Merge tag 'jfs-6.8-rc3' of github.com:kleikamp/linux-shaggy
[linux-2.6-block.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                 struct file *file, struct address_space *mapping)
109 {
110         if (vma_is_shared_maywrite(vma))
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, file, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167         unsigned long mapped_addr;
168
169         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170         if (IS_ERR_VALUE(mapped_addr))
171                 return mapped_addr;
172
173         return mlock_future_ok(current->mm, current->mm->def_flags, len)
174                 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177                 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180         unsigned long newbrk, oldbrk, origbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *brkvma, *next = NULL;
183         unsigned long min_brk;
184         bool populate = false;
185         LIST_HEAD(uf);
186         struct vma_iterator vmi;
187
188         if (mmap_write_lock_killable(mm))
189                 return -EINTR;
190
191         origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk) {
222                 mm->brk = brk;
223                 goto success;
224         }
225
226         /* Always allow shrinking brk. */
227         if (brk <= mm->brk) {
228                 /* Search one past newbrk */
229                 vma_iter_init(&vmi, mm, newbrk);
230                 brkvma = vma_find(&vmi, oldbrk);
231                 if (!brkvma || brkvma->vm_start >= oldbrk)
232                         goto out; /* mapping intersects with an existing non-brk vma. */
233                 /*
234                  * mm->brk must be protected by write mmap_lock.
235                  * do_vma_munmap() will drop the lock on success,  so update it
236                  * before calling do_vma_munmap().
237                  */
238                 mm->brk = brk;
239                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240                         goto out;
241
242                 goto success_unlocked;
243         }
244
245         if (check_brk_limits(oldbrk, newbrk - oldbrk))
246                 goto out;
247
248         /*
249          * Only check if the next VMA is within the stack_guard_gap of the
250          * expansion area
251          */
252         vma_iter_init(&vmi, mm, oldbrk);
253         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255                 goto out;
256
257         brkvma = vma_prev_limit(&vmi, mm->start_brk);
258         /* Ok, looks good - let it rip. */
259         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260                 goto out;
261
262         mm->brk = brk;
263         if (mm->def_flags & VM_LOCKED)
264                 populate = true;
265
266 success:
267         mmap_write_unlock(mm);
268 success_unlocked:
269         userfaultfd_unmap_complete(mm, &uf);
270         if (populate)
271                 mm_populate(oldbrk, newbrk - oldbrk);
272         return brk;
273
274 out:
275         mm->brk = origbrk;
276         mmap_write_unlock(mm);
277         return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283         int bug = 0;
284         int i = 0;
285         struct vm_area_struct *vma;
286         VMA_ITERATOR(vmi, mm, 0);
287
288         mt_validate(&mm->mm_mt);
289         for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291                 struct anon_vma *anon_vma = vma->anon_vma;
292                 struct anon_vma_chain *avc;
293 #endif
294                 unsigned long vmi_start, vmi_end;
295                 bool warn = 0;
296
297                 vmi_start = vma_iter_addr(&vmi);
298                 vmi_end = vma_iter_end(&vmi);
299                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300                         warn = 1;
301
302                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303                         warn = 1;
304
305                 if (warn) {
306                         pr_emerg("issue in %s\n", current->comm);
307                         dump_stack();
308                         dump_vma(vma);
309                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
310                                  vmi_start, vmi_end - 1);
311                         vma_iter_dump_tree(&vmi);
312                 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315                 if (anon_vma) {
316                         anon_vma_lock_read(anon_vma);
317                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318                                 anon_vma_interval_tree_verify(avc);
319                         anon_vma_unlock_read(anon_vma);
320                 }
321 #endif
322                 i++;
323         }
324         if (i != mm->map_count) {
325                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326                 bug = 1;
327         }
328         VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352         struct anon_vma_chain *avc;
353
354         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361         struct anon_vma_chain *avc;
362
363         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368                 unsigned long addr, unsigned long end)
369 {
370         VMA_ITERATOR(vmi, mm, addr);
371         struct vm_area_struct *vma;
372         unsigned long nr_pages = 0;
373
374         for_each_vma_range(vmi, vma, end) {
375                 unsigned long vm_start = max(addr, vma->vm_start);
376                 unsigned long vm_end = min(end, vma->vm_end);
377
378                 nr_pages += PHYS_PFN(vm_end - vm_start);
379         }
380
381         return nr_pages;
382 }
383
384 static void __vma_link_file(struct vm_area_struct *vma,
385                             struct address_space *mapping)
386 {
387         if (vma_is_shared_maywrite(vma))
388                 mapping_allow_writable(mapping);
389
390         flush_dcache_mmap_lock(mapping);
391         vma_interval_tree_insert(vma, &mapping->i_mmap);
392         flush_dcache_mmap_unlock(mapping);
393 }
394
395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397         VMA_ITERATOR(vmi, mm, 0);
398         struct address_space *mapping = NULL;
399
400         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401         if (vma_iter_prealloc(&vmi, vma))
402                 return -ENOMEM;
403
404         vma_start_write(vma);
405
406         vma_iter_store(&vmi, vma);
407
408         if (vma->vm_file) {
409                 mapping = vma->vm_file->f_mapping;
410                 i_mmap_lock_write(mapping);
411                 __vma_link_file(vma, mapping);
412                 i_mmap_unlock_write(mapping);
413         }
414
415         mm->map_count++;
416         validate_mm(mm);
417         return 0;
418 }
419
420 /*
421  * init_multi_vma_prep() - Initializer for struct vma_prepare
422  * @vp: The vma_prepare struct
423  * @vma: The vma that will be altered once locked
424  * @next: The next vma if it is to be adjusted
425  * @remove: The first vma to be removed
426  * @remove2: The second vma to be removed
427  */
428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429                 struct vm_area_struct *vma, struct vm_area_struct *next,
430                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432         memset(vp, 0, sizeof(struct vma_prepare));
433         vp->vma = vma;
434         vp->anon_vma = vma->anon_vma;
435         vp->remove = remove;
436         vp->remove2 = remove2;
437         vp->adj_next = next;
438         if (!vp->anon_vma && next)
439                 vp->anon_vma = next->anon_vma;
440
441         vp->file = vma->vm_file;
442         if (vp->file)
443                 vp->mapping = vma->vm_file->f_mapping;
444
445 }
446
447 /*
448  * init_vma_prep() - Initializer wrapper for vma_prepare struct
449  * @vp: The vma_prepare struct
450  * @vma: The vma that will be altered once locked
451  */
452 static inline void init_vma_prep(struct vma_prepare *vp,
453                                  struct vm_area_struct *vma)
454 {
455         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457
458
459 /*
460  * vma_prepare() - Helper function for handling locking VMAs prior to altering
461  * @vp: The initialized vma_prepare struct
462  */
463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465         if (vp->file) {
466                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467
468                 if (vp->adj_next)
469                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470                                       vp->adj_next->vm_end);
471
472                 i_mmap_lock_write(vp->mapping);
473                 if (vp->insert && vp->insert->vm_file) {
474                         /*
475                          * Put into interval tree now, so instantiated pages
476                          * are visible to arm/parisc __flush_dcache_page
477                          * throughout; but we cannot insert into address
478                          * space until vma start or end is updated.
479                          */
480                         __vma_link_file(vp->insert,
481                                         vp->insert->vm_file->f_mapping);
482                 }
483         }
484
485         if (vp->anon_vma) {
486                 anon_vma_lock_write(vp->anon_vma);
487                 anon_vma_interval_tree_pre_update_vma(vp->vma);
488                 if (vp->adj_next)
489                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490         }
491
492         if (vp->file) {
493                 flush_dcache_mmap_lock(vp->mapping);
494                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495                 if (vp->adj_next)
496                         vma_interval_tree_remove(vp->adj_next,
497                                                  &vp->mapping->i_mmap);
498         }
499
500 }
501
502 /*
503  * vma_complete- Helper function for handling the unlocking after altering VMAs,
504  * or for inserting a VMA.
505  *
506  * @vp: The vma_prepare struct
507  * @vmi: The vma iterator
508  * @mm: The mm_struct
509  */
510 static inline void vma_complete(struct vma_prepare *vp,
511                                 struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513         if (vp->file) {
514                 if (vp->adj_next)
515                         vma_interval_tree_insert(vp->adj_next,
516                                                  &vp->mapping->i_mmap);
517                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518                 flush_dcache_mmap_unlock(vp->mapping);
519         }
520
521         if (vp->remove && vp->file) {
522                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523                 if (vp->remove2)
524                         __remove_shared_vm_struct(vp->remove2, vp->file,
525                                                   vp->mapping);
526         } else if (vp->insert) {
527                 /*
528                  * split_vma has split insert from vma, and needs
529                  * us to insert it before dropping the locks
530                  * (it may either follow vma or precede it).
531                  */
532                 vma_iter_store(vmi, vp->insert);
533                 mm->map_count++;
534         }
535
536         if (vp->anon_vma) {
537                 anon_vma_interval_tree_post_update_vma(vp->vma);
538                 if (vp->adj_next)
539                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
540                 anon_vma_unlock_write(vp->anon_vma);
541         }
542
543         if (vp->file) {
544                 i_mmap_unlock_write(vp->mapping);
545                 uprobe_mmap(vp->vma);
546
547                 if (vp->adj_next)
548                         uprobe_mmap(vp->adj_next);
549         }
550
551         if (vp->remove) {
552 again:
553                 vma_mark_detached(vp->remove, true);
554                 if (vp->file) {
555                         uprobe_munmap(vp->remove, vp->remove->vm_start,
556                                       vp->remove->vm_end);
557                         fput(vp->file);
558                 }
559                 if (vp->remove->anon_vma)
560                         anon_vma_merge(vp->vma, vp->remove);
561                 mm->map_count--;
562                 mpol_put(vma_policy(vp->remove));
563                 if (!vp->remove2)
564                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565                 vm_area_free(vp->remove);
566
567                 /*
568                  * In mprotect's case 6 (see comments on vma_merge),
569                  * we are removing both mid and next vmas
570                  */
571                 if (vp->remove2) {
572                         vp->remove = vp->remove2;
573                         vp->remove2 = NULL;
574                         goto again;
575                 }
576         }
577         if (vp->insert && vp->file)
578                 uprobe_mmap(vp->insert);
579         validate_mm(mm);
580 }
581
582 /*
583  * dup_anon_vma() - Helper function to duplicate anon_vma
584  * @dst: The destination VMA
585  * @src: The source VMA
586  * @dup: Pointer to the destination VMA when successful.
587  *
588  * Returns: 0 on success.
589  */
590 static inline int dup_anon_vma(struct vm_area_struct *dst,
591                 struct vm_area_struct *src, struct vm_area_struct **dup)
592 {
593         /*
594          * Easily overlooked: when mprotect shifts the boundary, make sure the
595          * expanding vma has anon_vma set if the shrinking vma had, to cover any
596          * anon pages imported.
597          */
598         if (src->anon_vma && !dst->anon_vma) {
599                 int ret;
600
601                 vma_assert_write_locked(dst);
602                 dst->anon_vma = src->anon_vma;
603                 ret = anon_vma_clone(dst, src);
604                 if (ret)
605                         return ret;
606
607                 *dup = dst;
608         }
609
610         return 0;
611 }
612
613 /*
614  * vma_expand - Expand an existing VMA
615  *
616  * @vmi: The vma iterator
617  * @vma: The vma to expand
618  * @start: The start of the vma
619  * @end: The exclusive end of the vma
620  * @pgoff: The page offset of vma
621  * @next: The current of next vma.
622  *
623  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
624  * expand over @next if it's different from @vma and @end == @next->vm_end.
625  * Checking if the @vma can expand and merge with @next needs to be handled by
626  * the caller.
627  *
628  * Returns: 0 on success
629  */
630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
631                unsigned long start, unsigned long end, pgoff_t pgoff,
632                struct vm_area_struct *next)
633 {
634         struct vm_area_struct *anon_dup = NULL;
635         bool remove_next = false;
636         struct vma_prepare vp;
637
638         vma_start_write(vma);
639         if (next && (vma != next) && (end == next->vm_end)) {
640                 int ret;
641
642                 remove_next = true;
643                 vma_start_write(next);
644                 ret = dup_anon_vma(vma, next, &anon_dup);
645                 if (ret)
646                         return ret;
647         }
648
649         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
650         /* Not merging but overwriting any part of next is not handled. */
651         VM_WARN_ON(next && !vp.remove &&
652                   next != vma && end > next->vm_start);
653         /* Only handles expanding */
654         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
655
656         /* Note: vma iterator must be pointing to 'start' */
657         vma_iter_config(vmi, start, end);
658         if (vma_iter_prealloc(vmi, vma))
659                 goto nomem;
660
661         vma_prepare(&vp);
662         vma_adjust_trans_huge(vma, start, end, 0);
663         vma->vm_start = start;
664         vma->vm_end = end;
665         vma->vm_pgoff = pgoff;
666         vma_iter_store(vmi, vma);
667
668         vma_complete(&vp, vmi, vma->vm_mm);
669         return 0;
670
671 nomem:
672         if (anon_dup)
673                 unlink_anon_vmas(anon_dup);
674         return -ENOMEM;
675 }
676
677 /*
678  * vma_shrink() - Reduce an existing VMAs memory area
679  * @vmi: The vma iterator
680  * @vma: The VMA to modify
681  * @start: The new start
682  * @end: The new end
683  *
684  * Returns: 0 on success, -ENOMEM otherwise
685  */
686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
687                unsigned long start, unsigned long end, pgoff_t pgoff)
688 {
689         struct vma_prepare vp;
690
691         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
692
693         if (vma->vm_start < start)
694                 vma_iter_config(vmi, vma->vm_start, start);
695         else
696                 vma_iter_config(vmi, end, vma->vm_end);
697
698         if (vma_iter_prealloc(vmi, NULL))
699                 return -ENOMEM;
700
701         vma_start_write(vma);
702
703         init_vma_prep(&vp, vma);
704         vma_prepare(&vp);
705         vma_adjust_trans_huge(vma, start, end, 0);
706
707         vma_iter_clear(vmi);
708         vma->vm_start = start;
709         vma->vm_end = end;
710         vma->vm_pgoff = pgoff;
711         vma_complete(&vp, vmi, vma->vm_mm);
712         return 0;
713 }
714
715 /*
716  * If the vma has a ->close operation then the driver probably needs to release
717  * per-vma resources, so we don't attempt to merge those if the caller indicates
718  * the current vma may be removed as part of the merge.
719  */
720 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
721                 struct file *file, unsigned long vm_flags,
722                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
723                 struct anon_vma_name *anon_name, bool may_remove_vma)
724 {
725         /*
726          * VM_SOFTDIRTY should not prevent from VMA merging, if we
727          * match the flags but dirty bit -- the caller should mark
728          * merged VMA as dirty. If dirty bit won't be excluded from
729          * comparison, we increase pressure on the memory system forcing
730          * the kernel to generate new VMAs when old one could be
731          * extended instead.
732          */
733         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
734                 return false;
735         if (vma->vm_file != file)
736                 return false;
737         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
738                 return false;
739         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
740                 return false;
741         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
742                 return false;
743         return true;
744 }
745
746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
747                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
748 {
749         /*
750          * The list_is_singular() test is to avoid merging VMA cloned from
751          * parents. This can improve scalability caused by anon_vma lock.
752          */
753         if ((!anon_vma1 || !anon_vma2) && (!vma ||
754                 list_is_singular(&vma->anon_vma_chain)))
755                 return true;
756         return anon_vma1 == anon_vma2;
757 }
758
759 /*
760  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
761  * in front of (at a lower virtual address and file offset than) the vma.
762  *
763  * We cannot merge two vmas if they have differently assigned (non-NULL)
764  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
765  *
766  * We don't check here for the merged mmap wrapping around the end of pagecache
767  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
768  * wrap, nor mmaps which cover the final page at index -1UL.
769  *
770  * We assume the vma may be removed as part of the merge.
771  */
772 static bool
773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
774                 struct anon_vma *anon_vma, struct file *file,
775                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
776                 struct anon_vma_name *anon_name)
777 {
778         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
779             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
780                 if (vma->vm_pgoff == vm_pgoff)
781                         return true;
782         }
783         return false;
784 }
785
786 /*
787  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
788  * beyond (at a higher virtual address and file offset than) the vma.
789  *
790  * We cannot merge two vmas if they have differently assigned (non-NULL)
791  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
792  *
793  * We assume that vma is not removed as part of the merge.
794  */
795 static bool
796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
797                 struct anon_vma *anon_vma, struct file *file,
798                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
799                 struct anon_vma_name *anon_name)
800 {
801         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
802             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
803                 pgoff_t vm_pglen;
804                 vm_pglen = vma_pages(vma);
805                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
806                         return true;
807         }
808         return false;
809 }
810
811 /*
812  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
813  * figure out whether that can be merged with its predecessor or its
814  * successor.  Or both (it neatly fills a hole).
815  *
816  * In most cases - when called for mmap, brk or mremap - [addr,end) is
817  * certain not to be mapped by the time vma_merge is called; but when
818  * called for mprotect, it is certain to be already mapped (either at
819  * an offset within prev, or at the start of next), and the flags of
820  * this area are about to be changed to vm_flags - and the no-change
821  * case has already been eliminated.
822  *
823  * The following mprotect cases have to be considered, where **** is
824  * the area passed down from mprotect_fixup, never extending beyond one
825  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
826  * at the same address as **** and is of the same or larger span, and
827  * NNNN the next vma after ****:
828  *
829  *     ****             ****                   ****
830  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
831  *    cannot merge    might become       might become
832  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
833  *    mmap, brk or    case 4 below       case 5 below
834  *    mremap move:
835  *                        ****               ****
836  *                    PPPP    NNNN       PPPPCCCCNNNN
837  *                    might become       might become
838  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
839  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
840  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
841  *
842  * It is important for case 8 that the vma CCCC overlapping the
843  * region **** is never going to extended over NNNN. Instead NNNN must
844  * be extended in region **** and CCCC must be removed. This way in
845  * all cases where vma_merge succeeds, the moment vma_merge drops the
846  * rmap_locks, the properties of the merged vma will be already
847  * correct for the whole merged range. Some of those properties like
848  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
849  * be correct for the whole merged range immediately after the
850  * rmap_locks are released. Otherwise if NNNN would be removed and
851  * CCCC would be extended over the NNNN range, remove_migration_ptes
852  * or other rmap walkers (if working on addresses beyond the "end"
853  * parameter) may establish ptes with the wrong permissions of CCCC
854  * instead of the right permissions of NNNN.
855  *
856  * In the code below:
857  * PPPP is represented by *prev
858  * CCCC is represented by *curr or not represented at all (NULL)
859  * NNNN is represented by *next or not represented at all (NULL)
860  * **** is not represented - it will be merged and the vma containing the
861  *      area is returned, or the function will return NULL
862  */
863 static struct vm_area_struct
864 *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
865            struct vm_area_struct *prev, unsigned long addr, unsigned long end,
866            unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file,
867            pgoff_t pgoff, struct mempolicy *policy,
868            struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869            struct anon_vma_name *anon_name)
870 {
871         struct vm_area_struct *curr, *next, *res;
872         struct vm_area_struct *vma, *adjust, *remove, *remove2;
873         struct vm_area_struct *anon_dup = NULL;
874         struct vma_prepare vp;
875         pgoff_t vma_pgoff;
876         int err = 0;
877         bool merge_prev = false;
878         bool merge_next = false;
879         bool vma_expanded = false;
880         unsigned long vma_start = addr;
881         unsigned long vma_end = end;
882         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
883         long adj_start = 0;
884
885         /*
886          * We later require that vma->vm_flags == vm_flags,
887          * so this tests vma->vm_flags & VM_SPECIAL, too.
888          */
889         if (vm_flags & VM_SPECIAL)
890                 return NULL;
891
892         /* Does the input range span an existing VMA? (cases 5 - 8) */
893         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
894
895         if (!curr ||                    /* cases 1 - 4 */
896             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
897                 next = vma_lookup(mm, end);
898         else
899                 next = NULL;            /* case 5 */
900
901         if (prev) {
902                 vma_start = prev->vm_start;
903                 vma_pgoff = prev->vm_pgoff;
904
905                 /* Can we merge the predecessor? */
906                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
907                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
908                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
909                         merge_prev = true;
910                         vma_prev(vmi);
911                 }
912         }
913
914         /* Can we merge the successor? */
915         if (next && mpol_equal(policy, vma_policy(next)) &&
916             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
917                                  vm_userfaultfd_ctx, anon_name)) {
918                 merge_next = true;
919         }
920
921         /* Verify some invariant that must be enforced by the caller. */
922         VM_WARN_ON(prev && addr <= prev->vm_start);
923         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
924         VM_WARN_ON(addr >= end);
925
926         if (!merge_prev && !merge_next)
927                 return NULL; /* Not mergeable. */
928
929         if (merge_prev)
930                 vma_start_write(prev);
931
932         res = vma = prev;
933         remove = remove2 = adjust = NULL;
934
935         /* Can we merge both the predecessor and the successor? */
936         if (merge_prev && merge_next &&
937             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
938                 vma_start_write(next);
939                 remove = next;                          /* case 1 */
940                 vma_end = next->vm_end;
941                 err = dup_anon_vma(prev, next, &anon_dup);
942                 if (curr) {                             /* case 6 */
943                         vma_start_write(curr);
944                         remove = curr;
945                         remove2 = next;
946                         /*
947                          * Note that the dup_anon_vma below cannot overwrite err
948                          * since the first caller would do nothing unless next
949                          * has an anon_vma.
950                          */
951                         if (!next->anon_vma)
952                                 err = dup_anon_vma(prev, curr, &anon_dup);
953                 }
954         } else if (merge_prev) {                        /* case 2 */
955                 if (curr) {
956                         vma_start_write(curr);
957                         err = dup_anon_vma(prev, curr, &anon_dup);
958                         if (end == curr->vm_end) {      /* case 7 */
959                                 remove = curr;
960                         } else {                        /* case 5 */
961                                 adjust = curr;
962                                 adj_start = (end - curr->vm_start);
963                         }
964                 }
965         } else { /* merge_next */
966                 vma_start_write(next);
967                 res = next;
968                 if (prev && addr < prev->vm_end) {      /* case 4 */
969                         vma_start_write(prev);
970                         vma_end = addr;
971                         adjust = next;
972                         adj_start = -(prev->vm_end - addr);
973                         err = dup_anon_vma(next, prev, &anon_dup);
974                 } else {
975                         /*
976                          * Note that cases 3 and 8 are the ONLY ones where prev
977                          * is permitted to be (but is not necessarily) NULL.
978                          */
979                         vma = next;                     /* case 3 */
980                         vma_start = addr;
981                         vma_end = next->vm_end;
982                         vma_pgoff = next->vm_pgoff - pglen;
983                         if (curr) {                     /* case 8 */
984                                 vma_pgoff = curr->vm_pgoff;
985                                 vma_start_write(curr);
986                                 remove = curr;
987                                 err = dup_anon_vma(next, curr, &anon_dup);
988                         }
989                 }
990         }
991
992         /* Error in anon_vma clone. */
993         if (err)
994                 goto anon_vma_fail;
995
996         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
997                 vma_expanded = true;
998
999         if (vma_expanded) {
1000                 vma_iter_config(vmi, vma_start, vma_end);
1001         } else {
1002                 vma_iter_config(vmi, adjust->vm_start + adj_start,
1003                                 adjust->vm_end);
1004         }
1005
1006         if (vma_iter_prealloc(vmi, vma))
1007                 goto prealloc_fail;
1008
1009         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1010         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1011                    vp.anon_vma != adjust->anon_vma);
1012
1013         vma_prepare(&vp);
1014         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1015
1016         vma->vm_start = vma_start;
1017         vma->vm_end = vma_end;
1018         vma->vm_pgoff = vma_pgoff;
1019
1020         if (vma_expanded)
1021                 vma_iter_store(vmi, vma);
1022
1023         if (adj_start) {
1024                 adjust->vm_start += adj_start;
1025                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1026                 if (adj_start < 0) {
1027                         WARN_ON(vma_expanded);
1028                         vma_iter_store(vmi, next);
1029                 }
1030         }
1031
1032         vma_complete(&vp, vmi, mm);
1033         khugepaged_enter_vma(res, vm_flags);
1034         return res;
1035
1036 prealloc_fail:
1037         if (anon_dup)
1038                 unlink_anon_vmas(anon_dup);
1039
1040 anon_vma_fail:
1041         vma_iter_set(vmi, addr);
1042         vma_iter_load(vmi);
1043         return NULL;
1044 }
1045
1046 /*
1047  * Rough compatibility check to quickly see if it's even worth looking
1048  * at sharing an anon_vma.
1049  *
1050  * They need to have the same vm_file, and the flags can only differ
1051  * in things that mprotect may change.
1052  *
1053  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1054  * we can merge the two vma's. For example, we refuse to merge a vma if
1055  * there is a vm_ops->close() function, because that indicates that the
1056  * driver is doing some kind of reference counting. But that doesn't
1057  * really matter for the anon_vma sharing case.
1058  */
1059 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1060 {
1061         return a->vm_end == b->vm_start &&
1062                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1063                 a->vm_file == b->vm_file &&
1064                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1065                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1066 }
1067
1068 /*
1069  * Do some basic sanity checking to see if we can re-use the anon_vma
1070  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1071  * the same as 'old', the other will be the new one that is trying
1072  * to share the anon_vma.
1073  *
1074  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1075  * the anon_vma of 'old' is concurrently in the process of being set up
1076  * by another page fault trying to merge _that_. But that's ok: if it
1077  * is being set up, that automatically means that it will be a singleton
1078  * acceptable for merging, so we can do all of this optimistically. But
1079  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1080  *
1081  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1082  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1083  * is to return an anon_vma that is "complex" due to having gone through
1084  * a fork).
1085  *
1086  * We also make sure that the two vma's are compatible (adjacent,
1087  * and with the same memory policies). That's all stable, even with just
1088  * a read lock on the mmap_lock.
1089  */
1090 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1091 {
1092         if (anon_vma_compatible(a, b)) {
1093                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1094
1095                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1096                         return anon_vma;
1097         }
1098         return NULL;
1099 }
1100
1101 /*
1102  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1103  * neighbouring vmas for a suitable anon_vma, before it goes off
1104  * to allocate a new anon_vma.  It checks because a repetitive
1105  * sequence of mprotects and faults may otherwise lead to distinct
1106  * anon_vmas being allocated, preventing vma merge in subsequent
1107  * mprotect.
1108  */
1109 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1110 {
1111         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1112         struct anon_vma *anon_vma = NULL;
1113         struct vm_area_struct *prev, *next;
1114
1115         /* Try next first. */
1116         next = mas_walk(&mas);
1117         if (next) {
1118                 anon_vma = reusable_anon_vma(next, vma, next);
1119                 if (anon_vma)
1120                         return anon_vma;
1121         }
1122
1123         prev = mas_prev(&mas, 0);
1124         VM_BUG_ON_VMA(prev != vma, vma);
1125         prev = mas_prev(&mas, 0);
1126         /* Try prev next. */
1127         if (prev)
1128                 anon_vma = reusable_anon_vma(prev, prev, vma);
1129
1130         /*
1131          * We might reach here with anon_vma == NULL if we can't find
1132          * any reusable anon_vma.
1133          * There's no absolute need to look only at touching neighbours:
1134          * we could search further afield for "compatible" anon_vmas.
1135          * But it would probably just be a waste of time searching,
1136          * or lead to too many vmas hanging off the same anon_vma.
1137          * We're trying to allow mprotect remerging later on,
1138          * not trying to minimize memory used for anon_vmas.
1139          */
1140         return anon_vma;
1141 }
1142
1143 /*
1144  * If a hint addr is less than mmap_min_addr change hint to be as
1145  * low as possible but still greater than mmap_min_addr
1146  */
1147 static inline unsigned long round_hint_to_min(unsigned long hint)
1148 {
1149         hint &= PAGE_MASK;
1150         if (((void *)hint != NULL) &&
1151             (hint < mmap_min_addr))
1152                 return PAGE_ALIGN(mmap_min_addr);
1153         return hint;
1154 }
1155
1156 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1157                         unsigned long bytes)
1158 {
1159         unsigned long locked_pages, limit_pages;
1160
1161         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1162                 return true;
1163
1164         locked_pages = bytes >> PAGE_SHIFT;
1165         locked_pages += mm->locked_vm;
1166
1167         limit_pages = rlimit(RLIMIT_MEMLOCK);
1168         limit_pages >>= PAGE_SHIFT;
1169
1170         return locked_pages <= limit_pages;
1171 }
1172
1173 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1174 {
1175         if (S_ISREG(inode->i_mode))
1176                 return MAX_LFS_FILESIZE;
1177
1178         if (S_ISBLK(inode->i_mode))
1179                 return MAX_LFS_FILESIZE;
1180
1181         if (S_ISSOCK(inode->i_mode))
1182                 return MAX_LFS_FILESIZE;
1183
1184         /* Special "we do even unsigned file positions" case */
1185         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1186                 return 0;
1187
1188         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1189         return ULONG_MAX;
1190 }
1191
1192 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1193                                 unsigned long pgoff, unsigned long len)
1194 {
1195         u64 maxsize = file_mmap_size_max(file, inode);
1196
1197         if (maxsize && len > maxsize)
1198                 return false;
1199         maxsize -= len;
1200         if (pgoff > maxsize >> PAGE_SHIFT)
1201                 return false;
1202         return true;
1203 }
1204
1205 /*
1206  * The caller must write-lock current->mm->mmap_lock.
1207  */
1208 unsigned long do_mmap(struct file *file, unsigned long addr,
1209                         unsigned long len, unsigned long prot,
1210                         unsigned long flags, vm_flags_t vm_flags,
1211                         unsigned long pgoff, unsigned long *populate,
1212                         struct list_head *uf)
1213 {
1214         struct mm_struct *mm = current->mm;
1215         int pkey = 0;
1216
1217         *populate = 0;
1218
1219         if (!len)
1220                 return -EINVAL;
1221
1222         /*
1223          * Does the application expect PROT_READ to imply PROT_EXEC?
1224          *
1225          * (the exception is when the underlying filesystem is noexec
1226          *  mounted, in which case we don't add PROT_EXEC.)
1227          */
1228         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1229                 if (!(file && path_noexec(&file->f_path)))
1230                         prot |= PROT_EXEC;
1231
1232         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1233         if (flags & MAP_FIXED_NOREPLACE)
1234                 flags |= MAP_FIXED;
1235
1236         if (!(flags & MAP_FIXED))
1237                 addr = round_hint_to_min(addr);
1238
1239         /* Careful about overflows.. */
1240         len = PAGE_ALIGN(len);
1241         if (!len)
1242                 return -ENOMEM;
1243
1244         /* offset overflow? */
1245         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1246                 return -EOVERFLOW;
1247
1248         /* Too many mappings? */
1249         if (mm->map_count > sysctl_max_map_count)
1250                 return -ENOMEM;
1251
1252         /* Obtain the address to map to. we verify (or select) it and ensure
1253          * that it represents a valid section of the address space.
1254          */
1255         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1256         if (IS_ERR_VALUE(addr))
1257                 return addr;
1258
1259         if (flags & MAP_FIXED_NOREPLACE) {
1260                 if (find_vma_intersection(mm, addr, addr + len))
1261                         return -EEXIST;
1262         }
1263
1264         if (prot == PROT_EXEC) {
1265                 pkey = execute_only_pkey(mm);
1266                 if (pkey < 0)
1267                         pkey = 0;
1268         }
1269
1270         /* Do simple checking here so the lower-level routines won't have
1271          * to. we assume access permissions have been handled by the open
1272          * of the memory object, so we don't do any here.
1273          */
1274         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1275                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1276
1277         if (flags & MAP_LOCKED)
1278                 if (!can_do_mlock())
1279                         return -EPERM;
1280
1281         if (!mlock_future_ok(mm, vm_flags, len))
1282                 return -EAGAIN;
1283
1284         if (file) {
1285                 struct inode *inode = file_inode(file);
1286                 unsigned long flags_mask;
1287
1288                 if (!file_mmap_ok(file, inode, pgoff, len))
1289                         return -EOVERFLOW;
1290
1291                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1292
1293                 switch (flags & MAP_TYPE) {
1294                 case MAP_SHARED:
1295                         /*
1296                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1297                          * flags. E.g. MAP_SYNC is dangerous to use with
1298                          * MAP_SHARED as you don't know which consistency model
1299                          * you will get. We silently ignore unsupported flags
1300                          * with MAP_SHARED to preserve backward compatibility.
1301                          */
1302                         flags &= LEGACY_MAP_MASK;
1303                         fallthrough;
1304                 case MAP_SHARED_VALIDATE:
1305                         if (flags & ~flags_mask)
1306                                 return -EOPNOTSUPP;
1307                         if (prot & PROT_WRITE) {
1308                                 if (!(file->f_mode & FMODE_WRITE))
1309                                         return -EACCES;
1310                                 if (IS_SWAPFILE(file->f_mapping->host))
1311                                         return -ETXTBSY;
1312                         }
1313
1314                         /*
1315                          * Make sure we don't allow writing to an append-only
1316                          * file..
1317                          */
1318                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1319                                 return -EACCES;
1320
1321                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1322                         if (!(file->f_mode & FMODE_WRITE))
1323                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1324                         fallthrough;
1325                 case MAP_PRIVATE:
1326                         if (!(file->f_mode & FMODE_READ))
1327                                 return -EACCES;
1328                         if (path_noexec(&file->f_path)) {
1329                                 if (vm_flags & VM_EXEC)
1330                                         return -EPERM;
1331                                 vm_flags &= ~VM_MAYEXEC;
1332                         }
1333
1334                         if (!file->f_op->mmap)
1335                                 return -ENODEV;
1336                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1337                                 return -EINVAL;
1338                         break;
1339
1340                 default:
1341                         return -EINVAL;
1342                 }
1343         } else {
1344                 switch (flags & MAP_TYPE) {
1345                 case MAP_SHARED:
1346                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1347                                 return -EINVAL;
1348                         /*
1349                          * Ignore pgoff.
1350                          */
1351                         pgoff = 0;
1352                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1353                         break;
1354                 case MAP_PRIVATE:
1355                         /*
1356                          * Set pgoff according to addr for anon_vma.
1357                          */
1358                         pgoff = addr >> PAGE_SHIFT;
1359                         break;
1360                 default:
1361                         return -EINVAL;
1362                 }
1363         }
1364
1365         /*
1366          * Set 'VM_NORESERVE' if we should not account for the
1367          * memory use of this mapping.
1368          */
1369         if (flags & MAP_NORESERVE) {
1370                 /* We honor MAP_NORESERVE if allowed to overcommit */
1371                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1372                         vm_flags |= VM_NORESERVE;
1373
1374                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1375                 if (file && is_file_hugepages(file))
1376                         vm_flags |= VM_NORESERVE;
1377         }
1378
1379         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1380         if (!IS_ERR_VALUE(addr) &&
1381             ((vm_flags & VM_LOCKED) ||
1382              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1383                 *populate = len;
1384         return addr;
1385 }
1386
1387 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1388                               unsigned long prot, unsigned long flags,
1389                               unsigned long fd, unsigned long pgoff)
1390 {
1391         struct file *file = NULL;
1392         unsigned long retval;
1393
1394         if (!(flags & MAP_ANONYMOUS)) {
1395                 audit_mmap_fd(fd, flags);
1396                 file = fget(fd);
1397                 if (!file)
1398                         return -EBADF;
1399                 if (is_file_hugepages(file)) {
1400                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1401                 } else if (unlikely(flags & MAP_HUGETLB)) {
1402                         retval = -EINVAL;
1403                         goto out_fput;
1404                 }
1405         } else if (flags & MAP_HUGETLB) {
1406                 struct hstate *hs;
1407
1408                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1409                 if (!hs)
1410                         return -EINVAL;
1411
1412                 len = ALIGN(len, huge_page_size(hs));
1413                 /*
1414                  * VM_NORESERVE is used because the reservations will be
1415                  * taken when vm_ops->mmap() is called
1416                  */
1417                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1418                                 VM_NORESERVE,
1419                                 HUGETLB_ANONHUGE_INODE,
1420                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1421                 if (IS_ERR(file))
1422                         return PTR_ERR(file);
1423         }
1424
1425         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1426 out_fput:
1427         if (file)
1428                 fput(file);
1429         return retval;
1430 }
1431
1432 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1433                 unsigned long, prot, unsigned long, flags,
1434                 unsigned long, fd, unsigned long, pgoff)
1435 {
1436         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1437 }
1438
1439 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1440 struct mmap_arg_struct {
1441         unsigned long addr;
1442         unsigned long len;
1443         unsigned long prot;
1444         unsigned long flags;
1445         unsigned long fd;
1446         unsigned long offset;
1447 };
1448
1449 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1450 {
1451         struct mmap_arg_struct a;
1452
1453         if (copy_from_user(&a, arg, sizeof(a)))
1454                 return -EFAULT;
1455         if (offset_in_page(a.offset))
1456                 return -EINVAL;
1457
1458         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1459                                a.offset >> PAGE_SHIFT);
1460 }
1461 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1462
1463 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1464 {
1465         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1466 }
1467
1468 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1469 {
1470         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1471                 (VM_WRITE | VM_SHARED);
1472 }
1473
1474 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1475 {
1476         /* No managed pages to writeback. */
1477         if (vma->vm_flags & VM_PFNMAP)
1478                 return false;
1479
1480         return vma->vm_file && vma->vm_file->f_mapping &&
1481                 mapping_can_writeback(vma->vm_file->f_mapping);
1482 }
1483
1484 /*
1485  * Does this VMA require the underlying folios to have their dirty state
1486  * tracked?
1487  */
1488 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1489 {
1490         /* Only shared, writable VMAs require dirty tracking. */
1491         if (!vma_is_shared_writable(vma))
1492                 return false;
1493
1494         /* Does the filesystem need to be notified? */
1495         if (vm_ops_needs_writenotify(vma->vm_ops))
1496                 return true;
1497
1498         /*
1499          * Even if the filesystem doesn't indicate a need for writenotify, if it
1500          * can writeback, dirty tracking is still required.
1501          */
1502         return vma_fs_can_writeback(vma);
1503 }
1504
1505 /*
1506  * Some shared mappings will want the pages marked read-only
1507  * to track write events. If so, we'll downgrade vm_page_prot
1508  * to the private version (using protection_map[] without the
1509  * VM_SHARED bit).
1510  */
1511 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1512 {
1513         /* If it was private or non-writable, the write bit is already clear */
1514         if (!vma_is_shared_writable(vma))
1515                 return 0;
1516
1517         /* The backer wishes to know when pages are first written to? */
1518         if (vm_ops_needs_writenotify(vma->vm_ops))
1519                 return 1;
1520
1521         /* The open routine did something to the protections that pgprot_modify
1522          * won't preserve? */
1523         if (pgprot_val(vm_page_prot) !=
1524             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1525                 return 0;
1526
1527         /*
1528          * Do we need to track softdirty? hugetlb does not support softdirty
1529          * tracking yet.
1530          */
1531         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1532                 return 1;
1533
1534         /* Do we need write faults for uffd-wp tracking? */
1535         if (userfaultfd_wp(vma))
1536                 return 1;
1537
1538         /* Can the mapping track the dirty pages? */
1539         return vma_fs_can_writeback(vma);
1540 }
1541
1542 /*
1543  * We account for memory if it's a private writeable mapping,
1544  * not hugepages and VM_NORESERVE wasn't set.
1545  */
1546 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1547 {
1548         /*
1549          * hugetlb has its own accounting separate from the core VM
1550          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1551          */
1552         if (file && is_file_hugepages(file))
1553                 return 0;
1554
1555         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1556 }
1557
1558 /**
1559  * unmapped_area() - Find an area between the low_limit and the high_limit with
1560  * the correct alignment and offset, all from @info. Note: current->mm is used
1561  * for the search.
1562  *
1563  * @info: The unmapped area information including the range [low_limit -
1564  * high_limit), the alignment offset and mask.
1565  *
1566  * Return: A memory address or -ENOMEM.
1567  */
1568 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1569 {
1570         unsigned long length, gap;
1571         unsigned long low_limit, high_limit;
1572         struct vm_area_struct *tmp;
1573
1574         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1575
1576         /* Adjust search length to account for worst case alignment overhead */
1577         length = info->length + info->align_mask;
1578         if (length < info->length)
1579                 return -ENOMEM;
1580
1581         low_limit = info->low_limit;
1582         if (low_limit < mmap_min_addr)
1583                 low_limit = mmap_min_addr;
1584         high_limit = info->high_limit;
1585 retry:
1586         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1587                 return -ENOMEM;
1588
1589         gap = mas.index;
1590         gap += (info->align_offset - gap) & info->align_mask;
1591         tmp = mas_next(&mas, ULONG_MAX);
1592         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1593                 if (vm_start_gap(tmp) < gap + length - 1) {
1594                         low_limit = tmp->vm_end;
1595                         mas_reset(&mas);
1596                         goto retry;
1597                 }
1598         } else {
1599                 tmp = mas_prev(&mas, 0);
1600                 if (tmp && vm_end_gap(tmp) > gap) {
1601                         low_limit = vm_end_gap(tmp);
1602                         mas_reset(&mas);
1603                         goto retry;
1604                 }
1605         }
1606
1607         return gap;
1608 }
1609
1610 /**
1611  * unmapped_area_topdown() - Find an area between the low_limit and the
1612  * high_limit with the correct alignment and offset at the highest available
1613  * address, all from @info. Note: current->mm is used for the search.
1614  *
1615  * @info: The unmapped area information including the range [low_limit -
1616  * high_limit), the alignment offset and mask.
1617  *
1618  * Return: A memory address or -ENOMEM.
1619  */
1620 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1621 {
1622         unsigned long length, gap, gap_end;
1623         unsigned long low_limit, high_limit;
1624         struct vm_area_struct *tmp;
1625
1626         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1627         /* Adjust search length to account for worst case alignment overhead */
1628         length = info->length + info->align_mask;
1629         if (length < info->length)
1630                 return -ENOMEM;
1631
1632         low_limit = info->low_limit;
1633         if (low_limit < mmap_min_addr)
1634                 low_limit = mmap_min_addr;
1635         high_limit = info->high_limit;
1636 retry:
1637         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1638                 return -ENOMEM;
1639
1640         gap = mas.last + 1 - info->length;
1641         gap -= (gap - info->align_offset) & info->align_mask;
1642         gap_end = mas.last;
1643         tmp = mas_next(&mas, ULONG_MAX);
1644         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1645                 if (vm_start_gap(tmp) <= gap_end) {
1646                         high_limit = vm_start_gap(tmp);
1647                         mas_reset(&mas);
1648                         goto retry;
1649                 }
1650         } else {
1651                 tmp = mas_prev(&mas, 0);
1652                 if (tmp && vm_end_gap(tmp) > gap) {
1653                         high_limit = tmp->vm_start;
1654                         mas_reset(&mas);
1655                         goto retry;
1656                 }
1657         }
1658
1659         return gap;
1660 }
1661
1662 /*
1663  * Search for an unmapped address range.
1664  *
1665  * We are looking for a range that:
1666  * - does not intersect with any VMA;
1667  * - is contained within the [low_limit, high_limit) interval;
1668  * - is at least the desired size.
1669  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1670  */
1671 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1672 {
1673         unsigned long addr;
1674
1675         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1676                 addr = unmapped_area_topdown(info);
1677         else
1678                 addr = unmapped_area(info);
1679
1680         trace_vm_unmapped_area(addr, info);
1681         return addr;
1682 }
1683
1684 /* Get an address range which is currently unmapped.
1685  * For shmat() with addr=0.
1686  *
1687  * Ugly calling convention alert:
1688  * Return value with the low bits set means error value,
1689  * ie
1690  *      if (ret & ~PAGE_MASK)
1691  *              error = ret;
1692  *
1693  * This function "knows" that -ENOMEM has the bits set.
1694  */
1695 unsigned long
1696 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1697                           unsigned long len, unsigned long pgoff,
1698                           unsigned long flags)
1699 {
1700         struct mm_struct *mm = current->mm;
1701         struct vm_area_struct *vma, *prev;
1702         struct vm_unmapped_area_info info;
1703         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1704
1705         if (len > mmap_end - mmap_min_addr)
1706                 return -ENOMEM;
1707
1708         if (flags & MAP_FIXED)
1709                 return addr;
1710
1711         if (addr) {
1712                 addr = PAGE_ALIGN(addr);
1713                 vma = find_vma_prev(mm, addr, &prev);
1714                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1715                     (!vma || addr + len <= vm_start_gap(vma)) &&
1716                     (!prev || addr >= vm_end_gap(prev)))
1717                         return addr;
1718         }
1719
1720         info.flags = 0;
1721         info.length = len;
1722         info.low_limit = mm->mmap_base;
1723         info.high_limit = mmap_end;
1724         info.align_mask = 0;
1725         info.align_offset = 0;
1726         return vm_unmapped_area(&info);
1727 }
1728
1729 #ifndef HAVE_ARCH_UNMAPPED_AREA
1730 unsigned long
1731 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1732                        unsigned long len, unsigned long pgoff,
1733                        unsigned long flags)
1734 {
1735         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1736 }
1737 #endif
1738
1739 /*
1740  * This mmap-allocator allocates new areas top-down from below the
1741  * stack's low limit (the base):
1742  */
1743 unsigned long
1744 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1745                                   unsigned long len, unsigned long pgoff,
1746                                   unsigned long flags)
1747 {
1748         struct vm_area_struct *vma, *prev;
1749         struct mm_struct *mm = current->mm;
1750         struct vm_unmapped_area_info info;
1751         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1752
1753         /* requested length too big for entire address space */
1754         if (len > mmap_end - mmap_min_addr)
1755                 return -ENOMEM;
1756
1757         if (flags & MAP_FIXED)
1758                 return addr;
1759
1760         /* requesting a specific address */
1761         if (addr) {
1762                 addr = PAGE_ALIGN(addr);
1763                 vma = find_vma_prev(mm, addr, &prev);
1764                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1765                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1766                                 (!prev || addr >= vm_end_gap(prev)))
1767                         return addr;
1768         }
1769
1770         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1771         info.length = len;
1772         info.low_limit = PAGE_SIZE;
1773         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1774         info.align_mask = 0;
1775         info.align_offset = 0;
1776         addr = vm_unmapped_area(&info);
1777
1778         /*
1779          * A failed mmap() very likely causes application failure,
1780          * so fall back to the bottom-up function here. This scenario
1781          * can happen with large stack limits and large mmap()
1782          * allocations.
1783          */
1784         if (offset_in_page(addr)) {
1785                 VM_BUG_ON(addr != -ENOMEM);
1786                 info.flags = 0;
1787                 info.low_limit = TASK_UNMAPPED_BASE;
1788                 info.high_limit = mmap_end;
1789                 addr = vm_unmapped_area(&info);
1790         }
1791
1792         return addr;
1793 }
1794
1795 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1796 unsigned long
1797 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1798                                unsigned long len, unsigned long pgoff,
1799                                unsigned long flags)
1800 {
1801         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1802 }
1803 #endif
1804
1805 unsigned long
1806 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1807                 unsigned long pgoff, unsigned long flags)
1808 {
1809         unsigned long (*get_area)(struct file *, unsigned long,
1810                                   unsigned long, unsigned long, unsigned long);
1811
1812         unsigned long error = arch_mmap_check(addr, len, flags);
1813         if (error)
1814                 return error;
1815
1816         /* Careful about overflows.. */
1817         if (len > TASK_SIZE)
1818                 return -ENOMEM;
1819
1820         get_area = current->mm->get_unmapped_area;
1821         if (file) {
1822                 if (file->f_op->get_unmapped_area)
1823                         get_area = file->f_op->get_unmapped_area;
1824         } else if (flags & MAP_SHARED) {
1825                 /*
1826                  * mmap_region() will call shmem_zero_setup() to create a file,
1827                  * so use shmem's get_unmapped_area in case it can be huge.
1828                  */
1829                 get_area = shmem_get_unmapped_area;
1830         } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1831                 /* Ensures that larger anonymous mappings are THP aligned. */
1832                 get_area = thp_get_unmapped_area;
1833         }
1834
1835         /* Always treat pgoff as zero for anonymous memory. */
1836         if (!file)
1837                 pgoff = 0;
1838
1839         addr = get_area(file, addr, len, pgoff, flags);
1840         if (IS_ERR_VALUE(addr))
1841                 return addr;
1842
1843         if (addr > TASK_SIZE - len)
1844                 return -ENOMEM;
1845         if (offset_in_page(addr))
1846                 return -EINVAL;
1847
1848         error = security_mmap_addr(addr);
1849         return error ? error : addr;
1850 }
1851
1852 EXPORT_SYMBOL(get_unmapped_area);
1853
1854 /**
1855  * find_vma_intersection() - Look up the first VMA which intersects the interval
1856  * @mm: The process address space.
1857  * @start_addr: The inclusive start user address.
1858  * @end_addr: The exclusive end user address.
1859  *
1860  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1861  * start_addr < end_addr.
1862  */
1863 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1864                                              unsigned long start_addr,
1865                                              unsigned long end_addr)
1866 {
1867         unsigned long index = start_addr;
1868
1869         mmap_assert_locked(mm);
1870         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1871 }
1872 EXPORT_SYMBOL(find_vma_intersection);
1873
1874 /**
1875  * find_vma() - Find the VMA for a given address, or the next VMA.
1876  * @mm: The mm_struct to check
1877  * @addr: The address
1878  *
1879  * Returns: The VMA associated with addr, or the next VMA.
1880  * May return %NULL in the case of no VMA at addr or above.
1881  */
1882 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1883 {
1884         unsigned long index = addr;
1885
1886         mmap_assert_locked(mm);
1887         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1888 }
1889 EXPORT_SYMBOL(find_vma);
1890
1891 /**
1892  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1893  * set %pprev to the previous VMA, if any.
1894  * @mm: The mm_struct to check
1895  * @addr: The address
1896  * @pprev: The pointer to set to the previous VMA
1897  *
1898  * Note that RCU lock is missing here since the external mmap_lock() is used
1899  * instead.
1900  *
1901  * Returns: The VMA associated with @addr, or the next vma.
1902  * May return %NULL in the case of no vma at addr or above.
1903  */
1904 struct vm_area_struct *
1905 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1906                         struct vm_area_struct **pprev)
1907 {
1908         struct vm_area_struct *vma;
1909         MA_STATE(mas, &mm->mm_mt, addr, addr);
1910
1911         vma = mas_walk(&mas);
1912         *pprev = mas_prev(&mas, 0);
1913         if (!vma)
1914                 vma = mas_next(&mas, ULONG_MAX);
1915         return vma;
1916 }
1917
1918 /*
1919  * Verify that the stack growth is acceptable and
1920  * update accounting. This is shared with both the
1921  * grow-up and grow-down cases.
1922  */
1923 static int acct_stack_growth(struct vm_area_struct *vma,
1924                              unsigned long size, unsigned long grow)
1925 {
1926         struct mm_struct *mm = vma->vm_mm;
1927         unsigned long new_start;
1928
1929         /* address space limit tests */
1930         if (!may_expand_vm(mm, vma->vm_flags, grow))
1931                 return -ENOMEM;
1932
1933         /* Stack limit test */
1934         if (size > rlimit(RLIMIT_STACK))
1935                 return -ENOMEM;
1936
1937         /* mlock limit tests */
1938         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1939                 return -ENOMEM;
1940
1941         /* Check to ensure the stack will not grow into a hugetlb-only region */
1942         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1943                         vma->vm_end - size;
1944         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1945                 return -EFAULT;
1946
1947         /*
1948          * Overcommit..  This must be the final test, as it will
1949          * update security statistics.
1950          */
1951         if (security_vm_enough_memory_mm(mm, grow))
1952                 return -ENOMEM;
1953
1954         return 0;
1955 }
1956
1957 #if defined(CONFIG_STACK_GROWSUP)
1958 /*
1959  * PA-RISC uses this for its stack.
1960  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1961  */
1962 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1963 {
1964         struct mm_struct *mm = vma->vm_mm;
1965         struct vm_area_struct *next;
1966         unsigned long gap_addr;
1967         int error = 0;
1968         MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1969
1970         if (!(vma->vm_flags & VM_GROWSUP))
1971                 return -EFAULT;
1972
1973         /* Guard against exceeding limits of the address space. */
1974         address &= PAGE_MASK;
1975         if (address >= (TASK_SIZE & PAGE_MASK))
1976                 return -ENOMEM;
1977         address += PAGE_SIZE;
1978
1979         /* Enforce stack_guard_gap */
1980         gap_addr = address + stack_guard_gap;
1981
1982         /* Guard against overflow */
1983         if (gap_addr < address || gap_addr > TASK_SIZE)
1984                 gap_addr = TASK_SIZE;
1985
1986         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1987         if (next && vma_is_accessible(next)) {
1988                 if (!(next->vm_flags & VM_GROWSUP))
1989                         return -ENOMEM;
1990                 /* Check that both stack segments have the same anon_vma? */
1991         }
1992
1993         if (next)
1994                 mas_prev_range(&mas, address);
1995
1996         __mas_set_range(&mas, vma->vm_start, address - 1);
1997         if (mas_preallocate(&mas, vma, GFP_KERNEL))
1998                 return -ENOMEM;
1999
2000         /* We must make sure the anon_vma is allocated. */
2001         if (unlikely(anon_vma_prepare(vma))) {
2002                 mas_destroy(&mas);
2003                 return -ENOMEM;
2004         }
2005
2006         /* Lock the VMA before expanding to prevent concurrent page faults */
2007         vma_start_write(vma);
2008         /*
2009          * vma->vm_start/vm_end cannot change under us because the caller
2010          * is required to hold the mmap_lock in read mode.  We need the
2011          * anon_vma lock to serialize against concurrent expand_stacks.
2012          */
2013         anon_vma_lock_write(vma->anon_vma);
2014
2015         /* Somebody else might have raced and expanded it already */
2016         if (address > vma->vm_end) {
2017                 unsigned long size, grow;
2018
2019                 size = address - vma->vm_start;
2020                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2021
2022                 error = -ENOMEM;
2023                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2024                         error = acct_stack_growth(vma, size, grow);
2025                         if (!error) {
2026                                 /*
2027                                  * We only hold a shared mmap_lock lock here, so
2028                                  * we need to protect against concurrent vma
2029                                  * expansions.  anon_vma_lock_write() doesn't
2030                                  * help here, as we don't guarantee that all
2031                                  * growable vmas in a mm share the same root
2032                                  * anon vma.  So, we reuse mm->page_table_lock
2033                                  * to guard against concurrent vma expansions.
2034                                  */
2035                                 spin_lock(&mm->page_table_lock);
2036                                 if (vma->vm_flags & VM_LOCKED)
2037                                         mm->locked_vm += grow;
2038                                 vm_stat_account(mm, vma->vm_flags, grow);
2039                                 anon_vma_interval_tree_pre_update_vma(vma);
2040                                 vma->vm_end = address;
2041                                 /* Overwrite old entry in mtree. */
2042                                 mas_store_prealloc(&mas, vma);
2043                                 anon_vma_interval_tree_post_update_vma(vma);
2044                                 spin_unlock(&mm->page_table_lock);
2045
2046                                 perf_event_mmap(vma);
2047                         }
2048                 }
2049         }
2050         anon_vma_unlock_write(vma->anon_vma);
2051         khugepaged_enter_vma(vma, vma->vm_flags);
2052         mas_destroy(&mas);
2053         validate_mm(mm);
2054         return error;
2055 }
2056 #endif /* CONFIG_STACK_GROWSUP */
2057
2058 /*
2059  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2060  * mmap_lock held for writing.
2061  */
2062 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2063 {
2064         struct mm_struct *mm = vma->vm_mm;
2065         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2066         struct vm_area_struct *prev;
2067         int error = 0;
2068
2069         if (!(vma->vm_flags & VM_GROWSDOWN))
2070                 return -EFAULT;
2071
2072         address &= PAGE_MASK;
2073         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2074                 return -EPERM;
2075
2076         /* Enforce stack_guard_gap */
2077         prev = mas_prev(&mas, 0);
2078         /* Check that both stack segments have the same anon_vma? */
2079         if (prev) {
2080                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2081                     vma_is_accessible(prev) &&
2082                     (address - prev->vm_end < stack_guard_gap))
2083                         return -ENOMEM;
2084         }
2085
2086         if (prev)
2087                 mas_next_range(&mas, vma->vm_start);
2088
2089         __mas_set_range(&mas, address, vma->vm_end - 1);
2090         if (mas_preallocate(&mas, vma, GFP_KERNEL))
2091                 return -ENOMEM;
2092
2093         /* We must make sure the anon_vma is allocated. */
2094         if (unlikely(anon_vma_prepare(vma))) {
2095                 mas_destroy(&mas);
2096                 return -ENOMEM;
2097         }
2098
2099         /* Lock the VMA before expanding to prevent concurrent page faults */
2100         vma_start_write(vma);
2101         /*
2102          * vma->vm_start/vm_end cannot change under us because the caller
2103          * is required to hold the mmap_lock in read mode.  We need the
2104          * anon_vma lock to serialize against concurrent expand_stacks.
2105          */
2106         anon_vma_lock_write(vma->anon_vma);
2107
2108         /* Somebody else might have raced and expanded it already */
2109         if (address < vma->vm_start) {
2110                 unsigned long size, grow;
2111
2112                 size = vma->vm_end - address;
2113                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2114
2115                 error = -ENOMEM;
2116                 if (grow <= vma->vm_pgoff) {
2117                         error = acct_stack_growth(vma, size, grow);
2118                         if (!error) {
2119                                 /*
2120                                  * We only hold a shared mmap_lock lock here, so
2121                                  * we need to protect against concurrent vma
2122                                  * expansions.  anon_vma_lock_write() doesn't
2123                                  * help here, as we don't guarantee that all
2124                                  * growable vmas in a mm share the same root
2125                                  * anon vma.  So, we reuse mm->page_table_lock
2126                                  * to guard against concurrent vma expansions.
2127                                  */
2128                                 spin_lock(&mm->page_table_lock);
2129                                 if (vma->vm_flags & VM_LOCKED)
2130                                         mm->locked_vm += grow;
2131                                 vm_stat_account(mm, vma->vm_flags, grow);
2132                                 anon_vma_interval_tree_pre_update_vma(vma);
2133                                 vma->vm_start = address;
2134                                 vma->vm_pgoff -= grow;
2135                                 /* Overwrite old entry in mtree. */
2136                                 mas_store_prealloc(&mas, vma);
2137                                 anon_vma_interval_tree_post_update_vma(vma);
2138                                 spin_unlock(&mm->page_table_lock);
2139
2140                                 perf_event_mmap(vma);
2141                         }
2142                 }
2143         }
2144         anon_vma_unlock_write(vma->anon_vma);
2145         khugepaged_enter_vma(vma, vma->vm_flags);
2146         mas_destroy(&mas);
2147         validate_mm(mm);
2148         return error;
2149 }
2150
2151 /* enforced gap between the expanding stack and other mappings. */
2152 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2153
2154 static int __init cmdline_parse_stack_guard_gap(char *p)
2155 {
2156         unsigned long val;
2157         char *endptr;
2158
2159         val = simple_strtoul(p, &endptr, 10);
2160         if (!*endptr)
2161                 stack_guard_gap = val << PAGE_SHIFT;
2162
2163         return 1;
2164 }
2165 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2166
2167 #ifdef CONFIG_STACK_GROWSUP
2168 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2169 {
2170         return expand_upwards(vma, address);
2171 }
2172
2173 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2174 {
2175         struct vm_area_struct *vma, *prev;
2176
2177         addr &= PAGE_MASK;
2178         vma = find_vma_prev(mm, addr, &prev);
2179         if (vma && (vma->vm_start <= addr))
2180                 return vma;
2181         if (!prev)
2182                 return NULL;
2183         if (expand_stack_locked(prev, addr))
2184                 return NULL;
2185         if (prev->vm_flags & VM_LOCKED)
2186                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2187         return prev;
2188 }
2189 #else
2190 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2191 {
2192         return expand_downwards(vma, address);
2193 }
2194
2195 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2196 {
2197         struct vm_area_struct *vma;
2198         unsigned long start;
2199
2200         addr &= PAGE_MASK;
2201         vma = find_vma(mm, addr);
2202         if (!vma)
2203                 return NULL;
2204         if (vma->vm_start <= addr)
2205                 return vma;
2206         start = vma->vm_start;
2207         if (expand_stack_locked(vma, addr))
2208                 return NULL;
2209         if (vma->vm_flags & VM_LOCKED)
2210                 populate_vma_page_range(vma, addr, start, NULL);
2211         return vma;
2212 }
2213 #endif
2214
2215 #if defined(CONFIG_STACK_GROWSUP)
2216
2217 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2218 #define vma_expand_down(vma, addr) (-EFAULT)
2219
2220 #else
2221
2222 #define vma_expand_up(vma,addr) (-EFAULT)
2223 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2224
2225 #endif
2226
2227 /*
2228  * expand_stack(): legacy interface for page faulting. Don't use unless
2229  * you have to.
2230  *
2231  * This is called with the mm locked for reading, drops the lock, takes
2232  * the lock for writing, tries to look up a vma again, expands it if
2233  * necessary, and downgrades the lock to reading again.
2234  *
2235  * If no vma is found or it can't be expanded, it returns NULL and has
2236  * dropped the lock.
2237  */
2238 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2239 {
2240         struct vm_area_struct *vma, *prev;
2241
2242         mmap_read_unlock(mm);
2243         if (mmap_write_lock_killable(mm))
2244                 return NULL;
2245
2246         vma = find_vma_prev(mm, addr, &prev);
2247         if (vma && vma->vm_start <= addr)
2248                 goto success;
2249
2250         if (prev && !vma_expand_up(prev, addr)) {
2251                 vma = prev;
2252                 goto success;
2253         }
2254
2255         if (vma && !vma_expand_down(vma, addr))
2256                 goto success;
2257
2258         mmap_write_unlock(mm);
2259         return NULL;
2260
2261 success:
2262         mmap_write_downgrade(mm);
2263         return vma;
2264 }
2265
2266 /*
2267  * Ok - we have the memory areas we should free on a maple tree so release them,
2268  * and do the vma updates.
2269  *
2270  * Called with the mm semaphore held.
2271  */
2272 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2273 {
2274         unsigned long nr_accounted = 0;
2275         struct vm_area_struct *vma;
2276
2277         /* Update high watermark before we lower total_vm */
2278         update_hiwater_vm(mm);
2279         mas_for_each(mas, vma, ULONG_MAX) {
2280                 long nrpages = vma_pages(vma);
2281
2282                 if (vma->vm_flags & VM_ACCOUNT)
2283                         nr_accounted += nrpages;
2284                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2285                 remove_vma(vma, false);
2286         }
2287         vm_unacct_memory(nr_accounted);
2288 }
2289
2290 /*
2291  * Get rid of page table information in the indicated region.
2292  *
2293  * Called with the mm semaphore held.
2294  */
2295 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2296                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2297                 struct vm_area_struct *next, unsigned long start,
2298                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2299 {
2300         struct mmu_gather tlb;
2301         unsigned long mt_start = mas->index;
2302
2303         lru_add_drain();
2304         tlb_gather_mmu(&tlb, mm);
2305         update_hiwater_rss(mm);
2306         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2307         mas_set(mas, mt_start);
2308         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2309                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2310                                  mm_wr_locked);
2311         tlb_finish_mmu(&tlb);
2312 }
2313
2314 /*
2315  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2316  * has already been checked or doesn't make sense to fail.
2317  * VMA Iterator will point to the end VMA.
2318  */
2319 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2320                        unsigned long addr, int new_below)
2321 {
2322         struct vma_prepare vp;
2323         struct vm_area_struct *new;
2324         int err;
2325
2326         WARN_ON(vma->vm_start >= addr);
2327         WARN_ON(vma->vm_end <= addr);
2328
2329         if (vma->vm_ops && vma->vm_ops->may_split) {
2330                 err = vma->vm_ops->may_split(vma, addr);
2331                 if (err)
2332                         return err;
2333         }
2334
2335         new = vm_area_dup(vma);
2336         if (!new)
2337                 return -ENOMEM;
2338
2339         if (new_below) {
2340                 new->vm_end = addr;
2341         } else {
2342                 new->vm_start = addr;
2343                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2344         }
2345
2346         err = -ENOMEM;
2347         vma_iter_config(vmi, new->vm_start, new->vm_end);
2348         if (vma_iter_prealloc(vmi, new))
2349                 goto out_free_vma;
2350
2351         err = vma_dup_policy(vma, new);
2352         if (err)
2353                 goto out_free_vmi;
2354
2355         err = anon_vma_clone(new, vma);
2356         if (err)
2357                 goto out_free_mpol;
2358
2359         if (new->vm_file)
2360                 get_file(new->vm_file);
2361
2362         if (new->vm_ops && new->vm_ops->open)
2363                 new->vm_ops->open(new);
2364
2365         vma_start_write(vma);
2366         vma_start_write(new);
2367
2368         init_vma_prep(&vp, vma);
2369         vp.insert = new;
2370         vma_prepare(&vp);
2371         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2372
2373         if (new_below) {
2374                 vma->vm_start = addr;
2375                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2376         } else {
2377                 vma->vm_end = addr;
2378         }
2379
2380         /* vma_complete stores the new vma */
2381         vma_complete(&vp, vmi, vma->vm_mm);
2382
2383         /* Success. */
2384         if (new_below)
2385                 vma_next(vmi);
2386         return 0;
2387
2388 out_free_mpol:
2389         mpol_put(vma_policy(new));
2390 out_free_vmi:
2391         vma_iter_free(vmi);
2392 out_free_vma:
2393         vm_area_free(new);
2394         return err;
2395 }
2396
2397 /*
2398  * Split a vma into two pieces at address 'addr', a new vma is allocated
2399  * either for the first part or the tail.
2400  */
2401 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2402                      unsigned long addr, int new_below)
2403 {
2404         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2405                 return -ENOMEM;
2406
2407         return __split_vma(vmi, vma, addr, new_below);
2408 }
2409
2410 /*
2411  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2412  * context and anonymous VMA name within the range [start, end).
2413  *
2414  * As a result, we might be able to merge the newly modified VMA range with an
2415  * adjacent VMA with identical properties.
2416  *
2417  * If no merge is possible and the range does not span the entirety of the VMA,
2418  * we then need to split the VMA to accommodate the change.
2419  *
2420  * The function returns either the merged VMA, the original VMA if a split was
2421  * required instead, or an error if the split failed.
2422  */
2423 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2424                                   struct vm_area_struct *prev,
2425                                   struct vm_area_struct *vma,
2426                                   unsigned long start, unsigned long end,
2427                                   unsigned long vm_flags,
2428                                   struct mempolicy *policy,
2429                                   struct vm_userfaultfd_ctx uffd_ctx,
2430                                   struct anon_vma_name *anon_name)
2431 {
2432         pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2433         struct vm_area_struct *merged;
2434
2435         merged = vma_merge(vmi, vma->vm_mm, prev, start, end, vm_flags,
2436                            vma->anon_vma, vma->vm_file, pgoff, policy,
2437                            uffd_ctx, anon_name);
2438         if (merged)
2439                 return merged;
2440
2441         if (vma->vm_start < start) {
2442                 int err = split_vma(vmi, vma, start, 1);
2443
2444                 if (err)
2445                         return ERR_PTR(err);
2446         }
2447
2448         if (vma->vm_end > end) {
2449                 int err = split_vma(vmi, vma, end, 0);
2450
2451                 if (err)
2452                         return ERR_PTR(err);
2453         }
2454
2455         return vma;
2456 }
2457
2458 /*
2459  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2460  * must ensure that [start, end) does not overlap any existing VMA.
2461  */
2462 static struct vm_area_struct
2463 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2464                    struct vm_area_struct *vma, unsigned long start,
2465                    unsigned long end, pgoff_t pgoff)
2466 {
2467         return vma_merge(vmi, vma->vm_mm, prev, start, end, vma->vm_flags,
2468                          vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2469                          vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2470 }
2471
2472 /*
2473  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2474  * VMA with identical properties.
2475  */
2476 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2477                                         struct vm_area_struct *vma,
2478                                         unsigned long delta)
2479 {
2480         pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2481
2482         /* vma is specified as prev, so case 1 or 2 will apply. */
2483         return vma_merge(vmi, vma->vm_mm, vma, vma->vm_end, vma->vm_end + delta,
2484                          vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff,
2485                          vma_policy(vma), vma->vm_userfaultfd_ctx,
2486                          anon_vma_name(vma));
2487 }
2488
2489 /*
2490  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2491  * @vmi: The vma iterator
2492  * @vma: The starting vm_area_struct
2493  * @mm: The mm_struct
2494  * @start: The aligned start address to munmap.
2495  * @end: The aligned end address to munmap.
2496  * @uf: The userfaultfd list_head
2497  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2498  * success.
2499  *
2500  * Return: 0 on success and drops the lock if so directed, error and leaves the
2501  * lock held otherwise.
2502  */
2503 static int
2504 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2505                     struct mm_struct *mm, unsigned long start,
2506                     unsigned long end, struct list_head *uf, bool unlock)
2507 {
2508         struct vm_area_struct *prev, *next = NULL;
2509         struct maple_tree mt_detach;
2510         int count = 0;
2511         int error = -ENOMEM;
2512         unsigned long locked_vm = 0;
2513         MA_STATE(mas_detach, &mt_detach, 0, 0);
2514         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2515         mt_on_stack(mt_detach);
2516
2517         /*
2518          * If we need to split any vma, do it now to save pain later.
2519          *
2520          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2521          * unmapped vm_area_struct will remain in use: so lower split_vma
2522          * places tmp vma above, and higher split_vma places tmp vma below.
2523          */
2524
2525         /* Does it split the first one? */
2526         if (start > vma->vm_start) {
2527
2528                 /*
2529                  * Make sure that map_count on return from munmap() will
2530                  * not exceed its limit; but let map_count go just above
2531                  * its limit temporarily, to help free resources as expected.
2532                  */
2533                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2534                         goto map_count_exceeded;
2535
2536                 error = __split_vma(vmi, vma, start, 1);
2537                 if (error)
2538                         goto start_split_failed;
2539         }
2540
2541         /*
2542          * Detach a range of VMAs from the mm. Using next as a temp variable as
2543          * it is always overwritten.
2544          */
2545         next = vma;
2546         do {
2547                 /* Does it split the end? */
2548                 if (next->vm_end > end) {
2549                         error = __split_vma(vmi, next, end, 0);
2550                         if (error)
2551                                 goto end_split_failed;
2552                 }
2553                 vma_start_write(next);
2554                 mas_set(&mas_detach, count);
2555                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2556                 if (error)
2557                         goto munmap_gather_failed;
2558                 vma_mark_detached(next, true);
2559                 if (next->vm_flags & VM_LOCKED)
2560                         locked_vm += vma_pages(next);
2561
2562                 count++;
2563                 if (unlikely(uf)) {
2564                         /*
2565                          * If userfaultfd_unmap_prep returns an error the vmas
2566                          * will remain split, but userland will get a
2567                          * highly unexpected error anyway. This is no
2568                          * different than the case where the first of the two
2569                          * __split_vma fails, but we don't undo the first
2570                          * split, despite we could. This is unlikely enough
2571                          * failure that it's not worth optimizing it for.
2572                          */
2573                         error = userfaultfd_unmap_prep(next, start, end, uf);
2574
2575                         if (error)
2576                                 goto userfaultfd_error;
2577                 }
2578 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2579                 BUG_ON(next->vm_start < start);
2580                 BUG_ON(next->vm_start > end);
2581 #endif
2582         } for_each_vma_range(*vmi, next, end);
2583
2584 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2585         /* Make sure no VMAs are about to be lost. */
2586         {
2587                 MA_STATE(test, &mt_detach, 0, 0);
2588                 struct vm_area_struct *vma_mas, *vma_test;
2589                 int test_count = 0;
2590
2591                 vma_iter_set(vmi, start);
2592                 rcu_read_lock();
2593                 vma_test = mas_find(&test, count - 1);
2594                 for_each_vma_range(*vmi, vma_mas, end) {
2595                         BUG_ON(vma_mas != vma_test);
2596                         test_count++;
2597                         vma_test = mas_next(&test, count - 1);
2598                 }
2599                 rcu_read_unlock();
2600                 BUG_ON(count != test_count);
2601         }
2602 #endif
2603
2604         while (vma_iter_addr(vmi) > start)
2605                 vma_iter_prev_range(vmi);
2606
2607         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2608         if (error)
2609                 goto clear_tree_failed;
2610
2611         /* Point of no return */
2612         mm->locked_vm -= locked_vm;
2613         mm->map_count -= count;
2614         if (unlock)
2615                 mmap_write_downgrade(mm);
2616
2617         prev = vma_iter_prev_range(vmi);
2618         next = vma_next(vmi);
2619         if (next)
2620                 vma_iter_prev_range(vmi);
2621
2622         /*
2623          * We can free page tables without write-locking mmap_lock because VMAs
2624          * were isolated before we downgraded mmap_lock.
2625          */
2626         mas_set(&mas_detach, 1);
2627         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2628                      !unlock);
2629         /* Statistics and freeing VMAs */
2630         mas_set(&mas_detach, 0);
2631         remove_mt(mm, &mas_detach);
2632         validate_mm(mm);
2633         if (unlock)
2634                 mmap_read_unlock(mm);
2635
2636         __mt_destroy(&mt_detach);
2637         return 0;
2638
2639 clear_tree_failed:
2640 userfaultfd_error:
2641 munmap_gather_failed:
2642 end_split_failed:
2643         mas_set(&mas_detach, 0);
2644         mas_for_each(&mas_detach, next, end)
2645                 vma_mark_detached(next, false);
2646
2647         __mt_destroy(&mt_detach);
2648 start_split_failed:
2649 map_count_exceeded:
2650         validate_mm(mm);
2651         return error;
2652 }
2653
2654 /*
2655  * do_vmi_munmap() - munmap a given range.
2656  * @vmi: The vma iterator
2657  * @mm: The mm_struct
2658  * @start: The start address to munmap
2659  * @len: The length of the range to munmap
2660  * @uf: The userfaultfd list_head
2661  * @unlock: set to true if the user wants to drop the mmap_lock on success
2662  *
2663  * This function takes a @mas that is either pointing to the previous VMA or set
2664  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2665  * aligned and any arch_unmap work will be preformed.
2666  *
2667  * Return: 0 on success and drops the lock if so directed, error and leaves the
2668  * lock held otherwise.
2669  */
2670 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2671                   unsigned long start, size_t len, struct list_head *uf,
2672                   bool unlock)
2673 {
2674         unsigned long end;
2675         struct vm_area_struct *vma;
2676
2677         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2678                 return -EINVAL;
2679
2680         end = start + PAGE_ALIGN(len);
2681         if (end == start)
2682                 return -EINVAL;
2683
2684          /* arch_unmap() might do unmaps itself.  */
2685         arch_unmap(mm, start, end);
2686
2687         /* Find the first overlapping VMA */
2688         vma = vma_find(vmi, end);
2689         if (!vma) {
2690                 if (unlock)
2691                         mmap_write_unlock(mm);
2692                 return 0;
2693         }
2694
2695         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2696 }
2697
2698 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2699  * @mm: The mm_struct
2700  * @start: The start address to munmap
2701  * @len: The length to be munmapped.
2702  * @uf: The userfaultfd list_head
2703  *
2704  * Return: 0 on success, error otherwise.
2705  */
2706 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2707               struct list_head *uf)
2708 {
2709         VMA_ITERATOR(vmi, mm, start);
2710
2711         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2712 }
2713
2714 unsigned long mmap_region(struct file *file, unsigned long addr,
2715                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2716                 struct list_head *uf)
2717 {
2718         struct mm_struct *mm = current->mm;
2719         struct vm_area_struct *vma = NULL;
2720         struct vm_area_struct *next, *prev, *merge;
2721         pgoff_t pglen = len >> PAGE_SHIFT;
2722         unsigned long charged = 0;
2723         unsigned long end = addr + len;
2724         unsigned long merge_start = addr, merge_end = end;
2725         bool writable_file_mapping = false;
2726         pgoff_t vm_pgoff;
2727         int error;
2728         VMA_ITERATOR(vmi, mm, addr);
2729
2730         /* Check against address space limit. */
2731         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2732                 unsigned long nr_pages;
2733
2734                 /*
2735                  * MAP_FIXED may remove pages of mappings that intersects with
2736                  * requested mapping. Account for the pages it would unmap.
2737                  */
2738                 nr_pages = count_vma_pages_range(mm, addr, end);
2739
2740                 if (!may_expand_vm(mm, vm_flags,
2741                                         (len >> PAGE_SHIFT) - nr_pages))
2742                         return -ENOMEM;
2743         }
2744
2745         /* Unmap any existing mapping in the area */
2746         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2747                 return -ENOMEM;
2748
2749         /*
2750          * Private writable mapping: check memory availability
2751          */
2752         if (accountable_mapping(file, vm_flags)) {
2753                 charged = len >> PAGE_SHIFT;
2754                 if (security_vm_enough_memory_mm(mm, charged))
2755                         return -ENOMEM;
2756                 vm_flags |= VM_ACCOUNT;
2757         }
2758
2759         next = vma_next(&vmi);
2760         prev = vma_prev(&vmi);
2761         if (vm_flags & VM_SPECIAL) {
2762                 if (prev)
2763                         vma_iter_next_range(&vmi);
2764                 goto cannot_expand;
2765         }
2766
2767         /* Attempt to expand an old mapping */
2768         /* Check next */
2769         if (next && next->vm_start == end && !vma_policy(next) &&
2770             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2771                                  NULL_VM_UFFD_CTX, NULL)) {
2772                 merge_end = next->vm_end;
2773                 vma = next;
2774                 vm_pgoff = next->vm_pgoff - pglen;
2775         }
2776
2777         /* Check prev */
2778         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2779             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2780                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2781                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2782                                        NULL_VM_UFFD_CTX, NULL))) {
2783                 merge_start = prev->vm_start;
2784                 vma = prev;
2785                 vm_pgoff = prev->vm_pgoff;
2786         } else if (prev) {
2787                 vma_iter_next_range(&vmi);
2788         }
2789
2790         /* Actually expand, if possible */
2791         if (vma &&
2792             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2793                 khugepaged_enter_vma(vma, vm_flags);
2794                 goto expanded;
2795         }
2796
2797         if (vma == prev)
2798                 vma_iter_set(&vmi, addr);
2799 cannot_expand:
2800
2801         /*
2802          * Determine the object being mapped and call the appropriate
2803          * specific mapper. the address has already been validated, but
2804          * not unmapped, but the maps are removed from the list.
2805          */
2806         vma = vm_area_alloc(mm);
2807         if (!vma) {
2808                 error = -ENOMEM;
2809                 goto unacct_error;
2810         }
2811
2812         vma_iter_config(&vmi, addr, end);
2813         vma->vm_start = addr;
2814         vma->vm_end = end;
2815         vm_flags_init(vma, vm_flags);
2816         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2817         vma->vm_pgoff = pgoff;
2818
2819         if (file) {
2820                 vma->vm_file = get_file(file);
2821                 error = call_mmap(file, vma);
2822                 if (error)
2823                         goto unmap_and_free_vma;
2824
2825                 if (vma_is_shared_maywrite(vma)) {
2826                         error = mapping_map_writable(file->f_mapping);
2827                         if (error)
2828                                 goto close_and_free_vma;
2829
2830                         writable_file_mapping = true;
2831                 }
2832
2833                 /*
2834                  * Expansion is handled above, merging is handled below.
2835                  * Drivers should not alter the address of the VMA.
2836                  */
2837                 error = -EINVAL;
2838                 if (WARN_ON((addr != vma->vm_start)))
2839                         goto close_and_free_vma;
2840
2841                 vma_iter_config(&vmi, addr, end);
2842                 /*
2843                  * If vm_flags changed after call_mmap(), we should try merge
2844                  * vma again as we may succeed this time.
2845                  */
2846                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2847                         merge = vma_merge_new_vma(&vmi, prev, vma,
2848                                                   vma->vm_start, vma->vm_end,
2849                                                   vma->vm_pgoff);
2850                         if (merge) {
2851                                 /*
2852                                  * ->mmap() can change vma->vm_file and fput
2853                                  * the original file. So fput the vma->vm_file
2854                                  * here or we would add an extra fput for file
2855                                  * and cause general protection fault
2856                                  * ultimately.
2857                                  */
2858                                 fput(vma->vm_file);
2859                                 vm_area_free(vma);
2860                                 vma = merge;
2861                                 /* Update vm_flags to pick up the change. */
2862                                 vm_flags = vma->vm_flags;
2863                                 goto unmap_writable;
2864                         }
2865                 }
2866
2867                 vm_flags = vma->vm_flags;
2868         } else if (vm_flags & VM_SHARED) {
2869                 error = shmem_zero_setup(vma);
2870                 if (error)
2871                         goto free_vma;
2872         } else {
2873                 vma_set_anonymous(vma);
2874         }
2875
2876         if (map_deny_write_exec(vma, vma->vm_flags)) {
2877                 error = -EACCES;
2878                 goto close_and_free_vma;
2879         }
2880
2881         /* Allow architectures to sanity-check the vm_flags */
2882         error = -EINVAL;
2883         if (!arch_validate_flags(vma->vm_flags))
2884                 goto close_and_free_vma;
2885
2886         error = -ENOMEM;
2887         if (vma_iter_prealloc(&vmi, vma))
2888                 goto close_and_free_vma;
2889
2890         /* Lock the VMA since it is modified after insertion into VMA tree */
2891         vma_start_write(vma);
2892         vma_iter_store(&vmi, vma);
2893         mm->map_count++;
2894         if (vma->vm_file) {
2895                 i_mmap_lock_write(vma->vm_file->f_mapping);
2896                 if (vma_is_shared_maywrite(vma))
2897                         mapping_allow_writable(vma->vm_file->f_mapping);
2898
2899                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2900                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2901                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2902                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2903         }
2904
2905         /*
2906          * vma_merge() calls khugepaged_enter_vma() either, the below
2907          * call covers the non-merge case.
2908          */
2909         khugepaged_enter_vma(vma, vma->vm_flags);
2910
2911         /* Once vma denies write, undo our temporary denial count */
2912 unmap_writable:
2913         if (writable_file_mapping)
2914                 mapping_unmap_writable(file->f_mapping);
2915         file = vma->vm_file;
2916         ksm_add_vma(vma);
2917 expanded:
2918         perf_event_mmap(vma);
2919
2920         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2921         if (vm_flags & VM_LOCKED) {
2922                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2923                                         is_vm_hugetlb_page(vma) ||
2924                                         vma == get_gate_vma(current->mm))
2925                         vm_flags_clear(vma, VM_LOCKED_MASK);
2926                 else
2927                         mm->locked_vm += (len >> PAGE_SHIFT);
2928         }
2929
2930         if (file)
2931                 uprobe_mmap(vma);
2932
2933         /*
2934          * New (or expanded) vma always get soft dirty status.
2935          * Otherwise user-space soft-dirty page tracker won't
2936          * be able to distinguish situation when vma area unmapped,
2937          * then new mapped in-place (which must be aimed as
2938          * a completely new data area).
2939          */
2940         vm_flags_set(vma, VM_SOFTDIRTY);
2941
2942         vma_set_page_prot(vma);
2943
2944         validate_mm(mm);
2945         return addr;
2946
2947 close_and_free_vma:
2948         if (file && vma->vm_ops && vma->vm_ops->close)
2949                 vma->vm_ops->close(vma);
2950
2951         if (file || vma->vm_file) {
2952 unmap_and_free_vma:
2953                 fput(vma->vm_file);
2954                 vma->vm_file = NULL;
2955
2956                 vma_iter_set(&vmi, vma->vm_end);
2957                 /* Undo any partial mapping done by a device driver. */
2958                 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2959                              vma->vm_end, vma->vm_end, true);
2960         }
2961         if (writable_file_mapping)
2962                 mapping_unmap_writable(file->f_mapping);
2963 free_vma:
2964         vm_area_free(vma);
2965 unacct_error:
2966         if (charged)
2967                 vm_unacct_memory(charged);
2968         validate_mm(mm);
2969         return error;
2970 }
2971
2972 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2973 {
2974         int ret;
2975         struct mm_struct *mm = current->mm;
2976         LIST_HEAD(uf);
2977         VMA_ITERATOR(vmi, mm, start);
2978
2979         if (mmap_write_lock_killable(mm))
2980                 return -EINTR;
2981
2982         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2983         if (ret || !unlock)
2984                 mmap_write_unlock(mm);
2985
2986         userfaultfd_unmap_complete(mm, &uf);
2987         return ret;
2988 }
2989
2990 int vm_munmap(unsigned long start, size_t len)
2991 {
2992         return __vm_munmap(start, len, false);
2993 }
2994 EXPORT_SYMBOL(vm_munmap);
2995
2996 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2997 {
2998         addr = untagged_addr(addr);
2999         return __vm_munmap(addr, len, true);
3000 }
3001
3002
3003 /*
3004  * Emulation of deprecated remap_file_pages() syscall.
3005  */
3006 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3007                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3008 {
3009
3010         struct mm_struct *mm = current->mm;
3011         struct vm_area_struct *vma;
3012         unsigned long populate = 0;
3013         unsigned long ret = -EINVAL;
3014         struct file *file;
3015
3016         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3017                      current->comm, current->pid);
3018
3019         if (prot)
3020                 return ret;
3021         start = start & PAGE_MASK;
3022         size = size & PAGE_MASK;
3023
3024         if (start + size <= start)
3025                 return ret;
3026
3027         /* Does pgoff wrap? */
3028         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3029                 return ret;
3030
3031         if (mmap_write_lock_killable(mm))
3032                 return -EINTR;
3033
3034         vma = vma_lookup(mm, start);
3035
3036         if (!vma || !(vma->vm_flags & VM_SHARED))
3037                 goto out;
3038
3039         if (start + size > vma->vm_end) {
3040                 VMA_ITERATOR(vmi, mm, vma->vm_end);
3041                 struct vm_area_struct *next, *prev = vma;
3042
3043                 for_each_vma_range(vmi, next, start + size) {
3044                         /* hole between vmas ? */
3045                         if (next->vm_start != prev->vm_end)
3046                                 goto out;
3047
3048                         if (next->vm_file != vma->vm_file)
3049                                 goto out;
3050
3051                         if (next->vm_flags != vma->vm_flags)
3052                                 goto out;
3053
3054                         if (start + size <= next->vm_end)
3055                                 break;
3056
3057                         prev = next;
3058                 }
3059
3060                 if (!next)
3061                         goto out;
3062         }
3063
3064         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3065         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3066         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3067
3068         flags &= MAP_NONBLOCK;
3069         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3070         if (vma->vm_flags & VM_LOCKED)
3071                 flags |= MAP_LOCKED;
3072
3073         file = get_file(vma->vm_file);
3074         ret = do_mmap(vma->vm_file, start, size,
3075                         prot, flags, 0, pgoff, &populate, NULL);
3076         fput(file);
3077 out:
3078         mmap_write_unlock(mm);
3079         if (populate)
3080                 mm_populate(ret, populate);
3081         if (!IS_ERR_VALUE(ret))
3082                 ret = 0;
3083         return ret;
3084 }
3085
3086 /*
3087  * do_vma_munmap() - Unmap a full or partial vma.
3088  * @vmi: The vma iterator pointing at the vma
3089  * @vma: The first vma to be munmapped
3090  * @start: the start of the address to unmap
3091  * @end: The end of the address to unmap
3092  * @uf: The userfaultfd list_head
3093  * @unlock: Drop the lock on success
3094  *
3095  * unmaps a VMA mapping when the vma iterator is already in position.
3096  * Does not handle alignment.
3097  *
3098  * Return: 0 on success drops the lock of so directed, error on failure and will
3099  * still hold the lock.
3100  */
3101 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3102                 unsigned long start, unsigned long end, struct list_head *uf,
3103                 bool unlock)
3104 {
3105         struct mm_struct *mm = vma->vm_mm;
3106
3107         arch_unmap(mm, start, end);
3108         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3109 }
3110
3111 /*
3112  * do_brk_flags() - Increase the brk vma if the flags match.
3113  * @vmi: The vma iterator
3114  * @addr: The start address
3115  * @len: The length of the increase
3116  * @vma: The vma,
3117  * @flags: The VMA Flags
3118  *
3119  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3120  * do not match then create a new anonymous VMA.  Eventually we may be able to
3121  * do some brk-specific accounting here.
3122  */
3123 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3124                 unsigned long addr, unsigned long len, unsigned long flags)
3125 {
3126         struct mm_struct *mm = current->mm;
3127         struct vma_prepare vp;
3128
3129         /*
3130          * Check against address space limits by the changed size
3131          * Note: This happens *after* clearing old mappings in some code paths.
3132          */
3133         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3134         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3135                 return -ENOMEM;
3136
3137         if (mm->map_count > sysctl_max_map_count)
3138                 return -ENOMEM;
3139
3140         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3141                 return -ENOMEM;
3142
3143         /*
3144          * Expand the existing vma if possible; Note that singular lists do not
3145          * occur after forking, so the expand will only happen on new VMAs.
3146          */
3147         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3148             can_vma_merge_after(vma, flags, NULL, NULL,
3149                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3150                 vma_iter_config(vmi, vma->vm_start, addr + len);
3151                 if (vma_iter_prealloc(vmi, vma))
3152                         goto unacct_fail;
3153
3154                 vma_start_write(vma);
3155
3156                 init_vma_prep(&vp, vma);
3157                 vma_prepare(&vp);
3158                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3159                 vma->vm_end = addr + len;
3160                 vm_flags_set(vma, VM_SOFTDIRTY);
3161                 vma_iter_store(vmi, vma);
3162
3163                 vma_complete(&vp, vmi, mm);
3164                 khugepaged_enter_vma(vma, flags);
3165                 goto out;
3166         }
3167
3168         if (vma)
3169                 vma_iter_next_range(vmi);
3170         /* create a vma struct for an anonymous mapping */
3171         vma = vm_area_alloc(mm);
3172         if (!vma)
3173                 goto unacct_fail;
3174
3175         vma_set_anonymous(vma);
3176         vma->vm_start = addr;
3177         vma->vm_end = addr + len;
3178         vma->vm_pgoff = addr >> PAGE_SHIFT;
3179         vm_flags_init(vma, flags);
3180         vma->vm_page_prot = vm_get_page_prot(flags);
3181         vma_start_write(vma);
3182         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3183                 goto mas_store_fail;
3184
3185         mm->map_count++;
3186         validate_mm(mm);
3187         ksm_add_vma(vma);
3188 out:
3189         perf_event_mmap(vma);
3190         mm->total_vm += len >> PAGE_SHIFT;
3191         mm->data_vm += len >> PAGE_SHIFT;
3192         if (flags & VM_LOCKED)
3193                 mm->locked_vm += (len >> PAGE_SHIFT);
3194         vm_flags_set(vma, VM_SOFTDIRTY);
3195         return 0;
3196
3197 mas_store_fail:
3198         vm_area_free(vma);
3199 unacct_fail:
3200         vm_unacct_memory(len >> PAGE_SHIFT);
3201         return -ENOMEM;
3202 }
3203
3204 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3205 {
3206         struct mm_struct *mm = current->mm;
3207         struct vm_area_struct *vma = NULL;
3208         unsigned long len;
3209         int ret;
3210         bool populate;
3211         LIST_HEAD(uf);
3212         VMA_ITERATOR(vmi, mm, addr);
3213
3214         len = PAGE_ALIGN(request);
3215         if (len < request)
3216                 return -ENOMEM;
3217         if (!len)
3218                 return 0;
3219
3220         /* Until we need other flags, refuse anything except VM_EXEC. */
3221         if ((flags & (~VM_EXEC)) != 0)
3222                 return -EINVAL;
3223
3224         if (mmap_write_lock_killable(mm))
3225                 return -EINTR;
3226
3227         ret = check_brk_limits(addr, len);
3228         if (ret)
3229                 goto limits_failed;
3230
3231         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3232         if (ret)
3233                 goto munmap_failed;
3234
3235         vma = vma_prev(&vmi);
3236         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3237         populate = ((mm->def_flags & VM_LOCKED) != 0);
3238         mmap_write_unlock(mm);
3239         userfaultfd_unmap_complete(mm, &uf);
3240         if (populate && !ret)
3241                 mm_populate(addr, len);
3242         return ret;
3243
3244 munmap_failed:
3245 limits_failed:
3246         mmap_write_unlock(mm);
3247         return ret;
3248 }
3249 EXPORT_SYMBOL(vm_brk_flags);
3250
3251 /* Release all mmaps. */
3252 void exit_mmap(struct mm_struct *mm)
3253 {
3254         struct mmu_gather tlb;
3255         struct vm_area_struct *vma;
3256         unsigned long nr_accounted = 0;
3257         MA_STATE(mas, &mm->mm_mt, 0, 0);
3258         int count = 0;
3259
3260         /* mm's last user has gone, and its about to be pulled down */
3261         mmu_notifier_release(mm);
3262
3263         mmap_read_lock(mm);
3264         arch_exit_mmap(mm);
3265
3266         vma = mas_find(&mas, ULONG_MAX);
3267         if (!vma || unlikely(xa_is_zero(vma))) {
3268                 /* Can happen if dup_mmap() received an OOM */
3269                 mmap_read_unlock(mm);
3270                 mmap_write_lock(mm);
3271                 goto destroy;
3272         }
3273
3274         lru_add_drain();
3275         flush_cache_mm(mm);
3276         tlb_gather_mmu_fullmm(&tlb, mm);
3277         /* update_hiwater_rss(mm) here? but nobody should be looking */
3278         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3279         unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3280         mmap_read_unlock(mm);
3281
3282         /*
3283          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3284          * because the memory has been already freed.
3285          */
3286         set_bit(MMF_OOM_SKIP, &mm->flags);
3287         mmap_write_lock(mm);
3288         mt_clear_in_rcu(&mm->mm_mt);
3289         mas_set(&mas, vma->vm_end);
3290         free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3291                       USER_PGTABLES_CEILING, true);
3292         tlb_finish_mmu(&tlb);
3293
3294         /*
3295          * Walk the list again, actually closing and freeing it, with preemption
3296          * enabled, without holding any MM locks besides the unreachable
3297          * mmap_write_lock.
3298          */
3299         mas_set(&mas, vma->vm_end);
3300         do {
3301                 if (vma->vm_flags & VM_ACCOUNT)
3302                         nr_accounted += vma_pages(vma);
3303                 remove_vma(vma, true);
3304                 count++;
3305                 cond_resched();
3306                 vma = mas_find(&mas, ULONG_MAX);
3307         } while (vma && likely(!xa_is_zero(vma)));
3308
3309         BUG_ON(count != mm->map_count);
3310
3311         trace_exit_mmap(mm);
3312 destroy:
3313         __mt_destroy(&mm->mm_mt);
3314         mmap_write_unlock(mm);
3315         vm_unacct_memory(nr_accounted);
3316 }
3317
3318 /* Insert vm structure into process list sorted by address
3319  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3320  * then i_mmap_rwsem is taken here.
3321  */
3322 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3323 {
3324         unsigned long charged = vma_pages(vma);
3325
3326
3327         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3328                 return -ENOMEM;
3329
3330         if ((vma->vm_flags & VM_ACCOUNT) &&
3331              security_vm_enough_memory_mm(mm, charged))
3332                 return -ENOMEM;
3333
3334         /*
3335          * The vm_pgoff of a purely anonymous vma should be irrelevant
3336          * until its first write fault, when page's anon_vma and index
3337          * are set.  But now set the vm_pgoff it will almost certainly
3338          * end up with (unless mremap moves it elsewhere before that
3339          * first wfault), so /proc/pid/maps tells a consistent story.
3340          *
3341          * By setting it to reflect the virtual start address of the
3342          * vma, merges and splits can happen in a seamless way, just
3343          * using the existing file pgoff checks and manipulations.
3344          * Similarly in do_mmap and in do_brk_flags.
3345          */
3346         if (vma_is_anonymous(vma)) {
3347                 BUG_ON(vma->anon_vma);
3348                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3349         }
3350
3351         if (vma_link(mm, vma)) {
3352                 if (vma->vm_flags & VM_ACCOUNT)
3353                         vm_unacct_memory(charged);
3354                 return -ENOMEM;
3355         }
3356
3357         return 0;
3358 }
3359
3360 /*
3361  * Copy the vma structure to a new location in the same mm,
3362  * prior to moving page table entries, to effect an mremap move.
3363  */
3364 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3365         unsigned long addr, unsigned long len, pgoff_t pgoff,
3366         bool *need_rmap_locks)
3367 {
3368         struct vm_area_struct *vma = *vmap;
3369         unsigned long vma_start = vma->vm_start;
3370         struct mm_struct *mm = vma->vm_mm;
3371         struct vm_area_struct *new_vma, *prev;
3372         bool faulted_in_anon_vma = true;
3373         VMA_ITERATOR(vmi, mm, addr);
3374
3375         /*
3376          * If anonymous vma has not yet been faulted, update new pgoff
3377          * to match new location, to increase its chance of merging.
3378          */
3379         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3380                 pgoff = addr >> PAGE_SHIFT;
3381                 faulted_in_anon_vma = false;
3382         }
3383
3384         new_vma = find_vma_prev(mm, addr, &prev);
3385         if (new_vma && new_vma->vm_start < addr + len)
3386                 return NULL;    /* should never get here */
3387
3388         new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3389         if (new_vma) {
3390                 /*
3391                  * Source vma may have been merged into new_vma
3392                  */
3393                 if (unlikely(vma_start >= new_vma->vm_start &&
3394                              vma_start < new_vma->vm_end)) {
3395                         /*
3396                          * The only way we can get a vma_merge with
3397                          * self during an mremap is if the vma hasn't
3398                          * been faulted in yet and we were allowed to
3399                          * reset the dst vma->vm_pgoff to the
3400                          * destination address of the mremap to allow
3401                          * the merge to happen. mremap must change the
3402                          * vm_pgoff linearity between src and dst vmas
3403                          * (in turn preventing a vma_merge) to be
3404                          * safe. It is only safe to keep the vm_pgoff
3405                          * linear if there are no pages mapped yet.
3406                          */
3407                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3408                         *vmap = vma = new_vma;
3409                 }
3410                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3411         } else {
3412                 new_vma = vm_area_dup(vma);
3413                 if (!new_vma)
3414                         goto out;
3415                 new_vma->vm_start = addr;
3416                 new_vma->vm_end = addr + len;
3417                 new_vma->vm_pgoff = pgoff;
3418                 if (vma_dup_policy(vma, new_vma))
3419                         goto out_free_vma;
3420                 if (anon_vma_clone(new_vma, vma))
3421                         goto out_free_mempol;
3422                 if (new_vma->vm_file)
3423                         get_file(new_vma->vm_file);
3424                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3425                         new_vma->vm_ops->open(new_vma);
3426                 if (vma_link(mm, new_vma))
3427                         goto out_vma_link;
3428                 *need_rmap_locks = false;
3429         }
3430         return new_vma;
3431
3432 out_vma_link:
3433         if (new_vma->vm_ops && new_vma->vm_ops->close)
3434                 new_vma->vm_ops->close(new_vma);
3435
3436         if (new_vma->vm_file)
3437                 fput(new_vma->vm_file);
3438
3439         unlink_anon_vmas(new_vma);
3440 out_free_mempol:
3441         mpol_put(vma_policy(new_vma));
3442 out_free_vma:
3443         vm_area_free(new_vma);
3444 out:
3445         return NULL;
3446 }
3447
3448 /*
3449  * Return true if the calling process may expand its vm space by the passed
3450  * number of pages
3451  */
3452 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3453 {
3454         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3455                 return false;
3456
3457         if (is_data_mapping(flags) &&
3458             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3459                 /* Workaround for Valgrind */
3460                 if (rlimit(RLIMIT_DATA) == 0 &&
3461                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3462                         return true;
3463
3464                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3465                              current->comm, current->pid,
3466                              (mm->data_vm + npages) << PAGE_SHIFT,
3467                              rlimit(RLIMIT_DATA),
3468                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3469
3470                 if (!ignore_rlimit_data)
3471                         return false;
3472         }
3473
3474         return true;
3475 }
3476
3477 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3478 {
3479         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3480
3481         if (is_exec_mapping(flags))
3482                 mm->exec_vm += npages;
3483         else if (is_stack_mapping(flags))
3484                 mm->stack_vm += npages;
3485         else if (is_data_mapping(flags))
3486                 mm->data_vm += npages;
3487 }
3488
3489 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3490
3491 /*
3492  * Having a close hook prevents vma merging regardless of flags.
3493  */
3494 static void special_mapping_close(struct vm_area_struct *vma)
3495 {
3496 }
3497
3498 static const char *special_mapping_name(struct vm_area_struct *vma)
3499 {
3500         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3501 }
3502
3503 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3504 {
3505         struct vm_special_mapping *sm = new_vma->vm_private_data;
3506
3507         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3508                 return -EFAULT;
3509
3510         if (sm->mremap)
3511                 return sm->mremap(sm, new_vma);
3512
3513         return 0;
3514 }
3515
3516 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3517 {
3518         /*
3519          * Forbid splitting special mappings - kernel has expectations over
3520          * the number of pages in mapping. Together with VM_DONTEXPAND
3521          * the size of vma should stay the same over the special mapping's
3522          * lifetime.
3523          */
3524         return -EINVAL;
3525 }
3526
3527 static const struct vm_operations_struct special_mapping_vmops = {
3528         .close = special_mapping_close,
3529         .fault = special_mapping_fault,
3530         .mremap = special_mapping_mremap,
3531         .name = special_mapping_name,
3532         /* vDSO code relies that VVAR can't be accessed remotely */
3533         .access = NULL,
3534         .may_split = special_mapping_split,
3535 };
3536
3537 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3538         .close = special_mapping_close,
3539         .fault = special_mapping_fault,
3540 };
3541
3542 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3543 {
3544         struct vm_area_struct *vma = vmf->vma;
3545         pgoff_t pgoff;
3546         struct page **pages;
3547
3548         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3549                 pages = vma->vm_private_data;
3550         } else {
3551                 struct vm_special_mapping *sm = vma->vm_private_data;
3552
3553                 if (sm->fault)
3554                         return sm->fault(sm, vmf->vma, vmf);
3555
3556                 pages = sm->pages;
3557         }
3558
3559         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3560                 pgoff--;
3561
3562         if (*pages) {
3563                 struct page *page = *pages;
3564                 get_page(page);
3565                 vmf->page = page;
3566                 return 0;
3567         }
3568
3569         return VM_FAULT_SIGBUS;
3570 }
3571
3572 static struct vm_area_struct *__install_special_mapping(
3573         struct mm_struct *mm,
3574         unsigned long addr, unsigned long len,
3575         unsigned long vm_flags, void *priv,
3576         const struct vm_operations_struct *ops)
3577 {
3578         int ret;
3579         struct vm_area_struct *vma;
3580
3581         vma = vm_area_alloc(mm);
3582         if (unlikely(vma == NULL))
3583                 return ERR_PTR(-ENOMEM);
3584
3585         vma->vm_start = addr;
3586         vma->vm_end = addr + len;
3587
3588         vm_flags_init(vma, (vm_flags | mm->def_flags |
3589                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3590         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3591
3592         vma->vm_ops = ops;
3593         vma->vm_private_data = priv;
3594
3595         ret = insert_vm_struct(mm, vma);
3596         if (ret)
3597                 goto out;
3598
3599         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3600
3601         perf_event_mmap(vma);
3602
3603         return vma;
3604
3605 out:
3606         vm_area_free(vma);
3607         return ERR_PTR(ret);
3608 }
3609
3610 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3611         const struct vm_special_mapping *sm)
3612 {
3613         return vma->vm_private_data == sm &&
3614                 (vma->vm_ops == &special_mapping_vmops ||
3615                  vma->vm_ops == &legacy_special_mapping_vmops);
3616 }
3617
3618 /*
3619  * Called with mm->mmap_lock held for writing.
3620  * Insert a new vma covering the given region, with the given flags.
3621  * Its pages are supplied by the given array of struct page *.
3622  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3623  * The region past the last page supplied will always produce SIGBUS.
3624  * The array pointer and the pages it points to are assumed to stay alive
3625  * for as long as this mapping might exist.
3626  */
3627 struct vm_area_struct *_install_special_mapping(
3628         struct mm_struct *mm,
3629         unsigned long addr, unsigned long len,
3630         unsigned long vm_flags, const struct vm_special_mapping *spec)
3631 {
3632         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3633                                         &special_mapping_vmops);
3634 }
3635
3636 int install_special_mapping(struct mm_struct *mm,
3637                             unsigned long addr, unsigned long len,
3638                             unsigned long vm_flags, struct page **pages)
3639 {
3640         struct vm_area_struct *vma = __install_special_mapping(
3641                 mm, addr, len, vm_flags, (void *)pages,
3642                 &legacy_special_mapping_vmops);
3643
3644         return PTR_ERR_OR_ZERO(vma);
3645 }
3646
3647 static DEFINE_MUTEX(mm_all_locks_mutex);
3648
3649 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3650 {
3651         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3652                 /*
3653                  * The LSB of head.next can't change from under us
3654                  * because we hold the mm_all_locks_mutex.
3655                  */
3656                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3657                 /*
3658                  * We can safely modify head.next after taking the
3659                  * anon_vma->root->rwsem. If some other vma in this mm shares
3660                  * the same anon_vma we won't take it again.
3661                  *
3662                  * No need of atomic instructions here, head.next
3663                  * can't change from under us thanks to the
3664                  * anon_vma->root->rwsem.
3665                  */
3666                 if (__test_and_set_bit(0, (unsigned long *)
3667                                        &anon_vma->root->rb_root.rb_root.rb_node))
3668                         BUG();
3669         }
3670 }
3671
3672 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3673 {
3674         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3675                 /*
3676                  * AS_MM_ALL_LOCKS can't change from under us because
3677                  * we hold the mm_all_locks_mutex.
3678                  *
3679                  * Operations on ->flags have to be atomic because
3680                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3681                  * mm_all_locks_mutex, there may be other cpus
3682                  * changing other bitflags in parallel to us.
3683                  */
3684                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3685                         BUG();
3686                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3687         }
3688 }
3689
3690 /*
3691  * This operation locks against the VM for all pte/vma/mm related
3692  * operations that could ever happen on a certain mm. This includes
3693  * vmtruncate, try_to_unmap, and all page faults.
3694  *
3695  * The caller must take the mmap_lock in write mode before calling
3696  * mm_take_all_locks(). The caller isn't allowed to release the
3697  * mmap_lock until mm_drop_all_locks() returns.
3698  *
3699  * mmap_lock in write mode is required in order to block all operations
3700  * that could modify pagetables and free pages without need of
3701  * altering the vma layout. It's also needed in write mode to avoid new
3702  * anon_vmas to be associated with existing vmas.
3703  *
3704  * A single task can't take more than one mm_take_all_locks() in a row
3705  * or it would deadlock.
3706  *
3707  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3708  * mapping->flags avoid to take the same lock twice, if more than one
3709  * vma in this mm is backed by the same anon_vma or address_space.
3710  *
3711  * We take locks in following order, accordingly to comment at beginning
3712  * of mm/rmap.c:
3713  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3714  *     hugetlb mapping);
3715  *   - all vmas marked locked
3716  *   - all i_mmap_rwsem locks;
3717  *   - all anon_vma->rwseml
3718  *
3719  * We can take all locks within these types randomly because the VM code
3720  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3721  * mm_all_locks_mutex.
3722  *
3723  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3724  * that may have to take thousand of locks.
3725  *
3726  * mm_take_all_locks() can fail if it's interrupted by signals.
3727  */
3728 int mm_take_all_locks(struct mm_struct *mm)
3729 {
3730         struct vm_area_struct *vma;
3731         struct anon_vma_chain *avc;
3732         MA_STATE(mas, &mm->mm_mt, 0, 0);
3733
3734         mmap_assert_write_locked(mm);
3735
3736         mutex_lock(&mm_all_locks_mutex);
3737
3738         /*
3739          * vma_start_write() does not have a complement in mm_drop_all_locks()
3740          * because vma_start_write() is always asymmetrical; it marks a VMA as
3741          * being written to until mmap_write_unlock() or mmap_write_downgrade()
3742          * is reached.
3743          */
3744         mas_for_each(&mas, vma, ULONG_MAX) {
3745                 if (signal_pending(current))
3746                         goto out_unlock;
3747                 vma_start_write(vma);
3748         }
3749
3750         mas_set(&mas, 0);
3751         mas_for_each(&mas, vma, ULONG_MAX) {
3752                 if (signal_pending(current))
3753                         goto out_unlock;
3754                 if (vma->vm_file && vma->vm_file->f_mapping &&
3755                                 is_vm_hugetlb_page(vma))
3756                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3757         }
3758
3759         mas_set(&mas, 0);
3760         mas_for_each(&mas, vma, ULONG_MAX) {
3761                 if (signal_pending(current))
3762                         goto out_unlock;
3763                 if (vma->vm_file && vma->vm_file->f_mapping &&
3764                                 !is_vm_hugetlb_page(vma))
3765                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3766         }
3767
3768         mas_set(&mas, 0);
3769         mas_for_each(&mas, vma, ULONG_MAX) {
3770                 if (signal_pending(current))
3771                         goto out_unlock;
3772                 if (vma->anon_vma)
3773                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3774                                 vm_lock_anon_vma(mm, avc->anon_vma);
3775         }
3776
3777         return 0;
3778
3779 out_unlock:
3780         mm_drop_all_locks(mm);
3781         return -EINTR;
3782 }
3783
3784 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3785 {
3786         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3787                 /*
3788                  * The LSB of head.next can't change to 0 from under
3789                  * us because we hold the mm_all_locks_mutex.
3790                  *
3791                  * We must however clear the bitflag before unlocking
3792                  * the vma so the users using the anon_vma->rb_root will
3793                  * never see our bitflag.
3794                  *
3795                  * No need of atomic instructions here, head.next
3796                  * can't change from under us until we release the
3797                  * anon_vma->root->rwsem.
3798                  */
3799                 if (!__test_and_clear_bit(0, (unsigned long *)
3800                                           &anon_vma->root->rb_root.rb_root.rb_node))
3801                         BUG();
3802                 anon_vma_unlock_write(anon_vma);
3803         }
3804 }
3805
3806 static void vm_unlock_mapping(struct address_space *mapping)
3807 {
3808         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3809                 /*
3810                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3811                  * because we hold the mm_all_locks_mutex.
3812                  */
3813                 i_mmap_unlock_write(mapping);
3814                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3815                                         &mapping->flags))
3816                         BUG();
3817         }
3818 }
3819
3820 /*
3821  * The mmap_lock cannot be released by the caller until
3822  * mm_drop_all_locks() returns.
3823  */
3824 void mm_drop_all_locks(struct mm_struct *mm)
3825 {
3826         struct vm_area_struct *vma;
3827         struct anon_vma_chain *avc;
3828         MA_STATE(mas, &mm->mm_mt, 0, 0);
3829
3830         mmap_assert_write_locked(mm);
3831         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3832
3833         mas_for_each(&mas, vma, ULONG_MAX) {
3834                 if (vma->anon_vma)
3835                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3836                                 vm_unlock_anon_vma(avc->anon_vma);
3837                 if (vma->vm_file && vma->vm_file->f_mapping)
3838                         vm_unlock_mapping(vma->vm_file->f_mapping);
3839         }
3840
3841         mutex_unlock(&mm_all_locks_mutex);
3842 }
3843
3844 /*
3845  * initialise the percpu counter for VM
3846  */
3847 void __init mmap_init(void)
3848 {
3849         int ret;
3850
3851         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3852         VM_BUG_ON(ret);
3853 }
3854
3855 /*
3856  * Initialise sysctl_user_reserve_kbytes.
3857  *
3858  * This is intended to prevent a user from starting a single memory hogging
3859  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3860  * mode.
3861  *
3862  * The default value is min(3% of free memory, 128MB)
3863  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3864  */
3865 static int init_user_reserve(void)
3866 {
3867         unsigned long free_kbytes;
3868
3869         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3870
3871         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3872         return 0;
3873 }
3874 subsys_initcall(init_user_reserve);
3875
3876 /*
3877  * Initialise sysctl_admin_reserve_kbytes.
3878  *
3879  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3880  * to log in and kill a memory hogging process.
3881  *
3882  * Systems with more than 256MB will reserve 8MB, enough to recover
3883  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3884  * only reserve 3% of free pages by default.
3885  */
3886 static int init_admin_reserve(void)
3887 {
3888         unsigned long free_kbytes;
3889
3890         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3891
3892         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3893         return 0;
3894 }
3895 subsys_initcall(init_admin_reserve);
3896
3897 /*
3898  * Reinititalise user and admin reserves if memory is added or removed.
3899  *
3900  * The default user reserve max is 128MB, and the default max for the
3901  * admin reserve is 8MB. These are usually, but not always, enough to
3902  * enable recovery from a memory hogging process using login/sshd, a shell,
3903  * and tools like top. It may make sense to increase or even disable the
3904  * reserve depending on the existence of swap or variations in the recovery
3905  * tools. So, the admin may have changed them.
3906  *
3907  * If memory is added and the reserves have been eliminated or increased above
3908  * the default max, then we'll trust the admin.
3909  *
3910  * If memory is removed and there isn't enough free memory, then we
3911  * need to reset the reserves.
3912  *
3913  * Otherwise keep the reserve set by the admin.
3914  */
3915 static int reserve_mem_notifier(struct notifier_block *nb,
3916                              unsigned long action, void *data)
3917 {
3918         unsigned long tmp, free_kbytes;
3919
3920         switch (action) {
3921         case MEM_ONLINE:
3922                 /* Default max is 128MB. Leave alone if modified by operator. */
3923                 tmp = sysctl_user_reserve_kbytes;
3924                 if (0 < tmp && tmp < (1UL << 17))
3925                         init_user_reserve();
3926
3927                 /* Default max is 8MB.  Leave alone if modified by operator. */
3928                 tmp = sysctl_admin_reserve_kbytes;
3929                 if (0 < tmp && tmp < (1UL << 13))
3930                         init_admin_reserve();
3931
3932                 break;
3933         case MEM_OFFLINE:
3934                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3935
3936                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3937                         init_user_reserve();
3938                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3939                                 sysctl_user_reserve_kbytes);
3940                 }
3941
3942                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3943                         init_admin_reserve();
3944                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3945                                 sysctl_admin_reserve_kbytes);
3946                 }
3947                 break;
3948         default:
3949                 break;
3950         }
3951         return NOTIFY_OK;
3952 }
3953
3954 static int __meminit init_reserve_notifier(void)
3955 {
3956         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3957                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3958
3959         return 0;
3960 }
3961 subsys_initcall(init_reserve_notifier);