_space *mapping = swap_file->f_mapping;
2302
2303                 sis->flags &= ~SWP_FILE;
2304                 mapping->a_ops->swap_deactivate(swap_file);
2305         }
2306 }
2307
2308 /*
2309  * Add a block range (and the corresponding page range) into this swapdev's
2310  * extent list.  The extent list is kept sorted in page order.
2311  *
2312  * This function rather assumes that it is called in ascending page order.
2313  */
2314 int
2315 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2316                 unsigned long nr_pages, sector_t start_block)
2317 {
2318         struct swap_extent *se;
2319         struct swap_extent *new_se;
2320         struct list_head *lh;
2321
2322         if (start_page == 0) {
2323                 se = &sis->first_swap_extent;
2324                 sis->curr_swap_extent = se;
2325                 se->start_page = 0;
2326                 se->nr_pages = nr_pages;
2327                 se->start_block = start_block;
2328                 return 1;
2329         } else {
2330                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2331                 se = list_entry(lh, struct swap_extent, list);
2332                 BUG_ON(se->start_page + se->nr_pages != start_page);
2333                 if (se->start_block + se->nr_pages == start_block) {
2334                         /* Merge it */
2335                         se->nr_pages += nr_pages;
2336                         return 0;
2337                 }
2338         }
2339
2340         /*
2341          * No merge.  Insert a new extent, preserving ordering.
2342          */
2343         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2344         if (new_se == NULL)
2345                 return -ENOMEM;
2346         new_se->start_page = start_page;
2347         new_se->nr_pages = nr_pages;
2348         new_se->start_block = start_block;
2349
2350         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2351         return 1;
2352 }
2353
2354 /*
2355  * A `swap extent' is a simple thing which maps a contiguous range of pages
2356  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2357  * is built at swapon time and is then used at swap_writepage/swap_readpage
2358  * time for locating where on disk a page belongs.
2359  *
2360  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2361  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2362  * swap files identically.
2363  *
2364  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2365  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2366  * swapfiles are handled *identically* after swapon time.
2367  *
2368  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2369  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2370  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2371  * requirements, they are simply tossed out - we will never use those blocks
2372  * for swapping.
2373  *
2374  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2375  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2376  * which will scribble on the fs.
2377  *
2378  * The amount of disk space which a single swap extent represents varies.
2379  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2380  * extents in the list.  To avoid much list walking, we cache the previous
2381  * search location in `curr_swap_extent', and start new searches from there.
2382  * This is extremely effective.  The average number of iterations in
2383  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2384  */
2385 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2386 {
2387         struct file *swap_file = sis->swap_file;
2388         struct address_space *mapping = swap_file->f_mapping;
2389         struct inode *inode = mapping->host;
2390         int ret;
2391
2392         if (S_ISBLK(inode->i_mode)) {
2393                 ret = add_swap_extent(sis, 0, sis->max, 0);
2394                 *span = sis->pages;
2395                 return ret;
2396         }
2397
2398         if (mapping->a_ops->swap_activate) {
2399                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2400                 if (!ret) {
2401                         sis->flags |= SWP_FILE;
2402                         ret = add_swap_extent(sis, 0, sis->max, 0);
2403                         *span = sis->pages;
2404                 }
2405                 return ret;
2406         }
2407
2408         return generic_swapfile_activate(sis, swap_file, span);
2409 }
2410
2411 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2412                                 unsigned char *swap_map,
2413                                 struct swap_cluster_info *cluster_info)
2414 {
2415         if (prio >= 0)
2416                 p->prio = prio;
2417         else
2418                 p->prio = --least_priority;
2419         /*
2420          * the plist prio is negated because plist ordering is
2421          * low-to-high, while swap ordering is high-to-low
2422          */
2423         p->list.prio = -p->prio;
2424         p->avail_list.prio = -p->prio;
2425         p->swap_map = swap_map;
2426         p->cluster_info = cluster_info;
2427         p->flags |= SWP_WRITEOK;
2428         atomic_long_add(p->pages, &nr_swap_pages);
2429         total_swap_pages += p->pages;
2430
2431         assert_spin_locked(&swap_lock);
2432         /*
2433          * both lists are plists, and thus priority ordered.
2434          * swap_active_head needs to be priority ordered for swapoff(),
2435          * which on removal of any swap_info_struct with an auto-assigned
2436          * (i.e. negative) priority increments the auto-assigned priority
2437          * of any lower-priority swap_info_structs.
2438          * swap_avail_head needs to be priority ordered for get_swap_page(),
2439          * which allocates swap pages from the highest available priority
2440          * swap_info_struct.
2441          */
2442         plist_add(&p->list, &swap_active_head);
2443         spin_lock(&swap_avail_lock);
2444         plist_add(&p->avail_list, &swap_avail_head);
2445         spin_unlock(&swap_avail_lock);
2446 }
2447
2448 static void enable_swap_info(struct swap_info_struct *p, int prio,
2449                                 unsigned char *swap_map,
2450                                 struct swap_cluster_info *cluster_info,
2451                                 unsigned long *frontswap_map)
2452 {
2453         frontswap_init(p->type, frontswap_map);
2454         spin_lock(&swap_lock);
2455         spin_lock(&p->lock);
2456          _enable_swap_info(p, prio, swap_map, cluster_info);
2457         spin_unlock(&p->lock);
2458         spin_unlock(&swap_lock);
2459 }
2460
2461 static void reinsert_swap_info(struct swap_info_struct *p)
2462 {
2463         spin_lock(&swap_lock);
2464         spin_lock(&p->lock);
2465         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2466         spin_unlock(&p->lock);
2467         spin_unlock(&swap_lock);
2468 }
2469
2470 bool has_usable_swap(void)
2471 {
2472         bool ret = true;
2473
2474         spin_lock(&swap_lock);
2475         if (plist_head_empty(&swap_active_head))
2476                 ret = false;
2477         spin_unlock(&swap_lock);
2478         return ret;
2479 }
2480
2481 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2482 {
2483         struct swap_info_struct *p = NULL;
2484         unsigned char *swap_map;
2485         struct swap_cluster_info *cluster_info;
2486         unsigned long *frontswap_map;
2487         struct file *swap_file, *victim;
2488         struct address_space *mapping;
2489         struct inode *inode;
2490         struct filename *pathname;
2491         int err, found = 0;
2492         unsigned int old_block_size;
2493
2494         if (!capable(CAP_SYS_ADMIN))
2495                 return -EPERM;
2496
2497         BUG_ON(!current->mm);
2498
2499         pathname = getname(specialfile);
2500         if (IS_ERR(pathname))
2501                 return PTR_ERR(pathname);
2502
2503         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2504         err = PTR_ERR(victim);
2505         if (IS_ERR(victim))
2506                 goto out;
2507
2508         mapping = victim->f_mapping;
2509         spin_lock(&swap_lock);
2510         plist_for_each_entry(p, &swap_active_head, list) {
2511                 if (p->flags & SWP_WRITEOK) {
2512                         if (p->swap_file->f_mapping == mapping) {
2513                                 found = 1;
2514                                 break;
2515                         }
2516                 }
2517         }
2518         if (!found) {
2519                 err = -EINVAL;
2520                 spin_unlock(&swap_lock);
2521                 goto out_dput;
2522         }
2523         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2524                 vm_unacct_memory(p->pages);
2525         else {
2526                 err = -ENOMEM;
2527                 spin_unlock(&swap_lock);
2528                 goto out_dput;
2529         }
2530         spin_lock(&swap_avail_lock);
2531         plist_del(&p->avail_list, &swap_avail_head);
2532         spin_unlock(&swap_avail_lock);
2533         spin_lock(&p->lock);
2534         if (p->prio < 0) {
2535                 struct swap_info_struct *si = p;
2536
2537                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2538                         si->prio++;
2539                         si->list.prio--;
2540                         si->avail_list.prio--;
2541                 }
2542                 least_priority++;
2543         }
2544         plist_del(&p->list, &swap_active_head);
2545         atomic_long_sub(p->pages, &nr_swap_pages);
2546         total_swap_pages -= p->pages;
2547         p->flags &= ~SWP_WRITEOK;
2548         spin_unlock(&p->lock);
2549         spin_unlock(&swap_lock);
2550
2551         disable_swap_slots_cache_lock();
2552
2553         set_current_oom_origin();
2554         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2555         clear_current_oom_origin();
2556
2557         if (err) {
2558                 /* re-insert swap space back into swap_list */
2559                 reinsert_swap_info(p);
2560                 reenable_swap_slots_cache_unlock();
2561                 goto out_dput;
2562         }
2563
2564         reenable_swap_slots_cache_unlock();
2565
2566         flush_work(&p->discard_work);
2567
2568         destroy_swap_extents(p);
2569         if (p->flags & SWP_CONTINUED)
2570                 free_swap_count_continuations(p);
2571
2572         mutex_lock(&swapon_mutex);
2573         spin_lock(&swap_lock);
2574         spin_lock(&p->lock);
2575         drain_mmlist();
2576
2577         /* wait for anyone still in scan_swap_map */
2578         p->highest_bit = 0;             /* cuts scans short */
2579         while (p->flags >= SWP_SCANNING) {
2580                 spin_unlock(&p->lock);
2581                 spin_unlock(&swap_lock);
2582                 schedule_timeout_uninterruptible(1);
2583                 spin_lock(&swap_lock);
2584                 spin_lock(&p->lock);
2585         }
2586
2587         swap_file = p->swap_file;
2588         old_block_size = p->old_block_size;
2589         p->swap_file = NULL;
2590         p->max = 0;
2591         swap_map = p->swap_map;
2592         p->swap_map = NULL;
2593         cluster_info = p->cluster_info;
2594         p->cluster_info = NULL;
2595         frontswap_map = frontswap_map_get(p);
2596         spin_unlock(&p->lock);
2597         spin_unlock(&swap_lock);
2598         frontswap_invalidate_area(p->type);
2599         frontswap_map_set(p, NULL);
2600         mutex_unlock(&swapon_mutex);
2601         free_percpu(p->percpu_cluster);
2602         p->percpu_cluster = NULL;
2603         vfree(swap_map);
2604         kvfree(cluster_info);
2605         kvfree(frontswap_map);
2606         /* Destroy swap account information */
2607         swap_cgroup_swapoff(p->type);
2608         exit_swap_address_space(p->type);
2609
2610         inode = mapping->host;
2611         if (S_ISBLK(inode->i_mode)) {
2612                 struct block_device *bdev = I_BDEV(inode);
2613                 set_blocksize(bdev, old_block_size);
2614                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2615         } else {
2616                 inode_lock(inode);
2617                 inode->i_flags &= ~S_SWAPFILE;
2618                 inode_unlock(inode);
2619         }
2620         filp_close(swap_file, NULL);
2621
2622         /*
2623          * Clear the SWP_USED flag after all resources are freed so that swapon
2624          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2625          * not hold p->lock after we cleared its SWP_WRITEOK.
2626          */
2627         spin_lock(&swap_lock);
2628         p->flags = 0;
2629         spin_unlock(&swap_lock);
2630
2631         err = 0;
2632         atomic_inc(&proc_poll_event);
2633         wake_up_interruptible(&proc_poll_wait);
2634
2635 out_dput:
2636         filp_close(victim, NULL);
2637 out:
2638         putname(pathname);
2639         return err;
2640 }
2641
2642 #ifdef CONFIG_PROC_FS
2643 static unsigned swaps_poll(struct file *file, poll_table *wait)
2644 {
2645         struct seq_file *seq = file->private_data;
2646
2647         poll_wait(file, &proc_poll_wait, wait);
2648
2649         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2650                 seq->poll_event = atomic_read(&proc_poll_event);
2651                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2652         }
2653
2654         return POLLIN | POLLRDNORM;
2655 }
2656
2657 /* iterator */
2658 static void *swap_start(struct seq_file *swap, loff_t *pos)
2659 {
2660         struct swap_info_struct *si;
2661         int type;
2662         loff_t l = *pos;
2663
2664         mutex_lock(&swapon_mutex);
2665
2666         if (!l)
2667                 return SEQ_START_TOKEN;
2668
2669         for (type = 0; type < nr_swapfiles; type++) {
2670                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2671                 si = swap_info[type];
2672                 if (!(si->flags & SWP_USED) || !si->swap_map)
2673                         continue;
2674                 if (!--l)
2675                         return si;
2676         }
2677
2678         return NULL;
2679 }
2680
2681 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2682 {
2683         struct swap_info_struct *si = v;
2684         int type;
2685
2686         if (v == SEQ_START_TOKEN)
2687                 type = 0;
2688         else
2689                 type = si->type + 1;
2690
2691         for (; type < nr_swapfiles; type++) {
2692                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2693                 si = swap_info[type];
2694                 if (!(si->flags & SWP_USED) || !si->swap_map)
2695                         continue;
2696                 ++*pos;
2697                 return si;
2698         }
2699
2700         return NULL;
2701 }
2702
2703 static void swap_stop(struct seq_file *swap, void *v)
2704 {
2705         mutex_unlock(&swapon_mutex);
2706 }
2707
2708 static int swap_show(struct seq_file *swap, void *v)
2709 {
2710         struct swap_info_struct *si = v;
2711         struct file *file;
2712         int len;
2713
2714         if (si == SEQ_START_TOKEN) {
2715                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2716                 return 0;
2717         }
2718
2719         file = si->swap_file;
2720         len = seq_file_path(swap, file, " \t\n\\");
2721         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2722                         len < 40 ? 40 - len : 1, " ",
2723                         S_ISBLK(file_inode(file)->i_mode) ?
2724                                 "partition" : "file\t",
2725                         si->pages << (PAGE_SHIFT - 10),
2726                         si->inuse_pages << (PAGE_SHIFT - 10),
2727                         si->prio);
2728         return 0;
2729 }
2730
2731 static const struct seq_operations swaps_op = {
2732         .start =        swap_start,
2733         .next =         swap_next,
2734         .stop =         swap_stop,
2735         .show =         swap_show
2736 };
2737
2738 static int swaps_open(struct inode *inode, struct file *file)
2739 {
2740         struct seq_file *seq;
2741         int ret;
2742
2743         ret = seq_open(file, &swaps_op);
2744         if (ret)
2745                 return ret;
2746
2747         seq = file->private_data;
2748         seq->poll_event = atomic_read(&proc_poll_event);
2749         return 0;
2750 }
2751
2752 static const struct file_operations proc_swaps_operations = {
2753         .open           = swaps_open,
2754         .read           = seq_read,
2755         .llseek         = seq_lseek,
2756         .release        = seq_release,
2757         .poll           = swaps_poll,
2758 };
2759
2760 static int __init procswaps_init(void)
2761 {
2762         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2763         return 0;
2764 }
2765 __initcall(procswaps_init);
2766 #endif /* CONFIG_PROC_FS */
2767
2768 #ifdef MAX_SWAPFILES_CHECK
2769 static int __init max_swapfiles_check(void)
2770 {
2771         MAX_SWAPFILES_CHECK();
2772         return 0;
2773 }
2774 late_initcall(max_swapfiles_check);
2775 #endif
2776
2777 static struct swap_info_struct *alloc_swap_info(void)
2778 {
2779         struct swap_info_struct *p;
2780         unsigned int type;
2781
2782         p = kzalloc(sizeof(*p), GFP_KERNEL);
2783         if (!p)
2784                 return ERR_PTR(-ENOMEM);
2785
2786         spin_lock(&swap_lock);
2787         for (type = 0; type < nr_swapfiles; type++) {
2788                 if (!(swap_info[type]->flags & SWP_USED))
2789                         break;
2790         }
2791         if (type >= MAX_SWAPFILES) {
2792                 spin_unlock(&swap_lock);
2793                 kfree(p);
2794                 return ERR_PTR(-EPERM);
2795         }
2796         if (type >= nr_swapfiles) {
2797                 p->type = type;
2798                 swap_info[type] = p;
2799                 /*
2800                  * Write swap_info[type] before nr_swapfiles, in case a
2801                  * racing procfs swap_start() or swap_next() is reading them.
2802                  * (We never shrink nr_swapfiles, we never free this entry.)
2803                  */
2804                 smp_wmb();
2805                 nr_swapfiles++;
2806         } else {
2807                 kfree(p);
2808                 p = swap_info[type];
2809                 /*
2810                  * Do not memset this entry: a racing procfs swap_next()
2811                  * would be relying on p->type to remain valid.
2812                  */
2813         }
2814         INIT_LIST_HEAD(&p->first_swap_extent.list);
2815         plist_node_init(&p->list, 0);
2816         plist_node_init(&p->avail_list, 0);
2817         p->flags = SWP_USED;
2818         spin_unlock(&swap_lock);
2819         spin_lock_init(&p->lock);
2820
2821         return p;
2822 }
2823
2824 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2825 {
2826         int error;
2827
2828         if (S_ISBLK(inode->i_mode)) {
2829                 p->bdev = bdgrab(I_BDEV(inode));
2830                 error = blkdev_get(p->bdev,
2831                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2832                 if (error < 0) {
2833                         p->bdev = NULL;
2834                         return error;
2835                 }
2836                 p->old_block_size = block_size(p->bdev);
2837                 error = set_blocksize(p->bdev, PAGE_SIZE);
2838                 if (error < 0)
2839                         return error;
2840                 p->flags |= SWP_BLKDEV;
2841         } else if (S_ISREG(inode->i_mode)) {
2842                 p->bdev = inode->i_sb->s_bdev;
2843                 inode_lock(inode);
2844                 if (IS_SWAPFILE(inode))
2845                         return -EBUSY;
2846         } else
2847                 return -EINVAL;
2848
2849         return 0;
2850 }
2851
2852 static unsigned long read_swap_header(struct swap_info_struct *p,
2853                                         union swap_header *swap_header,
2854                                         struct inode *inode)
2855 {
2856         int i;
2857         unsigned long maxpages;
2858         unsigned long swapfilepages;
2859         unsigned long last_page;
2860
2861         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2862                 pr_err("Unable to find swap-space signature\n");
2863                 return 0;
2864         }
2865
2866         /* swap partition endianess hack... */
2867         if (swab32(swap_header->info.version) == 1) {
2868                 swab32s(&swap_header->info.version);
2869                 swab32s(&swap_header->info.last_page);
2870                 swab32s(&swap_header->info.nr_badpages);
2871                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2872                         return 0;
2873                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2874                         swab32s(&swap_header->info.badpages[i]);
2875         }
2876         /* Check the swap header's sub-version */
2877         if (swap_header->info.version != 1) {
2878                 pr_warn("Unable to handle swap header version %d\n",
2879                         swap_header->info.version);
2880                 return 0;
2881         }
2882
2883         p->lowest_bit  = 1;
2884         p->cluster_next = 1;
2885         p->cluster_nr = 0;
2886
2887         /*
2888          * Find out how many pages are allowed for a single swap
2889          * device. There are two limiting factors: 1) the number
2890          * of bits for the swap offset in the swp_entry_t type, and
2891          * 2) the number of bits in the swap pte as defined by the
2892          * different architectures. In order to find the
2893          * largest possible bit mask, a swap entry with swap type 0
2894          * and swap offset ~0UL is created, encoded to a swap pte,
2895          * decoded to a swp_entry_t again, and finally the swap
2896          * offset is extracted. This will mask all the bits from
2897          * the initial ~0UL mask that can't be encoded in either
2898          * the swp_entry_t or the architecture definition of a
2899          * swap pte.
2900          */
2901         maxpages = swp_offset(pte_to_swp_entry(
2902                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2903         last_page = swap_header->info.last_page;
2904         if (last_page > maxpages) {
2905                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2906                         maxpages << (PAGE_SHIFT - 10),
2907                         last_page << (PAGE_SHIFT - 10));
2908         }
2909         if (maxpages > last_page) {
2910                 maxpages = last_page + 1;
2911                 /* p->max is an unsigned int: don't overflow it */
2912                 if ((unsigned int)maxpages == 0)
2913                         maxpages = UINT_MAX;
2914         }
2915         p->highest_bit = maxpages - 1;
2916
2917         if (!maxpages)
2918                 return 0;
2919         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2920         if (swapfilepages && maxpages > swapfilepages) {
2921                 pr_warn("Swap area shorter than signature indicates\n");
2922                 return 0;
2923         }
2924         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2925                 return 0;
2926         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2927                 return 0;
2928
2929         return maxpages;
2930 }
2931
2932 #define SWAP_CLUSTER_INFO_COLS                                          \
2933         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2934 #define SWAP_CLUSTER_SPACE_COLS                                         \
2935         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2936 #define SWAP_CLUSTER_COLS                                               \
2937         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2938
2939 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2940                                         union swap_header *swap_header,
2941                                         unsigned char *swap_map,
2942                                         struct swap_cluster_info *cluster_info,
2943                                         unsigned long maxpages,
2944                                         sector_t *span)
2945 {
2946         unsigned int j, k;
2947         unsigned int nr_good_pages;
2948         int nr_extents;
2949         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2950         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2951         unsigned long i, idx;
2952
2953         nr_good_pages = maxpages - 1;   /* omit header page */
2954
2955         cluster_list_init(&p->free_clusters);
2956         cluster_list_init(&p->discard_clusters);
2957
2958         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2959                 unsigned int page_nr = swap_header->info.badpages[i];
2960                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2961                         return -EINVAL;
2962                 if (page_nr < maxpages) {
2963                         swap_map[page_nr] = SWAP_MAP_BAD;
2964                         nr_good_pages--;
2965                         /*
2966                          * Haven't marked the cluster free yet, no list
2967                          * operation involved
2968                          */
2969                         inc_cluster_info_page(p, cluster_info, page_nr);
2970                 }
2971         }
2972
2973         /* Haven't marked the cluster free yet, no list operation involved */
2974         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2975                 inc_cluster_info_page(p, cluster_info, i);
2976
2977         if (nr_good_pages) {
2978                 swap_map[0] = SWAP_MAP_BAD;
2979                 /*
2980                  * Not mark the cluster free yet, no list
2981                  * operation involved
2982                  */
2983                 inc_cluster_info_page(p, cluster_info, 0);
2984                 p->max = maxpages;
2985                 p->pages = nr_good_pages;
2986                 nr_extents = setup_swap_extents(p, span);
2987                 if (nr_extents < 0)
2988                         return nr_extents;
2989                 nr_good_pages = p->pages;
2990         }
2991         if (!nr_good_pages) {
2992                 pr_warn("Empty swap-file\n");
2993                 return -EINVAL;
2994         }
2995
2996         if (!cluster_info)
2997                 return nr_extents;
2998
2999
3000         /*
3001          * Reduce false cache line sharing between cluster_info and
3002          * sharing same address space.
3003          */
3004         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3005                 j = (k + col) % SWAP_CLUSTER_COLS;
3006                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3007                         idx = i * SWAP_CLUSTER_COLS + j;
3008                         if (idx >= nr_clusters)
3009                                 continue;
3010                         if (cluster_count(&cluster_info[idx]))
3011                                 continue;
3012                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3013                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3014                                               idx);
3015                 }
3016         }
3017         return nr_extents;
3018 }
3019
3020 /*
3021  * Helper to sys_swapon determining if a given swap
3022  * backing device queue supports DISCARD operations.
3023  */
3024 static bool swap_discardable(struct swap_info_struct *si)
3025 {
3026         struct request_queue *q = bdev_get_queue(si->bdev);
3027
3028         if (!q || !blk_queue_discard(q))
3029                 return false;
3030
3031         return true;
3032 }
3033
3034 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3035 {
3036         struct swap_info_struct *p;
3037         struct filename *name;
3038         struct file *swap_file = NULL;
3039         struct address_space *mapping;
3040         int prio;
3041         int error;
3042         union swap_header *swap_header;
3043         int nr_extents;
3044         sector_t span;
3045         unsigned long maxpages;
3046         unsigned char *swap_map = NULL;
3047         struct swap_cluster_info *cluster_info = NULL;
3048         unsigned long *frontswap_map = NULL;
3049         struct page *page = NULL;
3050         struct inode *inode = NULL;
3051
3052         if (swap_flags & ~SWAP_FLAGS_VALID)
3053                 return -EINVAL;
3054
3055         if (!capable(CAP_SYS_ADMIN))
3056                 return -EPERM;
3057
3058         p = alloc_swap_info();
3059         if (IS_ERR(p))
3060                 return PTR_ERR(p);
3061
3062         INIT_WORK(&p->discard_work, swap_discard_work);
3063
3064         name = getname(specialfile);
3065         if (IS_ERR(name)) {
3066                 error = PTR_ERR(name);
3067                 name = NULL;
3068                 goto bad_swap;
3069         }
3070         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3071         if (IS_ERR(swap_file)) {
3072                 error = PTR_ERR(swap_file);
3073                 swap_file = NULL;
3074                 goto bad_swap;
3075         }
3076
3077         p->swap_file = swap_file;
3078         mapping = swap_file->f_mapping;
3079         inode = mapping->host;
3080
3081         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3082         error = claim_swapfile(p, inode);
3083         if (unlikely(error))
3084                 goto bad_swap;
3085
3086         /*
3087          * Read the swap header.
3088          */
3089         if (!mapping->a_ops->readpage) {
3090                 error = -EINVAL;
3091                 goto bad_swap;
3092         }
3093         page = read_mapping_page(mapping, 0, swap_file);
3094         if (IS_ERR(page)) {
3095                 error = PTR_ERR(page);
3096                 goto bad_swap;
3097         }
3098         swap_header = kmap(page);
3099
3100         maxpages = read_swap_header(p, swap_header, inode);
3101         if (unlikely(!maxpages)) {
3102                 error = -EINVAL;
3103                 goto bad_swap;
3104         }
3105
3106         /* OK, set up the swap map and apply the bad block list */
3107         swap_map = vzalloc(maxpages);
3108         if (!swap_map) {
3109                 error = -ENOMEM;
3110                 goto bad_swap;
3111         }
3112
3113         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3114                 p->flags |= SWP_STABLE_WRITES;
3115
3116         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3117                 int cpu;
3118                 unsigned long ci, nr_cluster;
3119
3120                 p->flags |= SWP_SOLIDSTATE;
3121                 /*
3122                  * select a random position to start with to help wear leveling
3123                  * SSD
3124                  */
3125                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3126                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3127
3128                 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3129                                         GFP_KERNEL);
3130                 if (!cluster_info) {
3131                         error = -ENOMEM;
3132                         goto bad_swap;
3133                 }
3134
3135                 for (ci = 0; ci < nr_cluster; ci++)
3136                         spin_lock_init(&((cluster_info + ci)->lock));
3137
3138                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3139                 if (!p->percpu_cluster) {
3140                         error = -ENOMEM;
3141                         goto bad_swap;
3142                 }
3143                 for_each_possible_cpu(cpu) {
3144                         struct percpu_cluster *cluster;
3145                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3146                         cluster_set_null(&cluster->index);
3147                 }
3148         }
3149
3150         error = swap_cgroup_swapon(p->type, maxpages);
3151         if (error)
3152                 goto bad_swap;
3153
3154         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3155                 cluster_info, maxpages, &span);
3156         if (unlikely(nr_extents < 0)) {
3157                 error = nr_extents;
3158                 goto bad_swap;
3159         }
3160         /* frontswap enabled? set up bit-per-page map for frontswap */
3161         if (IS_ENABLED(CONFIG_FRONTSWAP))
3162                 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3163                                          GFP_KERNEL);
3164
3165         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3166                 /*
3167                  * When discard is enabled for swap with no particular
3168                  * policy flagged, we set all swap discard flags here in
3169                  * order to sustain backward compatibility with older
3170                  * swapon(8) releases.
3171                  */
3172                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3173                              SWP_PAGE_DISCARD);
3174
3175                 /*
3176                  * By flagging sys_swapon, a sysadmin can tell us to
3177                  * either do single-time area discards only, or to just
3178                  * perform discards for released swap page-clusters.
3179                  * Now it's time to adjust the p->flags accordingly.
3180                  */
3181                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3182                         p->flags &= ~SWP_PAGE_DISCARD;
3183                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3184                         p->flags &= ~SWP_AREA_DISCARD;
3185
3186                 /* issue a swapon-time discard if it's still required */
3187                 if (p->flags & SWP_AREA_DISCARD) {
3188                         int err = discard_swap(p);
3189                         if (unlikely(err))
3190                                 pr_err("swapon: discard_swap(%p): %d\n",
3191                                         p, err);
3192                 }
3193         }
3194
3195         error = init_swap_address_space(p->type, maxpages);
3196         if (error)
3197                 goto bad_swap;
3198
3199         mutex_lock(&swapon_mutex);
3200         prio = -1;
3201         if (swap_flags & SWAP_FLAG_PREFER)
3202                 prio =
3203                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3204         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3205
3206         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3207                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3208                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3209                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3210                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3211                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3212                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3213                 (frontswap_map) ? "FS" : "");
3214
3215         mutex_unlock(&swapon_mutex);
3216         atomic_inc(&proc_poll_event);
3217         wake_up_interruptible(&proc_poll_wait);
3218
3219         if (S_ISREG(inode->i_mode))
3220                 inode->i_flags |= S_SWAPFILE;
3221         error = 0;
3222         goto out;
3223 bad_swap:
3224         free_percpu(p->percpu_cluster);
3225         p->percpu_cluster = NULL;
3226         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3227                 set_blocksize(p->bdev, p->old_block_size);
3228                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3229         }
3230         destroy_swap_extents(p);
3231         swap_cgroup_swapoff(p->type);
3232         spin_lock(&swap_lock);
3233         p->swap_file = NULL;
3234         p->flags = 0;
3235         spin_unlock(&swap_lock);
3236         vfree(swap_map);
3237         vfree(cluster_info);
3238         if (swap_file) {
3239                 if (inode && S_ISREG(inode->i_mode)) {
3240                         inode_unlock(inode);
3241                         inode = NULL;
3242                 }
3243                 filp_close(swap_file, NULL);
3244         }
3245 out:
3246         if (page && !IS_ERR(page)) {
3247                 kunmap(page);
3248                 put_page(page);
3249         }
3250         if (name)
3251                 putname(name);
3252         if (inode && S_ISREG(inode->i_mode))
3253                 inode_unlock(inode);
3254         if (!error)
3255                 enable_swap_slots_cache();
3256         return error;
3257 }
3258
3259 void si_swapinfo(struct sysinfo *val)
3260 {
3261         unsigned int type;
3262         unsigned long nr_to_be_unused = 0;
3263
3264         spin_lock(&swap_lock);
3265         for (type = 0; type < nr_swapfiles; type++) {
3266                 struct swap_info_struct *si = swap_info[type];
3267
3268                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3269                         nr_to_be_unused += si->inuse_pages;
3270         }
3271         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3272         val->totalswap = total_swap_pages + nr_to_be_unused;
3273         spin_unlock(&swap_lock);
3274 }
3275
3276 /*
3277  * Verify that a swap entry is valid and increment its swap map count.
3278  *
3279  * Returns error code in following case.
3280  * - success -> 0
3281  * - swp_entry is invalid -> EINVAL
3282  * - swp_entry is migration entry -> EINVAL
3283  * - swap-cache reference is requested but there is already one. -> EEXIST
3284  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3285  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3286  */
3287 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3288 {
3289         struct swap_info_struct *p;
3290         struct swap_cluster_info *ci;
3291         unsigned long offset, type;
3292         unsigned char count;
3293         unsigned char has_cache;
3294         int err = -EINVAL;
3295
3296         if (non_swap_entry(entry))
3297                 goto out;
3298
3299         type = swp_type(entry);
3300         if (type >= nr_swapfiles)
3301                 goto bad_file;
3302         p = swap_info[type];
3303         offset = swp_offset(entry);
3304         if (unlikely(offset >= p->max))
3305                 goto out;
3306
3307         ci = lock_cluster_or_swap_info(p, offset);
3308
3309         count = p->swap_map[offset];
3310
3311         /*
3312          * swapin_readahead() doesn't check if a swap entry is valid, so the
3313          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3314          */
3315         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3316                 err = -ENOENT;
3317                 goto unlock_out;
3318         }
3319
3320         has_cache = count & SWAP_HAS_CACHE;
3321         count &= ~SWAP_HAS_CACHE;
3322         err = 0;
3323
3324         if (usage == SWAP_HAS_CACHE) {
3325
3326                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3327                 if (!has_cache && count)
3328                         has_cache = SWAP_HAS_CACHE;
3329                 else if (has_cache)             /* someone else added cache */
3330                         err = -EEXIST;
3331                 else                            /* no users remaining */
3332                         err = -ENOENT;
3333
3334         } else if (count || has_cache) {
3335
3336                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3337                         count += usage;
3338                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3339                         err = -EINVAL;
3340                 else if (swap_count_continued(p, offset, count))
3341                         count = COUNT_CONTINUED;
3342                 else
3343                         err = -ENOMEM;
3344         } else
3345                 err = -ENOENT;                  /* unused swap entry */
3346
3347         p->swap_map[offset] = count | has_cache;
3348
3349 unlock_out:
3350         unlock_cluster_or_swap_info(p, ci);
3351 out:
3352         return err;
3353
3354 bad_file:
3355         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3356         goto out;
3357 }
3358
3359 /*
3360  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3361  * (in which case its reference count is never incremented).
3362  */
3363 void swap_shmem_alloc(swp_entry_t entry)
3364 {
3365         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3366 }
3367
3368 /*
3369  * Increase reference count of swap entry by 1.
3370  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3371  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3372  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3373  * might occur if a page table entry has got corrupted.
3374  */
3375 int swap_duplicate(swp_entry_t entry)
3376 {
3377         int err = 0;
3378
3379         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3380                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3381         return err;
3382 }
3383
3384 /*
3385  * @entry: swap entry for which we allocate swap cache.
3386  *
3387  * Called when allocating swap cache for existing swap entry,
3388  * This can return error codes. Returns 0 at success.
3389  * -EBUSY means there is a swap cache.
3390  * Note: return code is different from swap_duplicate().
3391  */
3392 int swapcache_prepare(swp_entry_t entry)
3393 {
3394         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3395 }
3396
3397 struct swap_info_struct *page_swap_info(struct page *page)
3398 {
3399         swp_entry_t swap = { .val = page_private(page) };
3400         return swap_info[swp_type(swap)];
3401 }
3402
3403 /*
3404  * out-of-line __page_file_ methods to avoid include hell.
3405  */
3406 struct address_space *__page_file_mapping(struct page *page)
3407 {
3408         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3409         return page_swap_info(page)->swap_file->f_mapping;
3410 }
3411 EXPORT_SYMBOL_GPL(__page_file_mapping);
3412
3413 pgoff_t __page_file_index(struct page *page)
3414 {
3415         swp_entry_t swap = { .val = page_private(page) };
3416         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3417         return swp_offset(swap);
3418 }
3419 EXPORT_SYMBOL_GPL(__page_file_index);
3420
3421 /*
3422  * add_swap_count_continuation - called when a swap count is duplicated
3423  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3424  * page of the original vmalloc'ed swap_map, to hold the continuation count
3425  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3426  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3427  *
3428  * These continuation pages are seldom referenced: the common paths all work
3429  * on the original swap_map, only referring to a continuation page when the
3430  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3431  *
3432  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3433  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3434  * can be called after dropping locks.
3435  */
3436 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3437 {
3438         struct swap_info_struct *si;
3439         struct swap_cluster_info *ci;
3440         struct page *head;
3441         struct page *page;
3442         struct page *list_page;
3443         pgoff_t offset;
3444         unsigned char count;
3445
3446         /*
3447          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3448          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3449          */
3450         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3451
3452         si = swap_info_get(entry);
3453         if (!si) {
3454                 /*
3455                  * An acceptable race has occurred since the failing
3456                  * __swap_duplicate(): the swap entry has been freed,
3457                  * perhaps even the whole swap_map cleared for swapoff.
3458                  */
3459                 goto outer;
3460         }
3461
3462         offset = swp_offset(entry);
3463
3464         ci = lock_cluster(si, offset);
3465
3466         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3467
3468         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3469                 /*
3470                  * The higher the swap count, the more likely it is that tasks
3471                  * will race to add swap count continuation: we need to avoid
3472                  * over-provisioning.
3473                  */
3474                 goto out;
3475         }
3476
3477         if (!page) {
3478                 unlock_cluster(ci);
3479                 spin_unlock(&si->lock);
3480                 return -ENOMEM;
3481         }
3482
3483         /*
3484          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3485          * no architecture is using highmem pages for kernel page tables: so it
3486          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3487          */
3488         head = vmalloc_to_page(si->swap_map + offset);
3489         offset &= ~PAGE_MASK;
3490
3491         /*
3492          * Page allocation does not initialize the page's lru field,
3493          * but it does always reset its private field.
3494          */
3495         if (!page_private(head)) {
3496                 BUG_ON(count & COUNT_CONTINUED);
3497                 INIT_LIST_HEAD(&head->lru);
3498                 set_page_private(head, SWP_CONTINUED);
3499                 si->flags |= SWP_CONTINUED;
3500         }
3501
3502         list_for_each_entry(list_page, &head->lru, lru) {
3503                 unsigned char *map;
3504
3505                 /*
3506                  * If the previous map said no continuation, but we've found
3507                  * a continuation page, free our allocation and use this one.
3508                  */
3509                 if (!(count & COUNT_CONTINUED))
3510                         goto out;
3511
3512                 map = kmap_atomic(list_page) + offset;
3513                 count = *map;
3514                 kunmap_atomic(map);
3515
3516                 /*
3517                  * If this continuation count now has some space in it,
3518                  * free our allocation and use this one.
3519                  */
3520                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3521                         goto out;
3522         }
3523
3524         list_add_tail(&page->lru, &head->lru);
3525         page = NULL;                    /* now it's attached, don't free it */
3526 out:
3527         unlock_cluster(ci);
3528         spin_unlock(&si->lock);
3529 outer:
3530         if (page)
3531                 __free_page(page);
3532         return 0;
3533 }
3534
3535 /*
3536  * swap_count_continued - when the original swap_map count is incremented
3537  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3538  * into, carry if so, or else fail until a new continuation page is allocated;
3539  * when the original swap_map count is decremented from 0 with continuation,
3540  * borrow from the continuation and report whether it still holds more.
3541  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3542  * lock.
3543  */
3544 static bool swap_count_continued(struct swap_info_struct *si,
3545                                  pgoff_t offset, unsigned char count)
3546 {
3547         struct page *head;
3548         struct page *page;
3549         unsigned char *map;
3550
3551         head = vmalloc_to_page(si->swap_map + offset);
3552         if (page_private(head) != SWP_CONTINUED) {
3553                 BUG_ON(count & COUNT_CONTINUED);
3554                 return false;           /* need to add count continuation */
3555         }
3556
3557         offset &= ~PAGE_MASK;
3558         page = list_entry(head->lru.next, struct page, lru);
3559         map = kmap_atomic(page) + offset;
3560
3561         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3562                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3563
3564         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3565                 /*
3566                  * Think of how you add 1 to 999
3567                  */
3568                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3569                         kunmap_atomic(map);
3570                         page = list_entry(page->lru.next, struct page, lru);
3571                         BUG_ON(page == head);
3572                         map = kmap_atomic(page) + offset;
3573                 }
3574                 if (*map == SWAP_CONT_MAX) {
3575                         kunmap_atomic(map);
3576                         page = list_entry(page->lru.next, struct page, lru);
3577                         if (page == head)
3578                                 return false;   /* add count continuation */
3579                         map = kmap_atomic(page) + offset;
3580 init_map:               *map = 0;               /* we didn't zero the page */
3581                 }
3582                 *map += 1;
3583                 kunmap_atomic(map);
3584                 page = list_entry(page->lru.prev, struct page, lru);
3585                 while (page != head) {
3586                         map = kmap_atomic(page) + offset;
3587                         *map = COUNT_CONTINUED;
3588                         kunmap_atomic(map);
3589                         page = list_entry(page->lru.prev, struct page, lru);
3590                 }
3591                 return true;                    /* incremented */
3592
3593         } else {                                /* decrementing */
3594                 /*
3595                  * Think of how you subtract 1 from 1000
3596                  */
3597                 BUG_ON(count != COUNT_CONTINUED);
3598                 while (*map == COUNT_CONTINUED) {
3599                         kunmap_atomic(map);
3600                         page = list_entry(page->lru.next, struct page, lru);
3601                         BUG_ON(page == head);
3602                         map = kmap_atomic(page) + offset;
3603                 }
3604                 BUG_ON(*map == 0);
3605                 *map -= 1;
3606                 if (*map == 0)
3607                         count = 0;
3608                 kunmap_atomic(map);
3609                 page = list_entry(page->lru.prev, struct page, lru);
3610                 while (page != head) {
3611                         map = kmap_atomic(page) + offset;
3612                         *map = SWAP_CONT_MAX | count;
3613                         count = COUNT_CONTINUED;
3614                         kunmap_atomic(map);
3615                         page = list_entry(page->lru.prev, struct page, lru);
3616                 }
3617                 return count == COUNT_CONTINUED;
3618         }
3619 }
3620
3621 /*
3622  * free_swap_count_continuations - swapoff free all the continuation pages
3623  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3624  */
3625 static void free_swap_count_continuations(struct swap_info_struct *si)
3626 {
3627         pgoff_t offset;
3628
3629         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3630                 struct page *head;
3631                 head = vmalloc_to_page(si->swap_map + offset);
3632                 if (page_private(head)) {
3633                         struct page *page, *next;
3634
3635                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3636                                 list_del(&page->lru);
3637                                 __free_page(page);
3638                         }
3639                 }
3640         }
3641 }