Merge tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / page_ext.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 #include <linux/page_table_check.h>
12 #include <linux/rcupdate.h>
13 #include <linux/pgalloc_tag.h>
14
15 /*
16  * struct page extension
17  *
18  * This is the feature to manage memory for extended data per page.
19  *
20  * Until now, we must modify struct page itself to store extra data per page.
21  * This requires rebuilding the kernel and it is really time consuming process.
22  * And, sometimes, rebuild is impossible due to third party module dependency.
23  * At last, enlarging struct page could cause un-wanted system behaviour change.
24  *
25  * This feature is intended to overcome above mentioned problems. This feature
26  * allocates memory for extended data per page in certain place rather than
27  * the struct page itself. This memory can be accessed by the accessor
28  * functions provided by this code. During the boot process, it checks whether
29  * allocation of huge chunk of memory is needed or not. If not, it avoids
30  * allocating memory at all. With this advantage, we can include this feature
31  * into the kernel in default and can avoid rebuild and solve related problems.
32  *
33  * To help these things to work well, there are two callbacks for clients. One
34  * is the need callback which is mandatory if user wants to avoid useless
35  * memory allocation at boot-time. The other is optional, init callback, which
36  * is used to do proper initialization after memory is allocated.
37  *
38  * The need callback is used to decide whether extended memory allocation is
39  * needed or not. Sometimes users want to deactivate some features in this
40  * boot and extra memory would be unnecessary. In this case, to avoid
41  * allocating huge chunk of memory, each clients represent their need of
42  * extra memory through the need callback. If one of the need callbacks
43  * returns true, it means that someone needs extra memory so that
44  * page extension core should allocates memory for page extension. If
45  * none of need callbacks return true, memory isn't needed at all in this boot
46  * and page extension core can skip to allocate memory. As result,
47  * none of memory is wasted.
48  *
49  * When need callback returns true, page_ext checks if there is a request for
50  * extra memory through size in struct page_ext_operations. If it is non-zero,
51  * extra space is allocated for each page_ext entry and offset is returned to
52  * user through offset in struct page_ext_operations.
53  *
54  * The init callback is used to do proper initialization after page extension
55  * is completely initialized. In sparse memory system, extra memory is
56  * allocated some time later than memmap is allocated. In other words, lifetime
57  * of memory for page extension isn't same with memmap for struct page.
58  * Therefore, clients can't store extra data until page extension is
59  * initialized, even if pages are allocated and used freely. This could
60  * cause inadequate state of extra data per page, so, to prevent it, client
61  * can utilize this callback to initialize the state of it correctly.
62  */
63
64 #ifdef CONFIG_SPARSEMEM
65 #define PAGE_EXT_INVALID       (0x1)
66 #endif
67
68 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
69 static bool need_page_idle(void)
70 {
71         return true;
72 }
73 static struct page_ext_operations page_idle_ops __initdata = {
74         .need = need_page_idle,
75         .need_shared_flags = true,
76 };
77 #endif
78
79 static struct page_ext_operations *page_ext_ops[] __initdata = {
80 #ifdef CONFIG_PAGE_OWNER
81         &page_owner_ops,
82 #endif
83 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
84         &page_idle_ops,
85 #endif
86 #ifdef CONFIG_MEM_ALLOC_PROFILING
87         &page_alloc_tagging_ops,
88 #endif
89 #ifdef CONFIG_PAGE_TABLE_CHECK
90         &page_table_check_ops,
91 #endif
92 };
93
94 unsigned long page_ext_size;
95
96 static unsigned long total_usage;
97
98 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
99 /*
100  * To ensure correct allocation tagging for pages, page_ext should be available
101  * before the first page allocation. Otherwise early task stacks will be
102  * allocated before page_ext initialization and missing tags will be flagged.
103  */
104 bool early_page_ext __meminitdata = true;
105 #else
106 bool early_page_ext __meminitdata;
107 #endif
108 static int __init setup_early_page_ext(char *str)
109 {
110         early_page_ext = true;
111         return 0;
112 }
113 early_param("early_page_ext", setup_early_page_ext);
114
115 static bool __init invoke_need_callbacks(void)
116 {
117         int i;
118         int entries = ARRAY_SIZE(page_ext_ops);
119         bool need = false;
120
121         for (i = 0; i < entries; i++) {
122                 if (page_ext_ops[i]->need()) {
123                         if (page_ext_ops[i]->need_shared_flags) {
124                                 page_ext_size = sizeof(struct page_ext);
125                                 break;
126                         }
127                 }
128         }
129
130         for (i = 0; i < entries; i++) {
131                 if (page_ext_ops[i]->need()) {
132                         page_ext_ops[i]->offset = page_ext_size;
133                         page_ext_size += page_ext_ops[i]->size;
134                         need = true;
135                 }
136         }
137
138         return need;
139 }
140
141 static void __init invoke_init_callbacks(void)
142 {
143         int i;
144         int entries = ARRAY_SIZE(page_ext_ops);
145
146         for (i = 0; i < entries; i++) {
147                 if (page_ext_ops[i]->init)
148                         page_ext_ops[i]->init();
149         }
150 }
151
152 static inline struct page_ext *get_entry(void *base, unsigned long index)
153 {
154         return base + page_ext_size * index;
155 }
156
157 #ifndef CONFIG_SPARSEMEM
158 void __init page_ext_init_flatmem_late(void)
159 {
160         invoke_init_callbacks();
161 }
162
163 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
164 {
165         pgdat->node_page_ext = NULL;
166 }
167
168 static struct page_ext *lookup_page_ext(const struct page *page)
169 {
170         unsigned long pfn = page_to_pfn(page);
171         unsigned long index;
172         struct page_ext *base;
173
174         WARN_ON_ONCE(!rcu_read_lock_held());
175         base = NODE_DATA(page_to_nid(page))->node_page_ext;
176         /*
177          * The sanity checks the page allocator does upon freeing a
178          * page can reach here before the page_ext arrays are
179          * allocated when feeding a range of pages to the allocator
180          * for the first time during bootup or memory hotplug.
181          */
182         if (unlikely(!base))
183                 return NULL;
184         index = pfn - round_down(node_start_pfn(page_to_nid(page)),
185                                         MAX_ORDER_NR_PAGES);
186         return get_entry(base, index);
187 }
188
189 static int __init alloc_node_page_ext(int nid)
190 {
191         struct page_ext *base;
192         unsigned long table_size;
193         unsigned long nr_pages;
194
195         nr_pages = NODE_DATA(nid)->node_spanned_pages;
196         if (!nr_pages)
197                 return 0;
198
199         /*
200          * Need extra space if node range is not aligned with
201          * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
202          * checks buddy's status, range could be out of exact node range.
203          */
204         if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
205                 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
206                 nr_pages += MAX_ORDER_NR_PAGES;
207
208         table_size = page_ext_size * nr_pages;
209
210         base = memblock_alloc_try_nid(
211                         table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
212                         MEMBLOCK_ALLOC_ACCESSIBLE, nid);
213         if (!base)
214                 return -ENOMEM;
215         NODE_DATA(nid)->node_page_ext = base;
216         total_usage += table_size;
217         memmap_boot_pages_add(DIV_ROUND_UP(table_size, PAGE_SIZE));
218         return 0;
219 }
220
221 void __init page_ext_init_flatmem(void)
222 {
223
224         int nid, fail;
225
226         if (!invoke_need_callbacks())
227                 return;
228
229         for_each_online_node(nid)  {
230                 fail = alloc_node_page_ext(nid);
231                 if (fail)
232                         goto fail;
233         }
234         pr_info("allocated %ld bytes of page_ext\n", total_usage);
235         return;
236
237 fail:
238         pr_crit("allocation of page_ext failed.\n");
239         panic("Out of memory");
240 }
241
242 #else /* CONFIG_SPARSEMEM */
243 static bool page_ext_invalid(struct page_ext *page_ext)
244 {
245         return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
246 }
247
248 static struct page_ext *lookup_page_ext(const struct page *page)
249 {
250         unsigned long pfn = page_to_pfn(page);
251         struct mem_section *section = __pfn_to_section(pfn);
252         struct page_ext *page_ext = READ_ONCE(section->page_ext);
253
254         WARN_ON_ONCE(!rcu_read_lock_held());
255         /*
256          * The sanity checks the page allocator does upon freeing a
257          * page can reach here before the page_ext arrays are
258          * allocated when feeding a range of pages to the allocator
259          * for the first time during bootup or memory hotplug.
260          */
261         if (page_ext_invalid(page_ext))
262                 return NULL;
263         return get_entry(page_ext, pfn);
264 }
265
266 static void *__meminit alloc_page_ext(size_t size, int nid)
267 {
268         gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
269         void *addr = NULL;
270
271         addr = alloc_pages_exact_nid(nid, size, flags);
272         if (addr)
273                 kmemleak_alloc(addr, size, 1, flags);
274         else
275                 addr = vzalloc_node(size, nid);
276
277         if (addr)
278                 memmap_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
279
280         return addr;
281 }
282
283 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
284 {
285         struct mem_section *section;
286         struct page_ext *base;
287         unsigned long table_size;
288
289         section = __pfn_to_section(pfn);
290
291         if (section->page_ext)
292                 return 0;
293
294         table_size = page_ext_size * PAGES_PER_SECTION;
295         base = alloc_page_ext(table_size, nid);
296
297         /*
298          * The value stored in section->page_ext is (base - pfn)
299          * and it does not point to the memory block allocated above,
300          * causing kmemleak false positives.
301          */
302         kmemleak_not_leak(base);
303
304         if (!base) {
305                 pr_err("page ext allocation failure\n");
306                 return -ENOMEM;
307         }
308
309         /*
310          * The passed "pfn" may not be aligned to SECTION.  For the calculation
311          * we need to apply a mask.
312          */
313         pfn &= PAGE_SECTION_MASK;
314         section->page_ext = (void *)base - page_ext_size * pfn;
315         total_usage += table_size;
316         return 0;
317 }
318
319 static void free_page_ext(void *addr)
320 {
321         size_t table_size;
322         struct page *page;
323
324         table_size = page_ext_size * PAGES_PER_SECTION;
325         memmap_pages_add(-1L * (DIV_ROUND_UP(table_size, PAGE_SIZE)));
326
327         if (is_vmalloc_addr(addr)) {
328                 vfree(addr);
329         } else {
330                 page = virt_to_page(addr);
331                 BUG_ON(PageReserved(page));
332                 kmemleak_free(addr);
333                 free_pages_exact(addr, table_size);
334         }
335 }
336
337 static void __free_page_ext(unsigned long pfn)
338 {
339         struct mem_section *ms;
340         struct page_ext *base;
341
342         ms = __pfn_to_section(pfn);
343         if (!ms || !ms->page_ext)
344                 return;
345
346         base = READ_ONCE(ms->page_ext);
347         /*
348          * page_ext here can be valid while doing the roll back
349          * operation in online_page_ext().
350          */
351         if (page_ext_invalid(base))
352                 base = (void *)base - PAGE_EXT_INVALID;
353         WRITE_ONCE(ms->page_ext, NULL);
354
355         base = get_entry(base, pfn);
356         free_page_ext(base);
357 }
358
359 static void __invalidate_page_ext(unsigned long pfn)
360 {
361         struct mem_section *ms;
362         void *val;
363
364         ms = __pfn_to_section(pfn);
365         if (!ms || !ms->page_ext)
366                 return;
367         val = (void *)ms->page_ext + PAGE_EXT_INVALID;
368         WRITE_ONCE(ms->page_ext, val);
369 }
370
371 static int __meminit online_page_ext(unsigned long start_pfn,
372                                 unsigned long nr_pages,
373                                 int nid)
374 {
375         unsigned long start, end, pfn;
376         int fail = 0;
377
378         start = SECTION_ALIGN_DOWN(start_pfn);
379         end = SECTION_ALIGN_UP(start_pfn + nr_pages);
380
381         if (nid == NUMA_NO_NODE) {
382                 /*
383                  * In this case, "nid" already exists and contains valid memory.
384                  * "start_pfn" passed to us is a pfn which is an arg for
385                  * online__pages(), and start_pfn should exist.
386                  */
387                 nid = pfn_to_nid(start_pfn);
388                 VM_BUG_ON(!node_online(nid));
389         }
390
391         for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
392                 fail = init_section_page_ext(pfn, nid);
393         if (!fail)
394                 return 0;
395
396         /* rollback */
397         end = pfn - PAGES_PER_SECTION;
398         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
399                 __free_page_ext(pfn);
400
401         return -ENOMEM;
402 }
403
404 static void __meminit offline_page_ext(unsigned long start_pfn,
405                                 unsigned long nr_pages)
406 {
407         unsigned long start, end, pfn;
408
409         start = SECTION_ALIGN_DOWN(start_pfn);
410         end = SECTION_ALIGN_UP(start_pfn + nr_pages);
411
412         /*
413          * Freeing of page_ext is done in 3 steps to avoid
414          * use-after-free of it:
415          * 1) Traverse all the sections and mark their page_ext
416          *    as invalid.
417          * 2) Wait for all the existing users of page_ext who
418          *    started before invalidation to finish.
419          * 3) Free the page_ext.
420          */
421         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
422                 __invalidate_page_ext(pfn);
423
424         synchronize_rcu();
425
426         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
427                 __free_page_ext(pfn);
428 }
429
430 static int __meminit page_ext_callback(struct notifier_block *self,
431                                unsigned long action, void *arg)
432 {
433         struct memory_notify *mn = arg;
434         int ret = 0;
435
436         switch (action) {
437         case MEM_GOING_ONLINE:
438                 ret = online_page_ext(mn->start_pfn,
439                                    mn->nr_pages, mn->status_change_nid);
440                 break;
441         case MEM_OFFLINE:
442                 offline_page_ext(mn->start_pfn,
443                                 mn->nr_pages);
444                 break;
445         case MEM_CANCEL_ONLINE:
446                 offline_page_ext(mn->start_pfn,
447                                 mn->nr_pages);
448                 break;
449         case MEM_GOING_OFFLINE:
450                 break;
451         case MEM_ONLINE:
452         case MEM_CANCEL_OFFLINE:
453                 break;
454         }
455
456         return notifier_from_errno(ret);
457 }
458
459 void __init page_ext_init(void)
460 {
461         unsigned long pfn;
462         int nid;
463
464         if (!invoke_need_callbacks())
465                 return;
466
467         for_each_node_state(nid, N_MEMORY) {
468                 unsigned long start_pfn, end_pfn;
469
470                 start_pfn = node_start_pfn(nid);
471                 end_pfn = node_end_pfn(nid);
472                 /*
473                  * start_pfn and end_pfn may not be aligned to SECTION and the
474                  * page->flags of out of node pages are not initialized.  So we
475                  * scan [start_pfn, the biggest section's pfn < end_pfn) here.
476                  */
477                 for (pfn = start_pfn; pfn < end_pfn;
478                         pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
479
480                         if (!pfn_valid(pfn))
481                                 continue;
482                         /*
483                          * Nodes's pfns can be overlapping.
484                          * We know some arch can have a nodes layout such as
485                          * -------------pfn-------------->
486                          * N0 | N1 | N2 | N0 | N1 | N2|....
487                          */
488                         if (pfn_to_nid(pfn) != nid)
489                                 continue;
490                         if (init_section_page_ext(pfn, nid))
491                                 goto oom;
492                         cond_resched();
493                 }
494         }
495         hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI);
496         pr_info("allocated %ld bytes of page_ext\n", total_usage);
497         invoke_init_callbacks();
498         return;
499
500 oom:
501         panic("Out of memory");
502 }
503
504 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
505 {
506 }
507
508 #endif
509
510 /**
511  * page_ext_get() - Get the extended information for a page.
512  * @page: The page we're interested in.
513  *
514  * Ensures that the page_ext will remain valid until page_ext_put()
515  * is called.
516  *
517  * Return: NULL if no page_ext exists for this page.
518  * Context: Any context.  Caller may not sleep until they have called
519  * page_ext_put().
520  */
521 struct page_ext *page_ext_get(const struct page *page)
522 {
523         struct page_ext *page_ext;
524
525         rcu_read_lock();
526         page_ext = lookup_page_ext(page);
527         if (!page_ext) {
528                 rcu_read_unlock();
529                 return NULL;
530         }
531
532         return page_ext;
533 }
534
535 /**
536  * page_ext_put() - Working with page extended information is done.
537  * @page_ext: Page extended information received from page_ext_get().
538  *
539  * The page extended information of the page may not be valid after this
540  * function is called.
541  *
542  * Return: None.
543  * Context: Any context with corresponding page_ext_get() is called.
544  */
545 void page_ext_put(struct page_ext *page_ext)
546 {
547         if (unlikely(!page_ext))
548                 return;
549
550         rcu_read_unlock();
551 }