mm, swap: add swap readahead hit statistics
[linux-block.git] / mm / swap_state.c
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22 #include <linux/huge_mm.h>
23
24 #include <asm/pgtable.h>
25
26 /*
27  * swapper_space is a fiction, retained to simplify the path through
28  * vmscan's shrink_page_list.
29  */
30 static const struct address_space_operations swap_aops = {
31         .writepage      = swap_writepage,
32         .set_page_dirty = swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34         .migratepage    = migrate_page,
35 #endif
36 };
37
38 struct address_space *swapper_spaces[MAX_SWAPFILES];
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40
41 #define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
42 #define ADD_CACHE_INFO(x, nr)   do { swap_cache_info.x += (nr); } while (0)
43
44 static struct {
45         unsigned long add_total;
46         unsigned long del_total;
47         unsigned long find_success;
48         unsigned long find_total;
49 } swap_cache_info;
50
51 unsigned long total_swapcache_pages(void)
52 {
53         unsigned int i, j, nr;
54         unsigned long ret = 0;
55         struct address_space *spaces;
56
57         rcu_read_lock();
58         for (i = 0; i < MAX_SWAPFILES; i++) {
59                 /*
60                  * The corresponding entries in nr_swapper_spaces and
61                  * swapper_spaces will be reused only after at least
62                  * one grace period.  So it is impossible for them
63                  * belongs to different usage.
64                  */
65                 nr = nr_swapper_spaces[i];
66                 spaces = rcu_dereference(swapper_spaces[i]);
67                 if (!nr || !spaces)
68                         continue;
69                 for (j = 0; j < nr; j++)
70                         ret += spaces[j].nrpages;
71         }
72         rcu_read_unlock();
73         return ret;
74 }
75
76 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
77
78 void show_swap_cache_info(void)
79 {
80         printk("%lu pages in swap cache\n", total_swapcache_pages());
81         printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
82                 swap_cache_info.add_total, swap_cache_info.del_total,
83                 swap_cache_info.find_success, swap_cache_info.find_total);
84         printk("Free swap  = %ldkB\n",
85                 get_nr_swap_pages() << (PAGE_SHIFT - 10));
86         printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
87 }
88
89 /*
90  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
91  * but sets SwapCache flag and private instead of mapping and index.
92  */
93 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
94 {
95         int error, i, nr = hpage_nr_pages(page);
96         struct address_space *address_space;
97         pgoff_t idx = swp_offset(entry);
98
99         VM_BUG_ON_PAGE(!PageLocked(page), page);
100         VM_BUG_ON_PAGE(PageSwapCache(page), page);
101         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
102
103         page_ref_add(page, nr);
104         SetPageSwapCache(page);
105
106         address_space = swap_address_space(entry);
107         spin_lock_irq(&address_space->tree_lock);
108         for (i = 0; i < nr; i++) {
109                 set_page_private(page + i, entry.val + i);
110                 error = radix_tree_insert(&address_space->page_tree,
111                                           idx + i, page + i);
112                 if (unlikely(error))
113                         break;
114         }
115         if (likely(!error)) {
116                 address_space->nrpages += nr;
117                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
118                 ADD_CACHE_INFO(add_total, nr);
119         } else {
120                 /*
121                  * Only the context which have set SWAP_HAS_CACHE flag
122                  * would call add_to_swap_cache().
123                  * So add_to_swap_cache() doesn't returns -EEXIST.
124                  */
125                 VM_BUG_ON(error == -EEXIST);
126                 set_page_private(page + i, 0UL);
127                 while (i--) {
128                         radix_tree_delete(&address_space->page_tree, idx + i);
129                         set_page_private(page + i, 0UL);
130                 }
131                 ClearPageSwapCache(page);
132                 page_ref_sub(page, nr);
133         }
134         spin_unlock_irq(&address_space->tree_lock);
135
136         return error;
137 }
138
139
140 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
141 {
142         int error;
143
144         error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
145         if (!error) {
146                 error = __add_to_swap_cache(page, entry);
147                 radix_tree_preload_end();
148         }
149         return error;
150 }
151
152 /*
153  * This must be called only on pages that have
154  * been verified to be in the swap cache.
155  */
156 void __delete_from_swap_cache(struct page *page)
157 {
158         struct address_space *address_space;
159         int i, nr = hpage_nr_pages(page);
160         swp_entry_t entry;
161         pgoff_t idx;
162
163         VM_BUG_ON_PAGE(!PageLocked(page), page);
164         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
165         VM_BUG_ON_PAGE(PageWriteback(page), page);
166
167         entry.val = page_private(page);
168         address_space = swap_address_space(entry);
169         idx = swp_offset(entry);
170         for (i = 0; i < nr; i++) {
171                 radix_tree_delete(&address_space->page_tree, idx + i);
172                 set_page_private(page + i, 0);
173         }
174         ClearPageSwapCache(page);
175         address_space->nrpages -= nr;
176         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
177         ADD_CACHE_INFO(del_total, nr);
178 }
179
180 /**
181  * add_to_swap - allocate swap space for a page
182  * @page: page we want to move to swap
183  *
184  * Allocate swap space for the page and add the page to the
185  * swap cache.  Caller needs to hold the page lock. 
186  */
187 int add_to_swap(struct page *page)
188 {
189         swp_entry_t entry;
190         int err;
191
192         VM_BUG_ON_PAGE(!PageLocked(page), page);
193         VM_BUG_ON_PAGE(!PageUptodate(page), page);
194
195         entry = get_swap_page(page);
196         if (!entry.val)
197                 return 0;
198
199         if (mem_cgroup_try_charge_swap(page, entry))
200                 goto fail;
201
202         /*
203          * Radix-tree node allocations from PF_MEMALLOC contexts could
204          * completely exhaust the page allocator. __GFP_NOMEMALLOC
205          * stops emergency reserves from being allocated.
206          *
207          * TODO: this could cause a theoretical memory reclaim
208          * deadlock in the swap out path.
209          */
210         /*
211          * Add it to the swap cache.
212          */
213         err = add_to_swap_cache(page, entry,
214                         __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
215         /* -ENOMEM radix-tree allocation failure */
216         if (err)
217                 /*
218                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
219                  * clear SWAP_HAS_CACHE flag.
220                  */
221                 goto fail;
222
223         return 1;
224
225 fail:
226         put_swap_page(page, entry);
227         return 0;
228 }
229
230 /*
231  * This must be called only on pages that have
232  * been verified to be in the swap cache and locked.
233  * It will never put the page into the free list,
234  * the caller has a reference on the page.
235  */
236 void delete_from_swap_cache(struct page *page)
237 {
238         swp_entry_t entry;
239         struct address_space *address_space;
240
241         entry.val = page_private(page);
242
243         address_space = swap_address_space(entry);
244         spin_lock_irq(&address_space->tree_lock);
245         __delete_from_swap_cache(page);
246         spin_unlock_irq(&address_space->tree_lock);
247
248         put_swap_page(page, entry);
249         page_ref_sub(page, hpage_nr_pages(page));
250 }
251
252 /* 
253  * If we are the only user, then try to free up the swap cache. 
254  * 
255  * Its ok to check for PageSwapCache without the page lock
256  * here because we are going to recheck again inside
257  * try_to_free_swap() _with_ the lock.
258  *                                      - Marcelo
259  */
260 static inline void free_swap_cache(struct page *page)
261 {
262         if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
263                 try_to_free_swap(page);
264                 unlock_page(page);
265         }
266 }
267
268 /* 
269  * Perform a free_page(), also freeing any swap cache associated with
270  * this page if it is the last user of the page.
271  */
272 void free_page_and_swap_cache(struct page *page)
273 {
274         free_swap_cache(page);
275         if (!is_huge_zero_page(page))
276                 put_page(page);
277 }
278
279 /*
280  * Passed an array of pages, drop them all from swapcache and then release
281  * them.  They are removed from the LRU and freed if this is their last use.
282  */
283 void free_pages_and_swap_cache(struct page **pages, int nr)
284 {
285         struct page **pagep = pages;
286         int i;
287
288         lru_add_drain();
289         for (i = 0; i < nr; i++)
290                 free_swap_cache(pagep[i]);
291         release_pages(pagep, nr, false);
292 }
293
294 /*
295  * Lookup a swap entry in the swap cache. A found page will be returned
296  * unlocked and with its refcount incremented - we rely on the kernel
297  * lock getting page table operations atomic even if we drop the page
298  * lock before returning.
299  */
300 struct page * lookup_swap_cache(swp_entry_t entry)
301 {
302         struct page *page;
303
304         page = find_get_page(swap_address_space(entry), swp_offset(entry));
305
306         if (page && likely(!PageTransCompound(page))) {
307                 INC_CACHE_INFO(find_success);
308                 if (TestClearPageReadahead(page)) {
309                         atomic_inc(&swapin_readahead_hits);
310                         count_vm_event(SWAP_RA_HIT);
311                 }
312         }
313
314         INC_CACHE_INFO(find_total);
315         return page;
316 }
317
318 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
319                         struct vm_area_struct *vma, unsigned long addr,
320                         bool *new_page_allocated)
321 {
322         struct page *found_page, *new_page = NULL;
323         struct address_space *swapper_space = swap_address_space(entry);
324         int err;
325         *new_page_allocated = false;
326
327         do {
328                 /*
329                  * First check the swap cache.  Since this is normally
330                  * called after lookup_swap_cache() failed, re-calling
331                  * that would confuse statistics.
332                  */
333                 found_page = find_get_page(swapper_space, swp_offset(entry));
334                 if (found_page)
335                         break;
336
337                 /*
338                  * Just skip read ahead for unused swap slot.
339                  * During swap_off when swap_slot_cache is disabled,
340                  * we have to handle the race between putting
341                  * swap entry in swap cache and marking swap slot
342                  * as SWAP_HAS_CACHE.  That's done in later part of code or
343                  * else swap_off will be aborted if we return NULL.
344                  */
345                 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
346                         break;
347
348                 /*
349                  * Get a new page to read into from swap.
350                  */
351                 if (!new_page) {
352                         new_page = alloc_page_vma(gfp_mask, vma, addr);
353                         if (!new_page)
354                                 break;          /* Out of memory */
355                 }
356
357                 /*
358                  * call radix_tree_preload() while we can wait.
359                  */
360                 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
361                 if (err)
362                         break;
363
364                 /*
365                  * Swap entry may have been freed since our caller observed it.
366                  */
367                 err = swapcache_prepare(entry);
368                 if (err == -EEXIST) {
369                         radix_tree_preload_end();
370                         /*
371                          * We might race against get_swap_page() and stumble
372                          * across a SWAP_HAS_CACHE swap_map entry whose page
373                          * has not been brought into the swapcache yet.
374                          */
375                         cond_resched();
376                         continue;
377                 }
378                 if (err) {              /* swp entry is obsolete ? */
379                         radix_tree_preload_end();
380                         break;
381                 }
382
383                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
384                 __SetPageLocked(new_page);
385                 __SetPageSwapBacked(new_page);
386                 err = __add_to_swap_cache(new_page, entry);
387                 if (likely(!err)) {
388                         radix_tree_preload_end();
389                         /*
390                          * Initiate read into locked page and return.
391                          */
392                         lru_cache_add_anon(new_page);
393                         *new_page_allocated = true;
394                         return new_page;
395                 }
396                 radix_tree_preload_end();
397                 __ClearPageLocked(new_page);
398                 /*
399                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
400                  * clear SWAP_HAS_CACHE flag.
401                  */
402                 put_swap_page(new_page, entry);
403         } while (err != -ENOMEM);
404
405         if (new_page)
406                 put_page(new_page);
407         return found_page;
408 }
409
410 /*
411  * Locate a page of swap in physical memory, reserving swap cache space
412  * and reading the disk if it is not already cached.
413  * A failure return means that either the page allocation failed or that
414  * the swap entry is no longer in use.
415  */
416 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
417                 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
418 {
419         bool page_was_allocated;
420         struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
421                         vma, addr, &page_was_allocated);
422
423         if (page_was_allocated)
424                 swap_readpage(retpage, do_poll);
425
426         return retpage;
427 }
428
429 static unsigned long swapin_nr_pages(unsigned long offset)
430 {
431         static unsigned long prev_offset;
432         unsigned int pages, max_pages, last_ra;
433         static atomic_t last_readahead_pages;
434
435         max_pages = 1 << READ_ONCE(page_cluster);
436         if (max_pages <= 1)
437                 return 1;
438
439         /*
440          * This heuristic has been found to work well on both sequential and
441          * random loads, swapping to hard disk or to SSD: please don't ask
442          * what the "+ 2" means, it just happens to work well, that's all.
443          */
444         pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
445         if (pages == 2) {
446                 /*
447                  * We can have no readahead hits to judge by: but must not get
448                  * stuck here forever, so check for an adjacent offset instead
449                  * (and don't even bother to check whether swap type is same).
450                  */
451                 if (offset != prev_offset + 1 && offset != prev_offset - 1)
452                         pages = 1;
453                 prev_offset = offset;
454         } else {
455                 unsigned int roundup = 4;
456                 while (roundup < pages)
457                         roundup <<= 1;
458                 pages = roundup;
459         }
460
461         if (pages > max_pages)
462                 pages = max_pages;
463
464         /* Don't shrink readahead too fast */
465         last_ra = atomic_read(&last_readahead_pages) / 2;
466         if (pages < last_ra)
467                 pages = last_ra;
468         atomic_set(&last_readahead_pages, pages);
469
470         return pages;
471 }
472
473 /**
474  * swapin_readahead - swap in pages in hope we need them soon
475  * @entry: swap entry of this memory
476  * @gfp_mask: memory allocation flags
477  * @vma: user vma this address belongs to
478  * @addr: target address for mempolicy
479  *
480  * Returns the struct page for entry and addr, after queueing swapin.
481  *
482  * Primitive swap readahead code. We simply read an aligned block of
483  * (1 << page_cluster) entries in the swap area. This method is chosen
484  * because it doesn't cost us any seek time.  We also make sure to queue
485  * the 'original' request together with the readahead ones...
486  *
487  * This has been extended to use the NUMA policies from the mm triggering
488  * the readahead.
489  *
490  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
491  */
492 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
493                         struct vm_area_struct *vma, unsigned long addr)
494 {
495         struct page *page;
496         unsigned long entry_offset = swp_offset(entry);
497         unsigned long offset = entry_offset;
498         unsigned long start_offset, end_offset;
499         unsigned long mask;
500         struct blk_plug plug;
501         bool do_poll = true;
502
503         mask = swapin_nr_pages(offset) - 1;
504         if (!mask)
505                 goto skip;
506
507         do_poll = false;
508         /* Read a page_cluster sized and aligned cluster around offset. */
509         start_offset = offset & ~mask;
510         end_offset = offset | mask;
511         if (!start_offset)      /* First page is swap header. */
512                 start_offset++;
513
514         blk_start_plug(&plug);
515         for (offset = start_offset; offset <= end_offset ; offset++) {
516                 /* Ok, do the async read-ahead now */
517                 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
518                                                 gfp_mask, vma, addr, false);
519                 if (!page)
520                         continue;
521                 if (offset != entry_offset &&
522                     likely(!PageTransCompound(page))) {
523                         SetPageReadahead(page);
524                         count_vm_event(SWAP_RA);
525                 }
526                 put_page(page);
527         }
528         blk_finish_plug(&plug);
529
530         lru_add_drain();        /* Push any new pages onto the LRU now */
531 skip:
532         return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
533 }
534
535 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
536 {
537         struct address_space *spaces, *space;
538         unsigned int i, nr;
539
540         nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
541         spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
542         if (!spaces)
543                 return -ENOMEM;
544         for (i = 0; i < nr; i++) {
545                 space = spaces + i;
546                 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
547                 atomic_set(&space->i_mmap_writable, 0);
548                 space->a_ops = &swap_aops;
549                 /* swap cache doesn't use writeback related tags */
550                 mapping_set_no_writeback_tags(space);
551                 spin_lock_init(&space->tree_lock);
552         }
553         nr_swapper_spaces[type] = nr;
554         rcu_assign_pointer(swapper_spaces[type], spaces);
555
556         return 0;
557 }
558
559 void exit_swap_address_space(unsigned int type)
560 {
561         struct address_space *spaces;
562
563         spaces = swapper_spaces[type];
564         nr_swapper_spaces[type] = 0;
565         rcu_assign_pointer(swapper_spaces[type], NULL);
566         synchronize_rcu();
567         kvfree(spaces);
568 }