writeback: avoid tiny dirty poll intervals
[linux-block.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Try to keep balance_dirty_pages() call intervals higher than this many pages
46  * by raising pause time to max_pause when falls below it.
47  */
48 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
49
50 /*
51  * Estimate write bandwidth at 200ms intervals.
52  */
53 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
54
55 #define RATELIMIT_CALC_SHIFT    10
56
57 /*
58  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
59  * will look to see if it needs to force writeback or throttling.
60  */
61 static long ratelimit_pages = 32;
62
63 /* The following parameters are exported via /proc/sys/vm */
64
65 /*
66  * Start background writeback (via writeback threads) at this percentage
67  */
68 int dirty_background_ratio = 10;
69
70 /*
71  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
72  * dirty_background_ratio * the amount of dirtyable memory
73  */
74 unsigned long dirty_background_bytes;
75
76 /*
77  * free highmem will not be subtracted from the total free memory
78  * for calculating free ratios if vm_highmem_is_dirtyable is true
79  */
80 int vm_highmem_is_dirtyable;
81
82 /*
83  * The generator of dirty data starts writeback at this percentage
84  */
85 int vm_dirty_ratio = 20;
86
87 /*
88  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
89  * vm_dirty_ratio * the amount of dirtyable memory
90  */
91 unsigned long vm_dirty_bytes;
92
93 /*
94  * The interval between `kupdate'-style writebacks
95  */
96 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
97
98 /*
99  * The longest time for which data is allowed to remain dirty
100  */
101 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
102
103 /*
104  * Flag that makes the machine dump writes/reads and block dirtyings.
105  */
106 int block_dump;
107
108 /*
109  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
110  * a full sync is triggered after this time elapses without any disk activity.
111  */
112 int laptop_mode;
113
114 EXPORT_SYMBOL(laptop_mode);
115
116 /* End of sysctl-exported parameters */
117
118 unsigned long global_dirty_limit;
119
120 /*
121  * Scale the writeback cache size proportional to the relative writeout speeds.
122  *
123  * We do this by keeping a floating proportion between BDIs, based on page
124  * writeback completions [end_page_writeback()]. Those devices that write out
125  * pages fastest will get the larger share, while the slower will get a smaller
126  * share.
127  *
128  * We use page writeout completions because we are interested in getting rid of
129  * dirty pages. Having them written out is the primary goal.
130  *
131  * We introduce a concept of time, a period over which we measure these events,
132  * because demand can/will vary over time. The length of this period itself is
133  * measured in page writeback completions.
134  *
135  */
136 static struct prop_descriptor vm_completions;
137
138 /*
139  * couple the period to the dirty_ratio:
140  *
141  *   period/2 ~ roundup_pow_of_two(dirty limit)
142  */
143 static int calc_period_shift(void)
144 {
145         unsigned long dirty_total;
146
147         if (vm_dirty_bytes)
148                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
149         else
150                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
151                                 100;
152         return 2 + ilog2(dirty_total - 1);
153 }
154
155 /*
156  * update the period when the dirty threshold changes.
157  */
158 static void update_completion_period(void)
159 {
160         int shift = calc_period_shift();
161         prop_change_shift(&vm_completions, shift);
162
163         writeback_set_ratelimit();
164 }
165
166 int dirty_background_ratio_handler(struct ctl_table *table, int write,
167                 void __user *buffer, size_t *lenp,
168                 loff_t *ppos)
169 {
170         int ret;
171
172         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
173         if (ret == 0 && write)
174                 dirty_background_bytes = 0;
175         return ret;
176 }
177
178 int dirty_background_bytes_handler(struct ctl_table *table, int write,
179                 void __user *buffer, size_t *lenp,
180                 loff_t *ppos)
181 {
182         int ret;
183
184         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
185         if (ret == 0 && write)
186                 dirty_background_ratio = 0;
187         return ret;
188 }
189
190 int dirty_ratio_handler(struct ctl_table *table, int write,
191                 void __user *buffer, size_t *lenp,
192                 loff_t *ppos)
193 {
194         int old_ratio = vm_dirty_ratio;
195         int ret;
196
197         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
198         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
199                 update_completion_period();
200                 vm_dirty_bytes = 0;
201         }
202         return ret;
203 }
204
205
206 int dirty_bytes_handler(struct ctl_table *table, int write,
207                 void __user *buffer, size_t *lenp,
208                 loff_t *ppos)
209 {
210         unsigned long old_bytes = vm_dirty_bytes;
211         int ret;
212
213         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
214         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
215                 update_completion_period();
216                 vm_dirty_ratio = 0;
217         }
218         return ret;
219 }
220
221 /*
222  * Increment the BDI's writeout completion count and the global writeout
223  * completion count. Called from test_clear_page_writeback().
224  */
225 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
226 {
227         __inc_bdi_stat(bdi, BDI_WRITTEN);
228         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
229                               bdi->max_prop_frac);
230 }
231
232 void bdi_writeout_inc(struct backing_dev_info *bdi)
233 {
234         unsigned long flags;
235
236         local_irq_save(flags);
237         __bdi_writeout_inc(bdi);
238         local_irq_restore(flags);
239 }
240 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
241
242 /*
243  * Obtain an accurate fraction of the BDI's portion.
244  */
245 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
246                 long *numerator, long *denominator)
247 {
248         prop_fraction_percpu(&vm_completions, &bdi->completions,
249                                 numerator, denominator);
250 }
251
252 /*
253  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
254  * registered backing devices, which, for obvious reasons, can not
255  * exceed 100%.
256  */
257 static unsigned int bdi_min_ratio;
258
259 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
260 {
261         int ret = 0;
262
263         spin_lock_bh(&bdi_lock);
264         if (min_ratio > bdi->max_ratio) {
265                 ret = -EINVAL;
266         } else {
267                 min_ratio -= bdi->min_ratio;
268                 if (bdi_min_ratio + min_ratio < 100) {
269                         bdi_min_ratio += min_ratio;
270                         bdi->min_ratio += min_ratio;
271                 } else {
272                         ret = -EINVAL;
273                 }
274         }
275         spin_unlock_bh(&bdi_lock);
276
277         return ret;
278 }
279
280 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
281 {
282         int ret = 0;
283
284         if (max_ratio > 100)
285                 return -EINVAL;
286
287         spin_lock_bh(&bdi_lock);
288         if (bdi->min_ratio > max_ratio) {
289                 ret = -EINVAL;
290         } else {
291                 bdi->max_ratio = max_ratio;
292                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
293         }
294         spin_unlock_bh(&bdi_lock);
295
296         return ret;
297 }
298 EXPORT_SYMBOL(bdi_set_max_ratio);
299
300 /*
301  * Work out the current dirty-memory clamping and background writeout
302  * thresholds.
303  *
304  * The main aim here is to lower them aggressively if there is a lot of mapped
305  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
306  * pages.  It is better to clamp down on writers than to start swapping, and
307  * performing lots of scanning.
308  *
309  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
310  *
311  * We don't permit the clamping level to fall below 5% - that is getting rather
312  * excessive.
313  *
314  * We make sure that the background writeout level is below the adjusted
315  * clamping level.
316  */
317
318 static unsigned long highmem_dirtyable_memory(unsigned long total)
319 {
320 #ifdef CONFIG_HIGHMEM
321         int node;
322         unsigned long x = 0;
323
324         for_each_node_state(node, N_HIGH_MEMORY) {
325                 struct zone *z =
326                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
327
328                 x += zone_page_state(z, NR_FREE_PAGES) +
329                      zone_reclaimable_pages(z);
330         }
331         /*
332          * Make sure that the number of highmem pages is never larger
333          * than the number of the total dirtyable memory. This can only
334          * occur in very strange VM situations but we want to make sure
335          * that this does not occur.
336          */
337         return min(x, total);
338 #else
339         return 0;
340 #endif
341 }
342
343 /**
344  * determine_dirtyable_memory - amount of memory that may be used
345  *
346  * Returns the numebr of pages that can currently be freed and used
347  * by the kernel for direct mappings.
348  */
349 unsigned long determine_dirtyable_memory(void)
350 {
351         unsigned long x;
352
353         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
354
355         if (!vm_highmem_is_dirtyable)
356                 x -= highmem_dirtyable_memory(x);
357
358         return x + 1;   /* Ensure that we never return 0 */
359 }
360
361 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
362                                            unsigned long bg_thresh)
363 {
364         return (thresh + bg_thresh) / 2;
365 }
366
367 static unsigned long hard_dirty_limit(unsigned long thresh)
368 {
369         return max(thresh, global_dirty_limit);
370 }
371
372 /*
373  * global_dirty_limits - background-writeback and dirty-throttling thresholds
374  *
375  * Calculate the dirty thresholds based on sysctl parameters
376  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
377  * - vm.dirty_ratio             or  vm.dirty_bytes
378  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
379  * real-time tasks.
380  */
381 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
382 {
383         unsigned long background;
384         unsigned long dirty;
385         unsigned long uninitialized_var(available_memory);
386         struct task_struct *tsk;
387
388         if (!vm_dirty_bytes || !dirty_background_bytes)
389                 available_memory = determine_dirtyable_memory();
390
391         if (vm_dirty_bytes)
392                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
393         else
394                 dirty = (vm_dirty_ratio * available_memory) / 100;
395
396         if (dirty_background_bytes)
397                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
398         else
399                 background = (dirty_background_ratio * available_memory) / 100;
400
401         if (background >= dirty)
402                 background = dirty / 2;
403         tsk = current;
404         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
405                 background += background / 4;
406                 dirty += dirty / 4;
407         }
408         *pbackground = background;
409         *pdirty = dirty;
410         trace_global_dirty_state(background, dirty);
411 }
412
413 /**
414  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
415  * @bdi: the backing_dev_info to query
416  * @dirty: global dirty limit in pages
417  *
418  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
419  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
420  *
421  * Note that balance_dirty_pages() will only seriously take it as a hard limit
422  * when sleeping max_pause per page is not enough to keep the dirty pages under
423  * control. For example, when the device is completely stalled due to some error
424  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
425  * In the other normal situations, it acts more gently by throttling the tasks
426  * more (rather than completely block them) when the bdi dirty pages go high.
427  *
428  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
429  * - starving fast devices
430  * - piling up dirty pages (that will take long time to sync) on slow devices
431  *
432  * The bdi's share of dirty limit will be adapting to its throughput and
433  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
434  */
435 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
436 {
437         u64 bdi_dirty;
438         long numerator, denominator;
439
440         /*
441          * Calculate this BDI's share of the dirty ratio.
442          */
443         bdi_writeout_fraction(bdi, &numerator, &denominator);
444
445         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
446         bdi_dirty *= numerator;
447         do_div(bdi_dirty, denominator);
448
449         bdi_dirty += (dirty * bdi->min_ratio) / 100;
450         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
451                 bdi_dirty = dirty * bdi->max_ratio / 100;
452
453         return bdi_dirty;
454 }
455
456 /*
457  * Dirty position control.
458  *
459  * (o) global/bdi setpoints
460  *
461  * We want the dirty pages be balanced around the global/bdi setpoints.
462  * When the number of dirty pages is higher/lower than the setpoint, the
463  * dirty position control ratio (and hence task dirty ratelimit) will be
464  * decreased/increased to bring the dirty pages back to the setpoint.
465  *
466  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
467  *
468  *     if (dirty < setpoint) scale up   pos_ratio
469  *     if (dirty > setpoint) scale down pos_ratio
470  *
471  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
472  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
473  *
474  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
475  *
476  * (o) global control line
477  *
478  *     ^ pos_ratio
479  *     |
480  *     |            |<===== global dirty control scope ======>|
481  * 2.0 .............*
482  *     |            .*
483  *     |            . *
484  *     |            .   *
485  *     |            .     *
486  *     |            .        *
487  *     |            .            *
488  * 1.0 ................................*
489  *     |            .                  .     *
490  *     |            .                  .          *
491  *     |            .                  .              *
492  *     |            .                  .                 *
493  *     |            .                  .                    *
494  *   0 +------------.------------------.----------------------*------------->
495  *           freerun^          setpoint^                 limit^   dirty pages
496  *
497  * (o) bdi control line
498  *
499  *     ^ pos_ratio
500  *     |
501  *     |            *
502  *     |              *
503  *     |                *
504  *     |                  *
505  *     |                    * |<=========== span ============>|
506  * 1.0 .......................*
507  *     |                      . *
508  *     |                      .   *
509  *     |                      .     *
510  *     |                      .       *
511  *     |                      .         *
512  *     |                      .           *
513  *     |                      .             *
514  *     |                      .               *
515  *     |                      .                 *
516  *     |                      .                   *
517  *     |                      .                     *
518  * 1/4 ...............................................* * * * * * * * * * * *
519  *     |                      .                         .
520  *     |                      .                           .
521  *     |                      .                             .
522  *   0 +----------------------.-------------------------------.------------->
523  *                bdi_setpoint^                    x_intercept^
524  *
525  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
526  * be smoothly throttled down to normal if it starts high in situations like
527  * - start writing to a slow SD card and a fast disk at the same time. The SD
528  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
529  * - the bdi dirty thresh drops quickly due to change of JBOD workload
530  */
531 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
532                                         unsigned long thresh,
533                                         unsigned long bg_thresh,
534                                         unsigned long dirty,
535                                         unsigned long bdi_thresh,
536                                         unsigned long bdi_dirty)
537 {
538         unsigned long write_bw = bdi->avg_write_bandwidth;
539         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
540         unsigned long limit = hard_dirty_limit(thresh);
541         unsigned long x_intercept;
542         unsigned long setpoint;         /* dirty pages' target balance point */
543         unsigned long bdi_setpoint;
544         unsigned long span;
545         long long pos_ratio;            /* for scaling up/down the rate limit */
546         long x;
547
548         if (unlikely(dirty >= limit))
549                 return 0;
550
551         /*
552          * global setpoint
553          *
554          *                           setpoint - dirty 3
555          *        f(dirty) := 1.0 + (----------------)
556          *                           limit - setpoint
557          *
558          * it's a 3rd order polynomial that subjects to
559          *
560          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
561          * (2) f(setpoint) = 1.0 => the balance point
562          * (3) f(limit)    = 0   => the hard limit
563          * (4) df/dx      <= 0   => negative feedback control
564          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
565          *     => fast response on large errors; small oscillation near setpoint
566          */
567         setpoint = (freerun + limit) / 2;
568         x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
569                     limit - setpoint + 1);
570         pos_ratio = x;
571         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
572         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
573         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
574
575         /*
576          * We have computed basic pos_ratio above based on global situation. If
577          * the bdi is over/under its share of dirty pages, we want to scale
578          * pos_ratio further down/up. That is done by the following mechanism.
579          */
580
581         /*
582          * bdi setpoint
583          *
584          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
585          *
586          *                        x_intercept - bdi_dirty
587          *                     := --------------------------
588          *                        x_intercept - bdi_setpoint
589          *
590          * The main bdi control line is a linear function that subjects to
591          *
592          * (1) f(bdi_setpoint) = 1.0
593          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
594          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
595          *
596          * For single bdi case, the dirty pages are observed to fluctuate
597          * regularly within range
598          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
599          * for various filesystems, where (2) can yield in a reasonable 12.5%
600          * fluctuation range for pos_ratio.
601          *
602          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
603          * own size, so move the slope over accordingly and choose a slope that
604          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
605          */
606         if (unlikely(bdi_thresh > thresh))
607                 bdi_thresh = thresh;
608         /*
609          * It's very possible that bdi_thresh is close to 0 not because the
610          * device is slow, but that it has remained inactive for long time.
611          * Honour such devices a reasonable good (hopefully IO efficient)
612          * threshold, so that the occasional writes won't be blocked and active
613          * writes can rampup the threshold quickly.
614          */
615         bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
616         /*
617          * scale global setpoint to bdi's:
618          *      bdi_setpoint = setpoint * bdi_thresh / thresh
619          */
620         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
621         bdi_setpoint = setpoint * (u64)x >> 16;
622         /*
623          * Use span=(8*write_bw) in single bdi case as indicated by
624          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
625          *
626          *        bdi_thresh                    thresh - bdi_thresh
627          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
628          *          thresh                            thresh
629          */
630         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
631         x_intercept = bdi_setpoint + span;
632
633         if (bdi_dirty < x_intercept - span / 4) {
634                 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
635                                     x_intercept - bdi_setpoint + 1);
636         } else
637                 pos_ratio /= 4;
638
639         /*
640          * bdi reserve area, safeguard against dirty pool underrun and disk idle
641          * It may push the desired control point of global dirty pages higher
642          * than setpoint.
643          */
644         x_intercept = bdi_thresh / 2;
645         if (bdi_dirty < x_intercept) {
646                 if (bdi_dirty > x_intercept / 8)
647                         pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
648                 else
649                         pos_ratio *= 8;
650         }
651
652         return pos_ratio;
653 }
654
655 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
656                                        unsigned long elapsed,
657                                        unsigned long written)
658 {
659         const unsigned long period = roundup_pow_of_two(3 * HZ);
660         unsigned long avg = bdi->avg_write_bandwidth;
661         unsigned long old = bdi->write_bandwidth;
662         u64 bw;
663
664         /*
665          * bw = written * HZ / elapsed
666          *
667          *                   bw * elapsed + write_bandwidth * (period - elapsed)
668          * write_bandwidth = ---------------------------------------------------
669          *                                          period
670          */
671         bw = written - bdi->written_stamp;
672         bw *= HZ;
673         if (unlikely(elapsed > period)) {
674                 do_div(bw, elapsed);
675                 avg = bw;
676                 goto out;
677         }
678         bw += (u64)bdi->write_bandwidth * (period - elapsed);
679         bw >>= ilog2(period);
680
681         /*
682          * one more level of smoothing, for filtering out sudden spikes
683          */
684         if (avg > old && old >= (unsigned long)bw)
685                 avg -= (avg - old) >> 3;
686
687         if (avg < old && old <= (unsigned long)bw)
688                 avg += (old - avg) >> 3;
689
690 out:
691         bdi->write_bandwidth = bw;
692         bdi->avg_write_bandwidth = avg;
693 }
694
695 /*
696  * The global dirtyable memory and dirty threshold could be suddenly knocked
697  * down by a large amount (eg. on the startup of KVM in a swapless system).
698  * This may throw the system into deep dirty exceeded state and throttle
699  * heavy/light dirtiers alike. To retain good responsiveness, maintain
700  * global_dirty_limit for tracking slowly down to the knocked down dirty
701  * threshold.
702  */
703 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
704 {
705         unsigned long limit = global_dirty_limit;
706
707         /*
708          * Follow up in one step.
709          */
710         if (limit < thresh) {
711                 limit = thresh;
712                 goto update;
713         }
714
715         /*
716          * Follow down slowly. Use the higher one as the target, because thresh
717          * may drop below dirty. This is exactly the reason to introduce
718          * global_dirty_limit which is guaranteed to lie above the dirty pages.
719          */
720         thresh = max(thresh, dirty);
721         if (limit > thresh) {
722                 limit -= (limit - thresh) >> 5;
723                 goto update;
724         }
725         return;
726 update:
727         global_dirty_limit = limit;
728 }
729
730 static void global_update_bandwidth(unsigned long thresh,
731                                     unsigned long dirty,
732                                     unsigned long now)
733 {
734         static DEFINE_SPINLOCK(dirty_lock);
735         static unsigned long update_time;
736
737         /*
738          * check locklessly first to optimize away locking for the most time
739          */
740         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
741                 return;
742
743         spin_lock(&dirty_lock);
744         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
745                 update_dirty_limit(thresh, dirty);
746                 update_time = now;
747         }
748         spin_unlock(&dirty_lock);
749 }
750
751 /*
752  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
753  *
754  * Normal bdi tasks will be curbed at or below it in long term.
755  * Obviously it should be around (write_bw / N) when there are N dd tasks.
756  */
757 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
758                                        unsigned long thresh,
759                                        unsigned long bg_thresh,
760                                        unsigned long dirty,
761                                        unsigned long bdi_thresh,
762                                        unsigned long bdi_dirty,
763                                        unsigned long dirtied,
764                                        unsigned long elapsed)
765 {
766         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
767         unsigned long limit = hard_dirty_limit(thresh);
768         unsigned long setpoint = (freerun + limit) / 2;
769         unsigned long write_bw = bdi->avg_write_bandwidth;
770         unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
771         unsigned long dirty_rate;
772         unsigned long task_ratelimit;
773         unsigned long balanced_dirty_ratelimit;
774         unsigned long pos_ratio;
775         unsigned long step;
776         unsigned long x;
777
778         /*
779          * The dirty rate will match the writeout rate in long term, except
780          * when dirty pages are truncated by userspace or re-dirtied by FS.
781          */
782         dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
783
784         pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
785                                        bdi_thresh, bdi_dirty);
786         /*
787          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
788          */
789         task_ratelimit = (u64)dirty_ratelimit *
790                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
791         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
792
793         /*
794          * A linear estimation of the "balanced" throttle rate. The theory is,
795          * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
796          * dirty_rate will be measured to be (N * task_ratelimit). So the below
797          * formula will yield the balanced rate limit (write_bw / N).
798          *
799          * Note that the expanded form is not a pure rate feedback:
800          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
801          * but also takes pos_ratio into account:
802          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
803          *
804          * (1) is not realistic because pos_ratio also takes part in balancing
805          * the dirty rate.  Consider the state
806          *      pos_ratio = 0.5                                              (3)
807          *      rate = 2 * (write_bw / N)                                    (4)
808          * If (1) is used, it will stuck in that state! Because each dd will
809          * be throttled at
810          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
811          * yielding
812          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
813          * put (6) into (1) we get
814          *      rate_(i+1) = rate_(i)                                        (7)
815          *
816          * So we end up using (2) to always keep
817          *      rate_(i+1) ~= (write_bw / N)                                 (8)
818          * regardless of the value of pos_ratio. As long as (8) is satisfied,
819          * pos_ratio is able to drive itself to 1.0, which is not only where
820          * the dirty count meet the setpoint, but also where the slope of
821          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
822          */
823         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
824                                            dirty_rate | 1);
825
826         /*
827          * We could safely do this and return immediately:
828          *
829          *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
830          *
831          * However to get a more stable dirty_ratelimit, the below elaborated
832          * code makes use of task_ratelimit to filter out sigular points and
833          * limit the step size.
834          *
835          * The below code essentially only uses the relative value of
836          *
837          *      task_ratelimit - dirty_ratelimit
838          *      = (pos_ratio - 1) * dirty_ratelimit
839          *
840          * which reflects the direction and size of dirty position error.
841          */
842
843         /*
844          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
845          * task_ratelimit is on the same side of dirty_ratelimit, too.
846          * For example, when
847          * - dirty_ratelimit > balanced_dirty_ratelimit
848          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
849          * lowering dirty_ratelimit will help meet both the position and rate
850          * control targets. Otherwise, don't update dirty_ratelimit if it will
851          * only help meet the rate target. After all, what the users ultimately
852          * feel and care are stable dirty rate and small position error.
853          *
854          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
855          * and filter out the sigular points of balanced_dirty_ratelimit. Which
856          * keeps jumping around randomly and can even leap far away at times
857          * due to the small 200ms estimation period of dirty_rate (we want to
858          * keep that period small to reduce time lags).
859          */
860         step = 0;
861         if (dirty < setpoint) {
862                 x = min(bdi->balanced_dirty_ratelimit,
863                          min(balanced_dirty_ratelimit, task_ratelimit));
864                 if (dirty_ratelimit < x)
865                         step = x - dirty_ratelimit;
866         } else {
867                 x = max(bdi->balanced_dirty_ratelimit,
868                          max(balanced_dirty_ratelimit, task_ratelimit));
869                 if (dirty_ratelimit > x)
870                         step = dirty_ratelimit - x;
871         }
872
873         /*
874          * Don't pursue 100% rate matching. It's impossible since the balanced
875          * rate itself is constantly fluctuating. So decrease the track speed
876          * when it gets close to the target. Helps eliminate pointless tremors.
877          */
878         step >>= dirty_ratelimit / (2 * step + 1);
879         /*
880          * Limit the tracking speed to avoid overshooting.
881          */
882         step = (step + 7) / 8;
883
884         if (dirty_ratelimit < balanced_dirty_ratelimit)
885                 dirty_ratelimit += step;
886         else
887                 dirty_ratelimit -= step;
888
889         bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
890         bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
891
892         trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
893 }
894
895 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
896                             unsigned long thresh,
897                             unsigned long bg_thresh,
898                             unsigned long dirty,
899                             unsigned long bdi_thresh,
900                             unsigned long bdi_dirty,
901                             unsigned long start_time)
902 {
903         unsigned long now = jiffies;
904         unsigned long elapsed = now - bdi->bw_time_stamp;
905         unsigned long dirtied;
906         unsigned long written;
907
908         /*
909          * rate-limit, only update once every 200ms.
910          */
911         if (elapsed < BANDWIDTH_INTERVAL)
912                 return;
913
914         dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
915         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
916
917         /*
918          * Skip quiet periods when disk bandwidth is under-utilized.
919          * (at least 1s idle time between two flusher runs)
920          */
921         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
922                 goto snapshot;
923
924         if (thresh) {
925                 global_update_bandwidth(thresh, dirty, now);
926                 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
927                                            bdi_thresh, bdi_dirty,
928                                            dirtied, elapsed);
929         }
930         bdi_update_write_bandwidth(bdi, elapsed, written);
931
932 snapshot:
933         bdi->dirtied_stamp = dirtied;
934         bdi->written_stamp = written;
935         bdi->bw_time_stamp = now;
936 }
937
938 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
939                                  unsigned long thresh,
940                                  unsigned long bg_thresh,
941                                  unsigned long dirty,
942                                  unsigned long bdi_thresh,
943                                  unsigned long bdi_dirty,
944                                  unsigned long start_time)
945 {
946         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
947                 return;
948         spin_lock(&bdi->wb.list_lock);
949         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
950                                bdi_thresh, bdi_dirty, start_time);
951         spin_unlock(&bdi->wb.list_lock);
952 }
953
954 /*
955  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
956  * will look to see if it needs to start dirty throttling.
957  *
958  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
959  * global_page_state() too often. So scale it near-sqrt to the safety margin
960  * (the number of pages we may dirty without exceeding the dirty limits).
961  */
962 static unsigned long dirty_poll_interval(unsigned long dirty,
963                                          unsigned long thresh)
964 {
965         if (thresh > dirty)
966                 return 1UL << (ilog2(thresh - dirty) >> 1);
967
968         return 1;
969 }
970
971 static long bdi_max_pause(struct backing_dev_info *bdi,
972                           unsigned long bdi_dirty)
973 {
974         long bw = bdi->avg_write_bandwidth;
975         long t;
976
977         /*
978          * Limit pause time for small memory systems. If sleeping for too long
979          * time, a small pool of dirty/writeback pages may go empty and disk go
980          * idle.
981          *
982          * 8 serves as the safety ratio.
983          */
984         t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
985         t++;
986
987         return min_t(long, t, MAX_PAUSE);
988 }
989
990 static long bdi_min_pause(struct backing_dev_info *bdi,
991                           long max_pause,
992                           unsigned long task_ratelimit,
993                           unsigned long dirty_ratelimit,
994                           int *nr_dirtied_pause)
995 {
996         long hi = ilog2(bdi->avg_write_bandwidth);
997         long lo = ilog2(bdi->dirty_ratelimit);
998         long t;         /* target pause */
999         long pause;     /* estimated next pause */
1000         int pages;      /* target nr_dirtied_pause */
1001
1002         /* target for 10ms pause on 1-dd case */
1003         t = max(1, HZ / 100);
1004
1005         /*
1006          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1007          * overheads.
1008          *
1009          * (N * 10ms) on 2^N concurrent tasks.
1010          */
1011         if (hi > lo)
1012                 t += (hi - lo) * (10 * HZ) / 1024;
1013
1014         /*
1015          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1016          * on the much more stable dirty_ratelimit. However the next pause time
1017          * will be computed based on task_ratelimit and the two rate limits may
1018          * depart considerably at some time. Especially if task_ratelimit goes
1019          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1020          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1021          * result task_ratelimit won't be executed faithfully, which could
1022          * eventually bring down dirty_ratelimit.
1023          *
1024          * We apply two rules to fix it up:
1025          * 1) try to estimate the next pause time and if necessary, use a lower
1026          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1027          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1028          * 2) limit the target pause time to max_pause/2, so that the normal
1029          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1030          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1031          */
1032         t = min(t, 1 + max_pause / 2);
1033         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1034
1035         /*
1036          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1037          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1038          * When the 16 consecutive reads are often interrupted by some dirty
1039          * throttling pause during the async writes, cfq will go into idles
1040          * (deadline is fine). So push nr_dirtied_pause as high as possible
1041          * until reaches DIRTY_POLL_THRESH=32 pages.
1042          */
1043         if (pages < DIRTY_POLL_THRESH) {
1044                 t = max_pause;
1045                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1046                 if (pages > DIRTY_POLL_THRESH) {
1047                         pages = DIRTY_POLL_THRESH;
1048                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1049                 }
1050         }
1051
1052         pause = HZ * pages / (task_ratelimit + 1);
1053         if (pause > max_pause) {
1054                 t = max_pause;
1055                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1056         }
1057
1058         *nr_dirtied_pause = pages;
1059         /*
1060          * The minimal pause time will normally be half the target pause time.
1061          */
1062         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1063 }
1064
1065 /*
1066  * balance_dirty_pages() must be called by processes which are generating dirty
1067  * data.  It looks at the number of dirty pages in the machine and will force
1068  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1069  * If we're over `background_thresh' then the writeback threads are woken to
1070  * perform some writeout.
1071  */
1072 static void balance_dirty_pages(struct address_space *mapping,
1073                                 unsigned long pages_dirtied)
1074 {
1075         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1076         unsigned long bdi_reclaimable;
1077         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1078         unsigned long bdi_dirty;
1079         unsigned long freerun;
1080         unsigned long background_thresh;
1081         unsigned long dirty_thresh;
1082         unsigned long bdi_thresh;
1083         long period;
1084         long pause;
1085         long max_pause;
1086         long min_pause;
1087         int nr_dirtied_pause;
1088         bool dirty_exceeded = false;
1089         unsigned long task_ratelimit;
1090         unsigned long dirty_ratelimit;
1091         unsigned long pos_ratio;
1092         struct backing_dev_info *bdi = mapping->backing_dev_info;
1093         unsigned long start_time = jiffies;
1094
1095         for (;;) {
1096                 unsigned long now = jiffies;
1097
1098                 /*
1099                  * Unstable writes are a feature of certain networked
1100                  * filesystems (i.e. NFS) in which data may have been
1101                  * written to the server's write cache, but has not yet
1102                  * been flushed to permanent storage.
1103                  */
1104                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1105                                         global_page_state(NR_UNSTABLE_NFS);
1106                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1107
1108                 global_dirty_limits(&background_thresh, &dirty_thresh);
1109
1110                 /*
1111                  * Throttle it only when the background writeback cannot
1112                  * catch-up. This avoids (excessively) small writeouts
1113                  * when the bdi limits are ramping up.
1114                  */
1115                 freerun = dirty_freerun_ceiling(dirty_thresh,
1116                                                 background_thresh);
1117                 if (nr_dirty <= freerun) {
1118                         current->dirty_paused_when = now;
1119                         current->nr_dirtied = 0;
1120                         current->nr_dirtied_pause =
1121                                 dirty_poll_interval(nr_dirty, dirty_thresh);
1122                         break;
1123                 }
1124
1125                 if (unlikely(!writeback_in_progress(bdi)))
1126                         bdi_start_background_writeback(bdi);
1127
1128                 /*
1129                  * bdi_thresh is not treated as some limiting factor as
1130                  * dirty_thresh, due to reasons
1131                  * - in JBOD setup, bdi_thresh can fluctuate a lot
1132                  * - in a system with HDD and USB key, the USB key may somehow
1133                  *   go into state (bdi_dirty >> bdi_thresh) either because
1134                  *   bdi_dirty starts high, or because bdi_thresh drops low.
1135                  *   In this case we don't want to hard throttle the USB key
1136                  *   dirtiers for 100 seconds until bdi_dirty drops under
1137                  *   bdi_thresh. Instead the auxiliary bdi control line in
1138                  *   bdi_position_ratio() will let the dirtier task progress
1139                  *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1140                  */
1141                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1142
1143                 /*
1144                  * In order to avoid the stacked BDI deadlock we need
1145                  * to ensure we accurately count the 'dirty' pages when
1146                  * the threshold is low.
1147                  *
1148                  * Otherwise it would be possible to get thresh+n pages
1149                  * reported dirty, even though there are thresh-m pages
1150                  * actually dirty; with m+n sitting in the percpu
1151                  * deltas.
1152                  */
1153                 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1154                         bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1155                         bdi_dirty = bdi_reclaimable +
1156                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
1157                 } else {
1158                         bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1159                         bdi_dirty = bdi_reclaimable +
1160                                     bdi_stat(bdi, BDI_WRITEBACK);
1161                 }
1162
1163                 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1164                                   (nr_dirty > dirty_thresh);
1165                 if (dirty_exceeded && !bdi->dirty_exceeded)
1166                         bdi->dirty_exceeded = 1;
1167
1168                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1169                                      nr_dirty, bdi_thresh, bdi_dirty,
1170                                      start_time);
1171
1172                 dirty_ratelimit = bdi->dirty_ratelimit;
1173                 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1174                                                background_thresh, nr_dirty,
1175                                                bdi_thresh, bdi_dirty);
1176                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1177                                                         RATELIMIT_CALC_SHIFT;
1178                 max_pause = bdi_max_pause(bdi, bdi_dirty);
1179                 min_pause = bdi_min_pause(bdi, max_pause,
1180                                           task_ratelimit, dirty_ratelimit,
1181                                           &nr_dirtied_pause);
1182
1183                 if (unlikely(task_ratelimit == 0)) {
1184                         period = max_pause;
1185                         pause = max_pause;
1186                         goto pause;
1187                 }
1188                 period = HZ * pages_dirtied / task_ratelimit;
1189                 pause = period;
1190                 if (current->dirty_paused_when)
1191                         pause -= now - current->dirty_paused_when;
1192                 /*
1193                  * For less than 1s think time (ext3/4 may block the dirtier
1194                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1195                  * however at much less frequency), try to compensate it in
1196                  * future periods by updating the virtual time; otherwise just
1197                  * do a reset, as it may be a light dirtier.
1198                  */
1199                 if (pause < min_pause) {
1200                         trace_balance_dirty_pages(bdi,
1201                                                   dirty_thresh,
1202                                                   background_thresh,
1203                                                   nr_dirty,
1204                                                   bdi_thresh,
1205                                                   bdi_dirty,
1206                                                   dirty_ratelimit,
1207                                                   task_ratelimit,
1208                                                   pages_dirtied,
1209                                                   period,
1210                                                   min(pause, 0L),
1211                                                   start_time);
1212                         if (pause < -HZ) {
1213                                 current->dirty_paused_when = now;
1214                                 current->nr_dirtied = 0;
1215                         } else if (period) {
1216                                 current->dirty_paused_when += period;
1217                                 current->nr_dirtied = 0;
1218                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1219                                 current->nr_dirtied_pause += pages_dirtied;
1220                         break;
1221                 }
1222                 if (unlikely(pause > max_pause)) {
1223                         /* for occasional dropped task_ratelimit */
1224                         now += min(pause - max_pause, max_pause);
1225                         pause = max_pause;
1226                 }
1227
1228 pause:
1229                 trace_balance_dirty_pages(bdi,
1230                                           dirty_thresh,
1231                                           background_thresh,
1232                                           nr_dirty,
1233                                           bdi_thresh,
1234                                           bdi_dirty,
1235                                           dirty_ratelimit,
1236                                           task_ratelimit,
1237                                           pages_dirtied,
1238                                           period,
1239                                           pause,
1240                                           start_time);
1241                 __set_current_state(TASK_KILLABLE);
1242                 io_schedule_timeout(pause);
1243
1244                 current->dirty_paused_when = now + pause;
1245                 current->nr_dirtied = 0;
1246                 current->nr_dirtied_pause = nr_dirtied_pause;
1247
1248                 /*
1249                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1250                  * also keep "1000+ dd on a slow USB stick" under control.
1251                  */
1252                 if (task_ratelimit)
1253                         break;
1254
1255                 /*
1256                  * In the case of an unresponding NFS server and the NFS dirty
1257                  * pages exceeds dirty_thresh, give the other good bdi's a pipe
1258                  * to go through, so that tasks on them still remain responsive.
1259                  *
1260                  * In theory 1 page is enough to keep the comsumer-producer
1261                  * pipe going: the flusher cleans 1 page => the task dirties 1
1262                  * more page. However bdi_dirty has accounting errors.  So use
1263                  * the larger and more IO friendly bdi_stat_error.
1264                  */
1265                 if (bdi_dirty <= bdi_stat_error(bdi))
1266                         break;
1267
1268                 if (fatal_signal_pending(current))
1269                         break;
1270         }
1271
1272         if (!dirty_exceeded && bdi->dirty_exceeded)
1273                 bdi->dirty_exceeded = 0;
1274
1275         if (writeback_in_progress(bdi))
1276                 return;
1277
1278         /*
1279          * In laptop mode, we wait until hitting the higher threshold before
1280          * starting background writeout, and then write out all the way down
1281          * to the lower threshold.  So slow writers cause minimal disk activity.
1282          *
1283          * In normal mode, we start background writeout at the lower
1284          * background_thresh, to keep the amount of dirty memory low.
1285          */
1286         if (laptop_mode)
1287                 return;
1288
1289         if (nr_reclaimable > background_thresh)
1290                 bdi_start_background_writeback(bdi);
1291 }
1292
1293 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1294 {
1295         if (set_page_dirty(page) || page_mkwrite) {
1296                 struct address_space *mapping = page_mapping(page);
1297
1298                 if (mapping)
1299                         balance_dirty_pages_ratelimited(mapping);
1300         }
1301 }
1302
1303 static DEFINE_PER_CPU(int, bdp_ratelimits);
1304
1305 /*
1306  * Normal tasks are throttled by
1307  *      loop {
1308  *              dirty tsk->nr_dirtied_pause pages;
1309  *              take a snap in balance_dirty_pages();
1310  *      }
1311  * However there is a worst case. If every task exit immediately when dirtied
1312  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1313  * called to throttle the page dirties. The solution is to save the not yet
1314  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1315  * randomly into the running tasks. This works well for the above worst case,
1316  * as the new task will pick up and accumulate the old task's leaked dirty
1317  * count and eventually get throttled.
1318  */
1319 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1320
1321 /**
1322  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1323  * @mapping: address_space which was dirtied
1324  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1325  *
1326  * Processes which are dirtying memory should call in here once for each page
1327  * which was newly dirtied.  The function will periodically check the system's
1328  * dirty state and will initiate writeback if needed.
1329  *
1330  * On really big machines, get_writeback_state is expensive, so try to avoid
1331  * calling it too often (ratelimiting).  But once we're over the dirty memory
1332  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1333  * from overshooting the limit by (ratelimit_pages) each.
1334  */
1335 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1336                                         unsigned long nr_pages_dirtied)
1337 {
1338         struct backing_dev_info *bdi = mapping->backing_dev_info;
1339         int ratelimit;
1340         int *p;
1341
1342         if (!bdi_cap_account_dirty(bdi))
1343                 return;
1344
1345         ratelimit = current->nr_dirtied_pause;
1346         if (bdi->dirty_exceeded)
1347                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1348
1349         preempt_disable();
1350         /*
1351          * This prevents one CPU to accumulate too many dirtied pages without
1352          * calling into balance_dirty_pages(), which can happen when there are
1353          * 1000+ tasks, all of them start dirtying pages at exactly the same
1354          * time, hence all honoured too large initial task->nr_dirtied_pause.
1355          */
1356         p =  &__get_cpu_var(bdp_ratelimits);
1357         if (unlikely(current->nr_dirtied >= ratelimit))
1358                 *p = 0;
1359         else if (unlikely(*p >= ratelimit_pages)) {
1360                 *p = 0;
1361                 ratelimit = 0;
1362         }
1363         /*
1364          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1365          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1366          * the dirty throttling and livelock other long-run dirtiers.
1367          */
1368         p = &__get_cpu_var(dirty_throttle_leaks);
1369         if (*p > 0 && current->nr_dirtied < ratelimit) {
1370                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1371                 *p -= nr_pages_dirtied;
1372                 current->nr_dirtied += nr_pages_dirtied;
1373         }
1374         preempt_enable();
1375
1376         if (unlikely(current->nr_dirtied >= ratelimit))
1377                 balance_dirty_pages(mapping, current->nr_dirtied);
1378 }
1379 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1380
1381 void throttle_vm_writeout(gfp_t gfp_mask)
1382 {
1383         unsigned long background_thresh;
1384         unsigned long dirty_thresh;
1385
1386         for ( ; ; ) {
1387                 global_dirty_limits(&background_thresh, &dirty_thresh);
1388
1389                 /*
1390                  * Boost the allowable dirty threshold a bit for page
1391                  * allocators so they don't get DoS'ed by heavy writers
1392                  */
1393                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1394
1395                 if (global_page_state(NR_UNSTABLE_NFS) +
1396                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1397                                 break;
1398                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1399
1400                 /*
1401                  * The caller might hold locks which can prevent IO completion
1402                  * or progress in the filesystem.  So we cannot just sit here
1403                  * waiting for IO to complete.
1404                  */
1405                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1406                         break;
1407         }
1408 }
1409
1410 /*
1411  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1412  */
1413 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1414         void __user *buffer, size_t *length, loff_t *ppos)
1415 {
1416         proc_dointvec(table, write, buffer, length, ppos);
1417         bdi_arm_supers_timer();
1418         return 0;
1419 }
1420
1421 #ifdef CONFIG_BLOCK
1422 void laptop_mode_timer_fn(unsigned long data)
1423 {
1424         struct request_queue *q = (struct request_queue *)data;
1425         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1426                 global_page_state(NR_UNSTABLE_NFS);
1427
1428         /*
1429          * We want to write everything out, not just down to the dirty
1430          * threshold
1431          */
1432         if (bdi_has_dirty_io(&q->backing_dev_info))
1433                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1434                                         WB_REASON_LAPTOP_TIMER);
1435 }
1436
1437 /*
1438  * We've spun up the disk and we're in laptop mode: schedule writeback
1439  * of all dirty data a few seconds from now.  If the flush is already scheduled
1440  * then push it back - the user is still using the disk.
1441  */
1442 void laptop_io_completion(struct backing_dev_info *info)
1443 {
1444         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1445 }
1446
1447 /*
1448  * We're in laptop mode and we've just synced. The sync's writes will have
1449  * caused another writeback to be scheduled by laptop_io_completion.
1450  * Nothing needs to be written back anymore, so we unschedule the writeback.
1451  */
1452 void laptop_sync_completion(void)
1453 {
1454         struct backing_dev_info *bdi;
1455
1456         rcu_read_lock();
1457
1458         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1459                 del_timer(&bdi->laptop_mode_wb_timer);
1460
1461         rcu_read_unlock();
1462 }
1463 #endif
1464
1465 /*
1466  * If ratelimit_pages is too high then we can get into dirty-data overload
1467  * if a large number of processes all perform writes at the same time.
1468  * If it is too low then SMP machines will call the (expensive)
1469  * get_writeback_state too often.
1470  *
1471  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1472  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1473  * thresholds.
1474  */
1475
1476 void writeback_set_ratelimit(void)
1477 {
1478         unsigned long background_thresh;
1479         unsigned long dirty_thresh;
1480         global_dirty_limits(&background_thresh, &dirty_thresh);
1481         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1482         if (ratelimit_pages < 16)
1483                 ratelimit_pages = 16;
1484 }
1485
1486 static int __cpuinit
1487 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1488 {
1489         writeback_set_ratelimit();
1490         return NOTIFY_DONE;
1491 }
1492
1493 static struct notifier_block __cpuinitdata ratelimit_nb = {
1494         .notifier_call  = ratelimit_handler,
1495         .next           = NULL,
1496 };
1497
1498 /*
1499  * Called early on to tune the page writeback dirty limits.
1500  *
1501  * We used to scale dirty pages according to how total memory
1502  * related to pages that could be allocated for buffers (by
1503  * comparing nr_free_buffer_pages() to vm_total_pages.
1504  *
1505  * However, that was when we used "dirty_ratio" to scale with
1506  * all memory, and we don't do that any more. "dirty_ratio"
1507  * is now applied to total non-HIGHPAGE memory (by subtracting
1508  * totalhigh_pages from vm_total_pages), and as such we can't
1509  * get into the old insane situation any more where we had
1510  * large amounts of dirty pages compared to a small amount of
1511  * non-HIGHMEM memory.
1512  *
1513  * But we might still want to scale the dirty_ratio by how
1514  * much memory the box has..
1515  */
1516 void __init page_writeback_init(void)
1517 {
1518         int shift;
1519
1520         writeback_set_ratelimit();
1521         register_cpu_notifier(&ratelimit_nb);
1522
1523         shift = calc_period_shift();
1524         prop_descriptor_init(&vm_completions, shift);
1525 }
1526
1527 /**
1528  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1529  * @mapping: address space structure to write
1530  * @start: starting page index
1531  * @end: ending page index (inclusive)
1532  *
1533  * This function scans the page range from @start to @end (inclusive) and tags
1534  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1535  * that write_cache_pages (or whoever calls this function) will then use
1536  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1537  * used to avoid livelocking of writeback by a process steadily creating new
1538  * dirty pages in the file (thus it is important for this function to be quick
1539  * so that it can tag pages faster than a dirtying process can create them).
1540  */
1541 /*
1542  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1543  */
1544 void tag_pages_for_writeback(struct address_space *mapping,
1545                              pgoff_t start, pgoff_t end)
1546 {
1547 #define WRITEBACK_TAG_BATCH 4096
1548         unsigned long tagged;
1549
1550         do {
1551                 spin_lock_irq(&mapping->tree_lock);
1552                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1553                                 &start, end, WRITEBACK_TAG_BATCH,
1554                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1555                 spin_unlock_irq(&mapping->tree_lock);
1556                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1557                 cond_resched();
1558                 /* We check 'start' to handle wrapping when end == ~0UL */
1559         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1560 }
1561 EXPORT_SYMBOL(tag_pages_for_writeback);
1562
1563 /**
1564  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1565  * @mapping: address space structure to write
1566  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1567  * @writepage: function called for each page
1568  * @data: data passed to writepage function
1569  *
1570  * If a page is already under I/O, write_cache_pages() skips it, even
1571  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1572  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1573  * and msync() need to guarantee that all the data which was dirty at the time
1574  * the call was made get new I/O started against them.  If wbc->sync_mode is
1575  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1576  * existing IO to complete.
1577  *
1578  * To avoid livelocks (when other process dirties new pages), we first tag
1579  * pages which should be written back with TOWRITE tag and only then start
1580  * writing them. For data-integrity sync we have to be careful so that we do
1581  * not miss some pages (e.g., because some other process has cleared TOWRITE
1582  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1583  * by the process clearing the DIRTY tag (and submitting the page for IO).
1584  */
1585 int write_cache_pages(struct address_space *mapping,
1586                       struct writeback_control *wbc, writepage_t writepage,
1587                       void *data)
1588 {
1589         int ret = 0;
1590         int done = 0;
1591         struct pagevec pvec;
1592         int nr_pages;
1593         pgoff_t uninitialized_var(writeback_index);
1594         pgoff_t index;
1595         pgoff_t end;            /* Inclusive */
1596         pgoff_t done_index;
1597         int cycled;
1598         int range_whole = 0;
1599         int tag;
1600
1601         pagevec_init(&pvec, 0);
1602         if (wbc->range_cyclic) {
1603                 writeback_index = mapping->writeback_index; /* prev offset */
1604                 index = writeback_index;
1605                 if (index == 0)
1606                         cycled = 1;
1607                 else
1608                         cycled = 0;
1609                 end = -1;
1610         } else {
1611                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1612                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1613                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1614                         range_whole = 1;
1615                 cycled = 1; /* ignore range_cyclic tests */
1616         }
1617         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1618                 tag = PAGECACHE_TAG_TOWRITE;
1619         else
1620                 tag = PAGECACHE_TAG_DIRTY;
1621 retry:
1622         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1623                 tag_pages_for_writeback(mapping, index, end);
1624         done_index = index;
1625         while (!done && (index <= end)) {
1626                 int i;
1627
1628                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1629                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1630                 if (nr_pages == 0)
1631                         break;
1632
1633                 for (i = 0; i < nr_pages; i++) {
1634                         struct page *page = pvec.pages[i];
1635
1636                         /*
1637                          * At this point, the page may be truncated or
1638                          * invalidated (changing page->mapping to NULL), or
1639                          * even swizzled back from swapper_space to tmpfs file
1640                          * mapping. However, page->index will not change
1641                          * because we have a reference on the page.
1642                          */
1643                         if (page->index > end) {
1644                                 /*
1645                                  * can't be range_cyclic (1st pass) because
1646                                  * end == -1 in that case.
1647                                  */
1648                                 done = 1;
1649                                 break;
1650                         }
1651
1652                         done_index = page->index;
1653
1654                         lock_page(page);
1655
1656                         /*
1657                          * Page truncated or invalidated. We can freely skip it
1658                          * then, even for data integrity operations: the page
1659                          * has disappeared concurrently, so there could be no
1660                          * real expectation of this data interity operation
1661                          * even if there is now a new, dirty page at the same
1662                          * pagecache address.
1663                          */
1664                         if (unlikely(page->mapping != mapping)) {
1665 continue_unlock:
1666                                 unlock_page(page);
1667                                 continue;
1668                         }
1669
1670                         if (!PageDirty(page)) {
1671                                 /* someone wrote it for us */
1672                                 goto continue_unlock;
1673                         }
1674
1675                         if (PageWriteback(page)) {
1676                                 if (wbc->sync_mode != WB_SYNC_NONE)
1677                                         wait_on_page_writeback(page);
1678                                 else
1679                                         goto continue_unlock;
1680                         }
1681
1682                         BUG_ON(PageWriteback(page));
1683                         if (!clear_page_dirty_for_io(page))
1684                                 goto continue_unlock;
1685
1686                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1687                         ret = (*writepage)(page, wbc, data);
1688                         if (unlikely(ret)) {
1689                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1690                                         unlock_page(page);
1691                                         ret = 0;
1692                                 } else {
1693                                         /*
1694                                          * done_index is set past this page,
1695                                          * so media errors will not choke
1696                                          * background writeout for the entire
1697                                          * file. This has consequences for
1698                                          * range_cyclic semantics (ie. it may
1699                                          * not be suitable for data integrity
1700                                          * writeout).
1701                                          */
1702                                         done_index = page->index + 1;
1703                                         done = 1;
1704                                         break;
1705                                 }
1706                         }
1707
1708                         /*
1709                          * We stop writing back only if we are not doing
1710                          * integrity sync. In case of integrity sync we have to
1711                          * keep going until we have written all the pages
1712                          * we tagged for writeback prior to entering this loop.
1713                          */
1714                         if (--wbc->nr_to_write <= 0 &&
1715                             wbc->sync_mode == WB_SYNC_NONE) {
1716                                 done = 1;
1717                                 break;
1718                         }
1719                 }
1720                 pagevec_release(&pvec);
1721                 cond_resched();
1722         }
1723         if (!cycled && !done) {
1724                 /*
1725                  * range_cyclic:
1726                  * We hit the last page and there is more work to be done: wrap
1727                  * back to the start of the file
1728                  */
1729                 cycled = 1;
1730                 index = 0;
1731                 end = writeback_index - 1;
1732                 goto retry;
1733         }
1734         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1735                 mapping->writeback_index = done_index;
1736
1737         return ret;
1738 }
1739 EXPORT_SYMBOL(write_cache_pages);
1740
1741 /*
1742  * Function used by generic_writepages to call the real writepage
1743  * function and set the mapping flags on error
1744  */
1745 static int __writepage(struct page *page, struct writeback_control *wbc,
1746                        void *data)
1747 {
1748         struct address_space *mapping = data;
1749         int ret = mapping->a_ops->writepage(page, wbc);
1750         mapping_set_error(mapping, ret);
1751         return ret;
1752 }
1753
1754 /**
1755  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1756  * @mapping: address space structure to write
1757  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1758  *
1759  * This is a library function, which implements the writepages()
1760  * address_space_operation.
1761  */
1762 int generic_writepages(struct address_space *mapping,
1763                        struct writeback_control *wbc)
1764 {
1765         struct blk_plug plug;
1766         int ret;
1767
1768         /* deal with chardevs and other special file */
1769         if (!mapping->a_ops->writepage)
1770                 return 0;
1771
1772         blk_start_plug(&plug);
1773         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1774         blk_finish_plug(&plug);
1775         return ret;
1776 }
1777
1778 EXPORT_SYMBOL(generic_writepages);
1779
1780 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1781 {
1782         int ret;
1783
1784         if (wbc->nr_to_write <= 0)
1785                 return 0;
1786         if (mapping->a_ops->writepages)
1787                 ret = mapping->a_ops->writepages(mapping, wbc);
1788         else
1789                 ret = generic_writepages(mapping, wbc);
1790         return ret;
1791 }
1792
1793 /**
1794  * write_one_page - write out a single page and optionally wait on I/O
1795  * @page: the page to write
1796  * @wait: if true, wait on writeout
1797  *
1798  * The page must be locked by the caller and will be unlocked upon return.
1799  *
1800  * write_one_page() returns a negative error code if I/O failed.
1801  */
1802 int write_one_page(struct page *page, int wait)
1803 {
1804         struct address_space *mapping = page->mapping;
1805         int ret = 0;
1806         struct writeback_control wbc = {
1807                 .sync_mode = WB_SYNC_ALL,
1808                 .nr_to_write = 1,
1809         };
1810
1811         BUG_ON(!PageLocked(page));
1812
1813         if (wait)
1814                 wait_on_page_writeback(page);
1815
1816         if (clear_page_dirty_for_io(page)) {
1817                 page_cache_get(page);
1818                 ret = mapping->a_ops->writepage(page, &wbc);
1819                 if (ret == 0 && wait) {
1820                         wait_on_page_writeback(page);
1821                         if (PageError(page))
1822                                 ret = -EIO;
1823                 }
1824                 page_cache_release(page);
1825         } else {
1826                 unlock_page(page);
1827         }
1828         return ret;
1829 }
1830 EXPORT_SYMBOL(write_one_page);
1831
1832 /*
1833  * For address_spaces which do not use buffers nor write back.
1834  */
1835 int __set_page_dirty_no_writeback(struct page *page)
1836 {
1837         if (!PageDirty(page))
1838                 return !TestSetPageDirty(page);
1839         return 0;
1840 }
1841
1842 /*
1843  * Helper function for set_page_dirty family.
1844  * NOTE: This relies on being atomic wrt interrupts.
1845  */
1846 void account_page_dirtied(struct page *page, struct address_space *mapping)
1847 {
1848         if (mapping_cap_account_dirty(mapping)) {
1849                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1850                 __inc_zone_page_state(page, NR_DIRTIED);
1851                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1852                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1853                 task_io_account_write(PAGE_CACHE_SIZE);
1854                 current->nr_dirtied++;
1855                 this_cpu_inc(bdp_ratelimits);
1856         }
1857 }
1858 EXPORT_SYMBOL(account_page_dirtied);
1859
1860 /*
1861  * Helper function for set_page_writeback family.
1862  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1863  * wrt interrupts.
1864  */
1865 void account_page_writeback(struct page *page)
1866 {
1867         inc_zone_page_state(page, NR_WRITEBACK);
1868 }
1869 EXPORT_SYMBOL(account_page_writeback);
1870
1871 /*
1872  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1873  * its radix tree.
1874  *
1875  * This is also used when a single buffer is being dirtied: we want to set the
1876  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1877  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1878  *
1879  * Most callers have locked the page, which pins the address_space in memory.
1880  * But zap_pte_range() does not lock the page, however in that case the
1881  * mapping is pinned by the vma's ->vm_file reference.
1882  *
1883  * We take care to handle the case where the page was truncated from the
1884  * mapping by re-checking page_mapping() inside tree_lock.
1885  */
1886 int __set_page_dirty_nobuffers(struct page *page)
1887 {
1888         if (!TestSetPageDirty(page)) {
1889                 struct address_space *mapping = page_mapping(page);
1890                 struct address_space *mapping2;
1891
1892                 if (!mapping)
1893                         return 1;
1894
1895                 spin_lock_irq(&mapping->tree_lock);
1896                 mapping2 = page_mapping(page);
1897                 if (mapping2) { /* Race with truncate? */
1898                         BUG_ON(mapping2 != mapping);
1899                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1900                         account_page_dirtied(page, mapping);
1901                         radix_tree_tag_set(&mapping->page_tree,
1902                                 page_index(page), PAGECACHE_TAG_DIRTY);
1903                 }
1904                 spin_unlock_irq(&mapping->tree_lock);
1905                 if (mapping->host) {
1906                         /* !PageAnon && !swapper_space */
1907                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1908                 }
1909                 return 1;
1910         }
1911         return 0;
1912 }
1913 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1914
1915 /*
1916  * Call this whenever redirtying a page, to de-account the dirty counters
1917  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
1918  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
1919  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
1920  * control.
1921  */
1922 void account_page_redirty(struct page *page)
1923 {
1924         struct address_space *mapping = page->mapping;
1925         if (mapping && mapping_cap_account_dirty(mapping)) {
1926                 current->nr_dirtied--;
1927                 dec_zone_page_state(page, NR_DIRTIED);
1928                 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1929         }
1930 }
1931 EXPORT_SYMBOL(account_page_redirty);
1932
1933 /*
1934  * When a writepage implementation decides that it doesn't want to write this
1935  * page for some reason, it should redirty the locked page via
1936  * redirty_page_for_writepage() and it should then unlock the page and return 0
1937  */
1938 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1939 {
1940         wbc->pages_skipped++;
1941         account_page_redirty(page);
1942         return __set_page_dirty_nobuffers(page);
1943 }
1944 EXPORT_SYMBOL(redirty_page_for_writepage);
1945
1946 /*
1947  * Dirty a page.
1948  *
1949  * For pages with a mapping this should be done under the page lock
1950  * for the benefit of asynchronous memory errors who prefer a consistent
1951  * dirty state. This rule can be broken in some special cases,
1952  * but should be better not to.
1953  *
1954  * If the mapping doesn't provide a set_page_dirty a_op, then
1955  * just fall through and assume that it wants buffer_heads.
1956  */
1957 int set_page_dirty(struct page *page)
1958 {
1959         struct address_space *mapping = page_mapping(page);
1960
1961         if (likely(mapping)) {
1962                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1963                 /*
1964                  * readahead/lru_deactivate_page could remain
1965                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1966                  * About readahead, if the page is written, the flags would be
1967                  * reset. So no problem.
1968                  * About lru_deactivate_page, if the page is redirty, the flag
1969                  * will be reset. So no problem. but if the page is used by readahead
1970                  * it will confuse readahead and make it restart the size rampup
1971                  * process. But it's a trivial problem.
1972                  */
1973                 ClearPageReclaim(page);
1974 #ifdef CONFIG_BLOCK
1975                 if (!spd)
1976                         spd = __set_page_dirty_buffers;
1977 #endif
1978                 return (*spd)(page);
1979         }
1980         if (!PageDirty(page)) {
1981                 if (!TestSetPageDirty(page))
1982                         return 1;
1983         }
1984         return 0;
1985 }
1986 EXPORT_SYMBOL(set_page_dirty);
1987
1988 /*
1989  * set_page_dirty() is racy if the caller has no reference against
1990  * page->mapping->host, and if the page is unlocked.  This is because another
1991  * CPU could truncate the page off the mapping and then free the mapping.
1992  *
1993  * Usually, the page _is_ locked, or the caller is a user-space process which
1994  * holds a reference on the inode by having an open file.
1995  *
1996  * In other cases, the page should be locked before running set_page_dirty().
1997  */
1998 int set_page_dirty_lock(struct page *page)
1999 {
2000         int ret;
2001
2002         lock_page(page);
2003         ret = set_page_dirty(page);
2004         unlock_page(page);
2005         return ret;
2006 }
2007 EXPORT_SYMBOL(set_page_dirty_lock);
2008
2009 /*
2010  * Clear a page's dirty flag, while caring for dirty memory accounting.
2011  * Returns true if the page was previously dirty.
2012  *
2013  * This is for preparing to put the page under writeout.  We leave the page
2014  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2015  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2016  * implementation will run either set_page_writeback() or set_page_dirty(),
2017  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2018  * back into sync.
2019  *
2020  * This incoherency between the page's dirty flag and radix-tree tag is
2021  * unfortunate, but it only exists while the page is locked.
2022  */
2023 int clear_page_dirty_for_io(struct page *page)
2024 {
2025         struct address_space *mapping = page_mapping(page);
2026
2027         BUG_ON(!PageLocked(page));
2028
2029         if (mapping && mapping_cap_account_dirty(mapping)) {
2030                 /*
2031                  * Yes, Virginia, this is indeed insane.
2032                  *
2033                  * We use this sequence to make sure that
2034                  *  (a) we account for dirty stats properly
2035                  *  (b) we tell the low-level filesystem to
2036                  *      mark the whole page dirty if it was
2037                  *      dirty in a pagetable. Only to then
2038                  *  (c) clean the page again and return 1 to
2039                  *      cause the writeback.
2040                  *
2041                  * This way we avoid all nasty races with the
2042                  * dirty bit in multiple places and clearing
2043                  * them concurrently from different threads.
2044                  *
2045                  * Note! Normally the "set_page_dirty(page)"
2046                  * has no effect on the actual dirty bit - since
2047                  * that will already usually be set. But we
2048                  * need the side effects, and it can help us
2049                  * avoid races.
2050                  *
2051                  * We basically use the page "master dirty bit"
2052                  * as a serialization point for all the different
2053                  * threads doing their things.
2054                  */
2055                 if (page_mkclean(page))
2056                         set_page_dirty(page);
2057                 /*
2058                  * We carefully synchronise fault handlers against
2059                  * installing a dirty pte and marking the page dirty
2060                  * at this point. We do this by having them hold the
2061                  * page lock at some point after installing their
2062                  * pte, but before marking the page dirty.
2063                  * Pages are always locked coming in here, so we get
2064                  * the desired exclusion. See mm/memory.c:do_wp_page()
2065                  * for more comments.
2066                  */
2067                 if (TestClearPageDirty(page)) {
2068                         dec_zone_page_state(page, NR_FILE_DIRTY);
2069                         dec_bdi_stat(mapping->backing_dev_info,
2070                                         BDI_RECLAIMABLE);
2071                         return 1;
2072                 }
2073                 return 0;
2074         }
2075         return TestClearPageDirty(page);
2076 }
2077 EXPORT_SYMBOL(clear_page_dirty_for_io);
2078
2079 int test_clear_page_writeback(struct page *page)
2080 {
2081         struct address_space *mapping = page_mapping(page);
2082         int ret;
2083
2084         if (mapping) {
2085                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2086                 unsigned long flags;
2087
2088                 spin_lock_irqsave(&mapping->tree_lock, flags);
2089                 ret = TestClearPageWriteback(page);
2090                 if (ret) {
2091                         radix_tree_tag_clear(&mapping->page_tree,
2092                                                 page_index(page),
2093                                                 PAGECACHE_TAG_WRITEBACK);
2094                         if (bdi_cap_account_writeback(bdi)) {
2095                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2096                                 __bdi_writeout_inc(bdi);
2097                         }
2098                 }
2099                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2100         } else {
2101                 ret = TestClearPageWriteback(page);
2102         }
2103         if (ret) {
2104                 dec_zone_page_state(page, NR_WRITEBACK);
2105                 inc_zone_page_state(page, NR_WRITTEN);
2106         }
2107         return ret;
2108 }
2109
2110 int test_set_page_writeback(struct page *page)
2111 {
2112         struct address_space *mapping = page_mapping(page);
2113         int ret;
2114
2115         if (mapping) {
2116                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2117                 unsigned long flags;
2118
2119                 spin_lock_irqsave(&mapping->tree_lock, flags);
2120                 ret = TestSetPageWriteback(page);
2121                 if (!ret) {
2122                         radix_tree_tag_set(&mapping->page_tree,
2123                                                 page_index(page),
2124                                                 PAGECACHE_TAG_WRITEBACK);
2125                         if (bdi_cap_account_writeback(bdi))
2126                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2127                 }
2128                 if (!PageDirty(page))
2129                         radix_tree_tag_clear(&mapping->page_tree,
2130                                                 page_index(page),
2131                                                 PAGECACHE_TAG_DIRTY);
2132                 radix_tree_tag_clear(&mapping->page_tree,
2133                                      page_index(page),
2134                                      PAGECACHE_TAG_TOWRITE);
2135                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2136         } else {
2137                 ret = TestSetPageWriteback(page);
2138         }
2139         if (!ret)
2140                 account_page_writeback(page);
2141         return ret;
2142
2143 }
2144 EXPORT_SYMBOL(test_set_page_writeback);
2145
2146 /*
2147  * Return true if any of the pages in the mapping are marked with the
2148  * passed tag.
2149  */
2150 int mapping_tagged(struct address_space *mapping, int tag)
2151 {
2152         return radix_tree_tagged(&mapping->page_tree, tag);
2153 }
2154 EXPORT_SYMBOL(mapping_tagged);