1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
100 pgprot_t protection_map[16] __ro_after_init = {
101 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
102 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
112 pgprot_t vm_get_page_prot(unsigned long vm_flags)
114 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
115 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
116 pgprot_val(arch_vm_get_page_prot(vm_flags)));
118 return arch_filter_pgprot(ret);
120 EXPORT_SYMBOL(vm_get_page_prot);
122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
124 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
128 void vma_set_page_prot(struct vm_area_struct *vma)
130 unsigned long vm_flags = vma->vm_flags;
131 pgprot_t vm_page_prot;
133 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
134 if (vma_wants_writenotify(vma, vm_page_prot)) {
135 vm_flags &= ~VM_SHARED;
136 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
138 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
139 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 * Requires inode->i_mapping->i_mmap_rwsem
145 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
146 struct file *file, struct address_space *mapping)
148 if (vma->vm_flags & VM_DENYWRITE)
149 atomic_inc(&file_inode(file)->i_writecount);
150 if (vma->vm_flags & VM_SHARED)
151 mapping_unmap_writable(mapping);
153 flush_dcache_mmap_lock(mapping);
154 vma_interval_tree_remove(vma, &mapping->i_mmap);
155 flush_dcache_mmap_unlock(mapping);
159 * Unlink a file-based vm structure from its interval tree, to hide
160 * vma from rmap and vmtruncate before freeing its page tables.
162 void unlink_file_vma(struct vm_area_struct *vma)
164 struct file *file = vma->vm_file;
167 struct address_space *mapping = file->f_mapping;
168 i_mmap_lock_write(mapping);
169 __remove_shared_vm_struct(vma, file, mapping);
170 i_mmap_unlock_write(mapping);
175 * Close a vm structure and free it, returning the next.
177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 struct vm_area_struct *next = vma->vm_next;
182 if (vma->vm_ops && vma->vm_ops->close)
183 vma->vm_ops->close(vma);
186 mpol_put(vma_policy(vma));
191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
192 struct list_head *uf);
193 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 unsigned long retval;
196 unsigned long newbrk, oldbrk, origbrk;
197 struct mm_struct *mm = current->mm;
198 struct vm_area_struct *next;
199 unsigned long min_brk;
201 bool downgraded = false;
204 if (down_write_killable(&mm->mmap_sem))
209 #ifdef CONFIG_COMPAT_BRK
211 * CONFIG_COMPAT_BRK can still be overridden by setting
212 * randomize_va_space to 2, which will still cause mm->start_brk
213 * to be arbitrarily shifted
215 if (current->brk_randomized)
216 min_brk = mm->start_brk;
218 min_brk = mm->end_data;
220 min_brk = mm->start_brk;
226 * Check against rlimit here. If this check is done later after the test
227 * of oldbrk with newbrk then it can escape the test and let the data
228 * segment grow beyond its set limit the in case where the limit is
229 * not page aligned -Ram Gupta
231 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
232 mm->end_data, mm->start_data))
235 newbrk = PAGE_ALIGN(brk);
236 oldbrk = PAGE_ALIGN(mm->brk);
237 if (oldbrk == newbrk) {
243 * Always allow shrinking brk.
244 * __do_munmap() may downgrade mmap_sem to read.
246 if (brk <= mm->brk) {
250 * mm->brk must to be protected by write mmap_sem so update it
251 * before downgrading mmap_sem. When __do_munmap() fails,
252 * mm->brk will be restored from origbrk.
255 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
259 } else if (ret == 1) {
265 /* Check against existing mmap mappings. */
266 next = find_vma(mm, oldbrk);
267 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 /* Ok, looks good - let it rip. */
271 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
276 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
278 up_read(&mm->mmap_sem);
280 up_write(&mm->mmap_sem);
281 userfaultfd_unmap_complete(mm, &uf);
283 mm_populate(oldbrk, newbrk - oldbrk);
288 up_write(&mm->mmap_sem);
292 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
294 unsigned long max, prev_end, subtree_gap;
297 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
298 * allow two stack_guard_gaps between them here, and when choosing
299 * an unmapped area; whereas when expanding we only require one.
300 * That's a little inconsistent, but keeps the code here simpler.
302 max = vm_start_gap(vma);
304 prev_end = vm_end_gap(vma->vm_prev);
310 if (vma->vm_rb.rb_left) {
311 subtree_gap = rb_entry(vma->vm_rb.rb_left,
312 struct vm_area_struct, vm_rb)->rb_subtree_gap;
313 if (subtree_gap > max)
316 if (vma->vm_rb.rb_right) {
317 subtree_gap = rb_entry(vma->vm_rb.rb_right,
318 struct vm_area_struct, vm_rb)->rb_subtree_gap;
319 if (subtree_gap > max)
325 #ifdef CONFIG_DEBUG_VM_RB
326 static int browse_rb(struct mm_struct *mm)
328 struct rb_root *root = &mm->mm_rb;
329 int i = 0, j, bug = 0;
330 struct rb_node *nd, *pn = NULL;
331 unsigned long prev = 0, pend = 0;
333 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
334 struct vm_area_struct *vma;
335 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
336 if (vma->vm_start < prev) {
337 pr_emerg("vm_start %lx < prev %lx\n",
338 vma->vm_start, prev);
341 if (vma->vm_start < pend) {
342 pr_emerg("vm_start %lx < pend %lx\n",
343 vma->vm_start, pend);
346 if (vma->vm_start > vma->vm_end) {
347 pr_emerg("vm_start %lx > vm_end %lx\n",
348 vma->vm_start, vma->vm_end);
351 spin_lock(&mm->page_table_lock);
352 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
353 pr_emerg("free gap %lx, correct %lx\n",
355 vma_compute_subtree_gap(vma));
358 spin_unlock(&mm->page_table_lock);
361 prev = vma->vm_start;
365 for (nd = pn; nd; nd = rb_prev(nd))
368 pr_emerg("backwards %d, forwards %d\n", j, i);
374 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
379 struct vm_area_struct *vma;
380 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
381 VM_BUG_ON_VMA(vma != ignore &&
382 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
387 static void validate_mm(struct mm_struct *mm)
391 unsigned long highest_address = 0;
392 struct vm_area_struct *vma = mm->mmap;
395 struct anon_vma *anon_vma = vma->anon_vma;
396 struct anon_vma_chain *avc;
399 anon_vma_lock_read(anon_vma);
400 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
401 anon_vma_interval_tree_verify(avc);
402 anon_vma_unlock_read(anon_vma);
405 highest_address = vm_end_gap(vma);
409 if (i != mm->map_count) {
410 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
413 if (highest_address != mm->highest_vm_end) {
414 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
415 mm->highest_vm_end, highest_address);
419 if (i != mm->map_count) {
421 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
424 VM_BUG_ON_MM(bug, mm);
427 #define validate_mm_rb(root, ignore) do { } while (0)
428 #define validate_mm(mm) do { } while (0)
431 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
432 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
435 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
436 * vma->vm_prev->vm_end values changed, without modifying the vma's position
439 static void vma_gap_update(struct vm_area_struct *vma)
442 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
443 * function that does exactly what we want.
445 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
448 static inline void vma_rb_insert(struct vm_area_struct *vma,
449 struct rb_root *root)
451 /* All rb_subtree_gap values must be consistent prior to insertion */
452 validate_mm_rb(root, NULL);
454 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
457 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
460 * Note rb_erase_augmented is a fairly large inline function,
461 * so make sure we instantiate it only once with our desired
462 * augmented rbtree callbacks.
464 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
467 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
468 struct rb_root *root,
469 struct vm_area_struct *ignore)
472 * All rb_subtree_gap values must be consistent prior to erase,
473 * with the possible exception of the "next" vma being erased if
474 * next->vm_start was reduced.
476 validate_mm_rb(root, ignore);
478 __vma_rb_erase(vma, root);
481 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
482 struct rb_root *root)
485 * All rb_subtree_gap values must be consistent prior to erase,
486 * with the possible exception of the vma being erased.
488 validate_mm_rb(root, vma);
490 __vma_rb_erase(vma, root);
494 * vma has some anon_vma assigned, and is already inserted on that
495 * anon_vma's interval trees.
497 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
498 * vma must be removed from the anon_vma's interval trees using
499 * anon_vma_interval_tree_pre_update_vma().
501 * After the update, the vma will be reinserted using
502 * anon_vma_interval_tree_post_update_vma().
504 * The entire update must be protected by exclusive mmap_sem and by
505 * the root anon_vma's mutex.
508 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
510 struct anon_vma_chain *avc;
512 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
513 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
517 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
519 struct anon_vma_chain *avc;
521 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
526 unsigned long end, struct vm_area_struct **pprev,
527 struct rb_node ***rb_link, struct rb_node **rb_parent)
529 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
531 __rb_link = &mm->mm_rb.rb_node;
532 rb_prev = __rb_parent = NULL;
535 struct vm_area_struct *vma_tmp;
537 __rb_parent = *__rb_link;
538 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
540 if (vma_tmp->vm_end > addr) {
541 /* Fail if an existing vma overlaps the area */
542 if (vma_tmp->vm_start < end)
544 __rb_link = &__rb_parent->rb_left;
546 rb_prev = __rb_parent;
547 __rb_link = &__rb_parent->rb_right;
553 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
554 *rb_link = __rb_link;
555 *rb_parent = __rb_parent;
559 static unsigned long count_vma_pages_range(struct mm_struct *mm,
560 unsigned long addr, unsigned long end)
562 unsigned long nr_pages = 0;
563 struct vm_area_struct *vma;
565 /* Find first overlaping mapping */
566 vma = find_vma_intersection(mm, addr, end);
570 nr_pages = (min(end, vma->vm_end) -
571 max(addr, vma->vm_start)) >> PAGE_SHIFT;
573 /* Iterate over the rest of the overlaps */
574 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
575 unsigned long overlap_len;
577 if (vma->vm_start > end)
580 overlap_len = min(end, vma->vm_end) - vma->vm_start;
581 nr_pages += overlap_len >> PAGE_SHIFT;
587 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
588 struct rb_node **rb_link, struct rb_node *rb_parent)
590 /* Update tracking information for the gap following the new vma. */
592 vma_gap_update(vma->vm_next);
594 mm->highest_vm_end = vm_end_gap(vma);
597 * vma->vm_prev wasn't known when we followed the rbtree to find the
598 * correct insertion point for that vma. As a result, we could not
599 * update the vma vm_rb parents rb_subtree_gap values on the way down.
600 * So, we first insert the vma with a zero rb_subtree_gap value
601 * (to be consistent with what we did on the way down), and then
602 * immediately update the gap to the correct value. Finally we
603 * rebalance the rbtree after all augmented values have been set.
605 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
606 vma->rb_subtree_gap = 0;
608 vma_rb_insert(vma, &mm->mm_rb);
611 static void __vma_link_file(struct vm_area_struct *vma)
617 struct address_space *mapping = file->f_mapping;
619 if (vma->vm_flags & VM_DENYWRITE)
620 atomic_dec(&file_inode(file)->i_writecount);
621 if (vma->vm_flags & VM_SHARED)
622 atomic_inc(&mapping->i_mmap_writable);
624 flush_dcache_mmap_lock(mapping);
625 vma_interval_tree_insert(vma, &mapping->i_mmap);
626 flush_dcache_mmap_unlock(mapping);
631 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
632 struct vm_area_struct *prev, struct rb_node **rb_link,
633 struct rb_node *rb_parent)
635 __vma_link_list(mm, vma, prev, rb_parent);
636 __vma_link_rb(mm, vma, rb_link, rb_parent);
639 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
640 struct vm_area_struct *prev, struct rb_node **rb_link,
641 struct rb_node *rb_parent)
643 struct address_space *mapping = NULL;
646 mapping = vma->vm_file->f_mapping;
647 i_mmap_lock_write(mapping);
650 __vma_link(mm, vma, prev, rb_link, rb_parent);
651 __vma_link_file(vma);
654 i_mmap_unlock_write(mapping);
661 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
662 * mm's list and rbtree. It has already been inserted into the interval tree.
664 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
666 struct vm_area_struct *prev;
667 struct rb_node **rb_link, *rb_parent;
669 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
670 &prev, &rb_link, &rb_parent))
672 __vma_link(mm, vma, prev, rb_link, rb_parent);
676 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
677 struct vm_area_struct *vma,
678 struct vm_area_struct *prev,
680 struct vm_area_struct *ignore)
682 struct vm_area_struct *next;
684 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
687 prev->vm_next = next;
691 prev->vm_next = next;
696 next->vm_prev = prev;
699 vmacache_invalidate(mm);
702 static inline void __vma_unlink_prev(struct mm_struct *mm,
703 struct vm_area_struct *vma,
704 struct vm_area_struct *prev)
706 __vma_unlink_common(mm, vma, prev, true, vma);
710 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
711 * is already present in an i_mmap tree without adjusting the tree.
712 * The following helper function should be used when such adjustments
713 * are necessary. The "insert" vma (if any) is to be inserted
714 * before we drop the necessary locks.
716 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
717 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
718 struct vm_area_struct *expand)
720 struct mm_struct *mm = vma->vm_mm;
721 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
722 struct address_space *mapping = NULL;
723 struct rb_root_cached *root = NULL;
724 struct anon_vma *anon_vma = NULL;
725 struct file *file = vma->vm_file;
726 bool start_changed = false, end_changed = false;
727 long adjust_next = 0;
730 if (next && !insert) {
731 struct vm_area_struct *exporter = NULL, *importer = NULL;
733 if (end >= next->vm_end) {
735 * vma expands, overlapping all the next, and
736 * perhaps the one after too (mprotect case 6).
737 * The only other cases that gets here are
738 * case 1, case 7 and case 8.
740 if (next == expand) {
742 * The only case where we don't expand "vma"
743 * and we expand "next" instead is case 8.
745 VM_WARN_ON(end != next->vm_end);
747 * remove_next == 3 means we're
748 * removing "vma" and that to do so we
749 * swapped "vma" and "next".
752 VM_WARN_ON(file != next->vm_file);
755 VM_WARN_ON(expand != vma);
757 * case 1, 6, 7, remove_next == 2 is case 6,
758 * remove_next == 1 is case 1 or 7.
760 remove_next = 1 + (end > next->vm_end);
761 VM_WARN_ON(remove_next == 2 &&
762 end != next->vm_next->vm_end);
763 VM_WARN_ON(remove_next == 1 &&
764 end != next->vm_end);
765 /* trim end to next, for case 6 first pass */
773 * If next doesn't have anon_vma, import from vma after
774 * next, if the vma overlaps with it.
776 if (remove_next == 2 && !next->anon_vma)
777 exporter = next->vm_next;
779 } else if (end > next->vm_start) {
781 * vma expands, overlapping part of the next:
782 * mprotect case 5 shifting the boundary up.
784 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
787 VM_WARN_ON(expand != importer);
788 } else if (end < vma->vm_end) {
790 * vma shrinks, and !insert tells it's not
791 * split_vma inserting another: so it must be
792 * mprotect case 4 shifting the boundary down.
794 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
797 VM_WARN_ON(expand != importer);
801 * Easily overlooked: when mprotect shifts the boundary,
802 * make sure the expanding vma has anon_vma set if the
803 * shrinking vma had, to cover any anon pages imported.
805 if (exporter && exporter->anon_vma && !importer->anon_vma) {
808 importer->anon_vma = exporter->anon_vma;
809 error = anon_vma_clone(importer, exporter);
815 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
818 mapping = file->f_mapping;
819 root = &mapping->i_mmap;
820 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
823 uprobe_munmap(next, next->vm_start, next->vm_end);
825 i_mmap_lock_write(mapping);
828 * Put into interval tree now, so instantiated pages
829 * are visible to arm/parisc __flush_dcache_page
830 * throughout; but we cannot insert into address
831 * space until vma start or end is updated.
833 __vma_link_file(insert);
837 anon_vma = vma->anon_vma;
838 if (!anon_vma && adjust_next)
839 anon_vma = next->anon_vma;
841 VM_WARN_ON(adjust_next && next->anon_vma &&
842 anon_vma != next->anon_vma);
843 anon_vma_lock_write(anon_vma);
844 anon_vma_interval_tree_pre_update_vma(vma);
846 anon_vma_interval_tree_pre_update_vma(next);
850 flush_dcache_mmap_lock(mapping);
851 vma_interval_tree_remove(vma, root);
853 vma_interval_tree_remove(next, root);
856 if (start != vma->vm_start) {
857 vma->vm_start = start;
858 start_changed = true;
860 if (end != vma->vm_end) {
864 vma->vm_pgoff = pgoff;
866 next->vm_start += adjust_next << PAGE_SHIFT;
867 next->vm_pgoff += adjust_next;
872 vma_interval_tree_insert(next, root);
873 vma_interval_tree_insert(vma, root);
874 flush_dcache_mmap_unlock(mapping);
879 * vma_merge has merged next into vma, and needs
880 * us to remove next before dropping the locks.
882 if (remove_next != 3)
883 __vma_unlink_prev(mm, next, vma);
886 * vma is not before next if they've been
889 * pre-swap() next->vm_start was reduced so
890 * tell validate_mm_rb to ignore pre-swap()
891 * "next" (which is stored in post-swap()
894 __vma_unlink_common(mm, next, NULL, false, vma);
896 __remove_shared_vm_struct(next, file, mapping);
899 * split_vma has split insert from vma, and needs
900 * us to insert it before dropping the locks
901 * (it may either follow vma or precede it).
903 __insert_vm_struct(mm, insert);
909 mm->highest_vm_end = vm_end_gap(vma);
910 else if (!adjust_next)
911 vma_gap_update(next);
916 anon_vma_interval_tree_post_update_vma(vma);
918 anon_vma_interval_tree_post_update_vma(next);
919 anon_vma_unlock_write(anon_vma);
922 i_mmap_unlock_write(mapping);
933 uprobe_munmap(next, next->vm_start, next->vm_end);
937 anon_vma_merge(vma, next);
939 mpol_put(vma_policy(next));
942 * In mprotect's case 6 (see comments on vma_merge),
943 * we must remove another next too. It would clutter
944 * up the code too much to do both in one go.
946 if (remove_next != 3) {
948 * If "next" was removed and vma->vm_end was
949 * expanded (up) over it, in turn
950 * "next->vm_prev->vm_end" changed and the
951 * "vma->vm_next" gap must be updated.
956 * For the scope of the comment "next" and
957 * "vma" considered pre-swap(): if "vma" was
958 * removed, next->vm_start was expanded (down)
959 * over it and the "next" gap must be updated.
960 * Because of the swap() the post-swap() "vma"
961 * actually points to pre-swap() "next"
962 * (post-swap() "next" as opposed is now a
967 if (remove_next == 2) {
973 vma_gap_update(next);
976 * If remove_next == 2 we obviously can't
979 * If remove_next == 3 we can't reach this
980 * path because pre-swap() next is always not
981 * NULL. pre-swap() "next" is not being
982 * removed and its next->vm_end is not altered
983 * (and furthermore "end" already matches
984 * next->vm_end in remove_next == 3).
986 * We reach this only in the remove_next == 1
987 * case if the "next" vma that was removed was
988 * the highest vma of the mm. However in such
989 * case next->vm_end == "end" and the extended
990 * "vma" has vma->vm_end == next->vm_end so
991 * mm->highest_vm_end doesn't need any update
992 * in remove_next == 1 case.
994 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1006 * If the vma has a ->close operation then the driver probably needs to release
1007 * per-vma resources, so we don't attempt to merge those.
1009 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1010 struct file *file, unsigned long vm_flags,
1011 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1014 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1015 * match the flags but dirty bit -- the caller should mark
1016 * merged VMA as dirty. If dirty bit won't be excluded from
1017 * comparison, we increase pressure on the memory system forcing
1018 * the kernel to generate new VMAs when old one could be
1021 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1023 if (vma->vm_file != file)
1025 if (vma->vm_ops && vma->vm_ops->close)
1027 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1032 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1033 struct anon_vma *anon_vma2,
1034 struct vm_area_struct *vma)
1037 * The list_is_singular() test is to avoid merging VMA cloned from
1038 * parents. This can improve scalability caused by anon_vma lock.
1040 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1041 list_is_singular(&vma->anon_vma_chain)))
1043 return anon_vma1 == anon_vma2;
1047 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1048 * in front of (at a lower virtual address and file offset than) the vma.
1050 * We cannot merge two vmas if they have differently assigned (non-NULL)
1051 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1053 * We don't check here for the merged mmap wrapping around the end of pagecache
1054 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1055 * wrap, nor mmaps which cover the final page at index -1UL.
1058 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1059 struct anon_vma *anon_vma, struct file *file,
1061 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1063 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065 if (vma->vm_pgoff == vm_pgoff)
1072 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1073 * beyond (at a higher virtual address and file offset than) the vma.
1075 * We cannot merge two vmas if they have differently assigned (non-NULL)
1076 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1079 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1080 struct anon_vma *anon_vma, struct file *file,
1082 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1084 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1085 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1087 vm_pglen = vma_pages(vma);
1088 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1095 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1096 * whether that can be merged with its predecessor or its successor.
1097 * Or both (it neatly fills a hole).
1099 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1100 * certain not to be mapped by the time vma_merge is called; but when
1101 * called for mprotect, it is certain to be already mapped (either at
1102 * an offset within prev, or at the start of next), and the flags of
1103 * this area are about to be changed to vm_flags - and the no-change
1104 * case has already been eliminated.
1106 * The following mprotect cases have to be considered, where AAAA is
1107 * the area passed down from mprotect_fixup, never extending beyond one
1108 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1110 * AAAA AAAA AAAA AAAA
1111 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1112 * cannot merge might become might become might become
1113 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1114 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1115 * mremap move: PPPPXXXXXXXX 8
1117 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1118 * might become case 1 below case 2 below case 3 below
1120 * It is important for case 8 that the vma NNNN overlapping the
1121 * region AAAA is never going to extended over XXXX. Instead XXXX must
1122 * be extended in region AAAA and NNNN must be removed. This way in
1123 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1124 * rmap_locks, the properties of the merged vma will be already
1125 * correct for the whole merged range. Some of those properties like
1126 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1127 * be correct for the whole merged range immediately after the
1128 * rmap_locks are released. Otherwise if XXXX would be removed and
1129 * NNNN would be extended over the XXXX range, remove_migration_ptes
1130 * or other rmap walkers (if working on addresses beyond the "end"
1131 * parameter) may establish ptes with the wrong permissions of NNNN
1132 * instead of the right permissions of XXXX.
1134 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1135 struct vm_area_struct *prev, unsigned long addr,
1136 unsigned long end, unsigned long vm_flags,
1137 struct anon_vma *anon_vma, struct file *file,
1138 pgoff_t pgoff, struct mempolicy *policy,
1139 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1141 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1142 struct vm_area_struct *area, *next;
1146 * We later require that vma->vm_flags == vm_flags,
1147 * so this tests vma->vm_flags & VM_SPECIAL, too.
1149 if (vm_flags & VM_SPECIAL)
1153 next = prev->vm_next;
1157 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1158 next = next->vm_next;
1160 /* verify some invariant that must be enforced by the caller */
1161 VM_WARN_ON(prev && addr <= prev->vm_start);
1162 VM_WARN_ON(area && end > area->vm_end);
1163 VM_WARN_ON(addr >= end);
1166 * Can it merge with the predecessor?
1168 if (prev && prev->vm_end == addr &&
1169 mpol_equal(vma_policy(prev), policy) &&
1170 can_vma_merge_after(prev, vm_flags,
1171 anon_vma, file, pgoff,
1172 vm_userfaultfd_ctx)) {
1174 * OK, it can. Can we now merge in the successor as well?
1176 if (next && end == next->vm_start &&
1177 mpol_equal(policy, vma_policy(next)) &&
1178 can_vma_merge_before(next, vm_flags,
1181 vm_userfaultfd_ctx) &&
1182 is_mergeable_anon_vma(prev->anon_vma,
1183 next->anon_vma, NULL)) {
1185 err = __vma_adjust(prev, prev->vm_start,
1186 next->vm_end, prev->vm_pgoff, NULL,
1188 } else /* cases 2, 5, 7 */
1189 err = __vma_adjust(prev, prev->vm_start,
1190 end, prev->vm_pgoff, NULL, prev);
1193 khugepaged_enter_vma_merge(prev, vm_flags);
1198 * Can this new request be merged in front of next?
1200 if (next && end == next->vm_start &&
1201 mpol_equal(policy, vma_policy(next)) &&
1202 can_vma_merge_before(next, vm_flags,
1203 anon_vma, file, pgoff+pglen,
1204 vm_userfaultfd_ctx)) {
1205 if (prev && addr < prev->vm_end) /* case 4 */
1206 err = __vma_adjust(prev, prev->vm_start,
1207 addr, prev->vm_pgoff, NULL, next);
1208 else { /* cases 3, 8 */
1209 err = __vma_adjust(area, addr, next->vm_end,
1210 next->vm_pgoff - pglen, NULL, next);
1212 * In case 3 area is already equal to next and
1213 * this is a noop, but in case 8 "area" has
1214 * been removed and next was expanded over it.
1220 khugepaged_enter_vma_merge(area, vm_flags);
1228 * Rough compatbility check to quickly see if it's even worth looking
1229 * at sharing an anon_vma.
1231 * They need to have the same vm_file, and the flags can only differ
1232 * in things that mprotect may change.
1234 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1235 * we can merge the two vma's. For example, we refuse to merge a vma if
1236 * there is a vm_ops->close() function, because that indicates that the
1237 * driver is doing some kind of reference counting. But that doesn't
1238 * really matter for the anon_vma sharing case.
1240 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1242 return a->vm_end == b->vm_start &&
1243 mpol_equal(vma_policy(a), vma_policy(b)) &&
1244 a->vm_file == b->vm_file &&
1245 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1246 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1250 * Do some basic sanity checking to see if we can re-use the anon_vma
1251 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1252 * the same as 'old', the other will be the new one that is trying
1253 * to share the anon_vma.
1255 * NOTE! This runs with mm_sem held for reading, so it is possible that
1256 * the anon_vma of 'old' is concurrently in the process of being set up
1257 * by another page fault trying to merge _that_. But that's ok: if it
1258 * is being set up, that automatically means that it will be a singleton
1259 * acceptable for merging, so we can do all of this optimistically. But
1260 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1262 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1263 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1264 * is to return an anon_vma that is "complex" due to having gone through
1267 * We also make sure that the two vma's are compatible (adjacent,
1268 * and with the same memory policies). That's all stable, even with just
1269 * a read lock on the mm_sem.
1271 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1273 if (anon_vma_compatible(a, b)) {
1274 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1276 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1283 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1284 * neighbouring vmas for a suitable anon_vma, before it goes off
1285 * to allocate a new anon_vma. It checks because a repetitive
1286 * sequence of mprotects and faults may otherwise lead to distinct
1287 * anon_vmas being allocated, preventing vma merge in subsequent
1290 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1292 struct anon_vma *anon_vma;
1293 struct vm_area_struct *near;
1295 near = vma->vm_next;
1299 anon_vma = reusable_anon_vma(near, vma, near);
1303 near = vma->vm_prev;
1307 anon_vma = reusable_anon_vma(near, near, vma);
1312 * There's no absolute need to look only at touching neighbours:
1313 * we could search further afield for "compatible" anon_vmas.
1314 * But it would probably just be a waste of time searching,
1315 * or lead to too many vmas hanging off the same anon_vma.
1316 * We're trying to allow mprotect remerging later on,
1317 * not trying to minimize memory used for anon_vmas.
1323 * If a hint addr is less than mmap_min_addr change hint to be as
1324 * low as possible but still greater than mmap_min_addr
1326 static inline unsigned long round_hint_to_min(unsigned long hint)
1329 if (((void *)hint != NULL) &&
1330 (hint < mmap_min_addr))
1331 return PAGE_ALIGN(mmap_min_addr);
1335 static inline int mlock_future_check(struct mm_struct *mm,
1336 unsigned long flags,
1339 unsigned long locked, lock_limit;
1341 /* mlock MCL_FUTURE? */
1342 if (flags & VM_LOCKED) {
1343 locked = len >> PAGE_SHIFT;
1344 locked += mm->locked_vm;
1345 lock_limit = rlimit(RLIMIT_MEMLOCK);
1346 lock_limit >>= PAGE_SHIFT;
1347 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1353 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1355 if (S_ISREG(inode->i_mode))
1356 return MAX_LFS_FILESIZE;
1358 if (S_ISBLK(inode->i_mode))
1359 return MAX_LFS_FILESIZE;
1361 /* Special "we do even unsigned file positions" case */
1362 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1365 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1369 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1370 unsigned long pgoff, unsigned long len)
1372 u64 maxsize = file_mmap_size_max(file, inode);
1374 if (maxsize && len > maxsize)
1377 if (pgoff > maxsize >> PAGE_SHIFT)
1383 * The caller must hold down_write(¤t->mm->mmap_sem).
1385 unsigned long do_mmap(struct file *file, unsigned long addr,
1386 unsigned long len, unsigned long prot,
1387 unsigned long flags, vm_flags_t vm_flags,
1388 unsigned long pgoff, unsigned long *populate,
1389 struct list_head *uf)
1391 struct mm_struct *mm = current->mm;
1400 * Does the application expect PROT_READ to imply PROT_EXEC?
1402 * (the exception is when the underlying filesystem is noexec
1403 * mounted, in which case we dont add PROT_EXEC.)
1405 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1406 if (!(file && path_noexec(&file->f_path)))
1409 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1410 if (flags & MAP_FIXED_NOREPLACE)
1413 if (!(flags & MAP_FIXED))
1414 addr = round_hint_to_min(addr);
1416 /* Careful about overflows.. */
1417 len = PAGE_ALIGN(len);
1421 /* offset overflow? */
1422 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1425 /* Too many mappings? */
1426 if (mm->map_count > sysctl_max_map_count)
1429 /* Obtain the address to map to. we verify (or select) it and ensure
1430 * that it represents a valid section of the address space.
1432 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1433 if (offset_in_page(addr))
1436 if (flags & MAP_FIXED_NOREPLACE) {
1437 struct vm_area_struct *vma = find_vma(mm, addr);
1439 if (vma && vma->vm_start < addr + len)
1443 if (prot == PROT_EXEC) {
1444 pkey = execute_only_pkey(mm);
1449 /* Do simple checking here so the lower-level routines won't have
1450 * to. we assume access permissions have been handled by the open
1451 * of the memory object, so we don't do any here.
1453 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1454 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1456 if (flags & MAP_LOCKED)
1457 if (!can_do_mlock())
1460 if (mlock_future_check(mm, vm_flags, len))
1464 struct inode *inode = file_inode(file);
1465 unsigned long flags_mask;
1467 if (!file_mmap_ok(file, inode, pgoff, len))
1470 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1472 switch (flags & MAP_TYPE) {
1475 * Force use of MAP_SHARED_VALIDATE with non-legacy
1476 * flags. E.g. MAP_SYNC is dangerous to use with
1477 * MAP_SHARED as you don't know which consistency model
1478 * you will get. We silently ignore unsupported flags
1479 * with MAP_SHARED to preserve backward compatibility.
1481 flags &= LEGACY_MAP_MASK;
1483 case MAP_SHARED_VALIDATE:
1484 if (flags & ~flags_mask)
1486 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1490 * Make sure we don't allow writing to an append-only
1493 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1497 * Make sure there are no mandatory locks on the file.
1499 if (locks_verify_locked(file))
1502 vm_flags |= VM_SHARED | VM_MAYSHARE;
1503 if (!(file->f_mode & FMODE_WRITE))
1504 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1508 if (!(file->f_mode & FMODE_READ))
1510 if (path_noexec(&file->f_path)) {
1511 if (vm_flags & VM_EXEC)
1513 vm_flags &= ~VM_MAYEXEC;
1516 if (!file->f_op->mmap)
1518 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1526 switch (flags & MAP_TYPE) {
1528 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1534 vm_flags |= VM_SHARED | VM_MAYSHARE;
1538 * Set pgoff according to addr for anon_vma.
1540 pgoff = addr >> PAGE_SHIFT;
1548 * Set 'VM_NORESERVE' if we should not account for the
1549 * memory use of this mapping.
1551 if (flags & MAP_NORESERVE) {
1552 /* We honor MAP_NORESERVE if allowed to overcommit */
1553 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1554 vm_flags |= VM_NORESERVE;
1556 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1557 if (file && is_file_hugepages(file))
1558 vm_flags |= VM_NORESERVE;
1561 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1562 if (!IS_ERR_VALUE(addr) &&
1563 ((vm_flags & VM_LOCKED) ||
1564 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1569 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1570 unsigned long prot, unsigned long flags,
1571 unsigned long fd, unsigned long pgoff)
1573 struct file *file = NULL;
1574 unsigned long retval;
1576 if (!(flags & MAP_ANONYMOUS)) {
1577 audit_mmap_fd(fd, flags);
1581 if (is_file_hugepages(file))
1582 len = ALIGN(len, huge_page_size(hstate_file(file)));
1584 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1586 } else if (flags & MAP_HUGETLB) {
1587 struct user_struct *user = NULL;
1590 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1594 len = ALIGN(len, huge_page_size(hs));
1596 * VM_NORESERVE is used because the reservations will be
1597 * taken when vm_ops->mmap() is called
1598 * A dummy user value is used because we are not locking
1599 * memory so no accounting is necessary
1601 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1603 &user, HUGETLB_ANONHUGE_INODE,
1604 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1606 return PTR_ERR(file);
1609 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1611 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1618 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1619 unsigned long, prot, unsigned long, flags,
1620 unsigned long, fd, unsigned long, pgoff)
1622 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1625 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1626 struct mmap_arg_struct {
1630 unsigned long flags;
1632 unsigned long offset;
1635 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1637 struct mmap_arg_struct a;
1639 if (copy_from_user(&a, arg, sizeof(a)))
1641 if (offset_in_page(a.offset))
1644 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1645 a.offset >> PAGE_SHIFT);
1647 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1650 * Some shared mappings will want the pages marked read-only
1651 * to track write events. If so, we'll downgrade vm_page_prot
1652 * to the private version (using protection_map[] without the
1655 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1657 vm_flags_t vm_flags = vma->vm_flags;
1658 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1660 /* If it was private or non-writable, the write bit is already clear */
1661 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1664 /* The backer wishes to know when pages are first written to? */
1665 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1668 /* The open routine did something to the protections that pgprot_modify
1669 * won't preserve? */
1670 if (pgprot_val(vm_page_prot) !=
1671 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1674 /* Do we need to track softdirty? */
1675 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1678 /* Specialty mapping? */
1679 if (vm_flags & VM_PFNMAP)
1682 /* Can the mapping track the dirty pages? */
1683 return vma->vm_file && vma->vm_file->f_mapping &&
1684 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1688 * We account for memory if it's a private writeable mapping,
1689 * not hugepages and VM_NORESERVE wasn't set.
1691 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1694 * hugetlb has its own accounting separate from the core VM
1695 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1697 if (file && is_file_hugepages(file))
1700 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1703 unsigned long mmap_region(struct file *file, unsigned long addr,
1704 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1705 struct list_head *uf)
1707 struct mm_struct *mm = current->mm;
1708 struct vm_area_struct *vma, *prev;
1710 struct rb_node **rb_link, *rb_parent;
1711 unsigned long charged = 0;
1713 /* Check against address space limit. */
1714 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1715 unsigned long nr_pages;
1718 * MAP_FIXED may remove pages of mappings that intersects with
1719 * requested mapping. Account for the pages it would unmap.
1721 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1723 if (!may_expand_vm(mm, vm_flags,
1724 (len >> PAGE_SHIFT) - nr_pages))
1728 /* Clear old maps */
1729 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1731 if (do_munmap(mm, addr, len, uf))
1736 * Private writable mapping: check memory availability
1738 if (accountable_mapping(file, vm_flags)) {
1739 charged = len >> PAGE_SHIFT;
1740 if (security_vm_enough_memory_mm(mm, charged))
1742 vm_flags |= VM_ACCOUNT;
1746 * Can we just expand an old mapping?
1748 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1749 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1754 * Determine the object being mapped and call the appropriate
1755 * specific mapper. the address has already been validated, but
1756 * not unmapped, but the maps are removed from the list.
1758 vma = vm_area_alloc(mm);
1764 vma->vm_start = addr;
1765 vma->vm_end = addr + len;
1766 vma->vm_flags = vm_flags;
1767 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1768 vma->vm_pgoff = pgoff;
1771 if (vm_flags & VM_DENYWRITE) {
1772 error = deny_write_access(file);
1776 if (vm_flags & VM_SHARED) {
1777 error = mapping_map_writable(file->f_mapping);
1779 goto allow_write_and_free_vma;
1782 /* ->mmap() can change vma->vm_file, but must guarantee that
1783 * vma_link() below can deny write-access if VM_DENYWRITE is set
1784 * and map writably if VM_SHARED is set. This usually means the
1785 * new file must not have been exposed to user-space, yet.
1787 vma->vm_file = get_file(file);
1788 error = call_mmap(file, vma);
1790 goto unmap_and_free_vma;
1792 /* Can addr have changed??
1794 * Answer: Yes, several device drivers can do it in their
1795 * f_op->mmap method. -DaveM
1796 * Bug: If addr is changed, prev, rb_link, rb_parent should
1797 * be updated for vma_link()
1799 WARN_ON_ONCE(addr != vma->vm_start);
1801 addr = vma->vm_start;
1802 vm_flags = vma->vm_flags;
1803 } else if (vm_flags & VM_SHARED) {
1804 error = shmem_zero_setup(vma);
1808 vma_set_anonymous(vma);
1811 vma_link(mm, vma, prev, rb_link, rb_parent);
1812 /* Once vma denies write, undo our temporary denial count */
1814 if (vm_flags & VM_SHARED)
1815 mapping_unmap_writable(file->f_mapping);
1816 if (vm_flags & VM_DENYWRITE)
1817 allow_write_access(file);
1819 file = vma->vm_file;
1821 perf_event_mmap(vma);
1823 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1824 if (vm_flags & VM_LOCKED) {
1825 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1826 is_vm_hugetlb_page(vma) ||
1827 vma == get_gate_vma(current->mm))
1828 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1830 mm->locked_vm += (len >> PAGE_SHIFT);
1837 * New (or expanded) vma always get soft dirty status.
1838 * Otherwise user-space soft-dirty page tracker won't
1839 * be able to distinguish situation when vma area unmapped,
1840 * then new mapped in-place (which must be aimed as
1841 * a completely new data area).
1843 vma->vm_flags |= VM_SOFTDIRTY;
1845 vma_set_page_prot(vma);
1850 vma->vm_file = NULL;
1853 /* Undo any partial mapping done by a device driver. */
1854 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1856 if (vm_flags & VM_SHARED)
1857 mapping_unmap_writable(file->f_mapping);
1858 allow_write_and_free_vma:
1859 if (vm_flags & VM_DENYWRITE)
1860 allow_write_access(file);
1865 vm_unacct_memory(charged);
1869 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1872 * We implement the search by looking for an rbtree node that
1873 * immediately follows a suitable gap. That is,
1874 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1875 * - gap_end = vma->vm_start >= info->low_limit + length;
1876 * - gap_end - gap_start >= length
1879 struct mm_struct *mm = current->mm;
1880 struct vm_area_struct *vma;
1881 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1883 /* Adjust search length to account for worst case alignment overhead */
1884 length = info->length + info->align_mask;
1885 if (length < info->length)
1888 /* Adjust search limits by the desired length */
1889 if (info->high_limit < length)
1891 high_limit = info->high_limit - length;
1893 if (info->low_limit > high_limit)
1895 low_limit = info->low_limit + length;
1897 /* Check if rbtree root looks promising */
1898 if (RB_EMPTY_ROOT(&mm->mm_rb))
1900 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1901 if (vma->rb_subtree_gap < length)
1905 /* Visit left subtree if it looks promising */
1906 gap_end = vm_start_gap(vma);
1907 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1908 struct vm_area_struct *left =
1909 rb_entry(vma->vm_rb.rb_left,
1910 struct vm_area_struct, vm_rb);
1911 if (left->rb_subtree_gap >= length) {
1917 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1919 /* Check if current node has a suitable gap */
1920 if (gap_start > high_limit)
1922 if (gap_end >= low_limit &&
1923 gap_end > gap_start && gap_end - gap_start >= length)
1926 /* Visit right subtree if it looks promising */
1927 if (vma->vm_rb.rb_right) {
1928 struct vm_area_struct *right =
1929 rb_entry(vma->vm_rb.rb_right,
1930 struct vm_area_struct, vm_rb);
1931 if (right->rb_subtree_gap >= length) {
1937 /* Go back up the rbtree to find next candidate node */
1939 struct rb_node *prev = &vma->vm_rb;
1940 if (!rb_parent(prev))
1942 vma = rb_entry(rb_parent(prev),
1943 struct vm_area_struct, vm_rb);
1944 if (prev == vma->vm_rb.rb_left) {
1945 gap_start = vm_end_gap(vma->vm_prev);
1946 gap_end = vm_start_gap(vma);
1953 /* Check highest gap, which does not precede any rbtree node */
1954 gap_start = mm->highest_vm_end;
1955 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1956 if (gap_start > high_limit)
1960 /* We found a suitable gap. Clip it with the original low_limit. */
1961 if (gap_start < info->low_limit)
1962 gap_start = info->low_limit;
1964 /* Adjust gap address to the desired alignment */
1965 gap_start += (info->align_offset - gap_start) & info->align_mask;
1967 VM_BUG_ON(gap_start + info->length > info->high_limit);
1968 VM_BUG_ON(gap_start + info->length > gap_end);
1972 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1974 struct mm_struct *mm = current->mm;
1975 struct vm_area_struct *vma;
1976 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1978 /* Adjust search length to account for worst case alignment overhead */
1979 length = info->length + info->align_mask;
1980 if (length < info->length)
1984 * Adjust search limits by the desired length.
1985 * See implementation comment at top of unmapped_area().
1987 gap_end = info->high_limit;
1988 if (gap_end < length)
1990 high_limit = gap_end - length;
1992 if (info->low_limit > high_limit)
1994 low_limit = info->low_limit + length;
1996 /* Check highest gap, which does not precede any rbtree node */
1997 gap_start = mm->highest_vm_end;
1998 if (gap_start <= high_limit)
2001 /* Check if rbtree root looks promising */
2002 if (RB_EMPTY_ROOT(&mm->mm_rb))
2004 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2005 if (vma->rb_subtree_gap < length)
2009 /* Visit right subtree if it looks promising */
2010 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2011 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2012 struct vm_area_struct *right =
2013 rb_entry(vma->vm_rb.rb_right,
2014 struct vm_area_struct, vm_rb);
2015 if (right->rb_subtree_gap >= length) {
2022 /* Check if current node has a suitable gap */
2023 gap_end = vm_start_gap(vma);
2024 if (gap_end < low_limit)
2026 if (gap_start <= high_limit &&
2027 gap_end > gap_start && gap_end - gap_start >= length)
2030 /* Visit left subtree if it looks promising */
2031 if (vma->vm_rb.rb_left) {
2032 struct vm_area_struct *left =
2033 rb_entry(vma->vm_rb.rb_left,
2034 struct vm_area_struct, vm_rb);
2035 if (left->rb_subtree_gap >= length) {
2041 /* Go back up the rbtree to find next candidate node */
2043 struct rb_node *prev = &vma->vm_rb;
2044 if (!rb_parent(prev))
2046 vma = rb_entry(rb_parent(prev),
2047 struct vm_area_struct, vm_rb);
2048 if (prev == vma->vm_rb.rb_right) {
2049 gap_start = vma->vm_prev ?
2050 vm_end_gap(vma->vm_prev) : 0;
2057 /* We found a suitable gap. Clip it with the original high_limit. */
2058 if (gap_end > info->high_limit)
2059 gap_end = info->high_limit;
2062 /* Compute highest gap address at the desired alignment */
2063 gap_end -= info->length;
2064 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2066 VM_BUG_ON(gap_end < info->low_limit);
2067 VM_BUG_ON(gap_end < gap_start);
2072 #ifndef arch_get_mmap_end
2073 #define arch_get_mmap_end(addr) (TASK_SIZE)
2076 #ifndef arch_get_mmap_base
2077 #define arch_get_mmap_base(addr, base) (base)
2080 /* Get an address range which is currently unmapped.
2081 * For shmat() with addr=0.
2083 * Ugly calling convention alert:
2084 * Return value with the low bits set means error value,
2086 * if (ret & ~PAGE_MASK)
2089 * This function "knows" that -ENOMEM has the bits set.
2091 #ifndef HAVE_ARCH_UNMAPPED_AREA
2093 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2094 unsigned long len, unsigned long pgoff, unsigned long flags)
2096 struct mm_struct *mm = current->mm;
2097 struct vm_area_struct *vma, *prev;
2098 struct vm_unmapped_area_info info;
2099 const unsigned long mmap_end = arch_get_mmap_end(addr);
2101 if (len > mmap_end - mmap_min_addr)
2104 if (flags & MAP_FIXED)
2108 addr = PAGE_ALIGN(addr);
2109 vma = find_vma_prev(mm, addr, &prev);
2110 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2111 (!vma || addr + len <= vm_start_gap(vma)) &&
2112 (!prev || addr >= vm_end_gap(prev)))
2118 info.low_limit = mm->mmap_base;
2119 info.high_limit = mmap_end;
2120 info.align_mask = 0;
2121 return vm_unmapped_area(&info);
2126 * This mmap-allocator allocates new areas top-down from below the
2127 * stack's low limit (the base):
2129 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2131 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2132 unsigned long len, unsigned long pgoff,
2133 unsigned long flags)
2135 struct vm_area_struct *vma, *prev;
2136 struct mm_struct *mm = current->mm;
2137 struct vm_unmapped_area_info info;
2138 const unsigned long mmap_end = arch_get_mmap_end(addr);
2140 /* requested length too big for entire address space */
2141 if (len > mmap_end - mmap_min_addr)
2144 if (flags & MAP_FIXED)
2147 /* requesting a specific address */
2149 addr = PAGE_ALIGN(addr);
2150 vma = find_vma_prev(mm, addr, &prev);
2151 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2152 (!vma || addr + len <= vm_start_gap(vma)) &&
2153 (!prev || addr >= vm_end_gap(prev)))
2157 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2159 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2160 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2161 info.align_mask = 0;
2162 addr = vm_unmapped_area(&info);
2165 * A failed mmap() very likely causes application failure,
2166 * so fall back to the bottom-up function here. This scenario
2167 * can happen with large stack limits and large mmap()
2170 if (offset_in_page(addr)) {
2171 VM_BUG_ON(addr != -ENOMEM);
2173 info.low_limit = TASK_UNMAPPED_BASE;
2174 info.high_limit = mmap_end;
2175 addr = vm_unmapped_area(&info);
2183 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2184 unsigned long pgoff, unsigned long flags)
2186 unsigned long (*get_area)(struct file *, unsigned long,
2187 unsigned long, unsigned long, unsigned long);
2189 unsigned long error = arch_mmap_check(addr, len, flags);
2193 /* Careful about overflows.. */
2194 if (len > TASK_SIZE)
2197 get_area = current->mm->get_unmapped_area;
2199 if (file->f_op->get_unmapped_area)
2200 get_area = file->f_op->get_unmapped_area;
2201 } else if (flags & MAP_SHARED) {
2203 * mmap_region() will call shmem_zero_setup() to create a file,
2204 * so use shmem's get_unmapped_area in case it can be huge.
2205 * do_mmap_pgoff() will clear pgoff, so match alignment.
2208 get_area = shmem_get_unmapped_area;
2211 addr = get_area(file, addr, len, pgoff, flags);
2212 if (IS_ERR_VALUE(addr))
2215 if (addr > TASK_SIZE - len)
2217 if (offset_in_page(addr))
2220 error = security_mmap_addr(addr);
2221 return error ? error : addr;
2224 EXPORT_SYMBOL(get_unmapped_area);
2226 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2227 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2229 struct rb_node *rb_node;
2230 struct vm_area_struct *vma;
2232 /* Check the cache first. */
2233 vma = vmacache_find(mm, addr);
2237 rb_node = mm->mm_rb.rb_node;
2240 struct vm_area_struct *tmp;
2242 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2244 if (tmp->vm_end > addr) {
2246 if (tmp->vm_start <= addr)
2248 rb_node = rb_node->rb_left;
2250 rb_node = rb_node->rb_right;
2254 vmacache_update(addr, vma);
2258 EXPORT_SYMBOL(find_vma);
2261 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2263 struct vm_area_struct *
2264 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2265 struct vm_area_struct **pprev)
2267 struct vm_area_struct *vma;
2269 vma = find_vma(mm, addr);
2271 *pprev = vma->vm_prev;
2273 struct rb_node *rb_node = mm->mm_rb.rb_node;
2276 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2277 rb_node = rb_node->rb_right;
2284 * Verify that the stack growth is acceptable and
2285 * update accounting. This is shared with both the
2286 * grow-up and grow-down cases.
2288 static int acct_stack_growth(struct vm_area_struct *vma,
2289 unsigned long size, unsigned long grow)
2291 struct mm_struct *mm = vma->vm_mm;
2292 unsigned long new_start;
2294 /* address space limit tests */
2295 if (!may_expand_vm(mm, vma->vm_flags, grow))
2298 /* Stack limit test */
2299 if (size > rlimit(RLIMIT_STACK))
2302 /* mlock limit tests */
2303 if (vma->vm_flags & VM_LOCKED) {
2304 unsigned long locked;
2305 unsigned long limit;
2306 locked = mm->locked_vm + grow;
2307 limit = rlimit(RLIMIT_MEMLOCK);
2308 limit >>= PAGE_SHIFT;
2309 if (locked > limit && !capable(CAP_IPC_LOCK))
2313 /* Check to ensure the stack will not grow into a hugetlb-only region */
2314 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2316 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2320 * Overcommit.. This must be the final test, as it will
2321 * update security statistics.
2323 if (security_vm_enough_memory_mm(mm, grow))
2329 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2331 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2332 * vma is the last one with address > vma->vm_end. Have to extend vma.
2334 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2336 struct mm_struct *mm = vma->vm_mm;
2337 struct vm_area_struct *next;
2338 unsigned long gap_addr;
2341 if (!(vma->vm_flags & VM_GROWSUP))
2344 /* Guard against exceeding limits of the address space. */
2345 address &= PAGE_MASK;
2346 if (address >= (TASK_SIZE & PAGE_MASK))
2348 address += PAGE_SIZE;
2350 /* Enforce stack_guard_gap */
2351 gap_addr = address + stack_guard_gap;
2353 /* Guard against overflow */
2354 if (gap_addr < address || gap_addr > TASK_SIZE)
2355 gap_addr = TASK_SIZE;
2357 next = vma->vm_next;
2358 if (next && next->vm_start < gap_addr &&
2359 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2360 if (!(next->vm_flags & VM_GROWSUP))
2362 /* Check that both stack segments have the same anon_vma? */
2365 /* We must make sure the anon_vma is allocated. */
2366 if (unlikely(anon_vma_prepare(vma)))
2370 * vma->vm_start/vm_end cannot change under us because the caller
2371 * is required to hold the mmap_sem in read mode. We need the
2372 * anon_vma lock to serialize against concurrent expand_stacks.
2374 anon_vma_lock_write(vma->anon_vma);
2376 /* Somebody else might have raced and expanded it already */
2377 if (address > vma->vm_end) {
2378 unsigned long size, grow;
2380 size = address - vma->vm_start;
2381 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2384 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2385 error = acct_stack_growth(vma, size, grow);
2388 * vma_gap_update() doesn't support concurrent
2389 * updates, but we only hold a shared mmap_sem
2390 * lock here, so we need to protect against
2391 * concurrent vma expansions.
2392 * anon_vma_lock_write() doesn't help here, as
2393 * we don't guarantee that all growable vmas
2394 * in a mm share the same root anon vma.
2395 * So, we reuse mm->page_table_lock to guard
2396 * against concurrent vma expansions.
2398 spin_lock(&mm->page_table_lock);
2399 if (vma->vm_flags & VM_LOCKED)
2400 mm->locked_vm += grow;
2401 vm_stat_account(mm, vma->vm_flags, grow);
2402 anon_vma_interval_tree_pre_update_vma(vma);
2403 vma->vm_end = address;
2404 anon_vma_interval_tree_post_update_vma(vma);
2406 vma_gap_update(vma->vm_next);
2408 mm->highest_vm_end = vm_end_gap(vma);
2409 spin_unlock(&mm->page_table_lock);
2411 perf_event_mmap(vma);
2415 anon_vma_unlock_write(vma->anon_vma);
2416 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2420 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2423 * vma is the first one with address < vma->vm_start. Have to extend vma.
2425 int expand_downwards(struct vm_area_struct *vma,
2426 unsigned long address)
2428 struct mm_struct *mm = vma->vm_mm;
2429 struct vm_area_struct *prev;
2432 address &= PAGE_MASK;
2433 if (address < mmap_min_addr)
2436 /* Enforce stack_guard_gap */
2437 prev = vma->vm_prev;
2438 /* Check that both stack segments have the same anon_vma? */
2439 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2440 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2441 if (address - prev->vm_end < stack_guard_gap)
2445 /* We must make sure the anon_vma is allocated. */
2446 if (unlikely(anon_vma_prepare(vma)))
2450 * vma->vm_start/vm_end cannot change under us because the caller
2451 * is required to hold the mmap_sem in read mode. We need the
2452 * anon_vma lock to serialize against concurrent expand_stacks.
2454 anon_vma_lock_write(vma->anon_vma);
2456 /* Somebody else might have raced and expanded it already */
2457 if (address < vma->vm_start) {
2458 unsigned long size, grow;
2460 size = vma->vm_end - address;
2461 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2464 if (grow <= vma->vm_pgoff) {
2465 error = acct_stack_growth(vma, size, grow);
2468 * vma_gap_update() doesn't support concurrent
2469 * updates, but we only hold a shared mmap_sem
2470 * lock here, so we need to protect against
2471 * concurrent vma expansions.
2472 * anon_vma_lock_write() doesn't help here, as
2473 * we don't guarantee that all growable vmas
2474 * in a mm share the same root anon vma.
2475 * So, we reuse mm->page_table_lock to guard
2476 * against concurrent vma expansions.
2478 spin_lock(&mm->page_table_lock);
2479 if (vma->vm_flags & VM_LOCKED)
2480 mm->locked_vm += grow;
2481 vm_stat_account(mm, vma->vm_flags, grow);
2482 anon_vma_interval_tree_pre_update_vma(vma);
2483 vma->vm_start = address;
2484 vma->vm_pgoff -= grow;
2485 anon_vma_interval_tree_post_update_vma(vma);
2486 vma_gap_update(vma);
2487 spin_unlock(&mm->page_table_lock);
2489 perf_event_mmap(vma);
2493 anon_vma_unlock_write(vma->anon_vma);
2494 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2499 /* enforced gap between the expanding stack and other mappings. */
2500 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2502 static int __init cmdline_parse_stack_guard_gap(char *p)
2507 val = simple_strtoul(p, &endptr, 10);
2509 stack_guard_gap = val << PAGE_SHIFT;
2513 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2515 #ifdef CONFIG_STACK_GROWSUP
2516 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2518 return expand_upwards(vma, address);
2521 struct vm_area_struct *
2522 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2524 struct vm_area_struct *vma, *prev;
2527 vma = find_vma_prev(mm, addr, &prev);
2528 if (vma && (vma->vm_start <= addr))
2530 /* don't alter vm_end if the coredump is running */
2531 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2533 if (prev->vm_flags & VM_LOCKED)
2534 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2538 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2540 return expand_downwards(vma, address);
2543 struct vm_area_struct *
2544 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2546 struct vm_area_struct *vma;
2547 unsigned long start;
2550 vma = find_vma(mm, addr);
2553 if (vma->vm_start <= addr)
2555 if (!(vma->vm_flags & VM_GROWSDOWN))
2557 /* don't alter vm_start if the coredump is running */
2558 if (!mmget_still_valid(mm))
2560 start = vma->vm_start;
2561 if (expand_stack(vma, addr))
2563 if (vma->vm_flags & VM_LOCKED)
2564 populate_vma_page_range(vma, addr, start, NULL);
2569 EXPORT_SYMBOL_GPL(find_extend_vma);
2572 * Ok - we have the memory areas we should free on the vma list,
2573 * so release them, and do the vma updates.
2575 * Called with the mm semaphore held.
2577 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2579 unsigned long nr_accounted = 0;
2581 /* Update high watermark before we lower total_vm */
2582 update_hiwater_vm(mm);
2584 long nrpages = vma_pages(vma);
2586 if (vma->vm_flags & VM_ACCOUNT)
2587 nr_accounted += nrpages;
2588 vm_stat_account(mm, vma->vm_flags, -nrpages);
2589 vma = remove_vma(vma);
2591 vm_unacct_memory(nr_accounted);
2596 * Get rid of page table information in the indicated region.
2598 * Called with the mm semaphore held.
2600 static void unmap_region(struct mm_struct *mm,
2601 struct vm_area_struct *vma, struct vm_area_struct *prev,
2602 unsigned long start, unsigned long end)
2604 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2605 struct mmu_gather tlb;
2608 tlb_gather_mmu(&tlb, mm, start, end);
2609 update_hiwater_rss(mm);
2610 unmap_vmas(&tlb, vma, start, end);
2611 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2612 next ? next->vm_start : USER_PGTABLES_CEILING);
2613 tlb_finish_mmu(&tlb, start, end);
2617 * Create a list of vma's touched by the unmap, removing them from the mm's
2618 * vma list as we go..
2621 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2622 struct vm_area_struct *prev, unsigned long end)
2624 struct vm_area_struct **insertion_point;
2625 struct vm_area_struct *tail_vma = NULL;
2627 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2628 vma->vm_prev = NULL;
2630 vma_rb_erase(vma, &mm->mm_rb);
2634 } while (vma && vma->vm_start < end);
2635 *insertion_point = vma;
2637 vma->vm_prev = prev;
2638 vma_gap_update(vma);
2640 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2641 tail_vma->vm_next = NULL;
2643 /* Kill the cache */
2644 vmacache_invalidate(mm);
2648 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2649 * has already been checked or doesn't make sense to fail.
2651 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2652 unsigned long addr, int new_below)
2654 struct vm_area_struct *new;
2657 if (vma->vm_ops && vma->vm_ops->split) {
2658 err = vma->vm_ops->split(vma, addr);
2663 new = vm_area_dup(vma);
2670 new->vm_start = addr;
2671 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2674 err = vma_dup_policy(vma, new);
2678 err = anon_vma_clone(new, vma);
2683 get_file(new->vm_file);
2685 if (new->vm_ops && new->vm_ops->open)
2686 new->vm_ops->open(new);
2689 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2690 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2692 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2698 /* Clean everything up if vma_adjust failed. */
2699 if (new->vm_ops && new->vm_ops->close)
2700 new->vm_ops->close(new);
2703 unlink_anon_vmas(new);
2705 mpol_put(vma_policy(new));
2712 * Split a vma into two pieces at address 'addr', a new vma is allocated
2713 * either for the first part or the tail.
2715 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2716 unsigned long addr, int new_below)
2718 if (mm->map_count >= sysctl_max_map_count)
2721 return __split_vma(mm, vma, addr, new_below);
2724 /* Munmap is split into 2 main parts -- this part which finds
2725 * what needs doing, and the areas themselves, which do the
2726 * work. This now handles partial unmappings.
2727 * Jeremy Fitzhardinge <jeremy@goop.org>
2729 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2730 struct list_head *uf, bool downgrade)
2733 struct vm_area_struct *vma, *prev, *last;
2735 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2738 len = PAGE_ALIGN(len);
2744 * arch_unmap() might do unmaps itself. It must be called
2745 * and finish any rbtree manipulation before this code
2746 * runs and also starts to manipulate the rbtree.
2748 arch_unmap(mm, start, end);
2750 /* Find the first overlapping VMA */
2751 vma = find_vma(mm, start);
2754 prev = vma->vm_prev;
2755 /* we have start < vma->vm_end */
2757 /* if it doesn't overlap, we have nothing.. */
2758 if (vma->vm_start >= end)
2762 * If we need to split any vma, do it now to save pain later.
2764 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2765 * unmapped vm_area_struct will remain in use: so lower split_vma
2766 * places tmp vma above, and higher split_vma places tmp vma below.
2768 if (start > vma->vm_start) {
2772 * Make sure that map_count on return from munmap() will
2773 * not exceed its limit; but let map_count go just above
2774 * its limit temporarily, to help free resources as expected.
2776 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2779 error = __split_vma(mm, vma, start, 0);
2785 /* Does it split the last one? */
2786 last = find_vma(mm, end);
2787 if (last && end > last->vm_start) {
2788 int error = __split_vma(mm, last, end, 1);
2792 vma = prev ? prev->vm_next : mm->mmap;
2796 * If userfaultfd_unmap_prep returns an error the vmas
2797 * will remain splitted, but userland will get a
2798 * highly unexpected error anyway. This is no
2799 * different than the case where the first of the two
2800 * __split_vma fails, but we don't undo the first
2801 * split, despite we could. This is unlikely enough
2802 * failure that it's not worth optimizing it for.
2804 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2810 * unlock any mlock()ed ranges before detaching vmas
2812 if (mm->locked_vm) {
2813 struct vm_area_struct *tmp = vma;
2814 while (tmp && tmp->vm_start < end) {
2815 if (tmp->vm_flags & VM_LOCKED) {
2816 mm->locked_vm -= vma_pages(tmp);
2817 munlock_vma_pages_all(tmp);
2824 /* Detach vmas from rbtree */
2825 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2828 downgrade_write(&mm->mmap_sem);
2830 unmap_region(mm, vma, prev, start, end);
2832 /* Fix up all other VM information */
2833 remove_vma_list(mm, vma);
2835 return downgrade ? 1 : 0;
2838 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2839 struct list_head *uf)
2841 return __do_munmap(mm, start, len, uf, false);
2844 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2847 struct mm_struct *mm = current->mm;
2850 if (down_write_killable(&mm->mmap_sem))
2853 ret = __do_munmap(mm, start, len, &uf, downgrade);
2855 * Returning 1 indicates mmap_sem is downgraded.
2856 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2857 * it to 0 before return.
2860 up_read(&mm->mmap_sem);
2863 up_write(&mm->mmap_sem);
2865 userfaultfd_unmap_complete(mm, &uf);
2869 int vm_munmap(unsigned long start, size_t len)
2871 return __vm_munmap(start, len, false);
2873 EXPORT_SYMBOL(vm_munmap);
2875 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2877 profile_munmap(addr);
2878 return __vm_munmap(addr, len, true);
2883 * Emulation of deprecated remap_file_pages() syscall.
2885 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2886 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2889 struct mm_struct *mm = current->mm;
2890 struct vm_area_struct *vma;
2891 unsigned long populate = 0;
2892 unsigned long ret = -EINVAL;
2895 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2896 current->comm, current->pid);
2900 start = start & PAGE_MASK;
2901 size = size & PAGE_MASK;
2903 if (start + size <= start)
2906 /* Does pgoff wrap? */
2907 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2910 if (down_write_killable(&mm->mmap_sem))
2913 vma = find_vma(mm, start);
2915 if (!vma || !(vma->vm_flags & VM_SHARED))
2918 if (start < vma->vm_start)
2921 if (start + size > vma->vm_end) {
2922 struct vm_area_struct *next;
2924 for (next = vma->vm_next; next; next = next->vm_next) {
2925 /* hole between vmas ? */
2926 if (next->vm_start != next->vm_prev->vm_end)
2929 if (next->vm_file != vma->vm_file)
2932 if (next->vm_flags != vma->vm_flags)
2935 if (start + size <= next->vm_end)
2943 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2944 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2945 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2947 flags &= MAP_NONBLOCK;
2948 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2949 if (vma->vm_flags & VM_LOCKED) {
2950 struct vm_area_struct *tmp;
2951 flags |= MAP_LOCKED;
2953 /* drop PG_Mlocked flag for over-mapped range */
2954 for (tmp = vma; tmp->vm_start >= start + size;
2955 tmp = tmp->vm_next) {
2957 * Split pmd and munlock page on the border
2960 vma_adjust_trans_huge(tmp, start, start + size, 0);
2962 munlock_vma_pages_range(tmp,
2963 max(tmp->vm_start, start),
2964 min(tmp->vm_end, start + size));
2968 file = get_file(vma->vm_file);
2969 ret = do_mmap_pgoff(vma->vm_file, start, size,
2970 prot, flags, pgoff, &populate, NULL);
2973 up_write(&mm->mmap_sem);
2975 mm_populate(ret, populate);
2976 if (!IS_ERR_VALUE(ret))
2982 * this is really a simplified "do_mmap". it only handles
2983 * anonymous maps. eventually we may be able to do some
2984 * brk-specific accounting here.
2986 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2988 struct mm_struct *mm = current->mm;
2989 struct vm_area_struct *vma, *prev;
2990 struct rb_node **rb_link, *rb_parent;
2991 pgoff_t pgoff = addr >> PAGE_SHIFT;
2994 /* Until we need other flags, refuse anything except VM_EXEC. */
2995 if ((flags & (~VM_EXEC)) != 0)
2997 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2999 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3000 if (offset_in_page(error))
3003 error = mlock_future_check(mm, mm->def_flags, len);
3008 * Clear old maps. this also does some error checking for us
3010 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3012 if (do_munmap(mm, addr, len, uf))
3016 /* Check against address space limits *after* clearing old maps... */
3017 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3020 if (mm->map_count > sysctl_max_map_count)
3023 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3026 /* Can we just expand an old private anonymous mapping? */
3027 vma = vma_merge(mm, prev, addr, addr + len, flags,
3028 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3033 * create a vma struct for an anonymous mapping
3035 vma = vm_area_alloc(mm);
3037 vm_unacct_memory(len >> PAGE_SHIFT);
3041 vma_set_anonymous(vma);
3042 vma->vm_start = addr;
3043 vma->vm_end = addr + len;
3044 vma->vm_pgoff = pgoff;
3045 vma->vm_flags = flags;
3046 vma->vm_page_prot = vm_get_page_prot(flags);
3047 vma_link(mm, vma, prev, rb_link, rb_parent);
3049 perf_event_mmap(vma);
3050 mm->total_vm += len >> PAGE_SHIFT;
3051 mm->data_vm += len >> PAGE_SHIFT;
3052 if (flags & VM_LOCKED)
3053 mm->locked_vm += (len >> PAGE_SHIFT);
3054 vma->vm_flags |= VM_SOFTDIRTY;
3058 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3060 struct mm_struct *mm = current->mm;
3066 len = PAGE_ALIGN(request);
3072 if (down_write_killable(&mm->mmap_sem))
3075 ret = do_brk_flags(addr, len, flags, &uf);
3076 populate = ((mm->def_flags & VM_LOCKED) != 0);
3077 up_write(&mm->mmap_sem);
3078 userfaultfd_unmap_complete(mm, &uf);
3079 if (populate && !ret)
3080 mm_populate(addr, len);
3083 EXPORT_SYMBOL(vm_brk_flags);
3085 int vm_brk(unsigned long addr, unsigned long len)
3087 return vm_brk_flags(addr, len, 0);
3089 EXPORT_SYMBOL(vm_brk);
3091 /* Release all mmaps. */
3092 void exit_mmap(struct mm_struct *mm)
3094 struct mmu_gather tlb;
3095 struct vm_area_struct *vma;
3096 unsigned long nr_accounted = 0;
3098 /* mm's last user has gone, and its about to be pulled down */
3099 mmu_notifier_release(mm);
3101 if (unlikely(mm_is_oom_victim(mm))) {
3103 * Manually reap the mm to free as much memory as possible.
3104 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3105 * this mm from further consideration. Taking mm->mmap_sem for
3106 * write after setting MMF_OOM_SKIP will guarantee that the oom
3107 * reaper will not run on this mm again after mmap_sem is
3110 * Nothing can be holding mm->mmap_sem here and the above call
3111 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3112 * __oom_reap_task_mm() will not block.
3114 * This needs to be done before calling munlock_vma_pages_all(),
3115 * which clears VM_LOCKED, otherwise the oom reaper cannot
3118 (void)__oom_reap_task_mm(mm);
3120 set_bit(MMF_OOM_SKIP, &mm->flags);
3121 down_write(&mm->mmap_sem);
3122 up_write(&mm->mmap_sem);
3125 if (mm->locked_vm) {
3128 if (vma->vm_flags & VM_LOCKED)
3129 munlock_vma_pages_all(vma);
3137 if (!vma) /* Can happen if dup_mmap() received an OOM */
3142 tlb_gather_mmu(&tlb, mm, 0, -1);
3143 /* update_hiwater_rss(mm) here? but nobody should be looking */
3144 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3145 unmap_vmas(&tlb, vma, 0, -1);
3146 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3147 tlb_finish_mmu(&tlb, 0, -1);
3150 * Walk the list again, actually closing and freeing it,
3151 * with preemption enabled, without holding any MM locks.
3154 if (vma->vm_flags & VM_ACCOUNT)
3155 nr_accounted += vma_pages(vma);
3156 vma = remove_vma(vma);
3158 vm_unacct_memory(nr_accounted);
3161 /* Insert vm structure into process list sorted by address
3162 * and into the inode's i_mmap tree. If vm_file is non-NULL
3163 * then i_mmap_rwsem is taken here.
3165 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3167 struct vm_area_struct *prev;
3168 struct rb_node **rb_link, *rb_parent;
3170 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3171 &prev, &rb_link, &rb_parent))
3173 if ((vma->vm_flags & VM_ACCOUNT) &&
3174 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3178 * The vm_pgoff of a purely anonymous vma should be irrelevant
3179 * until its first write fault, when page's anon_vma and index
3180 * are set. But now set the vm_pgoff it will almost certainly
3181 * end up with (unless mremap moves it elsewhere before that
3182 * first wfault), so /proc/pid/maps tells a consistent story.
3184 * By setting it to reflect the virtual start address of the
3185 * vma, merges and splits can happen in a seamless way, just
3186 * using the existing file pgoff checks and manipulations.
3187 * Similarly in do_mmap_pgoff and in do_brk.
3189 if (vma_is_anonymous(vma)) {
3190 BUG_ON(vma->anon_vma);
3191 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3194 vma_link(mm, vma, prev, rb_link, rb_parent);
3199 * Copy the vma structure to a new location in the same mm,
3200 * prior to moving page table entries, to effect an mremap move.
3202 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3203 unsigned long addr, unsigned long len, pgoff_t pgoff,
3204 bool *need_rmap_locks)
3206 struct vm_area_struct *vma = *vmap;
3207 unsigned long vma_start = vma->vm_start;
3208 struct mm_struct *mm = vma->vm_mm;
3209 struct vm_area_struct *new_vma, *prev;
3210 struct rb_node **rb_link, *rb_parent;
3211 bool faulted_in_anon_vma = true;
3214 * If anonymous vma has not yet been faulted, update new pgoff
3215 * to match new location, to increase its chance of merging.
3217 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3218 pgoff = addr >> PAGE_SHIFT;
3219 faulted_in_anon_vma = false;
3222 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3223 return NULL; /* should never get here */
3224 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3225 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3226 vma->vm_userfaultfd_ctx);
3229 * Source vma may have been merged into new_vma
3231 if (unlikely(vma_start >= new_vma->vm_start &&
3232 vma_start < new_vma->vm_end)) {
3234 * The only way we can get a vma_merge with
3235 * self during an mremap is if the vma hasn't
3236 * been faulted in yet and we were allowed to
3237 * reset the dst vma->vm_pgoff to the
3238 * destination address of the mremap to allow
3239 * the merge to happen. mremap must change the
3240 * vm_pgoff linearity between src and dst vmas
3241 * (in turn preventing a vma_merge) to be
3242 * safe. It is only safe to keep the vm_pgoff
3243 * linear if there are no pages mapped yet.
3245 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3246 *vmap = vma = new_vma;
3248 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3250 new_vma = vm_area_dup(vma);
3253 new_vma->vm_start = addr;
3254 new_vma->vm_end = addr + len;
3255 new_vma->vm_pgoff = pgoff;
3256 if (vma_dup_policy(vma, new_vma))
3258 if (anon_vma_clone(new_vma, vma))
3259 goto out_free_mempol;
3260 if (new_vma->vm_file)
3261 get_file(new_vma->vm_file);
3262 if (new_vma->vm_ops && new_vma->vm_ops->open)
3263 new_vma->vm_ops->open(new_vma);
3264 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3265 *need_rmap_locks = false;
3270 mpol_put(vma_policy(new_vma));
3272 vm_area_free(new_vma);
3278 * Return true if the calling process may expand its vm space by the passed
3281 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3283 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3286 if (is_data_mapping(flags) &&
3287 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3288 /* Workaround for Valgrind */
3289 if (rlimit(RLIMIT_DATA) == 0 &&
3290 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3293 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3294 current->comm, current->pid,
3295 (mm->data_vm + npages) << PAGE_SHIFT,
3296 rlimit(RLIMIT_DATA),
3297 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3299 if (!ignore_rlimit_data)
3306 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3308 mm->total_vm += npages;
3310 if (is_exec_mapping(flags))
3311 mm->exec_vm += npages;
3312 else if (is_stack_mapping(flags))
3313 mm->stack_vm += npages;
3314 else if (is_data_mapping(flags))
3315 mm->data_vm += npages;
3318 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3321 * Having a close hook prevents vma merging regardless of flags.
3323 static void special_mapping_close(struct vm_area_struct *vma)
3327 static const char *special_mapping_name(struct vm_area_struct *vma)
3329 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3332 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3334 struct vm_special_mapping *sm = new_vma->vm_private_data;
3336 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3340 return sm->mremap(sm, new_vma);
3345 static const struct vm_operations_struct special_mapping_vmops = {
3346 .close = special_mapping_close,
3347 .fault = special_mapping_fault,
3348 .mremap = special_mapping_mremap,
3349 .name = special_mapping_name,
3352 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3353 .close = special_mapping_close,
3354 .fault = special_mapping_fault,
3357 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3359 struct vm_area_struct *vma = vmf->vma;
3361 struct page **pages;
3363 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3364 pages = vma->vm_private_data;
3366 struct vm_special_mapping *sm = vma->vm_private_data;
3369 return sm->fault(sm, vmf->vma, vmf);
3374 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3378 struct page *page = *pages;
3384 return VM_FAULT_SIGBUS;
3387 static struct vm_area_struct *__install_special_mapping(
3388 struct mm_struct *mm,
3389 unsigned long addr, unsigned long len,
3390 unsigned long vm_flags, void *priv,
3391 const struct vm_operations_struct *ops)
3394 struct vm_area_struct *vma;
3396 vma = vm_area_alloc(mm);
3397 if (unlikely(vma == NULL))
3398 return ERR_PTR(-ENOMEM);
3400 vma->vm_start = addr;
3401 vma->vm_end = addr + len;
3403 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3404 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3407 vma->vm_private_data = priv;
3409 ret = insert_vm_struct(mm, vma);
3413 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3415 perf_event_mmap(vma);
3421 return ERR_PTR(ret);
3424 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3425 const struct vm_special_mapping *sm)
3427 return vma->vm_private_data == sm &&
3428 (vma->vm_ops == &special_mapping_vmops ||
3429 vma->vm_ops == &legacy_special_mapping_vmops);
3433 * Called with mm->mmap_sem held for writing.
3434 * Insert a new vma covering the given region, with the given flags.
3435 * Its pages are supplied by the given array of struct page *.
3436 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3437 * The region past the last page supplied will always produce SIGBUS.
3438 * The array pointer and the pages it points to are assumed to stay alive
3439 * for as long as this mapping might exist.
3441 struct vm_area_struct *_install_special_mapping(
3442 struct mm_struct *mm,
3443 unsigned long addr, unsigned long len,
3444 unsigned long vm_flags, const struct vm_special_mapping *spec)
3446 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3447 &special_mapping_vmops);
3450 int install_special_mapping(struct mm_struct *mm,
3451 unsigned long addr, unsigned long len,
3452 unsigned long vm_flags, struct page **pages)
3454 struct vm_area_struct *vma = __install_special_mapping(
3455 mm, addr, len, vm_flags, (void *)pages,
3456 &legacy_special_mapping_vmops);
3458 return PTR_ERR_OR_ZERO(vma);
3461 static DEFINE_MUTEX(mm_all_locks_mutex);
3463 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3465 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3467 * The LSB of head.next can't change from under us
3468 * because we hold the mm_all_locks_mutex.
3470 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3472 * We can safely modify head.next after taking the
3473 * anon_vma->root->rwsem. If some other vma in this mm shares
3474 * the same anon_vma we won't take it again.
3476 * No need of atomic instructions here, head.next
3477 * can't change from under us thanks to the
3478 * anon_vma->root->rwsem.
3480 if (__test_and_set_bit(0, (unsigned long *)
3481 &anon_vma->root->rb_root.rb_root.rb_node))
3486 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3488 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3490 * AS_MM_ALL_LOCKS can't change from under us because
3491 * we hold the mm_all_locks_mutex.
3493 * Operations on ->flags have to be atomic because
3494 * even if AS_MM_ALL_LOCKS is stable thanks to the
3495 * mm_all_locks_mutex, there may be other cpus
3496 * changing other bitflags in parallel to us.
3498 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3500 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3505 * This operation locks against the VM for all pte/vma/mm related
3506 * operations that could ever happen on a certain mm. This includes
3507 * vmtruncate, try_to_unmap, and all page faults.
3509 * The caller must take the mmap_sem in write mode before calling
3510 * mm_take_all_locks(). The caller isn't allowed to release the
3511 * mmap_sem until mm_drop_all_locks() returns.
3513 * mmap_sem in write mode is required in order to block all operations
3514 * that could modify pagetables and free pages without need of
3515 * altering the vma layout. It's also needed in write mode to avoid new
3516 * anon_vmas to be associated with existing vmas.
3518 * A single task can't take more than one mm_take_all_locks() in a row
3519 * or it would deadlock.
3521 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3522 * mapping->flags avoid to take the same lock twice, if more than one
3523 * vma in this mm is backed by the same anon_vma or address_space.
3525 * We take locks in following order, accordingly to comment at beginning
3527 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3529 * - all i_mmap_rwsem locks;
3530 * - all anon_vma->rwseml
3532 * We can take all locks within these types randomly because the VM code
3533 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3534 * mm_all_locks_mutex.
3536 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3537 * that may have to take thousand of locks.
3539 * mm_take_all_locks() can fail if it's interrupted by signals.
3541 int mm_take_all_locks(struct mm_struct *mm)
3543 struct vm_area_struct *vma;
3544 struct anon_vma_chain *avc;
3546 BUG_ON(down_read_trylock(&mm->mmap_sem));
3548 mutex_lock(&mm_all_locks_mutex);
3550 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3551 if (signal_pending(current))
3553 if (vma->vm_file && vma->vm_file->f_mapping &&
3554 is_vm_hugetlb_page(vma))
3555 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3558 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3559 if (signal_pending(current))
3561 if (vma->vm_file && vma->vm_file->f_mapping &&
3562 !is_vm_hugetlb_page(vma))
3563 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3566 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3567 if (signal_pending(current))
3570 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3571 vm_lock_anon_vma(mm, avc->anon_vma);
3577 mm_drop_all_locks(mm);
3581 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3583 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3585 * The LSB of head.next can't change to 0 from under
3586 * us because we hold the mm_all_locks_mutex.
3588 * We must however clear the bitflag before unlocking
3589 * the vma so the users using the anon_vma->rb_root will
3590 * never see our bitflag.
3592 * No need of atomic instructions here, head.next
3593 * can't change from under us until we release the
3594 * anon_vma->root->rwsem.
3596 if (!__test_and_clear_bit(0, (unsigned long *)
3597 &anon_vma->root->rb_root.rb_root.rb_node))
3599 anon_vma_unlock_write(anon_vma);
3603 static void vm_unlock_mapping(struct address_space *mapping)
3605 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3607 * AS_MM_ALL_LOCKS can't change to 0 from under us
3608 * because we hold the mm_all_locks_mutex.
3610 i_mmap_unlock_write(mapping);
3611 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3618 * The mmap_sem cannot be released by the caller until
3619 * mm_drop_all_locks() returns.
3621 void mm_drop_all_locks(struct mm_struct *mm)
3623 struct vm_area_struct *vma;
3624 struct anon_vma_chain *avc;
3626 BUG_ON(down_read_trylock(&mm->mmap_sem));
3627 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3629 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3631 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3632 vm_unlock_anon_vma(avc->anon_vma);
3633 if (vma->vm_file && vma->vm_file->f_mapping)
3634 vm_unlock_mapping(vma->vm_file->f_mapping);
3637 mutex_unlock(&mm_all_locks_mutex);
3641 * initialise the percpu counter for VM
3643 void __init mmap_init(void)
3647 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3652 * Initialise sysctl_user_reserve_kbytes.
3654 * This is intended to prevent a user from starting a single memory hogging
3655 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3658 * The default value is min(3% of free memory, 128MB)
3659 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3661 static int init_user_reserve(void)
3663 unsigned long free_kbytes;
3665 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3667 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3670 subsys_initcall(init_user_reserve);
3673 * Initialise sysctl_admin_reserve_kbytes.
3675 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3676 * to log in and kill a memory hogging process.
3678 * Systems with more than 256MB will reserve 8MB, enough to recover
3679 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3680 * only reserve 3% of free pages by default.
3682 static int init_admin_reserve(void)
3684 unsigned long free_kbytes;
3686 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3688 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3691 subsys_initcall(init_admin_reserve);
3694 * Reinititalise user and admin reserves if memory is added or removed.
3696 * The default user reserve max is 128MB, and the default max for the
3697 * admin reserve is 8MB. These are usually, but not always, enough to
3698 * enable recovery from a memory hogging process using login/sshd, a shell,
3699 * and tools like top. It may make sense to increase or even disable the
3700 * reserve depending on the existence of swap or variations in the recovery
3701 * tools. So, the admin may have changed them.
3703 * If memory is added and the reserves have been eliminated or increased above
3704 * the default max, then we'll trust the admin.
3706 * If memory is removed and there isn't enough free memory, then we
3707 * need to reset the reserves.
3709 * Otherwise keep the reserve set by the admin.
3711 static int reserve_mem_notifier(struct notifier_block *nb,
3712 unsigned long action, void *data)
3714 unsigned long tmp, free_kbytes;
3718 /* Default max is 128MB. Leave alone if modified by operator. */
3719 tmp = sysctl_user_reserve_kbytes;
3720 if (0 < tmp && tmp < (1UL << 17))
3721 init_user_reserve();
3723 /* Default max is 8MB. Leave alone if modified by operator. */
3724 tmp = sysctl_admin_reserve_kbytes;
3725 if (0 < tmp && tmp < (1UL << 13))
3726 init_admin_reserve();
3730 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3732 if (sysctl_user_reserve_kbytes > free_kbytes) {
3733 init_user_reserve();
3734 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3735 sysctl_user_reserve_kbytes);
3738 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3739 init_admin_reserve();
3740 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3741 sysctl_admin_reserve_kbytes);
3750 static struct notifier_block reserve_mem_nb = {
3751 .notifier_call = reserve_mem_notifier,
3754 static int __meminit init_reserve_notifier(void)
3756 if (register_hotmemory_notifier(&reserve_mem_nb))
3757 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3761 subsys_initcall(init_reserve_notifier);