mm, page_alloc: fix dirtyable highmem calculation
[linux-2.6-block.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130         struct wb_domain        *dom;
131         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
132 #endif
133         struct bdi_writeback    *wb;
134         struct fprop_local_percpu *wb_completions;
135
136         unsigned long           avail;          /* dirtyable */
137         unsigned long           dirty;          /* file_dirty + write + nfs */
138         unsigned long           thresh;         /* dirty threshold */
139         unsigned long           bg_thresh;      /* dirty background threshold */
140
141         unsigned long           wb_dirty;       /* per-wb counterparts */
142         unsigned long           wb_thresh;
143         unsigned long           wb_bg_thresh;
144
145         unsigned long           pos_ratio;
146 };
147
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
158                                 .dom = &global_wb_domain,               \
159                                 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
164                                 .dom = mem_cgroup_wb_domain(__wb),      \
165                                 .wb_completions = &(__wb)->memcg_completions, \
166                                 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175         return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180         return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185         return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189                              unsigned long *minp, unsigned long *maxp)
190 {
191         unsigned long this_bw = wb->avg_write_bandwidth;
192         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193         unsigned long long min = wb->bdi->min_ratio;
194         unsigned long long max = wb->bdi->max_ratio;
195
196         /*
197          * @wb may already be clean by the time control reaches here and
198          * the total may not include its bw.
199          */
200         if (this_bw < tot_bw) {
201                 if (min) {
202                         min *= this_bw;
203                         do_div(min, tot_bw);
204                 }
205                 if (max < 100) {
206                         max *= this_bw;
207                         do_div(max, tot_bw);
208                 }
209         }
210
211         *minp = min;
212         *maxp = max;
213 }
214
215 #else   /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
218                                 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224         return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229         return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234         return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239         return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243                              unsigned long *minp, unsigned long *maxp)
244 {
245         *minp = wb->bdi->min_ratio;
246         *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif  /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268
269 /**
270  * node_dirtyable_memory - number of dirtyable pages in a node
271  * @pgdat: the node
272  *
273  * Returns the node's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-node dirty limits.
275  */
276 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
277 {
278         unsigned long nr_pages = 0;
279         int z;
280
281         for (z = 0; z < MAX_NR_ZONES; z++) {
282                 struct zone *zone = pgdat->node_zones + z;
283
284                 if (!populated_zone(zone))
285                         continue;
286
287                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
288         }
289
290         /*
291          * Pages reserved for the kernel should not be considered
292          * dirtyable, to prevent a situation where reclaim has to
293          * clean pages in order to balance the zones.
294          */
295         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
296
297         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
298         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
299
300         return nr_pages;
301 }
302 #ifdef CONFIG_HIGHMEM
303 atomic_t highmem_file_pages;
304 #endif
305
306 static unsigned long highmem_dirtyable_memory(unsigned long total)
307 {
308 #ifdef CONFIG_HIGHMEM
309         int node;
310         unsigned long x;
311         int i;
312         unsigned long dirtyable = 0;
313
314         for_each_node_state(node, N_HIGH_MEMORY) {
315                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
316                         struct zone *z;
317                         unsigned long nr_pages;
318
319                         if (!is_highmem_idx(i))
320                                 continue;
321
322                         z = &NODE_DATA(node)->node_zones[i];
323                         if (!populated_zone(z))
324                                 continue;
325
326                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
327                         /* watch for underflows */
328                         nr_pages -= min(nr_pages, high_wmark_pages(z));
329                         dirtyable += nr_pages;
330                 }
331         }
332
333         x = dirtyable + atomic_read(&highmem_file_pages);
334
335         /*
336          * Unreclaimable memory (kernel memory or anonymous memory
337          * without swap) can bring down the dirtyable pages below
338          * the zone's dirty balance reserve and the above calculation
339          * will underflow.  However we still want to add in nodes
340          * which are below threshold (negative values) to get a more
341          * accurate calculation but make sure that the total never
342          * underflows.
343          */
344         if ((long)x < 0)
345                 x = 0;
346
347         /*
348          * Make sure that the number of highmem pages is never larger
349          * than the number of the total dirtyable memory. This can only
350          * occur in very strange VM situations but we want to make sure
351          * that this does not occur.
352          */
353         return min(x, total);
354 #else
355         return 0;
356 #endif
357 }
358
359 /**
360  * global_dirtyable_memory - number of globally dirtyable pages
361  *
362  * Returns the global number of pages potentially available for dirty
363  * page cache.  This is the base value for the global dirty limits.
364  */
365 static unsigned long global_dirtyable_memory(void)
366 {
367         unsigned long x;
368
369         x = global_page_state(NR_FREE_PAGES);
370         /*
371          * Pages reserved for the kernel should not be considered
372          * dirtyable, to prevent a situation where reclaim has to
373          * clean pages in order to balance the zones.
374          */
375         x -= min(x, totalreserve_pages);
376
377         x += global_node_page_state(NR_INACTIVE_FILE);
378         x += global_node_page_state(NR_ACTIVE_FILE);
379
380         if (!vm_highmem_is_dirtyable)
381                 x -= highmem_dirtyable_memory(x);
382
383         return x + 1;   /* Ensure that we never return 0 */
384 }
385
386 /**
387  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
388  * @dtc: dirty_throttle_control of interest
389  *
390  * Calculate @dtc->thresh and ->bg_thresh considering
391  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
392  * must ensure that @dtc->avail is set before calling this function.  The
393  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
394  * real-time tasks.
395  */
396 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
397 {
398         const unsigned long available_memory = dtc->avail;
399         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
400         unsigned long bytes = vm_dirty_bytes;
401         unsigned long bg_bytes = dirty_background_bytes;
402         /* convert ratios to per-PAGE_SIZE for higher precision */
403         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
404         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
405         unsigned long thresh;
406         unsigned long bg_thresh;
407         struct task_struct *tsk;
408
409         /* gdtc is !NULL iff @dtc is for memcg domain */
410         if (gdtc) {
411                 unsigned long global_avail = gdtc->avail;
412
413                 /*
414                  * The byte settings can't be applied directly to memcg
415                  * domains.  Convert them to ratios by scaling against
416                  * globally available memory.  As the ratios are in
417                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
418                  * number of pages.
419                  */
420                 if (bytes)
421                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
422                                     PAGE_SIZE);
423                 if (bg_bytes)
424                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
425                                        PAGE_SIZE);
426                 bytes = bg_bytes = 0;
427         }
428
429         if (bytes)
430                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
431         else
432                 thresh = (ratio * available_memory) / PAGE_SIZE;
433
434         if (bg_bytes)
435                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
436         else
437                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
438
439         if (bg_thresh >= thresh)
440                 bg_thresh = thresh / 2;
441         tsk = current;
442         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
443                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
444                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
445         }
446         dtc->thresh = thresh;
447         dtc->bg_thresh = bg_thresh;
448
449         /* we should eventually report the domain in the TP */
450         if (!gdtc)
451                 trace_global_dirty_state(bg_thresh, thresh);
452 }
453
454 /**
455  * global_dirty_limits - background-writeback and dirty-throttling thresholds
456  * @pbackground: out parameter for bg_thresh
457  * @pdirty: out parameter for thresh
458  *
459  * Calculate bg_thresh and thresh for global_wb_domain.  See
460  * domain_dirty_limits() for details.
461  */
462 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
463 {
464         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
465
466         gdtc.avail = global_dirtyable_memory();
467         domain_dirty_limits(&gdtc);
468
469         *pbackground = gdtc.bg_thresh;
470         *pdirty = gdtc.thresh;
471 }
472
473 /**
474  * node_dirty_limit - maximum number of dirty pages allowed in a node
475  * @pgdat: the node
476  *
477  * Returns the maximum number of dirty pages allowed in a node, based
478  * on the node's dirtyable memory.
479  */
480 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
481 {
482         unsigned long node_memory = node_dirtyable_memory(pgdat);
483         struct task_struct *tsk = current;
484         unsigned long dirty;
485
486         if (vm_dirty_bytes)
487                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
488                         node_memory / global_dirtyable_memory();
489         else
490                 dirty = vm_dirty_ratio * node_memory / 100;
491
492         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
493                 dirty += dirty / 4;
494
495         return dirty;
496 }
497
498 /**
499  * node_dirty_ok - tells whether a node is within its dirty limits
500  * @pgdat: the node to check
501  *
502  * Returns %true when the dirty pages in @pgdat are within the node's
503  * dirty limit, %false if the limit is exceeded.
504  */
505 bool node_dirty_ok(struct pglist_data *pgdat)
506 {
507         unsigned long limit = node_dirty_limit(pgdat);
508         unsigned long nr_pages = 0;
509
510         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
511         nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
512         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
513
514         return nr_pages <= limit;
515 }
516
517 int dirty_background_ratio_handler(struct ctl_table *table, int write,
518                 void __user *buffer, size_t *lenp,
519                 loff_t *ppos)
520 {
521         int ret;
522
523         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
524         if (ret == 0 && write)
525                 dirty_background_bytes = 0;
526         return ret;
527 }
528
529 int dirty_background_bytes_handler(struct ctl_table *table, int write,
530                 void __user *buffer, size_t *lenp,
531                 loff_t *ppos)
532 {
533         int ret;
534
535         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
536         if (ret == 0 && write)
537                 dirty_background_ratio = 0;
538         return ret;
539 }
540
541 int dirty_ratio_handler(struct ctl_table *table, int write,
542                 void __user *buffer, size_t *lenp,
543                 loff_t *ppos)
544 {
545         int old_ratio = vm_dirty_ratio;
546         int ret;
547
548         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
549         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
550                 writeback_set_ratelimit();
551                 vm_dirty_bytes = 0;
552         }
553         return ret;
554 }
555
556 int dirty_bytes_handler(struct ctl_table *table, int write,
557                 void __user *buffer, size_t *lenp,
558                 loff_t *ppos)
559 {
560         unsigned long old_bytes = vm_dirty_bytes;
561         int ret;
562
563         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
564         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
565                 writeback_set_ratelimit();
566                 vm_dirty_ratio = 0;
567         }
568         return ret;
569 }
570
571 static unsigned long wp_next_time(unsigned long cur_time)
572 {
573         cur_time += VM_COMPLETIONS_PERIOD_LEN;
574         /* 0 has a special meaning... */
575         if (!cur_time)
576                 return 1;
577         return cur_time;
578 }
579
580 static void wb_domain_writeout_inc(struct wb_domain *dom,
581                                    struct fprop_local_percpu *completions,
582                                    unsigned int max_prop_frac)
583 {
584         __fprop_inc_percpu_max(&dom->completions, completions,
585                                max_prop_frac);
586         /* First event after period switching was turned off? */
587         if (!unlikely(dom->period_time)) {
588                 /*
589                  * We can race with other __bdi_writeout_inc calls here but
590                  * it does not cause any harm since the resulting time when
591                  * timer will fire and what is in writeout_period_time will be
592                  * roughly the same.
593                  */
594                 dom->period_time = wp_next_time(jiffies);
595                 mod_timer(&dom->period_timer, dom->period_time);
596         }
597 }
598
599 /*
600  * Increment @wb's writeout completion count and the global writeout
601  * completion count. Called from test_clear_page_writeback().
602  */
603 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
604 {
605         struct wb_domain *cgdom;
606
607         __inc_wb_stat(wb, WB_WRITTEN);
608         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
609                                wb->bdi->max_prop_frac);
610
611         cgdom = mem_cgroup_wb_domain(wb);
612         if (cgdom)
613                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
614                                        wb->bdi->max_prop_frac);
615 }
616
617 void wb_writeout_inc(struct bdi_writeback *wb)
618 {
619         unsigned long flags;
620
621         local_irq_save(flags);
622         __wb_writeout_inc(wb);
623         local_irq_restore(flags);
624 }
625 EXPORT_SYMBOL_GPL(wb_writeout_inc);
626
627 /*
628  * On idle system, we can be called long after we scheduled because we use
629  * deferred timers so count with missed periods.
630  */
631 static void writeout_period(unsigned long t)
632 {
633         struct wb_domain *dom = (void *)t;
634         int miss_periods = (jiffies - dom->period_time) /
635                                                  VM_COMPLETIONS_PERIOD_LEN;
636
637         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
638                 dom->period_time = wp_next_time(dom->period_time +
639                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
640                 mod_timer(&dom->period_timer, dom->period_time);
641         } else {
642                 /*
643                  * Aging has zeroed all fractions. Stop wasting CPU on period
644                  * updates.
645                  */
646                 dom->period_time = 0;
647         }
648 }
649
650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
651 {
652         memset(dom, 0, sizeof(*dom));
653
654         spin_lock_init(&dom->lock);
655
656         init_timer_deferrable(&dom->period_timer);
657         dom->period_timer.function = writeout_period;
658         dom->period_timer.data = (unsigned long)dom;
659
660         dom->dirty_limit_tstamp = jiffies;
661
662         return fprop_global_init(&dom->completions, gfp);
663 }
664
665 #ifdef CONFIG_CGROUP_WRITEBACK
666 void wb_domain_exit(struct wb_domain *dom)
667 {
668         del_timer_sync(&dom->period_timer);
669         fprop_global_destroy(&dom->completions);
670 }
671 #endif
672
673 /*
674  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
675  * registered backing devices, which, for obvious reasons, can not
676  * exceed 100%.
677  */
678 static unsigned int bdi_min_ratio;
679
680 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
681 {
682         int ret = 0;
683
684         spin_lock_bh(&bdi_lock);
685         if (min_ratio > bdi->max_ratio) {
686                 ret = -EINVAL;
687         } else {
688                 min_ratio -= bdi->min_ratio;
689                 if (bdi_min_ratio + min_ratio < 100) {
690                         bdi_min_ratio += min_ratio;
691                         bdi->min_ratio += min_ratio;
692                 } else {
693                         ret = -EINVAL;
694                 }
695         }
696         spin_unlock_bh(&bdi_lock);
697
698         return ret;
699 }
700
701 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
702 {
703         int ret = 0;
704
705         if (max_ratio > 100)
706                 return -EINVAL;
707
708         spin_lock_bh(&bdi_lock);
709         if (bdi->min_ratio > max_ratio) {
710                 ret = -EINVAL;
711         } else {
712                 bdi->max_ratio = max_ratio;
713                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
714         }
715         spin_unlock_bh(&bdi_lock);
716
717         return ret;
718 }
719 EXPORT_SYMBOL(bdi_set_max_ratio);
720
721 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
722                                            unsigned long bg_thresh)
723 {
724         return (thresh + bg_thresh) / 2;
725 }
726
727 static unsigned long hard_dirty_limit(struct wb_domain *dom,
728                                       unsigned long thresh)
729 {
730         return max(thresh, dom->dirty_limit);
731 }
732
733 /*
734  * Memory which can be further allocated to a memcg domain is capped by
735  * system-wide clean memory excluding the amount being used in the domain.
736  */
737 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
738                             unsigned long filepages, unsigned long headroom)
739 {
740         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
741         unsigned long clean = filepages - min(filepages, mdtc->dirty);
742         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
743         unsigned long other_clean = global_clean - min(global_clean, clean);
744
745         mdtc->avail = filepages + min(headroom, other_clean);
746 }
747
748 /**
749  * __wb_calc_thresh - @wb's share of dirty throttling threshold
750  * @dtc: dirty_throttle_context of interest
751  *
752  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
753  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
754  *
755  * Note that balance_dirty_pages() will only seriously take it as a hard limit
756  * when sleeping max_pause per page is not enough to keep the dirty pages under
757  * control. For example, when the device is completely stalled due to some error
758  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
759  * In the other normal situations, it acts more gently by throttling the tasks
760  * more (rather than completely block them) when the wb dirty pages go high.
761  *
762  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
763  * - starving fast devices
764  * - piling up dirty pages (that will take long time to sync) on slow devices
765  *
766  * The wb's share of dirty limit will be adapting to its throughput and
767  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
768  */
769 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
770 {
771         struct wb_domain *dom = dtc_dom(dtc);
772         unsigned long thresh = dtc->thresh;
773         u64 wb_thresh;
774         long numerator, denominator;
775         unsigned long wb_min_ratio, wb_max_ratio;
776
777         /*
778          * Calculate this BDI's share of the thresh ratio.
779          */
780         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
781                               &numerator, &denominator);
782
783         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
784         wb_thresh *= numerator;
785         do_div(wb_thresh, denominator);
786
787         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
788
789         wb_thresh += (thresh * wb_min_ratio) / 100;
790         if (wb_thresh > (thresh * wb_max_ratio) / 100)
791                 wb_thresh = thresh * wb_max_ratio / 100;
792
793         return wb_thresh;
794 }
795
796 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
797 {
798         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
799                                                .thresh = thresh };
800         return __wb_calc_thresh(&gdtc);
801 }
802
803 /*
804  *                           setpoint - dirty 3
805  *        f(dirty) := 1.0 + (----------------)
806  *                           limit - setpoint
807  *
808  * it's a 3rd order polynomial that subjects to
809  *
810  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
811  * (2) f(setpoint) = 1.0 => the balance point
812  * (3) f(limit)    = 0   => the hard limit
813  * (4) df/dx      <= 0   => negative feedback control
814  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
815  *     => fast response on large errors; small oscillation near setpoint
816  */
817 static long long pos_ratio_polynom(unsigned long setpoint,
818                                           unsigned long dirty,
819                                           unsigned long limit)
820 {
821         long long pos_ratio;
822         long x;
823
824         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
825                       (limit - setpoint) | 1);
826         pos_ratio = x;
827         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
828         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
829         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
830
831         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
832 }
833
834 /*
835  * Dirty position control.
836  *
837  * (o) global/bdi setpoints
838  *
839  * We want the dirty pages be balanced around the global/wb setpoints.
840  * When the number of dirty pages is higher/lower than the setpoint, the
841  * dirty position control ratio (and hence task dirty ratelimit) will be
842  * decreased/increased to bring the dirty pages back to the setpoint.
843  *
844  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
845  *
846  *     if (dirty < setpoint) scale up   pos_ratio
847  *     if (dirty > setpoint) scale down pos_ratio
848  *
849  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
850  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
851  *
852  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
853  *
854  * (o) global control line
855  *
856  *     ^ pos_ratio
857  *     |
858  *     |            |<===== global dirty control scope ======>|
859  * 2.0 .............*
860  *     |            .*
861  *     |            . *
862  *     |            .   *
863  *     |            .     *
864  *     |            .        *
865  *     |            .            *
866  * 1.0 ................................*
867  *     |            .                  .     *
868  *     |            .                  .          *
869  *     |            .                  .              *
870  *     |            .                  .                 *
871  *     |            .                  .                    *
872  *   0 +------------.------------------.----------------------*------------->
873  *           freerun^          setpoint^                 limit^   dirty pages
874  *
875  * (o) wb control line
876  *
877  *     ^ pos_ratio
878  *     |
879  *     |            *
880  *     |              *
881  *     |                *
882  *     |                  *
883  *     |                    * |<=========== span ============>|
884  * 1.0 .......................*
885  *     |                      . *
886  *     |                      .   *
887  *     |                      .     *
888  *     |                      .       *
889  *     |                      .         *
890  *     |                      .           *
891  *     |                      .             *
892  *     |                      .               *
893  *     |                      .                 *
894  *     |                      .                   *
895  *     |                      .                     *
896  * 1/4 ...............................................* * * * * * * * * * * *
897  *     |                      .                         .
898  *     |                      .                           .
899  *     |                      .                             .
900  *   0 +----------------------.-------------------------------.------------->
901  *                wb_setpoint^                    x_intercept^
902  *
903  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
904  * be smoothly throttled down to normal if it starts high in situations like
905  * - start writing to a slow SD card and a fast disk at the same time. The SD
906  *   card's wb_dirty may rush to many times higher than wb_setpoint.
907  * - the wb dirty thresh drops quickly due to change of JBOD workload
908  */
909 static void wb_position_ratio(struct dirty_throttle_control *dtc)
910 {
911         struct bdi_writeback *wb = dtc->wb;
912         unsigned long write_bw = wb->avg_write_bandwidth;
913         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
914         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
915         unsigned long wb_thresh = dtc->wb_thresh;
916         unsigned long x_intercept;
917         unsigned long setpoint;         /* dirty pages' target balance point */
918         unsigned long wb_setpoint;
919         unsigned long span;
920         long long pos_ratio;            /* for scaling up/down the rate limit */
921         long x;
922
923         dtc->pos_ratio = 0;
924
925         if (unlikely(dtc->dirty >= limit))
926                 return;
927
928         /*
929          * global setpoint
930          *
931          * See comment for pos_ratio_polynom().
932          */
933         setpoint = (freerun + limit) / 2;
934         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
935
936         /*
937          * The strictlimit feature is a tool preventing mistrusted filesystems
938          * from growing a large number of dirty pages before throttling. For
939          * such filesystems balance_dirty_pages always checks wb counters
940          * against wb limits. Even if global "nr_dirty" is under "freerun".
941          * This is especially important for fuse which sets bdi->max_ratio to
942          * 1% by default. Without strictlimit feature, fuse writeback may
943          * consume arbitrary amount of RAM because it is accounted in
944          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
945          *
946          * Here, in wb_position_ratio(), we calculate pos_ratio based on
947          * two values: wb_dirty and wb_thresh. Let's consider an example:
948          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
949          * limits are set by default to 10% and 20% (background and throttle).
950          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
951          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
952          * about ~6K pages (as the average of background and throttle wb
953          * limits). The 3rd order polynomial will provide positive feedback if
954          * wb_dirty is under wb_setpoint and vice versa.
955          *
956          * Note, that we cannot use global counters in these calculations
957          * because we want to throttle process writing to a strictlimit wb
958          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
959          * in the example above).
960          */
961         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
962                 long long wb_pos_ratio;
963
964                 if (dtc->wb_dirty < 8) {
965                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
966                                            2 << RATELIMIT_CALC_SHIFT);
967                         return;
968                 }
969
970                 if (dtc->wb_dirty >= wb_thresh)
971                         return;
972
973                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
974                                                     dtc->wb_bg_thresh);
975
976                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
977                         return;
978
979                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
980                                                  wb_thresh);
981
982                 /*
983                  * Typically, for strictlimit case, wb_setpoint << setpoint
984                  * and pos_ratio >> wb_pos_ratio. In the other words global
985                  * state ("dirty") is not limiting factor and we have to
986                  * make decision based on wb counters. But there is an
987                  * important case when global pos_ratio should get precedence:
988                  * global limits are exceeded (e.g. due to activities on other
989                  * wb's) while given strictlimit wb is below limit.
990                  *
991                  * "pos_ratio * wb_pos_ratio" would work for the case above,
992                  * but it would look too non-natural for the case of all
993                  * activity in the system coming from a single strictlimit wb
994                  * with bdi->max_ratio == 100%.
995                  *
996                  * Note that min() below somewhat changes the dynamics of the
997                  * control system. Normally, pos_ratio value can be well over 3
998                  * (when globally we are at freerun and wb is well below wb
999                  * setpoint). Now the maximum pos_ratio in the same situation
1000                  * is 2. We might want to tweak this if we observe the control
1001                  * system is too slow to adapt.
1002                  */
1003                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1004                 return;
1005         }
1006
1007         /*
1008          * We have computed basic pos_ratio above based on global situation. If
1009          * the wb is over/under its share of dirty pages, we want to scale
1010          * pos_ratio further down/up. That is done by the following mechanism.
1011          */
1012
1013         /*
1014          * wb setpoint
1015          *
1016          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1017          *
1018          *                        x_intercept - wb_dirty
1019          *                     := --------------------------
1020          *                        x_intercept - wb_setpoint
1021          *
1022          * The main wb control line is a linear function that subjects to
1023          *
1024          * (1) f(wb_setpoint) = 1.0
1025          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1026          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1027          *
1028          * For single wb case, the dirty pages are observed to fluctuate
1029          * regularly within range
1030          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1031          * for various filesystems, where (2) can yield in a reasonable 12.5%
1032          * fluctuation range for pos_ratio.
1033          *
1034          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1035          * own size, so move the slope over accordingly and choose a slope that
1036          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1037          */
1038         if (unlikely(wb_thresh > dtc->thresh))
1039                 wb_thresh = dtc->thresh;
1040         /*
1041          * It's very possible that wb_thresh is close to 0 not because the
1042          * device is slow, but that it has remained inactive for long time.
1043          * Honour such devices a reasonable good (hopefully IO efficient)
1044          * threshold, so that the occasional writes won't be blocked and active
1045          * writes can rampup the threshold quickly.
1046          */
1047         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1048         /*
1049          * scale global setpoint to wb's:
1050          *      wb_setpoint = setpoint * wb_thresh / thresh
1051          */
1052         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1053         wb_setpoint = setpoint * (u64)x >> 16;
1054         /*
1055          * Use span=(8*write_bw) in single wb case as indicated by
1056          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1057          *
1058          *        wb_thresh                    thresh - wb_thresh
1059          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1060          *         thresh                           thresh
1061          */
1062         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1063         x_intercept = wb_setpoint + span;
1064
1065         if (dtc->wb_dirty < x_intercept - span / 4) {
1066                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1067                                       (x_intercept - wb_setpoint) | 1);
1068         } else
1069                 pos_ratio /= 4;
1070
1071         /*
1072          * wb reserve area, safeguard against dirty pool underrun and disk idle
1073          * It may push the desired control point of global dirty pages higher
1074          * than setpoint.
1075          */
1076         x_intercept = wb_thresh / 2;
1077         if (dtc->wb_dirty < x_intercept) {
1078                 if (dtc->wb_dirty > x_intercept / 8)
1079                         pos_ratio = div_u64(pos_ratio * x_intercept,
1080                                             dtc->wb_dirty);
1081                 else
1082                         pos_ratio *= 8;
1083         }
1084
1085         dtc->pos_ratio = pos_ratio;
1086 }
1087
1088 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1089                                       unsigned long elapsed,
1090                                       unsigned long written)
1091 {
1092         const unsigned long period = roundup_pow_of_two(3 * HZ);
1093         unsigned long avg = wb->avg_write_bandwidth;
1094         unsigned long old = wb->write_bandwidth;
1095         u64 bw;
1096
1097         /*
1098          * bw = written * HZ / elapsed
1099          *
1100          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1101          * write_bandwidth = ---------------------------------------------------
1102          *                                          period
1103          *
1104          * @written may have decreased due to account_page_redirty().
1105          * Avoid underflowing @bw calculation.
1106          */
1107         bw = written - min(written, wb->written_stamp);
1108         bw *= HZ;
1109         if (unlikely(elapsed > period)) {
1110                 do_div(bw, elapsed);
1111                 avg = bw;
1112                 goto out;
1113         }
1114         bw += (u64)wb->write_bandwidth * (period - elapsed);
1115         bw >>= ilog2(period);
1116
1117         /*
1118          * one more level of smoothing, for filtering out sudden spikes
1119          */
1120         if (avg > old && old >= (unsigned long)bw)
1121                 avg -= (avg - old) >> 3;
1122
1123         if (avg < old && old <= (unsigned long)bw)
1124                 avg += (old - avg) >> 3;
1125
1126 out:
1127         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1128         avg = max(avg, 1LU);
1129         if (wb_has_dirty_io(wb)) {
1130                 long delta = avg - wb->avg_write_bandwidth;
1131                 WARN_ON_ONCE(atomic_long_add_return(delta,
1132                                         &wb->bdi->tot_write_bandwidth) <= 0);
1133         }
1134         wb->write_bandwidth = bw;
1135         wb->avg_write_bandwidth = avg;
1136 }
1137
1138 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1139 {
1140         struct wb_domain *dom = dtc_dom(dtc);
1141         unsigned long thresh = dtc->thresh;
1142         unsigned long limit = dom->dirty_limit;
1143
1144         /*
1145          * Follow up in one step.
1146          */
1147         if (limit < thresh) {
1148                 limit = thresh;
1149                 goto update;
1150         }
1151
1152         /*
1153          * Follow down slowly. Use the higher one as the target, because thresh
1154          * may drop below dirty. This is exactly the reason to introduce
1155          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1156          */
1157         thresh = max(thresh, dtc->dirty);
1158         if (limit > thresh) {
1159                 limit -= (limit - thresh) >> 5;
1160                 goto update;
1161         }
1162         return;
1163 update:
1164         dom->dirty_limit = limit;
1165 }
1166
1167 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1168                                     unsigned long now)
1169 {
1170         struct wb_domain *dom = dtc_dom(dtc);
1171
1172         /*
1173          * check locklessly first to optimize away locking for the most time
1174          */
1175         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1176                 return;
1177
1178         spin_lock(&dom->lock);
1179         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1180                 update_dirty_limit(dtc);
1181                 dom->dirty_limit_tstamp = now;
1182         }
1183         spin_unlock(&dom->lock);
1184 }
1185
1186 /*
1187  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1188  *
1189  * Normal wb tasks will be curbed at or below it in long term.
1190  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1191  */
1192 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1193                                       unsigned long dirtied,
1194                                       unsigned long elapsed)
1195 {
1196         struct bdi_writeback *wb = dtc->wb;
1197         unsigned long dirty = dtc->dirty;
1198         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1199         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1200         unsigned long setpoint = (freerun + limit) / 2;
1201         unsigned long write_bw = wb->avg_write_bandwidth;
1202         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1203         unsigned long dirty_rate;
1204         unsigned long task_ratelimit;
1205         unsigned long balanced_dirty_ratelimit;
1206         unsigned long step;
1207         unsigned long x;
1208         unsigned long shift;
1209
1210         /*
1211          * The dirty rate will match the writeout rate in long term, except
1212          * when dirty pages are truncated by userspace or re-dirtied by FS.
1213          */
1214         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1215
1216         /*
1217          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1218          */
1219         task_ratelimit = (u64)dirty_ratelimit *
1220                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1221         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1222
1223         /*
1224          * A linear estimation of the "balanced" throttle rate. The theory is,
1225          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1226          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1227          * formula will yield the balanced rate limit (write_bw / N).
1228          *
1229          * Note that the expanded form is not a pure rate feedback:
1230          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1231          * but also takes pos_ratio into account:
1232          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1233          *
1234          * (1) is not realistic because pos_ratio also takes part in balancing
1235          * the dirty rate.  Consider the state
1236          *      pos_ratio = 0.5                                              (3)
1237          *      rate = 2 * (write_bw / N)                                    (4)
1238          * If (1) is used, it will stuck in that state! Because each dd will
1239          * be throttled at
1240          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1241          * yielding
1242          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1243          * put (6) into (1) we get
1244          *      rate_(i+1) = rate_(i)                                        (7)
1245          *
1246          * So we end up using (2) to always keep
1247          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1248          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1249          * pos_ratio is able to drive itself to 1.0, which is not only where
1250          * the dirty count meet the setpoint, but also where the slope of
1251          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1252          */
1253         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1254                                            dirty_rate | 1);
1255         /*
1256          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1257          */
1258         if (unlikely(balanced_dirty_ratelimit > write_bw))
1259                 balanced_dirty_ratelimit = write_bw;
1260
1261         /*
1262          * We could safely do this and return immediately:
1263          *
1264          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1265          *
1266          * However to get a more stable dirty_ratelimit, the below elaborated
1267          * code makes use of task_ratelimit to filter out singular points and
1268          * limit the step size.
1269          *
1270          * The below code essentially only uses the relative value of
1271          *
1272          *      task_ratelimit - dirty_ratelimit
1273          *      = (pos_ratio - 1) * dirty_ratelimit
1274          *
1275          * which reflects the direction and size of dirty position error.
1276          */
1277
1278         /*
1279          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1280          * task_ratelimit is on the same side of dirty_ratelimit, too.
1281          * For example, when
1282          * - dirty_ratelimit > balanced_dirty_ratelimit
1283          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1284          * lowering dirty_ratelimit will help meet both the position and rate
1285          * control targets. Otherwise, don't update dirty_ratelimit if it will
1286          * only help meet the rate target. After all, what the users ultimately
1287          * feel and care are stable dirty rate and small position error.
1288          *
1289          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1290          * and filter out the singular points of balanced_dirty_ratelimit. Which
1291          * keeps jumping around randomly and can even leap far away at times
1292          * due to the small 200ms estimation period of dirty_rate (we want to
1293          * keep that period small to reduce time lags).
1294          */
1295         step = 0;
1296
1297         /*
1298          * For strictlimit case, calculations above were based on wb counters
1299          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1300          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1301          * Hence, to calculate "step" properly, we have to use wb_dirty as
1302          * "dirty" and wb_setpoint as "setpoint".
1303          *
1304          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1305          * it's possible that wb_thresh is close to zero due to inactivity
1306          * of backing device.
1307          */
1308         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1309                 dirty = dtc->wb_dirty;
1310                 if (dtc->wb_dirty < 8)
1311                         setpoint = dtc->wb_dirty + 1;
1312                 else
1313                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1314         }
1315
1316         if (dirty < setpoint) {
1317                 x = min3(wb->balanced_dirty_ratelimit,
1318                          balanced_dirty_ratelimit, task_ratelimit);
1319                 if (dirty_ratelimit < x)
1320                         step = x - dirty_ratelimit;
1321         } else {
1322                 x = max3(wb->balanced_dirty_ratelimit,
1323                          balanced_dirty_ratelimit, task_ratelimit);
1324                 if (dirty_ratelimit > x)
1325                         step = dirty_ratelimit - x;
1326         }
1327
1328         /*
1329          * Don't pursue 100% rate matching. It's impossible since the balanced
1330          * rate itself is constantly fluctuating. So decrease the track speed
1331          * when it gets close to the target. Helps eliminate pointless tremors.
1332          */
1333         shift = dirty_ratelimit / (2 * step + 1);
1334         if (shift < BITS_PER_LONG)
1335                 step = DIV_ROUND_UP(step >> shift, 8);
1336         else
1337                 step = 0;
1338
1339         if (dirty_ratelimit < balanced_dirty_ratelimit)
1340                 dirty_ratelimit += step;
1341         else
1342                 dirty_ratelimit -= step;
1343
1344         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1345         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1346
1347         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1348 }
1349
1350 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1351                                   struct dirty_throttle_control *mdtc,
1352                                   unsigned long start_time,
1353                                   bool update_ratelimit)
1354 {
1355         struct bdi_writeback *wb = gdtc->wb;
1356         unsigned long now = jiffies;
1357         unsigned long elapsed = now - wb->bw_time_stamp;
1358         unsigned long dirtied;
1359         unsigned long written;
1360
1361         lockdep_assert_held(&wb->list_lock);
1362
1363         /*
1364          * rate-limit, only update once every 200ms.
1365          */
1366         if (elapsed < BANDWIDTH_INTERVAL)
1367                 return;
1368
1369         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1370         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1371
1372         /*
1373          * Skip quiet periods when disk bandwidth is under-utilized.
1374          * (at least 1s idle time between two flusher runs)
1375          */
1376         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1377                 goto snapshot;
1378
1379         if (update_ratelimit) {
1380                 domain_update_bandwidth(gdtc, now);
1381                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1382
1383                 /*
1384                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1385                  * compiler has no way to figure that out.  Help it.
1386                  */
1387                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1388                         domain_update_bandwidth(mdtc, now);
1389                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1390                 }
1391         }
1392         wb_update_write_bandwidth(wb, elapsed, written);
1393
1394 snapshot:
1395         wb->dirtied_stamp = dirtied;
1396         wb->written_stamp = written;
1397         wb->bw_time_stamp = now;
1398 }
1399
1400 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1401 {
1402         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1403
1404         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1405 }
1406
1407 /*
1408  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1409  * will look to see if it needs to start dirty throttling.
1410  *
1411  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1412  * global_page_state() too often. So scale it near-sqrt to the safety margin
1413  * (the number of pages we may dirty without exceeding the dirty limits).
1414  */
1415 static unsigned long dirty_poll_interval(unsigned long dirty,
1416                                          unsigned long thresh)
1417 {
1418         if (thresh > dirty)
1419                 return 1UL << (ilog2(thresh - dirty) >> 1);
1420
1421         return 1;
1422 }
1423
1424 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1425                                   unsigned long wb_dirty)
1426 {
1427         unsigned long bw = wb->avg_write_bandwidth;
1428         unsigned long t;
1429
1430         /*
1431          * Limit pause time for small memory systems. If sleeping for too long
1432          * time, a small pool of dirty/writeback pages may go empty and disk go
1433          * idle.
1434          *
1435          * 8 serves as the safety ratio.
1436          */
1437         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1438         t++;
1439
1440         return min_t(unsigned long, t, MAX_PAUSE);
1441 }
1442
1443 static long wb_min_pause(struct bdi_writeback *wb,
1444                          long max_pause,
1445                          unsigned long task_ratelimit,
1446                          unsigned long dirty_ratelimit,
1447                          int *nr_dirtied_pause)
1448 {
1449         long hi = ilog2(wb->avg_write_bandwidth);
1450         long lo = ilog2(wb->dirty_ratelimit);
1451         long t;         /* target pause */
1452         long pause;     /* estimated next pause */
1453         int pages;      /* target nr_dirtied_pause */
1454
1455         /* target for 10ms pause on 1-dd case */
1456         t = max(1, HZ / 100);
1457
1458         /*
1459          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1460          * overheads.
1461          *
1462          * (N * 10ms) on 2^N concurrent tasks.
1463          */
1464         if (hi > lo)
1465                 t += (hi - lo) * (10 * HZ) / 1024;
1466
1467         /*
1468          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1469          * on the much more stable dirty_ratelimit. However the next pause time
1470          * will be computed based on task_ratelimit and the two rate limits may
1471          * depart considerably at some time. Especially if task_ratelimit goes
1472          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1473          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1474          * result task_ratelimit won't be executed faithfully, which could
1475          * eventually bring down dirty_ratelimit.
1476          *
1477          * We apply two rules to fix it up:
1478          * 1) try to estimate the next pause time and if necessary, use a lower
1479          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1480          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1481          * 2) limit the target pause time to max_pause/2, so that the normal
1482          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1483          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1484          */
1485         t = min(t, 1 + max_pause / 2);
1486         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1487
1488         /*
1489          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1490          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1491          * When the 16 consecutive reads are often interrupted by some dirty
1492          * throttling pause during the async writes, cfq will go into idles
1493          * (deadline is fine). So push nr_dirtied_pause as high as possible
1494          * until reaches DIRTY_POLL_THRESH=32 pages.
1495          */
1496         if (pages < DIRTY_POLL_THRESH) {
1497                 t = max_pause;
1498                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1499                 if (pages > DIRTY_POLL_THRESH) {
1500                         pages = DIRTY_POLL_THRESH;
1501                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1502                 }
1503         }
1504
1505         pause = HZ * pages / (task_ratelimit + 1);
1506         if (pause > max_pause) {
1507                 t = max_pause;
1508                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1509         }
1510
1511         *nr_dirtied_pause = pages;
1512         /*
1513          * The minimal pause time will normally be half the target pause time.
1514          */
1515         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1516 }
1517
1518 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1519 {
1520         struct bdi_writeback *wb = dtc->wb;
1521         unsigned long wb_reclaimable;
1522
1523         /*
1524          * wb_thresh is not treated as some limiting factor as
1525          * dirty_thresh, due to reasons
1526          * - in JBOD setup, wb_thresh can fluctuate a lot
1527          * - in a system with HDD and USB key, the USB key may somehow
1528          *   go into state (wb_dirty >> wb_thresh) either because
1529          *   wb_dirty starts high, or because wb_thresh drops low.
1530          *   In this case we don't want to hard throttle the USB key
1531          *   dirtiers for 100 seconds until wb_dirty drops under
1532          *   wb_thresh. Instead the auxiliary wb control line in
1533          *   wb_position_ratio() will let the dirtier task progress
1534          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1535          */
1536         dtc->wb_thresh = __wb_calc_thresh(dtc);
1537         dtc->wb_bg_thresh = dtc->thresh ?
1538                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1539
1540         /*
1541          * In order to avoid the stacked BDI deadlock we need
1542          * to ensure we accurately count the 'dirty' pages when
1543          * the threshold is low.
1544          *
1545          * Otherwise it would be possible to get thresh+n pages
1546          * reported dirty, even though there are thresh-m pages
1547          * actually dirty; with m+n sitting in the percpu
1548          * deltas.
1549          */
1550         if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1551                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1552                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1553         } else {
1554                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1555                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1556         }
1557 }
1558
1559 /*
1560  * balance_dirty_pages() must be called by processes which are generating dirty
1561  * data.  It looks at the number of dirty pages in the machine and will force
1562  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1563  * If we're over `background_thresh' then the writeback threads are woken to
1564  * perform some writeout.
1565  */
1566 static void balance_dirty_pages(struct address_space *mapping,
1567                                 struct bdi_writeback *wb,
1568                                 unsigned long pages_dirtied)
1569 {
1570         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1571         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1572         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1573         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1574                                                      &mdtc_stor : NULL;
1575         struct dirty_throttle_control *sdtc;
1576         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1577         long period;
1578         long pause;
1579         long max_pause;
1580         long min_pause;
1581         int nr_dirtied_pause;
1582         bool dirty_exceeded = false;
1583         unsigned long task_ratelimit;
1584         unsigned long dirty_ratelimit;
1585         struct backing_dev_info *bdi = wb->bdi;
1586         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1587         unsigned long start_time = jiffies;
1588
1589         for (;;) {
1590                 unsigned long now = jiffies;
1591                 unsigned long dirty, thresh, bg_thresh;
1592                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1593                 unsigned long m_thresh = 0;
1594                 unsigned long m_bg_thresh = 0;
1595
1596                 /*
1597                  * Unstable writes are a feature of certain networked
1598                  * filesystems (i.e. NFS) in which data may have been
1599                  * written to the server's write cache, but has not yet
1600                  * been flushed to permanent storage.
1601                  */
1602                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1603                                         global_node_page_state(NR_UNSTABLE_NFS);
1604                 gdtc->avail = global_dirtyable_memory();
1605                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1606
1607                 domain_dirty_limits(gdtc);
1608
1609                 if (unlikely(strictlimit)) {
1610                         wb_dirty_limits(gdtc);
1611
1612                         dirty = gdtc->wb_dirty;
1613                         thresh = gdtc->wb_thresh;
1614                         bg_thresh = gdtc->wb_bg_thresh;
1615                 } else {
1616                         dirty = gdtc->dirty;
1617                         thresh = gdtc->thresh;
1618                         bg_thresh = gdtc->bg_thresh;
1619                 }
1620
1621                 if (mdtc) {
1622                         unsigned long filepages, headroom, writeback;
1623
1624                         /*
1625                          * If @wb belongs to !root memcg, repeat the same
1626                          * basic calculations for the memcg domain.
1627                          */
1628                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1629                                             &mdtc->dirty, &writeback);
1630                         mdtc->dirty += writeback;
1631                         mdtc_calc_avail(mdtc, filepages, headroom);
1632
1633                         domain_dirty_limits(mdtc);
1634
1635                         if (unlikely(strictlimit)) {
1636                                 wb_dirty_limits(mdtc);
1637                                 m_dirty = mdtc->wb_dirty;
1638                                 m_thresh = mdtc->wb_thresh;
1639                                 m_bg_thresh = mdtc->wb_bg_thresh;
1640                         } else {
1641                                 m_dirty = mdtc->dirty;
1642                                 m_thresh = mdtc->thresh;
1643                                 m_bg_thresh = mdtc->bg_thresh;
1644                         }
1645                 }
1646
1647                 /*
1648                  * Throttle it only when the background writeback cannot
1649                  * catch-up. This avoids (excessively) small writeouts
1650                  * when the wb limits are ramping up in case of !strictlimit.
1651                  *
1652                  * In strictlimit case make decision based on the wb counters
1653                  * and limits. Small writeouts when the wb limits are ramping
1654                  * up are the price we consciously pay for strictlimit-ing.
1655                  *
1656                  * If memcg domain is in effect, @dirty should be under
1657                  * both global and memcg freerun ceilings.
1658                  */
1659                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1660                     (!mdtc ||
1661                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1662                         unsigned long intv = dirty_poll_interval(dirty, thresh);
1663                         unsigned long m_intv = ULONG_MAX;
1664
1665                         current->dirty_paused_when = now;
1666                         current->nr_dirtied = 0;
1667                         if (mdtc)
1668                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1669                         current->nr_dirtied_pause = min(intv, m_intv);
1670                         break;
1671                 }
1672
1673                 if (unlikely(!writeback_in_progress(wb)))
1674                         wb_start_background_writeback(wb);
1675
1676                 /*
1677                  * Calculate global domain's pos_ratio and select the
1678                  * global dtc by default.
1679                  */
1680                 if (!strictlimit)
1681                         wb_dirty_limits(gdtc);
1682
1683                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1684                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1685
1686                 wb_position_ratio(gdtc);
1687                 sdtc = gdtc;
1688
1689                 if (mdtc) {
1690                         /*
1691                          * If memcg domain is in effect, calculate its
1692                          * pos_ratio.  @wb should satisfy constraints from
1693                          * both global and memcg domains.  Choose the one
1694                          * w/ lower pos_ratio.
1695                          */
1696                         if (!strictlimit)
1697                                 wb_dirty_limits(mdtc);
1698
1699                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1700                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1701
1702                         wb_position_ratio(mdtc);
1703                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1704                                 sdtc = mdtc;
1705                 }
1706
1707                 if (dirty_exceeded && !wb->dirty_exceeded)
1708                         wb->dirty_exceeded = 1;
1709
1710                 if (time_is_before_jiffies(wb->bw_time_stamp +
1711                                            BANDWIDTH_INTERVAL)) {
1712                         spin_lock(&wb->list_lock);
1713                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1714                         spin_unlock(&wb->list_lock);
1715                 }
1716
1717                 /* throttle according to the chosen dtc */
1718                 dirty_ratelimit = wb->dirty_ratelimit;
1719                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1720                                                         RATELIMIT_CALC_SHIFT;
1721                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1722                 min_pause = wb_min_pause(wb, max_pause,
1723                                          task_ratelimit, dirty_ratelimit,
1724                                          &nr_dirtied_pause);
1725
1726                 if (unlikely(task_ratelimit == 0)) {
1727                         period = max_pause;
1728                         pause = max_pause;
1729                         goto pause;
1730                 }
1731                 period = HZ * pages_dirtied / task_ratelimit;
1732                 pause = period;
1733                 if (current->dirty_paused_when)
1734                         pause -= now - current->dirty_paused_when;
1735                 /*
1736                  * For less than 1s think time (ext3/4 may block the dirtier
1737                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1738                  * however at much less frequency), try to compensate it in
1739                  * future periods by updating the virtual time; otherwise just
1740                  * do a reset, as it may be a light dirtier.
1741                  */
1742                 if (pause < min_pause) {
1743                         trace_balance_dirty_pages(wb,
1744                                                   sdtc->thresh,
1745                                                   sdtc->bg_thresh,
1746                                                   sdtc->dirty,
1747                                                   sdtc->wb_thresh,
1748                                                   sdtc->wb_dirty,
1749                                                   dirty_ratelimit,
1750                                                   task_ratelimit,
1751                                                   pages_dirtied,
1752                                                   period,
1753                                                   min(pause, 0L),
1754                                                   start_time);
1755                         if (pause < -HZ) {
1756                                 current->dirty_paused_when = now;
1757                                 current->nr_dirtied = 0;
1758                         } else if (period) {
1759                                 current->dirty_paused_when += period;
1760                                 current->nr_dirtied = 0;
1761                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1762                                 current->nr_dirtied_pause += pages_dirtied;
1763                         break;
1764                 }
1765                 if (unlikely(pause > max_pause)) {
1766                         /* for occasional dropped task_ratelimit */
1767                         now += min(pause - max_pause, max_pause);
1768                         pause = max_pause;
1769                 }
1770
1771 pause:
1772                 trace_balance_dirty_pages(wb,
1773                                           sdtc->thresh,
1774                                           sdtc->bg_thresh,
1775                                           sdtc->dirty,
1776                                           sdtc->wb_thresh,
1777                                           sdtc->wb_dirty,
1778                                           dirty_ratelimit,
1779                                           task_ratelimit,
1780                                           pages_dirtied,
1781                                           period,
1782                                           pause,
1783                                           start_time);
1784                 __set_current_state(TASK_KILLABLE);
1785                 io_schedule_timeout(pause);
1786
1787                 current->dirty_paused_when = now + pause;
1788                 current->nr_dirtied = 0;
1789                 current->nr_dirtied_pause = nr_dirtied_pause;
1790
1791                 /*
1792                  * This is typically equal to (dirty < thresh) and can also
1793                  * keep "1000+ dd on a slow USB stick" under control.
1794                  */
1795                 if (task_ratelimit)
1796                         break;
1797
1798                 /*
1799                  * In the case of an unresponding NFS server and the NFS dirty
1800                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1801                  * to go through, so that tasks on them still remain responsive.
1802                  *
1803                  * In theory 1 page is enough to keep the comsumer-producer
1804                  * pipe going: the flusher cleans 1 page => the task dirties 1
1805                  * more page. However wb_dirty has accounting errors.  So use
1806                  * the larger and more IO friendly wb_stat_error.
1807                  */
1808                 if (sdtc->wb_dirty <= wb_stat_error(wb))
1809                         break;
1810
1811                 if (fatal_signal_pending(current))
1812                         break;
1813         }
1814
1815         if (!dirty_exceeded && wb->dirty_exceeded)
1816                 wb->dirty_exceeded = 0;
1817
1818         if (writeback_in_progress(wb))
1819                 return;
1820
1821         /*
1822          * In laptop mode, we wait until hitting the higher threshold before
1823          * starting background writeout, and then write out all the way down
1824          * to the lower threshold.  So slow writers cause minimal disk activity.
1825          *
1826          * In normal mode, we start background writeout at the lower
1827          * background_thresh, to keep the amount of dirty memory low.
1828          */
1829         if (laptop_mode)
1830                 return;
1831
1832         if (nr_reclaimable > gdtc->bg_thresh)
1833                 wb_start_background_writeback(wb);
1834 }
1835
1836 static DEFINE_PER_CPU(int, bdp_ratelimits);
1837
1838 /*
1839  * Normal tasks are throttled by
1840  *      loop {
1841  *              dirty tsk->nr_dirtied_pause pages;
1842  *              take a snap in balance_dirty_pages();
1843  *      }
1844  * However there is a worst case. If every task exit immediately when dirtied
1845  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1846  * called to throttle the page dirties. The solution is to save the not yet
1847  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1848  * randomly into the running tasks. This works well for the above worst case,
1849  * as the new task will pick up and accumulate the old task's leaked dirty
1850  * count and eventually get throttled.
1851  */
1852 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1853
1854 /**
1855  * balance_dirty_pages_ratelimited - balance dirty memory state
1856  * @mapping: address_space which was dirtied
1857  *
1858  * Processes which are dirtying memory should call in here once for each page
1859  * which was newly dirtied.  The function will periodically check the system's
1860  * dirty state and will initiate writeback if needed.
1861  *
1862  * On really big machines, get_writeback_state is expensive, so try to avoid
1863  * calling it too often (ratelimiting).  But once we're over the dirty memory
1864  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1865  * from overshooting the limit by (ratelimit_pages) each.
1866  */
1867 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1868 {
1869         struct inode *inode = mapping->host;
1870         struct backing_dev_info *bdi = inode_to_bdi(inode);
1871         struct bdi_writeback *wb = NULL;
1872         int ratelimit;
1873         int *p;
1874
1875         if (!bdi_cap_account_dirty(bdi))
1876                 return;
1877
1878         if (inode_cgwb_enabled(inode))
1879                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1880         if (!wb)
1881                 wb = &bdi->wb;
1882
1883         ratelimit = current->nr_dirtied_pause;
1884         if (wb->dirty_exceeded)
1885                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1886
1887         preempt_disable();
1888         /*
1889          * This prevents one CPU to accumulate too many dirtied pages without
1890          * calling into balance_dirty_pages(), which can happen when there are
1891          * 1000+ tasks, all of them start dirtying pages at exactly the same
1892          * time, hence all honoured too large initial task->nr_dirtied_pause.
1893          */
1894         p =  this_cpu_ptr(&bdp_ratelimits);
1895         if (unlikely(current->nr_dirtied >= ratelimit))
1896                 *p = 0;
1897         else if (unlikely(*p >= ratelimit_pages)) {
1898                 *p = 0;
1899                 ratelimit = 0;
1900         }
1901         /*
1902          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1903          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1904          * the dirty throttling and livelock other long-run dirtiers.
1905          */
1906         p = this_cpu_ptr(&dirty_throttle_leaks);
1907         if (*p > 0 && current->nr_dirtied < ratelimit) {
1908                 unsigned long nr_pages_dirtied;
1909                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1910                 *p -= nr_pages_dirtied;
1911                 current->nr_dirtied += nr_pages_dirtied;
1912         }
1913         preempt_enable();
1914
1915         if (unlikely(current->nr_dirtied >= ratelimit))
1916                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1917
1918         wb_put(wb);
1919 }
1920 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1921
1922 /**
1923  * wb_over_bg_thresh - does @wb need to be written back?
1924  * @wb: bdi_writeback of interest
1925  *
1926  * Determines whether background writeback should keep writing @wb or it's
1927  * clean enough.  Returns %true if writeback should continue.
1928  */
1929 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1930 {
1931         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1932         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1933         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1934         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1935                                                      &mdtc_stor : NULL;
1936
1937         /*
1938          * Similar to balance_dirty_pages() but ignores pages being written
1939          * as we're trying to decide whether to put more under writeback.
1940          */
1941         gdtc->avail = global_dirtyable_memory();
1942         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1943                       global_node_page_state(NR_UNSTABLE_NFS);
1944         domain_dirty_limits(gdtc);
1945
1946         if (gdtc->dirty > gdtc->bg_thresh)
1947                 return true;
1948
1949         if (wb_stat(wb, WB_RECLAIMABLE) >
1950             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1951                 return true;
1952
1953         if (mdtc) {
1954                 unsigned long filepages, headroom, writeback;
1955
1956                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1957                                     &writeback);
1958                 mdtc_calc_avail(mdtc, filepages, headroom);
1959                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1960
1961                 if (mdtc->dirty > mdtc->bg_thresh)
1962                         return true;
1963
1964                 if (wb_stat(wb, WB_RECLAIMABLE) >
1965                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1966                         return true;
1967         }
1968
1969         return false;
1970 }
1971
1972 void throttle_vm_writeout(gfp_t gfp_mask)
1973 {
1974         unsigned long background_thresh;
1975         unsigned long dirty_thresh;
1976
1977         for ( ; ; ) {
1978                 global_dirty_limits(&background_thresh, &dirty_thresh);
1979                 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1980
1981                 /*
1982                  * Boost the allowable dirty threshold a bit for page
1983                  * allocators so they don't get DoS'ed by heavy writers
1984                  */
1985                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1986
1987                 if (global_node_page_state(NR_UNSTABLE_NFS) +
1988                         global_node_page_state(NR_WRITEBACK) <= dirty_thresh)
1989                                 break;
1990                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1991
1992                 /*
1993                  * The caller might hold locks which can prevent IO completion
1994                  * or progress in the filesystem.  So we cannot just sit here
1995                  * waiting for IO to complete.
1996                  */
1997                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1998                         break;
1999         }
2000 }
2001
2002 /*
2003  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2004  */
2005 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2006         void __user *buffer, size_t *length, loff_t *ppos)
2007 {
2008         proc_dointvec(table, write, buffer, length, ppos);
2009         return 0;
2010 }
2011
2012 #ifdef CONFIG_BLOCK
2013 void laptop_mode_timer_fn(unsigned long data)
2014 {
2015         struct request_queue *q = (struct request_queue *)data;
2016         int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
2017                 global_node_page_state(NR_UNSTABLE_NFS);
2018         struct bdi_writeback *wb;
2019
2020         /*
2021          * We want to write everything out, not just down to the dirty
2022          * threshold
2023          */
2024         if (!bdi_has_dirty_io(&q->backing_dev_info))
2025                 return;
2026
2027         rcu_read_lock();
2028         list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
2029                 if (wb_has_dirty_io(wb))
2030                         wb_start_writeback(wb, nr_pages, true,
2031                                            WB_REASON_LAPTOP_TIMER);
2032         rcu_read_unlock();
2033 }
2034
2035 /*
2036  * We've spun up the disk and we're in laptop mode: schedule writeback
2037  * of all dirty data a few seconds from now.  If the flush is already scheduled
2038  * then push it back - the user is still using the disk.
2039  */
2040 void laptop_io_completion(struct backing_dev_info *info)
2041 {
2042         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2043 }
2044
2045 /*
2046  * We're in laptop mode and we've just synced. The sync's writes will have
2047  * caused another writeback to be scheduled by laptop_io_completion.
2048  * Nothing needs to be written back anymore, so we unschedule the writeback.
2049  */
2050 void laptop_sync_completion(void)
2051 {
2052         struct backing_dev_info *bdi;
2053
2054         rcu_read_lock();
2055
2056         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2057                 del_timer(&bdi->laptop_mode_wb_timer);
2058
2059         rcu_read_unlock();
2060 }
2061 #endif
2062
2063 /*
2064  * If ratelimit_pages is too high then we can get into dirty-data overload
2065  * if a large number of processes all perform writes at the same time.
2066  * If it is too low then SMP machines will call the (expensive)
2067  * get_writeback_state too often.
2068  *
2069  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2070  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2071  * thresholds.
2072  */
2073
2074 void writeback_set_ratelimit(void)
2075 {
2076         struct wb_domain *dom = &global_wb_domain;
2077         unsigned long background_thresh;
2078         unsigned long dirty_thresh;
2079
2080         global_dirty_limits(&background_thresh, &dirty_thresh);
2081         dom->dirty_limit = dirty_thresh;
2082         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2083         if (ratelimit_pages < 16)
2084                 ratelimit_pages = 16;
2085 }
2086
2087 static int
2088 ratelimit_handler(struct notifier_block *self, unsigned long action,
2089                   void *hcpu)
2090 {
2091
2092         switch (action & ~CPU_TASKS_FROZEN) {
2093         case CPU_ONLINE:
2094         case CPU_DEAD:
2095                 writeback_set_ratelimit();
2096                 return NOTIFY_OK;
2097         default:
2098                 return NOTIFY_DONE;
2099         }
2100 }
2101
2102 static struct notifier_block ratelimit_nb = {
2103         .notifier_call  = ratelimit_handler,
2104         .next           = NULL,
2105 };
2106
2107 /*
2108  * Called early on to tune the page writeback dirty limits.
2109  *
2110  * We used to scale dirty pages according to how total memory
2111  * related to pages that could be allocated for buffers (by
2112  * comparing nr_free_buffer_pages() to vm_total_pages.
2113  *
2114  * However, that was when we used "dirty_ratio" to scale with
2115  * all memory, and we don't do that any more. "dirty_ratio"
2116  * is now applied to total non-HIGHPAGE memory (by subtracting
2117  * totalhigh_pages from vm_total_pages), and as such we can't
2118  * get into the old insane situation any more where we had
2119  * large amounts of dirty pages compared to a small amount of
2120  * non-HIGHMEM memory.
2121  *
2122  * But we might still want to scale the dirty_ratio by how
2123  * much memory the box has..
2124  */
2125 void __init page_writeback_init(void)
2126 {
2127         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2128
2129         writeback_set_ratelimit();
2130         register_cpu_notifier(&ratelimit_nb);
2131 }
2132
2133 /**
2134  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2135  * @mapping: address space structure to write
2136  * @start: starting page index
2137  * @end: ending page index (inclusive)
2138  *
2139  * This function scans the page range from @start to @end (inclusive) and tags
2140  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2141  * that write_cache_pages (or whoever calls this function) will then use
2142  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2143  * used to avoid livelocking of writeback by a process steadily creating new
2144  * dirty pages in the file (thus it is important for this function to be quick
2145  * so that it can tag pages faster than a dirtying process can create them).
2146  */
2147 /*
2148  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2149  */
2150 void tag_pages_for_writeback(struct address_space *mapping,
2151                              pgoff_t start, pgoff_t end)
2152 {
2153 #define WRITEBACK_TAG_BATCH 4096
2154         unsigned long tagged;
2155
2156         do {
2157                 spin_lock_irq(&mapping->tree_lock);
2158                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2159                                 &start, end, WRITEBACK_TAG_BATCH,
2160                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2161                 spin_unlock_irq(&mapping->tree_lock);
2162                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2163                 cond_resched();
2164                 /* We check 'start' to handle wrapping when end == ~0UL */
2165         } while (tagged >= WRITEBACK_TAG_BATCH && start);
2166 }
2167 EXPORT_SYMBOL(tag_pages_for_writeback);
2168
2169 /**
2170  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2171  * @mapping: address space structure to write
2172  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2173  * @writepage: function called for each page
2174  * @data: data passed to writepage function
2175  *
2176  * If a page is already under I/O, write_cache_pages() skips it, even
2177  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2178  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2179  * and msync() need to guarantee that all the data which was dirty at the time
2180  * the call was made get new I/O started against them.  If wbc->sync_mode is
2181  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2182  * existing IO to complete.
2183  *
2184  * To avoid livelocks (when other process dirties new pages), we first tag
2185  * pages which should be written back with TOWRITE tag and only then start
2186  * writing them. For data-integrity sync we have to be careful so that we do
2187  * not miss some pages (e.g., because some other process has cleared TOWRITE
2188  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2189  * by the process clearing the DIRTY tag (and submitting the page for IO).
2190  */
2191 int write_cache_pages(struct address_space *mapping,
2192                       struct writeback_control *wbc, writepage_t writepage,
2193                       void *data)
2194 {
2195         int ret = 0;
2196         int done = 0;
2197         struct pagevec pvec;
2198         int nr_pages;
2199         pgoff_t uninitialized_var(writeback_index);
2200         pgoff_t index;
2201         pgoff_t end;            /* Inclusive */
2202         pgoff_t done_index;
2203         int cycled;
2204         int range_whole = 0;
2205         int tag;
2206
2207         pagevec_init(&pvec, 0);
2208         if (wbc->range_cyclic) {
2209                 writeback_index = mapping->writeback_index; /* prev offset */
2210                 index = writeback_index;
2211                 if (index == 0)
2212                         cycled = 1;
2213                 else
2214                         cycled = 0;
2215                 end = -1;
2216         } else {
2217                 index = wbc->range_start >> PAGE_SHIFT;
2218                 end = wbc->range_end >> PAGE_SHIFT;
2219                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2220                         range_whole = 1;
2221                 cycled = 1; /* ignore range_cyclic tests */
2222         }
2223         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2224                 tag = PAGECACHE_TAG_TOWRITE;
2225         else
2226                 tag = PAGECACHE_TAG_DIRTY;
2227 retry:
2228         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2229                 tag_pages_for_writeback(mapping, index, end);
2230         done_index = index;
2231         while (!done && (index <= end)) {
2232                 int i;
2233
2234                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2235                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2236                 if (nr_pages == 0)
2237                         break;
2238
2239                 for (i = 0; i < nr_pages; i++) {
2240                         struct page *page = pvec.pages[i];
2241
2242                         /*
2243                          * At this point, the page may be truncated or
2244                          * invalidated (changing page->mapping to NULL), or
2245                          * even swizzled back from swapper_space to tmpfs file
2246                          * mapping. However, page->index will not change
2247                          * because we have a reference on the page.
2248                          */
2249                         if (page->index > end) {
2250                                 /*
2251                                  * can't be range_cyclic (1st pass) because
2252                                  * end == -1 in that case.
2253                                  */
2254                                 done = 1;
2255                                 break;
2256                         }
2257
2258                         done_index = page->index;
2259
2260                         lock_page(page);
2261
2262                         /*
2263                          * Page truncated or invalidated. We can freely skip it
2264                          * then, even for data integrity operations: the page
2265                          * has disappeared concurrently, so there could be no
2266                          * real expectation of this data interity operation
2267                          * even if there is now a new, dirty page at the same
2268                          * pagecache address.
2269                          */
2270                         if (unlikely(page->mapping != mapping)) {
2271 continue_unlock:
2272                                 unlock_page(page);
2273                                 continue;
2274                         }
2275
2276                         if (!PageDirty(page)) {
2277                                 /* someone wrote it for us */
2278                                 goto continue_unlock;
2279                         }
2280
2281                         if (PageWriteback(page)) {
2282                                 if (wbc->sync_mode != WB_SYNC_NONE)
2283                                         wait_on_page_writeback(page);
2284                                 else
2285                                         goto continue_unlock;
2286                         }
2287
2288                         BUG_ON(PageWriteback(page));
2289                         if (!clear_page_dirty_for_io(page))
2290                                 goto continue_unlock;
2291
2292                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2293                         ret = (*writepage)(page, wbc, data);
2294                         if (unlikely(ret)) {
2295                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2296                                         unlock_page(page);
2297                                         ret = 0;
2298                                 } else {
2299                                         /*
2300                                          * done_index is set past this page,
2301                                          * so media errors will not choke
2302                                          * background writeout for the entire
2303                                          * file. This has consequences for
2304                                          * range_cyclic semantics (ie. it may
2305                                          * not be suitable for data integrity
2306                                          * writeout).
2307                                          */
2308                                         done_index = page->index + 1;
2309                                         done = 1;
2310                                         break;
2311                                 }
2312                         }
2313
2314                         /*
2315                          * We stop writing back only if we are not doing
2316                          * integrity sync. In case of integrity sync we have to
2317                          * keep going until we have written all the pages
2318                          * we tagged for writeback prior to entering this loop.
2319                          */
2320                         if (--wbc->nr_to_write <= 0 &&
2321                             wbc->sync_mode == WB_SYNC_NONE) {
2322                                 done = 1;
2323                                 break;
2324                         }
2325                 }
2326                 pagevec_release(&pvec);
2327                 cond_resched();
2328         }
2329         if (!cycled && !done) {
2330                 /*
2331                  * range_cyclic:
2332                  * We hit the last page and there is more work to be done: wrap
2333                  * back to the start of the file
2334                  */
2335                 cycled = 1;
2336                 index = 0;
2337                 end = writeback_index - 1;
2338                 goto retry;
2339         }
2340         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2341                 mapping->writeback_index = done_index;
2342
2343         return ret;
2344 }
2345 EXPORT_SYMBOL(write_cache_pages);
2346
2347 /*
2348  * Function used by generic_writepages to call the real writepage
2349  * function and set the mapping flags on error
2350  */
2351 static int __writepage(struct page *page, struct writeback_control *wbc,
2352                        void *data)
2353 {
2354         struct address_space *mapping = data;
2355         int ret = mapping->a_ops->writepage(page, wbc);
2356         mapping_set_error(mapping, ret);
2357         return ret;
2358 }
2359
2360 /**
2361  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2362  * @mapping: address space structure to write
2363  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2364  *
2365  * This is a library function, which implements the writepages()
2366  * address_space_operation.
2367  */
2368 int generic_writepages(struct address_space *mapping,
2369                        struct writeback_control *wbc)
2370 {
2371         struct blk_plug plug;
2372         int ret;
2373
2374         /* deal with chardevs and other special file */
2375         if (!mapping->a_ops->writepage)
2376                 return 0;
2377
2378         blk_start_plug(&plug);
2379         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2380         blk_finish_plug(&plug);
2381         return ret;
2382 }
2383
2384 EXPORT_SYMBOL(generic_writepages);
2385
2386 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2387 {
2388         int ret;
2389
2390         if (wbc->nr_to_write <= 0)
2391                 return 0;
2392         if (mapping->a_ops->writepages)
2393                 ret = mapping->a_ops->writepages(mapping, wbc);
2394         else
2395                 ret = generic_writepages(mapping, wbc);
2396         return ret;
2397 }
2398
2399 /**
2400  * write_one_page - write out a single page and optionally wait on I/O
2401  * @page: the page to write
2402  * @wait: if true, wait on writeout
2403  *
2404  * The page must be locked by the caller and will be unlocked upon return.
2405  *
2406  * write_one_page() returns a negative error code if I/O failed.
2407  */
2408 int write_one_page(struct page *page, int wait)
2409 {
2410         struct address_space *mapping = page->mapping;
2411         int ret = 0;
2412         struct writeback_control wbc = {
2413                 .sync_mode = WB_SYNC_ALL,
2414                 .nr_to_write = 1,
2415         };
2416
2417         BUG_ON(!PageLocked(page));
2418
2419         if (wait)
2420                 wait_on_page_writeback(page);
2421
2422         if (clear_page_dirty_for_io(page)) {
2423                 get_page(page);
2424                 ret = mapping->a_ops->writepage(page, &wbc);
2425                 if (ret == 0 && wait) {
2426                         wait_on_page_writeback(page);
2427                         if (PageError(page))
2428                                 ret = -EIO;
2429                 }
2430                 put_page(page);
2431         } else {
2432                 unlock_page(page);
2433         }
2434         return ret;
2435 }
2436 EXPORT_SYMBOL(write_one_page);
2437
2438 /*
2439  * For address_spaces which do not use buffers nor write back.
2440  */
2441 int __set_page_dirty_no_writeback(struct page *page)
2442 {
2443         if (!PageDirty(page))
2444                 return !TestSetPageDirty(page);
2445         return 0;
2446 }
2447
2448 /*
2449  * Helper function for set_page_dirty family.
2450  *
2451  * Caller must hold lock_page_memcg().
2452  *
2453  * NOTE: This relies on being atomic wrt interrupts.
2454  */
2455 void account_page_dirtied(struct page *page, struct address_space *mapping)
2456 {
2457         struct inode *inode = mapping->host;
2458
2459         trace_writeback_dirty_page(page, mapping);
2460
2461         if (mapping_cap_account_dirty(mapping)) {
2462                 struct bdi_writeback *wb;
2463
2464                 inode_attach_wb(inode, page);
2465                 wb = inode_to_wb(inode);
2466
2467                 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2468                 __inc_node_page_state(page, NR_FILE_DIRTY);
2469                 __inc_node_page_state(page, NR_DIRTIED);
2470                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2471                 __inc_wb_stat(wb, WB_DIRTIED);
2472                 task_io_account_write(PAGE_SIZE);
2473                 current->nr_dirtied++;
2474                 this_cpu_inc(bdp_ratelimits);
2475         }
2476 }
2477 EXPORT_SYMBOL(account_page_dirtied);
2478
2479 /*
2480  * Helper function for deaccounting dirty page without writeback.
2481  *
2482  * Caller must hold lock_page_memcg().
2483  */
2484 void account_page_cleaned(struct page *page, struct address_space *mapping,
2485                           struct bdi_writeback *wb)
2486 {
2487         if (mapping_cap_account_dirty(mapping)) {
2488                 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2489                 dec_node_page_state(page, NR_FILE_DIRTY);
2490                 dec_wb_stat(wb, WB_RECLAIMABLE);
2491                 task_io_account_cancelled_write(PAGE_SIZE);
2492         }
2493 }
2494
2495 /*
2496  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2497  * its radix tree.
2498  *
2499  * This is also used when a single buffer is being dirtied: we want to set the
2500  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2501  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2502  *
2503  * The caller must ensure this doesn't race with truncation.  Most will simply
2504  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2505  * the pte lock held, which also locks out truncation.
2506  */
2507 int __set_page_dirty_nobuffers(struct page *page)
2508 {
2509         lock_page_memcg(page);
2510         if (!TestSetPageDirty(page)) {
2511                 struct address_space *mapping = page_mapping(page);
2512                 unsigned long flags;
2513
2514                 if (!mapping) {
2515                         unlock_page_memcg(page);
2516                         return 1;
2517                 }
2518
2519                 spin_lock_irqsave(&mapping->tree_lock, flags);
2520                 BUG_ON(page_mapping(page) != mapping);
2521                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2522                 account_page_dirtied(page, mapping);
2523                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2524                                    PAGECACHE_TAG_DIRTY);
2525                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2526                 unlock_page_memcg(page);
2527
2528                 if (mapping->host) {
2529                         /* !PageAnon && !swapper_space */
2530                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2531                 }
2532                 return 1;
2533         }
2534         unlock_page_memcg(page);
2535         return 0;
2536 }
2537 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2538
2539 /*
2540  * Call this whenever redirtying a page, to de-account the dirty counters
2541  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2542  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2543  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2544  * control.
2545  */
2546 void account_page_redirty(struct page *page)
2547 {
2548         struct address_space *mapping = page->mapping;
2549
2550         if (mapping && mapping_cap_account_dirty(mapping)) {
2551                 struct inode *inode = mapping->host;
2552                 struct bdi_writeback *wb;
2553                 bool locked;
2554
2555                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2556                 current->nr_dirtied--;
2557                 dec_node_page_state(page, NR_DIRTIED);
2558                 dec_wb_stat(wb, WB_DIRTIED);
2559                 unlocked_inode_to_wb_end(inode, locked);
2560         }
2561 }
2562 EXPORT_SYMBOL(account_page_redirty);
2563
2564 /*
2565  * When a writepage implementation decides that it doesn't want to write this
2566  * page for some reason, it should redirty the locked page via
2567  * redirty_page_for_writepage() and it should then unlock the page and return 0
2568  */
2569 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2570 {
2571         int ret;
2572
2573         wbc->pages_skipped++;
2574         ret = __set_page_dirty_nobuffers(page);
2575         account_page_redirty(page);
2576         return ret;
2577 }
2578 EXPORT_SYMBOL(redirty_page_for_writepage);
2579
2580 /*
2581  * Dirty a page.
2582  *
2583  * For pages with a mapping this should be done under the page lock
2584  * for the benefit of asynchronous memory errors who prefer a consistent
2585  * dirty state. This rule can be broken in some special cases,
2586  * but should be better not to.
2587  *
2588  * If the mapping doesn't provide a set_page_dirty a_op, then
2589  * just fall through and assume that it wants buffer_heads.
2590  */
2591 int set_page_dirty(struct page *page)
2592 {
2593         struct address_space *mapping = page_mapping(page);
2594
2595         page = compound_head(page);
2596         if (likely(mapping)) {
2597                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2598                 /*
2599                  * readahead/lru_deactivate_page could remain
2600                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2601                  * About readahead, if the page is written, the flags would be
2602                  * reset. So no problem.
2603                  * About lru_deactivate_page, if the page is redirty, the flag
2604                  * will be reset. So no problem. but if the page is used by readahead
2605                  * it will confuse readahead and make it restart the size rampup
2606                  * process. But it's a trivial problem.
2607                  */
2608                 if (PageReclaim(page))
2609                         ClearPageReclaim(page);
2610 #ifdef CONFIG_BLOCK
2611                 if (!spd)
2612                         spd = __set_page_dirty_buffers;
2613 #endif
2614                 return (*spd)(page);
2615         }
2616         if (!PageDirty(page)) {
2617                 if (!TestSetPageDirty(page))
2618                         return 1;
2619         }
2620         return 0;
2621 }
2622 EXPORT_SYMBOL(set_page_dirty);
2623
2624 /*
2625  * set_page_dirty() is racy if the caller has no reference against
2626  * page->mapping->host, and if the page is unlocked.  This is because another
2627  * CPU could truncate the page off the mapping and then free the mapping.
2628  *
2629  * Usually, the page _is_ locked, or the caller is a user-space process which
2630  * holds a reference on the inode by having an open file.
2631  *
2632  * In other cases, the page should be locked before running set_page_dirty().
2633  */
2634 int set_page_dirty_lock(struct page *page)
2635 {
2636         int ret;
2637
2638         lock_page(page);
2639         ret = set_page_dirty(page);
2640         unlock_page(page);
2641         return ret;
2642 }
2643 EXPORT_SYMBOL(set_page_dirty_lock);
2644
2645 /*
2646  * This cancels just the dirty bit on the kernel page itself, it does NOT
2647  * actually remove dirty bits on any mmap's that may be around. It also
2648  * leaves the page tagged dirty, so any sync activity will still find it on
2649  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2650  * look at the dirty bits in the VM.
2651  *
2652  * Doing this should *normally* only ever be done when a page is truncated,
2653  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2654  * this when it notices that somebody has cleaned out all the buffers on a
2655  * page without actually doing it through the VM. Can you say "ext3 is
2656  * horribly ugly"? Thought you could.
2657  */
2658 void cancel_dirty_page(struct page *page)
2659 {
2660         struct address_space *mapping = page_mapping(page);
2661
2662         if (mapping_cap_account_dirty(mapping)) {
2663                 struct inode *inode = mapping->host;
2664                 struct bdi_writeback *wb;
2665                 bool locked;
2666
2667                 lock_page_memcg(page);
2668                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2669
2670                 if (TestClearPageDirty(page))
2671                         account_page_cleaned(page, mapping, wb);
2672
2673                 unlocked_inode_to_wb_end(inode, locked);
2674                 unlock_page_memcg(page);
2675         } else {
2676                 ClearPageDirty(page);
2677         }
2678 }
2679 EXPORT_SYMBOL(cancel_dirty_page);
2680
2681 /*
2682  * Clear a page's dirty flag, while caring for dirty memory accounting.
2683  * Returns true if the page was previously dirty.
2684  *
2685  * This is for preparing to put the page under writeout.  We leave the page
2686  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2687  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2688  * implementation will run either set_page_writeback() or set_page_dirty(),
2689  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2690  * back into sync.
2691  *
2692  * This incoherency between the page's dirty flag and radix-tree tag is
2693  * unfortunate, but it only exists while the page is locked.
2694  */
2695 int clear_page_dirty_for_io(struct page *page)
2696 {
2697         struct address_space *mapping = page_mapping(page);
2698         int ret = 0;
2699
2700         BUG_ON(!PageLocked(page));
2701
2702         if (mapping && mapping_cap_account_dirty(mapping)) {
2703                 struct inode *inode = mapping->host;
2704                 struct bdi_writeback *wb;
2705                 bool locked;
2706
2707                 /*
2708                  * Yes, Virginia, this is indeed insane.
2709                  *
2710                  * We use this sequence to make sure that
2711                  *  (a) we account for dirty stats properly
2712                  *  (b) we tell the low-level filesystem to
2713                  *      mark the whole page dirty if it was
2714                  *      dirty in a pagetable. Only to then
2715                  *  (c) clean the page again and return 1 to
2716                  *      cause the writeback.
2717                  *
2718                  * This way we avoid all nasty races with the
2719                  * dirty bit in multiple places and clearing
2720                  * them concurrently from different threads.
2721                  *
2722                  * Note! Normally the "set_page_dirty(page)"
2723                  * has no effect on the actual dirty bit - since
2724                  * that will already usually be set. But we
2725                  * need the side effects, and it can help us
2726                  * avoid races.
2727                  *
2728                  * We basically use the page "master dirty bit"
2729                  * as a serialization point for all the different
2730                  * threads doing their things.
2731                  */
2732                 if (page_mkclean(page))
2733                         set_page_dirty(page);
2734                 /*
2735                  * We carefully synchronise fault handlers against
2736                  * installing a dirty pte and marking the page dirty
2737                  * at this point.  We do this by having them hold the
2738                  * page lock while dirtying the page, and pages are
2739                  * always locked coming in here, so we get the desired
2740                  * exclusion.
2741                  */
2742                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2743                 if (TestClearPageDirty(page)) {
2744                         mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2745                         dec_node_page_state(page, NR_FILE_DIRTY);
2746                         dec_wb_stat(wb, WB_RECLAIMABLE);
2747                         ret = 1;
2748                 }
2749                 unlocked_inode_to_wb_end(inode, locked);
2750                 return ret;
2751         }
2752         return TestClearPageDirty(page);
2753 }
2754 EXPORT_SYMBOL(clear_page_dirty_for_io);
2755
2756 int test_clear_page_writeback(struct page *page)
2757 {
2758         struct address_space *mapping = page_mapping(page);
2759         int ret;
2760
2761         lock_page_memcg(page);
2762         if (mapping) {
2763                 struct inode *inode = mapping->host;
2764                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2765                 unsigned long flags;
2766
2767                 spin_lock_irqsave(&mapping->tree_lock, flags);
2768                 ret = TestClearPageWriteback(page);
2769                 if (ret) {
2770                         radix_tree_tag_clear(&mapping->page_tree,
2771                                                 page_index(page),
2772                                                 PAGECACHE_TAG_WRITEBACK);
2773                         if (bdi_cap_account_writeback(bdi)) {
2774                                 struct bdi_writeback *wb = inode_to_wb(inode);
2775
2776                                 __dec_wb_stat(wb, WB_WRITEBACK);
2777                                 __wb_writeout_inc(wb);
2778                         }
2779                 }
2780
2781                 if (mapping->host && !mapping_tagged(mapping,
2782                                                      PAGECACHE_TAG_WRITEBACK))
2783                         sb_clear_inode_writeback(mapping->host);
2784
2785                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2786         } else {
2787                 ret = TestClearPageWriteback(page);
2788         }
2789         if (ret) {
2790                 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2791                 dec_node_page_state(page, NR_WRITEBACK);
2792                 inc_node_page_state(page, NR_WRITTEN);
2793         }
2794         unlock_page_memcg(page);
2795         return ret;
2796 }
2797
2798 int __test_set_page_writeback(struct page *page, bool keep_write)
2799 {
2800         struct address_space *mapping = page_mapping(page);
2801         int ret;
2802
2803         lock_page_memcg(page);
2804         if (mapping) {
2805                 struct inode *inode = mapping->host;
2806                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2807                 unsigned long flags;
2808
2809                 spin_lock_irqsave(&mapping->tree_lock, flags);
2810                 ret = TestSetPageWriteback(page);
2811                 if (!ret) {
2812                         bool on_wblist;
2813
2814                         on_wblist = mapping_tagged(mapping,
2815                                                    PAGECACHE_TAG_WRITEBACK);
2816
2817                         radix_tree_tag_set(&mapping->page_tree,
2818                                                 page_index(page),
2819                                                 PAGECACHE_TAG_WRITEBACK);
2820                         if (bdi_cap_account_writeback(bdi))
2821                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2822
2823                         /*
2824                          * We can come through here when swapping anonymous
2825                          * pages, so we don't necessarily have an inode to track
2826                          * for sync.
2827                          */
2828                         if (mapping->host && !on_wblist)
2829                                 sb_mark_inode_writeback(mapping->host);
2830                 }
2831                 if (!PageDirty(page))
2832                         radix_tree_tag_clear(&mapping->page_tree,
2833                                                 page_index(page),
2834                                                 PAGECACHE_TAG_DIRTY);
2835                 if (!keep_write)
2836                         radix_tree_tag_clear(&mapping->page_tree,
2837                                                 page_index(page),
2838                                                 PAGECACHE_TAG_TOWRITE);
2839                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2840         } else {
2841                 ret = TestSetPageWriteback(page);
2842         }
2843         if (!ret) {
2844                 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2845                 inc_node_page_state(page, NR_WRITEBACK);
2846         }
2847         unlock_page_memcg(page);
2848         return ret;
2849
2850 }
2851 EXPORT_SYMBOL(__test_set_page_writeback);
2852
2853 /*
2854  * Return true if any of the pages in the mapping are marked with the
2855  * passed tag.
2856  */
2857 int mapping_tagged(struct address_space *mapping, int tag)
2858 {
2859         return radix_tree_tagged(&mapping->page_tree, tag);
2860 }
2861 EXPORT_SYMBOL(mapping_tagged);
2862
2863 /**
2864  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2865  * @page:       The page to wait on.
2866  *
2867  * This function determines if the given page is related to a backing device
2868  * that requires page contents to be held stable during writeback.  If so, then
2869  * it will wait for any pending writeback to complete.
2870  */
2871 void wait_for_stable_page(struct page *page)
2872 {
2873         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2874                 wait_on_page_writeback(page);
2875 }
2876 EXPORT_SYMBOL_GPL(wait_for_stable_page);