1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
8 * Contains functions related to writing back dirty pages at the
11 * 10Apr2002 Andrew Morton
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
47 * Sleep at most 200ms at a time in balance_dirty_pages().
49 #define MAX_PAUSE max(HZ/5, 1)
52 * Try to keep balance_dirty_pages() call intervals higher than this many pages
53 * by raising pause time to max_pause when falls below it.
55 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
58 * Estimate write bandwidth or update dirty limit at 200ms intervals.
60 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
62 #define RATELIMIT_CALC_SHIFT 10
65 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
66 * will look to see if it needs to force writeback or throttling.
68 static long ratelimit_pages = 32;
70 /* The following parameters are exported via /proc/sys/vm */
73 * Start background writeback (via writeback threads) at this percentage
75 static int dirty_background_ratio = 10;
78 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
79 * dirty_background_ratio * the amount of dirtyable memory
81 static unsigned long dirty_background_bytes;
84 * free highmem will not be subtracted from the total free memory
85 * for calculating free ratios if vm_highmem_is_dirtyable is true
87 static int vm_highmem_is_dirtyable;
90 * The generator of dirty data starts writeback at this percentage
92 static int vm_dirty_ratio = 20;
95 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
96 * vm_dirty_ratio * the amount of dirtyable memory
98 static unsigned long vm_dirty_bytes;
101 * The interval between `kupdate'-style writebacks
103 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
105 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
108 * The longest time for which data is allowed to remain dirty
110 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
113 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114 * a full sync is triggered after this time elapses without any disk activity.
118 EXPORT_SYMBOL(laptop_mode);
120 /* End of sysctl-exported parameters */
122 struct wb_domain global_wb_domain;
125 * Length of period for aging writeout fractions of bdis. This is an
126 * arbitrarily chosen number. The longer the period, the slower fractions will
127 * reflect changes in current writeout rate.
129 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
131 #ifdef CONFIG_CGROUP_WRITEBACK
133 #define GDTC_INIT(__wb) .wb = (__wb), \
134 .dom = &global_wb_domain, \
135 .wb_completions = &(__wb)->completions
137 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
139 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
140 .dom = mem_cgroup_wb_domain(__wb), \
141 .wb_completions = &(__wb)->memcg_completions, \
144 static bool mdtc_valid(struct dirty_throttle_control *dtc)
149 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
154 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
159 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
161 return &wb->memcg_completions;
164 static void wb_min_max_ratio(struct bdi_writeback *wb,
165 unsigned long *minp, unsigned long *maxp)
167 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
168 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
169 unsigned long long min = wb->bdi->min_ratio;
170 unsigned long long max = wb->bdi->max_ratio;
173 * @wb may already be clean by the time control reaches here and
174 * the total may not include its bw.
176 if (this_bw < tot_bw) {
179 min = div64_ul(min, tot_bw);
181 if (max < 100 * BDI_RATIO_SCALE) {
183 max = div64_ul(max, tot_bw);
191 #else /* CONFIG_CGROUP_WRITEBACK */
193 #define GDTC_INIT(__wb) .wb = (__wb), \
194 .wb_completions = &(__wb)->completions
195 #define GDTC_INIT_NO_WB
196 #define MDTC_INIT(__wb, __gdtc)
198 static bool mdtc_valid(struct dirty_throttle_control *dtc)
203 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
205 return &global_wb_domain;
208 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
213 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
218 static void wb_min_max_ratio(struct bdi_writeback *wb,
219 unsigned long *minp, unsigned long *maxp)
221 *minp = wb->bdi->min_ratio;
222 *maxp = wb->bdi->max_ratio;
225 #endif /* CONFIG_CGROUP_WRITEBACK */
228 * In a memory zone, there is a certain amount of pages we consider
229 * available for the page cache, which is essentially the number of
230 * free and reclaimable pages, minus some zone reserves to protect
231 * lowmem and the ability to uphold the zone's watermarks without
232 * requiring writeback.
234 * This number of dirtyable pages is the base value of which the
235 * user-configurable dirty ratio is the effective number of pages that
236 * are allowed to be actually dirtied. Per individual zone, or
237 * globally by using the sum of dirtyable pages over all zones.
239 * Because the user is allowed to specify the dirty limit globally as
240 * absolute number of bytes, calculating the per-zone dirty limit can
241 * require translating the configured limit into a percentage of
242 * global dirtyable memory first.
246 * node_dirtyable_memory - number of dirtyable pages in a node
249 * Return: the node's number of pages potentially available for dirty
250 * page cache. This is the base value for the per-node dirty limits.
252 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
254 unsigned long nr_pages = 0;
257 for (z = 0; z < MAX_NR_ZONES; z++) {
258 struct zone *zone = pgdat->node_zones + z;
260 if (!populated_zone(zone))
263 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
267 * Pages reserved for the kernel should not be considered
268 * dirtyable, to prevent a situation where reclaim has to
269 * clean pages in order to balance the zones.
271 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
273 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
274 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
279 static unsigned long highmem_dirtyable_memory(unsigned long total)
281 #ifdef CONFIG_HIGHMEM
286 for_each_node_state(node, N_HIGH_MEMORY) {
287 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
289 unsigned long nr_pages;
291 if (!is_highmem_idx(i))
294 z = &NODE_DATA(node)->node_zones[i];
295 if (!populated_zone(z))
298 nr_pages = zone_page_state(z, NR_FREE_PAGES);
299 /* watch for underflows */
300 nr_pages -= min(nr_pages, high_wmark_pages(z));
301 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
302 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
308 * Make sure that the number of highmem pages is never larger
309 * than the number of the total dirtyable memory. This can only
310 * occur in very strange VM situations but we want to make sure
311 * that this does not occur.
313 return min(x, total);
320 * global_dirtyable_memory - number of globally dirtyable pages
322 * Return: the global number of pages potentially available for dirty
323 * page cache. This is the base value for the global dirty limits.
325 static unsigned long global_dirtyable_memory(void)
329 x = global_zone_page_state(NR_FREE_PAGES);
331 * Pages reserved for the kernel should not be considered
332 * dirtyable, to prevent a situation where reclaim has to
333 * clean pages in order to balance the zones.
335 x -= min(x, totalreserve_pages);
337 x += global_node_page_state(NR_INACTIVE_FILE);
338 x += global_node_page_state(NR_ACTIVE_FILE);
340 if (!vm_highmem_is_dirtyable)
341 x -= highmem_dirtyable_memory(x);
343 return x + 1; /* Ensure that we never return 0 */
347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348 * @dtc: dirty_throttle_control of interest
350 * Calculate @dtc->thresh and ->bg_thresh considering
351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
352 * must ensure that @dtc->avail is set before calling this function. The
353 * dirty limits will be lifted by 1/4 for real-time tasks.
355 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
357 const unsigned long available_memory = dtc->avail;
358 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
359 unsigned long bytes = vm_dirty_bytes;
360 unsigned long bg_bytes = dirty_background_bytes;
361 /* convert ratios to per-PAGE_SIZE for higher precision */
362 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
363 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
364 unsigned long thresh;
365 unsigned long bg_thresh;
366 struct task_struct *tsk;
368 /* gdtc is !NULL iff @dtc is for memcg domain */
370 unsigned long global_avail = gdtc->avail;
373 * The byte settings can't be applied directly to memcg
374 * domains. Convert them to ratios by scaling against
375 * globally available memory. As the ratios are in
376 * per-PAGE_SIZE, they can be obtained by dividing bytes by
380 ratio = min(DIV_ROUND_UP(bytes, global_avail),
383 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
385 bytes = bg_bytes = 0;
389 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
391 thresh = (ratio * available_memory) / PAGE_SIZE;
394 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
396 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
399 if (rt_or_dl_task(tsk)) {
400 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
401 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
404 * Dirty throttling logic assumes the limits in page units fit into
405 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
407 if (thresh > UINT_MAX)
409 /* This makes sure bg_thresh is within 32-bits as well */
410 if (bg_thresh >= thresh)
411 bg_thresh = thresh / 2;
412 dtc->thresh = thresh;
413 dtc->bg_thresh = bg_thresh;
415 /* we should eventually report the domain in the TP */
417 trace_global_dirty_state(bg_thresh, thresh);
421 * global_dirty_limits - background-writeback and dirty-throttling thresholds
422 * @pbackground: out parameter for bg_thresh
423 * @pdirty: out parameter for thresh
425 * Calculate bg_thresh and thresh for global_wb_domain. See
426 * domain_dirty_limits() for details.
428 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
430 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
432 gdtc.avail = global_dirtyable_memory();
433 domain_dirty_limits(&gdtc);
435 *pbackground = gdtc.bg_thresh;
436 *pdirty = gdtc.thresh;
440 * node_dirty_limit - maximum number of dirty pages allowed in a node
443 * Return: the maximum number of dirty pages allowed in a node, based
444 * on the node's dirtyable memory.
446 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
448 unsigned long node_memory = node_dirtyable_memory(pgdat);
449 struct task_struct *tsk = current;
453 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
454 node_memory / global_dirtyable_memory();
456 dirty = vm_dirty_ratio * node_memory / 100;
458 if (rt_or_dl_task(tsk))
462 * Dirty throttling logic assumes the limits in page units fit into
463 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
465 return min_t(unsigned long, dirty, UINT_MAX);
469 * node_dirty_ok - tells whether a node is within its dirty limits
470 * @pgdat: the node to check
472 * Return: %true when the dirty pages in @pgdat are within the node's
473 * dirty limit, %false if the limit is exceeded.
475 bool node_dirty_ok(struct pglist_data *pgdat)
477 unsigned long limit = node_dirty_limit(pgdat);
478 unsigned long nr_pages = 0;
480 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
481 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
483 return nr_pages <= limit;
487 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
488 void *buffer, size_t *lenp, loff_t *ppos)
492 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
493 if (ret == 0 && write)
494 dirty_background_bytes = 0;
498 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
499 void *buffer, size_t *lenp, loff_t *ppos)
502 unsigned long old_bytes = dirty_background_bytes;
504 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
505 if (ret == 0 && write) {
506 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
508 dirty_background_bytes = old_bytes;
511 dirty_background_ratio = 0;
516 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
517 size_t *lenp, loff_t *ppos)
519 int old_ratio = vm_dirty_ratio;
522 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
523 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
525 writeback_set_ratelimit();
530 static int dirty_bytes_handler(const struct ctl_table *table, int write,
531 void *buffer, size_t *lenp, loff_t *ppos)
533 unsigned long old_bytes = vm_dirty_bytes;
536 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
537 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
538 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
539 vm_dirty_bytes = old_bytes;
542 writeback_set_ratelimit();
549 static unsigned long wp_next_time(unsigned long cur_time)
551 cur_time += VM_COMPLETIONS_PERIOD_LEN;
552 /* 0 has a special meaning... */
558 static void wb_domain_writeout_add(struct wb_domain *dom,
559 struct fprop_local_percpu *completions,
560 unsigned int max_prop_frac, long nr)
562 __fprop_add_percpu_max(&dom->completions, completions,
564 /* First event after period switching was turned off? */
565 if (unlikely(!dom->period_time)) {
567 * We can race with other wb_domain_writeout_add calls here but
568 * it does not cause any harm since the resulting time when
569 * timer will fire and what is in writeout_period_time will be
572 dom->period_time = wp_next_time(jiffies);
573 mod_timer(&dom->period_timer, dom->period_time);
578 * Increment @wb's writeout completion count and the global writeout
579 * completion count. Called from __folio_end_writeback().
581 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
583 struct wb_domain *cgdom;
585 wb_stat_mod(wb, WB_WRITTEN, nr);
586 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
587 wb->bdi->max_prop_frac, nr);
589 cgdom = mem_cgroup_wb_domain(wb);
591 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
592 wb->bdi->max_prop_frac, nr);
595 void wb_writeout_inc(struct bdi_writeback *wb)
599 local_irq_save(flags);
600 __wb_writeout_add(wb, 1);
601 local_irq_restore(flags);
603 EXPORT_SYMBOL_GPL(wb_writeout_inc);
606 * On idle system, we can be called long after we scheduled because we use
607 * deferred timers so count with missed periods.
609 static void writeout_period(struct timer_list *t)
611 struct wb_domain *dom = timer_container_of(dom, t, period_timer);
612 int miss_periods = (jiffies - dom->period_time) /
613 VM_COMPLETIONS_PERIOD_LEN;
615 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
616 dom->period_time = wp_next_time(dom->period_time +
617 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
618 mod_timer(&dom->period_timer, dom->period_time);
621 * Aging has zeroed all fractions. Stop wasting CPU on period
624 dom->period_time = 0;
628 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
630 memset(dom, 0, sizeof(*dom));
632 spin_lock_init(&dom->lock);
634 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
636 dom->dirty_limit_tstamp = jiffies;
638 return fprop_global_init(&dom->completions, gfp);
641 #ifdef CONFIG_CGROUP_WRITEBACK
642 void wb_domain_exit(struct wb_domain *dom)
644 timer_delete_sync(&dom->period_timer);
645 fprop_global_destroy(&dom->completions);
650 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
651 * registered backing devices, which, for obvious reasons, can not
654 static unsigned int bdi_min_ratio;
656 static int bdi_check_pages_limit(unsigned long pages)
658 unsigned long max_dirty_pages = global_dirtyable_memory();
660 if (pages > max_dirty_pages)
666 static unsigned long bdi_ratio_from_pages(unsigned long pages)
668 unsigned long background_thresh;
669 unsigned long dirty_thresh;
672 global_dirty_limits(&background_thresh, &dirty_thresh);
675 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
680 static u64 bdi_get_bytes(unsigned int ratio)
682 unsigned long background_thresh;
683 unsigned long dirty_thresh;
686 global_dirty_limits(&background_thresh, &dirty_thresh);
687 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
692 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
697 if (min_ratio > 100 * BDI_RATIO_SCALE)
700 spin_lock_bh(&bdi_lock);
701 if (min_ratio > bdi->max_ratio) {
704 if (min_ratio < bdi->min_ratio) {
705 delta = bdi->min_ratio - min_ratio;
706 bdi_min_ratio -= delta;
707 bdi->min_ratio = min_ratio;
709 delta = min_ratio - bdi->min_ratio;
710 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
711 bdi_min_ratio += delta;
712 bdi->min_ratio = min_ratio;
718 spin_unlock_bh(&bdi_lock);
723 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
727 if (max_ratio > 100 * BDI_RATIO_SCALE)
730 spin_lock_bh(&bdi_lock);
731 if (bdi->min_ratio > max_ratio) {
734 bdi->max_ratio = max_ratio;
735 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
736 (100 * BDI_RATIO_SCALE);
738 spin_unlock_bh(&bdi_lock);
743 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
745 return __bdi_set_min_ratio(bdi, min_ratio);
748 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
750 return __bdi_set_max_ratio(bdi, max_ratio);
753 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
755 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
758 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
760 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
762 EXPORT_SYMBOL(bdi_set_max_ratio);
764 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
766 return bdi_get_bytes(bdi->min_ratio);
769 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
772 unsigned long pages = min_bytes >> PAGE_SHIFT;
775 ret = bdi_check_pages_limit(pages);
779 min_ratio = bdi_ratio_from_pages(pages);
782 return __bdi_set_min_ratio(bdi, min_ratio);
785 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
787 return bdi_get_bytes(bdi->max_ratio);
790 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
793 unsigned long pages = max_bytes >> PAGE_SHIFT;
796 ret = bdi_check_pages_limit(pages);
800 max_ratio = bdi_ratio_from_pages(pages);
803 return __bdi_set_max_ratio(bdi, max_ratio);
806 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
808 if (strict_limit > 1)
811 spin_lock_bh(&bdi_lock);
813 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
815 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
816 spin_unlock_bh(&bdi_lock);
821 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
822 unsigned long bg_thresh)
824 return (thresh + bg_thresh) / 2;
827 static unsigned long hard_dirty_limit(struct wb_domain *dom,
828 unsigned long thresh)
830 return max(thresh, dom->dirty_limit);
834 * Memory which can be further allocated to a memcg domain is capped by
835 * system-wide clean memory excluding the amount being used in the domain.
837 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
838 unsigned long filepages, unsigned long headroom)
840 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
841 unsigned long clean = filepages - min(filepages, mdtc->dirty);
842 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
843 unsigned long other_clean = global_clean - min(global_clean, clean);
845 mdtc->avail = filepages + min(headroom, other_clean);
848 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
850 return mdtc_gdtc(dtc) == NULL;
854 * Dirty background will ignore pages being written as we're trying to
855 * decide whether to put more under writeback.
857 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
858 bool include_writeback)
860 if (dtc_is_global(dtc)) {
861 dtc->avail = global_dirtyable_memory();
862 dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
863 if (include_writeback)
864 dtc->dirty += global_node_page_state(NR_WRITEBACK);
866 unsigned long filepages = 0, headroom = 0, writeback = 0;
868 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
870 if (include_writeback)
871 dtc->dirty += writeback;
872 mdtc_calc_avail(dtc, filepages, headroom);
877 * __wb_calc_thresh - @wb's share of dirty threshold
878 * @dtc: dirty_throttle_context of interest
879 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
881 * Note that balance_dirty_pages() will only seriously take dirty throttling
882 * threshold as a hard limit when sleeping max_pause per page is not enough
883 * to keep the dirty pages under control. For example, when the device is
884 * completely stalled due to some error conditions, or when there are 1000
885 * dd tasks writing to a slow 10MB/s USB key.
886 * In the other normal situations, it acts more gently by throttling the tasks
887 * more (rather than completely block them) when the wb dirty pages go high.
889 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
890 * - starving fast devices
891 * - piling up dirty pages (that will take long time to sync) on slow devices
893 * The wb's share of dirty limit will be adapting to its throughput and
894 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
896 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
897 * "dirty" in the context of dirty balancing includes all PG_dirty and
898 * PG_writeback pages.
900 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
901 unsigned long thresh)
903 struct wb_domain *dom = dtc_dom(dtc);
904 struct bdi_writeback *wb = dtc->wb;
907 unsigned long numerator, denominator;
908 unsigned long wb_min_ratio, wb_max_ratio;
911 * Calculate this wb's share of the thresh ratio.
913 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
914 &numerator, &denominator);
916 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
917 wb_thresh *= numerator;
918 wb_thresh = div64_ul(wb_thresh, denominator);
920 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
922 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
925 * It's very possible that wb_thresh is close to 0 not because the
926 * device is slow, but that it has remained inactive for long time.
927 * Honour such devices a reasonable good (hopefully IO efficient)
928 * threshold, so that the occasional writes won't be blocked and active
929 * writes can rampup the threshold quickly.
931 if (thresh > dtc->dirty) {
932 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT))
933 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100);
935 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8);
938 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
939 if (wb_thresh > wb_max_thresh)
940 wb_thresh = wb_max_thresh;
945 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
947 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
949 domain_dirty_avail(&gdtc, true);
950 return __wb_calc_thresh(&gdtc, thresh);
953 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
955 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
956 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
958 domain_dirty_avail(&gdtc, true);
959 domain_dirty_avail(&mdtc, true);
960 domain_dirty_limits(&mdtc);
962 return __wb_calc_thresh(&mdtc, mdtc.thresh);
967 * f(dirty) := 1.0 + (----------------)
970 * it's a 3rd order polynomial that subjects to
972 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
973 * (2) f(setpoint) = 1.0 => the balance point
974 * (3) f(limit) = 0 => the hard limit
975 * (4) df/dx <= 0 => negative feedback control
976 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
977 * => fast response on large errors; small oscillation near setpoint
979 static long long pos_ratio_polynom(unsigned long setpoint,
986 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
987 (limit - setpoint) | 1);
989 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
990 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
991 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
993 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
997 * Dirty position control.
999 * (o) global/bdi setpoints
1001 * We want the dirty pages be balanced around the global/wb setpoints.
1002 * When the number of dirty pages is higher/lower than the setpoint, the
1003 * dirty position control ratio (and hence task dirty ratelimit) will be
1004 * decreased/increased to bring the dirty pages back to the setpoint.
1006 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1008 * if (dirty < setpoint) scale up pos_ratio
1009 * if (dirty > setpoint) scale down pos_ratio
1011 * if (wb_dirty < wb_setpoint) scale up pos_ratio
1012 * if (wb_dirty > wb_setpoint) scale down pos_ratio
1014 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1016 * (o) global control line
1020 * | |<===== global dirty control scope ======>|
1028 * 1.0 ................................*
1034 * 0 +------------.------------------.----------------------*------------->
1035 * freerun^ setpoint^ limit^ dirty pages
1037 * (o) wb control line
1045 * | * |<=========== span ============>|
1046 * 1.0 .......................*
1058 * 1/4 ...............................................* * * * * * * * * * * *
1062 * 0 +----------------------.-------------------------------.------------->
1063 * wb_setpoint^ x_intercept^
1065 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1066 * be smoothly throttled down to normal if it starts high in situations like
1067 * - start writing to a slow SD card and a fast disk at the same time. The SD
1068 * card's wb_dirty may rush to many times higher than wb_setpoint.
1069 * - the wb dirty thresh drops quickly due to change of JBOD workload
1071 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1073 struct bdi_writeback *wb = dtc->wb;
1074 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1075 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1076 unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1077 unsigned long wb_thresh = dtc->wb_thresh;
1078 unsigned long x_intercept;
1079 unsigned long setpoint; /* dirty pages' target balance point */
1080 unsigned long wb_setpoint;
1082 long long pos_ratio; /* for scaling up/down the rate limit */
1087 if (unlikely(dtc->dirty >= limit))
1093 * See comment for pos_ratio_polynom().
1095 setpoint = (freerun + limit) / 2;
1096 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1099 * The strictlimit feature is a tool preventing mistrusted filesystems
1100 * from growing a large number of dirty pages before throttling. For
1101 * such filesystems balance_dirty_pages always checks wb counters
1102 * against wb limits. Even if global "nr_dirty" is under "freerun".
1103 * This is especially important for fuse which sets bdi->max_ratio to
1104 * 1% by default. Without strictlimit feature, fuse writeback may
1105 * consume arbitrary amount of RAM because it is accounted in
1106 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1108 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1109 * two values: wb_dirty and wb_thresh. Let's consider an example:
1110 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1111 * limits are set by default to 10% and 20% (background and throttle).
1112 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1113 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1114 * about ~6K pages (as the average of background and throttle wb
1115 * limits). The 3rd order polynomial will provide positive feedback if
1116 * wb_dirty is under wb_setpoint and vice versa.
1118 * Note, that we cannot use global counters in these calculations
1119 * because we want to throttle process writing to a strictlimit wb
1120 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1121 * in the example above).
1123 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1124 long long wb_pos_ratio;
1126 if (dtc->wb_dirty >= wb_thresh)
1129 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1132 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1135 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1139 * Typically, for strictlimit case, wb_setpoint << setpoint
1140 * and pos_ratio >> wb_pos_ratio. In the other words global
1141 * state ("dirty") is not limiting factor and we have to
1142 * make decision based on wb counters. But there is an
1143 * important case when global pos_ratio should get precedence:
1144 * global limits are exceeded (e.g. due to activities on other
1145 * wb's) while given strictlimit wb is below limit.
1147 * "pos_ratio * wb_pos_ratio" would work for the case above,
1148 * but it would look too non-natural for the case of all
1149 * activity in the system coming from a single strictlimit wb
1150 * with bdi->max_ratio == 100%.
1152 * Note that min() below somewhat changes the dynamics of the
1153 * control system. Normally, pos_ratio value can be well over 3
1154 * (when globally we are at freerun and wb is well below wb
1155 * setpoint). Now the maximum pos_ratio in the same situation
1156 * is 2. We might want to tweak this if we observe the control
1157 * system is too slow to adapt.
1159 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1164 * We have computed basic pos_ratio above based on global situation. If
1165 * the wb is over/under its share of dirty pages, we want to scale
1166 * pos_ratio further down/up. That is done by the following mechanism.
1172 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1174 * x_intercept - wb_dirty
1175 * := --------------------------
1176 * x_intercept - wb_setpoint
1178 * The main wb control line is a linear function that subjects to
1180 * (1) f(wb_setpoint) = 1.0
1181 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1182 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1184 * For single wb case, the dirty pages are observed to fluctuate
1185 * regularly within range
1186 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1187 * for various filesystems, where (2) can yield in a reasonable 12.5%
1188 * fluctuation range for pos_ratio.
1190 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1191 * own size, so move the slope over accordingly and choose a slope that
1192 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1194 if (unlikely(wb_thresh > dtc->thresh))
1195 wb_thresh = dtc->thresh;
1197 * scale global setpoint to wb's:
1198 * wb_setpoint = setpoint * wb_thresh / thresh
1200 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1201 wb_setpoint = setpoint * (u64)x >> 16;
1203 * Use span=(8*write_bw) in single wb case as indicated by
1204 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1206 * wb_thresh thresh - wb_thresh
1207 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1210 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1211 x_intercept = wb_setpoint + span;
1213 if (dtc->wb_dirty < x_intercept - span / 4) {
1214 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1215 (x_intercept - wb_setpoint) | 1);
1220 * wb reserve area, safeguard against dirty pool underrun and disk idle
1221 * It may push the desired control point of global dirty pages higher
1224 x_intercept = wb_thresh / 2;
1225 if (dtc->wb_dirty < x_intercept) {
1226 if (dtc->wb_dirty > x_intercept / 8)
1227 pos_ratio = div_u64(pos_ratio * x_intercept,
1233 dtc->pos_ratio = pos_ratio;
1236 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1237 unsigned long elapsed,
1238 unsigned long written)
1240 const unsigned long period = roundup_pow_of_two(3 * HZ);
1241 unsigned long avg = wb->avg_write_bandwidth;
1242 unsigned long old = wb->write_bandwidth;
1246 * bw = written * HZ / elapsed
1248 * bw * elapsed + write_bandwidth * (period - elapsed)
1249 * write_bandwidth = ---------------------------------------------------
1252 * @written may have decreased due to folio_redirty_for_writepage().
1253 * Avoid underflowing @bw calculation.
1255 bw = written - min(written, wb->written_stamp);
1257 if (unlikely(elapsed > period)) {
1258 bw = div64_ul(bw, elapsed);
1262 bw += (u64)wb->write_bandwidth * (period - elapsed);
1263 bw >>= ilog2(period);
1266 * one more level of smoothing, for filtering out sudden spikes
1268 if (avg > old && old >= (unsigned long)bw)
1269 avg -= (avg - old) >> 3;
1271 if (avg < old && old <= (unsigned long)bw)
1272 avg += (old - avg) >> 3;
1275 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1276 avg = max(avg, 1LU);
1277 if (wb_has_dirty_io(wb)) {
1278 long delta = avg - wb->avg_write_bandwidth;
1279 WARN_ON_ONCE(atomic_long_add_return(delta,
1280 &wb->bdi->tot_write_bandwidth) <= 0);
1282 wb->write_bandwidth = bw;
1283 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1286 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1288 struct wb_domain *dom = dtc_dom(dtc);
1289 unsigned long thresh = dtc->thresh;
1290 unsigned long limit = dom->dirty_limit;
1293 * Follow up in one step.
1295 if (limit < thresh) {
1301 * Follow down slowly. Use the higher one as the target, because thresh
1302 * may drop below dirty. This is exactly the reason to introduce
1303 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1305 thresh = max(thresh, dtc->dirty);
1306 if (limit > thresh) {
1307 limit -= (limit - thresh) >> 5;
1312 dom->dirty_limit = limit;
1315 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1318 struct wb_domain *dom = dtc_dom(dtc);
1321 * check locklessly first to optimize away locking for the most time
1323 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1326 spin_lock(&dom->lock);
1327 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1328 update_dirty_limit(dtc);
1329 dom->dirty_limit_tstamp = now;
1331 spin_unlock(&dom->lock);
1335 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1337 * Normal wb tasks will be curbed at or below it in long term.
1338 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1340 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1341 unsigned long dirtied,
1342 unsigned long elapsed)
1344 struct bdi_writeback *wb = dtc->wb;
1345 unsigned long dirty = dtc->dirty;
1346 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1347 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1348 unsigned long setpoint = (freerun + limit) / 2;
1349 unsigned long write_bw = wb->avg_write_bandwidth;
1350 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1351 unsigned long dirty_rate;
1352 unsigned long task_ratelimit;
1353 unsigned long balanced_dirty_ratelimit;
1356 unsigned long shift;
1359 * The dirty rate will match the writeout rate in long term, except
1360 * when dirty pages are truncated by userspace or re-dirtied by FS.
1362 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1365 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1367 task_ratelimit = (u64)dirty_ratelimit *
1368 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1369 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1372 * A linear estimation of the "balanced" throttle rate. The theory is,
1373 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1374 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1375 * formula will yield the balanced rate limit (write_bw / N).
1377 * Note that the expanded form is not a pure rate feedback:
1378 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1379 * but also takes pos_ratio into account:
1380 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1382 * (1) is not realistic because pos_ratio also takes part in balancing
1383 * the dirty rate. Consider the state
1384 * pos_ratio = 0.5 (3)
1385 * rate = 2 * (write_bw / N) (4)
1386 * If (1) is used, it will stuck in that state! Because each dd will
1388 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1390 * dirty_rate = N * task_ratelimit = write_bw (6)
1391 * put (6) into (1) we get
1392 * rate_(i+1) = rate_(i) (7)
1394 * So we end up using (2) to always keep
1395 * rate_(i+1) ~= (write_bw / N) (8)
1396 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1397 * pos_ratio is able to drive itself to 1.0, which is not only where
1398 * the dirty count meet the setpoint, but also where the slope of
1399 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1401 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1404 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1406 if (unlikely(balanced_dirty_ratelimit > write_bw))
1407 balanced_dirty_ratelimit = write_bw;
1410 * We could safely do this and return immediately:
1412 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1414 * However to get a more stable dirty_ratelimit, the below elaborated
1415 * code makes use of task_ratelimit to filter out singular points and
1416 * limit the step size.
1418 * The below code essentially only uses the relative value of
1420 * task_ratelimit - dirty_ratelimit
1421 * = (pos_ratio - 1) * dirty_ratelimit
1423 * which reflects the direction and size of dirty position error.
1427 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1428 * task_ratelimit is on the same side of dirty_ratelimit, too.
1430 * - dirty_ratelimit > balanced_dirty_ratelimit
1431 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1432 * lowering dirty_ratelimit will help meet both the position and rate
1433 * control targets. Otherwise, don't update dirty_ratelimit if it will
1434 * only help meet the rate target. After all, what the users ultimately
1435 * feel and care are stable dirty rate and small position error.
1437 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1438 * and filter out the singular points of balanced_dirty_ratelimit. Which
1439 * keeps jumping around randomly and can even leap far away at times
1440 * due to the small 200ms estimation period of dirty_rate (we want to
1441 * keep that period small to reduce time lags).
1446 * For strictlimit case, calculations above were based on wb counters
1447 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1448 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1449 * Hence, to calculate "step" properly, we have to use wb_dirty as
1450 * "dirty" and wb_setpoint as "setpoint".
1452 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1453 dirty = dtc->wb_dirty;
1454 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1457 if (dirty < setpoint) {
1458 x = min3(wb->balanced_dirty_ratelimit,
1459 balanced_dirty_ratelimit, task_ratelimit);
1460 if (dirty_ratelimit < x)
1461 step = x - dirty_ratelimit;
1463 x = max3(wb->balanced_dirty_ratelimit,
1464 balanced_dirty_ratelimit, task_ratelimit);
1465 if (dirty_ratelimit > x)
1466 step = dirty_ratelimit - x;
1470 * Don't pursue 100% rate matching. It's impossible since the balanced
1471 * rate itself is constantly fluctuating. So decrease the track speed
1472 * when it gets close to the target. Helps eliminate pointless tremors.
1474 shift = dirty_ratelimit / (2 * step + 1);
1475 if (shift < BITS_PER_LONG)
1476 step = DIV_ROUND_UP(step >> shift, 8);
1480 if (dirty_ratelimit < balanced_dirty_ratelimit)
1481 dirty_ratelimit += step;
1483 dirty_ratelimit -= step;
1485 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1486 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1488 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1491 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1492 struct dirty_throttle_control *mdtc,
1493 bool update_ratelimit)
1495 struct bdi_writeback *wb = gdtc->wb;
1496 unsigned long now = jiffies;
1497 unsigned long elapsed;
1498 unsigned long dirtied;
1499 unsigned long written;
1501 spin_lock(&wb->list_lock);
1504 * Lockless checks for elapsed time are racy and delayed update after
1505 * IO completion doesn't do it at all (to make sure written pages are
1506 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1509 elapsed = max(now - wb->bw_time_stamp, 1UL);
1510 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1511 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1513 if (update_ratelimit) {
1514 domain_update_dirty_limit(gdtc, now);
1515 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1518 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1519 * compiler has no way to figure that out. Help it.
1521 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1522 domain_update_dirty_limit(mdtc, now);
1523 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1526 wb_update_write_bandwidth(wb, elapsed, written);
1528 wb->dirtied_stamp = dirtied;
1529 wb->written_stamp = written;
1530 WRITE_ONCE(wb->bw_time_stamp, now);
1531 spin_unlock(&wb->list_lock);
1534 void wb_update_bandwidth(struct bdi_writeback *wb)
1536 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1538 __wb_update_bandwidth(&gdtc, NULL, false);
1541 /* Interval after which we consider wb idle and don't estimate bandwidth */
1542 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1544 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1546 unsigned long now = jiffies;
1547 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1549 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1550 !atomic_read(&wb->writeback_inodes)) {
1551 spin_lock(&wb->list_lock);
1552 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1553 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1554 WRITE_ONCE(wb->bw_time_stamp, now);
1555 spin_unlock(&wb->list_lock);
1560 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1561 * will look to see if it needs to start dirty throttling.
1563 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1564 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1565 * (the number of pages we may dirty without exceeding the dirty limits).
1567 static unsigned long dirty_poll_interval(unsigned long dirty,
1568 unsigned long thresh)
1571 return 1UL << (ilog2(thresh - dirty) >> 1);
1576 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1577 unsigned long wb_dirty)
1579 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1583 * Limit pause time for small memory systems. If sleeping for too long
1584 * time, a small pool of dirty/writeback pages may go empty and disk go
1587 * 8 serves as the safety ratio.
1589 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1592 return min_t(unsigned long, t, MAX_PAUSE);
1595 static long wb_min_pause(struct bdi_writeback *wb,
1597 unsigned long task_ratelimit,
1598 unsigned long dirty_ratelimit,
1599 int *nr_dirtied_pause)
1601 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1602 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1603 long t; /* target pause */
1604 long pause; /* estimated next pause */
1605 int pages; /* target nr_dirtied_pause */
1607 /* target for 10ms pause on 1-dd case */
1608 t = max(1, HZ / 100);
1611 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1614 * (N * 10ms) on 2^N concurrent tasks.
1617 t += (hi - lo) * (10 * HZ) / 1024;
1620 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1621 * on the much more stable dirty_ratelimit. However the next pause time
1622 * will be computed based on task_ratelimit and the two rate limits may
1623 * depart considerably at some time. Especially if task_ratelimit goes
1624 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1625 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1626 * result task_ratelimit won't be executed faithfully, which could
1627 * eventually bring down dirty_ratelimit.
1629 * We apply two rules to fix it up:
1630 * 1) try to estimate the next pause time and if necessary, use a lower
1631 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1632 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1633 * 2) limit the target pause time to max_pause/2, so that the normal
1634 * small fluctuations of task_ratelimit won't trigger rule (1) and
1635 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1637 t = min(t, 1 + max_pause / 2);
1638 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1641 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1642 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1643 * When the 16 consecutive reads are often interrupted by some dirty
1644 * throttling pause during the async writes, cfq will go into idles
1645 * (deadline is fine). So push nr_dirtied_pause as high as possible
1646 * until reaches DIRTY_POLL_THRESH=32 pages.
1648 if (pages < DIRTY_POLL_THRESH) {
1650 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1651 if (pages > DIRTY_POLL_THRESH) {
1652 pages = DIRTY_POLL_THRESH;
1653 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1657 pause = HZ * pages / (task_ratelimit + 1);
1658 if (pause > max_pause) {
1660 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1663 *nr_dirtied_pause = pages;
1665 * The minimal pause time will normally be half the target pause time.
1667 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1670 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1672 struct bdi_writeback *wb = dtc->wb;
1673 unsigned long wb_reclaimable;
1676 * wb_thresh is not treated as some limiting factor as
1677 * dirty_thresh, due to reasons
1678 * - in JBOD setup, wb_thresh can fluctuate a lot
1679 * - in a system with HDD and USB key, the USB key may somehow
1680 * go into state (wb_dirty >> wb_thresh) either because
1681 * wb_dirty starts high, or because wb_thresh drops low.
1682 * In this case we don't want to hard throttle the USB key
1683 * dirtiers for 100 seconds until wb_dirty drops under
1684 * wb_thresh. Instead the auxiliary wb control line in
1685 * wb_position_ratio() will let the dirtier task progress
1686 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1688 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1689 dtc->wb_bg_thresh = dtc->thresh ?
1690 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1693 * In order to avoid the stacked BDI deadlock we need
1694 * to ensure we accurately count the 'dirty' pages when
1695 * the threshold is low.
1697 * Otherwise it would be possible to get thresh+n pages
1698 * reported dirty, even though there are thresh-m pages
1699 * actually dirty; with m+n sitting in the percpu
1702 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1703 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1704 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1706 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1707 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1711 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1714 unsigned long dirty, thresh;
1717 dirty = dtc->wb_dirty;
1718 thresh = dtc->wb_thresh;
1721 thresh = dtc->thresh;
1724 return dirty_poll_interval(dirty, thresh);
1728 * Throttle it only when the background writeback cannot catch-up. This avoids
1729 * (excessively) small writeouts when the wb limits are ramping up in case of
1732 * In strictlimit case make decision based on the wb counters and limits. Small
1733 * writeouts when the wb limits are ramping up are the price we consciously pay
1734 * for strictlimit-ing.
1736 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1739 unsigned long dirty, thresh, bg_thresh;
1741 if (unlikely(strictlimit)) {
1742 wb_dirty_limits(dtc);
1743 dirty = dtc->wb_dirty;
1744 thresh = dtc->wb_thresh;
1745 bg_thresh = dtc->wb_bg_thresh;
1748 thresh = dtc->thresh;
1749 bg_thresh = dtc->bg_thresh;
1751 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1754 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1757 domain_dirty_avail(dtc, true);
1758 domain_dirty_limits(dtc);
1759 domain_dirty_freerun(dtc, strictlimit);
1762 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1765 dtc->freerun = false;
1767 /* was already handled in domain_dirty_freerun */
1771 wb_dirty_limits(dtc);
1773 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1776 if (!(current->flags & PF_LOCAL_THROTTLE))
1779 dtc->freerun = dtc->wb_dirty <
1780 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1783 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1786 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1787 ((dtc->dirty > dtc->thresh) || strictlimit);
1791 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1792 * in freerun state. Please don't use these invalid fields in freerun case.
1794 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1797 wb_dirty_freerun(dtc, strictlimit);
1801 wb_dirty_exceeded(dtc, strictlimit);
1802 wb_position_ratio(dtc);
1806 * balance_dirty_pages() must be called by processes which are generating dirty
1807 * data. It looks at the number of dirty pages in the machine and will force
1808 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1809 * If we're over `background_thresh' then the writeback threads are woken to
1810 * perform some writeout.
1812 static int balance_dirty_pages(struct bdi_writeback *wb,
1813 unsigned long pages_dirtied, unsigned int flags)
1815 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1816 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1817 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1818 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1820 struct dirty_throttle_control *sdtc;
1821 unsigned long nr_dirty;
1826 int nr_dirtied_pause;
1827 unsigned long task_ratelimit;
1828 unsigned long dirty_ratelimit;
1829 struct backing_dev_info *bdi = wb->bdi;
1830 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1831 unsigned long start_time = jiffies;
1835 unsigned long now = jiffies;
1837 nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1839 balance_domain_limits(gdtc, strictlimit);
1842 * If @wb belongs to !root memcg, repeat the same
1843 * basic calculations for the memcg domain.
1845 balance_domain_limits(mdtc, strictlimit);
1849 * In laptop mode, we wait until hitting the higher threshold
1850 * before starting background writeout, and then write out all
1851 * the way down to the lower threshold. So slow writers cause
1852 * minimal disk activity.
1854 * In normal mode, we start background writeout at the lower
1855 * background_thresh, to keep the amount of dirty memory low.
1857 if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1858 !writeback_in_progress(wb))
1859 wb_start_background_writeback(wb);
1862 * If memcg domain is in effect, @dirty should be under
1863 * both global and memcg freerun ceilings.
1865 if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1867 unsigned long m_intv;
1870 intv = domain_poll_intv(gdtc, strictlimit);
1873 current->dirty_paused_when = now;
1874 current->nr_dirtied = 0;
1876 m_intv = domain_poll_intv(mdtc, strictlimit);
1877 current->nr_dirtied_pause = min(intv, m_intv);
1881 /* Start writeback even when in laptop mode */
1882 if (unlikely(!writeback_in_progress(wb)))
1883 wb_start_background_writeback(wb);
1885 mem_cgroup_flush_foreign(wb);
1888 * Calculate global domain's pos_ratio and select the
1889 * global dtc by default.
1891 balance_wb_limits(gdtc, strictlimit);
1898 * If memcg domain is in effect, calculate its
1899 * pos_ratio. @wb should satisfy constraints from
1900 * both global and memcg domains. Choose the one
1901 * w/ lower pos_ratio.
1903 balance_wb_limits(mdtc, strictlimit);
1906 if (mdtc->pos_ratio < gdtc->pos_ratio)
1910 wb->dirty_exceeded = gdtc->dirty_exceeded ||
1911 (mdtc && mdtc->dirty_exceeded);
1912 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1913 BANDWIDTH_INTERVAL))
1914 __wb_update_bandwidth(gdtc, mdtc, true);
1916 /* throttle according to the chosen dtc */
1917 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1918 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1919 RATELIMIT_CALC_SHIFT;
1920 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1921 min_pause = wb_min_pause(wb, max_pause,
1922 task_ratelimit, dirty_ratelimit,
1925 if (unlikely(task_ratelimit == 0)) {
1930 period = HZ * pages_dirtied / task_ratelimit;
1932 if (current->dirty_paused_when)
1933 pause -= now - current->dirty_paused_when;
1935 * For less than 1s think time (ext3/4 may block the dirtier
1936 * for up to 800ms from time to time on 1-HDD; so does xfs,
1937 * however at much less frequency), try to compensate it in
1938 * future periods by updating the virtual time; otherwise just
1939 * do a reset, as it may be a light dirtier.
1941 if (pause < min_pause) {
1942 trace_balance_dirty_pages(wb,
1951 current->dirty_paused_when = now;
1952 current->nr_dirtied = 0;
1953 } else if (period) {
1954 current->dirty_paused_when += period;
1955 current->nr_dirtied = 0;
1956 } else if (current->nr_dirtied_pause <= pages_dirtied)
1957 current->nr_dirtied_pause += pages_dirtied;
1960 if (unlikely(pause > max_pause)) {
1961 /* for occasional dropped task_ratelimit */
1962 now += min(pause - max_pause, max_pause);
1967 trace_balance_dirty_pages(wb,
1975 if (flags & BDP_ASYNC) {
1979 __set_current_state(TASK_KILLABLE);
1980 bdi->last_bdp_sleep = jiffies;
1981 io_schedule_timeout(pause);
1983 current->dirty_paused_when = now + pause;
1984 current->nr_dirtied = 0;
1985 current->nr_dirtied_pause = nr_dirtied_pause;
1988 * This is typically equal to (dirty < thresh) and can also
1989 * keep "1000+ dd on a slow USB stick" under control.
1995 * In the case of an unresponsive NFS server and the NFS dirty
1996 * pages exceeds dirty_thresh, give the other good wb's a pipe
1997 * to go through, so that tasks on them still remain responsive.
1999 * In theory 1 page is enough to keep the consumer-producer
2000 * pipe going: the flusher cleans 1 page => the task dirties 1
2001 * more page. However wb_dirty has accounting errors. So use
2002 * the larger and more IO friendly wb_stat_error.
2004 if (sdtc->wb_dirty <= wb_stat_error())
2007 if (fatal_signal_pending(current))
2013 static DEFINE_PER_CPU(int, bdp_ratelimits);
2016 * Normal tasks are throttled by
2018 * dirty tsk->nr_dirtied_pause pages;
2019 * take a snap in balance_dirty_pages();
2021 * However there is a worst case. If every task exit immediately when dirtied
2022 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2023 * called to throttle the page dirties. The solution is to save the not yet
2024 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2025 * randomly into the running tasks. This works well for the above worst case,
2026 * as the new task will pick up and accumulate the old task's leaked dirty
2027 * count and eventually get throttled.
2029 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2032 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2033 * @mapping: address_space which was dirtied.
2034 * @flags: BDP flags.
2036 * Processes which are dirtying memory should call in here once for each page
2037 * which was newly dirtied. The function will periodically check the system's
2038 * dirty state and will initiate writeback if needed.
2040 * See balance_dirty_pages_ratelimited() for details.
2042 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2043 * indicate that memory is out of balance and the caller must wait
2044 * for I/O to complete. Otherwise, it will return 0 to indicate
2045 * that either memory was already in balance, or it was able to sleep
2046 * until the amount of dirty memory returned to balance.
2048 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2051 struct inode *inode = mapping->host;
2052 struct backing_dev_info *bdi = inode_to_bdi(inode);
2053 struct bdi_writeback *wb = NULL;
2058 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2061 if (inode_cgwb_enabled(inode))
2062 wb = wb_get_create_current(bdi, GFP_KERNEL);
2066 ratelimit = current->nr_dirtied_pause;
2067 if (wb->dirty_exceeded)
2068 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2072 * This prevents one CPU to accumulate too many dirtied pages without
2073 * calling into balance_dirty_pages(), which can happen when there are
2074 * 1000+ tasks, all of them start dirtying pages at exactly the same
2075 * time, hence all honoured too large initial task->nr_dirtied_pause.
2077 p = this_cpu_ptr(&bdp_ratelimits);
2078 if (unlikely(current->nr_dirtied >= ratelimit))
2080 else if (unlikely(*p >= ratelimit_pages)) {
2085 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2086 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2087 * the dirty throttling and livelock other long-run dirtiers.
2089 p = this_cpu_ptr(&dirty_throttle_leaks);
2090 if (*p > 0 && current->nr_dirtied < ratelimit) {
2091 unsigned long nr_pages_dirtied;
2092 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2093 *p -= nr_pages_dirtied;
2094 current->nr_dirtied += nr_pages_dirtied;
2098 if (unlikely(current->nr_dirtied >= ratelimit))
2099 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2104 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2107 * balance_dirty_pages_ratelimited - balance dirty memory state.
2108 * @mapping: address_space which was dirtied.
2110 * Processes which are dirtying memory should call in here once for each page
2111 * which was newly dirtied. The function will periodically check the system's
2112 * dirty state and will initiate writeback if needed.
2114 * Once we're over the dirty memory limit we decrease the ratelimiting
2115 * by a lot, to prevent individual processes from overshooting the limit
2116 * by (ratelimit_pages) each.
2118 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2120 balance_dirty_pages_ratelimited_flags(mapping, 0);
2122 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2125 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2126 * and thresh, but it's for background writeback.
2128 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2130 struct bdi_writeback *wb = dtc->wb;
2132 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2133 if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2134 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2136 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2139 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2141 domain_dirty_avail(dtc, false);
2142 domain_dirty_limits(dtc);
2143 if (dtc->dirty > dtc->bg_thresh)
2146 wb_bg_dirty_limits(dtc);
2147 if (dtc->wb_dirty > dtc->wb_bg_thresh)
2154 * wb_over_bg_thresh - does @wb need to be written back?
2155 * @wb: bdi_writeback of interest
2157 * Determines whether background writeback should keep writing @wb or it's
2160 * Return: %true if writeback should continue.
2162 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2164 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2165 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2167 if (domain_over_bg_thresh(&gdtc))
2170 if (mdtc_valid(&mdtc))
2171 return domain_over_bg_thresh(&mdtc);
2176 #ifdef CONFIG_SYSCTL
2178 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2180 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2181 void *buffer, size_t *length, loff_t *ppos)
2183 unsigned int old_interval = dirty_writeback_interval;
2186 ret = proc_dointvec(table, write, buffer, length, ppos);
2189 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2190 * and a different non-zero value will wakeup the writeback threads.
2191 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2192 * iterate over all bdis and wbs.
2193 * The reason we do this is to make the change take effect immediately.
2195 if (!ret && write && dirty_writeback_interval &&
2196 dirty_writeback_interval != old_interval)
2197 wakeup_flusher_threads(WB_REASON_PERIODIC);
2203 void laptop_mode_timer_fn(struct timer_list *t)
2205 struct backing_dev_info *backing_dev_info =
2206 timer_container_of(backing_dev_info, t, laptop_mode_wb_timer);
2208 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2212 * We've spun up the disk and we're in laptop mode: schedule writeback
2213 * of all dirty data a few seconds from now. If the flush is already scheduled
2214 * then push it back - the user is still using the disk.
2216 void laptop_io_completion(struct backing_dev_info *info)
2218 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2222 * We're in laptop mode and we've just synced. The sync's writes will have
2223 * caused another writeback to be scheduled by laptop_io_completion.
2224 * Nothing needs to be written back anymore, so we unschedule the writeback.
2226 void laptop_sync_completion(void)
2228 struct backing_dev_info *bdi;
2232 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2233 timer_delete(&bdi->laptop_mode_wb_timer);
2239 * If ratelimit_pages is too high then we can get into dirty-data overload
2240 * if a large number of processes all perform writes at the same time.
2242 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2243 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2247 void writeback_set_ratelimit(void)
2249 struct wb_domain *dom = &global_wb_domain;
2250 unsigned long background_thresh;
2251 unsigned long dirty_thresh;
2253 global_dirty_limits(&background_thresh, &dirty_thresh);
2254 dom->dirty_limit = dirty_thresh;
2255 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2256 if (ratelimit_pages < 16)
2257 ratelimit_pages = 16;
2260 static int page_writeback_cpu_online(unsigned int cpu)
2262 writeback_set_ratelimit();
2266 #ifdef CONFIG_SYSCTL
2268 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2269 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2271 static const struct ctl_table vm_page_writeback_sysctls[] = {
2273 .procname = "dirty_background_ratio",
2274 .data = &dirty_background_ratio,
2275 .maxlen = sizeof(dirty_background_ratio),
2277 .proc_handler = dirty_background_ratio_handler,
2278 .extra1 = SYSCTL_ZERO,
2279 .extra2 = SYSCTL_ONE_HUNDRED,
2282 .procname = "dirty_background_bytes",
2283 .data = &dirty_background_bytes,
2284 .maxlen = sizeof(dirty_background_bytes),
2286 .proc_handler = dirty_background_bytes_handler,
2287 .extra1 = SYSCTL_LONG_ONE,
2290 .procname = "dirty_ratio",
2291 .data = &vm_dirty_ratio,
2292 .maxlen = sizeof(vm_dirty_ratio),
2294 .proc_handler = dirty_ratio_handler,
2295 .extra1 = SYSCTL_ZERO,
2296 .extra2 = SYSCTL_ONE_HUNDRED,
2299 .procname = "dirty_bytes",
2300 .data = &vm_dirty_bytes,
2301 .maxlen = sizeof(vm_dirty_bytes),
2303 .proc_handler = dirty_bytes_handler,
2304 .extra1 = (void *)&dirty_bytes_min,
2307 .procname = "dirty_writeback_centisecs",
2308 .data = &dirty_writeback_interval,
2309 .maxlen = sizeof(dirty_writeback_interval),
2311 .proc_handler = dirty_writeback_centisecs_handler,
2314 .procname = "dirty_expire_centisecs",
2315 .data = &dirty_expire_interval,
2316 .maxlen = sizeof(dirty_expire_interval),
2318 .proc_handler = proc_dointvec_minmax,
2319 .extra1 = SYSCTL_ZERO,
2321 #ifdef CONFIG_HIGHMEM
2323 .procname = "highmem_is_dirtyable",
2324 .data = &vm_highmem_is_dirtyable,
2325 .maxlen = sizeof(vm_highmem_is_dirtyable),
2327 .proc_handler = proc_dointvec_minmax,
2328 .extra1 = SYSCTL_ZERO,
2329 .extra2 = SYSCTL_ONE,
2333 .procname = "laptop_mode",
2334 .data = &laptop_mode,
2335 .maxlen = sizeof(laptop_mode),
2337 .proc_handler = proc_dointvec_jiffies,
2343 * Called early on to tune the page writeback dirty limits.
2345 * We used to scale dirty pages according to how total memory
2346 * related to pages that could be allocated for buffers.
2348 * However, that was when we used "dirty_ratio" to scale with
2349 * all memory, and we don't do that any more. "dirty_ratio"
2350 * is now applied to total non-HIGHPAGE memory, and as such we can't
2351 * get into the old insane situation any more where we had
2352 * large amounts of dirty pages compared to a small amount of
2353 * non-HIGHMEM memory.
2355 * But we might still want to scale the dirty_ratio by how
2356 * much memory the box has..
2358 void __init page_writeback_init(void)
2360 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2362 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2363 page_writeback_cpu_online, NULL);
2364 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2365 page_writeback_cpu_online);
2366 #ifdef CONFIG_SYSCTL
2367 register_sysctl_init("vm", vm_page_writeback_sysctls);
2372 * tag_pages_for_writeback - tag pages to be written by writeback
2373 * @mapping: address space structure to write
2374 * @start: starting page index
2375 * @end: ending page index (inclusive)
2377 * This function scans the page range from @start to @end (inclusive) and tags
2378 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
2379 * can then use the TOWRITE tag to identify pages eligible for writeback.
2380 * This mechanism is used to avoid livelocking of writeback by a process
2381 * steadily creating new dirty pages in the file (thus it is important for this
2382 * function to be quick so that it can tag pages faster than a dirtying process
2385 void tag_pages_for_writeback(struct address_space *mapping,
2386 pgoff_t start, pgoff_t end)
2388 XA_STATE(xas, &mapping->i_pages, start);
2389 unsigned int tagged = 0;
2393 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2394 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2395 if (++tagged % XA_CHECK_SCHED)
2399 xas_unlock_irq(&xas);
2403 xas_unlock_irq(&xas);
2405 EXPORT_SYMBOL(tag_pages_for_writeback);
2407 static bool folio_prepare_writeback(struct address_space *mapping,
2408 struct writeback_control *wbc, struct folio *folio)
2411 * Folio truncated or invalidated. We can freely skip it then,
2412 * even for data integrity operations: the folio has disappeared
2413 * concurrently, so there could be no real expectation of this
2414 * data integrity operation even if there is now a new, dirty
2415 * folio at the same pagecache index.
2417 if (unlikely(folio->mapping != mapping))
2421 * Did somebody else write it for us?
2423 if (!folio_test_dirty(folio))
2426 if (folio_test_writeback(folio)) {
2427 if (wbc->sync_mode == WB_SYNC_NONE)
2429 folio_wait_writeback(folio);
2431 BUG_ON(folio_test_writeback(folio));
2433 if (!folio_clear_dirty_for_io(folio))
2439 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2441 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2442 return PAGECACHE_TAG_TOWRITE;
2443 return PAGECACHE_TAG_DIRTY;
2446 static pgoff_t wbc_end(struct writeback_control *wbc)
2448 if (wbc->range_cyclic)
2450 return wbc->range_end >> PAGE_SHIFT;
2453 static struct folio *writeback_get_folio(struct address_space *mapping,
2454 struct writeback_control *wbc)
2456 struct folio *folio;
2459 folio = folio_batch_next(&wbc->fbatch);
2461 folio_batch_release(&wbc->fbatch);
2463 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2464 wbc_to_tag(wbc), &wbc->fbatch);
2465 folio = folio_batch_next(&wbc->fbatch);
2471 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2472 folio_unlock(folio);
2476 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2481 * writeback_iter - iterate folio of a mapping for writeback
2482 * @mapping: address space structure to write
2483 * @wbc: writeback context
2484 * @folio: previously iterated folio (%NULL to start)
2485 * @error: in-out pointer for writeback errors (see below)
2487 * This function returns the next folio for the writeback operation described by
2488 * @wbc on @mapping and should be called in a while loop in the ->writepages
2491 * To start the writeback operation, %NULL is passed in the @folio argument, and
2492 * for every subsequent iteration the folio returned previously should be passed
2495 * If there was an error in the per-folio writeback inside the writeback_iter()
2496 * loop, @error should be set to the error value.
2498 * Once the writeback described in @wbc has finished, this function will return
2499 * %NULL and if there was an error in any iteration restore it to @error.
2501 * Note: callers should not manually break out of the loop using break or goto
2502 * but must keep calling writeback_iter() until it returns %NULL.
2504 * Return: the folio to write or %NULL if the loop is done.
2506 struct folio *writeback_iter(struct address_space *mapping,
2507 struct writeback_control *wbc, struct folio *folio, int *error)
2510 folio_batch_init(&wbc->fbatch);
2511 wbc->saved_err = *error = 0;
2514 * For range cyclic writeback we remember where we stopped so
2515 * that we can continue where we stopped.
2517 * For non-cyclic writeback we always start at the beginning of
2518 * the passed in range.
2520 if (wbc->range_cyclic)
2521 wbc->index = mapping->writeback_index;
2523 wbc->index = wbc->range_start >> PAGE_SHIFT;
2526 * To avoid livelocks when other processes dirty new pages, we
2527 * first tag pages which should be written back and only then
2528 * start writing them.
2530 * For data-integrity writeback we have to be careful so that we
2531 * do not miss some pages (e.g., because some other process has
2532 * cleared the TOWRITE tag we set). The rule we follow is that
2533 * TOWRITE tag can be cleared only by the process clearing the
2534 * DIRTY tag (and submitting the page for I/O).
2536 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2537 tag_pages_for_writeback(mapping, wbc->index,
2540 wbc->nr_to_write -= folio_nr_pages(folio);
2542 WARN_ON_ONCE(*error > 0);
2545 * For integrity writeback we have to keep going until we have
2546 * written all the folios we tagged for writeback above, even if
2547 * we run past wbc->nr_to_write or encounter errors.
2548 * We stash away the first error we encounter in wbc->saved_err
2549 * so that it can be retrieved when we're done. This is because
2550 * the file system may still have state to clear for each folio.
2552 * For background writeback we exit as soon as we run past
2553 * wbc->nr_to_write or encounter the first error.
2555 if (wbc->sync_mode == WB_SYNC_ALL) {
2556 if (*error && !wbc->saved_err)
2557 wbc->saved_err = *error;
2559 if (*error || wbc->nr_to_write <= 0)
2564 folio = writeback_get_folio(mapping, wbc);
2567 * To avoid deadlocks between range_cyclic writeback and callers
2568 * that hold folios in writeback to aggregate I/O until
2569 * the writeback iteration finishes, we do not loop back to the
2570 * start of the file. Doing so causes a folio lock/folio
2571 * writeback access order inversion - we should only ever lock
2572 * multiple folios in ascending folio->index order, and looping
2573 * back to the start of the file violates that rule and causes
2576 if (wbc->range_cyclic)
2577 mapping->writeback_index = 0;
2580 * Return the first error we encountered (if there was any) to
2583 *error = wbc->saved_err;
2588 if (wbc->range_cyclic)
2589 mapping->writeback_index = folio_next_index(folio);
2590 folio_batch_release(&wbc->fbatch);
2593 EXPORT_SYMBOL_GPL(writeback_iter);
2596 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2597 * @mapping: address space structure to write
2598 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2599 * @writepage: function called for each page
2600 * @data: data passed to writepage function
2602 * Return: %0 on success, negative error code otherwise
2604 * Note: please use writeback_iter() instead.
2606 int write_cache_pages(struct address_space *mapping,
2607 struct writeback_control *wbc, writepage_t writepage,
2610 struct folio *folio = NULL;
2613 while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2614 error = writepage(folio, wbc, data);
2615 if (error == AOP_WRITEPAGE_ACTIVATE) {
2616 folio_unlock(folio);
2623 EXPORT_SYMBOL(write_cache_pages);
2625 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2628 struct bdi_writeback *wb;
2630 if (wbc->nr_to_write <= 0)
2632 wb = inode_to_wb_wbc(mapping->host, wbc);
2633 wb_bandwidth_estimate_start(wb);
2635 if (mapping->a_ops->writepages)
2636 ret = mapping->a_ops->writepages(mapping, wbc);
2638 /* deal with chardevs and other special files */
2640 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2644 * Lacking an allocation context or the locality or writeback
2645 * state of any of the inode's pages, throttle based on
2646 * writeback activity on the local node. It's as good a
2649 reclaim_throttle(NODE_DATA(numa_node_id()),
2650 VMSCAN_THROTTLE_WRITEBACK);
2653 * Usually few pages are written by now from those we've just submitted
2654 * but if there's constant writeback being submitted, this makes sure
2655 * writeback bandwidth is updated once in a while.
2657 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2658 BANDWIDTH_INTERVAL))
2659 wb_update_bandwidth(wb);
2664 * For address_spaces which do not use buffers nor write back.
2666 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2668 if (!folio_test_dirty(folio))
2669 return !folio_test_set_dirty(folio);
2672 EXPORT_SYMBOL(noop_dirty_folio);
2675 * Helper function for set_page_dirty family.
2677 * NOTE: This relies on being atomic wrt interrupts.
2679 static void folio_account_dirtied(struct folio *folio,
2680 struct address_space *mapping)
2682 struct inode *inode = mapping->host;
2684 trace_writeback_dirty_folio(folio, mapping);
2686 if (mapping_can_writeback(mapping)) {
2687 struct bdi_writeback *wb;
2688 long nr = folio_nr_pages(folio);
2690 inode_attach_wb(inode, folio);
2691 wb = inode_to_wb(inode);
2693 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2694 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2695 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2696 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2697 wb_stat_mod(wb, WB_DIRTIED, nr);
2698 task_io_account_write(nr * PAGE_SIZE);
2699 current->nr_dirtied += nr;
2700 __this_cpu_add(bdp_ratelimits, nr);
2702 mem_cgroup_track_foreign_dirty(folio, wb);
2707 * Helper function for deaccounting dirty page without writeback.
2710 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2712 long nr = folio_nr_pages(folio);
2714 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2715 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2716 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2717 task_io_account_cancelled_write(nr * PAGE_SIZE);
2721 * Mark the folio dirty, and set it dirty in the page cache.
2723 * If warn is true, then emit a warning if the folio is not uptodate and has
2724 * not been truncated.
2726 * It is the caller's responsibility to prevent the folio from being truncated
2727 * while this function is in progress, although it may have been truncated
2728 * before this function is called. Most callers have the folio locked.
2729 * A few have the folio blocked from truncation through other means (e.g.
2730 * zap_vma_pages() has it mapped and is holding the page table lock).
2731 * When called from mark_buffer_dirty(), the filesystem should hold a
2732 * reference to the buffer_head that is being marked dirty, which causes
2733 * try_to_free_buffers() to fail.
2735 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2738 unsigned long flags;
2740 xa_lock_irqsave(&mapping->i_pages, flags);
2741 if (folio->mapping) { /* Race with truncate? */
2742 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2743 folio_account_dirtied(folio, mapping);
2744 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2745 PAGECACHE_TAG_DIRTY);
2747 xa_unlock_irqrestore(&mapping->i_pages, flags);
2751 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2752 * @mapping: Address space this folio belongs to.
2753 * @folio: Folio to be marked as dirty.
2755 * Filesystems which do not use buffer heads should call this function
2756 * from their dirty_folio address space operation. It ignores the
2757 * contents of folio_get_private(), so if the filesystem marks individual
2758 * blocks as dirty, the filesystem should handle that itself.
2760 * This is also sometimes used by filesystems which use buffer_heads when
2761 * a single buffer is being dirtied: we want to set the folio dirty in
2762 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2763 * whereas block_dirty_folio() is a "top-down" dirtying.
2765 * The caller must ensure this doesn't race with truncation. Most will
2766 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2767 * folio mapped and the pte lock held, which also locks out truncation.
2769 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2771 if (folio_test_set_dirty(folio))
2774 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2776 if (mapping->host) {
2777 /* !PageAnon && !swapper_space */
2778 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2782 EXPORT_SYMBOL(filemap_dirty_folio);
2785 * folio_redirty_for_writepage - Decline to write a dirty folio.
2786 * @wbc: The writeback control.
2787 * @folio: The folio.
2789 * When a writepage implementation decides that it doesn't want to write
2790 * @folio for some reason, it should call this function, unlock @folio and
2793 * Return: True if we redirtied the folio. False if someone else dirtied
2796 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2797 struct folio *folio)
2799 struct address_space *mapping = folio->mapping;
2800 long nr = folio_nr_pages(folio);
2803 wbc->pages_skipped += nr;
2804 ret = filemap_dirty_folio(mapping, folio);
2805 if (mapping && mapping_can_writeback(mapping)) {
2806 struct inode *inode = mapping->host;
2807 struct bdi_writeback *wb;
2808 struct wb_lock_cookie cookie = {};
2810 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2811 current->nr_dirtied -= nr;
2812 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2813 wb_stat_mod(wb, WB_DIRTIED, -nr);
2814 unlocked_inode_to_wb_end(inode, &cookie);
2818 EXPORT_SYMBOL(folio_redirty_for_writepage);
2821 * folio_mark_dirty - Mark a folio as being modified.
2822 * @folio: The folio.
2824 * The folio may not be truncated while this function is running.
2825 * Holding the folio lock is sufficient to prevent truncation, but some
2826 * callers cannot acquire a sleeping lock. These callers instead hold
2827 * the page table lock for a page table which contains at least one page
2828 * in this folio. Truncation will block on the page table lock as it
2829 * unmaps pages before removing the folio from its mapping.
2831 * Return: True if the folio was newly dirtied, false if it was already dirty.
2833 bool folio_mark_dirty(struct folio *folio)
2835 struct address_space *mapping = folio_mapping(folio);
2837 if (likely(mapping)) {
2839 * readahead/folio_deactivate could remain
2840 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2841 * About readahead, if the folio is written, the flags would be
2842 * reset. So no problem.
2843 * About folio_deactivate, if the folio is redirtied,
2844 * the flag will be reset. So no problem. but if the
2845 * folio is used by readahead it will confuse readahead
2846 * and make it restart the size rampup process. But it's
2847 * a trivial problem.
2849 if (folio_test_reclaim(folio))
2850 folio_clear_reclaim(folio);
2851 return mapping->a_ops->dirty_folio(mapping, folio);
2854 return noop_dirty_folio(mapping, folio);
2856 EXPORT_SYMBOL(folio_mark_dirty);
2859 * folio_mark_dirty() is racy if the caller has no reference against
2860 * folio->mapping->host, and if the folio is unlocked. This is because another
2861 * CPU could truncate the folio off the mapping and then free the mapping.
2863 * Usually, the folio _is_ locked, or the caller is a user-space process which
2864 * holds a reference on the inode by having an open file.
2866 * In other cases, the folio should be locked before running folio_mark_dirty().
2868 bool folio_mark_dirty_lock(struct folio *folio)
2873 ret = folio_mark_dirty(folio);
2874 folio_unlock(folio);
2877 EXPORT_SYMBOL(folio_mark_dirty_lock);
2880 * This cancels just the dirty bit on the kernel page itself, it does NOT
2881 * actually remove dirty bits on any mmap's that may be around. It also
2882 * leaves the page tagged dirty, so any sync activity will still find it on
2883 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2884 * look at the dirty bits in the VM.
2886 * Doing this should *normally* only ever be done when a page is truncated,
2887 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2888 * this when it notices that somebody has cleaned out all the buffers on a
2889 * page without actually doing it through the VM. Can you say "ext3 is
2890 * horribly ugly"? Thought you could.
2892 void __folio_cancel_dirty(struct folio *folio)
2894 struct address_space *mapping = folio_mapping(folio);
2896 if (mapping_can_writeback(mapping)) {
2897 struct inode *inode = mapping->host;
2898 struct bdi_writeback *wb;
2899 struct wb_lock_cookie cookie = {};
2901 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2903 if (folio_test_clear_dirty(folio))
2904 folio_account_cleaned(folio, wb);
2906 unlocked_inode_to_wb_end(inode, &cookie);
2908 folio_clear_dirty(folio);
2911 EXPORT_SYMBOL(__folio_cancel_dirty);
2914 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2915 * Returns true if the folio was previously dirty.
2917 * This is for preparing to put the folio under writeout. We leave
2918 * the folio tagged as dirty in the xarray so that a concurrent
2919 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2920 * The ->writepage implementation will run either folio_start_writeback()
2921 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2922 * and xarray dirty tag back into sync.
2924 * This incoherency between the folio's dirty flag and xarray tag is
2925 * unfortunate, but it only exists while the folio is locked.
2927 bool folio_clear_dirty_for_io(struct folio *folio)
2929 struct address_space *mapping = folio_mapping(folio);
2932 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2934 if (mapping && mapping_can_writeback(mapping)) {
2935 struct inode *inode = mapping->host;
2936 struct bdi_writeback *wb;
2937 struct wb_lock_cookie cookie = {};
2940 * Yes, Virginia, this is indeed insane.
2942 * We use this sequence to make sure that
2943 * (a) we account for dirty stats properly
2944 * (b) we tell the low-level filesystem to
2945 * mark the whole folio dirty if it was
2946 * dirty in a pagetable. Only to then
2947 * (c) clean the folio again and return 1 to
2948 * cause the writeback.
2950 * This way we avoid all nasty races with the
2951 * dirty bit in multiple places and clearing
2952 * them concurrently from different threads.
2954 * Note! Normally the "folio_mark_dirty(folio)"
2955 * has no effect on the actual dirty bit - since
2956 * that will already usually be set. But we
2957 * need the side effects, and it can help us
2960 * We basically use the folio "master dirty bit"
2961 * as a serialization point for all the different
2962 * threads doing their things.
2964 if (folio_mkclean(folio))
2965 folio_mark_dirty(folio);
2967 * We carefully synchronise fault handlers against
2968 * installing a dirty pte and marking the folio dirty
2969 * at this point. We do this by having them hold the
2970 * page lock while dirtying the folio, and folios are
2971 * always locked coming in here, so we get the desired
2974 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2975 if (folio_test_clear_dirty(folio)) {
2976 long nr = folio_nr_pages(folio);
2977 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2978 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2979 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2982 unlocked_inode_to_wb_end(inode, &cookie);
2985 return folio_test_clear_dirty(folio);
2987 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2989 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2991 atomic_inc(&wb->writeback_inodes);
2994 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2996 unsigned long flags;
2997 atomic_dec(&wb->writeback_inodes);
2999 * Make sure estimate of writeback throughput gets updated after
3000 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3001 * (which is the interval other bandwidth updates use for batching) so
3002 * that if multiple inodes end writeback at a similar time, they get
3003 * batched into one bandwidth update.
3005 spin_lock_irqsave(&wb->work_lock, flags);
3006 if (test_bit(WB_registered, &wb->state))
3007 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3008 spin_unlock_irqrestore(&wb->work_lock, flags);
3011 bool __folio_end_writeback(struct folio *folio)
3013 long nr = folio_nr_pages(folio);
3014 struct address_space *mapping = folio_mapping(folio);
3017 if (mapping && mapping_use_writeback_tags(mapping)) {
3018 struct inode *inode = mapping->host;
3019 struct backing_dev_info *bdi = inode_to_bdi(inode);
3020 unsigned long flags;
3022 xa_lock_irqsave(&mapping->i_pages, flags);
3023 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3024 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3025 PAGECACHE_TAG_WRITEBACK);
3026 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3027 struct bdi_writeback *wb = inode_to_wb(inode);
3029 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3030 __wb_writeout_add(wb, nr);
3031 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3032 wb_inode_writeback_end(wb);
3035 if (mapping->host && !mapping_tagged(mapping,
3036 PAGECACHE_TAG_WRITEBACK))
3037 sb_clear_inode_writeback(mapping->host);
3039 xa_unlock_irqrestore(&mapping->i_pages, flags);
3041 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3044 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3045 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3046 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3051 void __folio_start_writeback(struct folio *folio, bool keep_write)
3053 long nr = folio_nr_pages(folio);
3054 struct address_space *mapping = folio_mapping(folio);
3057 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3058 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3060 if (mapping && mapping_use_writeback_tags(mapping)) {
3061 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3062 struct inode *inode = mapping->host;
3063 struct backing_dev_info *bdi = inode_to_bdi(inode);
3064 unsigned long flags;
3067 xas_lock_irqsave(&xas, flags);
3069 folio_test_set_writeback(folio);
3071 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3073 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3074 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3075 struct bdi_writeback *wb = inode_to_wb(inode);
3077 wb_stat_mod(wb, WB_WRITEBACK, nr);
3079 wb_inode_writeback_start(wb);
3083 * We can come through here when swapping anonymous
3084 * folios, so we don't necessarily have an inode to
3087 if (mapping->host && !on_wblist)
3088 sb_mark_inode_writeback(mapping->host);
3089 if (!folio_test_dirty(folio))
3090 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3092 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3093 xas_unlock_irqrestore(&xas, flags);
3095 folio_test_set_writeback(folio);
3098 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3099 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3101 access_ret = arch_make_folio_accessible(folio);
3103 * If writeback has been triggered on a page that cannot be made
3104 * accessible, it is too late to recover here.
3106 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3108 EXPORT_SYMBOL(__folio_start_writeback);
3111 * folio_wait_writeback - Wait for a folio to finish writeback.
3112 * @folio: The folio to wait for.
3114 * If the folio is currently being written back to storage, wait for the
3117 * Context: Sleeps. Must be called in process context and with
3118 * no spinlocks held. Caller should hold a reference on the folio.
3119 * If the folio is not locked, writeback may start again after writeback
3122 void folio_wait_writeback(struct folio *folio)
3124 while (folio_test_writeback(folio)) {
3125 trace_folio_wait_writeback(folio, folio_mapping(folio));
3126 folio_wait_bit(folio, PG_writeback);
3129 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3132 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3133 * @folio: The folio to wait for.
3135 * If the folio is currently being written back to storage, wait for the
3136 * I/O to complete or a fatal signal to arrive.
3138 * Context: Sleeps. Must be called in process context and with
3139 * no spinlocks held. Caller should hold a reference on the folio.
3140 * If the folio is not locked, writeback may start again after writeback
3142 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3144 int folio_wait_writeback_killable(struct folio *folio)
3146 while (folio_test_writeback(folio)) {
3147 trace_folio_wait_writeback(folio, folio_mapping(folio));
3148 if (folio_wait_bit_killable(folio, PG_writeback))
3154 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3157 * folio_wait_stable() - wait for writeback to finish, if necessary.
3158 * @folio: The folio to wait on.
3160 * This function determines if the given folio is related to a backing
3161 * device that requires folio contents to be held stable during writeback.
3162 * If so, then it will wait for any pending writeback to complete.
3164 * Context: Sleeps. Must be called in process context and with
3165 * no spinlocks held. Caller should hold a reference on the folio.
3166 * If the folio is not locked, writeback may start again after writeback
3169 void folio_wait_stable(struct folio *folio)
3171 if (mapping_stable_writes(folio_mapping(folio)))
3172 folio_wait_writeback(folio);
3174 EXPORT_SYMBOL_GPL(folio_wait_stable);