mm: convert a few VM_BUG_ON callers to VM_BUG_ON_VMA
[linux-2.6-block.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)       (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)              (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61                 struct vm_area_struct *vma, struct vm_area_struct *prev,
62                 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type     prot
69  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
70  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
75  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
76  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86         return __pgprot(pgprot_val(protection_map[vm_flags &
87                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
93 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
94 unsigned long sysctl_overcommit_kbytes __read_mostly;
95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
98 /*
99  * Make sure vm_committed_as in one cacheline and not cacheline shared with
100  * other variables. It can be updated by several CPUs frequently.
101  */
102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
103
104 /*
105  * The global memory commitment made in the system can be a metric
106  * that can be used to drive ballooning decisions when Linux is hosted
107  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
108  * balancing memory across competing virtual machines that are hosted.
109  * Several metrics drive this policy engine including the guest reported
110  * memory commitment.
111  */
112 unsigned long vm_memory_committed(void)
113 {
114         return percpu_counter_read_positive(&vm_committed_as);
115 }
116 EXPORT_SYMBOL_GPL(vm_memory_committed);
117
118 /*
119  * Check that a process has enough memory to allocate a new virtual
120  * mapping. 0 means there is enough memory for the allocation to
121  * succeed and -ENOMEM implies there is not.
122  *
123  * We currently support three overcommit policies, which are set via the
124  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
125  *
126  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
127  * Additional code 2002 Jul 20 by Robert Love.
128  *
129  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
130  *
131  * Note this is a helper function intended to be used by LSMs which
132  * wish to use this logic.
133  */
134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
135 {
136         unsigned long free, allowed, reserve;
137
138         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
139                         -(s64)vm_committed_as_batch * num_online_cpus(),
140                         "memory commitment underflow");
141
142         vm_acct_memory(pages);
143
144         /*
145          * Sometimes we want to use more memory than we have
146          */
147         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
148                 return 0;
149
150         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
151                 free = global_page_state(NR_FREE_PAGES);
152                 free += global_page_state(NR_FILE_PAGES);
153
154                 /*
155                  * shmem pages shouldn't be counted as free in this
156                  * case, they can't be purged, only swapped out, and
157                  * that won't affect the overall amount of available
158                  * memory in the system.
159                  */
160                 free -= global_page_state(NR_SHMEM);
161
162                 free += get_nr_swap_pages();
163
164                 /*
165                  * Any slabs which are created with the
166                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
167                  * which are reclaimable, under pressure.  The dentry
168                  * cache and most inode caches should fall into this
169                  */
170                 free += global_page_state(NR_SLAB_RECLAIMABLE);
171
172                 /*
173                  * Leave reserved pages. The pages are not for anonymous pages.
174                  */
175                 if (free <= totalreserve_pages)
176                         goto error;
177                 else
178                         free -= totalreserve_pages;
179
180                 /*
181                  * Reserve some for root
182                  */
183                 if (!cap_sys_admin)
184                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
185
186                 if (free > pages)
187                         return 0;
188
189                 goto error;
190         }
191
192         allowed = vm_commit_limit();
193         /*
194          * Reserve some for root
195          */
196         if (!cap_sys_admin)
197                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
198
199         /*
200          * Don't let a single process grow so big a user can't recover
201          */
202         if (mm) {
203                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
204                 allowed -= min(mm->total_vm / 32, reserve);
205         }
206
207         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
208                 return 0;
209 error:
210         vm_unacct_memory(pages);
211
212         return -ENOMEM;
213 }
214
215 /*
216  * Requires inode->i_mapping->i_mmap_mutex
217  */
218 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
219                 struct file *file, struct address_space *mapping)
220 {
221         if (vma->vm_flags & VM_DENYWRITE)
222                 atomic_inc(&file_inode(file)->i_writecount);
223         if (vma->vm_flags & VM_SHARED)
224                 mapping_unmap_writable(mapping);
225
226         flush_dcache_mmap_lock(mapping);
227         if (unlikely(vma->vm_flags & VM_NONLINEAR))
228                 list_del_init(&vma->shared.nonlinear);
229         else
230                 vma_interval_tree_remove(vma, &mapping->i_mmap);
231         flush_dcache_mmap_unlock(mapping);
232 }
233
234 /*
235  * Unlink a file-based vm structure from its interval tree, to hide
236  * vma from rmap and vmtruncate before freeing its page tables.
237  */
238 void unlink_file_vma(struct vm_area_struct *vma)
239 {
240         struct file *file = vma->vm_file;
241
242         if (file) {
243                 struct address_space *mapping = file->f_mapping;
244                 mutex_lock(&mapping->i_mmap_mutex);
245                 __remove_shared_vm_struct(vma, file, mapping);
246                 mutex_unlock(&mapping->i_mmap_mutex);
247         }
248 }
249
250 /*
251  * Close a vm structure and free it, returning the next.
252  */
253 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
254 {
255         struct vm_area_struct *next = vma->vm_next;
256
257         might_sleep();
258         if (vma->vm_ops && vma->vm_ops->close)
259                 vma->vm_ops->close(vma);
260         if (vma->vm_file)
261                 fput(vma->vm_file);
262         mpol_put(vma_policy(vma));
263         kmem_cache_free(vm_area_cachep, vma);
264         return next;
265 }
266
267 static unsigned long do_brk(unsigned long addr, unsigned long len);
268
269 SYSCALL_DEFINE1(brk, unsigned long, brk)
270 {
271         unsigned long retval;
272         unsigned long newbrk, oldbrk;
273         struct mm_struct *mm = current->mm;
274         unsigned long min_brk;
275         bool populate;
276
277         down_write(&mm->mmap_sem);
278
279 #ifdef CONFIG_COMPAT_BRK
280         /*
281          * CONFIG_COMPAT_BRK can still be overridden by setting
282          * randomize_va_space to 2, which will still cause mm->start_brk
283          * to be arbitrarily shifted
284          */
285         if (current->brk_randomized)
286                 min_brk = mm->start_brk;
287         else
288                 min_brk = mm->end_data;
289 #else
290         min_brk = mm->start_brk;
291 #endif
292         if (brk < min_brk)
293                 goto out;
294
295         /*
296          * Check against rlimit here. If this check is done later after the test
297          * of oldbrk with newbrk then it can escape the test and let the data
298          * segment grow beyond its set limit the in case where the limit is
299          * not page aligned -Ram Gupta
300          */
301         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
302                               mm->end_data, mm->start_data))
303                 goto out;
304
305         newbrk = PAGE_ALIGN(brk);
306         oldbrk = PAGE_ALIGN(mm->brk);
307         if (oldbrk == newbrk)
308                 goto set_brk;
309
310         /* Always allow shrinking brk. */
311         if (brk <= mm->brk) {
312                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
313                         goto set_brk;
314                 goto out;
315         }
316
317         /* Check against existing mmap mappings. */
318         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
319                 goto out;
320
321         /* Ok, looks good - let it rip. */
322         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
323                 goto out;
324
325 set_brk:
326         mm->brk = brk;
327         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
328         up_write(&mm->mmap_sem);
329         if (populate)
330                 mm_populate(oldbrk, newbrk - oldbrk);
331         return brk;
332
333 out:
334         retval = mm->brk;
335         up_write(&mm->mmap_sem);
336         return retval;
337 }
338
339 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
340 {
341         unsigned long max, subtree_gap;
342         max = vma->vm_start;
343         if (vma->vm_prev)
344                 max -= vma->vm_prev->vm_end;
345         if (vma->vm_rb.rb_left) {
346                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
347                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
348                 if (subtree_gap > max)
349                         max = subtree_gap;
350         }
351         if (vma->vm_rb.rb_right) {
352                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
353                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
354                 if (subtree_gap > max)
355                         max = subtree_gap;
356         }
357         return max;
358 }
359
360 #ifdef CONFIG_DEBUG_VM_RB
361 static int browse_rb(struct rb_root *root)
362 {
363         int i = 0, j, bug = 0;
364         struct rb_node *nd, *pn = NULL;
365         unsigned long prev = 0, pend = 0;
366
367         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
368                 struct vm_area_struct *vma;
369                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
370                 if (vma->vm_start < prev) {
371                         pr_emerg("vm_start %lx prev %lx\n", vma->vm_start, prev);
372                         bug = 1;
373                 }
374                 if (vma->vm_start < pend) {
375                         pr_emerg("vm_start %lx pend %lx\n", vma->vm_start, pend);
376                         bug = 1;
377                 }
378                 if (vma->vm_start > vma->vm_end) {
379                         pr_emerg("vm_end %lx < vm_start %lx\n",
380                                 vma->vm_end, vma->vm_start);
381                         bug = 1;
382                 }
383                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
384                         pr_emerg("free gap %lx, correct %lx\n",
385                                vma->rb_subtree_gap,
386                                vma_compute_subtree_gap(vma));
387                         bug = 1;
388                 }
389                 i++;
390                 pn = nd;
391                 prev = vma->vm_start;
392                 pend = vma->vm_end;
393         }
394         j = 0;
395         for (nd = pn; nd; nd = rb_prev(nd))
396                 j++;
397         if (i != j) {
398                 pr_emerg("backwards %d, forwards %d\n", j, i);
399                 bug = 1;
400         }
401         return bug ? -1 : i;
402 }
403
404 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
405 {
406         struct rb_node *nd;
407
408         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
409                 struct vm_area_struct *vma;
410                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
411                 BUG_ON(vma != ignore &&
412                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
413         }
414 }
415
416 static void validate_mm(struct mm_struct *mm)
417 {
418         int bug = 0;
419         int i = 0;
420         unsigned long highest_address = 0;
421         struct vm_area_struct *vma = mm->mmap;
422         while (vma) {
423                 struct anon_vma_chain *avc;
424                 vma_lock_anon_vma(vma);
425                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
426                         anon_vma_interval_tree_verify(avc);
427                 vma_unlock_anon_vma(vma);
428                 highest_address = vma->vm_end;
429                 vma = vma->vm_next;
430                 i++;
431         }
432         if (i != mm->map_count) {
433                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
434                 bug = 1;
435         }
436         if (highest_address != mm->highest_vm_end) {
437                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
438                        mm->highest_vm_end, highest_address);
439                 bug = 1;
440         }
441         i = browse_rb(&mm->mm_rb);
442         if (i != mm->map_count) {
443                 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
444                 bug = 1;
445         }
446         BUG_ON(bug);
447 }
448 #else
449 #define validate_mm_rb(root, ignore) do { } while (0)
450 #define validate_mm(mm) do { } while (0)
451 #endif
452
453 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
454                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
455
456 /*
457  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
458  * vma->vm_prev->vm_end values changed, without modifying the vma's position
459  * in the rbtree.
460  */
461 static void vma_gap_update(struct vm_area_struct *vma)
462 {
463         /*
464          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
465          * function that does exacltly what we want.
466          */
467         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
468 }
469
470 static inline void vma_rb_insert(struct vm_area_struct *vma,
471                                  struct rb_root *root)
472 {
473         /* All rb_subtree_gap values must be consistent prior to insertion */
474         validate_mm_rb(root, NULL);
475
476         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
477 }
478
479 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
480 {
481         /*
482          * All rb_subtree_gap values must be consistent prior to erase,
483          * with the possible exception of the vma being erased.
484          */
485         validate_mm_rb(root, vma);
486
487         /*
488          * Note rb_erase_augmented is a fairly large inline function,
489          * so make sure we instantiate it only once with our desired
490          * augmented rbtree callbacks.
491          */
492         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
493 }
494
495 /*
496  * vma has some anon_vma assigned, and is already inserted on that
497  * anon_vma's interval trees.
498  *
499  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
500  * vma must be removed from the anon_vma's interval trees using
501  * anon_vma_interval_tree_pre_update_vma().
502  *
503  * After the update, the vma will be reinserted using
504  * anon_vma_interval_tree_post_update_vma().
505  *
506  * The entire update must be protected by exclusive mmap_sem and by
507  * the root anon_vma's mutex.
508  */
509 static inline void
510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 {
512         struct anon_vma_chain *avc;
513
514         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
516 }
517
518 static inline void
519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 {
521         struct anon_vma_chain *avc;
522
523         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
524                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 }
526
527 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
528                 unsigned long end, struct vm_area_struct **pprev,
529                 struct rb_node ***rb_link, struct rb_node **rb_parent)
530 {
531         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532
533         __rb_link = &mm->mm_rb.rb_node;
534         rb_prev = __rb_parent = NULL;
535
536         while (*__rb_link) {
537                 struct vm_area_struct *vma_tmp;
538
539                 __rb_parent = *__rb_link;
540                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541
542                 if (vma_tmp->vm_end > addr) {
543                         /* Fail if an existing vma overlaps the area */
544                         if (vma_tmp->vm_start < end)
545                                 return -ENOMEM;
546                         __rb_link = &__rb_parent->rb_left;
547                 } else {
548                         rb_prev = __rb_parent;
549                         __rb_link = &__rb_parent->rb_right;
550                 }
551         }
552
553         *pprev = NULL;
554         if (rb_prev)
555                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
556         *rb_link = __rb_link;
557         *rb_parent = __rb_parent;
558         return 0;
559 }
560
561 static unsigned long count_vma_pages_range(struct mm_struct *mm,
562                 unsigned long addr, unsigned long end)
563 {
564         unsigned long nr_pages = 0;
565         struct vm_area_struct *vma;
566
567         /* Find first overlaping mapping */
568         vma = find_vma_intersection(mm, addr, end);
569         if (!vma)
570                 return 0;
571
572         nr_pages = (min(end, vma->vm_end) -
573                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
574
575         /* Iterate over the rest of the overlaps */
576         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
577                 unsigned long overlap_len;
578
579                 if (vma->vm_start > end)
580                         break;
581
582                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
583                 nr_pages += overlap_len >> PAGE_SHIFT;
584         }
585
586         return nr_pages;
587 }
588
589 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
590                 struct rb_node **rb_link, struct rb_node *rb_parent)
591 {
592         /* Update tracking information for the gap following the new vma. */
593         if (vma->vm_next)
594                 vma_gap_update(vma->vm_next);
595         else
596                 mm->highest_vm_end = vma->vm_end;
597
598         /*
599          * vma->vm_prev wasn't known when we followed the rbtree to find the
600          * correct insertion point for that vma. As a result, we could not
601          * update the vma vm_rb parents rb_subtree_gap values on the way down.
602          * So, we first insert the vma with a zero rb_subtree_gap value
603          * (to be consistent with what we did on the way down), and then
604          * immediately update the gap to the correct value. Finally we
605          * rebalance the rbtree after all augmented values have been set.
606          */
607         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
608         vma->rb_subtree_gap = 0;
609         vma_gap_update(vma);
610         vma_rb_insert(vma, &mm->mm_rb);
611 }
612
613 static void __vma_link_file(struct vm_area_struct *vma)
614 {
615         struct file *file;
616
617         file = vma->vm_file;
618         if (file) {
619                 struct address_space *mapping = file->f_mapping;
620
621                 if (vma->vm_flags & VM_DENYWRITE)
622                         atomic_dec(&file_inode(file)->i_writecount);
623                 if (vma->vm_flags & VM_SHARED)
624                         atomic_inc(&mapping->i_mmap_writable);
625
626                 flush_dcache_mmap_lock(mapping);
627                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
628                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
629                 else
630                         vma_interval_tree_insert(vma, &mapping->i_mmap);
631                 flush_dcache_mmap_unlock(mapping);
632         }
633 }
634
635 static void
636 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
637         struct vm_area_struct *prev, struct rb_node **rb_link,
638         struct rb_node *rb_parent)
639 {
640         __vma_link_list(mm, vma, prev, rb_parent);
641         __vma_link_rb(mm, vma, rb_link, rb_parent);
642 }
643
644 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
645                         struct vm_area_struct *prev, struct rb_node **rb_link,
646                         struct rb_node *rb_parent)
647 {
648         struct address_space *mapping = NULL;
649
650         if (vma->vm_file) {
651                 mapping = vma->vm_file->f_mapping;
652                 mutex_lock(&mapping->i_mmap_mutex);
653         }
654
655         __vma_link(mm, vma, prev, rb_link, rb_parent);
656         __vma_link_file(vma);
657
658         if (mapping)
659                 mutex_unlock(&mapping->i_mmap_mutex);
660
661         mm->map_count++;
662         validate_mm(mm);
663 }
664
665 /*
666  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
667  * mm's list and rbtree.  It has already been inserted into the interval tree.
668  */
669 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
670 {
671         struct vm_area_struct *prev;
672         struct rb_node **rb_link, *rb_parent;
673
674         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
675                            &prev, &rb_link, &rb_parent))
676                 BUG();
677         __vma_link(mm, vma, prev, rb_link, rb_parent);
678         mm->map_count++;
679 }
680
681 static inline void
682 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
683                 struct vm_area_struct *prev)
684 {
685         struct vm_area_struct *next;
686
687         vma_rb_erase(vma, &mm->mm_rb);
688         prev->vm_next = next = vma->vm_next;
689         if (next)
690                 next->vm_prev = prev;
691
692         /* Kill the cache */
693         vmacache_invalidate(mm);
694 }
695
696 /*
697  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
698  * is already present in an i_mmap tree without adjusting the tree.
699  * The following helper function should be used when such adjustments
700  * are necessary.  The "insert" vma (if any) is to be inserted
701  * before we drop the necessary locks.
702  */
703 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
704         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
705 {
706         struct mm_struct *mm = vma->vm_mm;
707         struct vm_area_struct *next = vma->vm_next;
708         struct vm_area_struct *importer = NULL;
709         struct address_space *mapping = NULL;
710         struct rb_root *root = NULL;
711         struct anon_vma *anon_vma = NULL;
712         struct file *file = vma->vm_file;
713         bool start_changed = false, end_changed = false;
714         long adjust_next = 0;
715         int remove_next = 0;
716
717         if (next && !insert) {
718                 struct vm_area_struct *exporter = NULL;
719
720                 if (end >= next->vm_end) {
721                         /*
722                          * vma expands, overlapping all the next, and
723                          * perhaps the one after too (mprotect case 6).
724                          */
725 again:                  remove_next = 1 + (end > next->vm_end);
726                         end = next->vm_end;
727                         exporter = next;
728                         importer = vma;
729                 } else if (end > next->vm_start) {
730                         /*
731                          * vma expands, overlapping part of the next:
732                          * mprotect case 5 shifting the boundary up.
733                          */
734                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
735                         exporter = next;
736                         importer = vma;
737                 } else if (end < vma->vm_end) {
738                         /*
739                          * vma shrinks, and !insert tells it's not
740                          * split_vma inserting another: so it must be
741                          * mprotect case 4 shifting the boundary down.
742                          */
743                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
744                         exporter = vma;
745                         importer = next;
746                 }
747
748                 /*
749                  * Easily overlooked: when mprotect shifts the boundary,
750                  * make sure the expanding vma has anon_vma set if the
751                  * shrinking vma had, to cover any anon pages imported.
752                  */
753                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
754                         if (anon_vma_clone(importer, exporter))
755                                 return -ENOMEM;
756                         importer->anon_vma = exporter->anon_vma;
757                 }
758         }
759
760         if (file) {
761                 mapping = file->f_mapping;
762                 if (!(vma->vm_flags & VM_NONLINEAR)) {
763                         root = &mapping->i_mmap;
764                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
765
766                         if (adjust_next)
767                                 uprobe_munmap(next, next->vm_start,
768                                                         next->vm_end);
769                 }
770
771                 mutex_lock(&mapping->i_mmap_mutex);
772                 if (insert) {
773                         /*
774                          * Put into interval tree now, so instantiated pages
775                          * are visible to arm/parisc __flush_dcache_page
776                          * throughout; but we cannot insert into address
777                          * space until vma start or end is updated.
778                          */
779                         __vma_link_file(insert);
780                 }
781         }
782
783         vma_adjust_trans_huge(vma, start, end, adjust_next);
784
785         anon_vma = vma->anon_vma;
786         if (!anon_vma && adjust_next)
787                 anon_vma = next->anon_vma;
788         if (anon_vma) {
789                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
790                           anon_vma != next->anon_vma, next);
791                 anon_vma_lock_write(anon_vma);
792                 anon_vma_interval_tree_pre_update_vma(vma);
793                 if (adjust_next)
794                         anon_vma_interval_tree_pre_update_vma(next);
795         }
796
797         if (root) {
798                 flush_dcache_mmap_lock(mapping);
799                 vma_interval_tree_remove(vma, root);
800                 if (adjust_next)
801                         vma_interval_tree_remove(next, root);
802         }
803
804         if (start != vma->vm_start) {
805                 vma->vm_start = start;
806                 start_changed = true;
807         }
808         if (end != vma->vm_end) {
809                 vma->vm_end = end;
810                 end_changed = true;
811         }
812         vma->vm_pgoff = pgoff;
813         if (adjust_next) {
814                 next->vm_start += adjust_next << PAGE_SHIFT;
815                 next->vm_pgoff += adjust_next;
816         }
817
818         if (root) {
819                 if (adjust_next)
820                         vma_interval_tree_insert(next, root);
821                 vma_interval_tree_insert(vma, root);
822                 flush_dcache_mmap_unlock(mapping);
823         }
824
825         if (remove_next) {
826                 /*
827                  * vma_merge has merged next into vma, and needs
828                  * us to remove next before dropping the locks.
829                  */
830                 __vma_unlink(mm, next, vma);
831                 if (file)
832                         __remove_shared_vm_struct(next, file, mapping);
833         } else if (insert) {
834                 /*
835                  * split_vma has split insert from vma, and needs
836                  * us to insert it before dropping the locks
837                  * (it may either follow vma or precede it).
838                  */
839                 __insert_vm_struct(mm, insert);
840         } else {
841                 if (start_changed)
842                         vma_gap_update(vma);
843                 if (end_changed) {
844                         if (!next)
845                                 mm->highest_vm_end = end;
846                         else if (!adjust_next)
847                                 vma_gap_update(next);
848                 }
849         }
850
851         if (anon_vma) {
852                 anon_vma_interval_tree_post_update_vma(vma);
853                 if (adjust_next)
854                         anon_vma_interval_tree_post_update_vma(next);
855                 anon_vma_unlock_write(anon_vma);
856         }
857         if (mapping)
858                 mutex_unlock(&mapping->i_mmap_mutex);
859
860         if (root) {
861                 uprobe_mmap(vma);
862
863                 if (adjust_next)
864                         uprobe_mmap(next);
865         }
866
867         if (remove_next) {
868                 if (file) {
869                         uprobe_munmap(next, next->vm_start, next->vm_end);
870                         fput(file);
871                 }
872                 if (next->anon_vma)
873                         anon_vma_merge(vma, next);
874                 mm->map_count--;
875                 mpol_put(vma_policy(next));
876                 kmem_cache_free(vm_area_cachep, next);
877                 /*
878                  * In mprotect's case 6 (see comments on vma_merge),
879                  * we must remove another next too. It would clutter
880                  * up the code too much to do both in one go.
881                  */
882                 next = vma->vm_next;
883                 if (remove_next == 2)
884                         goto again;
885                 else if (next)
886                         vma_gap_update(next);
887                 else
888                         mm->highest_vm_end = end;
889         }
890         if (insert && file)
891                 uprobe_mmap(insert);
892
893         validate_mm(mm);
894
895         return 0;
896 }
897
898 /*
899  * If the vma has a ->close operation then the driver probably needs to release
900  * per-vma resources, so we don't attempt to merge those.
901  */
902 static inline int is_mergeable_vma(struct vm_area_struct *vma,
903                         struct file *file, unsigned long vm_flags)
904 {
905         /*
906          * VM_SOFTDIRTY should not prevent from VMA merging, if we
907          * match the flags but dirty bit -- the caller should mark
908          * merged VMA as dirty. If dirty bit won't be excluded from
909          * comparison, we increase pressue on the memory system forcing
910          * the kernel to generate new VMAs when old one could be
911          * extended instead.
912          */
913         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
914                 return 0;
915         if (vma->vm_file != file)
916                 return 0;
917         if (vma->vm_ops && vma->vm_ops->close)
918                 return 0;
919         return 1;
920 }
921
922 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
923                                         struct anon_vma *anon_vma2,
924                                         struct vm_area_struct *vma)
925 {
926         /*
927          * The list_is_singular() test is to avoid merging VMA cloned from
928          * parents. This can improve scalability caused by anon_vma lock.
929          */
930         if ((!anon_vma1 || !anon_vma2) && (!vma ||
931                 list_is_singular(&vma->anon_vma_chain)))
932                 return 1;
933         return anon_vma1 == anon_vma2;
934 }
935
936 /*
937  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
938  * in front of (at a lower virtual address and file offset than) the vma.
939  *
940  * We cannot merge two vmas if they have differently assigned (non-NULL)
941  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
942  *
943  * We don't check here for the merged mmap wrapping around the end of pagecache
944  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
945  * wrap, nor mmaps which cover the final page at index -1UL.
946  */
947 static int
948 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
949         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
950 {
951         if (is_mergeable_vma(vma, file, vm_flags) &&
952             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
953                 if (vma->vm_pgoff == vm_pgoff)
954                         return 1;
955         }
956         return 0;
957 }
958
959 /*
960  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
961  * beyond (at a higher virtual address and file offset than) the vma.
962  *
963  * We cannot merge two vmas if they have differently assigned (non-NULL)
964  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
965  */
966 static int
967 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
968         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
969 {
970         if (is_mergeable_vma(vma, file, vm_flags) &&
971             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
972                 pgoff_t vm_pglen;
973                 vm_pglen = vma_pages(vma);
974                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
975                         return 1;
976         }
977         return 0;
978 }
979
980 /*
981  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
982  * whether that can be merged with its predecessor or its successor.
983  * Or both (it neatly fills a hole).
984  *
985  * In most cases - when called for mmap, brk or mremap - [addr,end) is
986  * certain not to be mapped by the time vma_merge is called; but when
987  * called for mprotect, it is certain to be already mapped (either at
988  * an offset within prev, or at the start of next), and the flags of
989  * this area are about to be changed to vm_flags - and the no-change
990  * case has already been eliminated.
991  *
992  * The following mprotect cases have to be considered, where AAAA is
993  * the area passed down from mprotect_fixup, never extending beyond one
994  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
995  *
996  *     AAAA             AAAA                AAAA          AAAA
997  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
998  *    cannot merge    might become    might become    might become
999  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1000  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1001  *    mremap move:                                    PPPPNNNNNNNN 8
1002  *        AAAA
1003  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1004  *    might become    case 1 below    case 2 below    case 3 below
1005  *
1006  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1007  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1008  */
1009 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1010                         struct vm_area_struct *prev, unsigned long addr,
1011                         unsigned long end, unsigned long vm_flags,
1012                         struct anon_vma *anon_vma, struct file *file,
1013                         pgoff_t pgoff, struct mempolicy *policy)
1014 {
1015         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1016         struct vm_area_struct *area, *next;
1017         int err;
1018
1019         /*
1020          * We later require that vma->vm_flags == vm_flags,
1021          * so this tests vma->vm_flags & VM_SPECIAL, too.
1022          */
1023         if (vm_flags & VM_SPECIAL)
1024                 return NULL;
1025
1026         if (prev)
1027                 next = prev->vm_next;
1028         else
1029                 next = mm->mmap;
1030         area = next;
1031         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1032                 next = next->vm_next;
1033
1034         /*
1035          * Can it merge with the predecessor?
1036          */
1037         if (prev && prev->vm_end == addr &&
1038                         mpol_equal(vma_policy(prev), policy) &&
1039                         can_vma_merge_after(prev, vm_flags,
1040                                                 anon_vma, file, pgoff)) {
1041                 /*
1042                  * OK, it can.  Can we now merge in the successor as well?
1043                  */
1044                 if (next && end == next->vm_start &&
1045                                 mpol_equal(policy, vma_policy(next)) &&
1046                                 can_vma_merge_before(next, vm_flags,
1047                                         anon_vma, file, pgoff+pglen) &&
1048                                 is_mergeable_anon_vma(prev->anon_vma,
1049                                                       next->anon_vma, NULL)) {
1050                                                         /* cases 1, 6 */
1051                         err = vma_adjust(prev, prev->vm_start,
1052                                 next->vm_end, prev->vm_pgoff, NULL);
1053                 } else                                  /* cases 2, 5, 7 */
1054                         err = vma_adjust(prev, prev->vm_start,
1055                                 end, prev->vm_pgoff, NULL);
1056                 if (err)
1057                         return NULL;
1058                 khugepaged_enter_vma_merge(prev);
1059                 return prev;
1060         }
1061
1062         /*
1063          * Can this new request be merged in front of next?
1064          */
1065         if (next && end == next->vm_start &&
1066                         mpol_equal(policy, vma_policy(next)) &&
1067                         can_vma_merge_before(next, vm_flags,
1068                                         anon_vma, file, pgoff+pglen)) {
1069                 if (prev && addr < prev->vm_end)        /* case 4 */
1070                         err = vma_adjust(prev, prev->vm_start,
1071                                 addr, prev->vm_pgoff, NULL);
1072                 else                                    /* cases 3, 8 */
1073                         err = vma_adjust(area, addr, next->vm_end,
1074                                 next->vm_pgoff - pglen, NULL);
1075                 if (err)
1076                         return NULL;
1077                 khugepaged_enter_vma_merge(area);
1078                 return area;
1079         }
1080
1081         return NULL;
1082 }
1083
1084 /*
1085  * Rough compatbility check to quickly see if it's even worth looking
1086  * at sharing an anon_vma.
1087  *
1088  * They need to have the same vm_file, and the flags can only differ
1089  * in things that mprotect may change.
1090  *
1091  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1092  * we can merge the two vma's. For example, we refuse to merge a vma if
1093  * there is a vm_ops->close() function, because that indicates that the
1094  * driver is doing some kind of reference counting. But that doesn't
1095  * really matter for the anon_vma sharing case.
1096  */
1097 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1098 {
1099         return a->vm_end == b->vm_start &&
1100                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1101                 a->vm_file == b->vm_file &&
1102                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1103                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1104 }
1105
1106 /*
1107  * Do some basic sanity checking to see if we can re-use the anon_vma
1108  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1109  * the same as 'old', the other will be the new one that is trying
1110  * to share the anon_vma.
1111  *
1112  * NOTE! This runs with mm_sem held for reading, so it is possible that
1113  * the anon_vma of 'old' is concurrently in the process of being set up
1114  * by another page fault trying to merge _that_. But that's ok: if it
1115  * is being set up, that automatically means that it will be a singleton
1116  * acceptable for merging, so we can do all of this optimistically. But
1117  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1118  *
1119  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1120  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1121  * is to return an anon_vma that is "complex" due to having gone through
1122  * a fork).
1123  *
1124  * We also make sure that the two vma's are compatible (adjacent,
1125  * and with the same memory policies). That's all stable, even with just
1126  * a read lock on the mm_sem.
1127  */
1128 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1129 {
1130         if (anon_vma_compatible(a, b)) {
1131                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1132
1133                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1134                         return anon_vma;
1135         }
1136         return NULL;
1137 }
1138
1139 /*
1140  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1141  * neighbouring vmas for a suitable anon_vma, before it goes off
1142  * to allocate a new anon_vma.  It checks because a repetitive
1143  * sequence of mprotects and faults may otherwise lead to distinct
1144  * anon_vmas being allocated, preventing vma merge in subsequent
1145  * mprotect.
1146  */
1147 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1148 {
1149         struct anon_vma *anon_vma;
1150         struct vm_area_struct *near;
1151
1152         near = vma->vm_next;
1153         if (!near)
1154                 goto try_prev;
1155
1156         anon_vma = reusable_anon_vma(near, vma, near);
1157         if (anon_vma)
1158                 return anon_vma;
1159 try_prev:
1160         near = vma->vm_prev;
1161         if (!near)
1162                 goto none;
1163
1164         anon_vma = reusable_anon_vma(near, near, vma);
1165         if (anon_vma)
1166                 return anon_vma;
1167 none:
1168         /*
1169          * There's no absolute need to look only at touching neighbours:
1170          * we could search further afield for "compatible" anon_vmas.
1171          * But it would probably just be a waste of time searching,
1172          * or lead to too many vmas hanging off the same anon_vma.
1173          * We're trying to allow mprotect remerging later on,
1174          * not trying to minimize memory used for anon_vmas.
1175          */
1176         return NULL;
1177 }
1178
1179 #ifdef CONFIG_PROC_FS
1180 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1181                                                 struct file *file, long pages)
1182 {
1183         const unsigned long stack_flags
1184                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1185
1186         mm->total_vm += pages;
1187
1188         if (file) {
1189                 mm->shared_vm += pages;
1190                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1191                         mm->exec_vm += pages;
1192         } else if (flags & stack_flags)
1193                 mm->stack_vm += pages;
1194 }
1195 #endif /* CONFIG_PROC_FS */
1196
1197 /*
1198  * If a hint addr is less than mmap_min_addr change hint to be as
1199  * low as possible but still greater than mmap_min_addr
1200  */
1201 static inline unsigned long round_hint_to_min(unsigned long hint)
1202 {
1203         hint &= PAGE_MASK;
1204         if (((void *)hint != NULL) &&
1205             (hint < mmap_min_addr))
1206                 return PAGE_ALIGN(mmap_min_addr);
1207         return hint;
1208 }
1209
1210 static inline int mlock_future_check(struct mm_struct *mm,
1211                                      unsigned long flags,
1212                                      unsigned long len)
1213 {
1214         unsigned long locked, lock_limit;
1215
1216         /*  mlock MCL_FUTURE? */
1217         if (flags & VM_LOCKED) {
1218                 locked = len >> PAGE_SHIFT;
1219                 locked += mm->locked_vm;
1220                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1221                 lock_limit >>= PAGE_SHIFT;
1222                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1223                         return -EAGAIN;
1224         }
1225         return 0;
1226 }
1227
1228 /*
1229  * The caller must hold down_write(&current->mm->mmap_sem).
1230  */
1231
1232 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1233                         unsigned long len, unsigned long prot,
1234                         unsigned long flags, unsigned long pgoff,
1235                         unsigned long *populate)
1236 {
1237         struct mm_struct *mm = current->mm;
1238         vm_flags_t vm_flags;
1239
1240         *populate = 0;
1241
1242         /*
1243          * Does the application expect PROT_READ to imply PROT_EXEC?
1244          *
1245          * (the exception is when the underlying filesystem is noexec
1246          *  mounted, in which case we dont add PROT_EXEC.)
1247          */
1248         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1249                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1250                         prot |= PROT_EXEC;
1251
1252         if (!len)
1253                 return -EINVAL;
1254
1255         if (!(flags & MAP_FIXED))
1256                 addr = round_hint_to_min(addr);
1257
1258         /* Careful about overflows.. */
1259         len = PAGE_ALIGN(len);
1260         if (!len)
1261                 return -ENOMEM;
1262
1263         /* offset overflow? */
1264         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1265                 return -EOVERFLOW;
1266
1267         /* Too many mappings? */
1268         if (mm->map_count > sysctl_max_map_count)
1269                 return -ENOMEM;
1270
1271         /* Obtain the address to map to. we verify (or select) it and ensure
1272          * that it represents a valid section of the address space.
1273          */
1274         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1275         if (addr & ~PAGE_MASK)
1276                 return addr;
1277
1278         /* Do simple checking here so the lower-level routines won't have
1279          * to. we assume access permissions have been handled by the open
1280          * of the memory object, so we don't do any here.
1281          */
1282         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1283                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1284
1285         if (flags & MAP_LOCKED)
1286                 if (!can_do_mlock())
1287                         return -EPERM;
1288
1289         if (mlock_future_check(mm, vm_flags, len))
1290                 return -EAGAIN;
1291
1292         if (file) {
1293                 struct inode *inode = file_inode(file);
1294
1295                 switch (flags & MAP_TYPE) {
1296                 case MAP_SHARED:
1297                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1298                                 return -EACCES;
1299
1300                         /*
1301                          * Make sure we don't allow writing to an append-only
1302                          * file..
1303                          */
1304                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1305                                 return -EACCES;
1306
1307                         /*
1308                          * Make sure there are no mandatory locks on the file.
1309                          */
1310                         if (locks_verify_locked(file))
1311                                 return -EAGAIN;
1312
1313                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1314                         if (!(file->f_mode & FMODE_WRITE))
1315                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1316
1317                         /* fall through */
1318                 case MAP_PRIVATE:
1319                         if (!(file->f_mode & FMODE_READ))
1320                                 return -EACCES;
1321                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1322                                 if (vm_flags & VM_EXEC)
1323                                         return -EPERM;
1324                                 vm_flags &= ~VM_MAYEXEC;
1325                         }
1326
1327                         if (!file->f_op->mmap)
1328                                 return -ENODEV;
1329                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1330                                 return -EINVAL;
1331                         break;
1332
1333                 default:
1334                         return -EINVAL;
1335                 }
1336         } else {
1337                 switch (flags & MAP_TYPE) {
1338                 case MAP_SHARED:
1339                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1340                                 return -EINVAL;
1341                         /*
1342                          * Ignore pgoff.
1343                          */
1344                         pgoff = 0;
1345                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1346                         break;
1347                 case MAP_PRIVATE:
1348                         /*
1349                          * Set pgoff according to addr for anon_vma.
1350                          */
1351                         pgoff = addr >> PAGE_SHIFT;
1352                         break;
1353                 default:
1354                         return -EINVAL;
1355                 }
1356         }
1357
1358         /*
1359          * Set 'VM_NORESERVE' if we should not account for the
1360          * memory use of this mapping.
1361          */
1362         if (flags & MAP_NORESERVE) {
1363                 /* We honor MAP_NORESERVE if allowed to overcommit */
1364                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1365                         vm_flags |= VM_NORESERVE;
1366
1367                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1368                 if (file && is_file_hugepages(file))
1369                         vm_flags |= VM_NORESERVE;
1370         }
1371
1372         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1373         if (!IS_ERR_VALUE(addr) &&
1374             ((vm_flags & VM_LOCKED) ||
1375              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1376                 *populate = len;
1377         return addr;
1378 }
1379
1380 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1381                 unsigned long, prot, unsigned long, flags,
1382                 unsigned long, fd, unsigned long, pgoff)
1383 {
1384         struct file *file = NULL;
1385         unsigned long retval = -EBADF;
1386
1387         if (!(flags & MAP_ANONYMOUS)) {
1388                 audit_mmap_fd(fd, flags);
1389                 file = fget(fd);
1390                 if (!file)
1391                         goto out;
1392                 if (is_file_hugepages(file))
1393                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1394                 retval = -EINVAL;
1395                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1396                         goto out_fput;
1397         } else if (flags & MAP_HUGETLB) {
1398                 struct user_struct *user = NULL;
1399                 struct hstate *hs;
1400
1401                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1402                 if (!hs)
1403                         return -EINVAL;
1404
1405                 len = ALIGN(len, huge_page_size(hs));
1406                 /*
1407                  * VM_NORESERVE is used because the reservations will be
1408                  * taken when vm_ops->mmap() is called
1409                  * A dummy user value is used because we are not locking
1410                  * memory so no accounting is necessary
1411                  */
1412                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1413                                 VM_NORESERVE,
1414                                 &user, HUGETLB_ANONHUGE_INODE,
1415                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1416                 if (IS_ERR(file))
1417                         return PTR_ERR(file);
1418         }
1419
1420         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1421
1422         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1423 out_fput:
1424         if (file)
1425                 fput(file);
1426 out:
1427         return retval;
1428 }
1429
1430 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1431 struct mmap_arg_struct {
1432         unsigned long addr;
1433         unsigned long len;
1434         unsigned long prot;
1435         unsigned long flags;
1436         unsigned long fd;
1437         unsigned long offset;
1438 };
1439
1440 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1441 {
1442         struct mmap_arg_struct a;
1443
1444         if (copy_from_user(&a, arg, sizeof(a)))
1445                 return -EFAULT;
1446         if (a.offset & ~PAGE_MASK)
1447                 return -EINVAL;
1448
1449         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1450                               a.offset >> PAGE_SHIFT);
1451 }
1452 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1453
1454 /*
1455  * Some shared mappigns will want the pages marked read-only
1456  * to track write events. If so, we'll downgrade vm_page_prot
1457  * to the private version (using protection_map[] without the
1458  * VM_SHARED bit).
1459  */
1460 int vma_wants_writenotify(struct vm_area_struct *vma)
1461 {
1462         vm_flags_t vm_flags = vma->vm_flags;
1463
1464         /* If it was private or non-writable, the write bit is already clear */
1465         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1466                 return 0;
1467
1468         /* The backer wishes to know when pages are first written to? */
1469         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1470                 return 1;
1471
1472         /* The open routine did something to the protections already? */
1473         if (pgprot_val(vma->vm_page_prot) !=
1474             pgprot_val(vm_get_page_prot(vm_flags)))
1475                 return 0;
1476
1477         /* Specialty mapping? */
1478         if (vm_flags & VM_PFNMAP)
1479                 return 0;
1480
1481         /* Can the mapping track the dirty pages? */
1482         return vma->vm_file && vma->vm_file->f_mapping &&
1483                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1484 }
1485
1486 /*
1487  * We account for memory if it's a private writeable mapping,
1488  * not hugepages and VM_NORESERVE wasn't set.
1489  */
1490 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1491 {
1492         /*
1493          * hugetlb has its own accounting separate from the core VM
1494          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1495          */
1496         if (file && is_file_hugepages(file))
1497                 return 0;
1498
1499         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1500 }
1501
1502 unsigned long mmap_region(struct file *file, unsigned long addr,
1503                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1504 {
1505         struct mm_struct *mm = current->mm;
1506         struct vm_area_struct *vma, *prev;
1507         int error;
1508         struct rb_node **rb_link, *rb_parent;
1509         unsigned long charged = 0;
1510
1511         /* Check against address space limit. */
1512         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1513                 unsigned long nr_pages;
1514
1515                 /*
1516                  * MAP_FIXED may remove pages of mappings that intersects with
1517                  * requested mapping. Account for the pages it would unmap.
1518                  */
1519                 if (!(vm_flags & MAP_FIXED))
1520                         return -ENOMEM;
1521
1522                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1523
1524                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1525                         return -ENOMEM;
1526         }
1527
1528         /* Clear old maps */
1529         error = -ENOMEM;
1530 munmap_back:
1531         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1532                 if (do_munmap(mm, addr, len))
1533                         return -ENOMEM;
1534                 goto munmap_back;
1535         }
1536
1537         /*
1538          * Private writable mapping: check memory availability
1539          */
1540         if (accountable_mapping(file, vm_flags)) {
1541                 charged = len >> PAGE_SHIFT;
1542                 if (security_vm_enough_memory_mm(mm, charged))
1543                         return -ENOMEM;
1544                 vm_flags |= VM_ACCOUNT;
1545         }
1546
1547         /*
1548          * Can we just expand an old mapping?
1549          */
1550         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1551         if (vma)
1552                 goto out;
1553
1554         /*
1555          * Determine the object being mapped and call the appropriate
1556          * specific mapper. the address has already been validated, but
1557          * not unmapped, but the maps are removed from the list.
1558          */
1559         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1560         if (!vma) {
1561                 error = -ENOMEM;
1562                 goto unacct_error;
1563         }
1564
1565         vma->vm_mm = mm;
1566         vma->vm_start = addr;
1567         vma->vm_end = addr + len;
1568         vma->vm_flags = vm_flags;
1569         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1570         vma->vm_pgoff = pgoff;
1571         INIT_LIST_HEAD(&vma->anon_vma_chain);
1572
1573         if (file) {
1574                 if (vm_flags & VM_DENYWRITE) {
1575                         error = deny_write_access(file);
1576                         if (error)
1577                                 goto free_vma;
1578                 }
1579                 if (vm_flags & VM_SHARED) {
1580                         error = mapping_map_writable(file->f_mapping);
1581                         if (error)
1582                                 goto allow_write_and_free_vma;
1583                 }
1584
1585                 /* ->mmap() can change vma->vm_file, but must guarantee that
1586                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1587                  * and map writably if VM_SHARED is set. This usually means the
1588                  * new file must not have been exposed to user-space, yet.
1589                  */
1590                 vma->vm_file = get_file(file);
1591                 error = file->f_op->mmap(file, vma);
1592                 if (error)
1593                         goto unmap_and_free_vma;
1594
1595                 /* Can addr have changed??
1596                  *
1597                  * Answer: Yes, several device drivers can do it in their
1598                  *         f_op->mmap method. -DaveM
1599                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1600                  *      be updated for vma_link()
1601                  */
1602                 WARN_ON_ONCE(addr != vma->vm_start);
1603
1604                 addr = vma->vm_start;
1605                 vm_flags = vma->vm_flags;
1606         } else if (vm_flags & VM_SHARED) {
1607                 error = shmem_zero_setup(vma);
1608                 if (error)
1609                         goto free_vma;
1610         }
1611
1612         if (vma_wants_writenotify(vma)) {
1613                 pgprot_t pprot = vma->vm_page_prot;
1614
1615                 /* Can vma->vm_page_prot have changed??
1616                  *
1617                  * Answer: Yes, drivers may have changed it in their
1618                  *         f_op->mmap method.
1619                  *
1620                  * Ensures that vmas marked as uncached stay that way.
1621                  */
1622                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1623                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1624                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1625         }
1626
1627         vma_link(mm, vma, prev, rb_link, rb_parent);
1628         /* Once vma denies write, undo our temporary denial count */
1629         if (file) {
1630                 if (vm_flags & VM_SHARED)
1631                         mapping_unmap_writable(file->f_mapping);
1632                 if (vm_flags & VM_DENYWRITE)
1633                         allow_write_access(file);
1634         }
1635         file = vma->vm_file;
1636 out:
1637         perf_event_mmap(vma);
1638
1639         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1640         if (vm_flags & VM_LOCKED) {
1641                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1642                                         vma == get_gate_vma(current->mm)))
1643                         mm->locked_vm += (len >> PAGE_SHIFT);
1644                 else
1645                         vma->vm_flags &= ~VM_LOCKED;
1646         }
1647
1648         if (file)
1649                 uprobe_mmap(vma);
1650
1651         /*
1652          * New (or expanded) vma always get soft dirty status.
1653          * Otherwise user-space soft-dirty page tracker won't
1654          * be able to distinguish situation when vma area unmapped,
1655          * then new mapped in-place (which must be aimed as
1656          * a completely new data area).
1657          */
1658         vma->vm_flags |= VM_SOFTDIRTY;
1659
1660         return addr;
1661
1662 unmap_and_free_vma:
1663         vma->vm_file = NULL;
1664         fput(file);
1665
1666         /* Undo any partial mapping done by a device driver. */
1667         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1668         charged = 0;
1669         if (vm_flags & VM_SHARED)
1670                 mapping_unmap_writable(file->f_mapping);
1671 allow_write_and_free_vma:
1672         if (vm_flags & VM_DENYWRITE)
1673                 allow_write_access(file);
1674 free_vma:
1675         kmem_cache_free(vm_area_cachep, vma);
1676 unacct_error:
1677         if (charged)
1678                 vm_unacct_memory(charged);
1679         return error;
1680 }
1681
1682 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1683 {
1684         /*
1685          * We implement the search by looking for an rbtree node that
1686          * immediately follows a suitable gap. That is,
1687          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1688          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1689          * - gap_end - gap_start >= length
1690          */
1691
1692         struct mm_struct *mm = current->mm;
1693         struct vm_area_struct *vma;
1694         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1695
1696         /* Adjust search length to account for worst case alignment overhead */
1697         length = info->length + info->align_mask;
1698         if (length < info->length)
1699                 return -ENOMEM;
1700
1701         /* Adjust search limits by the desired length */
1702         if (info->high_limit < length)
1703                 return -ENOMEM;
1704         high_limit = info->high_limit - length;
1705
1706         if (info->low_limit > high_limit)
1707                 return -ENOMEM;
1708         low_limit = info->low_limit + length;
1709
1710         /* Check if rbtree root looks promising */
1711         if (RB_EMPTY_ROOT(&mm->mm_rb))
1712                 goto check_highest;
1713         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1714         if (vma->rb_subtree_gap < length)
1715                 goto check_highest;
1716
1717         while (true) {
1718                 /* Visit left subtree if it looks promising */
1719                 gap_end = vma->vm_start;
1720                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1721                         struct vm_area_struct *left =
1722                                 rb_entry(vma->vm_rb.rb_left,
1723                                          struct vm_area_struct, vm_rb);
1724                         if (left->rb_subtree_gap >= length) {
1725                                 vma = left;
1726                                 continue;
1727                         }
1728                 }
1729
1730                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1731 check_current:
1732                 /* Check if current node has a suitable gap */
1733                 if (gap_start > high_limit)
1734                         return -ENOMEM;
1735                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1736                         goto found;
1737
1738                 /* Visit right subtree if it looks promising */
1739                 if (vma->vm_rb.rb_right) {
1740                         struct vm_area_struct *right =
1741                                 rb_entry(vma->vm_rb.rb_right,
1742                                          struct vm_area_struct, vm_rb);
1743                         if (right->rb_subtree_gap >= length) {
1744                                 vma = right;
1745                                 continue;
1746                         }
1747                 }
1748
1749                 /* Go back up the rbtree to find next candidate node */
1750                 while (true) {
1751                         struct rb_node *prev = &vma->vm_rb;
1752                         if (!rb_parent(prev))
1753                                 goto check_highest;
1754                         vma = rb_entry(rb_parent(prev),
1755                                        struct vm_area_struct, vm_rb);
1756                         if (prev == vma->vm_rb.rb_left) {
1757                                 gap_start = vma->vm_prev->vm_end;
1758                                 gap_end = vma->vm_start;
1759                                 goto check_current;
1760                         }
1761                 }
1762         }
1763
1764 check_highest:
1765         /* Check highest gap, which does not precede any rbtree node */
1766         gap_start = mm->highest_vm_end;
1767         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1768         if (gap_start > high_limit)
1769                 return -ENOMEM;
1770
1771 found:
1772         /* We found a suitable gap. Clip it with the original low_limit. */
1773         if (gap_start < info->low_limit)
1774                 gap_start = info->low_limit;
1775
1776         /* Adjust gap address to the desired alignment */
1777         gap_start += (info->align_offset - gap_start) & info->align_mask;
1778
1779         VM_BUG_ON(gap_start + info->length > info->high_limit);
1780         VM_BUG_ON(gap_start + info->length > gap_end);
1781         return gap_start;
1782 }
1783
1784 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1785 {
1786         struct mm_struct *mm = current->mm;
1787         struct vm_area_struct *vma;
1788         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1789
1790         /* Adjust search length to account for worst case alignment overhead */
1791         length = info->length + info->align_mask;
1792         if (length < info->length)
1793                 return -ENOMEM;
1794
1795         /*
1796          * Adjust search limits by the desired length.
1797          * See implementation comment at top of unmapped_area().
1798          */
1799         gap_end = info->high_limit;
1800         if (gap_end < length)
1801                 return -ENOMEM;
1802         high_limit = gap_end - length;
1803
1804         if (info->low_limit > high_limit)
1805                 return -ENOMEM;
1806         low_limit = info->low_limit + length;
1807
1808         /* Check highest gap, which does not precede any rbtree node */
1809         gap_start = mm->highest_vm_end;
1810         if (gap_start <= high_limit)
1811                 goto found_highest;
1812
1813         /* Check if rbtree root looks promising */
1814         if (RB_EMPTY_ROOT(&mm->mm_rb))
1815                 return -ENOMEM;
1816         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1817         if (vma->rb_subtree_gap < length)
1818                 return -ENOMEM;
1819
1820         while (true) {
1821                 /* Visit right subtree if it looks promising */
1822                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1823                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1824                         struct vm_area_struct *right =
1825                                 rb_entry(vma->vm_rb.rb_right,
1826                                          struct vm_area_struct, vm_rb);
1827                         if (right->rb_subtree_gap >= length) {
1828                                 vma = right;
1829                                 continue;
1830                         }
1831                 }
1832
1833 check_current:
1834                 /* Check if current node has a suitable gap */
1835                 gap_end = vma->vm_start;
1836                 if (gap_end < low_limit)
1837                         return -ENOMEM;
1838                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1839                         goto found;
1840
1841                 /* Visit left subtree if it looks promising */
1842                 if (vma->vm_rb.rb_left) {
1843                         struct vm_area_struct *left =
1844                                 rb_entry(vma->vm_rb.rb_left,
1845                                          struct vm_area_struct, vm_rb);
1846                         if (left->rb_subtree_gap >= length) {
1847                                 vma = left;
1848                                 continue;
1849                         }
1850                 }
1851
1852                 /* Go back up the rbtree to find next candidate node */
1853                 while (true) {
1854                         struct rb_node *prev = &vma->vm_rb;
1855                         if (!rb_parent(prev))
1856                                 return -ENOMEM;
1857                         vma = rb_entry(rb_parent(prev),
1858                                        struct vm_area_struct, vm_rb);
1859                         if (prev == vma->vm_rb.rb_right) {
1860                                 gap_start = vma->vm_prev ?
1861                                         vma->vm_prev->vm_end : 0;
1862                                 goto check_current;
1863                         }
1864                 }
1865         }
1866
1867 found:
1868         /* We found a suitable gap. Clip it with the original high_limit. */
1869         if (gap_end > info->high_limit)
1870                 gap_end = info->high_limit;
1871
1872 found_highest:
1873         /* Compute highest gap address at the desired alignment */
1874         gap_end -= info->length;
1875         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1876
1877         VM_BUG_ON(gap_end < info->low_limit);
1878         VM_BUG_ON(gap_end < gap_start);
1879         return gap_end;
1880 }
1881
1882 /* Get an address range which is currently unmapped.
1883  * For shmat() with addr=0.
1884  *
1885  * Ugly calling convention alert:
1886  * Return value with the low bits set means error value,
1887  * ie
1888  *      if (ret & ~PAGE_MASK)
1889  *              error = ret;
1890  *
1891  * This function "knows" that -ENOMEM has the bits set.
1892  */
1893 #ifndef HAVE_ARCH_UNMAPPED_AREA
1894 unsigned long
1895 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1896                 unsigned long len, unsigned long pgoff, unsigned long flags)
1897 {
1898         struct mm_struct *mm = current->mm;
1899         struct vm_area_struct *vma;
1900         struct vm_unmapped_area_info info;
1901
1902         if (len > TASK_SIZE - mmap_min_addr)
1903                 return -ENOMEM;
1904
1905         if (flags & MAP_FIXED)
1906                 return addr;
1907
1908         if (addr) {
1909                 addr = PAGE_ALIGN(addr);
1910                 vma = find_vma(mm, addr);
1911                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1912                     (!vma || addr + len <= vma->vm_start))
1913                         return addr;
1914         }
1915
1916         info.flags = 0;
1917         info.length = len;
1918         info.low_limit = mm->mmap_base;
1919         info.high_limit = TASK_SIZE;
1920         info.align_mask = 0;
1921         return vm_unmapped_area(&info);
1922 }
1923 #endif
1924
1925 /*
1926  * This mmap-allocator allocates new areas top-down from below the
1927  * stack's low limit (the base):
1928  */
1929 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1930 unsigned long
1931 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1932                           const unsigned long len, const unsigned long pgoff,
1933                           const unsigned long flags)
1934 {
1935         struct vm_area_struct *vma;
1936         struct mm_struct *mm = current->mm;
1937         unsigned long addr = addr0;
1938         struct vm_unmapped_area_info info;
1939
1940         /* requested length too big for entire address space */
1941         if (len > TASK_SIZE - mmap_min_addr)
1942                 return -ENOMEM;
1943
1944         if (flags & MAP_FIXED)
1945                 return addr;
1946
1947         /* requesting a specific address */
1948         if (addr) {
1949                 addr = PAGE_ALIGN(addr);
1950                 vma = find_vma(mm, addr);
1951                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1952                                 (!vma || addr + len <= vma->vm_start))
1953                         return addr;
1954         }
1955
1956         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1957         info.length = len;
1958         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1959         info.high_limit = mm->mmap_base;
1960         info.align_mask = 0;
1961         addr = vm_unmapped_area(&info);
1962
1963         /*
1964          * A failed mmap() very likely causes application failure,
1965          * so fall back to the bottom-up function here. This scenario
1966          * can happen with large stack limits and large mmap()
1967          * allocations.
1968          */
1969         if (addr & ~PAGE_MASK) {
1970                 VM_BUG_ON(addr != -ENOMEM);
1971                 info.flags = 0;
1972                 info.low_limit = TASK_UNMAPPED_BASE;
1973                 info.high_limit = TASK_SIZE;
1974                 addr = vm_unmapped_area(&info);
1975         }
1976
1977         return addr;
1978 }
1979 #endif
1980
1981 unsigned long
1982 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1983                 unsigned long pgoff, unsigned long flags)
1984 {
1985         unsigned long (*get_area)(struct file *, unsigned long,
1986                                   unsigned long, unsigned long, unsigned long);
1987
1988         unsigned long error = arch_mmap_check(addr, len, flags);
1989         if (error)
1990                 return error;
1991
1992         /* Careful about overflows.. */
1993         if (len > TASK_SIZE)
1994                 return -ENOMEM;
1995
1996         get_area = current->mm->get_unmapped_area;
1997         if (file && file->f_op->get_unmapped_area)
1998                 get_area = file->f_op->get_unmapped_area;
1999         addr = get_area(file, addr, len, pgoff, flags);
2000         if (IS_ERR_VALUE(addr))
2001                 return addr;
2002
2003         if (addr > TASK_SIZE - len)
2004                 return -ENOMEM;
2005         if (addr & ~PAGE_MASK)
2006                 return -EINVAL;
2007
2008         addr = arch_rebalance_pgtables(addr, len);
2009         error = security_mmap_addr(addr);
2010         return error ? error : addr;
2011 }
2012
2013 EXPORT_SYMBOL(get_unmapped_area);
2014
2015 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2016 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2017 {
2018         struct rb_node *rb_node;
2019         struct vm_area_struct *vma;
2020
2021         /* Check the cache first. */
2022         vma = vmacache_find(mm, addr);
2023         if (likely(vma))
2024                 return vma;
2025
2026         rb_node = mm->mm_rb.rb_node;
2027         vma = NULL;
2028
2029         while (rb_node) {
2030                 struct vm_area_struct *tmp;
2031
2032                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2033
2034                 if (tmp->vm_end > addr) {
2035                         vma = tmp;
2036                         if (tmp->vm_start <= addr)
2037                                 break;
2038                         rb_node = rb_node->rb_left;
2039                 } else
2040                         rb_node = rb_node->rb_right;
2041         }
2042
2043         if (vma)
2044                 vmacache_update(addr, vma);
2045         return vma;
2046 }
2047
2048 EXPORT_SYMBOL(find_vma);
2049
2050 /*
2051  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2052  */
2053 struct vm_area_struct *
2054 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2055                         struct vm_area_struct **pprev)
2056 {
2057         struct vm_area_struct *vma;
2058
2059         vma = find_vma(mm, addr);
2060         if (vma) {
2061                 *pprev = vma->vm_prev;
2062         } else {
2063                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2064                 *pprev = NULL;
2065                 while (rb_node) {
2066                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2067                         rb_node = rb_node->rb_right;
2068                 }
2069         }
2070         return vma;
2071 }
2072
2073 /*
2074  * Verify that the stack growth is acceptable and
2075  * update accounting. This is shared with both the
2076  * grow-up and grow-down cases.
2077  */
2078 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2079 {
2080         struct mm_struct *mm = vma->vm_mm;
2081         struct rlimit *rlim = current->signal->rlim;
2082         unsigned long new_start;
2083
2084         /* address space limit tests */
2085         if (!may_expand_vm(mm, grow))
2086                 return -ENOMEM;
2087
2088         /* Stack limit test */
2089         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2090                 return -ENOMEM;
2091
2092         /* mlock limit tests */
2093         if (vma->vm_flags & VM_LOCKED) {
2094                 unsigned long locked;
2095                 unsigned long limit;
2096                 locked = mm->locked_vm + grow;
2097                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2098                 limit >>= PAGE_SHIFT;
2099                 if (locked > limit && !capable(CAP_IPC_LOCK))
2100                         return -ENOMEM;
2101         }
2102
2103         /* Check to ensure the stack will not grow into a hugetlb-only region */
2104         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2105                         vma->vm_end - size;
2106         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2107                 return -EFAULT;
2108
2109         /*
2110          * Overcommit..  This must be the final test, as it will
2111          * update security statistics.
2112          */
2113         if (security_vm_enough_memory_mm(mm, grow))
2114                 return -ENOMEM;
2115
2116         /* Ok, everything looks good - let it rip */
2117         if (vma->vm_flags & VM_LOCKED)
2118                 mm->locked_vm += grow;
2119         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2120         return 0;
2121 }
2122
2123 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2124 /*
2125  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2126  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2127  */
2128 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2129 {
2130         int error;
2131
2132         if (!(vma->vm_flags & VM_GROWSUP))
2133                 return -EFAULT;
2134
2135         /*
2136          * We must make sure the anon_vma is allocated
2137          * so that the anon_vma locking is not a noop.
2138          */
2139         if (unlikely(anon_vma_prepare(vma)))
2140                 return -ENOMEM;
2141         vma_lock_anon_vma(vma);
2142
2143         /*
2144          * vma->vm_start/vm_end cannot change under us because the caller
2145          * is required to hold the mmap_sem in read mode.  We need the
2146          * anon_vma lock to serialize against concurrent expand_stacks.
2147          * Also guard against wrapping around to address 0.
2148          */
2149         if (address < PAGE_ALIGN(address+4))
2150                 address = PAGE_ALIGN(address+4);
2151         else {
2152                 vma_unlock_anon_vma(vma);
2153                 return -ENOMEM;
2154         }
2155         error = 0;
2156
2157         /* Somebody else might have raced and expanded it already */
2158         if (address > vma->vm_end) {
2159                 unsigned long size, grow;
2160
2161                 size = address - vma->vm_start;
2162                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2163
2164                 error = -ENOMEM;
2165                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2166                         error = acct_stack_growth(vma, size, grow);
2167                         if (!error) {
2168                                 /*
2169                                  * vma_gap_update() doesn't support concurrent
2170                                  * updates, but we only hold a shared mmap_sem
2171                                  * lock here, so we need to protect against
2172                                  * concurrent vma expansions.
2173                                  * vma_lock_anon_vma() doesn't help here, as
2174                                  * we don't guarantee that all growable vmas
2175                                  * in a mm share the same root anon vma.
2176                                  * So, we reuse mm->page_table_lock to guard
2177                                  * against concurrent vma expansions.
2178                                  */
2179                                 spin_lock(&vma->vm_mm->page_table_lock);
2180                                 anon_vma_interval_tree_pre_update_vma(vma);
2181                                 vma->vm_end = address;
2182                                 anon_vma_interval_tree_post_update_vma(vma);
2183                                 if (vma->vm_next)
2184                                         vma_gap_update(vma->vm_next);
2185                                 else
2186                                         vma->vm_mm->highest_vm_end = address;
2187                                 spin_unlock(&vma->vm_mm->page_table_lock);
2188
2189                                 perf_event_mmap(vma);
2190                         }
2191                 }
2192         }
2193         vma_unlock_anon_vma(vma);
2194         khugepaged_enter_vma_merge(vma);
2195         validate_mm(vma->vm_mm);
2196         return error;
2197 }
2198 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2199
2200 /*
2201  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2202  */
2203 int expand_downwards(struct vm_area_struct *vma,
2204                                    unsigned long address)
2205 {
2206         int error;
2207
2208         /*
2209          * We must make sure the anon_vma is allocated
2210          * so that the anon_vma locking is not a noop.
2211          */
2212         if (unlikely(anon_vma_prepare(vma)))
2213                 return -ENOMEM;
2214
2215         address &= PAGE_MASK;
2216         error = security_mmap_addr(address);
2217         if (error)
2218                 return error;
2219
2220         vma_lock_anon_vma(vma);
2221
2222         /*
2223          * vma->vm_start/vm_end cannot change under us because the caller
2224          * is required to hold the mmap_sem in read mode.  We need the
2225          * anon_vma lock to serialize against concurrent expand_stacks.
2226          */
2227
2228         /* Somebody else might have raced and expanded it already */
2229         if (address < vma->vm_start) {
2230                 unsigned long size, grow;
2231
2232                 size = vma->vm_end - address;
2233                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2234
2235                 error = -ENOMEM;
2236                 if (grow <= vma->vm_pgoff) {
2237                         error = acct_stack_growth(vma, size, grow);
2238                         if (!error) {
2239                                 /*
2240                                  * vma_gap_update() doesn't support concurrent
2241                                  * updates, but we only hold a shared mmap_sem
2242                                  * lock here, so we need to protect against
2243                                  * concurrent vma expansions.
2244                                  * vma_lock_anon_vma() doesn't help here, as
2245                                  * we don't guarantee that all growable vmas
2246                                  * in a mm share the same root anon vma.
2247                                  * So, we reuse mm->page_table_lock to guard
2248                                  * against concurrent vma expansions.
2249                                  */
2250                                 spin_lock(&vma->vm_mm->page_table_lock);
2251                                 anon_vma_interval_tree_pre_update_vma(vma);
2252                                 vma->vm_start = address;
2253                                 vma->vm_pgoff -= grow;
2254                                 anon_vma_interval_tree_post_update_vma(vma);
2255                                 vma_gap_update(vma);
2256                                 spin_unlock(&vma->vm_mm->page_table_lock);
2257
2258                                 perf_event_mmap(vma);
2259                         }
2260                 }
2261         }
2262         vma_unlock_anon_vma(vma);
2263         khugepaged_enter_vma_merge(vma);
2264         validate_mm(vma->vm_mm);
2265         return error;
2266 }
2267
2268 /*
2269  * Note how expand_stack() refuses to expand the stack all the way to
2270  * abut the next virtual mapping, *unless* that mapping itself is also
2271  * a stack mapping. We want to leave room for a guard page, after all
2272  * (the guard page itself is not added here, that is done by the
2273  * actual page faulting logic)
2274  *
2275  * This matches the behavior of the guard page logic (see mm/memory.c:
2276  * check_stack_guard_page()), which only allows the guard page to be
2277  * removed under these circumstances.
2278  */
2279 #ifdef CONFIG_STACK_GROWSUP
2280 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2281 {
2282         struct vm_area_struct *next;
2283
2284         address &= PAGE_MASK;
2285         next = vma->vm_next;
2286         if (next && next->vm_start == address + PAGE_SIZE) {
2287                 if (!(next->vm_flags & VM_GROWSUP))
2288                         return -ENOMEM;
2289         }
2290         return expand_upwards(vma, address);
2291 }
2292
2293 struct vm_area_struct *
2294 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2295 {
2296         struct vm_area_struct *vma, *prev;
2297
2298         addr &= PAGE_MASK;
2299         vma = find_vma_prev(mm, addr, &prev);
2300         if (vma && (vma->vm_start <= addr))
2301                 return vma;
2302         if (!prev || expand_stack(prev, addr))
2303                 return NULL;
2304         if (prev->vm_flags & VM_LOCKED)
2305                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2306         return prev;
2307 }
2308 #else
2309 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2310 {
2311         struct vm_area_struct *prev;
2312
2313         address &= PAGE_MASK;
2314         prev = vma->vm_prev;
2315         if (prev && prev->vm_end == address) {
2316                 if (!(prev->vm_flags & VM_GROWSDOWN))
2317                         return -ENOMEM;
2318         }
2319         return expand_downwards(vma, address);
2320 }
2321
2322 struct vm_area_struct *
2323 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2324 {
2325         struct vm_area_struct *vma;
2326         unsigned long start;
2327
2328         addr &= PAGE_MASK;
2329         vma = find_vma(mm, addr);
2330         if (!vma)
2331                 return NULL;
2332         if (vma->vm_start <= addr)
2333                 return vma;
2334         if (!(vma->vm_flags & VM_GROWSDOWN))
2335                 return NULL;
2336         start = vma->vm_start;
2337         if (expand_stack(vma, addr))
2338                 return NULL;
2339         if (vma->vm_flags & VM_LOCKED)
2340                 __mlock_vma_pages_range(vma, addr, start, NULL);
2341         return vma;
2342 }
2343 #endif
2344
2345 /*
2346  * Ok - we have the memory areas we should free on the vma list,
2347  * so release them, and do the vma updates.
2348  *
2349  * Called with the mm semaphore held.
2350  */
2351 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2352 {
2353         unsigned long nr_accounted = 0;
2354
2355         /* Update high watermark before we lower total_vm */
2356         update_hiwater_vm(mm);
2357         do {
2358                 long nrpages = vma_pages(vma);
2359
2360                 if (vma->vm_flags & VM_ACCOUNT)
2361                         nr_accounted += nrpages;
2362                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2363                 vma = remove_vma(vma);
2364         } while (vma);
2365         vm_unacct_memory(nr_accounted);
2366         validate_mm(mm);
2367 }
2368
2369 /*
2370  * Get rid of page table information in the indicated region.
2371  *
2372  * Called with the mm semaphore held.
2373  */
2374 static void unmap_region(struct mm_struct *mm,
2375                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2376                 unsigned long start, unsigned long end)
2377 {
2378         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2379         struct mmu_gather tlb;
2380
2381         lru_add_drain();
2382         tlb_gather_mmu(&tlb, mm, start, end);
2383         update_hiwater_rss(mm);
2384         unmap_vmas(&tlb, vma, start, end);
2385         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2386                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2387         tlb_finish_mmu(&tlb, start, end);
2388 }
2389
2390 /*
2391  * Create a list of vma's touched by the unmap, removing them from the mm's
2392  * vma list as we go..
2393  */
2394 static void
2395 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2396         struct vm_area_struct *prev, unsigned long end)
2397 {
2398         struct vm_area_struct **insertion_point;
2399         struct vm_area_struct *tail_vma = NULL;
2400
2401         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2402         vma->vm_prev = NULL;
2403         do {
2404                 vma_rb_erase(vma, &mm->mm_rb);
2405                 mm->map_count--;
2406                 tail_vma = vma;
2407                 vma = vma->vm_next;
2408         } while (vma && vma->vm_start < end);
2409         *insertion_point = vma;
2410         if (vma) {
2411                 vma->vm_prev = prev;
2412                 vma_gap_update(vma);
2413         } else
2414                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2415         tail_vma->vm_next = NULL;
2416
2417         /* Kill the cache */
2418         vmacache_invalidate(mm);
2419 }
2420
2421 /*
2422  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2423  * munmap path where it doesn't make sense to fail.
2424  */
2425 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2426               unsigned long addr, int new_below)
2427 {
2428         struct vm_area_struct *new;
2429         int err = -ENOMEM;
2430
2431         if (is_vm_hugetlb_page(vma) && (addr &
2432                                         ~(huge_page_mask(hstate_vma(vma)))))
2433                 return -EINVAL;
2434
2435         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2436         if (!new)
2437                 goto out_err;
2438
2439         /* most fields are the same, copy all, and then fixup */
2440         *new = *vma;
2441
2442         INIT_LIST_HEAD(&new->anon_vma_chain);
2443
2444         if (new_below)
2445                 new->vm_end = addr;
2446         else {
2447                 new->vm_start = addr;
2448                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2449         }
2450
2451         err = vma_dup_policy(vma, new);
2452         if (err)
2453                 goto out_free_vma;
2454
2455         if (anon_vma_clone(new, vma))
2456                 goto out_free_mpol;
2457
2458         if (new->vm_file)
2459                 get_file(new->vm_file);
2460
2461         if (new->vm_ops && new->vm_ops->open)
2462                 new->vm_ops->open(new);
2463
2464         if (new_below)
2465                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2466                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2467         else
2468                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2469
2470         /* Success. */
2471         if (!err)
2472                 return 0;
2473
2474         /* Clean everything up if vma_adjust failed. */
2475         if (new->vm_ops && new->vm_ops->close)
2476                 new->vm_ops->close(new);
2477         if (new->vm_file)
2478                 fput(new->vm_file);
2479         unlink_anon_vmas(new);
2480  out_free_mpol:
2481         mpol_put(vma_policy(new));
2482  out_free_vma:
2483         kmem_cache_free(vm_area_cachep, new);
2484  out_err:
2485         return err;
2486 }
2487
2488 /*
2489  * Split a vma into two pieces at address 'addr', a new vma is allocated
2490  * either for the first part or the tail.
2491  */
2492 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2493               unsigned long addr, int new_below)
2494 {
2495         if (mm->map_count >= sysctl_max_map_count)
2496                 return -ENOMEM;
2497
2498         return __split_vma(mm, vma, addr, new_below);
2499 }
2500
2501 /* Munmap is split into 2 main parts -- this part which finds
2502  * what needs doing, and the areas themselves, which do the
2503  * work.  This now handles partial unmappings.
2504  * Jeremy Fitzhardinge <jeremy@goop.org>
2505  */
2506 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2507 {
2508         unsigned long end;
2509         struct vm_area_struct *vma, *prev, *last;
2510
2511         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2512                 return -EINVAL;
2513
2514         len = PAGE_ALIGN(len);
2515         if (len == 0)
2516                 return -EINVAL;
2517
2518         /* Find the first overlapping VMA */
2519         vma = find_vma(mm, start);
2520         if (!vma)
2521                 return 0;
2522         prev = vma->vm_prev;
2523         /* we have  start < vma->vm_end  */
2524
2525         /* if it doesn't overlap, we have nothing.. */
2526         end = start + len;
2527         if (vma->vm_start >= end)
2528                 return 0;
2529
2530         /*
2531          * If we need to split any vma, do it now to save pain later.
2532          *
2533          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2534          * unmapped vm_area_struct will remain in use: so lower split_vma
2535          * places tmp vma above, and higher split_vma places tmp vma below.
2536          */
2537         if (start > vma->vm_start) {
2538                 int error;
2539
2540                 /*
2541                  * Make sure that map_count on return from munmap() will
2542                  * not exceed its limit; but let map_count go just above
2543                  * its limit temporarily, to help free resources as expected.
2544                  */
2545                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2546                         return -ENOMEM;
2547
2548                 error = __split_vma(mm, vma, start, 0);
2549                 if (error)
2550                         return error;
2551                 prev = vma;
2552         }
2553
2554         /* Does it split the last one? */
2555         last = find_vma(mm, end);
2556         if (last && end > last->vm_start) {
2557                 int error = __split_vma(mm, last, end, 1);
2558                 if (error)
2559                         return error;
2560         }
2561         vma = prev ? prev->vm_next : mm->mmap;
2562
2563         /*
2564          * unlock any mlock()ed ranges before detaching vmas
2565          */
2566         if (mm->locked_vm) {
2567                 struct vm_area_struct *tmp = vma;
2568                 while (tmp && tmp->vm_start < end) {
2569                         if (tmp->vm_flags & VM_LOCKED) {
2570                                 mm->locked_vm -= vma_pages(tmp);
2571                                 munlock_vma_pages_all(tmp);
2572                         }
2573                         tmp = tmp->vm_next;
2574                 }
2575         }
2576
2577         /*
2578          * Remove the vma's, and unmap the actual pages
2579          */
2580         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2581         unmap_region(mm, vma, prev, start, end);
2582
2583         /* Fix up all other VM information */
2584         remove_vma_list(mm, vma);
2585
2586         return 0;
2587 }
2588
2589 int vm_munmap(unsigned long start, size_t len)
2590 {
2591         int ret;
2592         struct mm_struct *mm = current->mm;
2593
2594         down_write(&mm->mmap_sem);
2595         ret = do_munmap(mm, start, len);
2596         up_write(&mm->mmap_sem);
2597         return ret;
2598 }
2599 EXPORT_SYMBOL(vm_munmap);
2600
2601 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2602 {
2603         profile_munmap(addr);
2604         return vm_munmap(addr, len);
2605 }
2606
2607 static inline void verify_mm_writelocked(struct mm_struct *mm)
2608 {
2609 #ifdef CONFIG_DEBUG_VM
2610         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2611                 WARN_ON(1);
2612                 up_read(&mm->mmap_sem);
2613         }
2614 #endif
2615 }
2616
2617 /*
2618  *  this is really a simplified "do_mmap".  it only handles
2619  *  anonymous maps.  eventually we may be able to do some
2620  *  brk-specific accounting here.
2621  */
2622 static unsigned long do_brk(unsigned long addr, unsigned long len)
2623 {
2624         struct mm_struct *mm = current->mm;
2625         struct vm_area_struct *vma, *prev;
2626         unsigned long flags;
2627         struct rb_node **rb_link, *rb_parent;
2628         pgoff_t pgoff = addr >> PAGE_SHIFT;
2629         int error;
2630
2631         len = PAGE_ALIGN(len);
2632         if (!len)
2633                 return addr;
2634
2635         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2636
2637         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2638         if (error & ~PAGE_MASK)
2639                 return error;
2640
2641         error = mlock_future_check(mm, mm->def_flags, len);
2642         if (error)
2643                 return error;
2644
2645         /*
2646          * mm->mmap_sem is required to protect against another thread
2647          * changing the mappings in case we sleep.
2648          */
2649         verify_mm_writelocked(mm);
2650
2651         /*
2652          * Clear old maps.  this also does some error checking for us
2653          */
2654  munmap_back:
2655         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2656                 if (do_munmap(mm, addr, len))
2657                         return -ENOMEM;
2658                 goto munmap_back;
2659         }
2660
2661         /* Check against address space limits *after* clearing old maps... */
2662         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2663                 return -ENOMEM;
2664
2665         if (mm->map_count > sysctl_max_map_count)
2666                 return -ENOMEM;
2667
2668         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2669                 return -ENOMEM;
2670
2671         /* Can we just expand an old private anonymous mapping? */
2672         vma = vma_merge(mm, prev, addr, addr + len, flags,
2673                                         NULL, NULL, pgoff, NULL);
2674         if (vma)
2675                 goto out;
2676
2677         /*
2678          * create a vma struct for an anonymous mapping
2679          */
2680         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2681         if (!vma) {
2682                 vm_unacct_memory(len >> PAGE_SHIFT);
2683                 return -ENOMEM;
2684         }
2685
2686         INIT_LIST_HEAD(&vma->anon_vma_chain);
2687         vma->vm_mm = mm;
2688         vma->vm_start = addr;
2689         vma->vm_end = addr + len;
2690         vma->vm_pgoff = pgoff;
2691         vma->vm_flags = flags;
2692         vma->vm_page_prot = vm_get_page_prot(flags);
2693         vma_link(mm, vma, prev, rb_link, rb_parent);
2694 out:
2695         perf_event_mmap(vma);
2696         mm->total_vm += len >> PAGE_SHIFT;
2697         if (flags & VM_LOCKED)
2698                 mm->locked_vm += (len >> PAGE_SHIFT);
2699         vma->vm_flags |= VM_SOFTDIRTY;
2700         return addr;
2701 }
2702
2703 unsigned long vm_brk(unsigned long addr, unsigned long len)
2704 {
2705         struct mm_struct *mm = current->mm;
2706         unsigned long ret;
2707         bool populate;
2708
2709         down_write(&mm->mmap_sem);
2710         ret = do_brk(addr, len);
2711         populate = ((mm->def_flags & VM_LOCKED) != 0);
2712         up_write(&mm->mmap_sem);
2713         if (populate)
2714                 mm_populate(addr, len);
2715         return ret;
2716 }
2717 EXPORT_SYMBOL(vm_brk);
2718
2719 /* Release all mmaps. */
2720 void exit_mmap(struct mm_struct *mm)
2721 {
2722         struct mmu_gather tlb;
2723         struct vm_area_struct *vma;
2724         unsigned long nr_accounted = 0;
2725
2726         /* mm's last user has gone, and its about to be pulled down */
2727         mmu_notifier_release(mm);
2728
2729         if (mm->locked_vm) {
2730                 vma = mm->mmap;
2731                 while (vma) {
2732                         if (vma->vm_flags & VM_LOCKED)
2733                                 munlock_vma_pages_all(vma);
2734                         vma = vma->vm_next;
2735                 }
2736         }
2737
2738         arch_exit_mmap(mm);
2739
2740         vma = mm->mmap;
2741         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2742                 return;
2743
2744         lru_add_drain();
2745         flush_cache_mm(mm);
2746         tlb_gather_mmu(&tlb, mm, 0, -1);
2747         /* update_hiwater_rss(mm) here? but nobody should be looking */
2748         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2749         unmap_vmas(&tlb, vma, 0, -1);
2750
2751         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2752         tlb_finish_mmu(&tlb, 0, -1);
2753
2754         /*
2755          * Walk the list again, actually closing and freeing it,
2756          * with preemption enabled, without holding any MM locks.
2757          */
2758         while (vma) {
2759                 if (vma->vm_flags & VM_ACCOUNT)
2760                         nr_accounted += vma_pages(vma);
2761                 vma = remove_vma(vma);
2762         }
2763         vm_unacct_memory(nr_accounted);
2764
2765         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2766                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2767 }
2768
2769 /* Insert vm structure into process list sorted by address
2770  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2771  * then i_mmap_mutex is taken here.
2772  */
2773 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2774 {
2775         struct vm_area_struct *prev;
2776         struct rb_node **rb_link, *rb_parent;
2777
2778         /*
2779          * The vm_pgoff of a purely anonymous vma should be irrelevant
2780          * until its first write fault, when page's anon_vma and index
2781          * are set.  But now set the vm_pgoff it will almost certainly
2782          * end up with (unless mremap moves it elsewhere before that
2783          * first wfault), so /proc/pid/maps tells a consistent story.
2784          *
2785          * By setting it to reflect the virtual start address of the
2786          * vma, merges and splits can happen in a seamless way, just
2787          * using the existing file pgoff checks and manipulations.
2788          * Similarly in do_mmap_pgoff and in do_brk.
2789          */
2790         if (!vma->vm_file) {
2791                 BUG_ON(vma->anon_vma);
2792                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2793         }
2794         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2795                            &prev, &rb_link, &rb_parent))
2796                 return -ENOMEM;
2797         if ((vma->vm_flags & VM_ACCOUNT) &&
2798              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2799                 return -ENOMEM;
2800
2801         vma_link(mm, vma, prev, rb_link, rb_parent);
2802         return 0;
2803 }
2804
2805 /*
2806  * Copy the vma structure to a new location in the same mm,
2807  * prior to moving page table entries, to effect an mremap move.
2808  */
2809 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2810         unsigned long addr, unsigned long len, pgoff_t pgoff,
2811         bool *need_rmap_locks)
2812 {
2813         struct vm_area_struct *vma = *vmap;
2814         unsigned long vma_start = vma->vm_start;
2815         struct mm_struct *mm = vma->vm_mm;
2816         struct vm_area_struct *new_vma, *prev;
2817         struct rb_node **rb_link, *rb_parent;
2818         bool faulted_in_anon_vma = true;
2819
2820         /*
2821          * If anonymous vma has not yet been faulted, update new pgoff
2822          * to match new location, to increase its chance of merging.
2823          */
2824         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2825                 pgoff = addr >> PAGE_SHIFT;
2826                 faulted_in_anon_vma = false;
2827         }
2828
2829         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2830                 return NULL;    /* should never get here */
2831         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2832                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2833         if (new_vma) {
2834                 /*
2835                  * Source vma may have been merged into new_vma
2836                  */
2837                 if (unlikely(vma_start >= new_vma->vm_start &&
2838                              vma_start < new_vma->vm_end)) {
2839                         /*
2840                          * The only way we can get a vma_merge with
2841                          * self during an mremap is if the vma hasn't
2842                          * been faulted in yet and we were allowed to
2843                          * reset the dst vma->vm_pgoff to the
2844                          * destination address of the mremap to allow
2845                          * the merge to happen. mremap must change the
2846                          * vm_pgoff linearity between src and dst vmas
2847                          * (in turn preventing a vma_merge) to be
2848                          * safe. It is only safe to keep the vm_pgoff
2849                          * linear if there are no pages mapped yet.
2850                          */
2851                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2852                         *vmap = vma = new_vma;
2853                 }
2854                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2855         } else {
2856                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2857                 if (new_vma) {
2858                         *new_vma = *vma;
2859                         new_vma->vm_start = addr;
2860                         new_vma->vm_end = addr + len;
2861                         new_vma->vm_pgoff = pgoff;
2862                         if (vma_dup_policy(vma, new_vma))
2863                                 goto out_free_vma;
2864                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2865                         if (anon_vma_clone(new_vma, vma))
2866                                 goto out_free_mempol;
2867                         if (new_vma->vm_file)
2868                                 get_file(new_vma->vm_file);
2869                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2870                                 new_vma->vm_ops->open(new_vma);
2871                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2872                         *need_rmap_locks = false;
2873                 }
2874         }
2875         return new_vma;
2876
2877  out_free_mempol:
2878         mpol_put(vma_policy(new_vma));
2879  out_free_vma:
2880         kmem_cache_free(vm_area_cachep, new_vma);
2881         return NULL;
2882 }
2883
2884 /*
2885  * Return true if the calling process may expand its vm space by the passed
2886  * number of pages
2887  */
2888 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2889 {
2890         unsigned long cur = mm->total_vm;       /* pages */
2891         unsigned long lim;
2892
2893         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2894
2895         if (cur + npages > lim)
2896                 return 0;
2897         return 1;
2898 }
2899
2900 static int special_mapping_fault(struct vm_area_struct *vma,
2901                                  struct vm_fault *vmf);
2902
2903 /*
2904  * Having a close hook prevents vma merging regardless of flags.
2905  */
2906 static void special_mapping_close(struct vm_area_struct *vma)
2907 {
2908 }
2909
2910 static const char *special_mapping_name(struct vm_area_struct *vma)
2911 {
2912         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2913 }
2914
2915 static const struct vm_operations_struct special_mapping_vmops = {
2916         .close = special_mapping_close,
2917         .fault = special_mapping_fault,
2918         .name = special_mapping_name,
2919 };
2920
2921 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2922         .close = special_mapping_close,
2923         .fault = special_mapping_fault,
2924 };
2925
2926 static int special_mapping_fault(struct vm_area_struct *vma,
2927                                 struct vm_fault *vmf)
2928 {
2929         pgoff_t pgoff;
2930         struct page **pages;
2931
2932         /*
2933          * special mappings have no vm_file, and in that case, the mm
2934          * uses vm_pgoff internally. So we have to subtract it from here.
2935          * We are allowed to do this because we are the mm; do not copy
2936          * this code into drivers!
2937          */
2938         pgoff = vmf->pgoff - vma->vm_pgoff;
2939
2940         if (vma->vm_ops == &legacy_special_mapping_vmops)
2941                 pages = vma->vm_private_data;
2942         else
2943                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2944                         pages;
2945
2946         for (; pgoff && *pages; ++pages)
2947                 pgoff--;
2948
2949         if (*pages) {
2950                 struct page *page = *pages;
2951                 get_page(page);
2952                 vmf->page = page;
2953                 return 0;
2954         }
2955
2956         return VM_FAULT_SIGBUS;
2957 }
2958
2959 static struct vm_area_struct *__install_special_mapping(
2960         struct mm_struct *mm,
2961         unsigned long addr, unsigned long len,
2962         unsigned long vm_flags, const struct vm_operations_struct *ops,
2963         void *priv)
2964 {
2965         int ret;
2966         struct vm_area_struct *vma;
2967
2968         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2969         if (unlikely(vma == NULL))
2970                 return ERR_PTR(-ENOMEM);
2971
2972         INIT_LIST_HEAD(&vma->anon_vma_chain);
2973         vma->vm_mm = mm;
2974         vma->vm_start = addr;
2975         vma->vm_end = addr + len;
2976
2977         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2978         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2979
2980         vma->vm_ops = ops;
2981         vma->vm_private_data = priv;
2982
2983         ret = insert_vm_struct(mm, vma);
2984         if (ret)
2985                 goto out;
2986
2987         mm->total_vm += len >> PAGE_SHIFT;
2988
2989         perf_event_mmap(vma);
2990
2991         return vma;
2992
2993 out:
2994         kmem_cache_free(vm_area_cachep, vma);
2995         return ERR_PTR(ret);
2996 }
2997
2998 /*
2999  * Called with mm->mmap_sem held for writing.
3000  * Insert a new vma covering the given region, with the given flags.
3001  * Its pages are supplied by the given array of struct page *.
3002  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3003  * The region past the last page supplied will always produce SIGBUS.
3004  * The array pointer and the pages it points to are assumed to stay alive
3005  * for as long as this mapping might exist.
3006  */
3007 struct vm_area_struct *_install_special_mapping(
3008         struct mm_struct *mm,
3009         unsigned long addr, unsigned long len,
3010         unsigned long vm_flags, const struct vm_special_mapping *spec)
3011 {
3012         return __install_special_mapping(mm, addr, len, vm_flags,
3013                                          &special_mapping_vmops, (void *)spec);
3014 }
3015
3016 int install_special_mapping(struct mm_struct *mm,
3017                             unsigned long addr, unsigned long len,
3018                             unsigned long vm_flags, struct page **pages)
3019 {
3020         struct vm_area_struct *vma = __install_special_mapping(
3021                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3022                 (void *)pages);
3023
3024         return PTR_ERR_OR_ZERO(vma);
3025 }
3026
3027 static DEFINE_MUTEX(mm_all_locks_mutex);
3028
3029 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3030 {
3031         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3032                 /*
3033                  * The LSB of head.next can't change from under us
3034                  * because we hold the mm_all_locks_mutex.
3035                  */
3036                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3037                 /*
3038                  * We can safely modify head.next after taking the
3039                  * anon_vma->root->rwsem. If some other vma in this mm shares
3040                  * the same anon_vma we won't take it again.
3041                  *
3042                  * No need of atomic instructions here, head.next
3043                  * can't change from under us thanks to the
3044                  * anon_vma->root->rwsem.
3045                  */
3046                 if (__test_and_set_bit(0, (unsigned long *)
3047                                        &anon_vma->root->rb_root.rb_node))
3048                         BUG();
3049         }
3050 }
3051
3052 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3053 {
3054         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3055                 /*
3056                  * AS_MM_ALL_LOCKS can't change from under us because
3057                  * we hold the mm_all_locks_mutex.
3058                  *
3059                  * Operations on ->flags have to be atomic because
3060                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3061                  * mm_all_locks_mutex, there may be other cpus
3062                  * changing other bitflags in parallel to us.
3063                  */
3064                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3065                         BUG();
3066                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3067         }
3068 }
3069
3070 /*
3071  * This operation locks against the VM for all pte/vma/mm related
3072  * operations that could ever happen on a certain mm. This includes
3073  * vmtruncate, try_to_unmap, and all page faults.
3074  *
3075  * The caller must take the mmap_sem in write mode before calling
3076  * mm_take_all_locks(). The caller isn't allowed to release the
3077  * mmap_sem until mm_drop_all_locks() returns.
3078  *
3079  * mmap_sem in write mode is required in order to block all operations
3080  * that could modify pagetables and free pages without need of
3081  * altering the vma layout (for example populate_range() with
3082  * nonlinear vmas). It's also needed in write mode to avoid new
3083  * anon_vmas to be associated with existing vmas.
3084  *
3085  * A single task can't take more than one mm_take_all_locks() in a row
3086  * or it would deadlock.
3087  *
3088  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3089  * mapping->flags avoid to take the same lock twice, if more than one
3090  * vma in this mm is backed by the same anon_vma or address_space.
3091  *
3092  * We can take all the locks in random order because the VM code
3093  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3094  * takes more than one of them in a row. Secondly we're protected
3095  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3096  *
3097  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3098  * that may have to take thousand of locks.
3099  *
3100  * mm_take_all_locks() can fail if it's interrupted by signals.
3101  */
3102 int mm_take_all_locks(struct mm_struct *mm)
3103 {
3104         struct vm_area_struct *vma;
3105         struct anon_vma_chain *avc;
3106
3107         BUG_ON(down_read_trylock(&mm->mmap_sem));
3108
3109         mutex_lock(&mm_all_locks_mutex);
3110
3111         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3112                 if (signal_pending(current))
3113                         goto out_unlock;
3114                 if (vma->vm_file && vma->vm_file->f_mapping)
3115                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3116         }
3117
3118         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3119                 if (signal_pending(current))
3120                         goto out_unlock;
3121                 if (vma->anon_vma)
3122                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3123                                 vm_lock_anon_vma(mm, avc->anon_vma);
3124         }
3125
3126         return 0;
3127
3128 out_unlock:
3129         mm_drop_all_locks(mm);
3130         return -EINTR;
3131 }
3132
3133 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3134 {
3135         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3136                 /*
3137                  * The LSB of head.next can't change to 0 from under
3138                  * us because we hold the mm_all_locks_mutex.
3139                  *
3140                  * We must however clear the bitflag before unlocking
3141                  * the vma so the users using the anon_vma->rb_root will
3142                  * never see our bitflag.
3143                  *
3144                  * No need of atomic instructions here, head.next
3145                  * can't change from under us until we release the
3146                  * anon_vma->root->rwsem.
3147                  */
3148                 if (!__test_and_clear_bit(0, (unsigned long *)
3149                                           &anon_vma->root->rb_root.rb_node))
3150                         BUG();
3151                 anon_vma_unlock_write(anon_vma);
3152         }
3153 }
3154
3155 static void vm_unlock_mapping(struct address_space *mapping)
3156 {
3157         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3158                 /*
3159                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3160                  * because we hold the mm_all_locks_mutex.
3161                  */
3162                 mutex_unlock(&mapping->i_mmap_mutex);
3163                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3164                                         &mapping->flags))
3165                         BUG();
3166         }
3167 }
3168
3169 /*
3170  * The mmap_sem cannot be released by the caller until
3171  * mm_drop_all_locks() returns.
3172  */
3173 void mm_drop_all_locks(struct mm_struct *mm)
3174 {
3175         struct vm_area_struct *vma;
3176         struct anon_vma_chain *avc;
3177
3178         BUG_ON(down_read_trylock(&mm->mmap_sem));
3179         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3180
3181         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3182                 if (vma->anon_vma)
3183                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3184                                 vm_unlock_anon_vma(avc->anon_vma);
3185                 if (vma->vm_file && vma->vm_file->f_mapping)
3186                         vm_unlock_mapping(vma->vm_file->f_mapping);
3187         }
3188
3189         mutex_unlock(&mm_all_locks_mutex);
3190 }
3191
3192 /*
3193  * initialise the VMA slab
3194  */
3195 void __init mmap_init(void)
3196 {
3197         int ret;
3198
3199         ret = percpu_counter_init(&vm_committed_as, 0);
3200         VM_BUG_ON(ret);
3201 }
3202
3203 /*
3204  * Initialise sysctl_user_reserve_kbytes.
3205  *
3206  * This is intended to prevent a user from starting a single memory hogging
3207  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3208  * mode.
3209  *
3210  * The default value is min(3% of free memory, 128MB)
3211  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3212  */
3213 static int init_user_reserve(void)
3214 {
3215         unsigned long free_kbytes;
3216
3217         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3218
3219         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3220         return 0;
3221 }
3222 subsys_initcall(init_user_reserve);
3223
3224 /*
3225  * Initialise sysctl_admin_reserve_kbytes.
3226  *
3227  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3228  * to log in and kill a memory hogging process.
3229  *
3230  * Systems with more than 256MB will reserve 8MB, enough to recover
3231  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3232  * only reserve 3% of free pages by default.
3233  */
3234 static int init_admin_reserve(void)
3235 {
3236         unsigned long free_kbytes;
3237
3238         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3239
3240         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3241         return 0;
3242 }
3243 subsys_initcall(init_admin_reserve);
3244
3245 /*
3246  * Reinititalise user and admin reserves if memory is added or removed.
3247  *
3248  * The default user reserve max is 128MB, and the default max for the
3249  * admin reserve is 8MB. These are usually, but not always, enough to
3250  * enable recovery from a memory hogging process using login/sshd, a shell,
3251  * and tools like top. It may make sense to increase or even disable the
3252  * reserve depending on the existence of swap or variations in the recovery
3253  * tools. So, the admin may have changed them.
3254  *
3255  * If memory is added and the reserves have been eliminated or increased above
3256  * the default max, then we'll trust the admin.
3257  *
3258  * If memory is removed and there isn't enough free memory, then we
3259  * need to reset the reserves.
3260  *
3261  * Otherwise keep the reserve set by the admin.
3262  */
3263 static int reserve_mem_notifier(struct notifier_block *nb,
3264                              unsigned long action, void *data)
3265 {
3266         unsigned long tmp, free_kbytes;
3267
3268         switch (action) {
3269         case MEM_ONLINE:
3270                 /* Default max is 128MB. Leave alone if modified by operator. */
3271                 tmp = sysctl_user_reserve_kbytes;
3272                 if (0 < tmp && tmp < (1UL << 17))
3273                         init_user_reserve();
3274
3275                 /* Default max is 8MB.  Leave alone if modified by operator. */
3276                 tmp = sysctl_admin_reserve_kbytes;
3277                 if (0 < tmp && tmp < (1UL << 13))
3278                         init_admin_reserve();
3279
3280                 break;
3281         case MEM_OFFLINE:
3282                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3283
3284                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3285                         init_user_reserve();
3286                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3287                                 sysctl_user_reserve_kbytes);
3288                 }
3289
3290                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3291                         init_admin_reserve();
3292                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3293                                 sysctl_admin_reserve_kbytes);
3294                 }
3295                 break;
3296         default:
3297                 break;
3298         }
3299         return NOTIFY_OK;
3300 }
3301
3302 static struct notifier_block reserve_mem_nb = {
3303         .notifier_call = reserve_mem_notifier,
3304 };
3305
3306 static int __meminit init_reserve_notifier(void)
3307 {
3308         if (register_hotmemory_notifier(&reserve_mem_nb))
3309                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3310
3311         return 0;
3312 }
3313 subsys_initcall(init_reserve_notifier);