Merge tag 'mm-nonmm-stable-2024-05-22-17-30' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE               max(HZ/5, 1)
49
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
55
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT    10
62
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 static int dirty_background_ratio = 10;
75
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 static unsigned long dirty_background_bytes;
81
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 static int vm_highmem_is_dirtyable;
87
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 static int vm_dirty_ratio = 20;
92
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 static unsigned long vm_dirty_bytes;
98
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116
117 EXPORT_SYMBOL(laptop_mode);
118
119 /* End of sysctl-exported parameters */
120
121 struct wb_domain global_wb_domain;
122
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126         struct wb_domain        *dom;
127         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
128 #endif
129         struct bdi_writeback    *wb;
130         struct fprop_local_percpu *wb_completions;
131
132         unsigned long           avail;          /* dirtyable */
133         unsigned long           dirty;          /* file_dirty + write + nfs */
134         unsigned long           thresh;         /* dirty threshold */
135         unsigned long           bg_thresh;      /* dirty background threshold */
136
137         unsigned long           wb_dirty;       /* per-wb counterparts */
138         unsigned long           wb_thresh;
139         unsigned long           wb_bg_thresh;
140
141         unsigned long           pos_ratio;
142 };
143
144 /*
145  * Length of period for aging writeout fractions of bdis. This is an
146  * arbitrarily chosen number. The longer the period, the slower fractions will
147  * reflect changes in current writeout rate.
148  */
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150
151 #ifdef CONFIG_CGROUP_WRITEBACK
152
153 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
154                                 .dom = &global_wb_domain,               \
155                                 .wb_completions = &(__wb)->completions
156
157 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
158
159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
160                                 .dom = mem_cgroup_wb_domain(__wb),      \
161                                 .wb_completions = &(__wb)->memcg_completions, \
162                                 .gdtc = __gdtc
163
164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
165 {
166         return dtc->dom;
167 }
168
169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170 {
171         return dtc->dom;
172 }
173
174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175 {
176         return mdtc->gdtc;
177 }
178
179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180 {
181         return &wb->memcg_completions;
182 }
183
184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185                              unsigned long *minp, unsigned long *maxp)
186 {
187         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
188         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189         unsigned long long min = wb->bdi->min_ratio;
190         unsigned long long max = wb->bdi->max_ratio;
191
192         /*
193          * @wb may already be clean by the time control reaches here and
194          * the total may not include its bw.
195          */
196         if (this_bw < tot_bw) {
197                 if (min) {
198                         min *= this_bw;
199                         min = div64_ul(min, tot_bw);
200                 }
201                 if (max < 100 * BDI_RATIO_SCALE) {
202                         max *= this_bw;
203                         max = div64_ul(max, tot_bw);
204                 }
205         }
206
207         *minp = min;
208         *maxp = max;
209 }
210
211 #else   /* CONFIG_CGROUP_WRITEBACK */
212
213 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
214                                 .wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
217
218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
219 {
220         return false;
221 }
222
223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224 {
225         return &global_wb_domain;
226 }
227
228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229 {
230         return NULL;
231 }
232
233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234 {
235         return NULL;
236 }
237
238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239                              unsigned long *minp, unsigned long *maxp)
240 {
241         *minp = wb->bdi->min_ratio;
242         *maxp = wb->bdi->max_ratio;
243 }
244
245 #endif  /* CONFIG_CGROUP_WRITEBACK */
246
247 /*
248  * In a memory zone, there is a certain amount of pages we consider
249  * available for the page cache, which is essentially the number of
250  * free and reclaimable pages, minus some zone reserves to protect
251  * lowmem and the ability to uphold the zone's watermarks without
252  * requiring writeback.
253  *
254  * This number of dirtyable pages is the base value of which the
255  * user-configurable dirty ratio is the effective number of pages that
256  * are allowed to be actually dirtied.  Per individual zone, or
257  * globally by using the sum of dirtyable pages over all zones.
258  *
259  * Because the user is allowed to specify the dirty limit globally as
260  * absolute number of bytes, calculating the per-zone dirty limit can
261  * require translating the configured limit into a percentage of
262  * global dirtyable memory first.
263  */
264
265 /**
266  * node_dirtyable_memory - number of dirtyable pages in a node
267  * @pgdat: the node
268  *
269  * Return: the node's number of pages potentially available for dirty
270  * page cache.  This is the base value for the per-node dirty limits.
271  */
272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273 {
274         unsigned long nr_pages = 0;
275         int z;
276
277         for (z = 0; z < MAX_NR_ZONES; z++) {
278                 struct zone *zone = pgdat->node_zones + z;
279
280                 if (!populated_zone(zone))
281                         continue;
282
283                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284         }
285
286         /*
287          * Pages reserved for the kernel should not be considered
288          * dirtyable, to prevent a situation where reclaim has to
289          * clean pages in order to balance the zones.
290          */
291         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292
293         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295
296         return nr_pages;
297 }
298
299 static unsigned long highmem_dirtyable_memory(unsigned long total)
300 {
301 #ifdef CONFIG_HIGHMEM
302         int node;
303         unsigned long x = 0;
304         int i;
305
306         for_each_node_state(node, N_HIGH_MEMORY) {
307                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308                         struct zone *z;
309                         unsigned long nr_pages;
310
311                         if (!is_highmem_idx(i))
312                                 continue;
313
314                         z = &NODE_DATA(node)->node_zones[i];
315                         if (!populated_zone(z))
316                                 continue;
317
318                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
319                         /* watch for underflows */
320                         nr_pages -= min(nr_pages, high_wmark_pages(z));
321                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323                         x += nr_pages;
324                 }
325         }
326
327         /*
328          * Make sure that the number of highmem pages is never larger
329          * than the number of the total dirtyable memory. This can only
330          * occur in very strange VM situations but we want to make sure
331          * that this does not occur.
332          */
333         return min(x, total);
334 #else
335         return 0;
336 #endif
337 }
338
339 /**
340  * global_dirtyable_memory - number of globally dirtyable pages
341  *
342  * Return: the global number of pages potentially available for dirty
343  * page cache.  This is the base value for the global dirty limits.
344  */
345 static unsigned long global_dirtyable_memory(void)
346 {
347         unsigned long x;
348
349         x = global_zone_page_state(NR_FREE_PAGES);
350         /*
351          * Pages reserved for the kernel should not be considered
352          * dirtyable, to prevent a situation where reclaim has to
353          * clean pages in order to balance the zones.
354          */
355         x -= min(x, totalreserve_pages);
356
357         x += global_node_page_state(NR_INACTIVE_FILE);
358         x += global_node_page_state(NR_ACTIVE_FILE);
359
360         if (!vm_highmem_is_dirtyable)
361                 x -= highmem_dirtyable_memory(x);
362
363         return x + 1;   /* Ensure that we never return 0 */
364 }
365
366 /**
367  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368  * @dtc: dirty_throttle_control of interest
369  *
370  * Calculate @dtc->thresh and ->bg_thresh considering
371  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
372  * must ensure that @dtc->avail is set before calling this function.  The
373  * dirty limits will be lifted by 1/4 for real-time tasks.
374  */
375 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
376 {
377         const unsigned long available_memory = dtc->avail;
378         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379         unsigned long bytes = vm_dirty_bytes;
380         unsigned long bg_bytes = dirty_background_bytes;
381         /* convert ratios to per-PAGE_SIZE for higher precision */
382         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
384         unsigned long thresh;
385         unsigned long bg_thresh;
386         struct task_struct *tsk;
387
388         /* gdtc is !NULL iff @dtc is for memcg domain */
389         if (gdtc) {
390                 unsigned long global_avail = gdtc->avail;
391
392                 /*
393                  * The byte settings can't be applied directly to memcg
394                  * domains.  Convert them to ratios by scaling against
395                  * globally available memory.  As the ratios are in
396                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
397                  * number of pages.
398                  */
399                 if (bytes)
400                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
401                                     PAGE_SIZE);
402                 if (bg_bytes)
403                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404                                        PAGE_SIZE);
405                 bytes = bg_bytes = 0;
406         }
407
408         if (bytes)
409                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
410         else
411                 thresh = (ratio * available_memory) / PAGE_SIZE;
412
413         if (bg_bytes)
414                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
415         else
416                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
417
418         if (bg_thresh >= thresh)
419                 bg_thresh = thresh / 2;
420         tsk = current;
421         if (rt_task(tsk)) {
422                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
424         }
425         dtc->thresh = thresh;
426         dtc->bg_thresh = bg_thresh;
427
428         /* we should eventually report the domain in the TP */
429         if (!gdtc)
430                 trace_global_dirty_state(bg_thresh, thresh);
431 }
432
433 /**
434  * global_dirty_limits - background-writeback and dirty-throttling thresholds
435  * @pbackground: out parameter for bg_thresh
436  * @pdirty: out parameter for thresh
437  *
438  * Calculate bg_thresh and thresh for global_wb_domain.  See
439  * domain_dirty_limits() for details.
440  */
441 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
442 {
443         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
444
445         gdtc.avail = global_dirtyable_memory();
446         domain_dirty_limits(&gdtc);
447
448         *pbackground = gdtc.bg_thresh;
449         *pdirty = gdtc.thresh;
450 }
451
452 /**
453  * node_dirty_limit - maximum number of dirty pages allowed in a node
454  * @pgdat: the node
455  *
456  * Return: the maximum number of dirty pages allowed in a node, based
457  * on the node's dirtyable memory.
458  */
459 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
460 {
461         unsigned long node_memory = node_dirtyable_memory(pgdat);
462         struct task_struct *tsk = current;
463         unsigned long dirty;
464
465         if (vm_dirty_bytes)
466                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
467                         node_memory / global_dirtyable_memory();
468         else
469                 dirty = vm_dirty_ratio * node_memory / 100;
470
471         if (rt_task(tsk))
472                 dirty += dirty / 4;
473
474         return dirty;
475 }
476
477 /**
478  * node_dirty_ok - tells whether a node is within its dirty limits
479  * @pgdat: the node to check
480  *
481  * Return: %true when the dirty pages in @pgdat are within the node's
482  * dirty limit, %false if the limit is exceeded.
483  */
484 bool node_dirty_ok(struct pglist_data *pgdat)
485 {
486         unsigned long limit = node_dirty_limit(pgdat);
487         unsigned long nr_pages = 0;
488
489         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
490         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
491
492         return nr_pages <= limit;
493 }
494
495 #ifdef CONFIG_SYSCTL
496 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
497                 void *buffer, size_t *lenp, loff_t *ppos)
498 {
499         int ret;
500
501         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
502         if (ret == 0 && write)
503                 dirty_background_bytes = 0;
504         return ret;
505 }
506
507 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
508                 void *buffer, size_t *lenp, loff_t *ppos)
509 {
510         int ret;
511
512         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
513         if (ret == 0 && write)
514                 dirty_background_ratio = 0;
515         return ret;
516 }
517
518 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
519                 size_t *lenp, loff_t *ppos)
520 {
521         int old_ratio = vm_dirty_ratio;
522         int ret;
523
524         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
525         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
526                 writeback_set_ratelimit();
527                 vm_dirty_bytes = 0;
528         }
529         return ret;
530 }
531
532 static int dirty_bytes_handler(struct ctl_table *table, int write,
533                 void *buffer, size_t *lenp, loff_t *ppos)
534 {
535         unsigned long old_bytes = vm_dirty_bytes;
536         int ret;
537
538         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
539         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
540                 writeback_set_ratelimit();
541                 vm_dirty_ratio = 0;
542         }
543         return ret;
544 }
545 #endif
546
547 static unsigned long wp_next_time(unsigned long cur_time)
548 {
549         cur_time += VM_COMPLETIONS_PERIOD_LEN;
550         /* 0 has a special meaning... */
551         if (!cur_time)
552                 return 1;
553         return cur_time;
554 }
555
556 static void wb_domain_writeout_add(struct wb_domain *dom,
557                                    struct fprop_local_percpu *completions,
558                                    unsigned int max_prop_frac, long nr)
559 {
560         __fprop_add_percpu_max(&dom->completions, completions,
561                                max_prop_frac, nr);
562         /* First event after period switching was turned off? */
563         if (unlikely(!dom->period_time)) {
564                 /*
565                  * We can race with other __bdi_writeout_inc calls here but
566                  * it does not cause any harm since the resulting time when
567                  * timer will fire and what is in writeout_period_time will be
568                  * roughly the same.
569                  */
570                 dom->period_time = wp_next_time(jiffies);
571                 mod_timer(&dom->period_timer, dom->period_time);
572         }
573 }
574
575 /*
576  * Increment @wb's writeout completion count and the global writeout
577  * completion count. Called from __folio_end_writeback().
578  */
579 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
580 {
581         struct wb_domain *cgdom;
582
583         wb_stat_mod(wb, WB_WRITTEN, nr);
584         wb_domain_writeout_add(&global_wb_domain, &wb->completions,
585                                wb->bdi->max_prop_frac, nr);
586
587         cgdom = mem_cgroup_wb_domain(wb);
588         if (cgdom)
589                 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
590                                        wb->bdi->max_prop_frac, nr);
591 }
592
593 void wb_writeout_inc(struct bdi_writeback *wb)
594 {
595         unsigned long flags;
596
597         local_irq_save(flags);
598         __wb_writeout_add(wb, 1);
599         local_irq_restore(flags);
600 }
601 EXPORT_SYMBOL_GPL(wb_writeout_inc);
602
603 /*
604  * On idle system, we can be called long after we scheduled because we use
605  * deferred timers so count with missed periods.
606  */
607 static void writeout_period(struct timer_list *t)
608 {
609         struct wb_domain *dom = from_timer(dom, t, period_timer);
610         int miss_periods = (jiffies - dom->period_time) /
611                                                  VM_COMPLETIONS_PERIOD_LEN;
612
613         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
614                 dom->period_time = wp_next_time(dom->period_time +
615                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
616                 mod_timer(&dom->period_timer, dom->period_time);
617         } else {
618                 /*
619                  * Aging has zeroed all fractions. Stop wasting CPU on period
620                  * updates.
621                  */
622                 dom->period_time = 0;
623         }
624 }
625
626 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
627 {
628         memset(dom, 0, sizeof(*dom));
629
630         spin_lock_init(&dom->lock);
631
632         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
633
634         dom->dirty_limit_tstamp = jiffies;
635
636         return fprop_global_init(&dom->completions, gfp);
637 }
638
639 #ifdef CONFIG_CGROUP_WRITEBACK
640 void wb_domain_exit(struct wb_domain *dom)
641 {
642         del_timer_sync(&dom->period_timer);
643         fprop_global_destroy(&dom->completions);
644 }
645 #endif
646
647 /*
648  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
649  * registered backing devices, which, for obvious reasons, can not
650  * exceed 100%.
651  */
652 static unsigned int bdi_min_ratio;
653
654 static int bdi_check_pages_limit(unsigned long pages)
655 {
656         unsigned long max_dirty_pages = global_dirtyable_memory();
657
658         if (pages > max_dirty_pages)
659                 return -EINVAL;
660
661         return 0;
662 }
663
664 static unsigned long bdi_ratio_from_pages(unsigned long pages)
665 {
666         unsigned long background_thresh;
667         unsigned long dirty_thresh;
668         unsigned long ratio;
669
670         global_dirty_limits(&background_thresh, &dirty_thresh);
671         ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
672
673         return ratio;
674 }
675
676 static u64 bdi_get_bytes(unsigned int ratio)
677 {
678         unsigned long background_thresh;
679         unsigned long dirty_thresh;
680         u64 bytes;
681
682         global_dirty_limits(&background_thresh, &dirty_thresh);
683         bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
684
685         return bytes;
686 }
687
688 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
689 {
690         unsigned int delta;
691         int ret = 0;
692
693         if (min_ratio > 100 * BDI_RATIO_SCALE)
694                 return -EINVAL;
695
696         spin_lock_bh(&bdi_lock);
697         if (min_ratio > bdi->max_ratio) {
698                 ret = -EINVAL;
699         } else {
700                 if (min_ratio < bdi->min_ratio) {
701                         delta = bdi->min_ratio - min_ratio;
702                         bdi_min_ratio -= delta;
703                         bdi->min_ratio = min_ratio;
704                 } else {
705                         delta = min_ratio - bdi->min_ratio;
706                         if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
707                                 bdi_min_ratio += delta;
708                                 bdi->min_ratio = min_ratio;
709                         } else {
710                                 ret = -EINVAL;
711                         }
712                 }
713         }
714         spin_unlock_bh(&bdi_lock);
715
716         return ret;
717 }
718
719 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
720 {
721         int ret = 0;
722
723         if (max_ratio > 100 * BDI_RATIO_SCALE)
724                 return -EINVAL;
725
726         spin_lock_bh(&bdi_lock);
727         if (bdi->min_ratio > max_ratio) {
728                 ret = -EINVAL;
729         } else {
730                 bdi->max_ratio = max_ratio;
731                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
732                                                 (100 * BDI_RATIO_SCALE);
733         }
734         spin_unlock_bh(&bdi_lock);
735
736         return ret;
737 }
738
739 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
740 {
741         return __bdi_set_min_ratio(bdi, min_ratio);
742 }
743
744 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
745 {
746         return __bdi_set_max_ratio(bdi, max_ratio);
747 }
748
749 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
750 {
751         return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
752 }
753
754 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
755 {
756         return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
757 }
758 EXPORT_SYMBOL(bdi_set_max_ratio);
759
760 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
761 {
762         return bdi_get_bytes(bdi->min_ratio);
763 }
764
765 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
766 {
767         int ret;
768         unsigned long pages = min_bytes >> PAGE_SHIFT;
769         unsigned long min_ratio;
770
771         ret = bdi_check_pages_limit(pages);
772         if (ret)
773                 return ret;
774
775         min_ratio = bdi_ratio_from_pages(pages);
776         return __bdi_set_min_ratio(bdi, min_ratio);
777 }
778
779 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
780 {
781         return bdi_get_bytes(bdi->max_ratio);
782 }
783
784 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
785 {
786         int ret;
787         unsigned long pages = max_bytes >> PAGE_SHIFT;
788         unsigned long max_ratio;
789
790         ret = bdi_check_pages_limit(pages);
791         if (ret)
792                 return ret;
793
794         max_ratio = bdi_ratio_from_pages(pages);
795         return __bdi_set_max_ratio(bdi, max_ratio);
796 }
797
798 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
799 {
800         if (strict_limit > 1)
801                 return -EINVAL;
802
803         spin_lock_bh(&bdi_lock);
804         if (strict_limit)
805                 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
806         else
807                 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
808         spin_unlock_bh(&bdi_lock);
809
810         return 0;
811 }
812
813 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
814                                            unsigned long bg_thresh)
815 {
816         return (thresh + bg_thresh) / 2;
817 }
818
819 static unsigned long hard_dirty_limit(struct wb_domain *dom,
820                                       unsigned long thresh)
821 {
822         return max(thresh, dom->dirty_limit);
823 }
824
825 /*
826  * Memory which can be further allocated to a memcg domain is capped by
827  * system-wide clean memory excluding the amount being used in the domain.
828  */
829 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
830                             unsigned long filepages, unsigned long headroom)
831 {
832         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
833         unsigned long clean = filepages - min(filepages, mdtc->dirty);
834         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
835         unsigned long other_clean = global_clean - min(global_clean, clean);
836
837         mdtc->avail = filepages + min(headroom, other_clean);
838 }
839
840 /**
841  * __wb_calc_thresh - @wb's share of dirty threshold
842  * @dtc: dirty_throttle_context of interest
843  * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
844  *
845  * Note that balance_dirty_pages() will only seriously take dirty throttling
846  * threshold as a hard limit when sleeping max_pause per page is not enough
847  * to keep the dirty pages under control. For example, when the device is
848  * completely stalled due to some error conditions, or when there are 1000
849  * dd tasks writing to a slow 10MB/s USB key.
850  * In the other normal situations, it acts more gently by throttling the tasks
851  * more (rather than completely block them) when the wb dirty pages go high.
852  *
853  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
854  * - starving fast devices
855  * - piling up dirty pages (that will take long time to sync) on slow devices
856  *
857  * The wb's share of dirty limit will be adapting to its throughput and
858  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
859  *
860  * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
861  * "dirty" in the context of dirty balancing includes all PG_dirty and
862  * PG_writeback pages.
863  */
864 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
865                                       unsigned long thresh)
866 {
867         struct wb_domain *dom = dtc_dom(dtc);
868         u64 wb_thresh;
869         unsigned long numerator, denominator;
870         unsigned long wb_min_ratio, wb_max_ratio;
871
872         /*
873          * Calculate this wb's share of the thresh ratio.
874          */
875         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
876                               &numerator, &denominator);
877
878         wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
879         wb_thresh *= numerator;
880         wb_thresh = div64_ul(wb_thresh, denominator);
881
882         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
883
884         wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
885         if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
886                 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
887
888         return wb_thresh;
889 }
890
891 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
892 {
893         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
894
895         return __wb_calc_thresh(&gdtc, thresh);
896 }
897
898 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
899 {
900         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
901         struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
902         unsigned long filepages = 0, headroom = 0, writeback = 0;
903
904         gdtc.avail = global_dirtyable_memory();
905         gdtc.dirty = global_node_page_state(NR_FILE_DIRTY) +
906                      global_node_page_state(NR_WRITEBACK);
907
908         mem_cgroup_wb_stats(wb, &filepages, &headroom,
909                             &mdtc.dirty, &writeback);
910         mdtc.dirty += writeback;
911         mdtc_calc_avail(&mdtc, filepages, headroom);
912         domain_dirty_limits(&mdtc);
913
914         return __wb_calc_thresh(&mdtc, mdtc.thresh);
915 }
916
917 /*
918  *                           setpoint - dirty 3
919  *        f(dirty) := 1.0 + (----------------)
920  *                           limit - setpoint
921  *
922  * it's a 3rd order polynomial that subjects to
923  *
924  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
925  * (2) f(setpoint) = 1.0 => the balance point
926  * (3) f(limit)    = 0   => the hard limit
927  * (4) df/dx      <= 0   => negative feedback control
928  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
929  *     => fast response on large errors; small oscillation near setpoint
930  */
931 static long long pos_ratio_polynom(unsigned long setpoint,
932                                           unsigned long dirty,
933                                           unsigned long limit)
934 {
935         long long pos_ratio;
936         long x;
937
938         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
939                       (limit - setpoint) | 1);
940         pos_ratio = x;
941         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
942         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
943         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
944
945         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
946 }
947
948 /*
949  * Dirty position control.
950  *
951  * (o) global/bdi setpoints
952  *
953  * We want the dirty pages be balanced around the global/wb setpoints.
954  * When the number of dirty pages is higher/lower than the setpoint, the
955  * dirty position control ratio (and hence task dirty ratelimit) will be
956  * decreased/increased to bring the dirty pages back to the setpoint.
957  *
958  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
959  *
960  *     if (dirty < setpoint) scale up   pos_ratio
961  *     if (dirty > setpoint) scale down pos_ratio
962  *
963  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
964  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
965  *
966  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
967  *
968  * (o) global control line
969  *
970  *     ^ pos_ratio
971  *     |
972  *     |            |<===== global dirty control scope ======>|
973  * 2.0  * * * * * * *
974  *     |            .*
975  *     |            . *
976  *     |            .   *
977  *     |            .     *
978  *     |            .        *
979  *     |            .            *
980  * 1.0 ................................*
981  *     |            .                  .     *
982  *     |            .                  .          *
983  *     |            .                  .              *
984  *     |            .                  .                 *
985  *     |            .                  .                    *
986  *   0 +------------.------------------.----------------------*------------->
987  *           freerun^          setpoint^                 limit^   dirty pages
988  *
989  * (o) wb control line
990  *
991  *     ^ pos_ratio
992  *     |
993  *     |            *
994  *     |              *
995  *     |                *
996  *     |                  *
997  *     |                    * |<=========== span ============>|
998  * 1.0 .......................*
999  *     |                      . *
1000  *     |                      .   *
1001  *     |                      .     *
1002  *     |                      .       *
1003  *     |                      .         *
1004  *     |                      .           *
1005  *     |                      .             *
1006  *     |                      .               *
1007  *     |                      .                 *
1008  *     |                      .                   *
1009  *     |                      .                     *
1010  * 1/4 ...............................................* * * * * * * * * * * *
1011  *     |                      .                         .
1012  *     |                      .                           .
1013  *     |                      .                             .
1014  *   0 +----------------------.-------------------------------.------------->
1015  *                wb_setpoint^                    x_intercept^
1016  *
1017  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1018  * be smoothly throttled down to normal if it starts high in situations like
1019  * - start writing to a slow SD card and a fast disk at the same time. The SD
1020  *   card's wb_dirty may rush to many times higher than wb_setpoint.
1021  * - the wb dirty thresh drops quickly due to change of JBOD workload
1022  */
1023 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1024 {
1025         struct bdi_writeback *wb = dtc->wb;
1026         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1027         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1028         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1029         unsigned long wb_thresh = dtc->wb_thresh;
1030         unsigned long x_intercept;
1031         unsigned long setpoint;         /* dirty pages' target balance point */
1032         unsigned long wb_setpoint;
1033         unsigned long span;
1034         long long pos_ratio;            /* for scaling up/down the rate limit */
1035         long x;
1036
1037         dtc->pos_ratio = 0;
1038
1039         if (unlikely(dtc->dirty >= limit))
1040                 return;
1041
1042         /*
1043          * global setpoint
1044          *
1045          * See comment for pos_ratio_polynom().
1046          */
1047         setpoint = (freerun + limit) / 2;
1048         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1049
1050         /*
1051          * The strictlimit feature is a tool preventing mistrusted filesystems
1052          * from growing a large number of dirty pages before throttling. For
1053          * such filesystems balance_dirty_pages always checks wb counters
1054          * against wb limits. Even if global "nr_dirty" is under "freerun".
1055          * This is especially important for fuse which sets bdi->max_ratio to
1056          * 1% by default. Without strictlimit feature, fuse writeback may
1057          * consume arbitrary amount of RAM because it is accounted in
1058          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1059          *
1060          * Here, in wb_position_ratio(), we calculate pos_ratio based on
1061          * two values: wb_dirty and wb_thresh. Let's consider an example:
1062          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1063          * limits are set by default to 10% and 20% (background and throttle).
1064          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1065          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1066          * about ~6K pages (as the average of background and throttle wb
1067          * limits). The 3rd order polynomial will provide positive feedback if
1068          * wb_dirty is under wb_setpoint and vice versa.
1069          *
1070          * Note, that we cannot use global counters in these calculations
1071          * because we want to throttle process writing to a strictlimit wb
1072          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1073          * in the example above).
1074          */
1075         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1076                 long long wb_pos_ratio;
1077
1078                 if (dtc->wb_dirty < 8) {
1079                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1080                                            2 << RATELIMIT_CALC_SHIFT);
1081                         return;
1082                 }
1083
1084                 if (dtc->wb_dirty >= wb_thresh)
1085                         return;
1086
1087                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1088                                                     dtc->wb_bg_thresh);
1089
1090                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1091                         return;
1092
1093                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1094                                                  wb_thresh);
1095
1096                 /*
1097                  * Typically, for strictlimit case, wb_setpoint << setpoint
1098                  * and pos_ratio >> wb_pos_ratio. In the other words global
1099                  * state ("dirty") is not limiting factor and we have to
1100                  * make decision based on wb counters. But there is an
1101                  * important case when global pos_ratio should get precedence:
1102                  * global limits are exceeded (e.g. due to activities on other
1103                  * wb's) while given strictlimit wb is below limit.
1104                  *
1105                  * "pos_ratio * wb_pos_ratio" would work for the case above,
1106                  * but it would look too non-natural for the case of all
1107                  * activity in the system coming from a single strictlimit wb
1108                  * with bdi->max_ratio == 100%.
1109                  *
1110                  * Note that min() below somewhat changes the dynamics of the
1111                  * control system. Normally, pos_ratio value can be well over 3
1112                  * (when globally we are at freerun and wb is well below wb
1113                  * setpoint). Now the maximum pos_ratio in the same situation
1114                  * is 2. We might want to tweak this if we observe the control
1115                  * system is too slow to adapt.
1116                  */
1117                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1118                 return;
1119         }
1120
1121         /*
1122          * We have computed basic pos_ratio above based on global situation. If
1123          * the wb is over/under its share of dirty pages, we want to scale
1124          * pos_ratio further down/up. That is done by the following mechanism.
1125          */
1126
1127         /*
1128          * wb setpoint
1129          *
1130          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1131          *
1132          *                        x_intercept - wb_dirty
1133          *                     := --------------------------
1134          *                        x_intercept - wb_setpoint
1135          *
1136          * The main wb control line is a linear function that subjects to
1137          *
1138          * (1) f(wb_setpoint) = 1.0
1139          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1140          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1141          *
1142          * For single wb case, the dirty pages are observed to fluctuate
1143          * regularly within range
1144          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1145          * for various filesystems, where (2) can yield in a reasonable 12.5%
1146          * fluctuation range for pos_ratio.
1147          *
1148          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1149          * own size, so move the slope over accordingly and choose a slope that
1150          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1151          */
1152         if (unlikely(wb_thresh > dtc->thresh))
1153                 wb_thresh = dtc->thresh;
1154         /*
1155          * It's very possible that wb_thresh is close to 0 not because the
1156          * device is slow, but that it has remained inactive for long time.
1157          * Honour such devices a reasonable good (hopefully IO efficient)
1158          * threshold, so that the occasional writes won't be blocked and active
1159          * writes can rampup the threshold quickly.
1160          */
1161         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1162         /*
1163          * scale global setpoint to wb's:
1164          *      wb_setpoint = setpoint * wb_thresh / thresh
1165          */
1166         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1167         wb_setpoint = setpoint * (u64)x >> 16;
1168         /*
1169          * Use span=(8*write_bw) in single wb case as indicated by
1170          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1171          *
1172          *        wb_thresh                    thresh - wb_thresh
1173          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1174          *         thresh                           thresh
1175          */
1176         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1177         x_intercept = wb_setpoint + span;
1178
1179         if (dtc->wb_dirty < x_intercept - span / 4) {
1180                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1181                                       (x_intercept - wb_setpoint) | 1);
1182         } else
1183                 pos_ratio /= 4;
1184
1185         /*
1186          * wb reserve area, safeguard against dirty pool underrun and disk idle
1187          * It may push the desired control point of global dirty pages higher
1188          * than setpoint.
1189          */
1190         x_intercept = wb_thresh / 2;
1191         if (dtc->wb_dirty < x_intercept) {
1192                 if (dtc->wb_dirty > x_intercept / 8)
1193                         pos_ratio = div_u64(pos_ratio * x_intercept,
1194                                             dtc->wb_dirty);
1195                 else
1196                         pos_ratio *= 8;
1197         }
1198
1199         dtc->pos_ratio = pos_ratio;
1200 }
1201
1202 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1203                                       unsigned long elapsed,
1204                                       unsigned long written)
1205 {
1206         const unsigned long period = roundup_pow_of_two(3 * HZ);
1207         unsigned long avg = wb->avg_write_bandwidth;
1208         unsigned long old = wb->write_bandwidth;
1209         u64 bw;
1210
1211         /*
1212          * bw = written * HZ / elapsed
1213          *
1214          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1215          * write_bandwidth = ---------------------------------------------------
1216          *                                          period
1217          *
1218          * @written may have decreased due to folio_redirty_for_writepage().
1219          * Avoid underflowing @bw calculation.
1220          */
1221         bw = written - min(written, wb->written_stamp);
1222         bw *= HZ;
1223         if (unlikely(elapsed > period)) {
1224                 bw = div64_ul(bw, elapsed);
1225                 avg = bw;
1226                 goto out;
1227         }
1228         bw += (u64)wb->write_bandwidth * (period - elapsed);
1229         bw >>= ilog2(period);
1230
1231         /*
1232          * one more level of smoothing, for filtering out sudden spikes
1233          */
1234         if (avg > old && old >= (unsigned long)bw)
1235                 avg -= (avg - old) >> 3;
1236
1237         if (avg < old && old <= (unsigned long)bw)
1238                 avg += (old - avg) >> 3;
1239
1240 out:
1241         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1242         avg = max(avg, 1LU);
1243         if (wb_has_dirty_io(wb)) {
1244                 long delta = avg - wb->avg_write_bandwidth;
1245                 WARN_ON_ONCE(atomic_long_add_return(delta,
1246                                         &wb->bdi->tot_write_bandwidth) <= 0);
1247         }
1248         wb->write_bandwidth = bw;
1249         WRITE_ONCE(wb->avg_write_bandwidth, avg);
1250 }
1251
1252 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1253 {
1254         struct wb_domain *dom = dtc_dom(dtc);
1255         unsigned long thresh = dtc->thresh;
1256         unsigned long limit = dom->dirty_limit;
1257
1258         /*
1259          * Follow up in one step.
1260          */
1261         if (limit < thresh) {
1262                 limit = thresh;
1263                 goto update;
1264         }
1265
1266         /*
1267          * Follow down slowly. Use the higher one as the target, because thresh
1268          * may drop below dirty. This is exactly the reason to introduce
1269          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1270          */
1271         thresh = max(thresh, dtc->dirty);
1272         if (limit > thresh) {
1273                 limit -= (limit - thresh) >> 5;
1274                 goto update;
1275         }
1276         return;
1277 update:
1278         dom->dirty_limit = limit;
1279 }
1280
1281 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1282                                       unsigned long now)
1283 {
1284         struct wb_domain *dom = dtc_dom(dtc);
1285
1286         /*
1287          * check locklessly first to optimize away locking for the most time
1288          */
1289         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1290                 return;
1291
1292         spin_lock(&dom->lock);
1293         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1294                 update_dirty_limit(dtc);
1295                 dom->dirty_limit_tstamp = now;
1296         }
1297         spin_unlock(&dom->lock);
1298 }
1299
1300 /*
1301  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1302  *
1303  * Normal wb tasks will be curbed at or below it in long term.
1304  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1305  */
1306 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1307                                       unsigned long dirtied,
1308                                       unsigned long elapsed)
1309 {
1310         struct bdi_writeback *wb = dtc->wb;
1311         unsigned long dirty = dtc->dirty;
1312         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1313         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1314         unsigned long setpoint = (freerun + limit) / 2;
1315         unsigned long write_bw = wb->avg_write_bandwidth;
1316         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1317         unsigned long dirty_rate;
1318         unsigned long task_ratelimit;
1319         unsigned long balanced_dirty_ratelimit;
1320         unsigned long step;
1321         unsigned long x;
1322         unsigned long shift;
1323
1324         /*
1325          * The dirty rate will match the writeout rate in long term, except
1326          * when dirty pages are truncated by userspace or re-dirtied by FS.
1327          */
1328         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1329
1330         /*
1331          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1332          */
1333         task_ratelimit = (u64)dirty_ratelimit *
1334                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1335         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1336
1337         /*
1338          * A linear estimation of the "balanced" throttle rate. The theory is,
1339          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1340          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1341          * formula will yield the balanced rate limit (write_bw / N).
1342          *
1343          * Note that the expanded form is not a pure rate feedback:
1344          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1345          * but also takes pos_ratio into account:
1346          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1347          *
1348          * (1) is not realistic because pos_ratio also takes part in balancing
1349          * the dirty rate.  Consider the state
1350          *      pos_ratio = 0.5                                              (3)
1351          *      rate = 2 * (write_bw / N)                                    (4)
1352          * If (1) is used, it will stuck in that state! Because each dd will
1353          * be throttled at
1354          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1355          * yielding
1356          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1357          * put (6) into (1) we get
1358          *      rate_(i+1) = rate_(i)                                        (7)
1359          *
1360          * So we end up using (2) to always keep
1361          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1362          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1363          * pos_ratio is able to drive itself to 1.0, which is not only where
1364          * the dirty count meet the setpoint, but also where the slope of
1365          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1366          */
1367         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1368                                            dirty_rate | 1);
1369         /*
1370          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1371          */
1372         if (unlikely(balanced_dirty_ratelimit > write_bw))
1373                 balanced_dirty_ratelimit = write_bw;
1374
1375         /*
1376          * We could safely do this and return immediately:
1377          *
1378          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1379          *
1380          * However to get a more stable dirty_ratelimit, the below elaborated
1381          * code makes use of task_ratelimit to filter out singular points and
1382          * limit the step size.
1383          *
1384          * The below code essentially only uses the relative value of
1385          *
1386          *      task_ratelimit - dirty_ratelimit
1387          *      = (pos_ratio - 1) * dirty_ratelimit
1388          *
1389          * which reflects the direction and size of dirty position error.
1390          */
1391
1392         /*
1393          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1394          * task_ratelimit is on the same side of dirty_ratelimit, too.
1395          * For example, when
1396          * - dirty_ratelimit > balanced_dirty_ratelimit
1397          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1398          * lowering dirty_ratelimit will help meet both the position and rate
1399          * control targets. Otherwise, don't update dirty_ratelimit if it will
1400          * only help meet the rate target. After all, what the users ultimately
1401          * feel and care are stable dirty rate and small position error.
1402          *
1403          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1404          * and filter out the singular points of balanced_dirty_ratelimit. Which
1405          * keeps jumping around randomly and can even leap far away at times
1406          * due to the small 200ms estimation period of dirty_rate (we want to
1407          * keep that period small to reduce time lags).
1408          */
1409         step = 0;
1410
1411         /*
1412          * For strictlimit case, calculations above were based on wb counters
1413          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1414          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1415          * Hence, to calculate "step" properly, we have to use wb_dirty as
1416          * "dirty" and wb_setpoint as "setpoint".
1417          *
1418          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1419          * it's possible that wb_thresh is close to zero due to inactivity
1420          * of backing device.
1421          */
1422         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1423                 dirty = dtc->wb_dirty;
1424                 if (dtc->wb_dirty < 8)
1425                         setpoint = dtc->wb_dirty + 1;
1426                 else
1427                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1428         }
1429
1430         if (dirty < setpoint) {
1431                 x = min3(wb->balanced_dirty_ratelimit,
1432                          balanced_dirty_ratelimit, task_ratelimit);
1433                 if (dirty_ratelimit < x)
1434                         step = x - dirty_ratelimit;
1435         } else {
1436                 x = max3(wb->balanced_dirty_ratelimit,
1437                          balanced_dirty_ratelimit, task_ratelimit);
1438                 if (dirty_ratelimit > x)
1439                         step = dirty_ratelimit - x;
1440         }
1441
1442         /*
1443          * Don't pursue 100% rate matching. It's impossible since the balanced
1444          * rate itself is constantly fluctuating. So decrease the track speed
1445          * when it gets close to the target. Helps eliminate pointless tremors.
1446          */
1447         shift = dirty_ratelimit / (2 * step + 1);
1448         if (shift < BITS_PER_LONG)
1449                 step = DIV_ROUND_UP(step >> shift, 8);
1450         else
1451                 step = 0;
1452
1453         if (dirty_ratelimit < balanced_dirty_ratelimit)
1454                 dirty_ratelimit += step;
1455         else
1456                 dirty_ratelimit -= step;
1457
1458         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1459         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1460
1461         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1462 }
1463
1464 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1465                                   struct dirty_throttle_control *mdtc,
1466                                   bool update_ratelimit)
1467 {
1468         struct bdi_writeback *wb = gdtc->wb;
1469         unsigned long now = jiffies;
1470         unsigned long elapsed;
1471         unsigned long dirtied;
1472         unsigned long written;
1473
1474         spin_lock(&wb->list_lock);
1475
1476         /*
1477          * Lockless checks for elapsed time are racy and delayed update after
1478          * IO completion doesn't do it at all (to make sure written pages are
1479          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1480          * division errors.
1481          */
1482         elapsed = max(now - wb->bw_time_stamp, 1UL);
1483         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1484         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1485
1486         if (update_ratelimit) {
1487                 domain_update_dirty_limit(gdtc, now);
1488                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1489
1490                 /*
1491                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1492                  * compiler has no way to figure that out.  Help it.
1493                  */
1494                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1495                         domain_update_dirty_limit(mdtc, now);
1496                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1497                 }
1498         }
1499         wb_update_write_bandwidth(wb, elapsed, written);
1500
1501         wb->dirtied_stamp = dirtied;
1502         wb->written_stamp = written;
1503         WRITE_ONCE(wb->bw_time_stamp, now);
1504         spin_unlock(&wb->list_lock);
1505 }
1506
1507 void wb_update_bandwidth(struct bdi_writeback *wb)
1508 {
1509         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1510
1511         __wb_update_bandwidth(&gdtc, NULL, false);
1512 }
1513
1514 /* Interval after which we consider wb idle and don't estimate bandwidth */
1515 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1516
1517 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1518 {
1519         unsigned long now = jiffies;
1520         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1521
1522         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1523             !atomic_read(&wb->writeback_inodes)) {
1524                 spin_lock(&wb->list_lock);
1525                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1526                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1527                 WRITE_ONCE(wb->bw_time_stamp, now);
1528                 spin_unlock(&wb->list_lock);
1529         }
1530 }
1531
1532 /*
1533  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1534  * will look to see if it needs to start dirty throttling.
1535  *
1536  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1537  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1538  * (the number of pages we may dirty without exceeding the dirty limits).
1539  */
1540 static unsigned long dirty_poll_interval(unsigned long dirty,
1541                                          unsigned long thresh)
1542 {
1543         if (thresh > dirty)
1544                 return 1UL << (ilog2(thresh - dirty) >> 1);
1545
1546         return 1;
1547 }
1548
1549 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1550                                   unsigned long wb_dirty)
1551 {
1552         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1553         unsigned long t;
1554
1555         /*
1556          * Limit pause time for small memory systems. If sleeping for too long
1557          * time, a small pool of dirty/writeback pages may go empty and disk go
1558          * idle.
1559          *
1560          * 8 serves as the safety ratio.
1561          */
1562         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1563         t++;
1564
1565         return min_t(unsigned long, t, MAX_PAUSE);
1566 }
1567
1568 static long wb_min_pause(struct bdi_writeback *wb,
1569                          long max_pause,
1570                          unsigned long task_ratelimit,
1571                          unsigned long dirty_ratelimit,
1572                          int *nr_dirtied_pause)
1573 {
1574         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1575         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1576         long t;         /* target pause */
1577         long pause;     /* estimated next pause */
1578         int pages;      /* target nr_dirtied_pause */
1579
1580         /* target for 10ms pause on 1-dd case */
1581         t = max(1, HZ / 100);
1582
1583         /*
1584          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1585          * overheads.
1586          *
1587          * (N * 10ms) on 2^N concurrent tasks.
1588          */
1589         if (hi > lo)
1590                 t += (hi - lo) * (10 * HZ) / 1024;
1591
1592         /*
1593          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1594          * on the much more stable dirty_ratelimit. However the next pause time
1595          * will be computed based on task_ratelimit and the two rate limits may
1596          * depart considerably at some time. Especially if task_ratelimit goes
1597          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1598          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1599          * result task_ratelimit won't be executed faithfully, which could
1600          * eventually bring down dirty_ratelimit.
1601          *
1602          * We apply two rules to fix it up:
1603          * 1) try to estimate the next pause time and if necessary, use a lower
1604          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1605          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1606          * 2) limit the target pause time to max_pause/2, so that the normal
1607          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1608          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1609          */
1610         t = min(t, 1 + max_pause / 2);
1611         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1612
1613         /*
1614          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1615          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1616          * When the 16 consecutive reads are often interrupted by some dirty
1617          * throttling pause during the async writes, cfq will go into idles
1618          * (deadline is fine). So push nr_dirtied_pause as high as possible
1619          * until reaches DIRTY_POLL_THRESH=32 pages.
1620          */
1621         if (pages < DIRTY_POLL_THRESH) {
1622                 t = max_pause;
1623                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1624                 if (pages > DIRTY_POLL_THRESH) {
1625                         pages = DIRTY_POLL_THRESH;
1626                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1627                 }
1628         }
1629
1630         pause = HZ * pages / (task_ratelimit + 1);
1631         if (pause > max_pause) {
1632                 t = max_pause;
1633                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1634         }
1635
1636         *nr_dirtied_pause = pages;
1637         /*
1638          * The minimal pause time will normally be half the target pause time.
1639          */
1640         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1641 }
1642
1643 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1644 {
1645         struct bdi_writeback *wb = dtc->wb;
1646         unsigned long wb_reclaimable;
1647
1648         /*
1649          * wb_thresh is not treated as some limiting factor as
1650          * dirty_thresh, due to reasons
1651          * - in JBOD setup, wb_thresh can fluctuate a lot
1652          * - in a system with HDD and USB key, the USB key may somehow
1653          *   go into state (wb_dirty >> wb_thresh) either because
1654          *   wb_dirty starts high, or because wb_thresh drops low.
1655          *   In this case we don't want to hard throttle the USB key
1656          *   dirtiers for 100 seconds until wb_dirty drops under
1657          *   wb_thresh. Instead the auxiliary wb control line in
1658          *   wb_position_ratio() will let the dirtier task progress
1659          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1660          */
1661         dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1662         dtc->wb_bg_thresh = dtc->thresh ?
1663                 div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1664
1665         /*
1666          * In order to avoid the stacked BDI deadlock we need
1667          * to ensure we accurately count the 'dirty' pages when
1668          * the threshold is low.
1669          *
1670          * Otherwise it would be possible to get thresh+n pages
1671          * reported dirty, even though there are thresh-m pages
1672          * actually dirty; with m+n sitting in the percpu
1673          * deltas.
1674          */
1675         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1676                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1677                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1678         } else {
1679                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1680                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1681         }
1682 }
1683
1684 /*
1685  * balance_dirty_pages() must be called by processes which are generating dirty
1686  * data.  It looks at the number of dirty pages in the machine and will force
1687  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1688  * If we're over `background_thresh' then the writeback threads are woken to
1689  * perform some writeout.
1690  */
1691 static int balance_dirty_pages(struct bdi_writeback *wb,
1692                                unsigned long pages_dirtied, unsigned int flags)
1693 {
1694         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1695         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1696         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1697         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1698                                                      &mdtc_stor : NULL;
1699         struct dirty_throttle_control *sdtc;
1700         unsigned long nr_dirty;
1701         long period;
1702         long pause;
1703         long max_pause;
1704         long min_pause;
1705         int nr_dirtied_pause;
1706         bool dirty_exceeded = false;
1707         unsigned long task_ratelimit;
1708         unsigned long dirty_ratelimit;
1709         struct backing_dev_info *bdi = wb->bdi;
1710         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1711         unsigned long start_time = jiffies;
1712         int ret = 0;
1713
1714         for (;;) {
1715                 unsigned long now = jiffies;
1716                 unsigned long dirty, thresh, bg_thresh;
1717                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1718                 unsigned long m_thresh = 0;
1719                 unsigned long m_bg_thresh = 0;
1720
1721                 nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1722                 gdtc->avail = global_dirtyable_memory();
1723                 gdtc->dirty = nr_dirty + global_node_page_state(NR_WRITEBACK);
1724
1725                 domain_dirty_limits(gdtc);
1726
1727                 if (unlikely(strictlimit)) {
1728                         wb_dirty_limits(gdtc);
1729
1730                         dirty = gdtc->wb_dirty;
1731                         thresh = gdtc->wb_thresh;
1732                         bg_thresh = gdtc->wb_bg_thresh;
1733                 } else {
1734                         dirty = gdtc->dirty;
1735                         thresh = gdtc->thresh;
1736                         bg_thresh = gdtc->bg_thresh;
1737                 }
1738
1739                 if (mdtc) {
1740                         unsigned long filepages, headroom, writeback;
1741
1742                         /*
1743                          * If @wb belongs to !root memcg, repeat the same
1744                          * basic calculations for the memcg domain.
1745                          */
1746                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1747                                             &mdtc->dirty, &writeback);
1748                         mdtc->dirty += writeback;
1749                         mdtc_calc_avail(mdtc, filepages, headroom);
1750
1751                         domain_dirty_limits(mdtc);
1752
1753                         if (unlikely(strictlimit)) {
1754                                 wb_dirty_limits(mdtc);
1755                                 m_dirty = mdtc->wb_dirty;
1756                                 m_thresh = mdtc->wb_thresh;
1757                                 m_bg_thresh = mdtc->wb_bg_thresh;
1758                         } else {
1759                                 m_dirty = mdtc->dirty;
1760                                 m_thresh = mdtc->thresh;
1761                                 m_bg_thresh = mdtc->bg_thresh;
1762                         }
1763                 }
1764
1765                 /*
1766                  * In laptop mode, we wait until hitting the higher threshold
1767                  * before starting background writeout, and then write out all
1768                  * the way down to the lower threshold.  So slow writers cause
1769                  * minimal disk activity.
1770                  *
1771                  * In normal mode, we start background writeout at the lower
1772                  * background_thresh, to keep the amount of dirty memory low.
1773                  */
1774                 if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1775                     !writeback_in_progress(wb))
1776                         wb_start_background_writeback(wb);
1777
1778                 /*
1779                  * Throttle it only when the background writeback cannot
1780                  * catch-up. This avoids (excessively) small writeouts
1781                  * when the wb limits are ramping up in case of !strictlimit.
1782                  *
1783                  * In strictlimit case make decision based on the wb counters
1784                  * and limits. Small writeouts when the wb limits are ramping
1785                  * up are the price we consciously pay for strictlimit-ing.
1786                  *
1787                  * If memcg domain is in effect, @dirty should be under
1788                  * both global and memcg freerun ceilings.
1789                  */
1790                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1791                     (!mdtc ||
1792                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1793                         unsigned long intv;
1794                         unsigned long m_intv;
1795
1796 free_running:
1797                         intv = dirty_poll_interval(dirty, thresh);
1798                         m_intv = ULONG_MAX;
1799
1800                         current->dirty_paused_when = now;
1801                         current->nr_dirtied = 0;
1802                         if (mdtc)
1803                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1804                         current->nr_dirtied_pause = min(intv, m_intv);
1805                         break;
1806                 }
1807
1808                 /* Start writeback even when in laptop mode */
1809                 if (unlikely(!writeback_in_progress(wb)))
1810                         wb_start_background_writeback(wb);
1811
1812                 mem_cgroup_flush_foreign(wb);
1813
1814                 /*
1815                  * Calculate global domain's pos_ratio and select the
1816                  * global dtc by default.
1817                  */
1818                 if (!strictlimit) {
1819                         wb_dirty_limits(gdtc);
1820
1821                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1822                             gdtc->wb_dirty <
1823                             dirty_freerun_ceiling(gdtc->wb_thresh,
1824                                                   gdtc->wb_bg_thresh))
1825                                 /*
1826                                  * LOCAL_THROTTLE tasks must not be throttled
1827                                  * when below the per-wb freerun ceiling.
1828                                  */
1829                                 goto free_running;
1830                 }
1831
1832                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1833                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1834
1835                 wb_position_ratio(gdtc);
1836                 sdtc = gdtc;
1837
1838                 if (mdtc) {
1839                         /*
1840                          * If memcg domain is in effect, calculate its
1841                          * pos_ratio.  @wb should satisfy constraints from
1842                          * both global and memcg domains.  Choose the one
1843                          * w/ lower pos_ratio.
1844                          */
1845                         if (!strictlimit) {
1846                                 wb_dirty_limits(mdtc);
1847
1848                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1849                                     mdtc->wb_dirty <
1850                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1851                                                           mdtc->wb_bg_thresh))
1852                                         /*
1853                                          * LOCAL_THROTTLE tasks must not be
1854                                          * throttled when below the per-wb
1855                                          * freerun ceiling.
1856                                          */
1857                                         goto free_running;
1858                         }
1859                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1860                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1861
1862                         wb_position_ratio(mdtc);
1863                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1864                                 sdtc = mdtc;
1865                 }
1866
1867                 if (dirty_exceeded != wb->dirty_exceeded)
1868                         wb->dirty_exceeded = dirty_exceeded;
1869
1870                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1871                                            BANDWIDTH_INTERVAL))
1872                         __wb_update_bandwidth(gdtc, mdtc, true);
1873
1874                 /* throttle according to the chosen dtc */
1875                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1876                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1877                                                         RATELIMIT_CALC_SHIFT;
1878                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1879                 min_pause = wb_min_pause(wb, max_pause,
1880                                          task_ratelimit, dirty_ratelimit,
1881                                          &nr_dirtied_pause);
1882
1883                 if (unlikely(task_ratelimit == 0)) {
1884                         period = max_pause;
1885                         pause = max_pause;
1886                         goto pause;
1887                 }
1888                 period = HZ * pages_dirtied / task_ratelimit;
1889                 pause = period;
1890                 if (current->dirty_paused_when)
1891                         pause -= now - current->dirty_paused_when;
1892                 /*
1893                  * For less than 1s think time (ext3/4 may block the dirtier
1894                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1895                  * however at much less frequency), try to compensate it in
1896                  * future periods by updating the virtual time; otherwise just
1897                  * do a reset, as it may be a light dirtier.
1898                  */
1899                 if (pause < min_pause) {
1900                         trace_balance_dirty_pages(wb,
1901                                                   sdtc->thresh,
1902                                                   sdtc->bg_thresh,
1903                                                   sdtc->dirty,
1904                                                   sdtc->wb_thresh,
1905                                                   sdtc->wb_dirty,
1906                                                   dirty_ratelimit,
1907                                                   task_ratelimit,
1908                                                   pages_dirtied,
1909                                                   period,
1910                                                   min(pause, 0L),
1911                                                   start_time);
1912                         if (pause < -HZ) {
1913                                 current->dirty_paused_when = now;
1914                                 current->nr_dirtied = 0;
1915                         } else if (period) {
1916                                 current->dirty_paused_when += period;
1917                                 current->nr_dirtied = 0;
1918                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1919                                 current->nr_dirtied_pause += pages_dirtied;
1920                         break;
1921                 }
1922                 if (unlikely(pause > max_pause)) {
1923                         /* for occasional dropped task_ratelimit */
1924                         now += min(pause - max_pause, max_pause);
1925                         pause = max_pause;
1926                 }
1927
1928 pause:
1929                 trace_balance_dirty_pages(wb,
1930                                           sdtc->thresh,
1931                                           sdtc->bg_thresh,
1932                                           sdtc->dirty,
1933                                           sdtc->wb_thresh,
1934                                           sdtc->wb_dirty,
1935                                           dirty_ratelimit,
1936                                           task_ratelimit,
1937                                           pages_dirtied,
1938                                           period,
1939                                           pause,
1940                                           start_time);
1941                 if (flags & BDP_ASYNC) {
1942                         ret = -EAGAIN;
1943                         break;
1944                 }
1945                 __set_current_state(TASK_KILLABLE);
1946                 bdi->last_bdp_sleep = jiffies;
1947                 io_schedule_timeout(pause);
1948
1949                 current->dirty_paused_when = now + pause;
1950                 current->nr_dirtied = 0;
1951                 current->nr_dirtied_pause = nr_dirtied_pause;
1952
1953                 /*
1954                  * This is typically equal to (dirty < thresh) and can also
1955                  * keep "1000+ dd on a slow USB stick" under control.
1956                  */
1957                 if (task_ratelimit)
1958                         break;
1959
1960                 /*
1961                  * In the case of an unresponsive NFS server and the NFS dirty
1962                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1963                  * to go through, so that tasks on them still remain responsive.
1964                  *
1965                  * In theory 1 page is enough to keep the consumer-producer
1966                  * pipe going: the flusher cleans 1 page => the task dirties 1
1967                  * more page. However wb_dirty has accounting errors.  So use
1968                  * the larger and more IO friendly wb_stat_error.
1969                  */
1970                 if (sdtc->wb_dirty <= wb_stat_error())
1971                         break;
1972
1973                 if (fatal_signal_pending(current))
1974                         break;
1975         }
1976         return ret;
1977 }
1978
1979 static DEFINE_PER_CPU(int, bdp_ratelimits);
1980
1981 /*
1982  * Normal tasks are throttled by
1983  *      loop {
1984  *              dirty tsk->nr_dirtied_pause pages;
1985  *              take a snap in balance_dirty_pages();
1986  *      }
1987  * However there is a worst case. If every task exit immediately when dirtied
1988  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1989  * called to throttle the page dirties. The solution is to save the not yet
1990  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1991  * randomly into the running tasks. This works well for the above worst case,
1992  * as the new task will pick up and accumulate the old task's leaked dirty
1993  * count and eventually get throttled.
1994  */
1995 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1996
1997 /**
1998  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1999  * @mapping: address_space which was dirtied.
2000  * @flags: BDP flags.
2001  *
2002  * Processes which are dirtying memory should call in here once for each page
2003  * which was newly dirtied.  The function will periodically check the system's
2004  * dirty state and will initiate writeback if needed.
2005  *
2006  * See balance_dirty_pages_ratelimited() for details.
2007  *
2008  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2009  * indicate that memory is out of balance and the caller must wait
2010  * for I/O to complete.  Otherwise, it will return 0 to indicate
2011  * that either memory was already in balance, or it was able to sleep
2012  * until the amount of dirty memory returned to balance.
2013  */
2014 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2015                                         unsigned int flags)
2016 {
2017         struct inode *inode = mapping->host;
2018         struct backing_dev_info *bdi = inode_to_bdi(inode);
2019         struct bdi_writeback *wb = NULL;
2020         int ratelimit;
2021         int ret = 0;
2022         int *p;
2023
2024         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2025                 return ret;
2026
2027         if (inode_cgwb_enabled(inode))
2028                 wb = wb_get_create_current(bdi, GFP_KERNEL);
2029         if (!wb)
2030                 wb = &bdi->wb;
2031
2032         ratelimit = current->nr_dirtied_pause;
2033         if (wb->dirty_exceeded)
2034                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2035
2036         preempt_disable();
2037         /*
2038          * This prevents one CPU to accumulate too many dirtied pages without
2039          * calling into balance_dirty_pages(), which can happen when there are
2040          * 1000+ tasks, all of them start dirtying pages at exactly the same
2041          * time, hence all honoured too large initial task->nr_dirtied_pause.
2042          */
2043         p =  this_cpu_ptr(&bdp_ratelimits);
2044         if (unlikely(current->nr_dirtied >= ratelimit))
2045                 *p = 0;
2046         else if (unlikely(*p >= ratelimit_pages)) {
2047                 *p = 0;
2048                 ratelimit = 0;
2049         }
2050         /*
2051          * Pick up the dirtied pages by the exited tasks. This avoids lots of
2052          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2053          * the dirty throttling and livelock other long-run dirtiers.
2054          */
2055         p = this_cpu_ptr(&dirty_throttle_leaks);
2056         if (*p > 0 && current->nr_dirtied < ratelimit) {
2057                 unsigned long nr_pages_dirtied;
2058                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2059                 *p -= nr_pages_dirtied;
2060                 current->nr_dirtied += nr_pages_dirtied;
2061         }
2062         preempt_enable();
2063
2064         if (unlikely(current->nr_dirtied >= ratelimit))
2065                 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2066
2067         wb_put(wb);
2068         return ret;
2069 }
2070 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2071
2072 /**
2073  * balance_dirty_pages_ratelimited - balance dirty memory state.
2074  * @mapping: address_space which was dirtied.
2075  *
2076  * Processes which are dirtying memory should call in here once for each page
2077  * which was newly dirtied.  The function will periodically check the system's
2078  * dirty state and will initiate writeback if needed.
2079  *
2080  * Once we're over the dirty memory limit we decrease the ratelimiting
2081  * by a lot, to prevent individual processes from overshooting the limit
2082  * by (ratelimit_pages) each.
2083  */
2084 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2085 {
2086         balance_dirty_pages_ratelimited_flags(mapping, 0);
2087 }
2088 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2089
2090 /**
2091  * wb_over_bg_thresh - does @wb need to be written back?
2092  * @wb: bdi_writeback of interest
2093  *
2094  * Determines whether background writeback should keep writing @wb or it's
2095  * clean enough.
2096  *
2097  * Return: %true if writeback should continue.
2098  */
2099 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2100 {
2101         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2102         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2103         struct dirty_throttle_control * const gdtc = &gdtc_stor;
2104         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2105                                                      &mdtc_stor : NULL;
2106         unsigned long reclaimable;
2107         unsigned long thresh;
2108
2109         /*
2110          * Similar to balance_dirty_pages() but ignores pages being written
2111          * as we're trying to decide whether to put more under writeback.
2112          */
2113         gdtc->avail = global_dirtyable_memory();
2114         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2115         domain_dirty_limits(gdtc);
2116
2117         if (gdtc->dirty > gdtc->bg_thresh)
2118                 return true;
2119
2120         thresh = __wb_calc_thresh(gdtc, gdtc->bg_thresh);
2121         if (thresh < 2 * wb_stat_error())
2122                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2123         else
2124                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2125
2126         if (reclaimable > thresh)
2127                 return true;
2128
2129         if (mdtc) {
2130                 unsigned long filepages, headroom, writeback;
2131
2132                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2133                                     &writeback);
2134                 mdtc_calc_avail(mdtc, filepages, headroom);
2135                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
2136
2137                 if (mdtc->dirty > mdtc->bg_thresh)
2138                         return true;
2139
2140                 thresh = __wb_calc_thresh(mdtc, mdtc->bg_thresh);
2141                 if (thresh < 2 * wb_stat_error())
2142                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2143                 else
2144                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2145
2146                 if (reclaimable > thresh)
2147                         return true;
2148         }
2149
2150         return false;
2151 }
2152
2153 #ifdef CONFIG_SYSCTL
2154 /*
2155  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2156  */
2157 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2158                 void *buffer, size_t *length, loff_t *ppos)
2159 {
2160         unsigned int old_interval = dirty_writeback_interval;
2161         int ret;
2162
2163         ret = proc_dointvec(table, write, buffer, length, ppos);
2164
2165         /*
2166          * Writing 0 to dirty_writeback_interval will disable periodic writeback
2167          * and a different non-zero value will wakeup the writeback threads.
2168          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2169          * iterate over all bdis and wbs.
2170          * The reason we do this is to make the change take effect immediately.
2171          */
2172         if (!ret && write && dirty_writeback_interval &&
2173                 dirty_writeback_interval != old_interval)
2174                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2175
2176         return ret;
2177 }
2178 #endif
2179
2180 void laptop_mode_timer_fn(struct timer_list *t)
2181 {
2182         struct backing_dev_info *backing_dev_info =
2183                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2184
2185         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2186 }
2187
2188 /*
2189  * We've spun up the disk and we're in laptop mode: schedule writeback
2190  * of all dirty data a few seconds from now.  If the flush is already scheduled
2191  * then push it back - the user is still using the disk.
2192  */
2193 void laptop_io_completion(struct backing_dev_info *info)
2194 {
2195         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2196 }
2197
2198 /*
2199  * We're in laptop mode and we've just synced. The sync's writes will have
2200  * caused another writeback to be scheduled by laptop_io_completion.
2201  * Nothing needs to be written back anymore, so we unschedule the writeback.
2202  */
2203 void laptop_sync_completion(void)
2204 {
2205         struct backing_dev_info *bdi;
2206
2207         rcu_read_lock();
2208
2209         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2210                 del_timer(&bdi->laptop_mode_wb_timer);
2211
2212         rcu_read_unlock();
2213 }
2214
2215 /*
2216  * If ratelimit_pages is too high then we can get into dirty-data overload
2217  * if a large number of processes all perform writes at the same time.
2218  *
2219  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2220  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2221  * thresholds.
2222  */
2223
2224 void writeback_set_ratelimit(void)
2225 {
2226         struct wb_domain *dom = &global_wb_domain;
2227         unsigned long background_thresh;
2228         unsigned long dirty_thresh;
2229
2230         global_dirty_limits(&background_thresh, &dirty_thresh);
2231         dom->dirty_limit = dirty_thresh;
2232         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2233         if (ratelimit_pages < 16)
2234                 ratelimit_pages = 16;
2235 }
2236
2237 static int page_writeback_cpu_online(unsigned int cpu)
2238 {
2239         writeback_set_ratelimit();
2240         return 0;
2241 }
2242
2243 #ifdef CONFIG_SYSCTL
2244
2245 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2246 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2247
2248 static struct ctl_table vm_page_writeback_sysctls[] = {
2249         {
2250                 .procname   = "dirty_background_ratio",
2251                 .data       = &dirty_background_ratio,
2252                 .maxlen     = sizeof(dirty_background_ratio),
2253                 .mode       = 0644,
2254                 .proc_handler   = dirty_background_ratio_handler,
2255                 .extra1     = SYSCTL_ZERO,
2256                 .extra2     = SYSCTL_ONE_HUNDRED,
2257         },
2258         {
2259                 .procname   = "dirty_background_bytes",
2260                 .data       = &dirty_background_bytes,
2261                 .maxlen     = sizeof(dirty_background_bytes),
2262                 .mode       = 0644,
2263                 .proc_handler   = dirty_background_bytes_handler,
2264                 .extra1     = SYSCTL_LONG_ONE,
2265         },
2266         {
2267                 .procname   = "dirty_ratio",
2268                 .data       = &vm_dirty_ratio,
2269                 .maxlen     = sizeof(vm_dirty_ratio),
2270                 .mode       = 0644,
2271                 .proc_handler   = dirty_ratio_handler,
2272                 .extra1     = SYSCTL_ZERO,
2273                 .extra2     = SYSCTL_ONE_HUNDRED,
2274         },
2275         {
2276                 .procname   = "dirty_bytes",
2277                 .data       = &vm_dirty_bytes,
2278                 .maxlen     = sizeof(vm_dirty_bytes),
2279                 .mode       = 0644,
2280                 .proc_handler   = dirty_bytes_handler,
2281                 .extra1     = (void *)&dirty_bytes_min,
2282         },
2283         {
2284                 .procname   = "dirty_writeback_centisecs",
2285                 .data       = &dirty_writeback_interval,
2286                 .maxlen     = sizeof(dirty_writeback_interval),
2287                 .mode       = 0644,
2288                 .proc_handler   = dirty_writeback_centisecs_handler,
2289         },
2290         {
2291                 .procname   = "dirty_expire_centisecs",
2292                 .data       = &dirty_expire_interval,
2293                 .maxlen     = sizeof(dirty_expire_interval),
2294                 .mode       = 0644,
2295                 .proc_handler   = proc_dointvec_minmax,
2296                 .extra1     = SYSCTL_ZERO,
2297         },
2298 #ifdef CONFIG_HIGHMEM
2299         {
2300                 .procname       = "highmem_is_dirtyable",
2301                 .data           = &vm_highmem_is_dirtyable,
2302                 .maxlen         = sizeof(vm_highmem_is_dirtyable),
2303                 .mode           = 0644,
2304                 .proc_handler   = proc_dointvec_minmax,
2305                 .extra1         = SYSCTL_ZERO,
2306                 .extra2         = SYSCTL_ONE,
2307         },
2308 #endif
2309         {
2310                 .procname       = "laptop_mode",
2311                 .data           = &laptop_mode,
2312                 .maxlen         = sizeof(laptop_mode),
2313                 .mode           = 0644,
2314                 .proc_handler   = proc_dointvec_jiffies,
2315         },
2316 };
2317 #endif
2318
2319 /*
2320  * Called early on to tune the page writeback dirty limits.
2321  *
2322  * We used to scale dirty pages according to how total memory
2323  * related to pages that could be allocated for buffers.
2324  *
2325  * However, that was when we used "dirty_ratio" to scale with
2326  * all memory, and we don't do that any more. "dirty_ratio"
2327  * is now applied to total non-HIGHPAGE memory, and as such we can't
2328  * get into the old insane situation any more where we had
2329  * large amounts of dirty pages compared to a small amount of
2330  * non-HIGHMEM memory.
2331  *
2332  * But we might still want to scale the dirty_ratio by how
2333  * much memory the box has..
2334  */
2335 void __init page_writeback_init(void)
2336 {
2337         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2338
2339         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2340                           page_writeback_cpu_online, NULL);
2341         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2342                           page_writeback_cpu_online);
2343 #ifdef CONFIG_SYSCTL
2344         register_sysctl_init("vm", vm_page_writeback_sysctls);
2345 #endif
2346 }
2347
2348 /**
2349  * tag_pages_for_writeback - tag pages to be written by writeback
2350  * @mapping: address space structure to write
2351  * @start: starting page index
2352  * @end: ending page index (inclusive)
2353  *
2354  * This function scans the page range from @start to @end (inclusive) and tags
2355  * all pages that have DIRTY tag set with a special TOWRITE tag.  The caller
2356  * can then use the TOWRITE tag to identify pages eligible for writeback.
2357  * This mechanism is used to avoid livelocking of writeback by a process
2358  * steadily creating new dirty pages in the file (thus it is important for this
2359  * function to be quick so that it can tag pages faster than a dirtying process
2360  * can create them).
2361  */
2362 void tag_pages_for_writeback(struct address_space *mapping,
2363                              pgoff_t start, pgoff_t end)
2364 {
2365         XA_STATE(xas, &mapping->i_pages, start);
2366         unsigned int tagged = 0;
2367         void *page;
2368
2369         xas_lock_irq(&xas);
2370         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2371                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2372                 if (++tagged % XA_CHECK_SCHED)
2373                         continue;
2374
2375                 xas_pause(&xas);
2376                 xas_unlock_irq(&xas);
2377                 cond_resched();
2378                 xas_lock_irq(&xas);
2379         }
2380         xas_unlock_irq(&xas);
2381 }
2382 EXPORT_SYMBOL(tag_pages_for_writeback);
2383
2384 static bool folio_prepare_writeback(struct address_space *mapping,
2385                 struct writeback_control *wbc, struct folio *folio)
2386 {
2387         /*
2388          * Folio truncated or invalidated. We can freely skip it then,
2389          * even for data integrity operations: the folio has disappeared
2390          * concurrently, so there could be no real expectation of this
2391          * data integrity operation even if there is now a new, dirty
2392          * folio at the same pagecache index.
2393          */
2394         if (unlikely(folio->mapping != mapping))
2395                 return false;
2396
2397         /*
2398          * Did somebody else write it for us?
2399          */
2400         if (!folio_test_dirty(folio))
2401                 return false;
2402
2403         if (folio_test_writeback(folio)) {
2404                 if (wbc->sync_mode == WB_SYNC_NONE)
2405                         return false;
2406                 folio_wait_writeback(folio);
2407         }
2408         BUG_ON(folio_test_writeback(folio));
2409
2410         if (!folio_clear_dirty_for_io(folio))
2411                 return false;
2412
2413         return true;
2414 }
2415
2416 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2417 {
2418         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2419                 return PAGECACHE_TAG_TOWRITE;
2420         return PAGECACHE_TAG_DIRTY;
2421 }
2422
2423 static pgoff_t wbc_end(struct writeback_control *wbc)
2424 {
2425         if (wbc->range_cyclic)
2426                 return -1;
2427         return wbc->range_end >> PAGE_SHIFT;
2428 }
2429
2430 static struct folio *writeback_get_folio(struct address_space *mapping,
2431                 struct writeback_control *wbc)
2432 {
2433         struct folio *folio;
2434
2435 retry:
2436         folio = folio_batch_next(&wbc->fbatch);
2437         if (!folio) {
2438                 folio_batch_release(&wbc->fbatch);
2439                 cond_resched();
2440                 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2441                                 wbc_to_tag(wbc), &wbc->fbatch);
2442                 folio = folio_batch_next(&wbc->fbatch);
2443                 if (!folio)
2444                         return NULL;
2445         }
2446
2447         folio_lock(folio);
2448         if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2449                 folio_unlock(folio);
2450                 goto retry;
2451         }
2452
2453         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2454         return folio;
2455 }
2456
2457 /**
2458  * writeback_iter - iterate folio of a mapping for writeback
2459  * @mapping: address space structure to write
2460  * @wbc: writeback context
2461  * @folio: previously iterated folio (%NULL to start)
2462  * @error: in-out pointer for writeback errors (see below)
2463  *
2464  * This function returns the next folio for the writeback operation described by
2465  * @wbc on @mapping and  should be called in a while loop in the ->writepages
2466  * implementation.
2467  *
2468  * To start the writeback operation, %NULL is passed in the @folio argument, and
2469  * for every subsequent iteration the folio returned previously should be passed
2470  * back in.
2471  *
2472  * If there was an error in the per-folio writeback inside the writeback_iter()
2473  * loop, @error should be set to the error value.
2474  *
2475  * Once the writeback described in @wbc has finished, this function will return
2476  * %NULL and if there was an error in any iteration restore it to @error.
2477  *
2478  * Note: callers should not manually break out of the loop using break or goto
2479  * but must keep calling writeback_iter() until it returns %NULL.
2480  *
2481  * Return: the folio to write or %NULL if the loop is done.
2482  */
2483 struct folio *writeback_iter(struct address_space *mapping,
2484                 struct writeback_control *wbc, struct folio *folio, int *error)
2485 {
2486         if (!folio) {
2487                 folio_batch_init(&wbc->fbatch);
2488                 wbc->saved_err = *error = 0;
2489
2490                 /*
2491                  * For range cyclic writeback we remember where we stopped so
2492                  * that we can continue where we stopped.
2493                  *
2494                  * For non-cyclic writeback we always start at the beginning of
2495                  * the passed in range.
2496                  */
2497                 if (wbc->range_cyclic)
2498                         wbc->index = mapping->writeback_index;
2499                 else
2500                         wbc->index = wbc->range_start >> PAGE_SHIFT;
2501
2502                 /*
2503                  * To avoid livelocks when other processes dirty new pages, we
2504                  * first tag pages which should be written back and only then
2505                  * start writing them.
2506                  *
2507                  * For data-integrity writeback we have to be careful so that we
2508                  * do not miss some pages (e.g., because some other process has
2509                  * cleared the TOWRITE tag we set).  The rule we follow is that
2510                  * TOWRITE tag can be cleared only by the process clearing the
2511                  * DIRTY tag (and submitting the page for I/O).
2512                  */
2513                 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2514                         tag_pages_for_writeback(mapping, wbc->index,
2515                                         wbc_end(wbc));
2516         } else {
2517                 wbc->nr_to_write -= folio_nr_pages(folio);
2518
2519                 WARN_ON_ONCE(*error > 0);
2520
2521                 /*
2522                  * For integrity writeback we have to keep going until we have
2523                  * written all the folios we tagged for writeback above, even if
2524                  * we run past wbc->nr_to_write or encounter errors.
2525                  * We stash away the first error we encounter in wbc->saved_err
2526                  * so that it can be retrieved when we're done.  This is because
2527                  * the file system may still have state to clear for each folio.
2528                  *
2529                  * For background writeback we exit as soon as we run past
2530                  * wbc->nr_to_write or encounter the first error.
2531                  */
2532                 if (wbc->sync_mode == WB_SYNC_ALL) {
2533                         if (*error && !wbc->saved_err)
2534                                 wbc->saved_err = *error;
2535                 } else {
2536                         if (*error || wbc->nr_to_write <= 0)
2537                                 goto done;
2538                 }
2539         }
2540
2541         folio = writeback_get_folio(mapping, wbc);
2542         if (!folio) {
2543                 /*
2544                  * To avoid deadlocks between range_cyclic writeback and callers
2545                  * that hold pages in PageWriteback to aggregate I/O until
2546                  * the writeback iteration finishes, we do not loop back to the
2547                  * start of the file.  Doing so causes a page lock/page
2548                  * writeback access order inversion - we should only ever lock
2549                  * multiple pages in ascending page->index order, and looping
2550                  * back to the start of the file violates that rule and causes
2551                  * deadlocks.
2552                  */
2553                 if (wbc->range_cyclic)
2554                         mapping->writeback_index = 0;
2555
2556                 /*
2557                  * Return the first error we encountered (if there was any) to
2558                  * the caller.
2559                  */
2560                 *error = wbc->saved_err;
2561         }
2562         return folio;
2563
2564 done:
2565         if (wbc->range_cyclic)
2566                 mapping->writeback_index = folio->index + folio_nr_pages(folio);
2567         folio_batch_release(&wbc->fbatch);
2568         return NULL;
2569 }
2570 EXPORT_SYMBOL_GPL(writeback_iter);
2571
2572 /**
2573  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2574  * @mapping: address space structure to write
2575  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2576  * @writepage: function called for each page
2577  * @data: data passed to writepage function
2578  *
2579  * Return: %0 on success, negative error code otherwise
2580  *
2581  * Note: please use writeback_iter() instead.
2582  */
2583 int write_cache_pages(struct address_space *mapping,
2584                       struct writeback_control *wbc, writepage_t writepage,
2585                       void *data)
2586 {
2587         struct folio *folio = NULL;
2588         int error;
2589
2590         while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2591                 error = writepage(folio, wbc, data);
2592                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2593                         folio_unlock(folio);
2594                         error = 0;
2595                 }
2596         }
2597
2598         return error;
2599 }
2600 EXPORT_SYMBOL(write_cache_pages);
2601
2602 static int writeback_use_writepage(struct address_space *mapping,
2603                 struct writeback_control *wbc)
2604 {
2605         struct folio *folio = NULL;
2606         struct blk_plug plug;
2607         int err;
2608
2609         blk_start_plug(&plug);
2610         while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2611                 err = mapping->a_ops->writepage(&folio->page, wbc);
2612                 if (err == AOP_WRITEPAGE_ACTIVATE) {
2613                         folio_unlock(folio);
2614                         err = 0;
2615                 }
2616                 mapping_set_error(mapping, err);
2617         }
2618         blk_finish_plug(&plug);
2619
2620         return err;
2621 }
2622
2623 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2624 {
2625         int ret;
2626         struct bdi_writeback *wb;
2627
2628         if (wbc->nr_to_write <= 0)
2629                 return 0;
2630         wb = inode_to_wb_wbc(mapping->host, wbc);
2631         wb_bandwidth_estimate_start(wb);
2632         while (1) {
2633                 if (mapping->a_ops->writepages) {
2634                         ret = mapping->a_ops->writepages(mapping, wbc);
2635                 } else if (mapping->a_ops->writepage) {
2636                         ret = writeback_use_writepage(mapping, wbc);
2637                 } else {
2638                         /* deal with chardevs and other special files */
2639                         ret = 0;
2640                 }
2641                 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2642                         break;
2643
2644                 /*
2645                  * Lacking an allocation context or the locality or writeback
2646                  * state of any of the inode's pages, throttle based on
2647                  * writeback activity on the local node. It's as good a
2648                  * guess as any.
2649                  */
2650                 reclaim_throttle(NODE_DATA(numa_node_id()),
2651                         VMSCAN_THROTTLE_WRITEBACK);
2652         }
2653         /*
2654          * Usually few pages are written by now from those we've just submitted
2655          * but if there's constant writeback being submitted, this makes sure
2656          * writeback bandwidth is updated once in a while.
2657          */
2658         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2659                                    BANDWIDTH_INTERVAL))
2660                 wb_update_bandwidth(wb);
2661         return ret;
2662 }
2663
2664 /*
2665  * For address_spaces which do not use buffers nor write back.
2666  */
2667 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2668 {
2669         if (!folio_test_dirty(folio))
2670                 return !folio_test_set_dirty(folio);
2671         return false;
2672 }
2673 EXPORT_SYMBOL(noop_dirty_folio);
2674
2675 /*
2676  * Helper function for set_page_dirty family.
2677  *
2678  * Caller must hold folio_memcg_lock().
2679  *
2680  * NOTE: This relies on being atomic wrt interrupts.
2681  */
2682 static void folio_account_dirtied(struct folio *folio,
2683                 struct address_space *mapping)
2684 {
2685         struct inode *inode = mapping->host;
2686
2687         trace_writeback_dirty_folio(folio, mapping);
2688
2689         if (mapping_can_writeback(mapping)) {
2690                 struct bdi_writeback *wb;
2691                 long nr = folio_nr_pages(folio);
2692
2693                 inode_attach_wb(inode, folio);
2694                 wb = inode_to_wb(inode);
2695
2696                 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2697                 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2698                 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2699                 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2700                 wb_stat_mod(wb, WB_DIRTIED, nr);
2701                 task_io_account_write(nr * PAGE_SIZE);
2702                 current->nr_dirtied += nr;
2703                 __this_cpu_add(bdp_ratelimits, nr);
2704
2705                 mem_cgroup_track_foreign_dirty(folio, wb);
2706         }
2707 }
2708
2709 /*
2710  * Helper function for deaccounting dirty page without writeback.
2711  *
2712  * Caller must hold folio_memcg_lock().
2713  */
2714 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2715 {
2716         long nr = folio_nr_pages(folio);
2717
2718         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2719         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2720         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2721         task_io_account_cancelled_write(nr * PAGE_SIZE);
2722 }
2723
2724 /*
2725  * Mark the folio dirty, and set it dirty in the page cache.
2726  *
2727  * If warn is true, then emit a warning if the folio is not uptodate and has
2728  * not been truncated.
2729  *
2730  * The caller must hold folio_memcg_lock().  It is the caller's
2731  * responsibility to prevent the folio from being truncated while
2732  * this function is in progress, although it may have been truncated
2733  * before this function is called.  Most callers have the folio locked.
2734  * A few have the folio blocked from truncation through other means (e.g.
2735  * zap_vma_pages() has it mapped and is holding the page table lock).
2736  * When called from mark_buffer_dirty(), the filesystem should hold a
2737  * reference to the buffer_head that is being marked dirty, which causes
2738  * try_to_free_buffers() to fail.
2739  */
2740 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2741                              int warn)
2742 {
2743         unsigned long flags;
2744
2745         xa_lock_irqsave(&mapping->i_pages, flags);
2746         if (folio->mapping) {   /* Race with truncate? */
2747                 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2748                 folio_account_dirtied(folio, mapping);
2749                 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2750                                 PAGECACHE_TAG_DIRTY);
2751         }
2752         xa_unlock_irqrestore(&mapping->i_pages, flags);
2753 }
2754
2755 /**
2756  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2757  * @mapping: Address space this folio belongs to.
2758  * @folio: Folio to be marked as dirty.
2759  *
2760  * Filesystems which do not use buffer heads should call this function
2761  * from their dirty_folio address space operation.  It ignores the
2762  * contents of folio_get_private(), so if the filesystem marks individual
2763  * blocks as dirty, the filesystem should handle that itself.
2764  *
2765  * This is also sometimes used by filesystems which use buffer_heads when
2766  * a single buffer is being dirtied: we want to set the folio dirty in
2767  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2768  * whereas block_dirty_folio() is a "top-down" dirtying.
2769  *
2770  * The caller must ensure this doesn't race with truncation.  Most will
2771  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2772  * folio mapped and the pte lock held, which also locks out truncation.
2773  */
2774 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2775 {
2776         folio_memcg_lock(folio);
2777         if (folio_test_set_dirty(folio)) {
2778                 folio_memcg_unlock(folio);
2779                 return false;
2780         }
2781
2782         __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2783         folio_memcg_unlock(folio);
2784
2785         if (mapping->host) {
2786                 /* !PageAnon && !swapper_space */
2787                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2788         }
2789         return true;
2790 }
2791 EXPORT_SYMBOL(filemap_dirty_folio);
2792
2793 /**
2794  * folio_redirty_for_writepage - Decline to write a dirty folio.
2795  * @wbc: The writeback control.
2796  * @folio: The folio.
2797  *
2798  * When a writepage implementation decides that it doesn't want to write
2799  * @folio for some reason, it should call this function, unlock @folio and
2800  * return 0.
2801  *
2802  * Return: True if we redirtied the folio.  False if someone else dirtied
2803  * it first.
2804  */
2805 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2806                 struct folio *folio)
2807 {
2808         struct address_space *mapping = folio->mapping;
2809         long nr = folio_nr_pages(folio);
2810         bool ret;
2811
2812         wbc->pages_skipped += nr;
2813         ret = filemap_dirty_folio(mapping, folio);
2814         if (mapping && mapping_can_writeback(mapping)) {
2815                 struct inode *inode = mapping->host;
2816                 struct bdi_writeback *wb;
2817                 struct wb_lock_cookie cookie = {};
2818
2819                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2820                 current->nr_dirtied -= nr;
2821                 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2822                 wb_stat_mod(wb, WB_DIRTIED, -nr);
2823                 unlocked_inode_to_wb_end(inode, &cookie);
2824         }
2825         return ret;
2826 }
2827 EXPORT_SYMBOL(folio_redirty_for_writepage);
2828
2829 /**
2830  * folio_mark_dirty - Mark a folio as being modified.
2831  * @folio: The folio.
2832  *
2833  * The folio may not be truncated while this function is running.
2834  * Holding the folio lock is sufficient to prevent truncation, but some
2835  * callers cannot acquire a sleeping lock.  These callers instead hold
2836  * the page table lock for a page table which contains at least one page
2837  * in this folio.  Truncation will block on the page table lock as it
2838  * unmaps pages before removing the folio from its mapping.
2839  *
2840  * Return: True if the folio was newly dirtied, false if it was already dirty.
2841  */
2842 bool folio_mark_dirty(struct folio *folio)
2843 {
2844         struct address_space *mapping = folio_mapping(folio);
2845
2846         if (likely(mapping)) {
2847                 /*
2848                  * readahead/folio_deactivate could remain
2849                  * PG_readahead/PG_reclaim due to race with folio_end_writeback
2850                  * About readahead, if the folio is written, the flags would be
2851                  * reset. So no problem.
2852                  * About folio_deactivate, if the folio is redirtied,
2853                  * the flag will be reset. So no problem. but if the
2854                  * folio is used by readahead it will confuse readahead
2855                  * and make it restart the size rampup process. But it's
2856                  * a trivial problem.
2857                  */
2858                 if (folio_test_reclaim(folio))
2859                         folio_clear_reclaim(folio);
2860                 return mapping->a_ops->dirty_folio(mapping, folio);
2861         }
2862
2863         return noop_dirty_folio(mapping, folio);
2864 }
2865 EXPORT_SYMBOL(folio_mark_dirty);
2866
2867 /*
2868  * set_page_dirty() is racy if the caller has no reference against
2869  * page->mapping->host, and if the page is unlocked.  This is because another
2870  * CPU could truncate the page off the mapping and then free the mapping.
2871  *
2872  * Usually, the page _is_ locked, or the caller is a user-space process which
2873  * holds a reference on the inode by having an open file.
2874  *
2875  * In other cases, the page should be locked before running set_page_dirty().
2876  */
2877 int set_page_dirty_lock(struct page *page)
2878 {
2879         int ret;
2880
2881         lock_page(page);
2882         ret = set_page_dirty(page);
2883         unlock_page(page);
2884         return ret;
2885 }
2886 EXPORT_SYMBOL(set_page_dirty_lock);
2887
2888 /*
2889  * This cancels just the dirty bit on the kernel page itself, it does NOT
2890  * actually remove dirty bits on any mmap's that may be around. It also
2891  * leaves the page tagged dirty, so any sync activity will still find it on
2892  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2893  * look at the dirty bits in the VM.
2894  *
2895  * Doing this should *normally* only ever be done when a page is truncated,
2896  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2897  * this when it notices that somebody has cleaned out all the buffers on a
2898  * page without actually doing it through the VM. Can you say "ext3 is
2899  * horribly ugly"? Thought you could.
2900  */
2901 void __folio_cancel_dirty(struct folio *folio)
2902 {
2903         struct address_space *mapping = folio_mapping(folio);
2904
2905         if (mapping_can_writeback(mapping)) {
2906                 struct inode *inode = mapping->host;
2907                 struct bdi_writeback *wb;
2908                 struct wb_lock_cookie cookie = {};
2909
2910                 folio_memcg_lock(folio);
2911                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2912
2913                 if (folio_test_clear_dirty(folio))
2914                         folio_account_cleaned(folio, wb);
2915
2916                 unlocked_inode_to_wb_end(inode, &cookie);
2917                 folio_memcg_unlock(folio);
2918         } else {
2919                 folio_clear_dirty(folio);
2920         }
2921 }
2922 EXPORT_SYMBOL(__folio_cancel_dirty);
2923
2924 /*
2925  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2926  * Returns true if the folio was previously dirty.
2927  *
2928  * This is for preparing to put the folio under writeout.  We leave
2929  * the folio tagged as dirty in the xarray so that a concurrent
2930  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2931  * The ->writepage implementation will run either folio_start_writeback()
2932  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2933  * and xarray dirty tag back into sync.
2934  *
2935  * This incoherency between the folio's dirty flag and xarray tag is
2936  * unfortunate, but it only exists while the folio is locked.
2937  */
2938 bool folio_clear_dirty_for_io(struct folio *folio)
2939 {
2940         struct address_space *mapping = folio_mapping(folio);
2941         bool ret = false;
2942
2943         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2944
2945         if (mapping && mapping_can_writeback(mapping)) {
2946                 struct inode *inode = mapping->host;
2947                 struct bdi_writeback *wb;
2948                 struct wb_lock_cookie cookie = {};
2949
2950                 /*
2951                  * Yes, Virginia, this is indeed insane.
2952                  *
2953                  * We use this sequence to make sure that
2954                  *  (a) we account for dirty stats properly
2955                  *  (b) we tell the low-level filesystem to
2956                  *      mark the whole folio dirty if it was
2957                  *      dirty in a pagetable. Only to then
2958                  *  (c) clean the folio again and return 1 to
2959                  *      cause the writeback.
2960                  *
2961                  * This way we avoid all nasty races with the
2962                  * dirty bit in multiple places and clearing
2963                  * them concurrently from different threads.
2964                  *
2965                  * Note! Normally the "folio_mark_dirty(folio)"
2966                  * has no effect on the actual dirty bit - since
2967                  * that will already usually be set. But we
2968                  * need the side effects, and it can help us
2969                  * avoid races.
2970                  *
2971                  * We basically use the folio "master dirty bit"
2972                  * as a serialization point for all the different
2973                  * threads doing their things.
2974                  */
2975                 if (folio_mkclean(folio))
2976                         folio_mark_dirty(folio);
2977                 /*
2978                  * We carefully synchronise fault handlers against
2979                  * installing a dirty pte and marking the folio dirty
2980                  * at this point.  We do this by having them hold the
2981                  * page lock while dirtying the folio, and folios are
2982                  * always locked coming in here, so we get the desired
2983                  * exclusion.
2984                  */
2985                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2986                 if (folio_test_clear_dirty(folio)) {
2987                         long nr = folio_nr_pages(folio);
2988                         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2989                         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2990                         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2991                         ret = true;
2992                 }
2993                 unlocked_inode_to_wb_end(inode, &cookie);
2994                 return ret;
2995         }
2996         return folio_test_clear_dirty(folio);
2997 }
2998 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2999
3000 static void wb_inode_writeback_start(struct bdi_writeback *wb)
3001 {
3002         atomic_inc(&wb->writeback_inodes);
3003 }
3004
3005 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3006 {
3007         unsigned long flags;
3008         atomic_dec(&wb->writeback_inodes);
3009         /*
3010          * Make sure estimate of writeback throughput gets updated after
3011          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3012          * (which is the interval other bandwidth updates use for batching) so
3013          * that if multiple inodes end writeback at a similar time, they get
3014          * batched into one bandwidth update.
3015          */
3016         spin_lock_irqsave(&wb->work_lock, flags);
3017         if (test_bit(WB_registered, &wb->state))
3018                 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3019         spin_unlock_irqrestore(&wb->work_lock, flags);
3020 }
3021
3022 bool __folio_end_writeback(struct folio *folio)
3023 {
3024         long nr = folio_nr_pages(folio);
3025         struct address_space *mapping = folio_mapping(folio);
3026         bool ret;
3027
3028         folio_memcg_lock(folio);
3029         if (mapping && mapping_use_writeback_tags(mapping)) {
3030                 struct inode *inode = mapping->host;
3031                 struct backing_dev_info *bdi = inode_to_bdi(inode);
3032                 unsigned long flags;
3033
3034                 xa_lock_irqsave(&mapping->i_pages, flags);
3035                 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3036                 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3037                                         PAGECACHE_TAG_WRITEBACK);
3038                 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3039                         struct bdi_writeback *wb = inode_to_wb(inode);
3040
3041                         wb_stat_mod(wb, WB_WRITEBACK, -nr);
3042                         __wb_writeout_add(wb, nr);
3043                         if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3044                                 wb_inode_writeback_end(wb);
3045                 }
3046
3047                 if (mapping->host && !mapping_tagged(mapping,
3048                                                      PAGECACHE_TAG_WRITEBACK))
3049                         sb_clear_inode_writeback(mapping->host);
3050
3051                 xa_unlock_irqrestore(&mapping->i_pages, flags);
3052         } else {
3053                 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3054         }
3055
3056         lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3057         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3058         node_stat_mod_folio(folio, NR_WRITTEN, nr);
3059         folio_memcg_unlock(folio);
3060
3061         return ret;
3062 }
3063
3064 void __folio_start_writeback(struct folio *folio, bool keep_write)
3065 {
3066         long nr = folio_nr_pages(folio);
3067         struct address_space *mapping = folio_mapping(folio);
3068         int access_ret;
3069
3070         VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3071
3072         folio_memcg_lock(folio);
3073         if (mapping && mapping_use_writeback_tags(mapping)) {
3074                 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3075                 struct inode *inode = mapping->host;
3076                 struct backing_dev_info *bdi = inode_to_bdi(inode);
3077                 unsigned long flags;
3078                 bool on_wblist;
3079
3080                 xas_lock_irqsave(&xas, flags);
3081                 xas_load(&xas);
3082                 folio_test_set_writeback(folio);
3083
3084                 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3085
3086                 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3087                 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3088                         struct bdi_writeback *wb = inode_to_wb(inode);
3089
3090                         wb_stat_mod(wb, WB_WRITEBACK, nr);
3091                         if (!on_wblist)
3092                                 wb_inode_writeback_start(wb);
3093                 }
3094
3095                 /*
3096                  * We can come through here when swapping anonymous
3097                  * folios, so we don't necessarily have an inode to
3098                  * track for sync.
3099                  */
3100                 if (mapping->host && !on_wblist)
3101                         sb_mark_inode_writeback(mapping->host);
3102                 if (!folio_test_dirty(folio))
3103                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3104                 if (!keep_write)
3105                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3106                 xas_unlock_irqrestore(&xas, flags);
3107         } else {
3108                 folio_test_set_writeback(folio);
3109         }
3110
3111         lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3112         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3113         folio_memcg_unlock(folio);
3114
3115         access_ret = arch_make_folio_accessible(folio);
3116         /*
3117          * If writeback has been triggered on a page that cannot be made
3118          * accessible, it is too late to recover here.
3119          */
3120         VM_BUG_ON_FOLIO(access_ret != 0, folio);
3121 }
3122 EXPORT_SYMBOL(__folio_start_writeback);
3123
3124 /**
3125  * folio_wait_writeback - Wait for a folio to finish writeback.
3126  * @folio: The folio to wait for.
3127  *
3128  * If the folio is currently being written back to storage, wait for the
3129  * I/O to complete.
3130  *
3131  * Context: Sleeps.  Must be called in process context and with
3132  * no spinlocks held.  Caller should hold a reference on the folio.
3133  * If the folio is not locked, writeback may start again after writeback
3134  * has finished.
3135  */
3136 void folio_wait_writeback(struct folio *folio)
3137 {
3138         while (folio_test_writeback(folio)) {
3139                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3140                 folio_wait_bit(folio, PG_writeback);
3141         }
3142 }
3143 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3144
3145 /**
3146  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3147  * @folio: The folio to wait for.
3148  *
3149  * If the folio is currently being written back to storage, wait for the
3150  * I/O to complete or a fatal signal to arrive.
3151  *
3152  * Context: Sleeps.  Must be called in process context and with
3153  * no spinlocks held.  Caller should hold a reference on the folio.
3154  * If the folio is not locked, writeback may start again after writeback
3155  * has finished.
3156  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3157  */
3158 int folio_wait_writeback_killable(struct folio *folio)
3159 {
3160         while (folio_test_writeback(folio)) {
3161                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3162                 if (folio_wait_bit_killable(folio, PG_writeback))
3163                         return -EINTR;
3164         }
3165
3166         return 0;
3167 }
3168 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3169
3170 /**
3171  * folio_wait_stable() - wait for writeback to finish, if necessary.
3172  * @folio: The folio to wait on.
3173  *
3174  * This function determines if the given folio is related to a backing
3175  * device that requires folio contents to be held stable during writeback.
3176  * If so, then it will wait for any pending writeback to complete.
3177  *
3178  * Context: Sleeps.  Must be called in process context and with
3179  * no spinlocks held.  Caller should hold a reference on the folio.
3180  * If the folio is not locked, writeback may start again after writeback
3181  * has finished.
3182  */
3183 void folio_wait_stable(struct folio *folio)
3184 {
3185         if (mapping_stable_writes(folio_mapping(folio)))
3186                 folio_wait_writeback(folio);
3187 }
3188 EXPORT_SYMBOL_GPL(folio_wait_stable);