shmem: convert shmem_fault() to use shmem_get_folio_gfp()
[linux-2.6-block.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include "swap.h"
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109         unsigned long long blocks;
110         unsigned long long inodes;
111         struct mempolicy *mpol;
112         kuid_t uid;
113         kgid_t gid;
114         umode_t mode;
115         bool full_inums;
116         int huge;
117         int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127         return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132         unsigned long nr_pages = totalram_pages();
133
134         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
139                              struct folio **foliop, enum sgp_type sgp,
140                              gfp_t gfp, struct vm_area_struct *vma,
141                              vm_fault_t *fault_type);
142
143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
144 {
145         return sb->s_fs_info;
146 }
147
148 /*
149  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150  * for shared memory and for shared anonymous (/dev/zero) mappings
151  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152  * consistent with the pre-accounting of private mappings ...
153  */
154 static inline int shmem_acct_size(unsigned long flags, loff_t size)
155 {
156         return (flags & VM_NORESERVE) ?
157                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
158 }
159
160 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
161 {
162         if (!(flags & VM_NORESERVE))
163                 vm_unacct_memory(VM_ACCT(size));
164 }
165
166 static inline int shmem_reacct_size(unsigned long flags,
167                 loff_t oldsize, loff_t newsize)
168 {
169         if (!(flags & VM_NORESERVE)) {
170                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
171                         return security_vm_enough_memory_mm(current->mm,
172                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
173                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
174                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
175         }
176         return 0;
177 }
178
179 /*
180  * ... whereas tmpfs objects are accounted incrementally as
181  * pages are allocated, in order to allow large sparse files.
182  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
184  */
185 static inline int shmem_acct_block(unsigned long flags, long pages)
186 {
187         if (!(flags & VM_NORESERVE))
188                 return 0;
189
190         return security_vm_enough_memory_mm(current->mm,
191                         pages * VM_ACCT(PAGE_SIZE));
192 }
193
194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195 {
196         if (flags & VM_NORESERVE)
197                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
198 }
199
200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
201 {
202         struct shmem_inode_info *info = SHMEM_I(inode);
203         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
204
205         if (shmem_acct_block(info->flags, pages))
206                 return false;
207
208         if (sbinfo->max_blocks) {
209                 if (percpu_counter_compare(&sbinfo->used_blocks,
210                                            sbinfo->max_blocks - pages) > 0)
211                         goto unacct;
212                 percpu_counter_add(&sbinfo->used_blocks, pages);
213         }
214
215         return true;
216
217 unacct:
218         shmem_unacct_blocks(info->flags, pages);
219         return false;
220 }
221
222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
223 {
224         struct shmem_inode_info *info = SHMEM_I(inode);
225         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226
227         if (sbinfo->max_blocks)
228                 percpu_counter_sub(&sbinfo->used_blocks, pages);
229         shmem_unacct_blocks(info->flags, pages);
230 }
231
232 static const struct super_operations shmem_ops;
233 const struct address_space_operations shmem_aops;
234 static const struct file_operations shmem_file_operations;
235 static const struct inode_operations shmem_inode_operations;
236 static const struct inode_operations shmem_dir_inode_operations;
237 static const struct inode_operations shmem_special_inode_operations;
238 static const struct vm_operations_struct shmem_vm_ops;
239 static struct file_system_type shmem_fs_type;
240
241 bool vma_is_shmem(struct vm_area_struct *vma)
242 {
243         return vma->vm_ops == &shmem_vm_ops;
244 }
245
246 static LIST_HEAD(shmem_swaplist);
247 static DEFINE_MUTEX(shmem_swaplist_mutex);
248
249 /*
250  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
251  * produces a novel ino for the newly allocated inode.
252  *
253  * It may also be called when making a hard link to permit the space needed by
254  * each dentry. However, in that case, no new inode number is needed since that
255  * internally draws from another pool of inode numbers (currently global
256  * get_next_ino()). This case is indicated by passing NULL as inop.
257  */
258 #define SHMEM_INO_BATCH 1024
259 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
260 {
261         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262         ino_t ino;
263
264         if (!(sb->s_flags & SB_KERNMOUNT)) {
265                 raw_spin_lock(&sbinfo->stat_lock);
266                 if (sbinfo->max_inodes) {
267                         if (!sbinfo->free_inodes) {
268                                 raw_spin_unlock(&sbinfo->stat_lock);
269                                 return -ENOSPC;
270                         }
271                         sbinfo->free_inodes--;
272                 }
273                 if (inop) {
274                         ino = sbinfo->next_ino++;
275                         if (unlikely(is_zero_ino(ino)))
276                                 ino = sbinfo->next_ino++;
277                         if (unlikely(!sbinfo->full_inums &&
278                                      ino > UINT_MAX)) {
279                                 /*
280                                  * Emulate get_next_ino uint wraparound for
281                                  * compatibility
282                                  */
283                                 if (IS_ENABLED(CONFIG_64BIT))
284                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
285                                                 __func__, MINOR(sb->s_dev));
286                                 sbinfo->next_ino = 1;
287                                 ino = sbinfo->next_ino++;
288                         }
289                         *inop = ino;
290                 }
291                 raw_spin_unlock(&sbinfo->stat_lock);
292         } else if (inop) {
293                 /*
294                  * __shmem_file_setup, one of our callers, is lock-free: it
295                  * doesn't hold stat_lock in shmem_reserve_inode since
296                  * max_inodes is always 0, and is called from potentially
297                  * unknown contexts. As such, use a per-cpu batched allocator
298                  * which doesn't require the per-sb stat_lock unless we are at
299                  * the batch boundary.
300                  *
301                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
302                  * shmem mounts are not exposed to userspace, so we don't need
303                  * to worry about things like glibc compatibility.
304                  */
305                 ino_t *next_ino;
306
307                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
308                 ino = *next_ino;
309                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
310                         raw_spin_lock(&sbinfo->stat_lock);
311                         ino = sbinfo->next_ino;
312                         sbinfo->next_ino += SHMEM_INO_BATCH;
313                         raw_spin_unlock(&sbinfo->stat_lock);
314                         if (unlikely(is_zero_ino(ino)))
315                                 ino++;
316                 }
317                 *inop = ino;
318                 *next_ino = ++ino;
319                 put_cpu();
320         }
321
322         return 0;
323 }
324
325 static void shmem_free_inode(struct super_block *sb)
326 {
327         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
328         if (sbinfo->max_inodes) {
329                 raw_spin_lock(&sbinfo->stat_lock);
330                 sbinfo->free_inodes++;
331                 raw_spin_unlock(&sbinfo->stat_lock);
332         }
333 }
334
335 /**
336  * shmem_recalc_inode - recalculate the block usage of an inode
337  * @inode: inode to recalc
338  *
339  * We have to calculate the free blocks since the mm can drop
340  * undirtied hole pages behind our back.
341  *
342  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
343  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
344  *
345  * It has to be called with the spinlock held.
346  */
347 static void shmem_recalc_inode(struct inode *inode)
348 {
349         struct shmem_inode_info *info = SHMEM_I(inode);
350         long freed;
351
352         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
353         if (freed > 0) {
354                 info->alloced -= freed;
355                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
356                 shmem_inode_unacct_blocks(inode, freed);
357         }
358 }
359
360 bool shmem_charge(struct inode *inode, long pages)
361 {
362         struct shmem_inode_info *info = SHMEM_I(inode);
363         unsigned long flags;
364
365         if (!shmem_inode_acct_block(inode, pages))
366                 return false;
367
368         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
369         inode->i_mapping->nrpages += pages;
370
371         spin_lock_irqsave(&info->lock, flags);
372         info->alloced += pages;
373         inode->i_blocks += pages * BLOCKS_PER_PAGE;
374         shmem_recalc_inode(inode);
375         spin_unlock_irqrestore(&info->lock, flags);
376
377         return true;
378 }
379
380 void shmem_uncharge(struct inode *inode, long pages)
381 {
382         struct shmem_inode_info *info = SHMEM_I(inode);
383         unsigned long flags;
384
385         /* nrpages adjustment done by __filemap_remove_folio() or caller */
386
387         spin_lock_irqsave(&info->lock, flags);
388         info->alloced -= pages;
389         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
390         shmem_recalc_inode(inode);
391         spin_unlock_irqrestore(&info->lock, flags);
392
393         shmem_inode_unacct_blocks(inode, pages);
394 }
395
396 /*
397  * Replace item expected in xarray by a new item, while holding xa_lock.
398  */
399 static int shmem_replace_entry(struct address_space *mapping,
400                         pgoff_t index, void *expected, void *replacement)
401 {
402         XA_STATE(xas, &mapping->i_pages, index);
403         void *item;
404
405         VM_BUG_ON(!expected);
406         VM_BUG_ON(!replacement);
407         item = xas_load(&xas);
408         if (item != expected)
409                 return -ENOENT;
410         xas_store(&xas, replacement);
411         return 0;
412 }
413
414 /*
415  * Sometimes, before we decide whether to proceed or to fail, we must check
416  * that an entry was not already brought back from swap by a racing thread.
417  *
418  * Checking page is not enough: by the time a SwapCache page is locked, it
419  * might be reused, and again be SwapCache, using the same swap as before.
420  */
421 static bool shmem_confirm_swap(struct address_space *mapping,
422                                pgoff_t index, swp_entry_t swap)
423 {
424         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
425 }
426
427 /*
428  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
429  *
430  * SHMEM_HUGE_NEVER:
431  *      disables huge pages for the mount;
432  * SHMEM_HUGE_ALWAYS:
433  *      enables huge pages for the mount;
434  * SHMEM_HUGE_WITHIN_SIZE:
435  *      only allocate huge pages if the page will be fully within i_size,
436  *      also respect fadvise()/madvise() hints;
437  * SHMEM_HUGE_ADVISE:
438  *      only allocate huge pages if requested with fadvise()/madvise();
439  */
440
441 #define SHMEM_HUGE_NEVER        0
442 #define SHMEM_HUGE_ALWAYS       1
443 #define SHMEM_HUGE_WITHIN_SIZE  2
444 #define SHMEM_HUGE_ADVISE       3
445
446 /*
447  * Special values.
448  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
449  *
450  * SHMEM_HUGE_DENY:
451  *      disables huge on shm_mnt and all mounts, for emergency use;
452  * SHMEM_HUGE_FORCE:
453  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
454  *
455  */
456 #define SHMEM_HUGE_DENY         (-1)
457 #define SHMEM_HUGE_FORCE        (-2)
458
459 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
460 /* ifdef here to avoid bloating shmem.o when not necessary */
461
462 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
463
464 bool shmem_is_huge(struct vm_area_struct *vma,
465                    struct inode *inode, pgoff_t index)
466 {
467         loff_t i_size;
468
469         if (!S_ISREG(inode->i_mode))
470                 return false;
471         if (shmem_huge == SHMEM_HUGE_DENY)
472                 return false;
473         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
474             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
475                 return false;
476         if (shmem_huge == SHMEM_HUGE_FORCE)
477                 return true;
478
479         switch (SHMEM_SB(inode->i_sb)->huge) {
480         case SHMEM_HUGE_ALWAYS:
481                 return true;
482         case SHMEM_HUGE_WITHIN_SIZE:
483                 index = round_up(index + 1, HPAGE_PMD_NR);
484                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
485                 if (i_size >> PAGE_SHIFT >= index)
486                         return true;
487                 fallthrough;
488         case SHMEM_HUGE_ADVISE:
489                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
490                         return true;
491                 fallthrough;
492         default:
493                 return false;
494         }
495 }
496
497 #if defined(CONFIG_SYSFS)
498 static int shmem_parse_huge(const char *str)
499 {
500         if (!strcmp(str, "never"))
501                 return SHMEM_HUGE_NEVER;
502         if (!strcmp(str, "always"))
503                 return SHMEM_HUGE_ALWAYS;
504         if (!strcmp(str, "within_size"))
505                 return SHMEM_HUGE_WITHIN_SIZE;
506         if (!strcmp(str, "advise"))
507                 return SHMEM_HUGE_ADVISE;
508         if (!strcmp(str, "deny"))
509                 return SHMEM_HUGE_DENY;
510         if (!strcmp(str, "force"))
511                 return SHMEM_HUGE_FORCE;
512         return -EINVAL;
513 }
514 #endif
515
516 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
517 static const char *shmem_format_huge(int huge)
518 {
519         switch (huge) {
520         case SHMEM_HUGE_NEVER:
521                 return "never";
522         case SHMEM_HUGE_ALWAYS:
523                 return "always";
524         case SHMEM_HUGE_WITHIN_SIZE:
525                 return "within_size";
526         case SHMEM_HUGE_ADVISE:
527                 return "advise";
528         case SHMEM_HUGE_DENY:
529                 return "deny";
530         case SHMEM_HUGE_FORCE:
531                 return "force";
532         default:
533                 VM_BUG_ON(1);
534                 return "bad_val";
535         }
536 }
537 #endif
538
539 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
540                 struct shrink_control *sc, unsigned long nr_to_split)
541 {
542         LIST_HEAD(list), *pos, *next;
543         LIST_HEAD(to_remove);
544         struct inode *inode;
545         struct shmem_inode_info *info;
546         struct folio *folio;
547         unsigned long batch = sc ? sc->nr_to_scan : 128;
548         int split = 0;
549
550         if (list_empty(&sbinfo->shrinklist))
551                 return SHRINK_STOP;
552
553         spin_lock(&sbinfo->shrinklist_lock);
554         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
555                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
556
557                 /* pin the inode */
558                 inode = igrab(&info->vfs_inode);
559
560                 /* inode is about to be evicted */
561                 if (!inode) {
562                         list_del_init(&info->shrinklist);
563                         goto next;
564                 }
565
566                 /* Check if there's anything to gain */
567                 if (round_up(inode->i_size, PAGE_SIZE) ==
568                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
569                         list_move(&info->shrinklist, &to_remove);
570                         goto next;
571                 }
572
573                 list_move(&info->shrinklist, &list);
574 next:
575                 sbinfo->shrinklist_len--;
576                 if (!--batch)
577                         break;
578         }
579         spin_unlock(&sbinfo->shrinklist_lock);
580
581         list_for_each_safe(pos, next, &to_remove) {
582                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
583                 inode = &info->vfs_inode;
584                 list_del_init(&info->shrinklist);
585                 iput(inode);
586         }
587
588         list_for_each_safe(pos, next, &list) {
589                 int ret;
590                 pgoff_t index;
591
592                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593                 inode = &info->vfs_inode;
594
595                 if (nr_to_split && split >= nr_to_split)
596                         goto move_back;
597
598                 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
599                 folio = filemap_get_folio(inode->i_mapping, index);
600                 if (!folio)
601                         goto drop;
602
603                 /* No huge page at the end of the file: nothing to split */
604                 if (!folio_test_large(folio)) {
605                         folio_put(folio);
606                         goto drop;
607                 }
608
609                 /*
610                  * Move the inode on the list back to shrinklist if we failed
611                  * to lock the page at this time.
612                  *
613                  * Waiting for the lock may lead to deadlock in the
614                  * reclaim path.
615                  */
616                 if (!folio_trylock(folio)) {
617                         folio_put(folio);
618                         goto move_back;
619                 }
620
621                 ret = split_folio(folio);
622                 folio_unlock(folio);
623                 folio_put(folio);
624
625                 /* If split failed move the inode on the list back to shrinklist */
626                 if (ret)
627                         goto move_back;
628
629                 split++;
630 drop:
631                 list_del_init(&info->shrinklist);
632                 goto put;
633 move_back:
634                 /*
635                  * Make sure the inode is either on the global list or deleted
636                  * from any local list before iput() since it could be deleted
637                  * in another thread once we put the inode (then the local list
638                  * is corrupted).
639                  */
640                 spin_lock(&sbinfo->shrinklist_lock);
641                 list_move(&info->shrinklist, &sbinfo->shrinklist);
642                 sbinfo->shrinklist_len++;
643                 spin_unlock(&sbinfo->shrinklist_lock);
644 put:
645                 iput(inode);
646         }
647
648         return split;
649 }
650
651 static long shmem_unused_huge_scan(struct super_block *sb,
652                 struct shrink_control *sc)
653 {
654         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
655
656         if (!READ_ONCE(sbinfo->shrinklist_len))
657                 return SHRINK_STOP;
658
659         return shmem_unused_huge_shrink(sbinfo, sc, 0);
660 }
661
662 static long shmem_unused_huge_count(struct super_block *sb,
663                 struct shrink_control *sc)
664 {
665         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
666         return READ_ONCE(sbinfo->shrinklist_len);
667 }
668 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
669
670 #define shmem_huge SHMEM_HUGE_DENY
671
672 bool shmem_is_huge(struct vm_area_struct *vma,
673                    struct inode *inode, pgoff_t index)
674 {
675         return false;
676 }
677
678 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
679                 struct shrink_control *sc, unsigned long nr_to_split)
680 {
681         return 0;
682 }
683 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
684
685 /*
686  * Like filemap_add_folio, but error if expected item has gone.
687  */
688 static int shmem_add_to_page_cache(struct folio *folio,
689                                    struct address_space *mapping,
690                                    pgoff_t index, void *expected, gfp_t gfp,
691                                    struct mm_struct *charge_mm)
692 {
693         XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
694         long nr = folio_nr_pages(folio);
695         int error;
696
697         VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
698         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
699         VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
700         VM_BUG_ON(expected && folio_test_large(folio));
701
702         folio_ref_add(folio, nr);
703         folio->mapping = mapping;
704         folio->index = index;
705
706         if (!folio_test_swapcache(folio)) {
707                 error = mem_cgroup_charge(folio, charge_mm, gfp);
708                 if (error) {
709                         if (folio_test_pmd_mappable(folio)) {
710                                 count_vm_event(THP_FILE_FALLBACK);
711                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
712                         }
713                         goto error;
714                 }
715         }
716         folio_throttle_swaprate(folio, gfp);
717
718         do {
719                 xas_lock_irq(&xas);
720                 if (expected != xas_find_conflict(&xas)) {
721                         xas_set_err(&xas, -EEXIST);
722                         goto unlock;
723                 }
724                 if (expected && xas_find_conflict(&xas)) {
725                         xas_set_err(&xas, -EEXIST);
726                         goto unlock;
727                 }
728                 xas_store(&xas, folio);
729                 if (xas_error(&xas))
730                         goto unlock;
731                 if (folio_test_pmd_mappable(folio)) {
732                         count_vm_event(THP_FILE_ALLOC);
733                         __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
734                 }
735                 mapping->nrpages += nr;
736                 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
737                 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
738 unlock:
739                 xas_unlock_irq(&xas);
740         } while (xas_nomem(&xas, gfp));
741
742         if (xas_error(&xas)) {
743                 error = xas_error(&xas);
744                 goto error;
745         }
746
747         return 0;
748 error:
749         folio->mapping = NULL;
750         folio_ref_sub(folio, nr);
751         return error;
752 }
753
754 /*
755  * Like delete_from_page_cache, but substitutes swap for @folio.
756  */
757 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
758 {
759         struct address_space *mapping = folio->mapping;
760         long nr = folio_nr_pages(folio);
761         int error;
762
763         xa_lock_irq(&mapping->i_pages);
764         error = shmem_replace_entry(mapping, folio->index, folio, radswap);
765         folio->mapping = NULL;
766         mapping->nrpages -= nr;
767         __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
768         __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
769         xa_unlock_irq(&mapping->i_pages);
770         folio_put(folio);
771         BUG_ON(error);
772 }
773
774 /*
775  * Remove swap entry from page cache, free the swap and its page cache.
776  */
777 static int shmem_free_swap(struct address_space *mapping,
778                            pgoff_t index, void *radswap)
779 {
780         void *old;
781
782         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
783         if (old != radswap)
784                 return -ENOENT;
785         free_swap_and_cache(radix_to_swp_entry(radswap));
786         return 0;
787 }
788
789 /*
790  * Determine (in bytes) how many of the shmem object's pages mapped by the
791  * given offsets are swapped out.
792  *
793  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
794  * as long as the inode doesn't go away and racy results are not a problem.
795  */
796 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
797                                                 pgoff_t start, pgoff_t end)
798 {
799         XA_STATE(xas, &mapping->i_pages, start);
800         struct page *page;
801         unsigned long swapped = 0;
802
803         rcu_read_lock();
804         xas_for_each(&xas, page, end - 1) {
805                 if (xas_retry(&xas, page))
806                         continue;
807                 if (xa_is_value(page))
808                         swapped++;
809
810                 if (need_resched()) {
811                         xas_pause(&xas);
812                         cond_resched_rcu();
813                 }
814         }
815
816         rcu_read_unlock();
817
818         return swapped << PAGE_SHIFT;
819 }
820
821 /*
822  * Determine (in bytes) how many of the shmem object's pages mapped by the
823  * given vma is swapped out.
824  *
825  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
826  * as long as the inode doesn't go away and racy results are not a problem.
827  */
828 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
829 {
830         struct inode *inode = file_inode(vma->vm_file);
831         struct shmem_inode_info *info = SHMEM_I(inode);
832         struct address_space *mapping = inode->i_mapping;
833         unsigned long swapped;
834
835         /* Be careful as we don't hold info->lock */
836         swapped = READ_ONCE(info->swapped);
837
838         /*
839          * The easier cases are when the shmem object has nothing in swap, or
840          * the vma maps it whole. Then we can simply use the stats that we
841          * already track.
842          */
843         if (!swapped)
844                 return 0;
845
846         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
847                 return swapped << PAGE_SHIFT;
848
849         /* Here comes the more involved part */
850         return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
851                                         vma->vm_pgoff + vma_pages(vma));
852 }
853
854 /*
855  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
856  */
857 void shmem_unlock_mapping(struct address_space *mapping)
858 {
859         struct folio_batch fbatch;
860         pgoff_t index = 0;
861
862         folio_batch_init(&fbatch);
863         /*
864          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
865          */
866         while (!mapping_unevictable(mapping) &&
867                filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
868                 check_move_unevictable_folios(&fbatch);
869                 folio_batch_release(&fbatch);
870                 cond_resched();
871         }
872 }
873
874 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
875 {
876         struct folio *folio;
877         struct page *page;
878
879         /*
880          * At first avoid shmem_getpage(,,,SGP_READ): that fails
881          * beyond i_size, and reports fallocated pages as holes.
882          */
883         folio = __filemap_get_folio(inode->i_mapping, index,
884                                         FGP_ENTRY | FGP_LOCK, 0);
885         if (!xa_is_value(folio))
886                 return folio;
887         /*
888          * But read a page back from swap if any of it is within i_size
889          * (although in some cases this is just a waste of time).
890          */
891         page = NULL;
892         shmem_getpage(inode, index, &page, SGP_READ);
893         return page ? page_folio(page) : NULL;
894 }
895
896 /*
897  * Remove range of pages and swap entries from page cache, and free them.
898  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
899  */
900 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
901                                                                  bool unfalloc)
902 {
903         struct address_space *mapping = inode->i_mapping;
904         struct shmem_inode_info *info = SHMEM_I(inode);
905         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
906         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
907         struct folio_batch fbatch;
908         pgoff_t indices[PAGEVEC_SIZE];
909         struct folio *folio;
910         bool same_folio;
911         long nr_swaps_freed = 0;
912         pgoff_t index;
913         int i;
914
915         if (lend == -1)
916                 end = -1;       /* unsigned, so actually very big */
917
918         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
919                 info->fallocend = start;
920
921         folio_batch_init(&fbatch);
922         index = start;
923         while (index < end && find_lock_entries(mapping, index, end - 1,
924                         &fbatch, indices)) {
925                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
926                         folio = fbatch.folios[i];
927
928                         index = indices[i];
929
930                         if (xa_is_value(folio)) {
931                                 if (unfalloc)
932                                         continue;
933                                 nr_swaps_freed += !shmem_free_swap(mapping,
934                                                                 index, folio);
935                                 continue;
936                         }
937                         index += folio_nr_pages(folio) - 1;
938
939                         if (!unfalloc || !folio_test_uptodate(folio))
940                                 truncate_inode_folio(mapping, folio);
941                         folio_unlock(folio);
942                 }
943                 folio_batch_remove_exceptionals(&fbatch);
944                 folio_batch_release(&fbatch);
945                 cond_resched();
946                 index++;
947         }
948
949         same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
950         folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
951         if (folio) {
952                 same_folio = lend < folio_pos(folio) + folio_size(folio);
953                 folio_mark_dirty(folio);
954                 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
955                         start = folio->index + folio_nr_pages(folio);
956                         if (same_folio)
957                                 end = folio->index;
958                 }
959                 folio_unlock(folio);
960                 folio_put(folio);
961                 folio = NULL;
962         }
963
964         if (!same_folio)
965                 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
966         if (folio) {
967                 folio_mark_dirty(folio);
968                 if (!truncate_inode_partial_folio(folio, lstart, lend))
969                         end = folio->index;
970                 folio_unlock(folio);
971                 folio_put(folio);
972         }
973
974         index = start;
975         while (index < end) {
976                 cond_resched();
977
978                 if (!find_get_entries(mapping, index, end - 1, &fbatch,
979                                 indices)) {
980                         /* If all gone or hole-punch or unfalloc, we're done */
981                         if (index == start || end != -1)
982                                 break;
983                         /* But if truncating, restart to make sure all gone */
984                         index = start;
985                         continue;
986                 }
987                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
988                         folio = fbatch.folios[i];
989
990                         index = indices[i];
991                         if (xa_is_value(folio)) {
992                                 if (unfalloc)
993                                         continue;
994                                 if (shmem_free_swap(mapping, index, folio)) {
995                                         /* Swap was replaced by page: retry */
996                                         index--;
997                                         break;
998                                 }
999                                 nr_swaps_freed++;
1000                                 continue;
1001                         }
1002
1003                         folio_lock(folio);
1004
1005                         if (!unfalloc || !folio_test_uptodate(folio)) {
1006                                 if (folio_mapping(folio) != mapping) {
1007                                         /* Page was replaced by swap: retry */
1008                                         folio_unlock(folio);
1009                                         index--;
1010                                         break;
1011                                 }
1012                                 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1013                                                 folio);
1014                                 truncate_inode_folio(mapping, folio);
1015                         }
1016                         index = folio->index + folio_nr_pages(folio) - 1;
1017                         folio_unlock(folio);
1018                 }
1019                 folio_batch_remove_exceptionals(&fbatch);
1020                 folio_batch_release(&fbatch);
1021                 index++;
1022         }
1023
1024         spin_lock_irq(&info->lock);
1025         info->swapped -= nr_swaps_freed;
1026         shmem_recalc_inode(inode);
1027         spin_unlock_irq(&info->lock);
1028 }
1029
1030 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1031 {
1032         shmem_undo_range(inode, lstart, lend, false);
1033         inode->i_ctime = inode->i_mtime = current_time(inode);
1034 }
1035 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1036
1037 static int shmem_getattr(struct user_namespace *mnt_userns,
1038                          const struct path *path, struct kstat *stat,
1039                          u32 request_mask, unsigned int query_flags)
1040 {
1041         struct inode *inode = path->dentry->d_inode;
1042         struct shmem_inode_info *info = SHMEM_I(inode);
1043
1044         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1045                 spin_lock_irq(&info->lock);
1046                 shmem_recalc_inode(inode);
1047                 spin_unlock_irq(&info->lock);
1048         }
1049         if (info->fsflags & FS_APPEND_FL)
1050                 stat->attributes |= STATX_ATTR_APPEND;
1051         if (info->fsflags & FS_IMMUTABLE_FL)
1052                 stat->attributes |= STATX_ATTR_IMMUTABLE;
1053         if (info->fsflags & FS_NODUMP_FL)
1054                 stat->attributes |= STATX_ATTR_NODUMP;
1055         stat->attributes_mask |= (STATX_ATTR_APPEND |
1056                         STATX_ATTR_IMMUTABLE |
1057                         STATX_ATTR_NODUMP);
1058         generic_fillattr(&init_user_ns, inode, stat);
1059
1060         if (shmem_is_huge(NULL, inode, 0))
1061                 stat->blksize = HPAGE_PMD_SIZE;
1062
1063         if (request_mask & STATX_BTIME) {
1064                 stat->result_mask |= STATX_BTIME;
1065                 stat->btime.tv_sec = info->i_crtime.tv_sec;
1066                 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1067         }
1068
1069         return 0;
1070 }
1071
1072 static int shmem_setattr(struct user_namespace *mnt_userns,
1073                          struct dentry *dentry, struct iattr *attr)
1074 {
1075         struct inode *inode = d_inode(dentry);
1076         struct shmem_inode_info *info = SHMEM_I(inode);
1077         int error;
1078
1079         error = setattr_prepare(&init_user_ns, dentry, attr);
1080         if (error)
1081                 return error;
1082
1083         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1084                 loff_t oldsize = inode->i_size;
1085                 loff_t newsize = attr->ia_size;
1086
1087                 /* protected by i_rwsem */
1088                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1089                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1090                         return -EPERM;
1091
1092                 if (newsize != oldsize) {
1093                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1094                                         oldsize, newsize);
1095                         if (error)
1096                                 return error;
1097                         i_size_write(inode, newsize);
1098                         inode->i_ctime = inode->i_mtime = current_time(inode);
1099                 }
1100                 if (newsize <= oldsize) {
1101                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1102                         if (oldsize > holebegin)
1103                                 unmap_mapping_range(inode->i_mapping,
1104                                                         holebegin, 0, 1);
1105                         if (info->alloced)
1106                                 shmem_truncate_range(inode,
1107                                                         newsize, (loff_t)-1);
1108                         /* unmap again to remove racily COWed private pages */
1109                         if (oldsize > holebegin)
1110                                 unmap_mapping_range(inode->i_mapping,
1111                                                         holebegin, 0, 1);
1112                 }
1113         }
1114
1115         setattr_copy(&init_user_ns, inode, attr);
1116         if (attr->ia_valid & ATTR_MODE)
1117                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1118         return error;
1119 }
1120
1121 static void shmem_evict_inode(struct inode *inode)
1122 {
1123         struct shmem_inode_info *info = SHMEM_I(inode);
1124         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1125
1126         if (shmem_mapping(inode->i_mapping)) {
1127                 shmem_unacct_size(info->flags, inode->i_size);
1128                 inode->i_size = 0;
1129                 mapping_set_exiting(inode->i_mapping);
1130                 shmem_truncate_range(inode, 0, (loff_t)-1);
1131                 if (!list_empty(&info->shrinklist)) {
1132                         spin_lock(&sbinfo->shrinklist_lock);
1133                         if (!list_empty(&info->shrinklist)) {
1134                                 list_del_init(&info->shrinklist);
1135                                 sbinfo->shrinklist_len--;
1136                         }
1137                         spin_unlock(&sbinfo->shrinklist_lock);
1138                 }
1139                 while (!list_empty(&info->swaplist)) {
1140                         /* Wait while shmem_unuse() is scanning this inode... */
1141                         wait_var_event(&info->stop_eviction,
1142                                        !atomic_read(&info->stop_eviction));
1143                         mutex_lock(&shmem_swaplist_mutex);
1144                         /* ...but beware of the race if we peeked too early */
1145                         if (!atomic_read(&info->stop_eviction))
1146                                 list_del_init(&info->swaplist);
1147                         mutex_unlock(&shmem_swaplist_mutex);
1148                 }
1149         }
1150
1151         simple_xattrs_free(&info->xattrs);
1152         WARN_ON(inode->i_blocks);
1153         shmem_free_inode(inode->i_sb);
1154         clear_inode(inode);
1155 }
1156
1157 static int shmem_find_swap_entries(struct address_space *mapping,
1158                                    pgoff_t start, struct folio_batch *fbatch,
1159                                    pgoff_t *indices, unsigned int type)
1160 {
1161         XA_STATE(xas, &mapping->i_pages, start);
1162         struct folio *folio;
1163         swp_entry_t entry;
1164
1165         rcu_read_lock();
1166         xas_for_each(&xas, folio, ULONG_MAX) {
1167                 if (xas_retry(&xas, folio))
1168                         continue;
1169
1170                 if (!xa_is_value(folio))
1171                         continue;
1172
1173                 entry = radix_to_swp_entry(folio);
1174                 /*
1175                  * swapin error entries can be found in the mapping. But they're
1176                  * deliberately ignored here as we've done everything we can do.
1177                  */
1178                 if (swp_type(entry) != type)
1179                         continue;
1180
1181                 indices[folio_batch_count(fbatch)] = xas.xa_index;
1182                 if (!folio_batch_add(fbatch, folio))
1183                         break;
1184
1185                 if (need_resched()) {
1186                         xas_pause(&xas);
1187                         cond_resched_rcu();
1188                 }
1189         }
1190         rcu_read_unlock();
1191
1192         return xas.xa_index;
1193 }
1194
1195 /*
1196  * Move the swapped pages for an inode to page cache. Returns the count
1197  * of pages swapped in, or the error in case of failure.
1198  */
1199 static int shmem_unuse_swap_entries(struct inode *inode,
1200                 struct folio_batch *fbatch, pgoff_t *indices)
1201 {
1202         int i = 0;
1203         int ret = 0;
1204         int error = 0;
1205         struct address_space *mapping = inode->i_mapping;
1206
1207         for (i = 0; i < folio_batch_count(fbatch); i++) {
1208                 struct folio *folio = fbatch->folios[i];
1209
1210                 if (!xa_is_value(folio))
1211                         continue;
1212                 error = shmem_swapin_folio(inode, indices[i],
1213                                           &folio, SGP_CACHE,
1214                                           mapping_gfp_mask(mapping),
1215                                           NULL, NULL);
1216                 if (error == 0) {
1217                         folio_unlock(folio);
1218                         folio_put(folio);
1219                         ret++;
1220                 }
1221                 if (error == -ENOMEM)
1222                         break;
1223                 error = 0;
1224         }
1225         return error ? error : ret;
1226 }
1227
1228 /*
1229  * If swap found in inode, free it and move page from swapcache to filecache.
1230  */
1231 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1232 {
1233         struct address_space *mapping = inode->i_mapping;
1234         pgoff_t start = 0;
1235         struct folio_batch fbatch;
1236         pgoff_t indices[PAGEVEC_SIZE];
1237         int ret = 0;
1238
1239         do {
1240                 folio_batch_init(&fbatch);
1241                 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1242                 if (folio_batch_count(&fbatch) == 0) {
1243                         ret = 0;
1244                         break;
1245                 }
1246
1247                 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1248                 if (ret < 0)
1249                         break;
1250
1251                 start = indices[folio_batch_count(&fbatch) - 1];
1252         } while (true);
1253
1254         return ret;
1255 }
1256
1257 /*
1258  * Read all the shared memory data that resides in the swap
1259  * device 'type' back into memory, so the swap device can be
1260  * unused.
1261  */
1262 int shmem_unuse(unsigned int type)
1263 {
1264         struct shmem_inode_info *info, *next;
1265         int error = 0;
1266
1267         if (list_empty(&shmem_swaplist))
1268                 return 0;
1269
1270         mutex_lock(&shmem_swaplist_mutex);
1271         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1272                 if (!info->swapped) {
1273                         list_del_init(&info->swaplist);
1274                         continue;
1275                 }
1276                 /*
1277                  * Drop the swaplist mutex while searching the inode for swap;
1278                  * but before doing so, make sure shmem_evict_inode() will not
1279                  * remove placeholder inode from swaplist, nor let it be freed
1280                  * (igrab() would protect from unlink, but not from unmount).
1281                  */
1282                 atomic_inc(&info->stop_eviction);
1283                 mutex_unlock(&shmem_swaplist_mutex);
1284
1285                 error = shmem_unuse_inode(&info->vfs_inode, type);
1286                 cond_resched();
1287
1288                 mutex_lock(&shmem_swaplist_mutex);
1289                 next = list_next_entry(info, swaplist);
1290                 if (!info->swapped)
1291                         list_del_init(&info->swaplist);
1292                 if (atomic_dec_and_test(&info->stop_eviction))
1293                         wake_up_var(&info->stop_eviction);
1294                 if (error)
1295                         break;
1296         }
1297         mutex_unlock(&shmem_swaplist_mutex);
1298
1299         return error;
1300 }
1301
1302 /*
1303  * Move the page from the page cache to the swap cache.
1304  */
1305 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1306 {
1307         struct folio *folio = page_folio(page);
1308         struct shmem_inode_info *info;
1309         struct address_space *mapping;
1310         struct inode *inode;
1311         swp_entry_t swap;
1312         pgoff_t index;
1313
1314         /*
1315          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1316          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1317          * and its shmem_writeback() needs them to be split when swapping.
1318          */
1319         if (folio_test_large(folio)) {
1320                 /* Ensure the subpages are still dirty */
1321                 folio_test_set_dirty(folio);
1322                 if (split_huge_page(page) < 0)
1323                         goto redirty;
1324                 folio = page_folio(page);
1325                 folio_clear_dirty(folio);
1326         }
1327
1328         BUG_ON(!folio_test_locked(folio));
1329         mapping = folio->mapping;
1330         index = folio->index;
1331         inode = mapping->host;
1332         info = SHMEM_I(inode);
1333         if (info->flags & VM_LOCKED)
1334                 goto redirty;
1335         if (!total_swap_pages)
1336                 goto redirty;
1337
1338         /*
1339          * Our capabilities prevent regular writeback or sync from ever calling
1340          * shmem_writepage; but a stacking filesystem might use ->writepage of
1341          * its underlying filesystem, in which case tmpfs should write out to
1342          * swap only in response to memory pressure, and not for the writeback
1343          * threads or sync.
1344          */
1345         if (!wbc->for_reclaim) {
1346                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1347                 goto redirty;
1348         }
1349
1350         /*
1351          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1352          * value into swapfile.c, the only way we can correctly account for a
1353          * fallocated folio arriving here is now to initialize it and write it.
1354          *
1355          * That's okay for a folio already fallocated earlier, but if we have
1356          * not yet completed the fallocation, then (a) we want to keep track
1357          * of this folio in case we have to undo it, and (b) it may not be a
1358          * good idea to continue anyway, once we're pushing into swap.  So
1359          * reactivate the folio, and let shmem_fallocate() quit when too many.
1360          */
1361         if (!folio_test_uptodate(folio)) {
1362                 if (inode->i_private) {
1363                         struct shmem_falloc *shmem_falloc;
1364                         spin_lock(&inode->i_lock);
1365                         shmem_falloc = inode->i_private;
1366                         if (shmem_falloc &&
1367                             !shmem_falloc->waitq &&
1368                             index >= shmem_falloc->start &&
1369                             index < shmem_falloc->next)
1370                                 shmem_falloc->nr_unswapped++;
1371                         else
1372                                 shmem_falloc = NULL;
1373                         spin_unlock(&inode->i_lock);
1374                         if (shmem_falloc)
1375                                 goto redirty;
1376                 }
1377                 folio_zero_range(folio, 0, folio_size(folio));
1378                 flush_dcache_folio(folio);
1379                 folio_mark_uptodate(folio);
1380         }
1381
1382         swap = folio_alloc_swap(folio);
1383         if (!swap.val)
1384                 goto redirty;
1385
1386         /*
1387          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1388          * if it's not already there.  Do it now before the folio is
1389          * moved to swap cache, when its pagelock no longer protects
1390          * the inode from eviction.  But don't unlock the mutex until
1391          * we've incremented swapped, because shmem_unuse_inode() will
1392          * prune a !swapped inode from the swaplist under this mutex.
1393          */
1394         mutex_lock(&shmem_swaplist_mutex);
1395         if (list_empty(&info->swaplist))
1396                 list_add(&info->swaplist, &shmem_swaplist);
1397
1398         if (add_to_swap_cache(folio, swap,
1399                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1400                         NULL) == 0) {
1401                 spin_lock_irq(&info->lock);
1402                 shmem_recalc_inode(inode);
1403                 info->swapped++;
1404                 spin_unlock_irq(&info->lock);
1405
1406                 swap_shmem_alloc(swap);
1407                 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1408
1409                 mutex_unlock(&shmem_swaplist_mutex);
1410                 BUG_ON(folio_mapped(folio));
1411                 swap_writepage(&folio->page, wbc);
1412                 return 0;
1413         }
1414
1415         mutex_unlock(&shmem_swaplist_mutex);
1416         put_swap_folio(folio, swap);
1417 redirty:
1418         folio_mark_dirty(folio);
1419         if (wbc->for_reclaim)
1420                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with folio locked */
1421         folio_unlock(folio);
1422         return 0;
1423 }
1424
1425 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1426 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1427 {
1428         char buffer[64];
1429
1430         if (!mpol || mpol->mode == MPOL_DEFAULT)
1431                 return;         /* show nothing */
1432
1433         mpol_to_str(buffer, sizeof(buffer), mpol);
1434
1435         seq_printf(seq, ",mpol=%s", buffer);
1436 }
1437
1438 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1439 {
1440         struct mempolicy *mpol = NULL;
1441         if (sbinfo->mpol) {
1442                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1443                 mpol = sbinfo->mpol;
1444                 mpol_get(mpol);
1445                 raw_spin_unlock(&sbinfo->stat_lock);
1446         }
1447         return mpol;
1448 }
1449 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1450 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1451 {
1452 }
1453 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1454 {
1455         return NULL;
1456 }
1457 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1458 #ifndef CONFIG_NUMA
1459 #define vm_policy vm_private_data
1460 #endif
1461
1462 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1463                 struct shmem_inode_info *info, pgoff_t index)
1464 {
1465         /* Create a pseudo vma that just contains the policy */
1466         vma_init(vma, NULL);
1467         /* Bias interleave by inode number to distribute better across nodes */
1468         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1469         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1470 }
1471
1472 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1473 {
1474         /* Drop reference taken by mpol_shared_policy_lookup() */
1475         mpol_cond_put(vma->vm_policy);
1476 }
1477
1478 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1479                         struct shmem_inode_info *info, pgoff_t index)
1480 {
1481         struct vm_area_struct pvma;
1482         struct page *page;
1483         struct vm_fault vmf = {
1484                 .vma = &pvma,
1485         };
1486
1487         shmem_pseudo_vma_init(&pvma, info, index);
1488         page = swap_cluster_readahead(swap, gfp, &vmf);
1489         shmem_pseudo_vma_destroy(&pvma);
1490
1491         if (!page)
1492                 return NULL;
1493         return page_folio(page);
1494 }
1495
1496 /*
1497  * Make sure huge_gfp is always more limited than limit_gfp.
1498  * Some of the flags set permissions, while others set limitations.
1499  */
1500 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1501 {
1502         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1503         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1504         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1505         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1506
1507         /* Allow allocations only from the originally specified zones. */
1508         result |= zoneflags;
1509
1510         /*
1511          * Minimize the result gfp by taking the union with the deny flags,
1512          * and the intersection of the allow flags.
1513          */
1514         result |= (limit_gfp & denyflags);
1515         result |= (huge_gfp & limit_gfp) & allowflags;
1516
1517         return result;
1518 }
1519
1520 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1521                 struct shmem_inode_info *info, pgoff_t index)
1522 {
1523         struct vm_area_struct pvma;
1524         struct address_space *mapping = info->vfs_inode.i_mapping;
1525         pgoff_t hindex;
1526         struct folio *folio;
1527
1528         hindex = round_down(index, HPAGE_PMD_NR);
1529         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1530                                                                 XA_PRESENT))
1531                 return NULL;
1532
1533         shmem_pseudo_vma_init(&pvma, info, hindex);
1534         folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1535         shmem_pseudo_vma_destroy(&pvma);
1536         if (!folio)
1537                 count_vm_event(THP_FILE_FALLBACK);
1538         return folio;
1539 }
1540
1541 static struct folio *shmem_alloc_folio(gfp_t gfp,
1542                         struct shmem_inode_info *info, pgoff_t index)
1543 {
1544         struct vm_area_struct pvma;
1545         struct folio *folio;
1546
1547         shmem_pseudo_vma_init(&pvma, info, index);
1548         folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1549         shmem_pseudo_vma_destroy(&pvma);
1550
1551         return folio;
1552 }
1553
1554 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1555                 pgoff_t index, bool huge)
1556 {
1557         struct shmem_inode_info *info = SHMEM_I(inode);
1558         struct folio *folio;
1559         int nr;
1560         int err = -ENOSPC;
1561
1562         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1563                 huge = false;
1564         nr = huge ? HPAGE_PMD_NR : 1;
1565
1566         if (!shmem_inode_acct_block(inode, nr))
1567                 goto failed;
1568
1569         if (huge)
1570                 folio = shmem_alloc_hugefolio(gfp, info, index);
1571         else
1572                 folio = shmem_alloc_folio(gfp, info, index);
1573         if (folio) {
1574                 __folio_set_locked(folio);
1575                 __folio_set_swapbacked(folio);
1576                 return folio;
1577         }
1578
1579         err = -ENOMEM;
1580         shmem_inode_unacct_blocks(inode, nr);
1581 failed:
1582         return ERR_PTR(err);
1583 }
1584
1585 /*
1586  * When a page is moved from swapcache to shmem filecache (either by the
1587  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1588  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1589  * ignorance of the mapping it belongs to.  If that mapping has special
1590  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1591  * we may need to copy to a suitable page before moving to filecache.
1592  *
1593  * In a future release, this may well be extended to respect cpuset and
1594  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1595  * but for now it is a simple matter of zone.
1596  */
1597 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1598 {
1599         return folio_zonenum(folio) > gfp_zone(gfp);
1600 }
1601
1602 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1603                                 struct shmem_inode_info *info, pgoff_t index)
1604 {
1605         struct folio *old, *new;
1606         struct address_space *swap_mapping;
1607         swp_entry_t entry;
1608         pgoff_t swap_index;
1609         int error;
1610
1611         old = *foliop;
1612         entry = folio_swap_entry(old);
1613         swap_index = swp_offset(entry);
1614         swap_mapping = swap_address_space(entry);
1615
1616         /*
1617          * We have arrived here because our zones are constrained, so don't
1618          * limit chance of success by further cpuset and node constraints.
1619          */
1620         gfp &= ~GFP_CONSTRAINT_MASK;
1621         VM_BUG_ON_FOLIO(folio_test_large(old), old);
1622         new = shmem_alloc_folio(gfp, info, index);
1623         if (!new)
1624                 return -ENOMEM;
1625
1626         folio_get(new);
1627         folio_copy(new, old);
1628         flush_dcache_folio(new);
1629
1630         __folio_set_locked(new);
1631         __folio_set_swapbacked(new);
1632         folio_mark_uptodate(new);
1633         folio_set_swap_entry(new, entry);
1634         folio_set_swapcache(new);
1635
1636         /*
1637          * Our caller will very soon move newpage out of swapcache, but it's
1638          * a nice clean interface for us to replace oldpage by newpage there.
1639          */
1640         xa_lock_irq(&swap_mapping->i_pages);
1641         error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1642         if (!error) {
1643                 mem_cgroup_migrate(old, new);
1644                 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1645                 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1646                 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1647                 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1648         }
1649         xa_unlock_irq(&swap_mapping->i_pages);
1650
1651         if (unlikely(error)) {
1652                 /*
1653                  * Is this possible?  I think not, now that our callers check
1654                  * both PageSwapCache and page_private after getting page lock;
1655                  * but be defensive.  Reverse old to newpage for clear and free.
1656                  */
1657                 old = new;
1658         } else {
1659                 folio_add_lru(new);
1660                 *foliop = new;
1661         }
1662
1663         folio_clear_swapcache(old);
1664         old->private = NULL;
1665
1666         folio_unlock(old);
1667         folio_put_refs(old, 2);
1668         return error;
1669 }
1670
1671 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1672                                          struct folio *folio, swp_entry_t swap)
1673 {
1674         struct address_space *mapping = inode->i_mapping;
1675         struct shmem_inode_info *info = SHMEM_I(inode);
1676         swp_entry_t swapin_error;
1677         void *old;
1678
1679         swapin_error = make_swapin_error_entry(&folio->page);
1680         old = xa_cmpxchg_irq(&mapping->i_pages, index,
1681                              swp_to_radix_entry(swap),
1682                              swp_to_radix_entry(swapin_error), 0);
1683         if (old != swp_to_radix_entry(swap))
1684                 return;
1685
1686         folio_wait_writeback(folio);
1687         delete_from_swap_cache(folio);
1688         spin_lock_irq(&info->lock);
1689         /*
1690          * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1691          * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1692          * shmem_evict_inode.
1693          */
1694         info->alloced--;
1695         info->swapped--;
1696         shmem_recalc_inode(inode);
1697         spin_unlock_irq(&info->lock);
1698         swap_free(swap);
1699 }
1700
1701 /*
1702  * Swap in the folio pointed to by *foliop.
1703  * Caller has to make sure that *foliop contains a valid swapped folio.
1704  * Returns 0 and the folio in foliop if success. On failure, returns the
1705  * error code and NULL in *foliop.
1706  */
1707 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1708                              struct folio **foliop, enum sgp_type sgp,
1709                              gfp_t gfp, struct vm_area_struct *vma,
1710                              vm_fault_t *fault_type)
1711 {
1712         struct address_space *mapping = inode->i_mapping;
1713         struct shmem_inode_info *info = SHMEM_I(inode);
1714         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1715         struct folio *folio = NULL;
1716         swp_entry_t swap;
1717         int error;
1718
1719         VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1720         swap = radix_to_swp_entry(*foliop);
1721         *foliop = NULL;
1722
1723         if (is_swapin_error_entry(swap))
1724                 return -EIO;
1725
1726         /* Look it up and read it in.. */
1727         folio = swap_cache_get_folio(swap, NULL, 0);
1728         if (!folio) {
1729                 /* Or update major stats only when swapin succeeds?? */
1730                 if (fault_type) {
1731                         *fault_type |= VM_FAULT_MAJOR;
1732                         count_vm_event(PGMAJFAULT);
1733                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1734                 }
1735                 /* Here we actually start the io */
1736                 folio = shmem_swapin(swap, gfp, info, index);
1737                 if (!folio) {
1738                         error = -ENOMEM;
1739                         goto failed;
1740                 }
1741         }
1742
1743         /* We have to do this with folio locked to prevent races */
1744         folio_lock(folio);
1745         if (!folio_test_swapcache(folio) ||
1746             folio_swap_entry(folio).val != swap.val ||
1747             !shmem_confirm_swap(mapping, index, swap)) {
1748                 error = -EEXIST;
1749                 goto unlock;
1750         }
1751         if (!folio_test_uptodate(folio)) {
1752                 error = -EIO;
1753                 goto failed;
1754         }
1755         folio_wait_writeback(folio);
1756
1757         /*
1758          * Some architectures may have to restore extra metadata to the
1759          * folio after reading from swap.
1760          */
1761         arch_swap_restore(swap, folio);
1762
1763         if (shmem_should_replace_folio(folio, gfp)) {
1764                 error = shmem_replace_folio(&folio, gfp, info, index);
1765                 if (error)
1766                         goto failed;
1767         }
1768
1769         error = shmem_add_to_page_cache(folio, mapping, index,
1770                                         swp_to_radix_entry(swap), gfp,
1771                                         charge_mm);
1772         if (error)
1773                 goto failed;
1774
1775         spin_lock_irq(&info->lock);
1776         info->swapped--;
1777         shmem_recalc_inode(inode);
1778         spin_unlock_irq(&info->lock);
1779
1780         if (sgp == SGP_WRITE)
1781                 folio_mark_accessed(folio);
1782
1783         delete_from_swap_cache(folio);
1784         folio_mark_dirty(folio);
1785         swap_free(swap);
1786
1787         *foliop = folio;
1788         return 0;
1789 failed:
1790         if (!shmem_confirm_swap(mapping, index, swap))
1791                 error = -EEXIST;
1792         if (error == -EIO)
1793                 shmem_set_folio_swapin_error(inode, index, folio, swap);
1794 unlock:
1795         if (folio) {
1796                 folio_unlock(folio);
1797                 folio_put(folio);
1798         }
1799
1800         return error;
1801 }
1802
1803 /*
1804  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1805  *
1806  * If we allocate a new one we do not mark it dirty. That's up to the
1807  * vm. If we swap it in we mark it dirty since we also free the swap
1808  * entry since a page cannot live in both the swap and page cache.
1809  *
1810  * vma, vmf, and fault_type are only supplied by shmem_fault:
1811  * otherwise they are NULL.
1812  */
1813 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1814                 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1815                 struct vm_area_struct *vma, struct vm_fault *vmf,
1816                 vm_fault_t *fault_type)
1817 {
1818         struct address_space *mapping = inode->i_mapping;
1819         struct shmem_inode_info *info = SHMEM_I(inode);
1820         struct shmem_sb_info *sbinfo;
1821         struct mm_struct *charge_mm;
1822         struct folio *folio;
1823         pgoff_t hindex = index;
1824         gfp_t huge_gfp;
1825         int error;
1826         int once = 0;
1827         int alloced = 0;
1828
1829         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1830                 return -EFBIG;
1831 repeat:
1832         if (sgp <= SGP_CACHE &&
1833             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1834                 return -EINVAL;
1835         }
1836
1837         sbinfo = SHMEM_SB(inode->i_sb);
1838         charge_mm = vma ? vma->vm_mm : NULL;
1839
1840         folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1841         if (folio && vma && userfaultfd_minor(vma)) {
1842                 if (!xa_is_value(folio)) {
1843                         folio_unlock(folio);
1844                         folio_put(folio);
1845                 }
1846                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1847                 return 0;
1848         }
1849
1850         if (xa_is_value(folio)) {
1851                 error = shmem_swapin_folio(inode, index, &folio,
1852                                           sgp, gfp, vma, fault_type);
1853                 if (error == -EEXIST)
1854                         goto repeat;
1855
1856                 *foliop = folio;
1857                 return error;
1858         }
1859
1860         if (folio) {
1861                 hindex = folio->index;
1862                 if (sgp == SGP_WRITE)
1863                         folio_mark_accessed(folio);
1864                 if (folio_test_uptodate(folio))
1865                         goto out;
1866                 /* fallocated folio */
1867                 if (sgp != SGP_READ)
1868                         goto clear;
1869                 folio_unlock(folio);
1870                 folio_put(folio);
1871         }
1872
1873         /*
1874          * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1875          * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1876          */
1877         *foliop = NULL;
1878         if (sgp == SGP_READ)
1879                 return 0;
1880         if (sgp == SGP_NOALLOC)
1881                 return -ENOENT;
1882
1883         /*
1884          * Fast cache lookup and swap lookup did not find it: allocate.
1885          */
1886
1887         if (vma && userfaultfd_missing(vma)) {
1888                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1889                 return 0;
1890         }
1891
1892         if (!shmem_is_huge(vma, inode, index))
1893                 goto alloc_nohuge;
1894
1895         huge_gfp = vma_thp_gfp_mask(vma);
1896         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1897         folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1898         if (IS_ERR(folio)) {
1899 alloc_nohuge:
1900                 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1901         }
1902         if (IS_ERR(folio)) {
1903                 int retry = 5;
1904
1905                 error = PTR_ERR(folio);
1906                 folio = NULL;
1907                 if (error != -ENOSPC)
1908                         goto unlock;
1909                 /*
1910                  * Try to reclaim some space by splitting a large folio
1911                  * beyond i_size on the filesystem.
1912                  */
1913                 while (retry--) {
1914                         int ret;
1915
1916                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1917                         if (ret == SHRINK_STOP)
1918                                 break;
1919                         if (ret)
1920                                 goto alloc_nohuge;
1921                 }
1922                 goto unlock;
1923         }
1924
1925         hindex = round_down(index, folio_nr_pages(folio));
1926
1927         if (sgp == SGP_WRITE)
1928                 __folio_set_referenced(folio);
1929
1930         error = shmem_add_to_page_cache(folio, mapping, hindex,
1931                                         NULL, gfp & GFP_RECLAIM_MASK,
1932                                         charge_mm);
1933         if (error)
1934                 goto unacct;
1935         folio_add_lru(folio);
1936
1937         spin_lock_irq(&info->lock);
1938         info->alloced += folio_nr_pages(folio);
1939         inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1940         shmem_recalc_inode(inode);
1941         spin_unlock_irq(&info->lock);
1942         alloced = true;
1943
1944         if (folio_test_pmd_mappable(folio) &&
1945             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1946                                         folio_next_index(folio) - 1) {
1947                 /*
1948                  * Part of the large folio is beyond i_size: subject
1949                  * to shrink under memory pressure.
1950                  */
1951                 spin_lock(&sbinfo->shrinklist_lock);
1952                 /*
1953                  * _careful to defend against unlocked access to
1954                  * ->shrink_list in shmem_unused_huge_shrink()
1955                  */
1956                 if (list_empty_careful(&info->shrinklist)) {
1957                         list_add_tail(&info->shrinklist,
1958                                       &sbinfo->shrinklist);
1959                         sbinfo->shrinklist_len++;
1960                 }
1961                 spin_unlock(&sbinfo->shrinklist_lock);
1962         }
1963
1964         /*
1965          * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1966          */
1967         if (sgp == SGP_FALLOC)
1968                 sgp = SGP_WRITE;
1969 clear:
1970         /*
1971          * Let SGP_WRITE caller clear ends if write does not fill folio;
1972          * but SGP_FALLOC on a folio fallocated earlier must initialize
1973          * it now, lest undo on failure cancel our earlier guarantee.
1974          */
1975         if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1976                 long i, n = folio_nr_pages(folio);
1977
1978                 for (i = 0; i < n; i++)
1979                         clear_highpage(folio_page(folio, i));
1980                 flush_dcache_folio(folio);
1981                 folio_mark_uptodate(folio);
1982         }
1983
1984         /* Perhaps the file has been truncated since we checked */
1985         if (sgp <= SGP_CACHE &&
1986             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1987                 if (alloced) {
1988                         folio_clear_dirty(folio);
1989                         filemap_remove_folio(folio);
1990                         spin_lock_irq(&info->lock);
1991                         shmem_recalc_inode(inode);
1992                         spin_unlock_irq(&info->lock);
1993                 }
1994                 error = -EINVAL;
1995                 goto unlock;
1996         }
1997 out:
1998         *foliop = folio;
1999         return 0;
2000
2001         /*
2002          * Error recovery.
2003          */
2004 unacct:
2005         shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2006
2007         if (folio_test_large(folio)) {
2008                 folio_unlock(folio);
2009                 folio_put(folio);
2010                 goto alloc_nohuge;
2011         }
2012 unlock:
2013         if (folio) {
2014                 folio_unlock(folio);
2015                 folio_put(folio);
2016         }
2017         if (error == -ENOSPC && !once++) {
2018                 spin_lock_irq(&info->lock);
2019                 shmem_recalc_inode(inode);
2020                 spin_unlock_irq(&info->lock);
2021                 goto repeat;
2022         }
2023         if (error == -EEXIST)
2024                 goto repeat;
2025         return error;
2026 }
2027
2028 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
2029                 struct page **pagep, enum sgp_type sgp,
2030                 gfp_t gfp, struct vm_area_struct *vma,
2031                 struct vm_fault *vmf, vm_fault_t *fault_type)
2032 {
2033         struct folio *folio = NULL;
2034         int ret = shmem_get_folio_gfp(inode, index, &folio, sgp, gfp, vma,
2035                         vmf, fault_type);
2036
2037         if (folio)
2038                 *pagep = folio_file_page(folio, index);
2039         else
2040                 *pagep = NULL;
2041         return ret;
2042 }
2043
2044 int shmem_getpage(struct inode *inode, pgoff_t index,
2045                 struct page **pagep, enum sgp_type sgp)
2046 {
2047         return shmem_getpage_gfp(inode, index, pagep, sgp,
2048                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2049 }
2050
2051 /*
2052  * This is like autoremove_wake_function, but it removes the wait queue
2053  * entry unconditionally - even if something else had already woken the
2054  * target.
2055  */
2056 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2057 {
2058         int ret = default_wake_function(wait, mode, sync, key);
2059         list_del_init(&wait->entry);
2060         return ret;
2061 }
2062
2063 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2064 {
2065         struct vm_area_struct *vma = vmf->vma;
2066         struct inode *inode = file_inode(vma->vm_file);
2067         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2068         struct folio *folio = NULL;
2069         int err;
2070         vm_fault_t ret = VM_FAULT_LOCKED;
2071
2072         /*
2073          * Trinity finds that probing a hole which tmpfs is punching can
2074          * prevent the hole-punch from ever completing: which in turn
2075          * locks writers out with its hold on i_rwsem.  So refrain from
2076          * faulting pages into the hole while it's being punched.  Although
2077          * shmem_undo_range() does remove the additions, it may be unable to
2078          * keep up, as each new page needs its own unmap_mapping_range() call,
2079          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2080          *
2081          * It does not matter if we sometimes reach this check just before the
2082          * hole-punch begins, so that one fault then races with the punch:
2083          * we just need to make racing faults a rare case.
2084          *
2085          * The implementation below would be much simpler if we just used a
2086          * standard mutex or completion: but we cannot take i_rwsem in fault,
2087          * and bloating every shmem inode for this unlikely case would be sad.
2088          */
2089         if (unlikely(inode->i_private)) {
2090                 struct shmem_falloc *shmem_falloc;
2091
2092                 spin_lock(&inode->i_lock);
2093                 shmem_falloc = inode->i_private;
2094                 if (shmem_falloc &&
2095                     shmem_falloc->waitq &&
2096                     vmf->pgoff >= shmem_falloc->start &&
2097                     vmf->pgoff < shmem_falloc->next) {
2098                         struct file *fpin;
2099                         wait_queue_head_t *shmem_falloc_waitq;
2100                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2101
2102                         ret = VM_FAULT_NOPAGE;
2103                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2104                         if (fpin)
2105                                 ret = VM_FAULT_RETRY;
2106
2107                         shmem_falloc_waitq = shmem_falloc->waitq;
2108                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2109                                         TASK_UNINTERRUPTIBLE);
2110                         spin_unlock(&inode->i_lock);
2111                         schedule();
2112
2113                         /*
2114                          * shmem_falloc_waitq points into the shmem_fallocate()
2115                          * stack of the hole-punching task: shmem_falloc_waitq
2116                          * is usually invalid by the time we reach here, but
2117                          * finish_wait() does not dereference it in that case;
2118                          * though i_lock needed lest racing with wake_up_all().
2119                          */
2120                         spin_lock(&inode->i_lock);
2121                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2122                         spin_unlock(&inode->i_lock);
2123
2124                         if (fpin)
2125                                 fput(fpin);
2126                         return ret;
2127                 }
2128                 spin_unlock(&inode->i_lock);
2129         }
2130
2131         err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2132                                   gfp, vma, vmf, &ret);
2133         if (err)
2134                 return vmf_error(err);
2135         if (folio)
2136                 vmf->page = folio_file_page(folio, vmf->pgoff);
2137         return ret;
2138 }
2139
2140 unsigned long shmem_get_unmapped_area(struct file *file,
2141                                       unsigned long uaddr, unsigned long len,
2142                                       unsigned long pgoff, unsigned long flags)
2143 {
2144         unsigned long (*get_area)(struct file *,
2145                 unsigned long, unsigned long, unsigned long, unsigned long);
2146         unsigned long addr;
2147         unsigned long offset;
2148         unsigned long inflated_len;
2149         unsigned long inflated_addr;
2150         unsigned long inflated_offset;
2151
2152         if (len > TASK_SIZE)
2153                 return -ENOMEM;
2154
2155         get_area = current->mm->get_unmapped_area;
2156         addr = get_area(file, uaddr, len, pgoff, flags);
2157
2158         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2159                 return addr;
2160         if (IS_ERR_VALUE(addr))
2161                 return addr;
2162         if (addr & ~PAGE_MASK)
2163                 return addr;
2164         if (addr > TASK_SIZE - len)
2165                 return addr;
2166
2167         if (shmem_huge == SHMEM_HUGE_DENY)
2168                 return addr;
2169         if (len < HPAGE_PMD_SIZE)
2170                 return addr;
2171         if (flags & MAP_FIXED)
2172                 return addr;
2173         /*
2174          * Our priority is to support MAP_SHARED mapped hugely;
2175          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2176          * But if caller specified an address hint and we allocated area there
2177          * successfully, respect that as before.
2178          */
2179         if (uaddr == addr)
2180                 return addr;
2181
2182         if (shmem_huge != SHMEM_HUGE_FORCE) {
2183                 struct super_block *sb;
2184
2185                 if (file) {
2186                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2187                         sb = file_inode(file)->i_sb;
2188                 } else {
2189                         /*
2190                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2191                          * for "/dev/zero", to create a shared anonymous object.
2192                          */
2193                         if (IS_ERR(shm_mnt))
2194                                 return addr;
2195                         sb = shm_mnt->mnt_sb;
2196                 }
2197                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2198                         return addr;
2199         }
2200
2201         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2202         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2203                 return addr;
2204         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2205                 return addr;
2206
2207         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2208         if (inflated_len > TASK_SIZE)
2209                 return addr;
2210         if (inflated_len < len)
2211                 return addr;
2212
2213         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2214         if (IS_ERR_VALUE(inflated_addr))
2215                 return addr;
2216         if (inflated_addr & ~PAGE_MASK)
2217                 return addr;
2218
2219         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2220         inflated_addr += offset - inflated_offset;
2221         if (inflated_offset > offset)
2222                 inflated_addr += HPAGE_PMD_SIZE;
2223
2224         if (inflated_addr > TASK_SIZE - len)
2225                 return addr;
2226         return inflated_addr;
2227 }
2228
2229 #ifdef CONFIG_NUMA
2230 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2231 {
2232         struct inode *inode = file_inode(vma->vm_file);
2233         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2234 }
2235
2236 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2237                                           unsigned long addr)
2238 {
2239         struct inode *inode = file_inode(vma->vm_file);
2240         pgoff_t index;
2241
2242         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2243         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2244 }
2245 #endif
2246
2247 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2248 {
2249         struct inode *inode = file_inode(file);
2250         struct shmem_inode_info *info = SHMEM_I(inode);
2251         int retval = -ENOMEM;
2252
2253         /*
2254          * What serializes the accesses to info->flags?
2255          * ipc_lock_object() when called from shmctl_do_lock(),
2256          * no serialization needed when called from shm_destroy().
2257          */
2258         if (lock && !(info->flags & VM_LOCKED)) {
2259                 if (!user_shm_lock(inode->i_size, ucounts))
2260                         goto out_nomem;
2261                 info->flags |= VM_LOCKED;
2262                 mapping_set_unevictable(file->f_mapping);
2263         }
2264         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2265                 user_shm_unlock(inode->i_size, ucounts);
2266                 info->flags &= ~VM_LOCKED;
2267                 mapping_clear_unevictable(file->f_mapping);
2268         }
2269         retval = 0;
2270
2271 out_nomem:
2272         return retval;
2273 }
2274
2275 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2276 {
2277         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2278         int ret;
2279
2280         ret = seal_check_future_write(info->seals, vma);
2281         if (ret)
2282                 return ret;
2283
2284         /* arm64 - allow memory tagging on RAM-based files */
2285         vma->vm_flags |= VM_MTE_ALLOWED;
2286
2287         file_accessed(file);
2288         vma->vm_ops = &shmem_vm_ops;
2289         return 0;
2290 }
2291
2292 #ifdef CONFIG_TMPFS_XATTR
2293 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2294
2295 /*
2296  * chattr's fsflags are unrelated to extended attributes,
2297  * but tmpfs has chosen to enable them under the same config option.
2298  */
2299 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2300 {
2301         unsigned int i_flags = 0;
2302
2303         if (fsflags & FS_NOATIME_FL)
2304                 i_flags |= S_NOATIME;
2305         if (fsflags & FS_APPEND_FL)
2306                 i_flags |= S_APPEND;
2307         if (fsflags & FS_IMMUTABLE_FL)
2308                 i_flags |= S_IMMUTABLE;
2309         /*
2310          * But FS_NODUMP_FL does not require any action in i_flags.
2311          */
2312         inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2313 }
2314 #else
2315 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2316 {
2317 }
2318 #define shmem_initxattrs NULL
2319 #endif
2320
2321 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2322                                      umode_t mode, dev_t dev, unsigned long flags)
2323 {
2324         struct inode *inode;
2325         struct shmem_inode_info *info;
2326         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2327         ino_t ino;
2328
2329         if (shmem_reserve_inode(sb, &ino))
2330                 return NULL;
2331
2332         inode = new_inode(sb);
2333         if (inode) {
2334                 inode->i_ino = ino;
2335                 inode_init_owner(&init_user_ns, inode, dir, mode);
2336                 inode->i_blocks = 0;
2337                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2338                 inode->i_generation = prandom_u32();
2339                 info = SHMEM_I(inode);
2340                 memset(info, 0, (char *)inode - (char *)info);
2341                 spin_lock_init(&info->lock);
2342                 atomic_set(&info->stop_eviction, 0);
2343                 info->seals = F_SEAL_SEAL;
2344                 info->flags = flags & VM_NORESERVE;
2345                 info->i_crtime = inode->i_mtime;
2346                 info->fsflags = (dir == NULL) ? 0 :
2347                         SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2348                 if (info->fsflags)
2349                         shmem_set_inode_flags(inode, info->fsflags);
2350                 INIT_LIST_HEAD(&info->shrinklist);
2351                 INIT_LIST_HEAD(&info->swaplist);
2352                 simple_xattrs_init(&info->xattrs);
2353                 cache_no_acl(inode);
2354                 mapping_set_large_folios(inode->i_mapping);
2355
2356                 switch (mode & S_IFMT) {
2357                 default:
2358                         inode->i_op = &shmem_special_inode_operations;
2359                         init_special_inode(inode, mode, dev);
2360                         break;
2361                 case S_IFREG:
2362                         inode->i_mapping->a_ops = &shmem_aops;
2363                         inode->i_op = &shmem_inode_operations;
2364                         inode->i_fop = &shmem_file_operations;
2365                         mpol_shared_policy_init(&info->policy,
2366                                                  shmem_get_sbmpol(sbinfo));
2367                         break;
2368                 case S_IFDIR:
2369                         inc_nlink(inode);
2370                         /* Some things misbehave if size == 0 on a directory */
2371                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2372                         inode->i_op = &shmem_dir_inode_operations;
2373                         inode->i_fop = &simple_dir_operations;
2374                         break;
2375                 case S_IFLNK:
2376                         /*
2377                          * Must not load anything in the rbtree,
2378                          * mpol_free_shared_policy will not be called.
2379                          */
2380                         mpol_shared_policy_init(&info->policy, NULL);
2381                         break;
2382                 }
2383
2384                 lockdep_annotate_inode_mutex_key(inode);
2385         } else
2386                 shmem_free_inode(sb);
2387         return inode;
2388 }
2389
2390 #ifdef CONFIG_USERFAULTFD
2391 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2392                            pmd_t *dst_pmd,
2393                            struct vm_area_struct *dst_vma,
2394                            unsigned long dst_addr,
2395                            unsigned long src_addr,
2396                            bool zeropage, bool wp_copy,
2397                            struct page **pagep)
2398 {
2399         struct inode *inode = file_inode(dst_vma->vm_file);
2400         struct shmem_inode_info *info = SHMEM_I(inode);
2401         struct address_space *mapping = inode->i_mapping;
2402         gfp_t gfp = mapping_gfp_mask(mapping);
2403         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2404         void *page_kaddr;
2405         struct folio *folio;
2406         int ret;
2407         pgoff_t max_off;
2408
2409         if (!shmem_inode_acct_block(inode, 1)) {
2410                 /*
2411                  * We may have got a page, returned -ENOENT triggering a retry,
2412                  * and now we find ourselves with -ENOMEM. Release the page, to
2413                  * avoid a BUG_ON in our caller.
2414                  */
2415                 if (unlikely(*pagep)) {
2416                         put_page(*pagep);
2417                         *pagep = NULL;
2418                 }
2419                 return -ENOMEM;
2420         }
2421
2422         if (!*pagep) {
2423                 ret = -ENOMEM;
2424                 folio = shmem_alloc_folio(gfp, info, pgoff);
2425                 if (!folio)
2426                         goto out_unacct_blocks;
2427
2428                 if (!zeropage) {        /* COPY */
2429                         page_kaddr = kmap_local_folio(folio, 0);
2430                         ret = copy_from_user(page_kaddr,
2431                                              (const void __user *)src_addr,
2432                                              PAGE_SIZE);
2433                         kunmap_local(page_kaddr);
2434
2435                         /* fallback to copy_from_user outside mmap_lock */
2436                         if (unlikely(ret)) {
2437                                 *pagep = &folio->page;
2438                                 ret = -ENOENT;
2439                                 /* don't free the page */
2440                                 goto out_unacct_blocks;
2441                         }
2442
2443                         flush_dcache_folio(folio);
2444                 } else {                /* ZEROPAGE */
2445                         clear_user_highpage(&folio->page, dst_addr);
2446                 }
2447         } else {
2448                 folio = page_folio(*pagep);
2449                 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2450                 *pagep = NULL;
2451         }
2452
2453         VM_BUG_ON(folio_test_locked(folio));
2454         VM_BUG_ON(folio_test_swapbacked(folio));
2455         __folio_set_locked(folio);
2456         __folio_set_swapbacked(folio);
2457         __folio_mark_uptodate(folio);
2458
2459         ret = -EFAULT;
2460         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2461         if (unlikely(pgoff >= max_off))
2462                 goto out_release;
2463
2464         ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2465                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2466         if (ret)
2467                 goto out_release;
2468
2469         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2470                                        &folio->page, true, wp_copy);
2471         if (ret)
2472                 goto out_delete_from_cache;
2473
2474         spin_lock_irq(&info->lock);
2475         info->alloced++;
2476         inode->i_blocks += BLOCKS_PER_PAGE;
2477         shmem_recalc_inode(inode);
2478         spin_unlock_irq(&info->lock);
2479
2480         folio_unlock(folio);
2481         return 0;
2482 out_delete_from_cache:
2483         filemap_remove_folio(folio);
2484 out_release:
2485         folio_unlock(folio);
2486         folio_put(folio);
2487 out_unacct_blocks:
2488         shmem_inode_unacct_blocks(inode, 1);
2489         return ret;
2490 }
2491 #endif /* CONFIG_USERFAULTFD */
2492
2493 #ifdef CONFIG_TMPFS
2494 static const struct inode_operations shmem_symlink_inode_operations;
2495 static const struct inode_operations shmem_short_symlink_operations;
2496
2497 static int
2498 shmem_write_begin(struct file *file, struct address_space *mapping,
2499                         loff_t pos, unsigned len,
2500                         struct page **pagep, void **fsdata)
2501 {
2502         struct inode *inode = mapping->host;
2503         struct shmem_inode_info *info = SHMEM_I(inode);
2504         pgoff_t index = pos >> PAGE_SHIFT;
2505         int ret = 0;
2506
2507         /* i_rwsem is held by caller */
2508         if (unlikely(info->seals & (F_SEAL_GROW |
2509                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2510                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2511                         return -EPERM;
2512                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2513                         return -EPERM;
2514         }
2515
2516         ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2517
2518         if (ret)
2519                 return ret;
2520
2521         if (PageHWPoison(*pagep)) {
2522                 unlock_page(*pagep);
2523                 put_page(*pagep);
2524                 *pagep = NULL;
2525                 return -EIO;
2526         }
2527
2528         return 0;
2529 }
2530
2531 static int
2532 shmem_write_end(struct file *file, struct address_space *mapping,
2533                         loff_t pos, unsigned len, unsigned copied,
2534                         struct page *page, void *fsdata)
2535 {
2536         struct inode *inode = mapping->host;
2537
2538         if (pos + copied > inode->i_size)
2539                 i_size_write(inode, pos + copied);
2540
2541         if (!PageUptodate(page)) {
2542                 struct page *head = compound_head(page);
2543                 if (PageTransCompound(page)) {
2544                         int i;
2545
2546                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2547                                 if (head + i == page)
2548                                         continue;
2549                                 clear_highpage(head + i);
2550                                 flush_dcache_page(head + i);
2551                         }
2552                 }
2553                 if (copied < PAGE_SIZE) {
2554                         unsigned from = pos & (PAGE_SIZE - 1);
2555                         zero_user_segments(page, 0, from,
2556                                         from + copied, PAGE_SIZE);
2557                 }
2558                 SetPageUptodate(head);
2559         }
2560         set_page_dirty(page);
2561         unlock_page(page);
2562         put_page(page);
2563
2564         return copied;
2565 }
2566
2567 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2568 {
2569         struct file *file = iocb->ki_filp;
2570         struct inode *inode = file_inode(file);
2571         struct address_space *mapping = inode->i_mapping;
2572         pgoff_t index;
2573         unsigned long offset;
2574         int error = 0;
2575         ssize_t retval = 0;
2576         loff_t *ppos = &iocb->ki_pos;
2577
2578         index = *ppos >> PAGE_SHIFT;
2579         offset = *ppos & ~PAGE_MASK;
2580
2581         for (;;) {
2582                 struct page *page = NULL;
2583                 pgoff_t end_index;
2584                 unsigned long nr, ret;
2585                 loff_t i_size = i_size_read(inode);
2586
2587                 end_index = i_size >> PAGE_SHIFT;
2588                 if (index > end_index)
2589                         break;
2590                 if (index == end_index) {
2591                         nr = i_size & ~PAGE_MASK;
2592                         if (nr <= offset)
2593                                 break;
2594                 }
2595
2596                 error = shmem_getpage(inode, index, &page, SGP_READ);
2597                 if (error) {
2598                         if (error == -EINVAL)
2599                                 error = 0;
2600                         break;
2601                 }
2602                 if (page) {
2603                         unlock_page(page);
2604
2605                         if (PageHWPoison(page)) {
2606                                 put_page(page);
2607                                 error = -EIO;
2608                                 break;
2609                         }
2610                 }
2611
2612                 /*
2613                  * We must evaluate after, since reads (unlike writes)
2614                  * are called without i_rwsem protection against truncate
2615                  */
2616                 nr = PAGE_SIZE;
2617                 i_size = i_size_read(inode);
2618                 end_index = i_size >> PAGE_SHIFT;
2619                 if (index == end_index) {
2620                         nr = i_size & ~PAGE_MASK;
2621                         if (nr <= offset) {
2622                                 if (page)
2623                                         put_page(page);
2624                                 break;
2625                         }
2626                 }
2627                 nr -= offset;
2628
2629                 if (page) {
2630                         /*
2631                          * If users can be writing to this page using arbitrary
2632                          * virtual addresses, take care about potential aliasing
2633                          * before reading the page on the kernel side.
2634                          */
2635                         if (mapping_writably_mapped(mapping))
2636                                 flush_dcache_page(page);
2637                         /*
2638                          * Mark the page accessed if we read the beginning.
2639                          */
2640                         if (!offset)
2641                                 mark_page_accessed(page);
2642                         /*
2643                          * Ok, we have the page, and it's up-to-date, so
2644                          * now we can copy it to user space...
2645                          */
2646                         ret = copy_page_to_iter(page, offset, nr, to);
2647                         put_page(page);
2648
2649                 } else if (user_backed_iter(to)) {
2650                         /*
2651                          * Copy to user tends to be so well optimized, but
2652                          * clear_user() not so much, that it is noticeably
2653                          * faster to copy the zero page instead of clearing.
2654                          */
2655                         ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2656                 } else {
2657                         /*
2658                          * But submitting the same page twice in a row to
2659                          * splice() - or others? - can result in confusion:
2660                          * so don't attempt that optimization on pipes etc.
2661                          */
2662                         ret = iov_iter_zero(nr, to);
2663                 }
2664
2665                 retval += ret;
2666                 offset += ret;
2667                 index += offset >> PAGE_SHIFT;
2668                 offset &= ~PAGE_MASK;
2669
2670                 if (!iov_iter_count(to))
2671                         break;
2672                 if (ret < nr) {
2673                         error = -EFAULT;
2674                         break;
2675                 }
2676                 cond_resched();
2677         }
2678
2679         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2680         file_accessed(file);
2681         return retval ? retval : error;
2682 }
2683
2684 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2685 {
2686         struct address_space *mapping = file->f_mapping;
2687         struct inode *inode = mapping->host;
2688
2689         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2690                 return generic_file_llseek_size(file, offset, whence,
2691                                         MAX_LFS_FILESIZE, i_size_read(inode));
2692         if (offset < 0)
2693                 return -ENXIO;
2694
2695         inode_lock(inode);
2696         /* We're holding i_rwsem so we can access i_size directly */
2697         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2698         if (offset >= 0)
2699                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2700         inode_unlock(inode);
2701         return offset;
2702 }
2703
2704 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2705                                                          loff_t len)
2706 {
2707         struct inode *inode = file_inode(file);
2708         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2709         struct shmem_inode_info *info = SHMEM_I(inode);
2710         struct shmem_falloc shmem_falloc;
2711         pgoff_t start, index, end, undo_fallocend;
2712         int error;
2713
2714         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2715                 return -EOPNOTSUPP;
2716
2717         inode_lock(inode);
2718
2719         if (mode & FALLOC_FL_PUNCH_HOLE) {
2720                 struct address_space *mapping = file->f_mapping;
2721                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2722                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2723                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2724
2725                 /* protected by i_rwsem */
2726                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2727                         error = -EPERM;
2728                         goto out;
2729                 }
2730
2731                 shmem_falloc.waitq = &shmem_falloc_waitq;
2732                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2733                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2734                 spin_lock(&inode->i_lock);
2735                 inode->i_private = &shmem_falloc;
2736                 spin_unlock(&inode->i_lock);
2737
2738                 if ((u64)unmap_end > (u64)unmap_start)
2739                         unmap_mapping_range(mapping, unmap_start,
2740                                             1 + unmap_end - unmap_start, 0);
2741                 shmem_truncate_range(inode, offset, offset + len - 1);
2742                 /* No need to unmap again: hole-punching leaves COWed pages */
2743
2744                 spin_lock(&inode->i_lock);
2745                 inode->i_private = NULL;
2746                 wake_up_all(&shmem_falloc_waitq);
2747                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2748                 spin_unlock(&inode->i_lock);
2749                 error = 0;
2750                 goto out;
2751         }
2752
2753         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2754         error = inode_newsize_ok(inode, offset + len);
2755         if (error)
2756                 goto out;
2757
2758         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2759                 error = -EPERM;
2760                 goto out;
2761         }
2762
2763         start = offset >> PAGE_SHIFT;
2764         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2765         /* Try to avoid a swapstorm if len is impossible to satisfy */
2766         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2767                 error = -ENOSPC;
2768                 goto out;
2769         }
2770
2771         shmem_falloc.waitq = NULL;
2772         shmem_falloc.start = start;
2773         shmem_falloc.next  = start;
2774         shmem_falloc.nr_falloced = 0;
2775         shmem_falloc.nr_unswapped = 0;
2776         spin_lock(&inode->i_lock);
2777         inode->i_private = &shmem_falloc;
2778         spin_unlock(&inode->i_lock);
2779
2780         /*
2781          * info->fallocend is only relevant when huge pages might be
2782          * involved: to prevent split_huge_page() freeing fallocated
2783          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2784          */
2785         undo_fallocend = info->fallocend;
2786         if (info->fallocend < end)
2787                 info->fallocend = end;
2788
2789         for (index = start; index < end; ) {
2790                 struct page *page;
2791
2792                 /*
2793                  * Good, the fallocate(2) manpage permits EINTR: we may have
2794                  * been interrupted because we are using up too much memory.
2795                  */
2796                 if (signal_pending(current))
2797                         error = -EINTR;
2798                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2799                         error = -ENOMEM;
2800                 else
2801                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2802                 if (error) {
2803                         info->fallocend = undo_fallocend;
2804                         /* Remove the !PageUptodate pages we added */
2805                         if (index > start) {
2806                                 shmem_undo_range(inode,
2807                                     (loff_t)start << PAGE_SHIFT,
2808                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2809                         }
2810                         goto undone;
2811                 }
2812
2813                 index++;
2814                 /*
2815                  * Here is a more important optimization than it appears:
2816                  * a second SGP_FALLOC on the same huge page will clear it,
2817                  * making it PageUptodate and un-undoable if we fail later.
2818                  */
2819                 if (PageTransCompound(page)) {
2820                         index = round_up(index, HPAGE_PMD_NR);
2821                         /* Beware 32-bit wraparound */
2822                         if (!index)
2823                                 index--;
2824                 }
2825
2826                 /*
2827                  * Inform shmem_writepage() how far we have reached.
2828                  * No need for lock or barrier: we have the page lock.
2829                  */
2830                 if (!PageUptodate(page))
2831                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2832                 shmem_falloc.next = index;
2833
2834                 /*
2835                  * If !PageUptodate, leave it that way so that freeable pages
2836                  * can be recognized if we need to rollback on error later.
2837                  * But set_page_dirty so that memory pressure will swap rather
2838                  * than free the pages we are allocating (and SGP_CACHE pages
2839                  * might still be clean: we now need to mark those dirty too).
2840                  */
2841                 set_page_dirty(page);
2842                 unlock_page(page);
2843                 put_page(page);
2844                 cond_resched();
2845         }
2846
2847         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2848                 i_size_write(inode, offset + len);
2849 undone:
2850         spin_lock(&inode->i_lock);
2851         inode->i_private = NULL;
2852         spin_unlock(&inode->i_lock);
2853 out:
2854         if (!error)
2855                 file_modified(file);
2856         inode_unlock(inode);
2857         return error;
2858 }
2859
2860 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2861 {
2862         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2863
2864         buf->f_type = TMPFS_MAGIC;
2865         buf->f_bsize = PAGE_SIZE;
2866         buf->f_namelen = NAME_MAX;
2867         if (sbinfo->max_blocks) {
2868                 buf->f_blocks = sbinfo->max_blocks;
2869                 buf->f_bavail =
2870                 buf->f_bfree  = sbinfo->max_blocks -
2871                                 percpu_counter_sum(&sbinfo->used_blocks);
2872         }
2873         if (sbinfo->max_inodes) {
2874                 buf->f_files = sbinfo->max_inodes;
2875                 buf->f_ffree = sbinfo->free_inodes;
2876         }
2877         /* else leave those fields 0 like simple_statfs */
2878
2879         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2880
2881         return 0;
2882 }
2883
2884 /*
2885  * File creation. Allocate an inode, and we're done..
2886  */
2887 static int
2888 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2889             struct dentry *dentry, umode_t mode, dev_t dev)
2890 {
2891         struct inode *inode;
2892         int error = -ENOSPC;
2893
2894         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2895         if (inode) {
2896                 error = simple_acl_create(dir, inode);
2897                 if (error)
2898                         goto out_iput;
2899                 error = security_inode_init_security(inode, dir,
2900                                                      &dentry->d_name,
2901                                                      shmem_initxattrs, NULL);
2902                 if (error && error != -EOPNOTSUPP)
2903                         goto out_iput;
2904
2905                 error = 0;
2906                 dir->i_size += BOGO_DIRENT_SIZE;
2907                 dir->i_ctime = dir->i_mtime = current_time(dir);
2908                 d_instantiate(dentry, inode);
2909                 dget(dentry); /* Extra count - pin the dentry in core */
2910         }
2911         return error;
2912 out_iput:
2913         iput(inode);
2914         return error;
2915 }
2916
2917 static int
2918 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2919               struct dentry *dentry, umode_t mode)
2920 {
2921         struct inode *inode;
2922         int error = -ENOSPC;
2923
2924         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2925         if (inode) {
2926                 error = security_inode_init_security(inode, dir,
2927                                                      NULL,
2928                                                      shmem_initxattrs, NULL);
2929                 if (error && error != -EOPNOTSUPP)
2930                         goto out_iput;
2931                 error = simple_acl_create(dir, inode);
2932                 if (error)
2933                         goto out_iput;
2934                 d_tmpfile(dentry, inode);
2935         }
2936         return error;
2937 out_iput:
2938         iput(inode);
2939         return error;
2940 }
2941
2942 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2943                        struct dentry *dentry, umode_t mode)
2944 {
2945         int error;
2946
2947         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2948                                  mode | S_IFDIR, 0)))
2949                 return error;
2950         inc_nlink(dir);
2951         return 0;
2952 }
2953
2954 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2955                         struct dentry *dentry, umode_t mode, bool excl)
2956 {
2957         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2958 }
2959
2960 /*
2961  * Link a file..
2962  */
2963 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2964 {
2965         struct inode *inode = d_inode(old_dentry);
2966         int ret = 0;
2967
2968         /*
2969          * No ordinary (disk based) filesystem counts links as inodes;
2970          * but each new link needs a new dentry, pinning lowmem, and
2971          * tmpfs dentries cannot be pruned until they are unlinked.
2972          * But if an O_TMPFILE file is linked into the tmpfs, the
2973          * first link must skip that, to get the accounting right.
2974          */
2975         if (inode->i_nlink) {
2976                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2977                 if (ret)
2978                         goto out;
2979         }
2980
2981         dir->i_size += BOGO_DIRENT_SIZE;
2982         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2983         inc_nlink(inode);
2984         ihold(inode);   /* New dentry reference */
2985         dget(dentry);           /* Extra pinning count for the created dentry */
2986         d_instantiate(dentry, inode);
2987 out:
2988         return ret;
2989 }
2990
2991 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2992 {
2993         struct inode *inode = d_inode(dentry);
2994
2995         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2996                 shmem_free_inode(inode->i_sb);
2997
2998         dir->i_size -= BOGO_DIRENT_SIZE;
2999         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3000         drop_nlink(inode);
3001         dput(dentry);   /* Undo the count from "create" - this does all the work */
3002         return 0;
3003 }
3004
3005 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3006 {
3007         if (!simple_empty(dentry))
3008                 return -ENOTEMPTY;
3009
3010         drop_nlink(d_inode(dentry));
3011         drop_nlink(dir);
3012         return shmem_unlink(dir, dentry);
3013 }
3014
3015 static int shmem_whiteout(struct user_namespace *mnt_userns,
3016                           struct inode *old_dir, struct dentry *old_dentry)
3017 {
3018         struct dentry *whiteout;
3019         int error;
3020
3021         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3022         if (!whiteout)
3023                 return -ENOMEM;
3024
3025         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3026                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3027         dput(whiteout);
3028         if (error)
3029                 return error;
3030
3031         /*
3032          * Cheat and hash the whiteout while the old dentry is still in
3033          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3034          *
3035          * d_lookup() will consistently find one of them at this point,
3036          * not sure which one, but that isn't even important.
3037          */
3038         d_rehash(whiteout);
3039         return 0;
3040 }
3041
3042 /*
3043  * The VFS layer already does all the dentry stuff for rename,
3044  * we just have to decrement the usage count for the target if
3045  * it exists so that the VFS layer correctly free's it when it
3046  * gets overwritten.
3047  */
3048 static int shmem_rename2(struct user_namespace *mnt_userns,
3049                          struct inode *old_dir, struct dentry *old_dentry,
3050                          struct inode *new_dir, struct dentry *new_dentry,
3051                          unsigned int flags)
3052 {
3053         struct inode *inode = d_inode(old_dentry);
3054         int they_are_dirs = S_ISDIR(inode->i_mode);
3055
3056         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3057                 return -EINVAL;
3058
3059         if (flags & RENAME_EXCHANGE)
3060                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3061
3062         if (!simple_empty(new_dentry))
3063                 return -ENOTEMPTY;
3064
3065         if (flags & RENAME_WHITEOUT) {
3066                 int error;
3067
3068                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3069                 if (error)
3070                         return error;
3071         }
3072
3073         if (d_really_is_positive(new_dentry)) {
3074                 (void) shmem_unlink(new_dir, new_dentry);
3075                 if (they_are_dirs) {
3076                         drop_nlink(d_inode(new_dentry));
3077                         drop_nlink(old_dir);
3078                 }
3079         } else if (they_are_dirs) {
3080                 drop_nlink(old_dir);
3081                 inc_nlink(new_dir);
3082         }
3083
3084         old_dir->i_size -= BOGO_DIRENT_SIZE;
3085         new_dir->i_size += BOGO_DIRENT_SIZE;
3086         old_dir->i_ctime = old_dir->i_mtime =
3087         new_dir->i_ctime = new_dir->i_mtime =
3088         inode->i_ctime = current_time(old_dir);
3089         return 0;
3090 }
3091
3092 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3093                          struct dentry *dentry, const char *symname)
3094 {
3095         int error;
3096         int len;
3097         struct inode *inode;
3098         struct page *page;
3099
3100         len = strlen(symname) + 1;
3101         if (len > PAGE_SIZE)
3102                 return -ENAMETOOLONG;
3103
3104         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3105                                 VM_NORESERVE);
3106         if (!inode)
3107                 return -ENOSPC;
3108
3109         error = security_inode_init_security(inode, dir, &dentry->d_name,
3110                                              shmem_initxattrs, NULL);
3111         if (error && error != -EOPNOTSUPP) {
3112                 iput(inode);
3113                 return error;
3114         }
3115
3116         inode->i_size = len-1;
3117         if (len <= SHORT_SYMLINK_LEN) {
3118                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3119                 if (!inode->i_link) {
3120                         iput(inode);
3121                         return -ENOMEM;
3122                 }
3123                 inode->i_op = &shmem_short_symlink_operations;
3124         } else {
3125                 inode_nohighmem(inode);
3126                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3127                 if (error) {
3128                         iput(inode);
3129                         return error;
3130                 }
3131                 inode->i_mapping->a_ops = &shmem_aops;
3132                 inode->i_op = &shmem_symlink_inode_operations;
3133                 memcpy(page_address(page), symname, len);
3134                 SetPageUptodate(page);
3135                 set_page_dirty(page);
3136                 unlock_page(page);
3137                 put_page(page);
3138         }
3139         dir->i_size += BOGO_DIRENT_SIZE;
3140         dir->i_ctime = dir->i_mtime = current_time(dir);
3141         d_instantiate(dentry, inode);
3142         dget(dentry);
3143         return 0;
3144 }
3145
3146 static void shmem_put_link(void *arg)
3147 {
3148         mark_page_accessed(arg);
3149         put_page(arg);
3150 }
3151
3152 static const char *shmem_get_link(struct dentry *dentry,
3153                                   struct inode *inode,
3154                                   struct delayed_call *done)
3155 {
3156         struct page *page = NULL;
3157         int error;
3158         if (!dentry) {
3159                 page = find_get_page(inode->i_mapping, 0);
3160                 if (!page)
3161                         return ERR_PTR(-ECHILD);
3162                 if (PageHWPoison(page) ||
3163                     !PageUptodate(page)) {
3164                         put_page(page);
3165                         return ERR_PTR(-ECHILD);
3166                 }
3167         } else {
3168                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3169                 if (error)
3170                         return ERR_PTR(error);
3171                 if (!page)
3172                         return ERR_PTR(-ECHILD);
3173                 if (PageHWPoison(page)) {
3174                         unlock_page(page);
3175                         put_page(page);
3176                         return ERR_PTR(-ECHILD);
3177                 }
3178                 unlock_page(page);
3179         }
3180         set_delayed_call(done, shmem_put_link, page);
3181         return page_address(page);
3182 }
3183
3184 #ifdef CONFIG_TMPFS_XATTR
3185
3186 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3187 {
3188         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3189
3190         fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3191
3192         return 0;
3193 }
3194
3195 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3196                               struct dentry *dentry, struct fileattr *fa)
3197 {
3198         struct inode *inode = d_inode(dentry);
3199         struct shmem_inode_info *info = SHMEM_I(inode);
3200
3201         if (fileattr_has_fsx(fa))
3202                 return -EOPNOTSUPP;
3203         if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3204                 return -EOPNOTSUPP;
3205
3206         info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3207                 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3208
3209         shmem_set_inode_flags(inode, info->fsflags);
3210         inode->i_ctime = current_time(inode);
3211         return 0;
3212 }
3213
3214 /*
3215  * Superblocks without xattr inode operations may get some security.* xattr
3216  * support from the LSM "for free". As soon as we have any other xattrs
3217  * like ACLs, we also need to implement the security.* handlers at
3218  * filesystem level, though.
3219  */
3220
3221 /*
3222  * Callback for security_inode_init_security() for acquiring xattrs.
3223  */
3224 static int shmem_initxattrs(struct inode *inode,
3225                             const struct xattr *xattr_array,
3226                             void *fs_info)
3227 {
3228         struct shmem_inode_info *info = SHMEM_I(inode);
3229         const struct xattr *xattr;
3230         struct simple_xattr *new_xattr;
3231         size_t len;
3232
3233         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3234                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3235                 if (!new_xattr)
3236                         return -ENOMEM;
3237
3238                 len = strlen(xattr->name) + 1;
3239                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3240                                           GFP_KERNEL);
3241                 if (!new_xattr->name) {
3242                         kvfree(new_xattr);
3243                         return -ENOMEM;
3244                 }
3245
3246                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3247                        XATTR_SECURITY_PREFIX_LEN);
3248                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3249                        xattr->name, len);
3250
3251                 simple_xattr_list_add(&info->xattrs, new_xattr);
3252         }
3253
3254         return 0;
3255 }
3256
3257 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3258                                    struct dentry *unused, struct inode *inode,
3259                                    const char *name, void *buffer, size_t size)
3260 {
3261         struct shmem_inode_info *info = SHMEM_I(inode);
3262
3263         name = xattr_full_name(handler, name);
3264         return simple_xattr_get(&info->xattrs, name, buffer, size);
3265 }
3266
3267 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3268                                    struct user_namespace *mnt_userns,
3269                                    struct dentry *unused, struct inode *inode,
3270                                    const char *name, const void *value,
3271                                    size_t size, int flags)
3272 {
3273         struct shmem_inode_info *info = SHMEM_I(inode);
3274
3275         name = xattr_full_name(handler, name);
3276         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3277 }
3278
3279 static const struct xattr_handler shmem_security_xattr_handler = {
3280         .prefix = XATTR_SECURITY_PREFIX,
3281         .get = shmem_xattr_handler_get,
3282         .set = shmem_xattr_handler_set,
3283 };
3284
3285 static const struct xattr_handler shmem_trusted_xattr_handler = {
3286         .prefix = XATTR_TRUSTED_PREFIX,
3287         .get = shmem_xattr_handler_get,
3288         .set = shmem_xattr_handler_set,
3289 };
3290
3291 static const struct xattr_handler *shmem_xattr_handlers[] = {
3292 #ifdef CONFIG_TMPFS_POSIX_ACL
3293         &posix_acl_access_xattr_handler,
3294         &posix_acl_default_xattr_handler,
3295 #endif
3296         &shmem_security_xattr_handler,
3297         &shmem_trusted_xattr_handler,
3298         NULL
3299 };
3300
3301 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3302 {
3303         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3304         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3305 }
3306 #endif /* CONFIG_TMPFS_XATTR */
3307
3308 static const struct inode_operations shmem_short_symlink_operations = {
3309         .getattr        = shmem_getattr,
3310         .get_link       = simple_get_link,
3311 #ifdef CONFIG_TMPFS_XATTR
3312         .listxattr      = shmem_listxattr,
3313 #endif
3314 };
3315
3316 static const struct inode_operations shmem_symlink_inode_operations = {
3317         .getattr        = shmem_getattr,
3318         .get_link       = shmem_get_link,
3319 #ifdef CONFIG_TMPFS_XATTR
3320         .listxattr      = shmem_listxattr,
3321 #endif
3322 };
3323
3324 static struct dentry *shmem_get_parent(struct dentry *child)
3325 {
3326         return ERR_PTR(-ESTALE);
3327 }
3328
3329 static int shmem_match(struct inode *ino, void *vfh)
3330 {
3331         __u32 *fh = vfh;
3332         __u64 inum = fh[2];
3333         inum = (inum << 32) | fh[1];
3334         return ino->i_ino == inum && fh[0] == ino->i_generation;
3335 }
3336
3337 /* Find any alias of inode, but prefer a hashed alias */
3338 static struct dentry *shmem_find_alias(struct inode *inode)
3339 {
3340         struct dentry *alias = d_find_alias(inode);
3341
3342         return alias ?: d_find_any_alias(inode);
3343 }
3344
3345
3346 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3347                 struct fid *fid, int fh_len, int fh_type)
3348 {
3349         struct inode *inode;
3350         struct dentry *dentry = NULL;
3351         u64 inum;
3352
3353         if (fh_len < 3)
3354                 return NULL;
3355
3356         inum = fid->raw[2];
3357         inum = (inum << 32) | fid->raw[1];
3358
3359         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3360                         shmem_match, fid->raw);
3361         if (inode) {
3362                 dentry = shmem_find_alias(inode);
3363                 iput(inode);
3364         }
3365
3366         return dentry;
3367 }
3368
3369 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3370                                 struct inode *parent)
3371 {
3372         if (*len < 3) {
3373                 *len = 3;
3374                 return FILEID_INVALID;
3375         }
3376
3377         if (inode_unhashed(inode)) {
3378                 /* Unfortunately insert_inode_hash is not idempotent,
3379                  * so as we hash inodes here rather than at creation
3380                  * time, we need a lock to ensure we only try
3381                  * to do it once
3382                  */
3383                 static DEFINE_SPINLOCK(lock);
3384                 spin_lock(&lock);
3385                 if (inode_unhashed(inode))
3386                         __insert_inode_hash(inode,
3387                                             inode->i_ino + inode->i_generation);
3388                 spin_unlock(&lock);
3389         }
3390
3391         fh[0] = inode->i_generation;
3392         fh[1] = inode->i_ino;
3393         fh[2] = ((__u64)inode->i_ino) >> 32;
3394
3395         *len = 3;
3396         return 1;
3397 }
3398
3399 static const struct export_operations shmem_export_ops = {
3400         .get_parent     = shmem_get_parent,
3401         .encode_fh      = shmem_encode_fh,
3402         .fh_to_dentry   = shmem_fh_to_dentry,
3403 };
3404
3405 enum shmem_param {
3406         Opt_gid,
3407         Opt_huge,
3408         Opt_mode,
3409         Opt_mpol,
3410         Opt_nr_blocks,
3411         Opt_nr_inodes,
3412         Opt_size,
3413         Opt_uid,
3414         Opt_inode32,
3415         Opt_inode64,
3416 };
3417
3418 static const struct constant_table shmem_param_enums_huge[] = {
3419         {"never",       SHMEM_HUGE_NEVER },
3420         {"always",      SHMEM_HUGE_ALWAYS },
3421         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3422         {"advise",      SHMEM_HUGE_ADVISE },
3423         {}
3424 };
3425
3426 const struct fs_parameter_spec shmem_fs_parameters[] = {
3427         fsparam_u32   ("gid",           Opt_gid),
3428         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3429         fsparam_u32oct("mode",          Opt_mode),
3430         fsparam_string("mpol",          Opt_mpol),
3431         fsparam_string("nr_blocks",     Opt_nr_blocks),
3432         fsparam_string("nr_inodes",     Opt_nr_inodes),
3433         fsparam_string("size",          Opt_size),
3434         fsparam_u32   ("uid",           Opt_uid),
3435         fsparam_flag  ("inode32",       Opt_inode32),
3436         fsparam_flag  ("inode64",       Opt_inode64),
3437         {}
3438 };
3439
3440 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3441 {
3442         struct shmem_options *ctx = fc->fs_private;
3443         struct fs_parse_result result;
3444         unsigned long long size;
3445         char *rest;
3446         int opt;
3447
3448         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3449         if (opt < 0)
3450                 return opt;
3451
3452         switch (opt) {
3453         case Opt_size:
3454                 size = memparse(param->string, &rest);
3455                 if (*rest == '%') {
3456                         size <<= PAGE_SHIFT;
3457                         size *= totalram_pages();
3458                         do_div(size, 100);
3459                         rest++;
3460                 }
3461                 if (*rest)
3462                         goto bad_value;
3463                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3464                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3465                 break;
3466         case Opt_nr_blocks:
3467                 ctx->blocks = memparse(param->string, &rest);
3468                 if (*rest || ctx->blocks > S64_MAX)
3469                         goto bad_value;
3470                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3471                 break;
3472         case Opt_nr_inodes:
3473                 ctx->inodes = memparse(param->string, &rest);
3474                 if (*rest)
3475                         goto bad_value;
3476                 ctx->seen |= SHMEM_SEEN_INODES;
3477                 break;
3478         case Opt_mode:
3479                 ctx->mode = result.uint_32 & 07777;
3480                 break;
3481         case Opt_uid:
3482                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3483                 if (!uid_valid(ctx->uid))
3484                         goto bad_value;
3485                 break;
3486         case Opt_gid:
3487                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3488                 if (!gid_valid(ctx->gid))
3489                         goto bad_value;
3490                 break;
3491         case Opt_huge:
3492                 ctx->huge = result.uint_32;
3493                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3494                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3495                       has_transparent_hugepage()))
3496                         goto unsupported_parameter;
3497                 ctx->seen |= SHMEM_SEEN_HUGE;
3498                 break;
3499         case Opt_mpol:
3500                 if (IS_ENABLED(CONFIG_NUMA)) {
3501                         mpol_put(ctx->mpol);
3502                         ctx->mpol = NULL;
3503                         if (mpol_parse_str(param->string, &ctx->mpol))
3504                                 goto bad_value;
3505                         break;
3506                 }
3507                 goto unsupported_parameter;
3508         case Opt_inode32:
3509                 ctx->full_inums = false;
3510                 ctx->seen |= SHMEM_SEEN_INUMS;
3511                 break;
3512         case Opt_inode64:
3513                 if (sizeof(ino_t) < 8) {
3514                         return invalfc(fc,
3515                                        "Cannot use inode64 with <64bit inums in kernel\n");
3516                 }
3517                 ctx->full_inums = true;
3518                 ctx->seen |= SHMEM_SEEN_INUMS;
3519                 break;
3520         }
3521         return 0;
3522
3523 unsupported_parameter:
3524         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3525 bad_value:
3526         return invalfc(fc, "Bad value for '%s'", param->key);
3527 }
3528
3529 static int shmem_parse_options(struct fs_context *fc, void *data)
3530 {
3531         char *options = data;
3532
3533         if (options) {
3534                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3535                 if (err)
3536                         return err;
3537         }
3538
3539         while (options != NULL) {
3540                 char *this_char = options;
3541                 for (;;) {
3542                         /*
3543                          * NUL-terminate this option: unfortunately,
3544                          * mount options form a comma-separated list,
3545                          * but mpol's nodelist may also contain commas.
3546                          */
3547                         options = strchr(options, ',');
3548                         if (options == NULL)
3549                                 break;
3550                         options++;
3551                         if (!isdigit(*options)) {
3552                                 options[-1] = '\0';
3553                                 break;
3554                         }
3555                 }
3556                 if (*this_char) {
3557                         char *value = strchr(this_char, '=');
3558                         size_t len = 0;
3559                         int err;
3560
3561                         if (value) {
3562                                 *value++ = '\0';
3563                                 len = strlen(value);
3564                         }
3565                         err = vfs_parse_fs_string(fc, this_char, value, len);
3566                         if (err < 0)
3567                                 return err;
3568                 }
3569         }
3570         return 0;
3571 }
3572
3573 /*
3574  * Reconfigure a shmem filesystem.
3575  *
3576  * Note that we disallow change from limited->unlimited blocks/inodes while any
3577  * are in use; but we must separately disallow unlimited->limited, because in
3578  * that case we have no record of how much is already in use.
3579  */
3580 static int shmem_reconfigure(struct fs_context *fc)
3581 {
3582         struct shmem_options *ctx = fc->fs_private;
3583         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3584         unsigned long inodes;
3585         struct mempolicy *mpol = NULL;
3586         const char *err;
3587
3588         raw_spin_lock(&sbinfo->stat_lock);
3589         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3590
3591         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3592                 if (!sbinfo->max_blocks) {
3593                         err = "Cannot retroactively limit size";
3594                         goto out;
3595                 }
3596                 if (percpu_counter_compare(&sbinfo->used_blocks,
3597                                            ctx->blocks) > 0) {
3598                         err = "Too small a size for current use";
3599                         goto out;
3600                 }
3601         }
3602         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3603                 if (!sbinfo->max_inodes) {
3604                         err = "Cannot retroactively limit inodes";
3605                         goto out;
3606                 }
3607                 if (ctx->inodes < inodes) {
3608                         err = "Too few inodes for current use";
3609                         goto out;
3610                 }
3611         }
3612
3613         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3614             sbinfo->next_ino > UINT_MAX) {
3615                 err = "Current inum too high to switch to 32-bit inums";
3616                 goto out;
3617         }
3618
3619         if (ctx->seen & SHMEM_SEEN_HUGE)
3620                 sbinfo->huge = ctx->huge;
3621         if (ctx->seen & SHMEM_SEEN_INUMS)
3622                 sbinfo->full_inums = ctx->full_inums;
3623         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3624                 sbinfo->max_blocks  = ctx->blocks;
3625         if (ctx->seen & SHMEM_SEEN_INODES) {
3626                 sbinfo->max_inodes  = ctx->inodes;
3627                 sbinfo->free_inodes = ctx->inodes - inodes;
3628         }
3629
3630         /*
3631          * Preserve previous mempolicy unless mpol remount option was specified.
3632          */
3633         if (ctx->mpol) {
3634                 mpol = sbinfo->mpol;
3635                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3636                 ctx->mpol = NULL;
3637         }
3638         raw_spin_unlock(&sbinfo->stat_lock);
3639         mpol_put(mpol);
3640         return 0;
3641 out:
3642         raw_spin_unlock(&sbinfo->stat_lock);
3643         return invalfc(fc, "%s", err);
3644 }
3645
3646 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3647 {
3648         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3649
3650         if (sbinfo->max_blocks != shmem_default_max_blocks())
3651                 seq_printf(seq, ",size=%luk",
3652                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3653         if (sbinfo->max_inodes != shmem_default_max_inodes())
3654                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3655         if (sbinfo->mode != (0777 | S_ISVTX))
3656                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3657         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3658                 seq_printf(seq, ",uid=%u",
3659                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3660         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3661                 seq_printf(seq, ",gid=%u",
3662                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3663
3664         /*
3665          * Showing inode{64,32} might be useful even if it's the system default,
3666          * since then people don't have to resort to checking both here and
3667          * /proc/config.gz to confirm 64-bit inums were successfully applied
3668          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3669          *
3670          * We hide it when inode64 isn't the default and we are using 32-bit
3671          * inodes, since that probably just means the feature isn't even under
3672          * consideration.
3673          *
3674          * As such:
3675          *
3676          *                     +-----------------+-----------------+
3677          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3678          *  +------------------+-----------------+-----------------+
3679          *  | full_inums=true  | show            | show            |
3680          *  | full_inums=false | show            | hide            |
3681          *  +------------------+-----------------+-----------------+
3682          *
3683          */
3684         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3685                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3686 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3687         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3688         if (sbinfo->huge)
3689                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3690 #endif
3691         shmem_show_mpol(seq, sbinfo->mpol);
3692         return 0;
3693 }
3694
3695 #endif /* CONFIG_TMPFS */
3696
3697 static void shmem_put_super(struct super_block *sb)
3698 {
3699         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3700
3701         free_percpu(sbinfo->ino_batch);
3702         percpu_counter_destroy(&sbinfo->used_blocks);
3703         mpol_put(sbinfo->mpol);
3704         kfree(sbinfo);
3705         sb->s_fs_info = NULL;
3706 }
3707
3708 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3709 {
3710         struct shmem_options *ctx = fc->fs_private;
3711         struct inode *inode;
3712         struct shmem_sb_info *sbinfo;
3713
3714         /* Round up to L1_CACHE_BYTES to resist false sharing */
3715         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3716                                 L1_CACHE_BYTES), GFP_KERNEL);
3717         if (!sbinfo)
3718                 return -ENOMEM;
3719
3720         sb->s_fs_info = sbinfo;
3721
3722 #ifdef CONFIG_TMPFS
3723         /*
3724          * Per default we only allow half of the physical ram per
3725          * tmpfs instance, limiting inodes to one per page of lowmem;
3726          * but the internal instance is left unlimited.
3727          */
3728         if (!(sb->s_flags & SB_KERNMOUNT)) {
3729                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3730                         ctx->blocks = shmem_default_max_blocks();
3731                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3732                         ctx->inodes = shmem_default_max_inodes();
3733                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3734                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3735         } else {
3736                 sb->s_flags |= SB_NOUSER;
3737         }
3738         sb->s_export_op = &shmem_export_ops;
3739         sb->s_flags |= SB_NOSEC;
3740 #else
3741         sb->s_flags |= SB_NOUSER;
3742 #endif
3743         sbinfo->max_blocks = ctx->blocks;
3744         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3745         if (sb->s_flags & SB_KERNMOUNT) {
3746                 sbinfo->ino_batch = alloc_percpu(ino_t);
3747                 if (!sbinfo->ino_batch)
3748                         goto failed;
3749         }
3750         sbinfo->uid = ctx->uid;
3751         sbinfo->gid = ctx->gid;
3752         sbinfo->full_inums = ctx->full_inums;
3753         sbinfo->mode = ctx->mode;
3754         sbinfo->huge = ctx->huge;
3755         sbinfo->mpol = ctx->mpol;
3756         ctx->mpol = NULL;
3757
3758         raw_spin_lock_init(&sbinfo->stat_lock);
3759         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3760                 goto failed;
3761         spin_lock_init(&sbinfo->shrinklist_lock);
3762         INIT_LIST_HEAD(&sbinfo->shrinklist);
3763
3764         sb->s_maxbytes = MAX_LFS_FILESIZE;
3765         sb->s_blocksize = PAGE_SIZE;
3766         sb->s_blocksize_bits = PAGE_SHIFT;
3767         sb->s_magic = TMPFS_MAGIC;
3768         sb->s_op = &shmem_ops;
3769         sb->s_time_gran = 1;
3770 #ifdef CONFIG_TMPFS_XATTR
3771         sb->s_xattr = shmem_xattr_handlers;
3772 #endif
3773 #ifdef CONFIG_TMPFS_POSIX_ACL
3774         sb->s_flags |= SB_POSIXACL;
3775 #endif
3776         uuid_gen(&sb->s_uuid);
3777
3778         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3779         if (!inode)
3780                 goto failed;
3781         inode->i_uid = sbinfo->uid;
3782         inode->i_gid = sbinfo->gid;
3783         sb->s_root = d_make_root(inode);
3784         if (!sb->s_root)
3785                 goto failed;
3786         return 0;
3787
3788 failed:
3789         shmem_put_super(sb);
3790         return -ENOMEM;
3791 }
3792
3793 static int shmem_get_tree(struct fs_context *fc)
3794 {
3795         return get_tree_nodev(fc, shmem_fill_super);
3796 }
3797
3798 static void shmem_free_fc(struct fs_context *fc)
3799 {
3800         struct shmem_options *ctx = fc->fs_private;
3801
3802         if (ctx) {
3803                 mpol_put(ctx->mpol);
3804                 kfree(ctx);
3805         }
3806 }
3807
3808 static const struct fs_context_operations shmem_fs_context_ops = {
3809         .free                   = shmem_free_fc,
3810         .get_tree               = shmem_get_tree,
3811 #ifdef CONFIG_TMPFS
3812         .parse_monolithic       = shmem_parse_options,
3813         .parse_param            = shmem_parse_one,
3814         .reconfigure            = shmem_reconfigure,
3815 #endif
3816 };
3817
3818 static struct kmem_cache *shmem_inode_cachep;
3819
3820 static struct inode *shmem_alloc_inode(struct super_block *sb)
3821 {
3822         struct shmem_inode_info *info;
3823         info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3824         if (!info)
3825                 return NULL;
3826         return &info->vfs_inode;
3827 }
3828
3829 static void shmem_free_in_core_inode(struct inode *inode)
3830 {
3831         if (S_ISLNK(inode->i_mode))
3832                 kfree(inode->i_link);
3833         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3834 }
3835
3836 static void shmem_destroy_inode(struct inode *inode)
3837 {
3838         if (S_ISREG(inode->i_mode))
3839                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3840 }
3841
3842 static void shmem_init_inode(void *foo)
3843 {
3844         struct shmem_inode_info *info = foo;
3845         inode_init_once(&info->vfs_inode);
3846 }
3847
3848 static void shmem_init_inodecache(void)
3849 {
3850         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3851                                 sizeof(struct shmem_inode_info),
3852                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3853 }
3854
3855 static void shmem_destroy_inodecache(void)
3856 {
3857         kmem_cache_destroy(shmem_inode_cachep);
3858 }
3859
3860 /* Keep the page in page cache instead of truncating it */
3861 static int shmem_error_remove_page(struct address_space *mapping,
3862                                    struct page *page)
3863 {
3864         return 0;
3865 }
3866
3867 const struct address_space_operations shmem_aops = {
3868         .writepage      = shmem_writepage,
3869         .dirty_folio    = noop_dirty_folio,
3870 #ifdef CONFIG_TMPFS
3871         .write_begin    = shmem_write_begin,
3872         .write_end      = shmem_write_end,
3873 #endif
3874 #ifdef CONFIG_MIGRATION
3875         .migrate_folio  = migrate_folio,
3876 #endif
3877         .error_remove_page = shmem_error_remove_page,
3878 };
3879 EXPORT_SYMBOL(shmem_aops);
3880
3881 static const struct file_operations shmem_file_operations = {
3882         .mmap           = shmem_mmap,
3883         .get_unmapped_area = shmem_get_unmapped_area,
3884 #ifdef CONFIG_TMPFS
3885         .llseek         = shmem_file_llseek,
3886         .read_iter      = shmem_file_read_iter,
3887         .write_iter     = generic_file_write_iter,
3888         .fsync          = noop_fsync,
3889         .splice_read    = generic_file_splice_read,
3890         .splice_write   = iter_file_splice_write,
3891         .fallocate      = shmem_fallocate,
3892 #endif
3893 };
3894
3895 static const struct inode_operations shmem_inode_operations = {
3896         .getattr        = shmem_getattr,
3897         .setattr        = shmem_setattr,
3898 #ifdef CONFIG_TMPFS_XATTR
3899         .listxattr      = shmem_listxattr,
3900         .set_acl        = simple_set_acl,
3901         .fileattr_get   = shmem_fileattr_get,
3902         .fileattr_set   = shmem_fileattr_set,
3903 #endif
3904 };
3905
3906 static const struct inode_operations shmem_dir_inode_operations = {
3907 #ifdef CONFIG_TMPFS
3908         .getattr        = shmem_getattr,
3909         .create         = shmem_create,
3910         .lookup         = simple_lookup,
3911         .link           = shmem_link,
3912         .unlink         = shmem_unlink,
3913         .symlink        = shmem_symlink,
3914         .mkdir          = shmem_mkdir,
3915         .rmdir          = shmem_rmdir,
3916         .mknod          = shmem_mknod,
3917         .rename         = shmem_rename2,
3918         .tmpfile        = shmem_tmpfile,
3919 #endif
3920 #ifdef CONFIG_TMPFS_XATTR
3921         .listxattr      = shmem_listxattr,
3922         .fileattr_get   = shmem_fileattr_get,
3923         .fileattr_set   = shmem_fileattr_set,
3924 #endif
3925 #ifdef CONFIG_TMPFS_POSIX_ACL
3926         .setattr        = shmem_setattr,
3927         .set_acl        = simple_set_acl,
3928 #endif
3929 };
3930
3931 static const struct inode_operations shmem_special_inode_operations = {
3932         .getattr        = shmem_getattr,
3933 #ifdef CONFIG_TMPFS_XATTR
3934         .listxattr      = shmem_listxattr,
3935 #endif
3936 #ifdef CONFIG_TMPFS_POSIX_ACL
3937         .setattr        = shmem_setattr,
3938         .set_acl        = simple_set_acl,
3939 #endif
3940 };
3941
3942 static const struct super_operations shmem_ops = {
3943         .alloc_inode    = shmem_alloc_inode,
3944         .free_inode     = shmem_free_in_core_inode,
3945         .destroy_inode  = shmem_destroy_inode,
3946 #ifdef CONFIG_TMPFS
3947         .statfs         = shmem_statfs,
3948         .show_options   = shmem_show_options,
3949 #endif
3950         .evict_inode    = shmem_evict_inode,
3951         .drop_inode     = generic_delete_inode,
3952         .put_super      = shmem_put_super,
3953 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3954         .nr_cached_objects      = shmem_unused_huge_count,
3955         .free_cached_objects    = shmem_unused_huge_scan,
3956 #endif
3957 };
3958
3959 static const struct vm_operations_struct shmem_vm_ops = {
3960         .fault          = shmem_fault,
3961         .map_pages      = filemap_map_pages,
3962 #ifdef CONFIG_NUMA
3963         .set_policy     = shmem_set_policy,
3964         .get_policy     = shmem_get_policy,
3965 #endif
3966 };
3967
3968 int shmem_init_fs_context(struct fs_context *fc)
3969 {
3970         struct shmem_options *ctx;
3971
3972         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3973         if (!ctx)
3974                 return -ENOMEM;
3975
3976         ctx->mode = 0777 | S_ISVTX;
3977         ctx->uid = current_fsuid();
3978         ctx->gid = current_fsgid();
3979
3980         fc->fs_private = ctx;
3981         fc->ops = &shmem_fs_context_ops;
3982         return 0;
3983 }
3984
3985 static struct file_system_type shmem_fs_type = {
3986         .owner          = THIS_MODULE,
3987         .name           = "tmpfs",
3988         .init_fs_context = shmem_init_fs_context,
3989 #ifdef CONFIG_TMPFS
3990         .parameters     = shmem_fs_parameters,
3991 #endif
3992         .kill_sb        = kill_litter_super,
3993         .fs_flags       = FS_USERNS_MOUNT,
3994 };
3995
3996 void __init shmem_init(void)
3997 {
3998         int error;
3999
4000         shmem_init_inodecache();
4001
4002         error = register_filesystem(&shmem_fs_type);
4003         if (error) {
4004                 pr_err("Could not register tmpfs\n");
4005                 goto out2;
4006         }
4007
4008         shm_mnt = kern_mount(&shmem_fs_type);
4009         if (IS_ERR(shm_mnt)) {
4010                 error = PTR_ERR(shm_mnt);
4011                 pr_err("Could not kern_mount tmpfs\n");
4012                 goto out1;
4013         }
4014
4015 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4016         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4017                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4018         else
4019                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4020 #endif
4021         return;
4022
4023 out1:
4024         unregister_filesystem(&shmem_fs_type);
4025 out2:
4026         shmem_destroy_inodecache();
4027         shm_mnt = ERR_PTR(error);
4028 }
4029
4030 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4031 static ssize_t shmem_enabled_show(struct kobject *kobj,
4032                                   struct kobj_attribute *attr, char *buf)
4033 {
4034         static const int values[] = {
4035                 SHMEM_HUGE_ALWAYS,
4036                 SHMEM_HUGE_WITHIN_SIZE,
4037                 SHMEM_HUGE_ADVISE,
4038                 SHMEM_HUGE_NEVER,
4039                 SHMEM_HUGE_DENY,
4040                 SHMEM_HUGE_FORCE,
4041         };
4042         int len = 0;
4043         int i;
4044
4045         for (i = 0; i < ARRAY_SIZE(values); i++) {
4046                 len += sysfs_emit_at(buf, len,
4047                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4048                                      i ? " " : "",
4049                                      shmem_format_huge(values[i]));
4050         }
4051
4052         len += sysfs_emit_at(buf, len, "\n");
4053
4054         return len;
4055 }
4056
4057 static ssize_t shmem_enabled_store(struct kobject *kobj,
4058                 struct kobj_attribute *attr, const char *buf, size_t count)
4059 {
4060         char tmp[16];
4061         int huge;
4062
4063         if (count + 1 > sizeof(tmp))
4064                 return -EINVAL;
4065         memcpy(tmp, buf, count);
4066         tmp[count] = '\0';
4067         if (count && tmp[count - 1] == '\n')
4068                 tmp[count - 1] = '\0';
4069
4070         huge = shmem_parse_huge(tmp);
4071         if (huge == -EINVAL)
4072                 return -EINVAL;
4073         if (!has_transparent_hugepage() &&
4074                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4075                 return -EINVAL;
4076
4077         shmem_huge = huge;
4078         if (shmem_huge > SHMEM_HUGE_DENY)
4079                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4080         return count;
4081 }
4082
4083 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4084 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4085
4086 #else /* !CONFIG_SHMEM */
4087
4088 /*
4089  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4090  *
4091  * This is intended for small system where the benefits of the full
4092  * shmem code (swap-backed and resource-limited) are outweighed by
4093  * their complexity. On systems without swap this code should be
4094  * effectively equivalent, but much lighter weight.
4095  */
4096
4097 static struct file_system_type shmem_fs_type = {
4098         .name           = "tmpfs",
4099         .init_fs_context = ramfs_init_fs_context,
4100         .parameters     = ramfs_fs_parameters,
4101         .kill_sb        = kill_litter_super,
4102         .fs_flags       = FS_USERNS_MOUNT,
4103 };
4104
4105 void __init shmem_init(void)
4106 {
4107         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4108
4109         shm_mnt = kern_mount(&shmem_fs_type);
4110         BUG_ON(IS_ERR(shm_mnt));
4111 }
4112
4113 int shmem_unuse(unsigned int type)
4114 {
4115         return 0;
4116 }
4117
4118 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4119 {
4120         return 0;
4121 }
4122
4123 void shmem_unlock_mapping(struct address_space *mapping)
4124 {
4125 }
4126
4127 #ifdef CONFIG_MMU
4128 unsigned long shmem_get_unmapped_area(struct file *file,
4129                                       unsigned long addr, unsigned long len,
4130                                       unsigned long pgoff, unsigned long flags)
4131 {
4132         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4133 }
4134 #endif
4135
4136 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4137 {
4138         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4139 }
4140 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4141
4142 #define shmem_vm_ops                            generic_file_vm_ops
4143 #define shmem_file_operations                   ramfs_file_operations
4144 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4145 #define shmem_acct_size(flags, size)            0
4146 #define shmem_unacct_size(flags, size)          do {} while (0)
4147
4148 #endif /* CONFIG_SHMEM */
4149
4150 /* common code */
4151
4152 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4153                                        unsigned long flags, unsigned int i_flags)
4154 {
4155         struct inode *inode;
4156         struct file *res;
4157
4158         if (IS_ERR(mnt))
4159                 return ERR_CAST(mnt);
4160
4161         if (size < 0 || size > MAX_LFS_FILESIZE)
4162                 return ERR_PTR(-EINVAL);
4163
4164         if (shmem_acct_size(flags, size))
4165                 return ERR_PTR(-ENOMEM);
4166
4167         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4168                                 flags);
4169         if (unlikely(!inode)) {
4170                 shmem_unacct_size(flags, size);
4171                 return ERR_PTR(-ENOSPC);
4172         }
4173         inode->i_flags |= i_flags;
4174         inode->i_size = size;
4175         clear_nlink(inode);     /* It is unlinked */
4176         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4177         if (!IS_ERR(res))
4178                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4179                                 &shmem_file_operations);
4180         if (IS_ERR(res))
4181                 iput(inode);
4182         return res;
4183 }
4184
4185 /**
4186  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4187  *      kernel internal.  There will be NO LSM permission checks against the
4188  *      underlying inode.  So users of this interface must do LSM checks at a
4189  *      higher layer.  The users are the big_key and shm implementations.  LSM
4190  *      checks are provided at the key or shm level rather than the inode.
4191  * @name: name for dentry (to be seen in /proc/<pid>/maps
4192  * @size: size to be set for the file
4193  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4194  */
4195 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4196 {
4197         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4198 }
4199
4200 /**
4201  * shmem_file_setup - get an unlinked file living in tmpfs
4202  * @name: name for dentry (to be seen in /proc/<pid>/maps
4203  * @size: size to be set for the file
4204  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4205  */
4206 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4207 {
4208         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4209 }
4210 EXPORT_SYMBOL_GPL(shmem_file_setup);
4211
4212 /**
4213  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4214  * @mnt: the tmpfs mount where the file will be created
4215  * @name: name for dentry (to be seen in /proc/<pid>/maps
4216  * @size: size to be set for the file
4217  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4218  */
4219 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4220                                        loff_t size, unsigned long flags)
4221 {
4222         return __shmem_file_setup(mnt, name, size, flags, 0);
4223 }
4224 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4225
4226 /**
4227  * shmem_zero_setup - setup a shared anonymous mapping
4228  * @vma: the vma to be mmapped is prepared by do_mmap
4229  */
4230 int shmem_zero_setup(struct vm_area_struct *vma)
4231 {
4232         struct file *file;
4233         loff_t size = vma->vm_end - vma->vm_start;
4234
4235         /*
4236          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4237          * between XFS directory reading and selinux: since this file is only
4238          * accessible to the user through its mapping, use S_PRIVATE flag to
4239          * bypass file security, in the same way as shmem_kernel_file_setup().
4240          */
4241         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4242         if (IS_ERR(file))
4243                 return PTR_ERR(file);
4244
4245         if (vma->vm_file)
4246                 fput(vma->vm_file);
4247         vma->vm_file = file;
4248         vma->vm_ops = &shmem_vm_ops;
4249
4250         return 0;
4251 }
4252
4253 /**
4254  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4255  * @mapping:    the page's address_space
4256  * @index:      the page index
4257  * @gfp:        the page allocator flags to use if allocating
4258  *
4259  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4260  * with any new page allocations done using the specified allocation flags.
4261  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4262  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4263  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4264  *
4265  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4266  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4267  */
4268 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4269                                          pgoff_t index, gfp_t gfp)
4270 {
4271 #ifdef CONFIG_SHMEM
4272         struct inode *inode = mapping->host;
4273         struct page *page;
4274         int error;
4275
4276         BUG_ON(!shmem_mapping(mapping));
4277         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4278                                   gfp, NULL, NULL, NULL);
4279         if (error)
4280                 return ERR_PTR(error);
4281
4282         unlock_page(page);
4283         if (PageHWPoison(page)) {
4284                 put_page(page);
4285                 return ERR_PTR(-EIO);
4286         }
4287
4288         return page;
4289 #else
4290         /*
4291          * The tiny !SHMEM case uses ramfs without swap
4292          */
4293         return read_cache_page_gfp(mapping, index, gfp);
4294 #endif
4295 }
4296 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);