Merge tag 'f2fs-for-6.10.rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[linux-2.6-block.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
17
18 #include "internal.h"
19 #include <asm/dma.h>
20
21 /*
22  * Permanent SPARSEMEM data:
23  *
24  * 1) mem_section       - memory sections, mem_map's for valid memory
25  */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30         ____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45
46 int page_to_nid(const struct page *page)
47 {
48         return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54         section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65         struct mem_section *section = NULL;
66         unsigned long array_size = SECTIONS_PER_ROOT *
67                                    sizeof(struct mem_section);
68
69         if (slab_is_available()) {
70                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71         } else {
72                 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73                                               nid);
74                 if (!section)
75                         panic("%s: Failed to allocate %lu bytes nid=%d\n",
76                               __func__, array_size, nid);
77         }
78
79         return section;
80 }
81
82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85         struct mem_section *section;
86
87         /*
88          * An existing section is possible in the sub-section hotplug
89          * case. First hot-add instantiates, follow-on hot-add reuses
90          * the existing section.
91          *
92          * The mem_hotplug_lock resolves the apparent race below.
93          */
94         if (mem_section[root])
95                 return 0;
96
97         section = sparse_index_alloc(nid);
98         if (!section)
99                 return -ENOMEM;
100
101         mem_section[root] = section;
102
103         return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108         return 0;
109 }
110 #endif
111
112 /*
113  * During early boot, before section_mem_map is used for an actual
114  * mem_map, we use section_mem_map to store the section's NUMA
115  * node.  This keeps us from having to use another data structure.  The
116  * node information is cleared just before we store the real mem_map.
117  */
118 static inline unsigned long sparse_encode_early_nid(int nid)
119 {
120         return ((unsigned long)nid << SECTION_NID_SHIFT);
121 }
122
123 static inline int sparse_early_nid(struct mem_section *section)
124 {
125         return (section->section_mem_map >> SECTION_NID_SHIFT);
126 }
127
128 /* Validate the physical addressing limitations of the model */
129 static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130                                                 unsigned long *end_pfn)
131 {
132         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
133
134         /*
135          * Sanity checks - do not allow an architecture to pass
136          * in larger pfns than the maximum scope of sparsemem:
137          */
138         if (*start_pfn > max_sparsemem_pfn) {
139                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141                         *start_pfn, *end_pfn, max_sparsemem_pfn);
142                 WARN_ON_ONCE(1);
143                 *start_pfn = max_sparsemem_pfn;
144                 *end_pfn = max_sparsemem_pfn;
145         } else if (*end_pfn > max_sparsemem_pfn) {
146                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148                         *start_pfn, *end_pfn, max_sparsemem_pfn);
149                 WARN_ON_ONCE(1);
150                 *end_pfn = max_sparsemem_pfn;
151         }
152 }
153
154 /*
155  * There are a number of times that we loop over NR_MEM_SECTIONS,
156  * looking for section_present() on each.  But, when we have very
157  * large physical address spaces, NR_MEM_SECTIONS can also be
158  * very large which makes the loops quite long.
159  *
160  * Keeping track of this gives us an easy way to break out of
161  * those loops early.
162  */
163 unsigned long __highest_present_section_nr;
164 static void __section_mark_present(struct mem_section *ms,
165                 unsigned long section_nr)
166 {
167         if (section_nr > __highest_present_section_nr)
168                 __highest_present_section_nr = section_nr;
169
170         ms->section_mem_map |= SECTION_MARKED_PRESENT;
171 }
172
173 #define for_each_present_section_nr(start, section_nr)          \
174         for (section_nr = next_present_section_nr(start-1);     \
175              section_nr != -1;                                                          \
176              section_nr = next_present_section_nr(section_nr))
177
178 static inline unsigned long first_present_section_nr(void)
179 {
180         return next_present_section_nr(-1);
181 }
182
183 #ifdef CONFIG_SPARSEMEM_VMEMMAP
184 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185                 unsigned long nr_pages)
186 {
187         int idx = subsection_map_index(pfn);
188         int end = subsection_map_index(pfn + nr_pages - 1);
189
190         bitmap_set(map, idx, end - idx + 1);
191 }
192
193 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194 {
195         int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
196         unsigned long nr, start_sec = pfn_to_section_nr(pfn);
197
198         if (!nr_pages)
199                 return;
200
201         for (nr = start_sec; nr <= end_sec; nr++) {
202                 struct mem_section *ms;
203                 unsigned long pfns;
204
205                 pfns = min(nr_pages, PAGES_PER_SECTION
206                                 - (pfn & ~PAGE_SECTION_MASK));
207                 ms = __nr_to_section(nr);
208                 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
209
210                 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
211                                 pfns, subsection_map_index(pfn),
212                                 subsection_map_index(pfn + pfns - 1));
213
214                 pfn += pfns;
215                 nr_pages -= pfns;
216         }
217 }
218 #else
219 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
220 {
221 }
222 #endif
223
224 /* Record a memory area against a node. */
225 static void __init memory_present(int nid, unsigned long start, unsigned long end)
226 {
227         unsigned long pfn;
228
229         start &= PAGE_SECTION_MASK;
230         mminit_validate_memmodel_limits(&start, &end);
231         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
232                 unsigned long section = pfn_to_section_nr(pfn);
233                 struct mem_section *ms;
234
235                 sparse_index_init(section, nid);
236                 set_section_nid(section, nid);
237
238                 ms = __nr_to_section(section);
239                 if (!ms->section_mem_map) {
240                         ms->section_mem_map = sparse_encode_early_nid(nid) |
241                                                         SECTION_IS_ONLINE;
242                         __section_mark_present(ms, section);
243                 }
244         }
245 }
246
247 /*
248  * Mark all memblocks as present using memory_present().
249  * This is a convenience function that is useful to mark all of the systems
250  * memory as present during initialization.
251  */
252 static void __init memblocks_present(void)
253 {
254         unsigned long start, end;
255         int i, nid;
256
257 #ifdef CONFIG_SPARSEMEM_EXTREME
258         if (unlikely(!mem_section)) {
259                 unsigned long size, align;
260
261                 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
262                 align = 1 << (INTERNODE_CACHE_SHIFT);
263                 mem_section = memblock_alloc(size, align);
264                 if (!mem_section)
265                         panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
266                               __func__, size, align);
267         }
268 #endif
269
270         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
271                 memory_present(nid, start, end);
272 }
273
274 /*
275  * Subtle, we encode the real pfn into the mem_map such that
276  * the identity pfn - section_mem_map will return the actual
277  * physical page frame number.
278  */
279 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
280 {
281         unsigned long coded_mem_map =
282                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
283         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
284         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
285         return coded_mem_map;
286 }
287
288 #ifdef CONFIG_MEMORY_HOTPLUG
289 /*
290  * Decode mem_map from the coded memmap
291  */
292 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
293 {
294         /* mask off the extra low bits of information */
295         coded_mem_map &= SECTION_MAP_MASK;
296         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
297 }
298 #endif /* CONFIG_MEMORY_HOTPLUG */
299
300 static void __meminit sparse_init_one_section(struct mem_section *ms,
301                 unsigned long pnum, struct page *mem_map,
302                 struct mem_section_usage *usage, unsigned long flags)
303 {
304         ms->section_mem_map &= ~SECTION_MAP_MASK;
305         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
306                 | SECTION_HAS_MEM_MAP | flags;
307         ms->usage = usage;
308 }
309
310 static unsigned long usemap_size(void)
311 {
312         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
313 }
314
315 size_t mem_section_usage_size(void)
316 {
317         return sizeof(struct mem_section_usage) + usemap_size();
318 }
319
320 #ifdef CONFIG_MEMORY_HOTREMOVE
321 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
322 {
323 #ifndef CONFIG_NUMA
324         VM_BUG_ON(pgdat != &contig_page_data);
325         return __pa_symbol(&contig_page_data);
326 #else
327         return __pa(pgdat);
328 #endif
329 }
330
331 static struct mem_section_usage * __init
332 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
333                                          unsigned long size)
334 {
335         struct mem_section_usage *usage;
336         unsigned long goal, limit;
337         int nid;
338         /*
339          * A page may contain usemaps for other sections preventing the
340          * page being freed and making a section unremovable while
341          * other sections referencing the usemap remain active. Similarly,
342          * a pgdat can prevent a section being removed. If section A
343          * contains a pgdat and section B contains the usemap, both
344          * sections become inter-dependent. This allocates usemaps
345          * from the same section as the pgdat where possible to avoid
346          * this problem.
347          */
348         goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
349         limit = goal + (1UL << PA_SECTION_SHIFT);
350         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
351 again:
352         usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
353         if (!usage && limit) {
354                 limit = 0;
355                 goto again;
356         }
357         return usage;
358 }
359
360 static void __init check_usemap_section_nr(int nid,
361                 struct mem_section_usage *usage)
362 {
363         unsigned long usemap_snr, pgdat_snr;
364         static unsigned long old_usemap_snr;
365         static unsigned long old_pgdat_snr;
366         struct pglist_data *pgdat = NODE_DATA(nid);
367         int usemap_nid;
368
369         /* First call */
370         if (!old_usemap_snr) {
371                 old_usemap_snr = NR_MEM_SECTIONS;
372                 old_pgdat_snr = NR_MEM_SECTIONS;
373         }
374
375         usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
376         pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
377         if (usemap_snr == pgdat_snr)
378                 return;
379
380         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
381                 /* skip redundant message */
382                 return;
383
384         old_usemap_snr = usemap_snr;
385         old_pgdat_snr = pgdat_snr;
386
387         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
388         if (usemap_nid != nid) {
389                 pr_info("node %d must be removed before remove section %ld\n",
390                         nid, usemap_snr);
391                 return;
392         }
393         /*
394          * There is a circular dependency.
395          * Some platforms allow un-removable section because they will just
396          * gather other removable sections for dynamic partitioning.
397          * Just notify un-removable section's number here.
398          */
399         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
400                 usemap_snr, pgdat_snr, nid);
401 }
402 #else
403 static struct mem_section_usage * __init
404 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
405                                          unsigned long size)
406 {
407         return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
408 }
409
410 static void __init check_usemap_section_nr(int nid,
411                 struct mem_section_usage *usage)
412 {
413 }
414 #endif /* CONFIG_MEMORY_HOTREMOVE */
415
416 #ifdef CONFIG_SPARSEMEM_VMEMMAP
417 static unsigned long __init section_map_size(void)
418 {
419         return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
420 }
421
422 #else
423 static unsigned long __init section_map_size(void)
424 {
425         return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
426 }
427
428 struct page __init *__populate_section_memmap(unsigned long pfn,
429                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
430                 struct dev_pagemap *pgmap)
431 {
432         unsigned long size = section_map_size();
433         struct page *map = sparse_buffer_alloc(size);
434         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
435
436         if (map)
437                 return map;
438
439         map = memmap_alloc(size, size, addr, nid, false);
440         if (!map)
441                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
442                       __func__, size, PAGE_SIZE, nid, &addr);
443
444         return map;
445 }
446 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
447
448 static void *sparsemap_buf __meminitdata;
449 static void *sparsemap_buf_end __meminitdata;
450
451 static inline void __meminit sparse_buffer_free(unsigned long size)
452 {
453         WARN_ON(!sparsemap_buf || size == 0);
454         memblock_free(sparsemap_buf, size);
455 }
456
457 static void __init sparse_buffer_init(unsigned long size, int nid)
458 {
459         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
460         WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
461         /*
462          * Pre-allocated buffer is mainly used by __populate_section_memmap
463          * and we want it to be properly aligned to the section size - this is
464          * especially the case for VMEMMAP which maps memmap to PMDs
465          */
466         sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
467         sparsemap_buf_end = sparsemap_buf + size;
468 }
469
470 static void __init sparse_buffer_fini(void)
471 {
472         unsigned long size = sparsemap_buf_end - sparsemap_buf;
473
474         if (sparsemap_buf && size > 0)
475                 sparse_buffer_free(size);
476         sparsemap_buf = NULL;
477 }
478
479 void * __meminit sparse_buffer_alloc(unsigned long size)
480 {
481         void *ptr = NULL;
482
483         if (sparsemap_buf) {
484                 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
485                 if (ptr + size > sparsemap_buf_end)
486                         ptr = NULL;
487                 else {
488                         /* Free redundant aligned space */
489                         if ((unsigned long)(ptr - sparsemap_buf) > 0)
490                                 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
491                         sparsemap_buf = ptr + size;
492                 }
493         }
494         return ptr;
495 }
496
497 void __weak __meminit vmemmap_populate_print_last(void)
498 {
499 }
500
501 /*
502  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
503  * And number of present sections in this node is map_count.
504  */
505 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
506                                    unsigned long pnum_end,
507                                    unsigned long map_count)
508 {
509         struct mem_section_usage *usage;
510         unsigned long pnum;
511         struct page *map;
512
513         usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
514                         mem_section_usage_size() * map_count);
515         if (!usage) {
516                 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
517                 goto failed;
518         }
519         sparse_buffer_init(map_count * section_map_size(), nid);
520         for_each_present_section_nr(pnum_begin, pnum) {
521                 unsigned long pfn = section_nr_to_pfn(pnum);
522
523                 if (pnum >= pnum_end)
524                         break;
525
526                 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
527                                 nid, NULL, NULL);
528                 if (!map) {
529                         pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
530                                __func__, nid);
531                         pnum_begin = pnum;
532                         sparse_buffer_fini();
533                         goto failed;
534                 }
535                 check_usemap_section_nr(nid, usage);
536                 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
537                                 SECTION_IS_EARLY);
538                 usage = (void *) usage + mem_section_usage_size();
539         }
540         sparse_buffer_fini();
541         return;
542 failed:
543         /* We failed to allocate, mark all the following pnums as not present */
544         for_each_present_section_nr(pnum_begin, pnum) {
545                 struct mem_section *ms;
546
547                 if (pnum >= pnum_end)
548                         break;
549                 ms = __nr_to_section(pnum);
550                 ms->section_mem_map = 0;
551         }
552 }
553
554 /*
555  * Allocate the accumulated non-linear sections, allocate a mem_map
556  * for each and record the physical to section mapping.
557  */
558 void __init sparse_init(void)
559 {
560         unsigned long pnum_end, pnum_begin, map_count = 1;
561         int nid_begin;
562
563         /* see include/linux/mmzone.h 'struct mem_section' definition */
564         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
565         memblocks_present();
566
567         pnum_begin = first_present_section_nr();
568         nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
569
570         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
571         set_pageblock_order();
572
573         for_each_present_section_nr(pnum_begin + 1, pnum_end) {
574                 int nid = sparse_early_nid(__nr_to_section(pnum_end));
575
576                 if (nid == nid_begin) {
577                         map_count++;
578                         continue;
579                 }
580                 /* Init node with sections in range [pnum_begin, pnum_end) */
581                 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
582                 nid_begin = nid;
583                 pnum_begin = pnum_end;
584                 map_count = 1;
585         }
586         /* cover the last node */
587         sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
588         vmemmap_populate_print_last();
589 }
590
591 #ifdef CONFIG_MEMORY_HOTPLUG
592
593 /* Mark all memory sections within the pfn range as online */
594 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
595 {
596         unsigned long pfn;
597
598         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
599                 unsigned long section_nr = pfn_to_section_nr(pfn);
600                 struct mem_section *ms;
601
602                 /* onlining code should never touch invalid ranges */
603                 if (WARN_ON(!valid_section_nr(section_nr)))
604                         continue;
605
606                 ms = __nr_to_section(section_nr);
607                 ms->section_mem_map |= SECTION_IS_ONLINE;
608         }
609 }
610
611 /* Mark all memory sections within the pfn range as offline */
612 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
613 {
614         unsigned long pfn;
615
616         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
617                 unsigned long section_nr = pfn_to_section_nr(pfn);
618                 struct mem_section *ms;
619
620                 /*
621                  * TODO this needs some double checking. Offlining code makes
622                  * sure to check pfn_valid but those checks might be just bogus
623                  */
624                 if (WARN_ON(!valid_section_nr(section_nr)))
625                         continue;
626
627                 ms = __nr_to_section(section_nr);
628                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
629         }
630 }
631
632 #ifdef CONFIG_SPARSEMEM_VMEMMAP
633 static struct page * __meminit populate_section_memmap(unsigned long pfn,
634                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
635                 struct dev_pagemap *pgmap)
636 {
637         return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
638 }
639
640 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
641                 struct vmem_altmap *altmap)
642 {
643         unsigned long start = (unsigned long) pfn_to_page(pfn);
644         unsigned long end = start + nr_pages * sizeof(struct page);
645
646         vmemmap_free(start, end, altmap);
647 }
648 static void free_map_bootmem(struct page *memmap)
649 {
650         unsigned long start = (unsigned long)memmap;
651         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
652
653         vmemmap_free(start, end, NULL);
654 }
655
656 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
657 {
658         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
659         DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
660         struct mem_section *ms = __pfn_to_section(pfn);
661         unsigned long *subsection_map = ms->usage
662                 ? &ms->usage->subsection_map[0] : NULL;
663
664         subsection_mask_set(map, pfn, nr_pages);
665         if (subsection_map)
666                 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
667
668         if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
669                                 "section already deactivated (%#lx + %ld)\n",
670                                 pfn, nr_pages))
671                 return -EINVAL;
672
673         bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
674         return 0;
675 }
676
677 static bool is_subsection_map_empty(struct mem_section *ms)
678 {
679         return bitmap_empty(&ms->usage->subsection_map[0],
680                             SUBSECTIONS_PER_SECTION);
681 }
682
683 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
684 {
685         struct mem_section *ms = __pfn_to_section(pfn);
686         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
687         unsigned long *subsection_map;
688         int rc = 0;
689
690         subsection_mask_set(map, pfn, nr_pages);
691
692         subsection_map = &ms->usage->subsection_map[0];
693
694         if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
695                 rc = -EINVAL;
696         else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
697                 rc = -EEXIST;
698         else
699                 bitmap_or(subsection_map, map, subsection_map,
700                                 SUBSECTIONS_PER_SECTION);
701
702         return rc;
703 }
704 #else
705 static struct page * __meminit populate_section_memmap(unsigned long pfn,
706                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
707                 struct dev_pagemap *pgmap)
708 {
709         return kvmalloc_node(array_size(sizeof(struct page),
710                                         PAGES_PER_SECTION), GFP_KERNEL, nid);
711 }
712
713 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
714                 struct vmem_altmap *altmap)
715 {
716         kvfree(pfn_to_page(pfn));
717 }
718
719 static void free_map_bootmem(struct page *memmap)
720 {
721         unsigned long maps_section_nr, removing_section_nr, i;
722         unsigned long magic, nr_pages;
723         struct page *page = virt_to_page(memmap);
724
725         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
726                 >> PAGE_SHIFT;
727
728         for (i = 0; i < nr_pages; i++, page++) {
729                 magic = page->index;
730
731                 BUG_ON(magic == NODE_INFO);
732
733                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
734                 removing_section_nr = page_private(page);
735
736                 /*
737                  * When this function is called, the removing section is
738                  * logical offlined state. This means all pages are isolated
739                  * from page allocator. If removing section's memmap is placed
740                  * on the same section, it must not be freed.
741                  * If it is freed, page allocator may allocate it which will
742                  * be removed physically soon.
743                  */
744                 if (maps_section_nr != removing_section_nr)
745                         put_page_bootmem(page);
746         }
747 }
748
749 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
750 {
751         return 0;
752 }
753
754 static bool is_subsection_map_empty(struct mem_section *ms)
755 {
756         return true;
757 }
758
759 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
760 {
761         return 0;
762 }
763 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
764
765 /*
766  * To deactivate a memory region, there are 3 cases to handle across
767  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
768  *
769  * 1. deactivation of a partial hot-added section (only possible in
770  *    the SPARSEMEM_VMEMMAP=y case).
771  *      a) section was present at memory init.
772  *      b) section was hot-added post memory init.
773  * 2. deactivation of a complete hot-added section.
774  * 3. deactivation of a complete section from memory init.
775  *
776  * For 1, when subsection_map does not empty we will not be freeing the
777  * usage map, but still need to free the vmemmap range.
778  *
779  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
780  */
781 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
782                 struct vmem_altmap *altmap)
783 {
784         struct mem_section *ms = __pfn_to_section(pfn);
785         bool section_is_early = early_section(ms);
786         struct page *memmap = NULL;
787         bool empty;
788
789         if (clear_subsection_map(pfn, nr_pages))
790                 return;
791
792         empty = is_subsection_map_empty(ms);
793         if (empty) {
794                 unsigned long section_nr = pfn_to_section_nr(pfn);
795
796                 /*
797                  * Mark the section invalid so that valid_section()
798                  * return false. This prevents code from dereferencing
799                  * ms->usage array.
800                  */
801                 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
802
803                 /*
804                  * When removing an early section, the usage map is kept (as the
805                  * usage maps of other sections fall into the same page). It
806                  * will be re-used when re-adding the section - which is then no
807                  * longer an early section. If the usage map is PageReserved, it
808                  * was allocated during boot.
809                  */
810                 if (!PageReserved(virt_to_page(ms->usage))) {
811                         kfree_rcu(ms->usage, rcu);
812                         WRITE_ONCE(ms->usage, NULL);
813                 }
814                 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
815         }
816
817         /*
818          * The memmap of early sections is always fully populated. See
819          * section_activate() and pfn_valid() .
820          */
821         if (!section_is_early)
822                 depopulate_section_memmap(pfn, nr_pages, altmap);
823         else if (memmap)
824                 free_map_bootmem(memmap);
825
826         if (empty)
827                 ms->section_mem_map = (unsigned long)NULL;
828 }
829
830 static struct page * __meminit section_activate(int nid, unsigned long pfn,
831                 unsigned long nr_pages, struct vmem_altmap *altmap,
832                 struct dev_pagemap *pgmap)
833 {
834         struct mem_section *ms = __pfn_to_section(pfn);
835         struct mem_section_usage *usage = NULL;
836         struct page *memmap;
837         int rc;
838
839         if (!ms->usage) {
840                 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
841                 if (!usage)
842                         return ERR_PTR(-ENOMEM);
843                 ms->usage = usage;
844         }
845
846         rc = fill_subsection_map(pfn, nr_pages);
847         if (rc) {
848                 if (usage)
849                         ms->usage = NULL;
850                 kfree(usage);
851                 return ERR_PTR(rc);
852         }
853
854         /*
855          * The early init code does not consider partially populated
856          * initial sections, it simply assumes that memory will never be
857          * referenced.  If we hot-add memory into such a section then we
858          * do not need to populate the memmap and can simply reuse what
859          * is already there.
860          */
861         if (nr_pages < PAGES_PER_SECTION && early_section(ms))
862                 return pfn_to_page(pfn);
863
864         memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
865         if (!memmap) {
866                 section_deactivate(pfn, nr_pages, altmap);
867                 return ERR_PTR(-ENOMEM);
868         }
869
870         return memmap;
871 }
872
873 /**
874  * sparse_add_section - add a memory section, or populate an existing one
875  * @nid: The node to add section on
876  * @start_pfn: start pfn of the memory range
877  * @nr_pages: number of pfns to add in the section
878  * @altmap: alternate pfns to allocate the memmap backing store
879  * @pgmap: alternate compound page geometry for devmap mappings
880  *
881  * This is only intended for hotplug.
882  *
883  * Note that only VMEMMAP supports sub-section aligned hotplug,
884  * the proper alignment and size are gated by check_pfn_span().
885  *
886  *
887  * Return:
888  * * 0          - On success.
889  * * -EEXIST    - Section has been present.
890  * * -ENOMEM    - Out of memory.
891  */
892 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
893                 unsigned long nr_pages, struct vmem_altmap *altmap,
894                 struct dev_pagemap *pgmap)
895 {
896         unsigned long section_nr = pfn_to_section_nr(start_pfn);
897         struct mem_section *ms;
898         struct page *memmap;
899         int ret;
900
901         ret = sparse_index_init(section_nr, nid);
902         if (ret < 0)
903                 return ret;
904
905         memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
906         if (IS_ERR(memmap))
907                 return PTR_ERR(memmap);
908
909         /*
910          * Poison uninitialized struct pages in order to catch invalid flags
911          * combinations.
912          */
913         if (!altmap || !altmap->inaccessible)
914                 page_init_poison(memmap, sizeof(struct page) * nr_pages);
915
916         ms = __nr_to_section(section_nr);
917         set_section_nid(section_nr, nid);
918         __section_mark_present(ms, section_nr);
919
920         /* Align memmap to section boundary in the subsection case */
921         if (section_nr_to_pfn(section_nr) != start_pfn)
922                 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
923         sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
924
925         return 0;
926 }
927
928 void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
929                            struct vmem_altmap *altmap)
930 {
931         struct mem_section *ms = __pfn_to_section(pfn);
932
933         if (WARN_ON_ONCE(!valid_section(ms)))
934                 return;
935
936         section_deactivate(pfn, nr_pages, altmap);
937 }
938 #endif /* CONFIG_MEMORY_HOTPLUG */