security: trim security.h
[linux-2.6-block.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)       (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)              (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50                 struct vm_area_struct *vma, struct vm_area_struct *prev,
51                 unsigned long start, unsigned long end);
52
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114         unsigned long free, allowed;
115
116         vm_acct_memory(pages);
117
118         /*
119          * Sometimes we want to use more memory than we have
120          */
121         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122                 return 0;
123
124         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125                 free = global_page_state(NR_FREE_PAGES);
126                 free += global_page_state(NR_FILE_PAGES);
127
128                 /*
129                  * shmem pages shouldn't be counted as free in this
130                  * case, they can't be purged, only swapped out, and
131                  * that won't affect the overall amount of available
132                  * memory in the system.
133                  */
134                 free -= global_page_state(NR_SHMEM);
135
136                 free += nr_swap_pages;
137
138                 /*
139                  * Any slabs which are created with the
140                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141                  * which are reclaimable, under pressure.  The dentry
142                  * cache and most inode caches should fall into this
143                  */
144                 free += global_page_state(NR_SLAB_RECLAIMABLE);
145
146                 /*
147                  * Leave reserved pages. The pages are not for anonymous pages.
148                  */
149                 if (free <= totalreserve_pages)
150                         goto error;
151                 else
152                         free -= totalreserve_pages;
153
154                 /*
155                  * Leave the last 3% for root
156                  */
157                 if (!cap_sys_admin)
158                         free -= free / 32;
159
160                 if (free > pages)
161                         return 0;
162
163                 goto error;
164         }
165
166         allowed = (totalram_pages - hugetlb_total_pages())
167                 * sysctl_overcommit_ratio / 100;
168         /*
169          * Leave the last 3% for root
170          */
171         if (!cap_sys_admin)
172                 allowed -= allowed / 32;
173         allowed += total_swap_pages;
174
175         /* Don't let a single process grow too big:
176            leave 3% of the size of this process for other processes */
177         if (mm)
178                 allowed -= mm->total_vm / 32;
179
180         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181                 return 0;
182 error:
183         vm_unacct_memory(pages);
184
185         return -ENOMEM;
186 }
187
188 /*
189  * Requires inode->i_mapping->i_mmap_mutex
190  */
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192                 struct file *file, struct address_space *mapping)
193 {
194         if (vma->vm_flags & VM_DENYWRITE)
195                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196         if (vma->vm_flags & VM_SHARED)
197                 mapping->i_mmap_writable--;
198
199         flush_dcache_mmap_lock(mapping);
200         if (unlikely(vma->vm_flags & VM_NONLINEAR))
201                 list_del_init(&vma->shared.vm_set.list);
202         else
203                 vma_prio_tree_remove(vma, &mapping->i_mmap);
204         flush_dcache_mmap_unlock(mapping);
205 }
206
207 /*
208  * Unlink a file-based vm structure from its prio_tree, to hide
209  * vma from rmap and vmtruncate before freeing its page tables.
210  */
211 void unlink_file_vma(struct vm_area_struct *vma)
212 {
213         struct file *file = vma->vm_file;
214
215         if (file) {
216                 struct address_space *mapping = file->f_mapping;
217                 mutex_lock(&mapping->i_mmap_mutex);
218                 __remove_shared_vm_struct(vma, file, mapping);
219                 mutex_unlock(&mapping->i_mmap_mutex);
220         }
221 }
222
223 /*
224  * Close a vm structure and free it, returning the next.
225  */
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227 {
228         struct vm_area_struct *next = vma->vm_next;
229
230         might_sleep();
231         if (vma->vm_ops && vma->vm_ops->close)
232                 vma->vm_ops->close(vma);
233         if (vma->vm_file) {
234                 fput(vma->vm_file);
235                 if (vma->vm_flags & VM_EXECUTABLE)
236                         removed_exe_file_vma(vma->vm_mm);
237         }
238         mpol_put(vma_policy(vma));
239         kmem_cache_free(vm_area_cachep, vma);
240         return next;
241 }
242
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245         unsigned long rlim, retval;
246         unsigned long newbrk, oldbrk;
247         struct mm_struct *mm = current->mm;
248         unsigned long min_brk;
249
250         down_write(&mm->mmap_sem);
251
252 #ifdef CONFIG_COMPAT_BRK
253         /*
254          * CONFIG_COMPAT_BRK can still be overridden by setting
255          * randomize_va_space to 2, which will still cause mm->start_brk
256          * to be arbitrarily shifted
257          */
258         if (current->brk_randomized)
259                 min_brk = mm->start_brk;
260         else
261                 min_brk = mm->end_data;
262 #else
263         min_brk = mm->start_brk;
264 #endif
265         if (brk < min_brk)
266                 goto out;
267
268         /*
269          * Check against rlimit here. If this check is done later after the test
270          * of oldbrk with newbrk then it can escape the test and let the data
271          * segment grow beyond its set limit the in case where the limit is
272          * not page aligned -Ram Gupta
273          */
274         rlim = rlimit(RLIMIT_DATA);
275         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276                         (mm->end_data - mm->start_data) > rlim)
277                 goto out;
278
279         newbrk = PAGE_ALIGN(brk);
280         oldbrk = PAGE_ALIGN(mm->brk);
281         if (oldbrk == newbrk)
282                 goto set_brk;
283
284         /* Always allow shrinking brk. */
285         if (brk <= mm->brk) {
286                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287                         goto set_brk;
288                 goto out;
289         }
290
291         /* Check against existing mmap mappings. */
292         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293                 goto out;
294
295         /* Ok, looks good - let it rip. */
296         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297                 goto out;
298 set_brk:
299         mm->brk = brk;
300 out:
301         retval = mm->brk;
302         up_write(&mm->mmap_sem);
303         return retval;
304 }
305
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309         int i = 0, j;
310         struct rb_node *nd, *pn = NULL;
311         unsigned long prev = 0, pend = 0;
312
313         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314                 struct vm_area_struct *vma;
315                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316                 if (vma->vm_start < prev)
317                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318                 if (vma->vm_start < pend)
319                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320                 if (vma->vm_start > vma->vm_end)
321                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322                 i++;
323                 pn = nd;
324                 prev = vma->vm_start;
325                 pend = vma->vm_end;
326         }
327         j = 0;
328         for (nd = pn; nd; nd = rb_prev(nd)) {
329                 j++;
330         }
331         if (i != j)
332                 printk("backwards %d, forwards %d\n", j, i), i = 0;
333         return i;
334 }
335
336 void validate_mm(struct mm_struct *mm)
337 {
338         int bug = 0;
339         int i = 0;
340         struct vm_area_struct *tmp = mm->mmap;
341         while (tmp) {
342                 tmp = tmp->vm_next;
343                 i++;
344         }
345         if (i != mm->map_count)
346                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347         i = browse_rb(&mm->mm_rb);
348         if (i != mm->map_count)
349                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350         BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355
356 static struct vm_area_struct *
357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
359                 struct rb_node ** rb_parent)
360 {
361         struct vm_area_struct * vma;
362         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363
364         __rb_link = &mm->mm_rb.rb_node;
365         rb_prev = __rb_parent = NULL;
366         vma = NULL;
367
368         while (*__rb_link) {
369                 struct vm_area_struct *vma_tmp;
370
371                 __rb_parent = *__rb_link;
372                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373
374                 if (vma_tmp->vm_end > addr) {
375                         vma = vma_tmp;
376                         if (vma_tmp->vm_start <= addr)
377                                 break;
378                         __rb_link = &__rb_parent->rb_left;
379                 } else {
380                         rb_prev = __rb_parent;
381                         __rb_link = &__rb_parent->rb_right;
382                 }
383         }
384
385         *pprev = NULL;
386         if (rb_prev)
387                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388         *rb_link = __rb_link;
389         *rb_parent = __rb_parent;
390         return vma;
391 }
392
393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394                 struct rb_node **rb_link, struct rb_node *rb_parent)
395 {
396         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398 }
399
400 static void __vma_link_file(struct vm_area_struct *vma)
401 {
402         struct file *file;
403
404         file = vma->vm_file;
405         if (file) {
406                 struct address_space *mapping = file->f_mapping;
407
408                 if (vma->vm_flags & VM_DENYWRITE)
409                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410                 if (vma->vm_flags & VM_SHARED)
411                         mapping->i_mmap_writable++;
412
413                 flush_dcache_mmap_lock(mapping);
414                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
415                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416                 else
417                         vma_prio_tree_insert(vma, &mapping->i_mmap);
418                 flush_dcache_mmap_unlock(mapping);
419         }
420 }
421
422 static void
423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424         struct vm_area_struct *prev, struct rb_node **rb_link,
425         struct rb_node *rb_parent)
426 {
427         __vma_link_list(mm, vma, prev, rb_parent);
428         __vma_link_rb(mm, vma, rb_link, rb_parent);
429 }
430
431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432                         struct vm_area_struct *prev, struct rb_node **rb_link,
433                         struct rb_node *rb_parent)
434 {
435         struct address_space *mapping = NULL;
436
437         if (vma->vm_file)
438                 mapping = vma->vm_file->f_mapping;
439
440         if (mapping)
441                 mutex_lock(&mapping->i_mmap_mutex);
442
443         __vma_link(mm, vma, prev, rb_link, rb_parent);
444         __vma_link_file(vma);
445
446         if (mapping)
447                 mutex_unlock(&mapping->i_mmap_mutex);
448
449         mm->map_count++;
450         validate_mm(mm);
451 }
452
453 /*
454  * Helper for vma_adjust in the split_vma insert case:
455  * insert vm structure into list and rbtree and anon_vma,
456  * but it has already been inserted into prio_tree earlier.
457  */
458 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
459 {
460         struct vm_area_struct *__vma, *prev;
461         struct rb_node **rb_link, *rb_parent;
462
463         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
464         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
465         __vma_link(mm, vma, prev, rb_link, rb_parent);
466         mm->map_count++;
467 }
468
469 static inline void
470 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
471                 struct vm_area_struct *prev)
472 {
473         struct vm_area_struct *next = vma->vm_next;
474
475         prev->vm_next = next;
476         if (next)
477                 next->vm_prev = prev;
478         rb_erase(&vma->vm_rb, &mm->mm_rb);
479         if (mm->mmap_cache == vma)
480                 mm->mmap_cache = prev;
481 }
482
483 /*
484  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
485  * is already present in an i_mmap tree without adjusting the tree.
486  * The following helper function should be used when such adjustments
487  * are necessary.  The "insert" vma (if any) is to be inserted
488  * before we drop the necessary locks.
489  */
490 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
491         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
492 {
493         struct mm_struct *mm = vma->vm_mm;
494         struct vm_area_struct *next = vma->vm_next;
495         struct vm_area_struct *importer = NULL;
496         struct address_space *mapping = NULL;
497         struct prio_tree_root *root = NULL;
498         struct anon_vma *anon_vma = NULL;
499         struct file *file = vma->vm_file;
500         long adjust_next = 0;
501         int remove_next = 0;
502
503         if (next && !insert) {
504                 struct vm_area_struct *exporter = NULL;
505
506                 if (end >= next->vm_end) {
507                         /*
508                          * vma expands, overlapping all the next, and
509                          * perhaps the one after too (mprotect case 6).
510                          */
511 again:                  remove_next = 1 + (end > next->vm_end);
512                         end = next->vm_end;
513                         exporter = next;
514                         importer = vma;
515                 } else if (end > next->vm_start) {
516                         /*
517                          * vma expands, overlapping part of the next:
518                          * mprotect case 5 shifting the boundary up.
519                          */
520                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
521                         exporter = next;
522                         importer = vma;
523                 } else if (end < vma->vm_end) {
524                         /*
525                          * vma shrinks, and !insert tells it's not
526                          * split_vma inserting another: so it must be
527                          * mprotect case 4 shifting the boundary down.
528                          */
529                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
530                         exporter = vma;
531                         importer = next;
532                 }
533
534                 /*
535                  * Easily overlooked: when mprotect shifts the boundary,
536                  * make sure the expanding vma has anon_vma set if the
537                  * shrinking vma had, to cover any anon pages imported.
538                  */
539                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
540                         if (anon_vma_clone(importer, exporter))
541                                 return -ENOMEM;
542                         importer->anon_vma = exporter->anon_vma;
543                 }
544         }
545
546         if (file) {
547                 mapping = file->f_mapping;
548                 if (!(vma->vm_flags & VM_NONLINEAR))
549                         root = &mapping->i_mmap;
550                 mutex_lock(&mapping->i_mmap_mutex);
551                 if (insert) {
552                         /*
553                          * Put into prio_tree now, so instantiated pages
554                          * are visible to arm/parisc __flush_dcache_page
555                          * throughout; but we cannot insert into address
556                          * space until vma start or end is updated.
557                          */
558                         __vma_link_file(insert);
559                 }
560         }
561
562         vma_adjust_trans_huge(vma, start, end, adjust_next);
563
564         /*
565          * When changing only vma->vm_end, we don't really need anon_vma
566          * lock. This is a fairly rare case by itself, but the anon_vma
567          * lock may be shared between many sibling processes.  Skipping
568          * the lock for brk adjustments makes a difference sometimes.
569          */
570         if (vma->anon_vma && (importer || start != vma->vm_start)) {
571                 anon_vma = vma->anon_vma;
572                 anon_vma_lock(anon_vma);
573         }
574
575         if (root) {
576                 flush_dcache_mmap_lock(mapping);
577                 vma_prio_tree_remove(vma, root);
578                 if (adjust_next)
579                         vma_prio_tree_remove(next, root);
580         }
581
582         vma->vm_start = start;
583         vma->vm_end = end;
584         vma->vm_pgoff = pgoff;
585         if (adjust_next) {
586                 next->vm_start += adjust_next << PAGE_SHIFT;
587                 next->vm_pgoff += adjust_next;
588         }
589
590         if (root) {
591                 if (adjust_next)
592                         vma_prio_tree_insert(next, root);
593                 vma_prio_tree_insert(vma, root);
594                 flush_dcache_mmap_unlock(mapping);
595         }
596
597         if (remove_next) {
598                 /*
599                  * vma_merge has merged next into vma, and needs
600                  * us to remove next before dropping the locks.
601                  */
602                 __vma_unlink(mm, next, vma);
603                 if (file)
604                         __remove_shared_vm_struct(next, file, mapping);
605         } else if (insert) {
606                 /*
607                  * split_vma has split insert from vma, and needs
608                  * us to insert it before dropping the locks
609                  * (it may either follow vma or precede it).
610                  */
611                 __insert_vm_struct(mm, insert);
612         }
613
614         if (anon_vma)
615                 anon_vma_unlock(anon_vma);
616         if (mapping)
617                 mutex_unlock(&mapping->i_mmap_mutex);
618
619         if (remove_next) {
620                 if (file) {
621                         fput(file);
622                         if (next->vm_flags & VM_EXECUTABLE)
623                                 removed_exe_file_vma(mm);
624                 }
625                 if (next->anon_vma)
626                         anon_vma_merge(vma, next);
627                 mm->map_count--;
628                 mpol_put(vma_policy(next));
629                 kmem_cache_free(vm_area_cachep, next);
630                 /*
631                  * In mprotect's case 6 (see comments on vma_merge),
632                  * we must remove another next too. It would clutter
633                  * up the code too much to do both in one go.
634                  */
635                 if (remove_next == 2) {
636                         next = vma->vm_next;
637                         goto again;
638                 }
639         }
640
641         validate_mm(mm);
642
643         return 0;
644 }
645
646 /*
647  * If the vma has a ->close operation then the driver probably needs to release
648  * per-vma resources, so we don't attempt to merge those.
649  */
650 static inline int is_mergeable_vma(struct vm_area_struct *vma,
651                         struct file *file, unsigned long vm_flags)
652 {
653         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
654         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
655                 return 0;
656         if (vma->vm_file != file)
657                 return 0;
658         if (vma->vm_ops && vma->vm_ops->close)
659                 return 0;
660         return 1;
661 }
662
663 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
664                                         struct anon_vma *anon_vma2,
665                                         struct vm_area_struct *vma)
666 {
667         /*
668          * The list_is_singular() test is to avoid merging VMA cloned from
669          * parents. This can improve scalability caused by anon_vma lock.
670          */
671         if ((!anon_vma1 || !anon_vma2) && (!vma ||
672                 list_is_singular(&vma->anon_vma_chain)))
673                 return 1;
674         return anon_vma1 == anon_vma2;
675 }
676
677 /*
678  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
679  * in front of (at a lower virtual address and file offset than) the vma.
680  *
681  * We cannot merge two vmas if they have differently assigned (non-NULL)
682  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
683  *
684  * We don't check here for the merged mmap wrapping around the end of pagecache
685  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
686  * wrap, nor mmaps which cover the final page at index -1UL.
687  */
688 static int
689 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
690         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
691 {
692         if (is_mergeable_vma(vma, file, vm_flags) &&
693             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
694                 if (vma->vm_pgoff == vm_pgoff)
695                         return 1;
696         }
697         return 0;
698 }
699
700 /*
701  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
702  * beyond (at a higher virtual address and file offset than) the vma.
703  *
704  * We cannot merge two vmas if they have differently assigned (non-NULL)
705  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
706  */
707 static int
708 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
709         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711         if (is_mergeable_vma(vma, file, vm_flags) &&
712             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713                 pgoff_t vm_pglen;
714                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
715                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
716                         return 1;
717         }
718         return 0;
719 }
720
721 /*
722  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
723  * whether that can be merged with its predecessor or its successor.
724  * Or both (it neatly fills a hole).
725  *
726  * In most cases - when called for mmap, brk or mremap - [addr,end) is
727  * certain not to be mapped by the time vma_merge is called; but when
728  * called for mprotect, it is certain to be already mapped (either at
729  * an offset within prev, or at the start of next), and the flags of
730  * this area are about to be changed to vm_flags - and the no-change
731  * case has already been eliminated.
732  *
733  * The following mprotect cases have to be considered, where AAAA is
734  * the area passed down from mprotect_fixup, never extending beyond one
735  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
736  *
737  *     AAAA             AAAA                AAAA          AAAA
738  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
739  *    cannot merge    might become    might become    might become
740  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
741  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
742  *    mremap move:                                    PPPPNNNNNNNN 8
743  *        AAAA
744  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
745  *    might become    case 1 below    case 2 below    case 3 below
746  *
747  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
748  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
749  */
750 struct vm_area_struct *vma_merge(struct mm_struct *mm,
751                         struct vm_area_struct *prev, unsigned long addr,
752                         unsigned long end, unsigned long vm_flags,
753                         struct anon_vma *anon_vma, struct file *file,
754                         pgoff_t pgoff, struct mempolicy *policy)
755 {
756         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
757         struct vm_area_struct *area, *next;
758         int err;
759
760         /*
761          * We later require that vma->vm_flags == vm_flags,
762          * so this tests vma->vm_flags & VM_SPECIAL, too.
763          */
764         if (vm_flags & VM_SPECIAL)
765                 return NULL;
766
767         if (prev)
768                 next = prev->vm_next;
769         else
770                 next = mm->mmap;
771         area = next;
772         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
773                 next = next->vm_next;
774
775         /*
776          * Can it merge with the predecessor?
777          */
778         if (prev && prev->vm_end == addr &&
779                         mpol_equal(vma_policy(prev), policy) &&
780                         can_vma_merge_after(prev, vm_flags,
781                                                 anon_vma, file, pgoff)) {
782                 /*
783                  * OK, it can.  Can we now merge in the successor as well?
784                  */
785                 if (next && end == next->vm_start &&
786                                 mpol_equal(policy, vma_policy(next)) &&
787                                 can_vma_merge_before(next, vm_flags,
788                                         anon_vma, file, pgoff+pglen) &&
789                                 is_mergeable_anon_vma(prev->anon_vma,
790                                                       next->anon_vma, NULL)) {
791                                                         /* cases 1, 6 */
792                         err = vma_adjust(prev, prev->vm_start,
793                                 next->vm_end, prev->vm_pgoff, NULL);
794                 } else                                  /* cases 2, 5, 7 */
795                         err = vma_adjust(prev, prev->vm_start,
796                                 end, prev->vm_pgoff, NULL);
797                 if (err)
798                         return NULL;
799                 khugepaged_enter_vma_merge(prev);
800                 return prev;
801         }
802
803         /*
804          * Can this new request be merged in front of next?
805          */
806         if (next && end == next->vm_start &&
807                         mpol_equal(policy, vma_policy(next)) &&
808                         can_vma_merge_before(next, vm_flags,
809                                         anon_vma, file, pgoff+pglen)) {
810                 if (prev && addr < prev->vm_end)        /* case 4 */
811                         err = vma_adjust(prev, prev->vm_start,
812                                 addr, prev->vm_pgoff, NULL);
813                 else                                    /* cases 3, 8 */
814                         err = vma_adjust(area, addr, next->vm_end,
815                                 next->vm_pgoff - pglen, NULL);
816                 if (err)
817                         return NULL;
818                 khugepaged_enter_vma_merge(area);
819                 return area;
820         }
821
822         return NULL;
823 }
824
825 /*
826  * Rough compatbility check to quickly see if it's even worth looking
827  * at sharing an anon_vma.
828  *
829  * They need to have the same vm_file, and the flags can only differ
830  * in things that mprotect may change.
831  *
832  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
833  * we can merge the two vma's. For example, we refuse to merge a vma if
834  * there is a vm_ops->close() function, because that indicates that the
835  * driver is doing some kind of reference counting. But that doesn't
836  * really matter for the anon_vma sharing case.
837  */
838 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
839 {
840         return a->vm_end == b->vm_start &&
841                 mpol_equal(vma_policy(a), vma_policy(b)) &&
842                 a->vm_file == b->vm_file &&
843                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
844                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
845 }
846
847 /*
848  * Do some basic sanity checking to see if we can re-use the anon_vma
849  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
850  * the same as 'old', the other will be the new one that is trying
851  * to share the anon_vma.
852  *
853  * NOTE! This runs with mm_sem held for reading, so it is possible that
854  * the anon_vma of 'old' is concurrently in the process of being set up
855  * by another page fault trying to merge _that_. But that's ok: if it
856  * is being set up, that automatically means that it will be a singleton
857  * acceptable for merging, so we can do all of this optimistically. But
858  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
859  *
860  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
861  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
862  * is to return an anon_vma that is "complex" due to having gone through
863  * a fork).
864  *
865  * We also make sure that the two vma's are compatible (adjacent,
866  * and with the same memory policies). That's all stable, even with just
867  * a read lock on the mm_sem.
868  */
869 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
870 {
871         if (anon_vma_compatible(a, b)) {
872                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
873
874                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
875                         return anon_vma;
876         }
877         return NULL;
878 }
879
880 /*
881  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
882  * neighbouring vmas for a suitable anon_vma, before it goes off
883  * to allocate a new anon_vma.  It checks because a repetitive
884  * sequence of mprotects and faults may otherwise lead to distinct
885  * anon_vmas being allocated, preventing vma merge in subsequent
886  * mprotect.
887  */
888 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
889 {
890         struct anon_vma *anon_vma;
891         struct vm_area_struct *near;
892
893         near = vma->vm_next;
894         if (!near)
895                 goto try_prev;
896
897         anon_vma = reusable_anon_vma(near, vma, near);
898         if (anon_vma)
899                 return anon_vma;
900 try_prev:
901         near = vma->vm_prev;
902         if (!near)
903                 goto none;
904
905         anon_vma = reusable_anon_vma(near, near, vma);
906         if (anon_vma)
907                 return anon_vma;
908 none:
909         /*
910          * There's no absolute need to look only at touching neighbours:
911          * we could search further afield for "compatible" anon_vmas.
912          * But it would probably just be a waste of time searching,
913          * or lead to too many vmas hanging off the same anon_vma.
914          * We're trying to allow mprotect remerging later on,
915          * not trying to minimize memory used for anon_vmas.
916          */
917         return NULL;
918 }
919
920 #ifdef CONFIG_PROC_FS
921 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
922                                                 struct file *file, long pages)
923 {
924         const unsigned long stack_flags
925                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
926
927         if (file) {
928                 mm->shared_vm += pages;
929                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
930                         mm->exec_vm += pages;
931         } else if (flags & stack_flags)
932                 mm->stack_vm += pages;
933         if (flags & (VM_RESERVED|VM_IO))
934                 mm->reserved_vm += pages;
935 }
936 #endif /* CONFIG_PROC_FS */
937
938 /*
939  * If a hint addr is less than mmap_min_addr change hint to be as
940  * low as possible but still greater than mmap_min_addr
941  */
942 static inline unsigned long round_hint_to_min(unsigned long hint)
943 {
944         hint &= PAGE_MASK;
945         if (((void *)hint != NULL) &&
946             (hint < mmap_min_addr))
947                 return PAGE_ALIGN(mmap_min_addr);
948         return hint;
949 }
950
951 /*
952  * The caller must hold down_write(&current->mm->mmap_sem).
953  */
954
955 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
956                         unsigned long len, unsigned long prot,
957                         unsigned long flags, unsigned long pgoff)
958 {
959         struct mm_struct * mm = current->mm;
960         struct inode *inode;
961         vm_flags_t vm_flags;
962         int error;
963         unsigned long reqprot = prot;
964
965         /*
966          * Does the application expect PROT_READ to imply PROT_EXEC?
967          *
968          * (the exception is when the underlying filesystem is noexec
969          *  mounted, in which case we dont add PROT_EXEC.)
970          */
971         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
972                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
973                         prot |= PROT_EXEC;
974
975         if (!len)
976                 return -EINVAL;
977
978         if (!(flags & MAP_FIXED))
979                 addr = round_hint_to_min(addr);
980
981         /* Careful about overflows.. */
982         len = PAGE_ALIGN(len);
983         if (!len)
984                 return -ENOMEM;
985
986         /* offset overflow? */
987         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
988                return -EOVERFLOW;
989
990         /* Too many mappings? */
991         if (mm->map_count > sysctl_max_map_count)
992                 return -ENOMEM;
993
994         /* Obtain the address to map to. we verify (or select) it and ensure
995          * that it represents a valid section of the address space.
996          */
997         addr = get_unmapped_area(file, addr, len, pgoff, flags);
998         if (addr & ~PAGE_MASK)
999                 return addr;
1000
1001         /* Do simple checking here so the lower-level routines won't have
1002          * to. we assume access permissions have been handled by the open
1003          * of the memory object, so we don't do any here.
1004          */
1005         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1006                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1007
1008         if (flags & MAP_LOCKED)
1009                 if (!can_do_mlock())
1010                         return -EPERM;
1011
1012         /* mlock MCL_FUTURE? */
1013         if (vm_flags & VM_LOCKED) {
1014                 unsigned long locked, lock_limit;
1015                 locked = len >> PAGE_SHIFT;
1016                 locked += mm->locked_vm;
1017                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1018                 lock_limit >>= PAGE_SHIFT;
1019                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1020                         return -EAGAIN;
1021         }
1022
1023         inode = file ? file->f_path.dentry->d_inode : NULL;
1024
1025         if (file) {
1026                 switch (flags & MAP_TYPE) {
1027                 case MAP_SHARED:
1028                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1029                                 return -EACCES;
1030
1031                         /*
1032                          * Make sure we don't allow writing to an append-only
1033                          * file..
1034                          */
1035                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1036                                 return -EACCES;
1037
1038                         /*
1039                          * Make sure there are no mandatory locks on the file.
1040                          */
1041                         if (locks_verify_locked(inode))
1042                                 return -EAGAIN;
1043
1044                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1045                         if (!(file->f_mode & FMODE_WRITE))
1046                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1047
1048                         /* fall through */
1049                 case MAP_PRIVATE:
1050                         if (!(file->f_mode & FMODE_READ))
1051                                 return -EACCES;
1052                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1053                                 if (vm_flags & VM_EXEC)
1054                                         return -EPERM;
1055                                 vm_flags &= ~VM_MAYEXEC;
1056                         }
1057
1058                         if (!file->f_op || !file->f_op->mmap)
1059                                 return -ENODEV;
1060                         break;
1061
1062                 default:
1063                         return -EINVAL;
1064                 }
1065         } else {
1066                 switch (flags & MAP_TYPE) {
1067                 case MAP_SHARED:
1068                         /*
1069                          * Ignore pgoff.
1070                          */
1071                         pgoff = 0;
1072                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1073                         break;
1074                 case MAP_PRIVATE:
1075                         /*
1076                          * Set pgoff according to addr for anon_vma.
1077                          */
1078                         pgoff = addr >> PAGE_SHIFT;
1079                         break;
1080                 default:
1081                         return -EINVAL;
1082                 }
1083         }
1084
1085         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1086         if (error)
1087                 return error;
1088
1089         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1090 }
1091 EXPORT_SYMBOL(do_mmap_pgoff);
1092
1093 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1094                 unsigned long, prot, unsigned long, flags,
1095                 unsigned long, fd, unsigned long, pgoff)
1096 {
1097         struct file *file = NULL;
1098         unsigned long retval = -EBADF;
1099
1100         if (!(flags & MAP_ANONYMOUS)) {
1101                 audit_mmap_fd(fd, flags);
1102                 if (unlikely(flags & MAP_HUGETLB))
1103                         return -EINVAL;
1104                 file = fget(fd);
1105                 if (!file)
1106                         goto out;
1107         } else if (flags & MAP_HUGETLB) {
1108                 struct user_struct *user = NULL;
1109                 /*
1110                  * VM_NORESERVE is used because the reservations will be
1111                  * taken when vm_ops->mmap() is called
1112                  * A dummy user value is used because we are not locking
1113                  * memory so no accounting is necessary
1114                  */
1115                 len = ALIGN(len, huge_page_size(&default_hstate));
1116                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1117                                                 &user, HUGETLB_ANONHUGE_INODE);
1118                 if (IS_ERR(file))
1119                         return PTR_ERR(file);
1120         }
1121
1122         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1123
1124         down_write(&current->mm->mmap_sem);
1125         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1126         up_write(&current->mm->mmap_sem);
1127
1128         if (file)
1129                 fput(file);
1130 out:
1131         return retval;
1132 }
1133
1134 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1135 struct mmap_arg_struct {
1136         unsigned long addr;
1137         unsigned long len;
1138         unsigned long prot;
1139         unsigned long flags;
1140         unsigned long fd;
1141         unsigned long offset;
1142 };
1143
1144 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1145 {
1146         struct mmap_arg_struct a;
1147
1148         if (copy_from_user(&a, arg, sizeof(a)))
1149                 return -EFAULT;
1150         if (a.offset & ~PAGE_MASK)
1151                 return -EINVAL;
1152
1153         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1154                               a.offset >> PAGE_SHIFT);
1155 }
1156 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1157
1158 /*
1159  * Some shared mappigns will want the pages marked read-only
1160  * to track write events. If so, we'll downgrade vm_page_prot
1161  * to the private version (using protection_map[] without the
1162  * VM_SHARED bit).
1163  */
1164 int vma_wants_writenotify(struct vm_area_struct *vma)
1165 {
1166         vm_flags_t vm_flags = vma->vm_flags;
1167
1168         /* If it was private or non-writable, the write bit is already clear */
1169         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1170                 return 0;
1171
1172         /* The backer wishes to know when pages are first written to? */
1173         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1174                 return 1;
1175
1176         /* The open routine did something to the protections already? */
1177         if (pgprot_val(vma->vm_page_prot) !=
1178             pgprot_val(vm_get_page_prot(vm_flags)))
1179                 return 0;
1180
1181         /* Specialty mapping? */
1182         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1183                 return 0;
1184
1185         /* Can the mapping track the dirty pages? */
1186         return vma->vm_file && vma->vm_file->f_mapping &&
1187                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1188 }
1189
1190 /*
1191  * We account for memory if it's a private writeable mapping,
1192  * not hugepages and VM_NORESERVE wasn't set.
1193  */
1194 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1195 {
1196         /*
1197          * hugetlb has its own accounting separate from the core VM
1198          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1199          */
1200         if (file && is_file_hugepages(file))
1201                 return 0;
1202
1203         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1204 }
1205
1206 unsigned long mmap_region(struct file *file, unsigned long addr,
1207                           unsigned long len, unsigned long flags,
1208                           vm_flags_t vm_flags, unsigned long pgoff)
1209 {
1210         struct mm_struct *mm = current->mm;
1211         struct vm_area_struct *vma, *prev;
1212         int correct_wcount = 0;
1213         int error;
1214         struct rb_node **rb_link, *rb_parent;
1215         unsigned long charged = 0;
1216         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1217
1218         /* Clear old maps */
1219         error = -ENOMEM;
1220 munmap_back:
1221         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1222         if (vma && vma->vm_start < addr + len) {
1223                 if (do_munmap(mm, addr, len))
1224                         return -ENOMEM;
1225                 goto munmap_back;
1226         }
1227
1228         /* Check against address space limit. */
1229         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1230                 return -ENOMEM;
1231
1232         /*
1233          * Set 'VM_NORESERVE' if we should not account for the
1234          * memory use of this mapping.
1235          */
1236         if ((flags & MAP_NORESERVE)) {
1237                 /* We honor MAP_NORESERVE if allowed to overcommit */
1238                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1239                         vm_flags |= VM_NORESERVE;
1240
1241                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1242                 if (file && is_file_hugepages(file))
1243                         vm_flags |= VM_NORESERVE;
1244         }
1245
1246         /*
1247          * Private writable mapping: check memory availability
1248          */
1249         if (accountable_mapping(file, vm_flags)) {
1250                 charged = len >> PAGE_SHIFT;
1251                 if (security_vm_enough_memory_mm(mm, charged))
1252                         return -ENOMEM;
1253                 vm_flags |= VM_ACCOUNT;
1254         }
1255
1256         /*
1257          * Can we just expand an old mapping?
1258          */
1259         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1260         if (vma)
1261                 goto out;
1262
1263         /*
1264          * Determine the object being mapped and call the appropriate
1265          * specific mapper. the address has already been validated, but
1266          * not unmapped, but the maps are removed from the list.
1267          */
1268         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1269         if (!vma) {
1270                 error = -ENOMEM;
1271                 goto unacct_error;
1272         }
1273
1274         vma->vm_mm = mm;
1275         vma->vm_start = addr;
1276         vma->vm_end = addr + len;
1277         vma->vm_flags = vm_flags;
1278         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1279         vma->vm_pgoff = pgoff;
1280         INIT_LIST_HEAD(&vma->anon_vma_chain);
1281
1282         if (file) {
1283                 error = -EINVAL;
1284                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1285                         goto free_vma;
1286                 if (vm_flags & VM_DENYWRITE) {
1287                         error = deny_write_access(file);
1288                         if (error)
1289                                 goto free_vma;
1290                         correct_wcount = 1;
1291                 }
1292                 vma->vm_file = file;
1293                 get_file(file);
1294                 error = file->f_op->mmap(file, vma);
1295                 if (error)
1296                         goto unmap_and_free_vma;
1297                 if (vm_flags & VM_EXECUTABLE)
1298                         added_exe_file_vma(mm);
1299
1300                 /* Can addr have changed??
1301                  *
1302                  * Answer: Yes, several device drivers can do it in their
1303                  *         f_op->mmap method. -DaveM
1304                  */
1305                 addr = vma->vm_start;
1306                 pgoff = vma->vm_pgoff;
1307                 vm_flags = vma->vm_flags;
1308         } else if (vm_flags & VM_SHARED) {
1309                 error = shmem_zero_setup(vma);
1310                 if (error)
1311                         goto free_vma;
1312         }
1313
1314         if (vma_wants_writenotify(vma)) {
1315                 pgprot_t pprot = vma->vm_page_prot;
1316
1317                 /* Can vma->vm_page_prot have changed??
1318                  *
1319                  * Answer: Yes, drivers may have changed it in their
1320                  *         f_op->mmap method.
1321                  *
1322                  * Ensures that vmas marked as uncached stay that way.
1323                  */
1324                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1325                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1326                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1327         }
1328
1329         vma_link(mm, vma, prev, rb_link, rb_parent);
1330         file = vma->vm_file;
1331
1332         /* Once vma denies write, undo our temporary denial count */
1333         if (correct_wcount)
1334                 atomic_inc(&inode->i_writecount);
1335 out:
1336         perf_event_mmap(vma);
1337
1338         mm->total_vm += len >> PAGE_SHIFT;
1339         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1340         if (vm_flags & VM_LOCKED) {
1341                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1342                         mm->locked_vm += (len >> PAGE_SHIFT);
1343         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1344                 make_pages_present(addr, addr + len);
1345         return addr;
1346
1347 unmap_and_free_vma:
1348         if (correct_wcount)
1349                 atomic_inc(&inode->i_writecount);
1350         vma->vm_file = NULL;
1351         fput(file);
1352
1353         /* Undo any partial mapping done by a device driver. */
1354         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1355         charged = 0;
1356 free_vma:
1357         kmem_cache_free(vm_area_cachep, vma);
1358 unacct_error:
1359         if (charged)
1360                 vm_unacct_memory(charged);
1361         return error;
1362 }
1363
1364 /* Get an address range which is currently unmapped.
1365  * For shmat() with addr=0.
1366  *
1367  * Ugly calling convention alert:
1368  * Return value with the low bits set means error value,
1369  * ie
1370  *      if (ret & ~PAGE_MASK)
1371  *              error = ret;
1372  *
1373  * This function "knows" that -ENOMEM has the bits set.
1374  */
1375 #ifndef HAVE_ARCH_UNMAPPED_AREA
1376 unsigned long
1377 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1378                 unsigned long len, unsigned long pgoff, unsigned long flags)
1379 {
1380         struct mm_struct *mm = current->mm;
1381         struct vm_area_struct *vma;
1382         unsigned long start_addr;
1383
1384         if (len > TASK_SIZE)
1385                 return -ENOMEM;
1386
1387         if (flags & MAP_FIXED)
1388                 return addr;
1389
1390         if (addr) {
1391                 addr = PAGE_ALIGN(addr);
1392                 vma = find_vma(mm, addr);
1393                 if (TASK_SIZE - len >= addr &&
1394                     (!vma || addr + len <= vma->vm_start))
1395                         return addr;
1396         }
1397         if (len > mm->cached_hole_size) {
1398                 start_addr = addr = mm->free_area_cache;
1399         } else {
1400                 start_addr = addr = TASK_UNMAPPED_BASE;
1401                 mm->cached_hole_size = 0;
1402         }
1403
1404 full_search:
1405         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1406                 /* At this point:  (!vma || addr < vma->vm_end). */
1407                 if (TASK_SIZE - len < addr) {
1408                         /*
1409                          * Start a new search - just in case we missed
1410                          * some holes.
1411                          */
1412                         if (start_addr != TASK_UNMAPPED_BASE) {
1413                                 addr = TASK_UNMAPPED_BASE;
1414                                 start_addr = addr;
1415                                 mm->cached_hole_size = 0;
1416                                 goto full_search;
1417                         }
1418                         return -ENOMEM;
1419                 }
1420                 if (!vma || addr + len <= vma->vm_start) {
1421                         /*
1422                          * Remember the place where we stopped the search:
1423                          */
1424                         mm->free_area_cache = addr + len;
1425                         return addr;
1426                 }
1427                 if (addr + mm->cached_hole_size < vma->vm_start)
1428                         mm->cached_hole_size = vma->vm_start - addr;
1429                 addr = vma->vm_end;
1430         }
1431 }
1432 #endif  
1433
1434 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1435 {
1436         /*
1437          * Is this a new hole at the lowest possible address?
1438          */
1439         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1440                 mm->free_area_cache = addr;
1441                 mm->cached_hole_size = ~0UL;
1442         }
1443 }
1444
1445 /*
1446  * This mmap-allocator allocates new areas top-down from below the
1447  * stack's low limit (the base):
1448  */
1449 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1450 unsigned long
1451 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1452                           const unsigned long len, const unsigned long pgoff,
1453                           const unsigned long flags)
1454 {
1455         struct vm_area_struct *vma;
1456         struct mm_struct *mm = current->mm;
1457         unsigned long addr = addr0;
1458
1459         /* requested length too big for entire address space */
1460         if (len > TASK_SIZE)
1461                 return -ENOMEM;
1462
1463         if (flags & MAP_FIXED)
1464                 return addr;
1465
1466         /* requesting a specific address */
1467         if (addr) {
1468                 addr = PAGE_ALIGN(addr);
1469                 vma = find_vma(mm, addr);
1470                 if (TASK_SIZE - len >= addr &&
1471                                 (!vma || addr + len <= vma->vm_start))
1472                         return addr;
1473         }
1474
1475         /* check if free_area_cache is useful for us */
1476         if (len <= mm->cached_hole_size) {
1477                 mm->cached_hole_size = 0;
1478                 mm->free_area_cache = mm->mmap_base;
1479         }
1480
1481         /* either no address requested or can't fit in requested address hole */
1482         addr = mm->free_area_cache;
1483
1484         /* make sure it can fit in the remaining address space */
1485         if (addr > len) {
1486                 vma = find_vma(mm, addr-len);
1487                 if (!vma || addr <= vma->vm_start)
1488                         /* remember the address as a hint for next time */
1489                         return (mm->free_area_cache = addr-len);
1490         }
1491
1492         if (mm->mmap_base < len)
1493                 goto bottomup;
1494
1495         addr = mm->mmap_base-len;
1496
1497         do {
1498                 /*
1499                  * Lookup failure means no vma is above this address,
1500                  * else if new region fits below vma->vm_start,
1501                  * return with success:
1502                  */
1503                 vma = find_vma(mm, addr);
1504                 if (!vma || addr+len <= vma->vm_start)
1505                         /* remember the address as a hint for next time */
1506                         return (mm->free_area_cache = addr);
1507
1508                 /* remember the largest hole we saw so far */
1509                 if (addr + mm->cached_hole_size < vma->vm_start)
1510                         mm->cached_hole_size = vma->vm_start - addr;
1511
1512                 /* try just below the current vma->vm_start */
1513                 addr = vma->vm_start-len;
1514         } while (len < vma->vm_start);
1515
1516 bottomup:
1517         /*
1518          * A failed mmap() very likely causes application failure,
1519          * so fall back to the bottom-up function here. This scenario
1520          * can happen with large stack limits and large mmap()
1521          * allocations.
1522          */
1523         mm->cached_hole_size = ~0UL;
1524         mm->free_area_cache = TASK_UNMAPPED_BASE;
1525         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1526         /*
1527          * Restore the topdown base:
1528          */
1529         mm->free_area_cache = mm->mmap_base;
1530         mm->cached_hole_size = ~0UL;
1531
1532         return addr;
1533 }
1534 #endif
1535
1536 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1537 {
1538         /*
1539          * Is this a new hole at the highest possible address?
1540          */
1541         if (addr > mm->free_area_cache)
1542                 mm->free_area_cache = addr;
1543
1544         /* dont allow allocations above current base */
1545         if (mm->free_area_cache > mm->mmap_base)
1546                 mm->free_area_cache = mm->mmap_base;
1547 }
1548
1549 unsigned long
1550 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1551                 unsigned long pgoff, unsigned long flags)
1552 {
1553         unsigned long (*get_area)(struct file *, unsigned long,
1554                                   unsigned long, unsigned long, unsigned long);
1555
1556         unsigned long error = arch_mmap_check(addr, len, flags);
1557         if (error)
1558                 return error;
1559
1560         /* Careful about overflows.. */
1561         if (len > TASK_SIZE)
1562                 return -ENOMEM;
1563
1564         get_area = current->mm->get_unmapped_area;
1565         if (file && file->f_op && file->f_op->get_unmapped_area)
1566                 get_area = file->f_op->get_unmapped_area;
1567         addr = get_area(file, addr, len, pgoff, flags);
1568         if (IS_ERR_VALUE(addr))
1569                 return addr;
1570
1571         if (addr > TASK_SIZE - len)
1572                 return -ENOMEM;
1573         if (addr & ~PAGE_MASK)
1574                 return -EINVAL;
1575
1576         return arch_rebalance_pgtables(addr, len);
1577 }
1578
1579 EXPORT_SYMBOL(get_unmapped_area);
1580
1581 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1582 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1583 {
1584         struct vm_area_struct *vma = NULL;
1585
1586         if (mm) {
1587                 /* Check the cache first. */
1588                 /* (Cache hit rate is typically around 35%.) */
1589                 vma = mm->mmap_cache;
1590                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1591                         struct rb_node * rb_node;
1592
1593                         rb_node = mm->mm_rb.rb_node;
1594                         vma = NULL;
1595
1596                         while (rb_node) {
1597                                 struct vm_area_struct * vma_tmp;
1598
1599                                 vma_tmp = rb_entry(rb_node,
1600                                                 struct vm_area_struct, vm_rb);
1601
1602                                 if (vma_tmp->vm_end > addr) {
1603                                         vma = vma_tmp;
1604                                         if (vma_tmp->vm_start <= addr)
1605                                                 break;
1606                                         rb_node = rb_node->rb_left;
1607                                 } else
1608                                         rb_node = rb_node->rb_right;
1609                         }
1610                         if (vma)
1611                                 mm->mmap_cache = vma;
1612                 }
1613         }
1614         return vma;
1615 }
1616
1617 EXPORT_SYMBOL(find_vma);
1618
1619 /*
1620  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1621  * Note: pprev is set to NULL when return value is NULL.
1622  */
1623 struct vm_area_struct *
1624 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1625                         struct vm_area_struct **pprev)
1626 {
1627         struct vm_area_struct *vma;
1628
1629         vma = find_vma(mm, addr);
1630         *pprev = vma ? vma->vm_prev : NULL;
1631         return vma;
1632 }
1633
1634 /*
1635  * Verify that the stack growth is acceptable and
1636  * update accounting. This is shared with both the
1637  * grow-up and grow-down cases.
1638  */
1639 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1640 {
1641         struct mm_struct *mm = vma->vm_mm;
1642         struct rlimit *rlim = current->signal->rlim;
1643         unsigned long new_start;
1644
1645         /* address space limit tests */
1646         if (!may_expand_vm(mm, grow))
1647                 return -ENOMEM;
1648
1649         /* Stack limit test */
1650         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1651                 return -ENOMEM;
1652
1653         /* mlock limit tests */
1654         if (vma->vm_flags & VM_LOCKED) {
1655                 unsigned long locked;
1656                 unsigned long limit;
1657                 locked = mm->locked_vm + grow;
1658                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1659                 limit >>= PAGE_SHIFT;
1660                 if (locked > limit && !capable(CAP_IPC_LOCK))
1661                         return -ENOMEM;
1662         }
1663
1664         /* Check to ensure the stack will not grow into a hugetlb-only region */
1665         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1666                         vma->vm_end - size;
1667         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1668                 return -EFAULT;
1669
1670         /*
1671          * Overcommit..  This must be the final test, as it will
1672          * update security statistics.
1673          */
1674         if (security_vm_enough_memory_mm(mm, grow))
1675                 return -ENOMEM;
1676
1677         /* Ok, everything looks good - let it rip */
1678         mm->total_vm += grow;
1679         if (vma->vm_flags & VM_LOCKED)
1680                 mm->locked_vm += grow;
1681         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1682         return 0;
1683 }
1684
1685 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1686 /*
1687  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1688  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1689  */
1690 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1691 {
1692         int error;
1693
1694         if (!(vma->vm_flags & VM_GROWSUP))
1695                 return -EFAULT;
1696
1697         /*
1698          * We must make sure the anon_vma is allocated
1699          * so that the anon_vma locking is not a noop.
1700          */
1701         if (unlikely(anon_vma_prepare(vma)))
1702                 return -ENOMEM;
1703         vma_lock_anon_vma(vma);
1704
1705         /*
1706          * vma->vm_start/vm_end cannot change under us because the caller
1707          * is required to hold the mmap_sem in read mode.  We need the
1708          * anon_vma lock to serialize against concurrent expand_stacks.
1709          * Also guard against wrapping around to address 0.
1710          */
1711         if (address < PAGE_ALIGN(address+4))
1712                 address = PAGE_ALIGN(address+4);
1713         else {
1714                 vma_unlock_anon_vma(vma);
1715                 return -ENOMEM;
1716         }
1717         error = 0;
1718
1719         /* Somebody else might have raced and expanded it already */
1720         if (address > vma->vm_end) {
1721                 unsigned long size, grow;
1722
1723                 size = address - vma->vm_start;
1724                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1725
1726                 error = -ENOMEM;
1727                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1728                         error = acct_stack_growth(vma, size, grow);
1729                         if (!error) {
1730                                 vma->vm_end = address;
1731                                 perf_event_mmap(vma);
1732                         }
1733                 }
1734         }
1735         vma_unlock_anon_vma(vma);
1736         khugepaged_enter_vma_merge(vma);
1737         return error;
1738 }
1739 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1740
1741 /*
1742  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1743  */
1744 int expand_downwards(struct vm_area_struct *vma,
1745                                    unsigned long address)
1746 {
1747         int error;
1748
1749         /*
1750          * We must make sure the anon_vma is allocated
1751          * so that the anon_vma locking is not a noop.
1752          */
1753         if (unlikely(anon_vma_prepare(vma)))
1754                 return -ENOMEM;
1755
1756         address &= PAGE_MASK;
1757         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1758         if (error)
1759                 return error;
1760
1761         vma_lock_anon_vma(vma);
1762
1763         /*
1764          * vma->vm_start/vm_end cannot change under us because the caller
1765          * is required to hold the mmap_sem in read mode.  We need the
1766          * anon_vma lock to serialize against concurrent expand_stacks.
1767          */
1768
1769         /* Somebody else might have raced and expanded it already */
1770         if (address < vma->vm_start) {
1771                 unsigned long size, grow;
1772
1773                 size = vma->vm_end - address;
1774                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1775
1776                 error = -ENOMEM;
1777                 if (grow <= vma->vm_pgoff) {
1778                         error = acct_stack_growth(vma, size, grow);
1779                         if (!error) {
1780                                 vma->vm_start = address;
1781                                 vma->vm_pgoff -= grow;
1782                                 perf_event_mmap(vma);
1783                         }
1784                 }
1785         }
1786         vma_unlock_anon_vma(vma);
1787         khugepaged_enter_vma_merge(vma);
1788         return error;
1789 }
1790
1791 #ifdef CONFIG_STACK_GROWSUP
1792 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1793 {
1794         return expand_upwards(vma, address);
1795 }
1796
1797 struct vm_area_struct *
1798 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1799 {
1800         struct vm_area_struct *vma, *prev;
1801
1802         addr &= PAGE_MASK;
1803         vma = find_vma_prev(mm, addr, &prev);
1804         if (vma && (vma->vm_start <= addr))
1805                 return vma;
1806         if (!prev || expand_stack(prev, addr))
1807                 return NULL;
1808         if (prev->vm_flags & VM_LOCKED) {
1809                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1810         }
1811         return prev;
1812 }
1813 #else
1814 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1815 {
1816         return expand_downwards(vma, address);
1817 }
1818
1819 struct vm_area_struct *
1820 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1821 {
1822         struct vm_area_struct * vma;
1823         unsigned long start;
1824
1825         addr &= PAGE_MASK;
1826         vma = find_vma(mm,addr);
1827         if (!vma)
1828                 return NULL;
1829         if (vma->vm_start <= addr)
1830                 return vma;
1831         if (!(vma->vm_flags & VM_GROWSDOWN))
1832                 return NULL;
1833         start = vma->vm_start;
1834         if (expand_stack(vma, addr))
1835                 return NULL;
1836         if (vma->vm_flags & VM_LOCKED) {
1837                 mlock_vma_pages_range(vma, addr, start);
1838         }
1839         return vma;
1840 }
1841 #endif
1842
1843 /*
1844  * Ok - we have the memory areas we should free on the vma list,
1845  * so release them, and do the vma updates.
1846  *
1847  * Called with the mm semaphore held.
1848  */
1849 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1850 {
1851         /* Update high watermark before we lower total_vm */
1852         update_hiwater_vm(mm);
1853         do {
1854                 long nrpages = vma_pages(vma);
1855
1856                 mm->total_vm -= nrpages;
1857                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1858                 vma = remove_vma(vma);
1859         } while (vma);
1860         validate_mm(mm);
1861 }
1862
1863 /*
1864  * Get rid of page table information in the indicated region.
1865  *
1866  * Called with the mm semaphore held.
1867  */
1868 static void unmap_region(struct mm_struct *mm,
1869                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1870                 unsigned long start, unsigned long end)
1871 {
1872         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1873         struct mmu_gather tlb;
1874         unsigned long nr_accounted = 0;
1875
1876         lru_add_drain();
1877         tlb_gather_mmu(&tlb, mm, 0);
1878         update_hiwater_rss(mm);
1879         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1880         vm_unacct_memory(nr_accounted);
1881         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1882                                  next ? next->vm_start : 0);
1883         tlb_finish_mmu(&tlb, start, end);
1884 }
1885
1886 /*
1887  * Create a list of vma's touched by the unmap, removing them from the mm's
1888  * vma list as we go..
1889  */
1890 static void
1891 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1892         struct vm_area_struct *prev, unsigned long end)
1893 {
1894         struct vm_area_struct **insertion_point;
1895         struct vm_area_struct *tail_vma = NULL;
1896         unsigned long addr;
1897
1898         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1899         vma->vm_prev = NULL;
1900         do {
1901                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1902                 mm->map_count--;
1903                 tail_vma = vma;
1904                 vma = vma->vm_next;
1905         } while (vma && vma->vm_start < end);
1906         *insertion_point = vma;
1907         if (vma)
1908                 vma->vm_prev = prev;
1909         tail_vma->vm_next = NULL;
1910         if (mm->unmap_area == arch_unmap_area)
1911                 addr = prev ? prev->vm_end : mm->mmap_base;
1912         else
1913                 addr = vma ?  vma->vm_start : mm->mmap_base;
1914         mm->unmap_area(mm, addr);
1915         mm->mmap_cache = NULL;          /* Kill the cache. */
1916 }
1917
1918 /*
1919  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1920  * munmap path where it doesn't make sense to fail.
1921  */
1922 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1923               unsigned long addr, int new_below)
1924 {
1925         struct mempolicy *pol;
1926         struct vm_area_struct *new;
1927         int err = -ENOMEM;
1928
1929         if (is_vm_hugetlb_page(vma) && (addr &
1930                                         ~(huge_page_mask(hstate_vma(vma)))))
1931                 return -EINVAL;
1932
1933         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1934         if (!new)
1935                 goto out_err;
1936
1937         /* most fields are the same, copy all, and then fixup */
1938         *new = *vma;
1939
1940         INIT_LIST_HEAD(&new->anon_vma_chain);
1941
1942         if (new_below)
1943                 new->vm_end = addr;
1944         else {
1945                 new->vm_start = addr;
1946                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1947         }
1948
1949         pol = mpol_dup(vma_policy(vma));
1950         if (IS_ERR(pol)) {
1951                 err = PTR_ERR(pol);
1952                 goto out_free_vma;
1953         }
1954         vma_set_policy(new, pol);
1955
1956         if (anon_vma_clone(new, vma))
1957                 goto out_free_mpol;
1958
1959         if (new->vm_file) {
1960                 get_file(new->vm_file);
1961                 if (vma->vm_flags & VM_EXECUTABLE)
1962                         added_exe_file_vma(mm);
1963         }
1964
1965         if (new->vm_ops && new->vm_ops->open)
1966                 new->vm_ops->open(new);
1967
1968         if (new_below)
1969                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1970                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1971         else
1972                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1973
1974         /* Success. */
1975         if (!err)
1976                 return 0;
1977
1978         /* Clean everything up if vma_adjust failed. */
1979         if (new->vm_ops && new->vm_ops->close)
1980                 new->vm_ops->close(new);
1981         if (new->vm_file) {
1982                 if (vma->vm_flags & VM_EXECUTABLE)
1983                         removed_exe_file_vma(mm);
1984                 fput(new->vm_file);
1985         }
1986         unlink_anon_vmas(new);
1987  out_free_mpol:
1988         mpol_put(pol);
1989  out_free_vma:
1990         kmem_cache_free(vm_area_cachep, new);
1991  out_err:
1992         return err;
1993 }
1994
1995 /*
1996  * Split a vma into two pieces at address 'addr', a new vma is allocated
1997  * either for the first part or the tail.
1998  */
1999 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2000               unsigned long addr, int new_below)
2001 {
2002         if (mm->map_count >= sysctl_max_map_count)
2003                 return -ENOMEM;
2004
2005         return __split_vma(mm, vma, addr, new_below);
2006 }
2007
2008 /* Munmap is split into 2 main parts -- this part which finds
2009  * what needs doing, and the areas themselves, which do the
2010  * work.  This now handles partial unmappings.
2011  * Jeremy Fitzhardinge <jeremy@goop.org>
2012  */
2013 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2014 {
2015         unsigned long end;
2016         struct vm_area_struct *vma, *prev, *last;
2017
2018         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2019                 return -EINVAL;
2020
2021         if ((len = PAGE_ALIGN(len)) == 0)
2022                 return -EINVAL;
2023
2024         /* Find the first overlapping VMA */
2025         vma = find_vma(mm, start);
2026         if (!vma)
2027                 return 0;
2028         prev = vma->vm_prev;
2029         /* we have  start < vma->vm_end  */
2030
2031         /* if it doesn't overlap, we have nothing.. */
2032         end = start + len;
2033         if (vma->vm_start >= end)
2034                 return 0;
2035
2036         /*
2037          * If we need to split any vma, do it now to save pain later.
2038          *
2039          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2040          * unmapped vm_area_struct will remain in use: so lower split_vma
2041          * places tmp vma above, and higher split_vma places tmp vma below.
2042          */
2043         if (start > vma->vm_start) {
2044                 int error;
2045
2046                 /*
2047                  * Make sure that map_count on return from munmap() will
2048                  * not exceed its limit; but let map_count go just above
2049                  * its limit temporarily, to help free resources as expected.
2050                  */
2051                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2052                         return -ENOMEM;
2053
2054                 error = __split_vma(mm, vma, start, 0);
2055                 if (error)
2056                         return error;
2057                 prev = vma;
2058         }
2059
2060         /* Does it split the last one? */
2061         last = find_vma(mm, end);
2062         if (last && end > last->vm_start) {
2063                 int error = __split_vma(mm, last, end, 1);
2064                 if (error)
2065                         return error;
2066         }
2067         vma = prev? prev->vm_next: mm->mmap;
2068
2069         /*
2070          * unlock any mlock()ed ranges before detaching vmas
2071          */
2072         if (mm->locked_vm) {
2073                 struct vm_area_struct *tmp = vma;
2074                 while (tmp && tmp->vm_start < end) {
2075                         if (tmp->vm_flags & VM_LOCKED) {
2076                                 mm->locked_vm -= vma_pages(tmp);
2077                                 munlock_vma_pages_all(tmp);
2078                         }
2079                         tmp = tmp->vm_next;
2080                 }
2081         }
2082
2083         /*
2084          * Remove the vma's, and unmap the actual pages
2085          */
2086         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2087         unmap_region(mm, vma, prev, start, end);
2088
2089         /* Fix up all other VM information */
2090         remove_vma_list(mm, vma);
2091
2092         return 0;
2093 }
2094
2095 EXPORT_SYMBOL(do_munmap);
2096
2097 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2098 {
2099         int ret;
2100         struct mm_struct *mm = current->mm;
2101
2102         profile_munmap(addr);
2103
2104         down_write(&mm->mmap_sem);
2105         ret = do_munmap(mm, addr, len);
2106         up_write(&mm->mmap_sem);
2107         return ret;
2108 }
2109
2110 static inline void verify_mm_writelocked(struct mm_struct *mm)
2111 {
2112 #ifdef CONFIG_DEBUG_VM
2113         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2114                 WARN_ON(1);
2115                 up_read(&mm->mmap_sem);
2116         }
2117 #endif
2118 }
2119
2120 /*
2121  *  this is really a simplified "do_mmap".  it only handles
2122  *  anonymous maps.  eventually we may be able to do some
2123  *  brk-specific accounting here.
2124  */
2125 unsigned long do_brk(unsigned long addr, unsigned long len)
2126 {
2127         struct mm_struct * mm = current->mm;
2128         struct vm_area_struct * vma, * prev;
2129         unsigned long flags;
2130         struct rb_node ** rb_link, * rb_parent;
2131         pgoff_t pgoff = addr >> PAGE_SHIFT;
2132         int error;
2133
2134         len = PAGE_ALIGN(len);
2135         if (!len)
2136                 return addr;
2137
2138         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2139         if (error)
2140                 return error;
2141
2142         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2143
2144         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2145         if (error & ~PAGE_MASK)
2146                 return error;
2147
2148         /*
2149          * mlock MCL_FUTURE?
2150          */
2151         if (mm->def_flags & VM_LOCKED) {
2152                 unsigned long locked, lock_limit;
2153                 locked = len >> PAGE_SHIFT;
2154                 locked += mm->locked_vm;
2155                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2156                 lock_limit >>= PAGE_SHIFT;
2157                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2158                         return -EAGAIN;
2159         }
2160
2161         /*
2162          * mm->mmap_sem is required to protect against another thread
2163          * changing the mappings in case we sleep.
2164          */
2165         verify_mm_writelocked(mm);
2166
2167         /*
2168          * Clear old maps.  this also does some error checking for us
2169          */
2170  munmap_back:
2171         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2172         if (vma && vma->vm_start < addr + len) {
2173                 if (do_munmap(mm, addr, len))
2174                         return -ENOMEM;
2175                 goto munmap_back;
2176         }
2177
2178         /* Check against address space limits *after* clearing old maps... */
2179         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2180                 return -ENOMEM;
2181
2182         if (mm->map_count > sysctl_max_map_count)
2183                 return -ENOMEM;
2184
2185         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2186                 return -ENOMEM;
2187
2188         /* Can we just expand an old private anonymous mapping? */
2189         vma = vma_merge(mm, prev, addr, addr + len, flags,
2190                                         NULL, NULL, pgoff, NULL);
2191         if (vma)
2192                 goto out;
2193
2194         /*
2195          * create a vma struct for an anonymous mapping
2196          */
2197         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2198         if (!vma) {
2199                 vm_unacct_memory(len >> PAGE_SHIFT);
2200                 return -ENOMEM;
2201         }
2202
2203         INIT_LIST_HEAD(&vma->anon_vma_chain);
2204         vma->vm_mm = mm;
2205         vma->vm_start = addr;
2206         vma->vm_end = addr + len;
2207         vma->vm_pgoff = pgoff;
2208         vma->vm_flags = flags;
2209         vma->vm_page_prot = vm_get_page_prot(flags);
2210         vma_link(mm, vma, prev, rb_link, rb_parent);
2211 out:
2212         perf_event_mmap(vma);
2213         mm->total_vm += len >> PAGE_SHIFT;
2214         if (flags & VM_LOCKED) {
2215                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2216                         mm->locked_vm += (len >> PAGE_SHIFT);
2217         }
2218         return addr;
2219 }
2220
2221 EXPORT_SYMBOL(do_brk);
2222
2223 /* Release all mmaps. */
2224 void exit_mmap(struct mm_struct *mm)
2225 {
2226         struct mmu_gather tlb;
2227         struct vm_area_struct *vma;
2228         unsigned long nr_accounted = 0;
2229         unsigned long end;
2230
2231         /* mm's last user has gone, and its about to be pulled down */
2232         mmu_notifier_release(mm);
2233
2234         if (mm->locked_vm) {
2235                 vma = mm->mmap;
2236                 while (vma) {
2237                         if (vma->vm_flags & VM_LOCKED)
2238                                 munlock_vma_pages_all(vma);
2239                         vma = vma->vm_next;
2240                 }
2241         }
2242
2243         arch_exit_mmap(mm);
2244
2245         vma = mm->mmap;
2246         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2247                 return;
2248
2249         lru_add_drain();
2250         flush_cache_mm(mm);
2251         tlb_gather_mmu(&tlb, mm, 1);
2252         /* update_hiwater_rss(mm) here? but nobody should be looking */
2253         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2254         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2255         vm_unacct_memory(nr_accounted);
2256
2257         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2258         tlb_finish_mmu(&tlb, 0, end);
2259
2260         /*
2261          * Walk the list again, actually closing and freeing it,
2262          * with preemption enabled, without holding any MM locks.
2263          */
2264         while (vma)
2265                 vma = remove_vma(vma);
2266
2267         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2268 }
2269
2270 /* Insert vm structure into process list sorted by address
2271  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2272  * then i_mmap_mutex is taken here.
2273  */
2274 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2275 {
2276         struct vm_area_struct * __vma, * prev;
2277         struct rb_node ** rb_link, * rb_parent;
2278
2279         /*
2280          * The vm_pgoff of a purely anonymous vma should be irrelevant
2281          * until its first write fault, when page's anon_vma and index
2282          * are set.  But now set the vm_pgoff it will almost certainly
2283          * end up with (unless mremap moves it elsewhere before that
2284          * first wfault), so /proc/pid/maps tells a consistent story.
2285          *
2286          * By setting it to reflect the virtual start address of the
2287          * vma, merges and splits can happen in a seamless way, just
2288          * using the existing file pgoff checks and manipulations.
2289          * Similarly in do_mmap_pgoff and in do_brk.
2290          */
2291         if (!vma->vm_file) {
2292                 BUG_ON(vma->anon_vma);
2293                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2294         }
2295         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2296         if (__vma && __vma->vm_start < vma->vm_end)
2297                 return -ENOMEM;
2298         if ((vma->vm_flags & VM_ACCOUNT) &&
2299              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2300                 return -ENOMEM;
2301         vma_link(mm, vma, prev, rb_link, rb_parent);
2302         return 0;
2303 }
2304
2305 /*
2306  * Copy the vma structure to a new location in the same mm,
2307  * prior to moving page table entries, to effect an mremap move.
2308  */
2309 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2310         unsigned long addr, unsigned long len, pgoff_t pgoff)
2311 {
2312         struct vm_area_struct *vma = *vmap;
2313         unsigned long vma_start = vma->vm_start;
2314         struct mm_struct *mm = vma->vm_mm;
2315         struct vm_area_struct *new_vma, *prev;
2316         struct rb_node **rb_link, *rb_parent;
2317         struct mempolicy *pol;
2318         bool faulted_in_anon_vma = true;
2319
2320         /*
2321          * If anonymous vma has not yet been faulted, update new pgoff
2322          * to match new location, to increase its chance of merging.
2323          */
2324         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2325                 pgoff = addr >> PAGE_SHIFT;
2326                 faulted_in_anon_vma = false;
2327         }
2328
2329         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2330         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2331                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2332         if (new_vma) {
2333                 /*
2334                  * Source vma may have been merged into new_vma
2335                  */
2336                 if (unlikely(vma_start >= new_vma->vm_start &&
2337                              vma_start < new_vma->vm_end)) {
2338                         /*
2339                          * The only way we can get a vma_merge with
2340                          * self during an mremap is if the vma hasn't
2341                          * been faulted in yet and we were allowed to
2342                          * reset the dst vma->vm_pgoff to the
2343                          * destination address of the mremap to allow
2344                          * the merge to happen. mremap must change the
2345                          * vm_pgoff linearity between src and dst vmas
2346                          * (in turn preventing a vma_merge) to be
2347                          * safe. It is only safe to keep the vm_pgoff
2348                          * linear if there are no pages mapped yet.
2349                          */
2350                         VM_BUG_ON(faulted_in_anon_vma);
2351                         *vmap = new_vma;
2352                 } else
2353                         anon_vma_moveto_tail(new_vma);
2354         } else {
2355                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2356                 if (new_vma) {
2357                         *new_vma = *vma;
2358                         pol = mpol_dup(vma_policy(vma));
2359                         if (IS_ERR(pol))
2360                                 goto out_free_vma;
2361                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2362                         if (anon_vma_clone(new_vma, vma))
2363                                 goto out_free_mempol;
2364                         vma_set_policy(new_vma, pol);
2365                         new_vma->vm_start = addr;
2366                         new_vma->vm_end = addr + len;
2367                         new_vma->vm_pgoff = pgoff;
2368                         if (new_vma->vm_file) {
2369                                 get_file(new_vma->vm_file);
2370                                 if (vma->vm_flags & VM_EXECUTABLE)
2371                                         added_exe_file_vma(mm);
2372                         }
2373                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2374                                 new_vma->vm_ops->open(new_vma);
2375                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2376                 }
2377         }
2378         return new_vma;
2379
2380  out_free_mempol:
2381         mpol_put(pol);
2382  out_free_vma:
2383         kmem_cache_free(vm_area_cachep, new_vma);
2384         return NULL;
2385 }
2386
2387 /*
2388  * Return true if the calling process may expand its vm space by the passed
2389  * number of pages
2390  */
2391 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2392 {
2393         unsigned long cur = mm->total_vm;       /* pages */
2394         unsigned long lim;
2395
2396         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2397
2398         if (cur + npages > lim)
2399                 return 0;
2400         return 1;
2401 }
2402
2403
2404 static int special_mapping_fault(struct vm_area_struct *vma,
2405                                 struct vm_fault *vmf)
2406 {
2407         pgoff_t pgoff;
2408         struct page **pages;
2409
2410         /*
2411          * special mappings have no vm_file, and in that case, the mm
2412          * uses vm_pgoff internally. So we have to subtract it from here.
2413          * We are allowed to do this because we are the mm; do not copy
2414          * this code into drivers!
2415          */
2416         pgoff = vmf->pgoff - vma->vm_pgoff;
2417
2418         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2419                 pgoff--;
2420
2421         if (*pages) {
2422                 struct page *page = *pages;
2423                 get_page(page);
2424                 vmf->page = page;
2425                 return 0;
2426         }
2427
2428         return VM_FAULT_SIGBUS;
2429 }
2430
2431 /*
2432  * Having a close hook prevents vma merging regardless of flags.
2433  */
2434 static void special_mapping_close(struct vm_area_struct *vma)
2435 {
2436 }
2437
2438 static const struct vm_operations_struct special_mapping_vmops = {
2439         .close = special_mapping_close,
2440         .fault = special_mapping_fault,
2441 };
2442
2443 /*
2444  * Called with mm->mmap_sem held for writing.
2445  * Insert a new vma covering the given region, with the given flags.
2446  * Its pages are supplied by the given array of struct page *.
2447  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2448  * The region past the last page supplied will always produce SIGBUS.
2449  * The array pointer and the pages it points to are assumed to stay alive
2450  * for as long as this mapping might exist.
2451  */
2452 int install_special_mapping(struct mm_struct *mm,
2453                             unsigned long addr, unsigned long len,
2454                             unsigned long vm_flags, struct page **pages)
2455 {
2456         int ret;
2457         struct vm_area_struct *vma;
2458
2459         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2460         if (unlikely(vma == NULL))
2461                 return -ENOMEM;
2462
2463         INIT_LIST_HEAD(&vma->anon_vma_chain);
2464         vma->vm_mm = mm;
2465         vma->vm_start = addr;
2466         vma->vm_end = addr + len;
2467
2468         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2469         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2470
2471         vma->vm_ops = &special_mapping_vmops;
2472         vma->vm_private_data = pages;
2473
2474         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2475         if (ret)
2476                 goto out;
2477
2478         ret = insert_vm_struct(mm, vma);
2479         if (ret)
2480                 goto out;
2481
2482         mm->total_vm += len >> PAGE_SHIFT;
2483
2484         perf_event_mmap(vma);
2485
2486         return 0;
2487
2488 out:
2489         kmem_cache_free(vm_area_cachep, vma);
2490         return ret;
2491 }
2492
2493 static DEFINE_MUTEX(mm_all_locks_mutex);
2494
2495 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2496 {
2497         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2498                 /*
2499                  * The LSB of head.next can't change from under us
2500                  * because we hold the mm_all_locks_mutex.
2501                  */
2502                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2503                 /*
2504                  * We can safely modify head.next after taking the
2505                  * anon_vma->root->mutex. If some other vma in this mm shares
2506                  * the same anon_vma we won't take it again.
2507                  *
2508                  * No need of atomic instructions here, head.next
2509                  * can't change from under us thanks to the
2510                  * anon_vma->root->mutex.
2511                  */
2512                 if (__test_and_set_bit(0, (unsigned long *)
2513                                        &anon_vma->root->head.next))
2514                         BUG();
2515         }
2516 }
2517
2518 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2519 {
2520         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2521                 /*
2522                  * AS_MM_ALL_LOCKS can't change from under us because
2523                  * we hold the mm_all_locks_mutex.
2524                  *
2525                  * Operations on ->flags have to be atomic because
2526                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2527                  * mm_all_locks_mutex, there may be other cpus
2528                  * changing other bitflags in parallel to us.
2529                  */
2530                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2531                         BUG();
2532                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2533         }
2534 }
2535
2536 /*
2537  * This operation locks against the VM for all pte/vma/mm related
2538  * operations that could ever happen on a certain mm. This includes
2539  * vmtruncate, try_to_unmap, and all page faults.
2540  *
2541  * The caller must take the mmap_sem in write mode before calling
2542  * mm_take_all_locks(). The caller isn't allowed to release the
2543  * mmap_sem until mm_drop_all_locks() returns.
2544  *
2545  * mmap_sem in write mode is required in order to block all operations
2546  * that could modify pagetables and free pages without need of
2547  * altering the vma layout (for example populate_range() with
2548  * nonlinear vmas). It's also needed in write mode to avoid new
2549  * anon_vmas to be associated with existing vmas.
2550  *
2551  * A single task can't take more than one mm_take_all_locks() in a row
2552  * or it would deadlock.
2553  *
2554  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2555  * mapping->flags avoid to take the same lock twice, if more than one
2556  * vma in this mm is backed by the same anon_vma or address_space.
2557  *
2558  * We can take all the locks in random order because the VM code
2559  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2560  * takes more than one of them in a row. Secondly we're protected
2561  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2562  *
2563  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2564  * that may have to take thousand of locks.
2565  *
2566  * mm_take_all_locks() can fail if it's interrupted by signals.
2567  */
2568 int mm_take_all_locks(struct mm_struct *mm)
2569 {
2570         struct vm_area_struct *vma;
2571         struct anon_vma_chain *avc;
2572
2573         BUG_ON(down_read_trylock(&mm->mmap_sem));
2574
2575         mutex_lock(&mm_all_locks_mutex);
2576
2577         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2578                 if (signal_pending(current))
2579                         goto out_unlock;
2580                 if (vma->vm_file && vma->vm_file->f_mapping)
2581                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2582         }
2583
2584         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2585                 if (signal_pending(current))
2586                         goto out_unlock;
2587                 if (vma->anon_vma)
2588                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2589                                 vm_lock_anon_vma(mm, avc->anon_vma);
2590         }
2591
2592         return 0;
2593
2594 out_unlock:
2595         mm_drop_all_locks(mm);
2596         return -EINTR;
2597 }
2598
2599 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2600 {
2601         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2602                 /*
2603                  * The LSB of head.next can't change to 0 from under
2604                  * us because we hold the mm_all_locks_mutex.
2605                  *
2606                  * We must however clear the bitflag before unlocking
2607                  * the vma so the users using the anon_vma->head will
2608                  * never see our bitflag.
2609                  *
2610                  * No need of atomic instructions here, head.next
2611                  * can't change from under us until we release the
2612                  * anon_vma->root->mutex.
2613                  */
2614                 if (!__test_and_clear_bit(0, (unsigned long *)
2615                                           &anon_vma->root->head.next))
2616                         BUG();
2617                 anon_vma_unlock(anon_vma);
2618         }
2619 }
2620
2621 static void vm_unlock_mapping(struct address_space *mapping)
2622 {
2623         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2624                 /*
2625                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2626                  * because we hold the mm_all_locks_mutex.
2627                  */
2628                 mutex_unlock(&mapping->i_mmap_mutex);
2629                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2630                                         &mapping->flags))
2631                         BUG();
2632         }
2633 }
2634
2635 /*
2636  * The mmap_sem cannot be released by the caller until
2637  * mm_drop_all_locks() returns.
2638  */
2639 void mm_drop_all_locks(struct mm_struct *mm)
2640 {
2641         struct vm_area_struct *vma;
2642         struct anon_vma_chain *avc;
2643
2644         BUG_ON(down_read_trylock(&mm->mmap_sem));
2645         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2646
2647         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2648                 if (vma->anon_vma)
2649                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2650                                 vm_unlock_anon_vma(avc->anon_vma);
2651                 if (vma->vm_file && vma->vm_file->f_mapping)
2652                         vm_unlock_mapping(vma->vm_file->f_mapping);
2653         }
2654
2655         mutex_unlock(&mm_all_locks_mutex);
2656 }
2657
2658 /*
2659  * initialise the VMA slab
2660  */
2661 void __init mmap_init(void)
2662 {
2663         int ret;
2664
2665         ret = percpu_counter_init(&vm_committed_as, 0);
2666         VM_BUG_ON(ret);
2667 }