mm: reclaim invalidated page ASAP
[linux-2.6-block.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
48 static void __page_cache_release(struct page *page)
49 {
50         if (PageLRU(page)) {
51                 unsigned long flags;
52                 struct zone *zone = page_zone(page);
53
54                 spin_lock_irqsave(&zone->lru_lock, flags);
55                 VM_BUG_ON(!PageLRU(page));
56                 __ClearPageLRU(page);
57                 del_page_from_lru(zone, page);
58                 spin_unlock_irqrestore(&zone->lru_lock, flags);
59         }
60 }
61
62 static void __put_single_page(struct page *page)
63 {
64         __page_cache_release(page);
65         free_hot_cold_page(page, 0);
66 }
67
68 static void __put_compound_page(struct page *page)
69 {
70         compound_page_dtor *dtor;
71
72         __page_cache_release(page);
73         dtor = get_compound_page_dtor(page);
74         (*dtor)(page);
75 }
76
77 static void put_compound_page(struct page *page)
78 {
79         if (unlikely(PageTail(page))) {
80                 /* __split_huge_page_refcount can run under us */
81                 struct page *page_head = page->first_page;
82                 smp_rmb();
83                 /*
84                  * If PageTail is still set after smp_rmb() we can be sure
85                  * that the page->first_page we read wasn't a dangling pointer.
86                  * See __split_huge_page_refcount() smp_wmb().
87                  */
88                 if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
89                         unsigned long flags;
90                         /*
91                          * Verify that our page_head wasn't converted
92                          * to a a regular page before we got a
93                          * reference on it.
94                          */
95                         if (unlikely(!PageHead(page_head))) {
96                                 /* PageHead is cleared after PageTail */
97                                 smp_rmb();
98                                 VM_BUG_ON(PageTail(page));
99                                 goto out_put_head;
100                         }
101                         /*
102                          * Only run compound_lock on a valid PageHead,
103                          * after having it pinned with
104                          * get_page_unless_zero() above.
105                          */
106                         smp_mb();
107                         /* page_head wasn't a dangling pointer */
108                         flags = compound_lock_irqsave(page_head);
109                         if (unlikely(!PageTail(page))) {
110                                 /* __split_huge_page_refcount run before us */
111                                 compound_unlock_irqrestore(page_head, flags);
112                                 VM_BUG_ON(PageHead(page_head));
113                         out_put_head:
114                                 if (put_page_testzero(page_head))
115                                         __put_single_page(page_head);
116                         out_put_single:
117                                 if (put_page_testzero(page))
118                                         __put_single_page(page);
119                                 return;
120                         }
121                         VM_BUG_ON(page_head != page->first_page);
122                         /*
123                          * We can release the refcount taken by
124                          * get_page_unless_zero now that
125                          * split_huge_page_refcount is blocked on the
126                          * compound_lock.
127                          */
128                         if (put_page_testzero(page_head))
129                                 VM_BUG_ON(1);
130                         /* __split_huge_page_refcount will wait now */
131                         VM_BUG_ON(atomic_read(&page->_count) <= 0);
132                         atomic_dec(&page->_count);
133                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
134                         compound_unlock_irqrestore(page_head, flags);
135                         if (put_page_testzero(page_head)) {
136                                 if (PageHead(page_head))
137                                         __put_compound_page(page_head);
138                                 else
139                                         __put_single_page(page_head);
140                         }
141                 } else {
142                         /* page_head is a dangling pointer */
143                         VM_BUG_ON(PageTail(page));
144                         goto out_put_single;
145                 }
146         } else if (put_page_testzero(page)) {
147                 if (PageHead(page))
148                         __put_compound_page(page);
149                 else
150                         __put_single_page(page);
151         }
152 }
153
154 void put_page(struct page *page)
155 {
156         if (unlikely(PageCompound(page)))
157                 put_compound_page(page);
158         else if (put_page_testzero(page))
159                 __put_single_page(page);
160 }
161 EXPORT_SYMBOL(put_page);
162
163 /**
164  * put_pages_list() - release a list of pages
165  * @pages: list of pages threaded on page->lru
166  *
167  * Release a list of pages which are strung together on page.lru.  Currently
168  * used by read_cache_pages() and related error recovery code.
169  */
170 void put_pages_list(struct list_head *pages)
171 {
172         while (!list_empty(pages)) {
173                 struct page *victim;
174
175                 victim = list_entry(pages->prev, struct page, lru);
176                 list_del(&victim->lru);
177                 page_cache_release(victim);
178         }
179 }
180 EXPORT_SYMBOL(put_pages_list);
181
182 /*
183  * pagevec_move_tail() must be called with IRQ disabled.
184  * Otherwise this may cause nasty races.
185  */
186 static void pagevec_move_tail(struct pagevec *pvec)
187 {
188         int i;
189         int pgmoved = 0;
190         struct zone *zone = NULL;
191
192         for (i = 0; i < pagevec_count(pvec); i++) {
193                 struct page *page = pvec->pages[i];
194                 struct zone *pagezone = page_zone(page);
195
196                 if (pagezone != zone) {
197                         if (zone)
198                                 spin_unlock(&zone->lru_lock);
199                         zone = pagezone;
200                         spin_lock(&zone->lru_lock);
201                 }
202                 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
203                         enum lru_list lru = page_lru_base_type(page);
204                         list_move_tail(&page->lru, &zone->lru[lru].list);
205                         mem_cgroup_rotate_reclaimable_page(page);
206                         pgmoved++;
207                 }
208         }
209         if (zone)
210                 spin_unlock(&zone->lru_lock);
211         __count_vm_events(PGROTATED, pgmoved);
212         release_pages(pvec->pages, pvec->nr, pvec->cold);
213         pagevec_reinit(pvec);
214 }
215
216 /*
217  * Writeback is about to end against a page which has been marked for immediate
218  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
219  * inactive list.
220  */
221 void  rotate_reclaimable_page(struct page *page)
222 {
223         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
224             !PageUnevictable(page) && PageLRU(page)) {
225                 struct pagevec *pvec;
226                 unsigned long flags;
227
228                 page_cache_get(page);
229                 local_irq_save(flags);
230                 pvec = &__get_cpu_var(lru_rotate_pvecs);
231                 if (!pagevec_add(pvec, page))
232                         pagevec_move_tail(pvec);
233                 local_irq_restore(flags);
234         }
235 }
236
237 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
238                                      int file, int rotated)
239 {
240         struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
241         struct zone_reclaim_stat *memcg_reclaim_stat;
242
243         memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
244
245         reclaim_stat->recent_scanned[file]++;
246         if (rotated)
247                 reclaim_stat->recent_rotated[file]++;
248
249         if (!memcg_reclaim_stat)
250                 return;
251
252         memcg_reclaim_stat->recent_scanned[file]++;
253         if (rotated)
254                 memcg_reclaim_stat->recent_rotated[file]++;
255 }
256
257 /*
258  * FIXME: speed this up?
259  */
260 void activate_page(struct page *page)
261 {
262         struct zone *zone = page_zone(page);
263
264         spin_lock_irq(&zone->lru_lock);
265         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
266                 int file = page_is_file_cache(page);
267                 int lru = page_lru_base_type(page);
268                 del_page_from_lru_list(zone, page, lru);
269
270                 SetPageActive(page);
271                 lru += LRU_ACTIVE;
272                 add_page_to_lru_list(zone, page, lru);
273                 __count_vm_event(PGACTIVATE);
274
275                 update_page_reclaim_stat(zone, page, file, 1);
276         }
277         spin_unlock_irq(&zone->lru_lock);
278 }
279
280 /*
281  * Mark a page as having seen activity.
282  *
283  * inactive,unreferenced        ->      inactive,referenced
284  * inactive,referenced          ->      active,unreferenced
285  * active,unreferenced          ->      active,referenced
286  */
287 void mark_page_accessed(struct page *page)
288 {
289         if (!PageActive(page) && !PageUnevictable(page) &&
290                         PageReferenced(page) && PageLRU(page)) {
291                 activate_page(page);
292                 ClearPageReferenced(page);
293         } else if (!PageReferenced(page)) {
294                 SetPageReferenced(page);
295         }
296 }
297
298 EXPORT_SYMBOL(mark_page_accessed);
299
300 void __lru_cache_add(struct page *page, enum lru_list lru)
301 {
302         struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
303
304         page_cache_get(page);
305         if (!pagevec_add(pvec, page))
306                 ____pagevec_lru_add(pvec, lru);
307         put_cpu_var(lru_add_pvecs);
308 }
309 EXPORT_SYMBOL(__lru_cache_add);
310
311 /**
312  * lru_cache_add_lru - add a page to a page list
313  * @page: the page to be added to the LRU.
314  * @lru: the LRU list to which the page is added.
315  */
316 void lru_cache_add_lru(struct page *page, enum lru_list lru)
317 {
318         if (PageActive(page)) {
319                 VM_BUG_ON(PageUnevictable(page));
320                 ClearPageActive(page);
321         } else if (PageUnevictable(page)) {
322                 VM_BUG_ON(PageActive(page));
323                 ClearPageUnevictable(page);
324         }
325
326         VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
327         __lru_cache_add(page, lru);
328 }
329
330 /**
331  * add_page_to_unevictable_list - add a page to the unevictable list
332  * @page:  the page to be added to the unevictable list
333  *
334  * Add page directly to its zone's unevictable list.  To avoid races with
335  * tasks that might be making the page evictable, through eg. munlock,
336  * munmap or exit, while it's not on the lru, we want to add the page
337  * while it's locked or otherwise "invisible" to other tasks.  This is
338  * difficult to do when using the pagevec cache, so bypass that.
339  */
340 void add_page_to_unevictable_list(struct page *page)
341 {
342         struct zone *zone = page_zone(page);
343
344         spin_lock_irq(&zone->lru_lock);
345         SetPageUnevictable(page);
346         SetPageLRU(page);
347         add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
348         spin_unlock_irq(&zone->lru_lock);
349 }
350
351 /*
352  * If the page can not be invalidated, it is moved to the
353  * inactive list to speed up its reclaim.  It is moved to the
354  * head of the list, rather than the tail, to give the flusher
355  * threads some time to write it out, as this is much more
356  * effective than the single-page writeout from reclaim.
357  *
358  * If the page isn't page_mapped and dirty/writeback, the page
359  * could reclaim asap using PG_reclaim.
360  *
361  * 1. active, mapped page -> none
362  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
363  * 3. inactive, mapped page -> none
364  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
365  * 5. inactive, clean -> inactive, tail
366  * 6. Others -> none
367  *
368  * In 4, why it moves inactive's head, the VM expects the page would
369  * be write it out by flusher threads as this is much more effective
370  * than the single-page writeout from reclaim.
371  */
372 static void lru_deactivate(struct page *page, struct zone *zone)
373 {
374         int lru, file;
375         bool active;
376
377         if (!PageLRU(page))
378                 return;
379
380         /* Some processes are using the page */
381         if (page_mapped(page))
382                 return;
383
384         active = PageActive(page);
385
386         file = page_is_file_cache(page);
387         lru = page_lru_base_type(page);
388         del_page_from_lru_list(zone, page, lru + active);
389         ClearPageActive(page);
390         ClearPageReferenced(page);
391         add_page_to_lru_list(zone, page, lru);
392
393         if (PageWriteback(page) || PageDirty(page)) {
394                 /*
395                  * PG_reclaim could be raced with end_page_writeback
396                  * It can make readahead confusing.  But race window
397                  * is _really_ small and  it's non-critical problem.
398                  */
399                 SetPageReclaim(page);
400         } else {
401                 /*
402                  * The page's writeback ends up during pagevec
403                  * We moves tha page into tail of inactive.
404                  */
405                 list_move_tail(&page->lru, &zone->lru[lru].list);
406                 mem_cgroup_rotate_reclaimable_page(page);
407                 __count_vm_event(PGROTATED);
408         }
409
410         if (active)
411                 __count_vm_event(PGDEACTIVATE);
412         update_page_reclaim_stat(zone, page, file, 0);
413 }
414
415 static void ____pagevec_lru_deactivate(struct pagevec *pvec)
416 {
417         int i;
418         struct zone *zone = NULL;
419
420         for (i = 0; i < pagevec_count(pvec); i++) {
421                 struct page *page = pvec->pages[i];
422                 struct zone *pagezone = page_zone(page);
423
424                 if (pagezone != zone) {
425                         if (zone)
426                                 spin_unlock_irq(&zone->lru_lock);
427                         zone = pagezone;
428                         spin_lock_irq(&zone->lru_lock);
429                 }
430                 lru_deactivate(page, zone);
431         }
432         if (zone)
433                 spin_unlock_irq(&zone->lru_lock);
434
435         release_pages(pvec->pages, pvec->nr, pvec->cold);
436         pagevec_reinit(pvec);
437 }
438
439
440 /*
441  * Drain pages out of the cpu's pagevecs.
442  * Either "cpu" is the current CPU, and preemption has already been
443  * disabled; or "cpu" is being hot-unplugged, and is already dead.
444  */
445 static void drain_cpu_pagevecs(int cpu)
446 {
447         struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
448         struct pagevec *pvec;
449         int lru;
450
451         for_each_lru(lru) {
452                 pvec = &pvecs[lru - LRU_BASE];
453                 if (pagevec_count(pvec))
454                         ____pagevec_lru_add(pvec, lru);
455         }
456
457         pvec = &per_cpu(lru_rotate_pvecs, cpu);
458         if (pagevec_count(pvec)) {
459                 unsigned long flags;
460
461                 /* No harm done if a racing interrupt already did this */
462                 local_irq_save(flags);
463                 pagevec_move_tail(pvec);
464                 local_irq_restore(flags);
465         }
466
467         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
468         if (pagevec_count(pvec))
469                 ____pagevec_lru_deactivate(pvec);
470 }
471
472 /**
473  * deactivate_page - forcefully deactivate a page
474  * @page: page to deactivate
475  *
476  * This function hints the VM that @page is a good reclaim candidate,
477  * for example if its invalidation fails due to the page being dirty
478  * or under writeback.
479  */
480 void deactivate_page(struct page *page)
481 {
482         if (likely(get_page_unless_zero(page))) {
483                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
484
485                 if (!pagevec_add(pvec, page))
486                         ____pagevec_lru_deactivate(pvec);
487                 put_cpu_var(lru_deactivate_pvecs);
488         }
489 }
490
491 void lru_add_drain(void)
492 {
493         drain_cpu_pagevecs(get_cpu());
494         put_cpu();
495 }
496
497 static void lru_add_drain_per_cpu(struct work_struct *dummy)
498 {
499         lru_add_drain();
500 }
501
502 /*
503  * Returns 0 for success
504  */
505 int lru_add_drain_all(void)
506 {
507         return schedule_on_each_cpu(lru_add_drain_per_cpu);
508 }
509
510 /*
511  * Batched page_cache_release().  Decrement the reference count on all the
512  * passed pages.  If it fell to zero then remove the page from the LRU and
513  * free it.
514  *
515  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
516  * for the remainder of the operation.
517  *
518  * The locking in this function is against shrink_inactive_list(): we recheck
519  * the page count inside the lock to see whether shrink_inactive_list()
520  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
521  * will free it.
522  */
523 void release_pages(struct page **pages, int nr, int cold)
524 {
525         int i;
526         struct pagevec pages_to_free;
527         struct zone *zone = NULL;
528         unsigned long uninitialized_var(flags);
529
530         pagevec_init(&pages_to_free, cold);
531         for (i = 0; i < nr; i++) {
532                 struct page *page = pages[i];
533
534                 if (unlikely(PageCompound(page))) {
535                         if (zone) {
536                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
537                                 zone = NULL;
538                         }
539                         put_compound_page(page);
540                         continue;
541                 }
542
543                 if (!put_page_testzero(page))
544                         continue;
545
546                 if (PageLRU(page)) {
547                         struct zone *pagezone = page_zone(page);
548
549                         if (pagezone != zone) {
550                                 if (zone)
551                                         spin_unlock_irqrestore(&zone->lru_lock,
552                                                                         flags);
553                                 zone = pagezone;
554                                 spin_lock_irqsave(&zone->lru_lock, flags);
555                         }
556                         VM_BUG_ON(!PageLRU(page));
557                         __ClearPageLRU(page);
558                         del_page_from_lru(zone, page);
559                 }
560
561                 if (!pagevec_add(&pages_to_free, page)) {
562                         if (zone) {
563                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
564                                 zone = NULL;
565                         }
566                         __pagevec_free(&pages_to_free);
567                         pagevec_reinit(&pages_to_free);
568                 }
569         }
570         if (zone)
571                 spin_unlock_irqrestore(&zone->lru_lock, flags);
572
573         pagevec_free(&pages_to_free);
574 }
575 EXPORT_SYMBOL(release_pages);
576
577 /*
578  * The pages which we're about to release may be in the deferred lru-addition
579  * queues.  That would prevent them from really being freed right now.  That's
580  * OK from a correctness point of view but is inefficient - those pages may be
581  * cache-warm and we want to give them back to the page allocator ASAP.
582  *
583  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
584  * and __pagevec_lru_add_active() call release_pages() directly to avoid
585  * mutual recursion.
586  */
587 void __pagevec_release(struct pagevec *pvec)
588 {
589         lru_add_drain();
590         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
591         pagevec_reinit(pvec);
592 }
593
594 EXPORT_SYMBOL(__pagevec_release);
595
596 /* used by __split_huge_page_refcount() */
597 void lru_add_page_tail(struct zone* zone,
598                        struct page *page, struct page *page_tail)
599 {
600         int active;
601         enum lru_list lru;
602         const int file = 0;
603         struct list_head *head;
604
605         VM_BUG_ON(!PageHead(page));
606         VM_BUG_ON(PageCompound(page_tail));
607         VM_BUG_ON(PageLRU(page_tail));
608         VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
609
610         SetPageLRU(page_tail);
611
612         if (page_evictable(page_tail, NULL)) {
613                 if (PageActive(page)) {
614                         SetPageActive(page_tail);
615                         active = 1;
616                         lru = LRU_ACTIVE_ANON;
617                 } else {
618                         active = 0;
619                         lru = LRU_INACTIVE_ANON;
620                 }
621                 update_page_reclaim_stat(zone, page_tail, file, active);
622                 if (likely(PageLRU(page)))
623                         head = page->lru.prev;
624                 else
625                         head = &zone->lru[lru].list;
626                 __add_page_to_lru_list(zone, page_tail, lru, head);
627         } else {
628                 SetPageUnevictable(page_tail);
629                 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
630         }
631 }
632
633 /*
634  * Add the passed pages to the LRU, then drop the caller's refcount
635  * on them.  Reinitialises the caller's pagevec.
636  */
637 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
638 {
639         int i;
640         struct zone *zone = NULL;
641
642         VM_BUG_ON(is_unevictable_lru(lru));
643
644         for (i = 0; i < pagevec_count(pvec); i++) {
645                 struct page *page = pvec->pages[i];
646                 struct zone *pagezone = page_zone(page);
647                 int file;
648                 int active;
649
650                 if (pagezone != zone) {
651                         if (zone)
652                                 spin_unlock_irq(&zone->lru_lock);
653                         zone = pagezone;
654                         spin_lock_irq(&zone->lru_lock);
655                 }
656                 VM_BUG_ON(PageActive(page));
657                 VM_BUG_ON(PageUnevictable(page));
658                 VM_BUG_ON(PageLRU(page));
659                 SetPageLRU(page);
660                 active = is_active_lru(lru);
661                 file = is_file_lru(lru);
662                 if (active)
663                         SetPageActive(page);
664                 update_page_reclaim_stat(zone, page, file, active);
665                 add_page_to_lru_list(zone, page, lru);
666         }
667         if (zone)
668                 spin_unlock_irq(&zone->lru_lock);
669         release_pages(pvec->pages, pvec->nr, pvec->cold);
670         pagevec_reinit(pvec);
671 }
672
673 EXPORT_SYMBOL(____pagevec_lru_add);
674
675 /*
676  * Try to drop buffers from the pages in a pagevec
677  */
678 void pagevec_strip(struct pagevec *pvec)
679 {
680         int i;
681
682         for (i = 0; i < pagevec_count(pvec); i++) {
683                 struct page *page = pvec->pages[i];
684
685                 if (page_has_private(page) && trylock_page(page)) {
686                         if (page_has_private(page))
687                                 try_to_release_page(page, 0);
688                         unlock_page(page);
689                 }
690         }
691 }
692
693 /**
694  * pagevec_lookup - gang pagecache lookup
695  * @pvec:       Where the resulting pages are placed
696  * @mapping:    The address_space to search
697  * @start:      The starting page index
698  * @nr_pages:   The maximum number of pages
699  *
700  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
701  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
702  * reference against the pages in @pvec.
703  *
704  * The search returns a group of mapping-contiguous pages with ascending
705  * indexes.  There may be holes in the indices due to not-present pages.
706  *
707  * pagevec_lookup() returns the number of pages which were found.
708  */
709 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
710                 pgoff_t start, unsigned nr_pages)
711 {
712         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
713         return pagevec_count(pvec);
714 }
715
716 EXPORT_SYMBOL(pagevec_lookup);
717
718 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
719                 pgoff_t *index, int tag, unsigned nr_pages)
720 {
721         pvec->nr = find_get_pages_tag(mapping, index, tag,
722                                         nr_pages, pvec->pages);
723         return pagevec_count(pvec);
724 }
725
726 EXPORT_SYMBOL(pagevec_lookup_tag);
727
728 /*
729  * Perform any setup for the swap system
730  */
731 void __init swap_setup(void)
732 {
733         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
734
735 #ifdef CONFIG_SWAP
736         bdi_init(swapper_space.backing_dev_info);
737 #endif
738
739         /* Use a smaller cluster for small-memory machines */
740         if (megs < 16)
741                 page_cluster = 2;
742         else
743                 page_cluster = 3;
744         /*
745          * Right now other parts of the system means that we
746          * _really_ don't want to cluster much more
747          */
748 }