Merge tag 'landlock-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mic...
[linux-block.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                                       struct address_space *mapping)
109 {
110         if (vma_is_shared_maywrite(vma))
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167         unsigned long mapped_addr;
168
169         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170         if (IS_ERR_VALUE(mapped_addr))
171                 return mapped_addr;
172
173         return mlock_future_ok(current->mm, current->mm->def_flags, len)
174                 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177                 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180         unsigned long newbrk, oldbrk, origbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *brkvma, *next = NULL;
183         unsigned long min_brk;
184         bool populate = false;
185         LIST_HEAD(uf);
186         struct vma_iterator vmi;
187
188         if (mmap_write_lock_killable(mm))
189                 return -EINTR;
190
191         origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk) {
222                 mm->brk = brk;
223                 goto success;
224         }
225
226         /* Always allow shrinking brk. */
227         if (brk <= mm->brk) {
228                 /* Search one past newbrk */
229                 vma_iter_init(&vmi, mm, newbrk);
230                 brkvma = vma_find(&vmi, oldbrk);
231                 if (!brkvma || brkvma->vm_start >= oldbrk)
232                         goto out; /* mapping intersects with an existing non-brk vma. */
233                 /*
234                  * mm->brk must be protected by write mmap_lock.
235                  * do_vma_munmap() will drop the lock on success,  so update it
236                  * before calling do_vma_munmap().
237                  */
238                 mm->brk = brk;
239                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240                         goto out;
241
242                 goto success_unlocked;
243         }
244
245         if (check_brk_limits(oldbrk, newbrk - oldbrk))
246                 goto out;
247
248         /*
249          * Only check if the next VMA is within the stack_guard_gap of the
250          * expansion area
251          */
252         vma_iter_init(&vmi, mm, oldbrk);
253         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255                 goto out;
256
257         brkvma = vma_prev_limit(&vmi, mm->start_brk);
258         /* Ok, looks good - let it rip. */
259         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260                 goto out;
261
262         mm->brk = brk;
263         if (mm->def_flags & VM_LOCKED)
264                 populate = true;
265
266 success:
267         mmap_write_unlock(mm);
268 success_unlocked:
269         userfaultfd_unmap_complete(mm, &uf);
270         if (populate)
271                 mm_populate(oldbrk, newbrk - oldbrk);
272         return brk;
273
274 out:
275         mm->brk = origbrk;
276         mmap_write_unlock(mm);
277         return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283         int bug = 0;
284         int i = 0;
285         struct vm_area_struct *vma;
286         VMA_ITERATOR(vmi, mm, 0);
287
288         mt_validate(&mm->mm_mt);
289         for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291                 struct anon_vma *anon_vma = vma->anon_vma;
292                 struct anon_vma_chain *avc;
293 #endif
294                 unsigned long vmi_start, vmi_end;
295                 bool warn = 0;
296
297                 vmi_start = vma_iter_addr(&vmi);
298                 vmi_end = vma_iter_end(&vmi);
299                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300                         warn = 1;
301
302                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303                         warn = 1;
304
305                 if (warn) {
306                         pr_emerg("issue in %s\n", current->comm);
307                         dump_stack();
308                         dump_vma(vma);
309                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
310                                  vmi_start, vmi_end - 1);
311                         vma_iter_dump_tree(&vmi);
312                 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315                 if (anon_vma) {
316                         anon_vma_lock_read(anon_vma);
317                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318                                 anon_vma_interval_tree_verify(avc);
319                         anon_vma_unlock_read(anon_vma);
320                 }
321 #endif
322                 i++;
323         }
324         if (i != mm->map_count) {
325                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326                 bug = 1;
327         }
328         VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352         struct anon_vma_chain *avc;
353
354         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361         struct anon_vma_chain *avc;
362
363         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368                 unsigned long addr, unsigned long end)
369 {
370         VMA_ITERATOR(vmi, mm, addr);
371         struct vm_area_struct *vma;
372         unsigned long nr_pages = 0;
373
374         for_each_vma_range(vmi, vma, end) {
375                 unsigned long vm_start = max(addr, vma->vm_start);
376                 unsigned long vm_end = min(end, vma->vm_end);
377
378                 nr_pages += PHYS_PFN(vm_end - vm_start);
379         }
380
381         return nr_pages;
382 }
383
384 static void __vma_link_file(struct vm_area_struct *vma,
385                             struct address_space *mapping)
386 {
387         if (vma_is_shared_maywrite(vma))
388                 mapping_allow_writable(mapping);
389
390         flush_dcache_mmap_lock(mapping);
391         vma_interval_tree_insert(vma, &mapping->i_mmap);
392         flush_dcache_mmap_unlock(mapping);
393 }
394
395 static void vma_link_file(struct vm_area_struct *vma)
396 {
397         struct file *file = vma->vm_file;
398         struct address_space *mapping;
399
400         if (file) {
401                 mapping = file->f_mapping;
402                 i_mmap_lock_write(mapping);
403                 __vma_link_file(vma, mapping);
404                 i_mmap_unlock_write(mapping);
405         }
406 }
407
408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 {
410         VMA_ITERATOR(vmi, mm, 0);
411
412         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413         if (vma_iter_prealloc(&vmi, vma))
414                 return -ENOMEM;
415
416         vma_start_write(vma);
417         vma_iter_store(&vmi, vma);
418         vma_link_file(vma);
419         mm->map_count++;
420         validate_mm(mm);
421         return 0;
422 }
423
424 /*
425  * init_multi_vma_prep() - Initializer for struct vma_prepare
426  * @vp: The vma_prepare struct
427  * @vma: The vma that will be altered once locked
428  * @next: The next vma if it is to be adjusted
429  * @remove: The first vma to be removed
430  * @remove2: The second vma to be removed
431  */
432 static inline void init_multi_vma_prep(struct vma_prepare *vp,
433                 struct vm_area_struct *vma, struct vm_area_struct *next,
434                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
435 {
436         memset(vp, 0, sizeof(struct vma_prepare));
437         vp->vma = vma;
438         vp->anon_vma = vma->anon_vma;
439         vp->remove = remove;
440         vp->remove2 = remove2;
441         vp->adj_next = next;
442         if (!vp->anon_vma && next)
443                 vp->anon_vma = next->anon_vma;
444
445         vp->file = vma->vm_file;
446         if (vp->file)
447                 vp->mapping = vma->vm_file->f_mapping;
448
449 }
450
451 /*
452  * init_vma_prep() - Initializer wrapper for vma_prepare struct
453  * @vp: The vma_prepare struct
454  * @vma: The vma that will be altered once locked
455  */
456 static inline void init_vma_prep(struct vma_prepare *vp,
457                                  struct vm_area_struct *vma)
458 {
459         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460 }
461
462
463 /*
464  * vma_prepare() - Helper function for handling locking VMAs prior to altering
465  * @vp: The initialized vma_prepare struct
466  */
467 static inline void vma_prepare(struct vma_prepare *vp)
468 {
469         if (vp->file) {
470                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471
472                 if (vp->adj_next)
473                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474                                       vp->adj_next->vm_end);
475
476                 i_mmap_lock_write(vp->mapping);
477                 if (vp->insert && vp->insert->vm_file) {
478                         /*
479                          * Put into interval tree now, so instantiated pages
480                          * are visible to arm/parisc __flush_dcache_page
481                          * throughout; but we cannot insert into address
482                          * space until vma start or end is updated.
483                          */
484                         __vma_link_file(vp->insert,
485                                         vp->insert->vm_file->f_mapping);
486                 }
487         }
488
489         if (vp->anon_vma) {
490                 anon_vma_lock_write(vp->anon_vma);
491                 anon_vma_interval_tree_pre_update_vma(vp->vma);
492                 if (vp->adj_next)
493                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494         }
495
496         if (vp->file) {
497                 flush_dcache_mmap_lock(vp->mapping);
498                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499                 if (vp->adj_next)
500                         vma_interval_tree_remove(vp->adj_next,
501                                                  &vp->mapping->i_mmap);
502         }
503
504 }
505
506 /*
507  * vma_complete- Helper function for handling the unlocking after altering VMAs,
508  * or for inserting a VMA.
509  *
510  * @vp: The vma_prepare struct
511  * @vmi: The vma iterator
512  * @mm: The mm_struct
513  */
514 static inline void vma_complete(struct vma_prepare *vp,
515                                 struct vma_iterator *vmi, struct mm_struct *mm)
516 {
517         if (vp->file) {
518                 if (vp->adj_next)
519                         vma_interval_tree_insert(vp->adj_next,
520                                                  &vp->mapping->i_mmap);
521                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522                 flush_dcache_mmap_unlock(vp->mapping);
523         }
524
525         if (vp->remove && vp->file) {
526                 __remove_shared_vm_struct(vp->remove, vp->mapping);
527                 if (vp->remove2)
528                         __remove_shared_vm_struct(vp->remove2, vp->mapping);
529         } else if (vp->insert) {
530                 /*
531                  * split_vma has split insert from vma, and needs
532                  * us to insert it before dropping the locks
533                  * (it may either follow vma or precede it).
534                  */
535                 vma_iter_store(vmi, vp->insert);
536                 mm->map_count++;
537         }
538
539         if (vp->anon_vma) {
540                 anon_vma_interval_tree_post_update_vma(vp->vma);
541                 if (vp->adj_next)
542                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
543                 anon_vma_unlock_write(vp->anon_vma);
544         }
545
546         if (vp->file) {
547                 i_mmap_unlock_write(vp->mapping);
548                 uprobe_mmap(vp->vma);
549
550                 if (vp->adj_next)
551                         uprobe_mmap(vp->adj_next);
552         }
553
554         if (vp->remove) {
555 again:
556                 vma_mark_detached(vp->remove, true);
557                 if (vp->file) {
558                         uprobe_munmap(vp->remove, vp->remove->vm_start,
559                                       vp->remove->vm_end);
560                         fput(vp->file);
561                 }
562                 if (vp->remove->anon_vma)
563                         anon_vma_merge(vp->vma, vp->remove);
564                 mm->map_count--;
565                 mpol_put(vma_policy(vp->remove));
566                 if (!vp->remove2)
567                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568                 vm_area_free(vp->remove);
569
570                 /*
571                  * In mprotect's case 6 (see comments on vma_merge),
572                  * we are removing both mid and next vmas
573                  */
574                 if (vp->remove2) {
575                         vp->remove = vp->remove2;
576                         vp->remove2 = NULL;
577                         goto again;
578                 }
579         }
580         if (vp->insert && vp->file)
581                 uprobe_mmap(vp->insert);
582         validate_mm(mm);
583 }
584
585 /*
586  * dup_anon_vma() - Helper function to duplicate anon_vma
587  * @dst: The destination VMA
588  * @src: The source VMA
589  * @dup: Pointer to the destination VMA when successful.
590  *
591  * Returns: 0 on success.
592  */
593 static inline int dup_anon_vma(struct vm_area_struct *dst,
594                 struct vm_area_struct *src, struct vm_area_struct **dup)
595 {
596         /*
597          * Easily overlooked: when mprotect shifts the boundary, make sure the
598          * expanding vma has anon_vma set if the shrinking vma had, to cover any
599          * anon pages imported.
600          */
601         if (src->anon_vma && !dst->anon_vma) {
602                 int ret;
603
604                 vma_assert_write_locked(dst);
605                 dst->anon_vma = src->anon_vma;
606                 ret = anon_vma_clone(dst, src);
607                 if (ret)
608                         return ret;
609
610                 *dup = dst;
611         }
612
613         return 0;
614 }
615
616 /*
617  * vma_expand - Expand an existing VMA
618  *
619  * @vmi: The vma iterator
620  * @vma: The vma to expand
621  * @start: The start of the vma
622  * @end: The exclusive end of the vma
623  * @pgoff: The page offset of vma
624  * @next: The current of next vma.
625  *
626  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627  * expand over @next if it's different from @vma and @end == @next->vm_end.
628  * Checking if the @vma can expand and merge with @next needs to be handled by
629  * the caller.
630  *
631  * Returns: 0 on success
632  */
633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634                unsigned long start, unsigned long end, pgoff_t pgoff,
635                struct vm_area_struct *next)
636 {
637         struct vm_area_struct *anon_dup = NULL;
638         bool remove_next = false;
639         struct vma_prepare vp;
640
641         vma_start_write(vma);
642         if (next && (vma != next) && (end == next->vm_end)) {
643                 int ret;
644
645                 remove_next = true;
646                 vma_start_write(next);
647                 ret = dup_anon_vma(vma, next, &anon_dup);
648                 if (ret)
649                         return ret;
650         }
651
652         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653         /* Not merging but overwriting any part of next is not handled. */
654         VM_WARN_ON(next && !vp.remove &&
655                   next != vma && end > next->vm_start);
656         /* Only handles expanding */
657         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658
659         /* Note: vma iterator must be pointing to 'start' */
660         vma_iter_config(vmi, start, end);
661         if (vma_iter_prealloc(vmi, vma))
662                 goto nomem;
663
664         vma_prepare(&vp);
665         vma_adjust_trans_huge(vma, start, end, 0);
666         vma_set_range(vma, start, end, pgoff);
667         vma_iter_store(vmi, vma);
668
669         vma_complete(&vp, vmi, vma->vm_mm);
670         return 0;
671
672 nomem:
673         if (anon_dup)
674                 unlink_anon_vmas(anon_dup);
675         return -ENOMEM;
676 }
677
678 /*
679  * vma_shrink() - Reduce an existing VMAs memory area
680  * @vmi: The vma iterator
681  * @vma: The VMA to modify
682  * @start: The new start
683  * @end: The new end
684  *
685  * Returns: 0 on success, -ENOMEM otherwise
686  */
687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688                unsigned long start, unsigned long end, pgoff_t pgoff)
689 {
690         struct vma_prepare vp;
691
692         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693
694         if (vma->vm_start < start)
695                 vma_iter_config(vmi, vma->vm_start, start);
696         else
697                 vma_iter_config(vmi, end, vma->vm_end);
698
699         if (vma_iter_prealloc(vmi, NULL))
700                 return -ENOMEM;
701
702         vma_start_write(vma);
703
704         init_vma_prep(&vp, vma);
705         vma_prepare(&vp);
706         vma_adjust_trans_huge(vma, start, end, 0);
707
708         vma_iter_clear(vmi);
709         vma_set_range(vma, start, end, pgoff);
710         vma_complete(&vp, vmi, vma->vm_mm);
711         return 0;
712 }
713
714 /*
715  * If the vma has a ->close operation then the driver probably needs to release
716  * per-vma resources, so we don't attempt to merge those if the caller indicates
717  * the current vma may be removed as part of the merge.
718  */
719 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720                 struct file *file, unsigned long vm_flags,
721                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722                 struct anon_vma_name *anon_name, bool may_remove_vma)
723 {
724         /*
725          * VM_SOFTDIRTY should not prevent from VMA merging, if we
726          * match the flags but dirty bit -- the caller should mark
727          * merged VMA as dirty. If dirty bit won't be excluded from
728          * comparison, we increase pressure on the memory system forcing
729          * the kernel to generate new VMAs when old one could be
730          * extended instead.
731          */
732         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733                 return false;
734         if (vma->vm_file != file)
735                 return false;
736         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737                 return false;
738         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739                 return false;
740         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741                 return false;
742         return true;
743 }
744
745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747 {
748         /*
749          * The list_is_singular() test is to avoid merging VMA cloned from
750          * parents. This can improve scalability caused by anon_vma lock.
751          */
752         if ((!anon_vma1 || !anon_vma2) && (!vma ||
753                 list_is_singular(&vma->anon_vma_chain)))
754                 return true;
755         return anon_vma1 == anon_vma2;
756 }
757
758 /*
759  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760  * in front of (at a lower virtual address and file offset than) the vma.
761  *
762  * We cannot merge two vmas if they have differently assigned (non-NULL)
763  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764  *
765  * We don't check here for the merged mmap wrapping around the end of pagecache
766  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767  * wrap, nor mmaps which cover the final page at index -1UL.
768  *
769  * We assume the vma may be removed as part of the merge.
770  */
771 static bool
772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773                 struct anon_vma *anon_vma, struct file *file,
774                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775                 struct anon_vma_name *anon_name)
776 {
777         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779                 if (vma->vm_pgoff == vm_pgoff)
780                         return true;
781         }
782         return false;
783 }
784
785 /*
786  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787  * beyond (at a higher virtual address and file offset than) the vma.
788  *
789  * We cannot merge two vmas if they have differently assigned (non-NULL)
790  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791  *
792  * We assume that vma is not removed as part of the merge.
793  */
794 static bool
795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796                 struct anon_vma *anon_vma, struct file *file,
797                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798                 struct anon_vma_name *anon_name)
799 {
800         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802                 pgoff_t vm_pglen;
803                 vm_pglen = vma_pages(vma);
804                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805                         return true;
806         }
807         return false;
808 }
809
810 /*
811  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812  * figure out whether that can be merged with its predecessor or its
813  * successor.  Or both (it neatly fills a hole).
814  *
815  * In most cases - when called for mmap, brk or mremap - [addr,end) is
816  * certain not to be mapped by the time vma_merge is called; but when
817  * called for mprotect, it is certain to be already mapped (either at
818  * an offset within prev, or at the start of next), and the flags of
819  * this area are about to be changed to vm_flags - and the no-change
820  * case has already been eliminated.
821  *
822  * The following mprotect cases have to be considered, where **** is
823  * the area passed down from mprotect_fixup, never extending beyond one
824  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825  * at the same address as **** and is of the same or larger span, and
826  * NNNN the next vma after ****:
827  *
828  *     ****             ****                   ****
829  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830  *    cannot merge    might become       might become
831  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832  *    mmap, brk or    case 4 below       case 5 below
833  *    mremap move:
834  *                        ****               ****
835  *                    PPPP    NNNN       PPPPCCCCNNNN
836  *                    might become       might become
837  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840  *
841  * It is important for case 8 that the vma CCCC overlapping the
842  * region **** is never going to extended over NNNN. Instead NNNN must
843  * be extended in region **** and CCCC must be removed. This way in
844  * all cases where vma_merge succeeds, the moment vma_merge drops the
845  * rmap_locks, the properties of the merged vma will be already
846  * correct for the whole merged range. Some of those properties like
847  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848  * be correct for the whole merged range immediately after the
849  * rmap_locks are released. Otherwise if NNNN would be removed and
850  * CCCC would be extended over the NNNN range, remove_migration_ptes
851  * or other rmap walkers (if working on addresses beyond the "end"
852  * parameter) may establish ptes with the wrong permissions of CCCC
853  * instead of the right permissions of NNNN.
854  *
855  * In the code below:
856  * PPPP is represented by *prev
857  * CCCC is represented by *curr or not represented at all (NULL)
858  * NNNN is represented by *next or not represented at all (NULL)
859  * **** is not represented - it will be merged and the vma containing the
860  *      area is returned, or the function will return NULL
861  */
862 static struct vm_area_struct
863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864            struct vm_area_struct *src, unsigned long addr, unsigned long end,
865            unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866            struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867            struct anon_vma_name *anon_name)
868 {
869         struct mm_struct *mm = src->vm_mm;
870         struct anon_vma *anon_vma = src->anon_vma;
871         struct file *file = src->vm_file;
872         struct vm_area_struct *curr, *next, *res;
873         struct vm_area_struct *vma, *adjust, *remove, *remove2;
874         struct vm_area_struct *anon_dup = NULL;
875         struct vma_prepare vp;
876         pgoff_t vma_pgoff;
877         int err = 0;
878         bool merge_prev = false;
879         bool merge_next = false;
880         bool vma_expanded = false;
881         unsigned long vma_start = addr;
882         unsigned long vma_end = end;
883         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884         long adj_start = 0;
885
886         /*
887          * We later require that vma->vm_flags == vm_flags,
888          * so this tests vma->vm_flags & VM_SPECIAL, too.
889          */
890         if (vm_flags & VM_SPECIAL)
891                 return NULL;
892
893         /* Does the input range span an existing VMA? (cases 5 - 8) */
894         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895
896         if (!curr ||                    /* cases 1 - 4 */
897             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
898                 next = vma_lookup(mm, end);
899         else
900                 next = NULL;            /* case 5 */
901
902         if (prev) {
903                 vma_start = prev->vm_start;
904                 vma_pgoff = prev->vm_pgoff;
905
906                 /* Can we merge the predecessor? */
907                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
910                         merge_prev = true;
911                         vma_prev(vmi);
912                 }
913         }
914
915         /* Can we merge the successor? */
916         if (next && mpol_equal(policy, vma_policy(next)) &&
917             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918                                  vm_userfaultfd_ctx, anon_name)) {
919                 merge_next = true;
920         }
921
922         /* Verify some invariant that must be enforced by the caller. */
923         VM_WARN_ON(prev && addr <= prev->vm_start);
924         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925         VM_WARN_ON(addr >= end);
926
927         if (!merge_prev && !merge_next)
928                 return NULL; /* Not mergeable. */
929
930         if (merge_prev)
931                 vma_start_write(prev);
932
933         res = vma = prev;
934         remove = remove2 = adjust = NULL;
935
936         /* Can we merge both the predecessor and the successor? */
937         if (merge_prev && merge_next &&
938             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939                 vma_start_write(next);
940                 remove = next;                          /* case 1 */
941                 vma_end = next->vm_end;
942                 err = dup_anon_vma(prev, next, &anon_dup);
943                 if (curr) {                             /* case 6 */
944                         vma_start_write(curr);
945                         remove = curr;
946                         remove2 = next;
947                         /*
948                          * Note that the dup_anon_vma below cannot overwrite err
949                          * since the first caller would do nothing unless next
950                          * has an anon_vma.
951                          */
952                         if (!next->anon_vma)
953                                 err = dup_anon_vma(prev, curr, &anon_dup);
954                 }
955         } else if (merge_prev) {                        /* case 2 */
956                 if (curr) {
957                         vma_start_write(curr);
958                         if (end == curr->vm_end) {      /* case 7 */
959                                 /*
960                                  * can_vma_merge_after() assumed we would not be
961                                  * removing prev vma, so it skipped the check
962                                  * for vm_ops->close, but we are removing curr
963                                  */
964                                 if (curr->vm_ops && curr->vm_ops->close)
965                                         err = -EINVAL;
966                                 remove = curr;
967                         } else {                        /* case 5 */
968                                 adjust = curr;
969                                 adj_start = (end - curr->vm_start);
970                         }
971                         if (!err)
972                                 err = dup_anon_vma(prev, curr, &anon_dup);
973                 }
974         } else { /* merge_next */
975                 vma_start_write(next);
976                 res = next;
977                 if (prev && addr < prev->vm_end) {      /* case 4 */
978                         vma_start_write(prev);
979                         vma_end = addr;
980                         adjust = next;
981                         adj_start = -(prev->vm_end - addr);
982                         err = dup_anon_vma(next, prev, &anon_dup);
983                 } else {
984                         /*
985                          * Note that cases 3 and 8 are the ONLY ones where prev
986                          * is permitted to be (but is not necessarily) NULL.
987                          */
988                         vma = next;                     /* case 3 */
989                         vma_start = addr;
990                         vma_end = next->vm_end;
991                         vma_pgoff = next->vm_pgoff - pglen;
992                         if (curr) {                     /* case 8 */
993                                 vma_pgoff = curr->vm_pgoff;
994                                 vma_start_write(curr);
995                                 remove = curr;
996                                 err = dup_anon_vma(next, curr, &anon_dup);
997                         }
998                 }
999         }
1000
1001         /* Error in anon_vma clone. */
1002         if (err)
1003                 goto anon_vma_fail;
1004
1005         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006                 vma_expanded = true;
1007
1008         if (vma_expanded) {
1009                 vma_iter_config(vmi, vma_start, vma_end);
1010         } else {
1011                 vma_iter_config(vmi, adjust->vm_start + adj_start,
1012                                 adjust->vm_end);
1013         }
1014
1015         if (vma_iter_prealloc(vmi, vma))
1016                 goto prealloc_fail;
1017
1018         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020                    vp.anon_vma != adjust->anon_vma);
1021
1022         vma_prepare(&vp);
1023         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024         vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025
1026         if (vma_expanded)
1027                 vma_iter_store(vmi, vma);
1028
1029         if (adj_start) {
1030                 adjust->vm_start += adj_start;
1031                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032                 if (adj_start < 0) {
1033                         WARN_ON(vma_expanded);
1034                         vma_iter_store(vmi, next);
1035                 }
1036         }
1037
1038         vma_complete(&vp, vmi, mm);
1039         khugepaged_enter_vma(res, vm_flags);
1040         return res;
1041
1042 prealloc_fail:
1043         if (anon_dup)
1044                 unlink_anon_vmas(anon_dup);
1045
1046 anon_vma_fail:
1047         vma_iter_set(vmi, addr);
1048         vma_iter_load(vmi);
1049         return NULL;
1050 }
1051
1052 /*
1053  * Rough compatibility check to quickly see if it's even worth looking
1054  * at sharing an anon_vma.
1055  *
1056  * They need to have the same vm_file, and the flags can only differ
1057  * in things that mprotect may change.
1058  *
1059  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060  * we can merge the two vma's. For example, we refuse to merge a vma if
1061  * there is a vm_ops->close() function, because that indicates that the
1062  * driver is doing some kind of reference counting. But that doesn't
1063  * really matter for the anon_vma sharing case.
1064  */
1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067         return a->vm_end == b->vm_start &&
1068                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1069                 a->vm_file == b->vm_file &&
1070                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072 }
1073
1074 /*
1075  * Do some basic sanity checking to see if we can re-use the anon_vma
1076  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077  * the same as 'old', the other will be the new one that is trying
1078  * to share the anon_vma.
1079  *
1080  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081  * the anon_vma of 'old' is concurrently in the process of being set up
1082  * by another page fault trying to merge _that_. But that's ok: if it
1083  * is being set up, that automatically means that it will be a singleton
1084  * acceptable for merging, so we can do all of this optimistically. But
1085  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086  *
1087  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089  * is to return an anon_vma that is "complex" due to having gone through
1090  * a fork).
1091  *
1092  * We also make sure that the two vma's are compatible (adjacent,
1093  * and with the same memory policies). That's all stable, even with just
1094  * a read lock on the mmap_lock.
1095  */
1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097 {
1098         if (anon_vma_compatible(a, b)) {
1099                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100
1101                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102                         return anon_vma;
1103         }
1104         return NULL;
1105 }
1106
1107 /*
1108  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109  * neighbouring vmas for a suitable anon_vma, before it goes off
1110  * to allocate a new anon_vma.  It checks because a repetitive
1111  * sequence of mprotects and faults may otherwise lead to distinct
1112  * anon_vmas being allocated, preventing vma merge in subsequent
1113  * mprotect.
1114  */
1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116 {
1117         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1118         struct anon_vma *anon_vma = NULL;
1119         struct vm_area_struct *prev, *next;
1120
1121         /* Try next first. */
1122         next = mas_walk(&mas);
1123         if (next) {
1124                 anon_vma = reusable_anon_vma(next, vma, next);
1125                 if (anon_vma)
1126                         return anon_vma;
1127         }
1128
1129         prev = mas_prev(&mas, 0);
1130         VM_BUG_ON_VMA(prev != vma, vma);
1131         prev = mas_prev(&mas, 0);
1132         /* Try prev next. */
1133         if (prev)
1134                 anon_vma = reusable_anon_vma(prev, prev, vma);
1135
1136         /*
1137          * We might reach here with anon_vma == NULL if we can't find
1138          * any reusable anon_vma.
1139          * There's no absolute need to look only at touching neighbours:
1140          * we could search further afield for "compatible" anon_vmas.
1141          * But it would probably just be a waste of time searching,
1142          * or lead to too many vmas hanging off the same anon_vma.
1143          * We're trying to allow mprotect remerging later on,
1144          * not trying to minimize memory used for anon_vmas.
1145          */
1146         return anon_vma;
1147 }
1148
1149 /*
1150  * If a hint addr is less than mmap_min_addr change hint to be as
1151  * low as possible but still greater than mmap_min_addr
1152  */
1153 static inline unsigned long round_hint_to_min(unsigned long hint)
1154 {
1155         hint &= PAGE_MASK;
1156         if (((void *)hint != NULL) &&
1157             (hint < mmap_min_addr))
1158                 return PAGE_ALIGN(mmap_min_addr);
1159         return hint;
1160 }
1161
1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163                         unsigned long bytes)
1164 {
1165         unsigned long locked_pages, limit_pages;
1166
1167         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168                 return true;
1169
1170         locked_pages = bytes >> PAGE_SHIFT;
1171         locked_pages += mm->locked_vm;
1172
1173         limit_pages = rlimit(RLIMIT_MEMLOCK);
1174         limit_pages >>= PAGE_SHIFT;
1175
1176         return locked_pages <= limit_pages;
1177 }
1178
1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180 {
1181         if (S_ISREG(inode->i_mode))
1182                 return MAX_LFS_FILESIZE;
1183
1184         if (S_ISBLK(inode->i_mode))
1185                 return MAX_LFS_FILESIZE;
1186
1187         if (S_ISSOCK(inode->i_mode))
1188                 return MAX_LFS_FILESIZE;
1189
1190         /* Special "we do even unsigned file positions" case */
1191         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192                 return 0;
1193
1194         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195         return ULONG_MAX;
1196 }
1197
1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199                                 unsigned long pgoff, unsigned long len)
1200 {
1201         u64 maxsize = file_mmap_size_max(file, inode);
1202
1203         if (maxsize && len > maxsize)
1204                 return false;
1205         maxsize -= len;
1206         if (pgoff > maxsize >> PAGE_SHIFT)
1207                 return false;
1208         return true;
1209 }
1210
1211 /*
1212  * The caller must write-lock current->mm->mmap_lock.
1213  */
1214 unsigned long do_mmap(struct file *file, unsigned long addr,
1215                         unsigned long len, unsigned long prot,
1216                         unsigned long flags, vm_flags_t vm_flags,
1217                         unsigned long pgoff, unsigned long *populate,
1218                         struct list_head *uf)
1219 {
1220         struct mm_struct *mm = current->mm;
1221         int pkey = 0;
1222
1223         *populate = 0;
1224
1225         if (!len)
1226                 return -EINVAL;
1227
1228         /*
1229          * Does the application expect PROT_READ to imply PROT_EXEC?
1230          *
1231          * (the exception is when the underlying filesystem is noexec
1232          *  mounted, in which case we don't add PROT_EXEC.)
1233          */
1234         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235                 if (!(file && path_noexec(&file->f_path)))
1236                         prot |= PROT_EXEC;
1237
1238         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1239         if (flags & MAP_FIXED_NOREPLACE)
1240                 flags |= MAP_FIXED;
1241
1242         if (!(flags & MAP_FIXED))
1243                 addr = round_hint_to_min(addr);
1244
1245         /* Careful about overflows.. */
1246         len = PAGE_ALIGN(len);
1247         if (!len)
1248                 return -ENOMEM;
1249
1250         /* offset overflow? */
1251         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252                 return -EOVERFLOW;
1253
1254         /* Too many mappings? */
1255         if (mm->map_count > sysctl_max_map_count)
1256                 return -ENOMEM;
1257
1258         /* Obtain the address to map to. we verify (or select) it and ensure
1259          * that it represents a valid section of the address space.
1260          */
1261         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1262         if (IS_ERR_VALUE(addr))
1263                 return addr;
1264
1265         if (flags & MAP_FIXED_NOREPLACE) {
1266                 if (find_vma_intersection(mm, addr, addr + len))
1267                         return -EEXIST;
1268         }
1269
1270         if (prot == PROT_EXEC) {
1271                 pkey = execute_only_pkey(mm);
1272                 if (pkey < 0)
1273                         pkey = 0;
1274         }
1275
1276         /* Do simple checking here so the lower-level routines won't have
1277          * to. we assume access permissions have been handled by the open
1278          * of the memory object, so we don't do any here.
1279          */
1280         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1281                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1282
1283         if (flags & MAP_LOCKED)
1284                 if (!can_do_mlock())
1285                         return -EPERM;
1286
1287         if (!mlock_future_ok(mm, vm_flags, len))
1288                 return -EAGAIN;
1289
1290         if (file) {
1291                 struct inode *inode = file_inode(file);
1292                 unsigned long flags_mask;
1293
1294                 if (!file_mmap_ok(file, inode, pgoff, len))
1295                         return -EOVERFLOW;
1296
1297                 flags_mask = LEGACY_MAP_MASK;
1298                 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1299                         flags_mask |= MAP_SYNC;
1300
1301                 switch (flags & MAP_TYPE) {
1302                 case MAP_SHARED:
1303                         /*
1304                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1305                          * flags. E.g. MAP_SYNC is dangerous to use with
1306                          * MAP_SHARED as you don't know which consistency model
1307                          * you will get. We silently ignore unsupported flags
1308                          * with MAP_SHARED to preserve backward compatibility.
1309                          */
1310                         flags &= LEGACY_MAP_MASK;
1311                         fallthrough;
1312                 case MAP_SHARED_VALIDATE:
1313                         if (flags & ~flags_mask)
1314                                 return -EOPNOTSUPP;
1315                         if (prot & PROT_WRITE) {
1316                                 if (!(file->f_mode & FMODE_WRITE))
1317                                         return -EACCES;
1318                                 if (IS_SWAPFILE(file->f_mapping->host))
1319                                         return -ETXTBSY;
1320                         }
1321
1322                         /*
1323                          * Make sure we don't allow writing to an append-only
1324                          * file..
1325                          */
1326                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1327                                 return -EACCES;
1328
1329                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1330                         if (!(file->f_mode & FMODE_WRITE))
1331                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332                         fallthrough;
1333                 case MAP_PRIVATE:
1334                         if (!(file->f_mode & FMODE_READ))
1335                                 return -EACCES;
1336                         if (path_noexec(&file->f_path)) {
1337                                 if (vm_flags & VM_EXEC)
1338                                         return -EPERM;
1339                                 vm_flags &= ~VM_MAYEXEC;
1340                         }
1341
1342                         if (!file->f_op->mmap)
1343                                 return -ENODEV;
1344                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345                                 return -EINVAL;
1346                         break;
1347
1348                 default:
1349                         return -EINVAL;
1350                 }
1351         } else {
1352                 switch (flags & MAP_TYPE) {
1353                 case MAP_SHARED:
1354                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355                                 return -EINVAL;
1356                         /*
1357                          * Ignore pgoff.
1358                          */
1359                         pgoff = 0;
1360                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1361                         break;
1362                 case MAP_PRIVATE:
1363                         /*
1364                          * Set pgoff according to addr for anon_vma.
1365                          */
1366                         pgoff = addr >> PAGE_SHIFT;
1367                         break;
1368                 default:
1369                         return -EINVAL;
1370                 }
1371         }
1372
1373         /*
1374          * Set 'VM_NORESERVE' if we should not account for the
1375          * memory use of this mapping.
1376          */
1377         if (flags & MAP_NORESERVE) {
1378                 /* We honor MAP_NORESERVE if allowed to overcommit */
1379                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1380                         vm_flags |= VM_NORESERVE;
1381
1382                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1383                 if (file && is_file_hugepages(file))
1384                         vm_flags |= VM_NORESERVE;
1385         }
1386
1387         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1388         if (!IS_ERR_VALUE(addr) &&
1389             ((vm_flags & VM_LOCKED) ||
1390              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1391                 *populate = len;
1392         return addr;
1393 }
1394
1395 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1396                               unsigned long prot, unsigned long flags,
1397                               unsigned long fd, unsigned long pgoff)
1398 {
1399         struct file *file = NULL;
1400         unsigned long retval;
1401
1402         if (!(flags & MAP_ANONYMOUS)) {
1403                 audit_mmap_fd(fd, flags);
1404                 file = fget(fd);
1405                 if (!file)
1406                         return -EBADF;
1407                 if (is_file_hugepages(file)) {
1408                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1409                 } else if (unlikely(flags & MAP_HUGETLB)) {
1410                         retval = -EINVAL;
1411                         goto out_fput;
1412                 }
1413         } else if (flags & MAP_HUGETLB) {
1414                 struct hstate *hs;
1415
1416                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417                 if (!hs)
1418                         return -EINVAL;
1419
1420                 len = ALIGN(len, huge_page_size(hs));
1421                 /*
1422                  * VM_NORESERVE is used because the reservations will be
1423                  * taken when vm_ops->mmap() is called
1424                  */
1425                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1426                                 VM_NORESERVE,
1427                                 HUGETLB_ANONHUGE_INODE,
1428                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1429                 if (IS_ERR(file))
1430                         return PTR_ERR(file);
1431         }
1432
1433         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1434 out_fput:
1435         if (file)
1436                 fput(file);
1437         return retval;
1438 }
1439
1440 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1441                 unsigned long, prot, unsigned long, flags,
1442                 unsigned long, fd, unsigned long, pgoff)
1443 {
1444         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1445 }
1446
1447 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1448 struct mmap_arg_struct {
1449         unsigned long addr;
1450         unsigned long len;
1451         unsigned long prot;
1452         unsigned long flags;
1453         unsigned long fd;
1454         unsigned long offset;
1455 };
1456
1457 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1458 {
1459         struct mmap_arg_struct a;
1460
1461         if (copy_from_user(&a, arg, sizeof(a)))
1462                 return -EFAULT;
1463         if (offset_in_page(a.offset))
1464                 return -EINVAL;
1465
1466         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1467                                a.offset >> PAGE_SHIFT);
1468 }
1469 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1470
1471 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1472 {
1473         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1474 }
1475
1476 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1477 {
1478         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1479                 (VM_WRITE | VM_SHARED);
1480 }
1481
1482 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1483 {
1484         /* No managed pages to writeback. */
1485         if (vma->vm_flags & VM_PFNMAP)
1486                 return false;
1487
1488         return vma->vm_file && vma->vm_file->f_mapping &&
1489                 mapping_can_writeback(vma->vm_file->f_mapping);
1490 }
1491
1492 /*
1493  * Does this VMA require the underlying folios to have their dirty state
1494  * tracked?
1495  */
1496 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1497 {
1498         /* Only shared, writable VMAs require dirty tracking. */
1499         if (!vma_is_shared_writable(vma))
1500                 return false;
1501
1502         /* Does the filesystem need to be notified? */
1503         if (vm_ops_needs_writenotify(vma->vm_ops))
1504                 return true;
1505
1506         /*
1507          * Even if the filesystem doesn't indicate a need for writenotify, if it
1508          * can writeback, dirty tracking is still required.
1509          */
1510         return vma_fs_can_writeback(vma);
1511 }
1512
1513 /*
1514  * Some shared mappings will want the pages marked read-only
1515  * to track write events. If so, we'll downgrade vm_page_prot
1516  * to the private version (using protection_map[] without the
1517  * VM_SHARED bit).
1518  */
1519 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1520 {
1521         /* If it was private or non-writable, the write bit is already clear */
1522         if (!vma_is_shared_writable(vma))
1523                 return 0;
1524
1525         /* The backer wishes to know when pages are first written to? */
1526         if (vm_ops_needs_writenotify(vma->vm_ops))
1527                 return 1;
1528
1529         /* The open routine did something to the protections that pgprot_modify
1530          * won't preserve? */
1531         if (pgprot_val(vm_page_prot) !=
1532             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1533                 return 0;
1534
1535         /*
1536          * Do we need to track softdirty? hugetlb does not support softdirty
1537          * tracking yet.
1538          */
1539         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1540                 return 1;
1541
1542         /* Do we need write faults for uffd-wp tracking? */
1543         if (userfaultfd_wp(vma))
1544                 return 1;
1545
1546         /* Can the mapping track the dirty pages? */
1547         return vma_fs_can_writeback(vma);
1548 }
1549
1550 /*
1551  * We account for memory if it's a private writeable mapping,
1552  * not hugepages and VM_NORESERVE wasn't set.
1553  */
1554 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1555 {
1556         /*
1557          * hugetlb has its own accounting separate from the core VM
1558          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1559          */
1560         if (file && is_file_hugepages(file))
1561                 return 0;
1562
1563         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1564 }
1565
1566 /**
1567  * unmapped_area() - Find an area between the low_limit and the high_limit with
1568  * the correct alignment and offset, all from @info. Note: current->mm is used
1569  * for the search.
1570  *
1571  * @info: The unmapped area information including the range [low_limit -
1572  * high_limit), the alignment offset and mask.
1573  *
1574  * Return: A memory address or -ENOMEM.
1575  */
1576 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1577 {
1578         unsigned long length, gap;
1579         unsigned long low_limit, high_limit;
1580         struct vm_area_struct *tmp;
1581
1582         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1583
1584         /* Adjust search length to account for worst case alignment overhead */
1585         length = info->length + info->align_mask;
1586         if (length < info->length)
1587                 return -ENOMEM;
1588
1589         low_limit = info->low_limit;
1590         if (low_limit < mmap_min_addr)
1591                 low_limit = mmap_min_addr;
1592         high_limit = info->high_limit;
1593 retry:
1594         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1595                 return -ENOMEM;
1596
1597         gap = mas.index;
1598         gap += (info->align_offset - gap) & info->align_mask;
1599         tmp = mas_next(&mas, ULONG_MAX);
1600         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1601                 if (vm_start_gap(tmp) < gap + length - 1) {
1602                         low_limit = tmp->vm_end;
1603                         mas_reset(&mas);
1604                         goto retry;
1605                 }
1606         } else {
1607                 tmp = mas_prev(&mas, 0);
1608                 if (tmp && vm_end_gap(tmp) > gap) {
1609                         low_limit = vm_end_gap(tmp);
1610                         mas_reset(&mas);
1611                         goto retry;
1612                 }
1613         }
1614
1615         return gap;
1616 }
1617
1618 /**
1619  * unmapped_area_topdown() - Find an area between the low_limit and the
1620  * high_limit with the correct alignment and offset at the highest available
1621  * address, all from @info. Note: current->mm is used for the search.
1622  *
1623  * @info: The unmapped area information including the range [low_limit -
1624  * high_limit), the alignment offset and mask.
1625  *
1626  * Return: A memory address or -ENOMEM.
1627  */
1628 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1629 {
1630         unsigned long length, gap, gap_end;
1631         unsigned long low_limit, high_limit;
1632         struct vm_area_struct *tmp;
1633
1634         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1635         /* Adjust search length to account for worst case alignment overhead */
1636         length = info->length + info->align_mask;
1637         if (length < info->length)
1638                 return -ENOMEM;
1639
1640         low_limit = info->low_limit;
1641         if (low_limit < mmap_min_addr)
1642                 low_limit = mmap_min_addr;
1643         high_limit = info->high_limit;
1644 retry:
1645         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1646                 return -ENOMEM;
1647
1648         gap = mas.last + 1 - info->length;
1649         gap -= (gap - info->align_offset) & info->align_mask;
1650         gap_end = mas.last;
1651         tmp = mas_next(&mas, ULONG_MAX);
1652         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1653                 if (vm_start_gap(tmp) <= gap_end) {
1654                         high_limit = vm_start_gap(tmp);
1655                         mas_reset(&mas);
1656                         goto retry;
1657                 }
1658         } else {
1659                 tmp = mas_prev(&mas, 0);
1660                 if (tmp && vm_end_gap(tmp) > gap) {
1661                         high_limit = tmp->vm_start;
1662                         mas_reset(&mas);
1663                         goto retry;
1664                 }
1665         }
1666
1667         return gap;
1668 }
1669
1670 /*
1671  * Search for an unmapped address range.
1672  *
1673  * We are looking for a range that:
1674  * - does not intersect with any VMA;
1675  * - is contained within the [low_limit, high_limit) interval;
1676  * - is at least the desired size.
1677  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1678  */
1679 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1680 {
1681         unsigned long addr;
1682
1683         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1684                 addr = unmapped_area_topdown(info);
1685         else
1686                 addr = unmapped_area(info);
1687
1688         trace_vm_unmapped_area(addr, info);
1689         return addr;
1690 }
1691
1692 /* Get an address range which is currently unmapped.
1693  * For shmat() with addr=0.
1694  *
1695  * Ugly calling convention alert:
1696  * Return value with the low bits set means error value,
1697  * ie
1698  *      if (ret & ~PAGE_MASK)
1699  *              error = ret;
1700  *
1701  * This function "knows" that -ENOMEM has the bits set.
1702  */
1703 unsigned long
1704 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1705                           unsigned long len, unsigned long pgoff,
1706                           unsigned long flags)
1707 {
1708         struct mm_struct *mm = current->mm;
1709         struct vm_area_struct *vma, *prev;
1710         struct vm_unmapped_area_info info;
1711         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1712
1713         if (len > mmap_end - mmap_min_addr)
1714                 return -ENOMEM;
1715
1716         if (flags & MAP_FIXED)
1717                 return addr;
1718
1719         if (addr) {
1720                 addr = PAGE_ALIGN(addr);
1721                 vma = find_vma_prev(mm, addr, &prev);
1722                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1723                     (!vma || addr + len <= vm_start_gap(vma)) &&
1724                     (!prev || addr >= vm_end_gap(prev)))
1725                         return addr;
1726         }
1727
1728         info.flags = 0;
1729         info.length = len;
1730         info.low_limit = mm->mmap_base;
1731         info.high_limit = mmap_end;
1732         info.align_mask = 0;
1733         info.align_offset = 0;
1734         return vm_unmapped_area(&info);
1735 }
1736
1737 #ifndef HAVE_ARCH_UNMAPPED_AREA
1738 unsigned long
1739 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1740                        unsigned long len, unsigned long pgoff,
1741                        unsigned long flags)
1742 {
1743         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1744 }
1745 #endif
1746
1747 /*
1748  * This mmap-allocator allocates new areas top-down from below the
1749  * stack's low limit (the base):
1750  */
1751 unsigned long
1752 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1753                                   unsigned long len, unsigned long pgoff,
1754                                   unsigned long flags)
1755 {
1756         struct vm_area_struct *vma, *prev;
1757         struct mm_struct *mm = current->mm;
1758         struct vm_unmapped_area_info info;
1759         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1760
1761         /* requested length too big for entire address space */
1762         if (len > mmap_end - mmap_min_addr)
1763                 return -ENOMEM;
1764
1765         if (flags & MAP_FIXED)
1766                 return addr;
1767
1768         /* requesting a specific address */
1769         if (addr) {
1770                 addr = PAGE_ALIGN(addr);
1771                 vma = find_vma_prev(mm, addr, &prev);
1772                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1773                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1774                                 (!prev || addr >= vm_end_gap(prev)))
1775                         return addr;
1776         }
1777
1778         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1779         info.length = len;
1780         info.low_limit = PAGE_SIZE;
1781         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1782         info.align_mask = 0;
1783         info.align_offset = 0;
1784         addr = vm_unmapped_area(&info);
1785
1786         /*
1787          * A failed mmap() very likely causes application failure,
1788          * so fall back to the bottom-up function here. This scenario
1789          * can happen with large stack limits and large mmap()
1790          * allocations.
1791          */
1792         if (offset_in_page(addr)) {
1793                 VM_BUG_ON(addr != -ENOMEM);
1794                 info.flags = 0;
1795                 info.low_limit = TASK_UNMAPPED_BASE;
1796                 info.high_limit = mmap_end;
1797                 addr = vm_unmapped_area(&info);
1798         }
1799
1800         return addr;
1801 }
1802
1803 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1804 unsigned long
1805 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806                                unsigned long len, unsigned long pgoff,
1807                                unsigned long flags)
1808 {
1809         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1810 }
1811 #endif
1812
1813 unsigned long
1814 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1815                 unsigned long pgoff, unsigned long flags)
1816 {
1817         unsigned long (*get_area)(struct file *, unsigned long,
1818                                   unsigned long, unsigned long, unsigned long);
1819
1820         unsigned long error = arch_mmap_check(addr, len, flags);
1821         if (error)
1822                 return error;
1823
1824         /* Careful about overflows.. */
1825         if (len > TASK_SIZE)
1826                 return -ENOMEM;
1827
1828         get_area = current->mm->get_unmapped_area;
1829         if (file) {
1830                 if (file->f_op->get_unmapped_area)
1831                         get_area = file->f_op->get_unmapped_area;
1832         } else if (flags & MAP_SHARED) {
1833                 /*
1834                  * mmap_region() will call shmem_zero_setup() to create a file,
1835                  * so use shmem's get_unmapped_area in case it can be huge.
1836                  */
1837                 get_area = shmem_get_unmapped_area;
1838         } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1839                 /* Ensures that larger anonymous mappings are THP aligned. */
1840                 get_area = thp_get_unmapped_area;
1841         }
1842
1843         /* Always treat pgoff as zero for anonymous memory. */
1844         if (!file)
1845                 pgoff = 0;
1846
1847         addr = get_area(file, addr, len, pgoff, flags);
1848         if (IS_ERR_VALUE(addr))
1849                 return addr;
1850
1851         if (addr > TASK_SIZE - len)
1852                 return -ENOMEM;
1853         if (offset_in_page(addr))
1854                 return -EINVAL;
1855
1856         error = security_mmap_addr(addr);
1857         return error ? error : addr;
1858 }
1859
1860 EXPORT_SYMBOL(get_unmapped_area);
1861
1862 /**
1863  * find_vma_intersection() - Look up the first VMA which intersects the interval
1864  * @mm: The process address space.
1865  * @start_addr: The inclusive start user address.
1866  * @end_addr: The exclusive end user address.
1867  *
1868  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1869  * start_addr < end_addr.
1870  */
1871 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1872                                              unsigned long start_addr,
1873                                              unsigned long end_addr)
1874 {
1875         unsigned long index = start_addr;
1876
1877         mmap_assert_locked(mm);
1878         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1879 }
1880 EXPORT_SYMBOL(find_vma_intersection);
1881
1882 /**
1883  * find_vma() - Find the VMA for a given address, or the next VMA.
1884  * @mm: The mm_struct to check
1885  * @addr: The address
1886  *
1887  * Returns: The VMA associated with addr, or the next VMA.
1888  * May return %NULL in the case of no VMA at addr or above.
1889  */
1890 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1891 {
1892         unsigned long index = addr;
1893
1894         mmap_assert_locked(mm);
1895         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1896 }
1897 EXPORT_SYMBOL(find_vma);
1898
1899 /**
1900  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1901  * set %pprev to the previous VMA, if any.
1902  * @mm: The mm_struct to check
1903  * @addr: The address
1904  * @pprev: The pointer to set to the previous VMA
1905  *
1906  * Note that RCU lock is missing here since the external mmap_lock() is used
1907  * instead.
1908  *
1909  * Returns: The VMA associated with @addr, or the next vma.
1910  * May return %NULL in the case of no vma at addr or above.
1911  */
1912 struct vm_area_struct *
1913 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1914                         struct vm_area_struct **pprev)
1915 {
1916         struct vm_area_struct *vma;
1917         MA_STATE(mas, &mm->mm_mt, addr, addr);
1918
1919         vma = mas_walk(&mas);
1920         *pprev = mas_prev(&mas, 0);
1921         if (!vma)
1922                 vma = mas_next(&mas, ULONG_MAX);
1923         return vma;
1924 }
1925
1926 /*
1927  * Verify that the stack growth is acceptable and
1928  * update accounting. This is shared with both the
1929  * grow-up and grow-down cases.
1930  */
1931 static int acct_stack_growth(struct vm_area_struct *vma,
1932                              unsigned long size, unsigned long grow)
1933 {
1934         struct mm_struct *mm = vma->vm_mm;
1935         unsigned long new_start;
1936
1937         /* address space limit tests */
1938         if (!may_expand_vm(mm, vma->vm_flags, grow))
1939                 return -ENOMEM;
1940
1941         /* Stack limit test */
1942         if (size > rlimit(RLIMIT_STACK))
1943                 return -ENOMEM;
1944
1945         /* mlock limit tests */
1946         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1947                 return -ENOMEM;
1948
1949         /* Check to ensure the stack will not grow into a hugetlb-only region */
1950         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1951                         vma->vm_end - size;
1952         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1953                 return -EFAULT;
1954
1955         /*
1956          * Overcommit..  This must be the final test, as it will
1957          * update security statistics.
1958          */
1959         if (security_vm_enough_memory_mm(mm, grow))
1960                 return -ENOMEM;
1961
1962         return 0;
1963 }
1964
1965 #if defined(CONFIG_STACK_GROWSUP)
1966 /*
1967  * PA-RISC uses this for its stack.
1968  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1969  */
1970 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1971 {
1972         struct mm_struct *mm = vma->vm_mm;
1973         struct vm_area_struct *next;
1974         unsigned long gap_addr;
1975         int error = 0;
1976         MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1977
1978         if (!(vma->vm_flags & VM_GROWSUP))
1979                 return -EFAULT;
1980
1981         /* Guard against exceeding limits of the address space. */
1982         address &= PAGE_MASK;
1983         if (address >= (TASK_SIZE & PAGE_MASK))
1984                 return -ENOMEM;
1985         address += PAGE_SIZE;
1986
1987         /* Enforce stack_guard_gap */
1988         gap_addr = address + stack_guard_gap;
1989
1990         /* Guard against overflow */
1991         if (gap_addr < address || gap_addr > TASK_SIZE)
1992                 gap_addr = TASK_SIZE;
1993
1994         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1995         if (next && vma_is_accessible(next)) {
1996                 if (!(next->vm_flags & VM_GROWSUP))
1997                         return -ENOMEM;
1998                 /* Check that both stack segments have the same anon_vma? */
1999         }
2000
2001         if (next)
2002                 mas_prev_range(&mas, address);
2003
2004         __mas_set_range(&mas, vma->vm_start, address - 1);
2005         if (mas_preallocate(&mas, vma, GFP_KERNEL))
2006                 return -ENOMEM;
2007
2008         /* We must make sure the anon_vma is allocated. */
2009         if (unlikely(anon_vma_prepare(vma))) {
2010                 mas_destroy(&mas);
2011                 return -ENOMEM;
2012         }
2013
2014         /* Lock the VMA before expanding to prevent concurrent page faults */
2015         vma_start_write(vma);
2016         /*
2017          * vma->vm_start/vm_end cannot change under us because the caller
2018          * is required to hold the mmap_lock in read mode.  We need the
2019          * anon_vma lock to serialize against concurrent expand_stacks.
2020          */
2021         anon_vma_lock_write(vma->anon_vma);
2022
2023         /* Somebody else might have raced and expanded it already */
2024         if (address > vma->vm_end) {
2025                 unsigned long size, grow;
2026
2027                 size = address - vma->vm_start;
2028                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2029
2030                 error = -ENOMEM;
2031                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2032                         error = acct_stack_growth(vma, size, grow);
2033                         if (!error) {
2034                                 /*
2035                                  * We only hold a shared mmap_lock lock here, so
2036                                  * we need to protect against concurrent vma
2037                                  * expansions.  anon_vma_lock_write() doesn't
2038                                  * help here, as we don't guarantee that all
2039                                  * growable vmas in a mm share the same root
2040                                  * anon vma.  So, we reuse mm->page_table_lock
2041                                  * to guard against concurrent vma expansions.
2042                                  */
2043                                 spin_lock(&mm->page_table_lock);
2044                                 if (vma->vm_flags & VM_LOCKED)
2045                                         mm->locked_vm += grow;
2046                                 vm_stat_account(mm, vma->vm_flags, grow);
2047                                 anon_vma_interval_tree_pre_update_vma(vma);
2048                                 vma->vm_end = address;
2049                                 /* Overwrite old entry in mtree. */
2050                                 mas_store_prealloc(&mas, vma);
2051                                 anon_vma_interval_tree_post_update_vma(vma);
2052                                 spin_unlock(&mm->page_table_lock);
2053
2054                                 perf_event_mmap(vma);
2055                         }
2056                 }
2057         }
2058         anon_vma_unlock_write(vma->anon_vma);
2059         mas_destroy(&mas);
2060         validate_mm(mm);
2061         return error;
2062 }
2063 #endif /* CONFIG_STACK_GROWSUP */
2064
2065 /*
2066  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2067  * mmap_lock held for writing.
2068  */
2069 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2070 {
2071         struct mm_struct *mm = vma->vm_mm;
2072         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2073         struct vm_area_struct *prev;
2074         int error = 0;
2075
2076         if (!(vma->vm_flags & VM_GROWSDOWN))
2077                 return -EFAULT;
2078
2079         address &= PAGE_MASK;
2080         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2081                 return -EPERM;
2082
2083         /* Enforce stack_guard_gap */
2084         prev = mas_prev(&mas, 0);
2085         /* Check that both stack segments have the same anon_vma? */
2086         if (prev) {
2087                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2088                     vma_is_accessible(prev) &&
2089                     (address - prev->vm_end < stack_guard_gap))
2090                         return -ENOMEM;
2091         }
2092
2093         if (prev)
2094                 mas_next_range(&mas, vma->vm_start);
2095
2096         __mas_set_range(&mas, address, vma->vm_end - 1);
2097         if (mas_preallocate(&mas, vma, GFP_KERNEL))
2098                 return -ENOMEM;
2099
2100         /* We must make sure the anon_vma is allocated. */
2101         if (unlikely(anon_vma_prepare(vma))) {
2102                 mas_destroy(&mas);
2103                 return -ENOMEM;
2104         }
2105
2106         /* Lock the VMA before expanding to prevent concurrent page faults */
2107         vma_start_write(vma);
2108         /*
2109          * vma->vm_start/vm_end cannot change under us because the caller
2110          * is required to hold the mmap_lock in read mode.  We need the
2111          * anon_vma lock to serialize against concurrent expand_stacks.
2112          */
2113         anon_vma_lock_write(vma->anon_vma);
2114
2115         /* Somebody else might have raced and expanded it already */
2116         if (address < vma->vm_start) {
2117                 unsigned long size, grow;
2118
2119                 size = vma->vm_end - address;
2120                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2121
2122                 error = -ENOMEM;
2123                 if (grow <= vma->vm_pgoff) {
2124                         error = acct_stack_growth(vma, size, grow);
2125                         if (!error) {
2126                                 /*
2127                                  * We only hold a shared mmap_lock lock here, so
2128                                  * we need to protect against concurrent vma
2129                                  * expansions.  anon_vma_lock_write() doesn't
2130                                  * help here, as we don't guarantee that all
2131                                  * growable vmas in a mm share the same root
2132                                  * anon vma.  So, we reuse mm->page_table_lock
2133                                  * to guard against concurrent vma expansions.
2134                                  */
2135                                 spin_lock(&mm->page_table_lock);
2136                                 if (vma->vm_flags & VM_LOCKED)
2137                                         mm->locked_vm += grow;
2138                                 vm_stat_account(mm, vma->vm_flags, grow);
2139                                 anon_vma_interval_tree_pre_update_vma(vma);
2140                                 vma->vm_start = address;
2141                                 vma->vm_pgoff -= grow;
2142                                 /* Overwrite old entry in mtree. */
2143                                 mas_store_prealloc(&mas, vma);
2144                                 anon_vma_interval_tree_post_update_vma(vma);
2145                                 spin_unlock(&mm->page_table_lock);
2146
2147                                 perf_event_mmap(vma);
2148                         }
2149                 }
2150         }
2151         anon_vma_unlock_write(vma->anon_vma);
2152         mas_destroy(&mas);
2153         validate_mm(mm);
2154         return error;
2155 }
2156
2157 /* enforced gap between the expanding stack and other mappings. */
2158 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2159
2160 static int __init cmdline_parse_stack_guard_gap(char *p)
2161 {
2162         unsigned long val;
2163         char *endptr;
2164
2165         val = simple_strtoul(p, &endptr, 10);
2166         if (!*endptr)
2167                 stack_guard_gap = val << PAGE_SHIFT;
2168
2169         return 1;
2170 }
2171 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2172
2173 #ifdef CONFIG_STACK_GROWSUP
2174 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2175 {
2176         return expand_upwards(vma, address);
2177 }
2178
2179 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2180 {
2181         struct vm_area_struct *vma, *prev;
2182
2183         addr &= PAGE_MASK;
2184         vma = find_vma_prev(mm, addr, &prev);
2185         if (vma && (vma->vm_start <= addr))
2186                 return vma;
2187         if (!prev)
2188                 return NULL;
2189         if (expand_stack_locked(prev, addr))
2190                 return NULL;
2191         if (prev->vm_flags & VM_LOCKED)
2192                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2193         return prev;
2194 }
2195 #else
2196 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2197 {
2198         return expand_downwards(vma, address);
2199 }
2200
2201 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2202 {
2203         struct vm_area_struct *vma;
2204         unsigned long start;
2205
2206         addr &= PAGE_MASK;
2207         vma = find_vma(mm, addr);
2208         if (!vma)
2209                 return NULL;
2210         if (vma->vm_start <= addr)
2211                 return vma;
2212         start = vma->vm_start;
2213         if (expand_stack_locked(vma, addr))
2214                 return NULL;
2215         if (vma->vm_flags & VM_LOCKED)
2216                 populate_vma_page_range(vma, addr, start, NULL);
2217         return vma;
2218 }
2219 #endif
2220
2221 #if defined(CONFIG_STACK_GROWSUP)
2222
2223 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2224 #define vma_expand_down(vma, addr) (-EFAULT)
2225
2226 #else
2227
2228 #define vma_expand_up(vma,addr) (-EFAULT)
2229 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2230
2231 #endif
2232
2233 /*
2234  * expand_stack(): legacy interface for page faulting. Don't use unless
2235  * you have to.
2236  *
2237  * This is called with the mm locked for reading, drops the lock, takes
2238  * the lock for writing, tries to look up a vma again, expands it if
2239  * necessary, and downgrades the lock to reading again.
2240  *
2241  * If no vma is found or it can't be expanded, it returns NULL and has
2242  * dropped the lock.
2243  */
2244 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2245 {
2246         struct vm_area_struct *vma, *prev;
2247
2248         mmap_read_unlock(mm);
2249         if (mmap_write_lock_killable(mm))
2250                 return NULL;
2251
2252         vma = find_vma_prev(mm, addr, &prev);
2253         if (vma && vma->vm_start <= addr)
2254                 goto success;
2255
2256         if (prev && !vma_expand_up(prev, addr)) {
2257                 vma = prev;
2258                 goto success;
2259         }
2260
2261         if (vma && !vma_expand_down(vma, addr))
2262                 goto success;
2263
2264         mmap_write_unlock(mm);
2265         return NULL;
2266
2267 success:
2268         mmap_write_downgrade(mm);
2269         return vma;
2270 }
2271
2272 /*
2273  * Ok - we have the memory areas we should free on a maple tree so release them,
2274  * and do the vma updates.
2275  *
2276  * Called with the mm semaphore held.
2277  */
2278 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2279 {
2280         unsigned long nr_accounted = 0;
2281         struct vm_area_struct *vma;
2282
2283         /* Update high watermark before we lower total_vm */
2284         update_hiwater_vm(mm);
2285         mas_for_each(mas, vma, ULONG_MAX) {
2286                 long nrpages = vma_pages(vma);
2287
2288                 if (vma->vm_flags & VM_ACCOUNT)
2289                         nr_accounted += nrpages;
2290                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2291                 remove_vma(vma, false);
2292         }
2293         vm_unacct_memory(nr_accounted);
2294 }
2295
2296 /*
2297  * Get rid of page table information in the indicated region.
2298  *
2299  * Called with the mm semaphore held.
2300  */
2301 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2302                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2303                 struct vm_area_struct *next, unsigned long start,
2304                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2305 {
2306         struct mmu_gather tlb;
2307         unsigned long mt_start = mas->index;
2308
2309         lru_add_drain();
2310         tlb_gather_mmu(&tlb, mm);
2311         update_hiwater_rss(mm);
2312         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2313         mas_set(mas, mt_start);
2314         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2315                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2316                                  mm_wr_locked);
2317         tlb_finish_mmu(&tlb);
2318 }
2319
2320 /*
2321  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2322  * has already been checked or doesn't make sense to fail.
2323  * VMA Iterator will point to the end VMA.
2324  */
2325 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2326                        unsigned long addr, int new_below)
2327 {
2328         struct vma_prepare vp;
2329         struct vm_area_struct *new;
2330         int err;
2331
2332         WARN_ON(vma->vm_start >= addr);
2333         WARN_ON(vma->vm_end <= addr);
2334
2335         if (vma->vm_ops && vma->vm_ops->may_split) {
2336                 err = vma->vm_ops->may_split(vma, addr);
2337                 if (err)
2338                         return err;
2339         }
2340
2341         new = vm_area_dup(vma);
2342         if (!new)
2343                 return -ENOMEM;
2344
2345         if (new_below) {
2346                 new->vm_end = addr;
2347         } else {
2348                 new->vm_start = addr;
2349                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2350         }
2351
2352         err = -ENOMEM;
2353         vma_iter_config(vmi, new->vm_start, new->vm_end);
2354         if (vma_iter_prealloc(vmi, new))
2355                 goto out_free_vma;
2356
2357         err = vma_dup_policy(vma, new);
2358         if (err)
2359                 goto out_free_vmi;
2360
2361         err = anon_vma_clone(new, vma);
2362         if (err)
2363                 goto out_free_mpol;
2364
2365         if (new->vm_file)
2366                 get_file(new->vm_file);
2367
2368         if (new->vm_ops && new->vm_ops->open)
2369                 new->vm_ops->open(new);
2370
2371         vma_start_write(vma);
2372         vma_start_write(new);
2373
2374         init_vma_prep(&vp, vma);
2375         vp.insert = new;
2376         vma_prepare(&vp);
2377         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2378
2379         if (new_below) {
2380                 vma->vm_start = addr;
2381                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2382         } else {
2383                 vma->vm_end = addr;
2384         }
2385
2386         /* vma_complete stores the new vma */
2387         vma_complete(&vp, vmi, vma->vm_mm);
2388
2389         /* Success. */
2390         if (new_below)
2391                 vma_next(vmi);
2392         return 0;
2393
2394 out_free_mpol:
2395         mpol_put(vma_policy(new));
2396 out_free_vmi:
2397         vma_iter_free(vmi);
2398 out_free_vma:
2399         vm_area_free(new);
2400         return err;
2401 }
2402
2403 /*
2404  * Split a vma into two pieces at address 'addr', a new vma is allocated
2405  * either for the first part or the tail.
2406  */
2407 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2408                      unsigned long addr, int new_below)
2409 {
2410         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2411                 return -ENOMEM;
2412
2413         return __split_vma(vmi, vma, addr, new_below);
2414 }
2415
2416 /*
2417  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2418  * context and anonymous VMA name within the range [start, end).
2419  *
2420  * As a result, we might be able to merge the newly modified VMA range with an
2421  * adjacent VMA with identical properties.
2422  *
2423  * If no merge is possible and the range does not span the entirety of the VMA,
2424  * we then need to split the VMA to accommodate the change.
2425  *
2426  * The function returns either the merged VMA, the original VMA if a split was
2427  * required instead, or an error if the split failed.
2428  */
2429 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2430                                   struct vm_area_struct *prev,
2431                                   struct vm_area_struct *vma,
2432                                   unsigned long start, unsigned long end,
2433                                   unsigned long vm_flags,
2434                                   struct mempolicy *policy,
2435                                   struct vm_userfaultfd_ctx uffd_ctx,
2436                                   struct anon_vma_name *anon_name)
2437 {
2438         pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2439         struct vm_area_struct *merged;
2440
2441         merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2442                            pgoff, policy, uffd_ctx, anon_name);
2443         if (merged)
2444                 return merged;
2445
2446         if (vma->vm_start < start) {
2447                 int err = split_vma(vmi, vma, start, 1);
2448
2449                 if (err)
2450                         return ERR_PTR(err);
2451         }
2452
2453         if (vma->vm_end > end) {
2454                 int err = split_vma(vmi, vma, end, 0);
2455
2456                 if (err)
2457                         return ERR_PTR(err);
2458         }
2459
2460         return vma;
2461 }
2462
2463 /*
2464  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2465  * must ensure that [start, end) does not overlap any existing VMA.
2466  */
2467 static struct vm_area_struct
2468 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2469                    struct vm_area_struct *vma, unsigned long start,
2470                    unsigned long end, pgoff_t pgoff)
2471 {
2472         return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2473                          vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2474 }
2475
2476 /*
2477  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2478  * VMA with identical properties.
2479  */
2480 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2481                                         struct vm_area_struct *vma,
2482                                         unsigned long delta)
2483 {
2484         pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2485
2486         /* vma is specified as prev, so case 1 or 2 will apply. */
2487         return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2488                          vma->vm_flags, pgoff, vma_policy(vma),
2489                          vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2490 }
2491
2492 /*
2493  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2494  * @vmi: The vma iterator
2495  * @vma: The starting vm_area_struct
2496  * @mm: The mm_struct
2497  * @start: The aligned start address to munmap.
2498  * @end: The aligned end address to munmap.
2499  * @uf: The userfaultfd list_head
2500  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2501  * success.
2502  *
2503  * Return: 0 on success and drops the lock if so directed, error and leaves the
2504  * lock held otherwise.
2505  */
2506 static int
2507 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2508                     struct mm_struct *mm, unsigned long start,
2509                     unsigned long end, struct list_head *uf, bool unlock)
2510 {
2511         struct vm_area_struct *prev, *next = NULL;
2512         struct maple_tree mt_detach;
2513         int count = 0;
2514         int error = -ENOMEM;
2515         unsigned long locked_vm = 0;
2516         MA_STATE(mas_detach, &mt_detach, 0, 0);
2517         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2518         mt_on_stack(mt_detach);
2519
2520         /*
2521          * If we need to split any vma, do it now to save pain later.
2522          *
2523          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2524          * unmapped vm_area_struct will remain in use: so lower split_vma
2525          * places tmp vma above, and higher split_vma places tmp vma below.
2526          */
2527
2528         /* Does it split the first one? */
2529         if (start > vma->vm_start) {
2530
2531                 /*
2532                  * Make sure that map_count on return from munmap() will
2533                  * not exceed its limit; but let map_count go just above
2534                  * its limit temporarily, to help free resources as expected.
2535                  */
2536                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2537                         goto map_count_exceeded;
2538
2539                 error = __split_vma(vmi, vma, start, 1);
2540                 if (error)
2541                         goto start_split_failed;
2542         }
2543
2544         /*
2545          * Detach a range of VMAs from the mm. Using next as a temp variable as
2546          * it is always overwritten.
2547          */
2548         next = vma;
2549         do {
2550                 /* Does it split the end? */
2551                 if (next->vm_end > end) {
2552                         error = __split_vma(vmi, next, end, 0);
2553                         if (error)
2554                                 goto end_split_failed;
2555                 }
2556                 vma_start_write(next);
2557                 mas_set(&mas_detach, count);
2558                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2559                 if (error)
2560                         goto munmap_gather_failed;
2561                 vma_mark_detached(next, true);
2562                 if (next->vm_flags & VM_LOCKED)
2563                         locked_vm += vma_pages(next);
2564
2565                 count++;
2566                 if (unlikely(uf)) {
2567                         /*
2568                          * If userfaultfd_unmap_prep returns an error the vmas
2569                          * will remain split, but userland will get a
2570                          * highly unexpected error anyway. This is no
2571                          * different than the case where the first of the two
2572                          * __split_vma fails, but we don't undo the first
2573                          * split, despite we could. This is unlikely enough
2574                          * failure that it's not worth optimizing it for.
2575                          */
2576                         error = userfaultfd_unmap_prep(next, start, end, uf);
2577
2578                         if (error)
2579                                 goto userfaultfd_error;
2580                 }
2581 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2582                 BUG_ON(next->vm_start < start);
2583                 BUG_ON(next->vm_start > end);
2584 #endif
2585         } for_each_vma_range(*vmi, next, end);
2586
2587 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2588         /* Make sure no VMAs are about to be lost. */
2589         {
2590                 MA_STATE(test, &mt_detach, 0, 0);
2591                 struct vm_area_struct *vma_mas, *vma_test;
2592                 int test_count = 0;
2593
2594                 vma_iter_set(vmi, start);
2595                 rcu_read_lock();
2596                 vma_test = mas_find(&test, count - 1);
2597                 for_each_vma_range(*vmi, vma_mas, end) {
2598                         BUG_ON(vma_mas != vma_test);
2599                         test_count++;
2600                         vma_test = mas_next(&test, count - 1);
2601                 }
2602                 rcu_read_unlock();
2603                 BUG_ON(count != test_count);
2604         }
2605 #endif
2606
2607         while (vma_iter_addr(vmi) > start)
2608                 vma_iter_prev_range(vmi);
2609
2610         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2611         if (error)
2612                 goto clear_tree_failed;
2613
2614         /* Point of no return */
2615         mm->locked_vm -= locked_vm;
2616         mm->map_count -= count;
2617         if (unlock)
2618                 mmap_write_downgrade(mm);
2619
2620         prev = vma_iter_prev_range(vmi);
2621         next = vma_next(vmi);
2622         if (next)
2623                 vma_iter_prev_range(vmi);
2624
2625         /*
2626          * We can free page tables without write-locking mmap_lock because VMAs
2627          * were isolated before we downgraded mmap_lock.
2628          */
2629         mas_set(&mas_detach, 1);
2630         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2631                      !unlock);
2632         /* Statistics and freeing VMAs */
2633         mas_set(&mas_detach, 0);
2634         remove_mt(mm, &mas_detach);
2635         validate_mm(mm);
2636         if (unlock)
2637                 mmap_read_unlock(mm);
2638
2639         __mt_destroy(&mt_detach);
2640         return 0;
2641
2642 clear_tree_failed:
2643 userfaultfd_error:
2644 munmap_gather_failed:
2645 end_split_failed:
2646         mas_set(&mas_detach, 0);
2647         mas_for_each(&mas_detach, next, end)
2648                 vma_mark_detached(next, false);
2649
2650         __mt_destroy(&mt_detach);
2651 start_split_failed:
2652 map_count_exceeded:
2653         validate_mm(mm);
2654         return error;
2655 }
2656
2657 /*
2658  * do_vmi_munmap() - munmap a given range.
2659  * @vmi: The vma iterator
2660  * @mm: The mm_struct
2661  * @start: The start address to munmap
2662  * @len: The length of the range to munmap
2663  * @uf: The userfaultfd list_head
2664  * @unlock: set to true if the user wants to drop the mmap_lock on success
2665  *
2666  * This function takes a @mas that is either pointing to the previous VMA or set
2667  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2668  * aligned and any arch_unmap work will be preformed.
2669  *
2670  * Return: 0 on success and drops the lock if so directed, error and leaves the
2671  * lock held otherwise.
2672  */
2673 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2674                   unsigned long start, size_t len, struct list_head *uf,
2675                   bool unlock)
2676 {
2677         unsigned long end;
2678         struct vm_area_struct *vma;
2679
2680         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2681                 return -EINVAL;
2682
2683         end = start + PAGE_ALIGN(len);
2684         if (end == start)
2685                 return -EINVAL;
2686
2687          /* arch_unmap() might do unmaps itself.  */
2688         arch_unmap(mm, start, end);
2689
2690         /* Find the first overlapping VMA */
2691         vma = vma_find(vmi, end);
2692         if (!vma) {
2693                 if (unlock)
2694                         mmap_write_unlock(mm);
2695                 return 0;
2696         }
2697
2698         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2699 }
2700
2701 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2702  * @mm: The mm_struct
2703  * @start: The start address to munmap
2704  * @len: The length to be munmapped.
2705  * @uf: The userfaultfd list_head
2706  *
2707  * Return: 0 on success, error otherwise.
2708  */
2709 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2710               struct list_head *uf)
2711 {
2712         VMA_ITERATOR(vmi, mm, start);
2713
2714         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2715 }
2716
2717 unsigned long mmap_region(struct file *file, unsigned long addr,
2718                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2719                 struct list_head *uf)
2720 {
2721         struct mm_struct *mm = current->mm;
2722         struct vm_area_struct *vma = NULL;
2723         struct vm_area_struct *next, *prev, *merge;
2724         pgoff_t pglen = len >> PAGE_SHIFT;
2725         unsigned long charged = 0;
2726         unsigned long end = addr + len;
2727         unsigned long merge_start = addr, merge_end = end;
2728         bool writable_file_mapping = false;
2729         pgoff_t vm_pgoff;
2730         int error;
2731         VMA_ITERATOR(vmi, mm, addr);
2732
2733         /* Check against address space limit. */
2734         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2735                 unsigned long nr_pages;
2736
2737                 /*
2738                  * MAP_FIXED may remove pages of mappings that intersects with
2739                  * requested mapping. Account for the pages it would unmap.
2740                  */
2741                 nr_pages = count_vma_pages_range(mm, addr, end);
2742
2743                 if (!may_expand_vm(mm, vm_flags,
2744                                         (len >> PAGE_SHIFT) - nr_pages))
2745                         return -ENOMEM;
2746         }
2747
2748         /* Unmap any existing mapping in the area */
2749         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2750                 return -ENOMEM;
2751
2752         /*
2753          * Private writable mapping: check memory availability
2754          */
2755         if (accountable_mapping(file, vm_flags)) {
2756                 charged = len >> PAGE_SHIFT;
2757                 if (security_vm_enough_memory_mm(mm, charged))
2758                         return -ENOMEM;
2759                 vm_flags |= VM_ACCOUNT;
2760         }
2761
2762         next = vma_next(&vmi);
2763         prev = vma_prev(&vmi);
2764         if (vm_flags & VM_SPECIAL) {
2765                 if (prev)
2766                         vma_iter_next_range(&vmi);
2767                 goto cannot_expand;
2768         }
2769
2770         /* Attempt to expand an old mapping */
2771         /* Check next */
2772         if (next && next->vm_start == end && !vma_policy(next) &&
2773             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2774                                  NULL_VM_UFFD_CTX, NULL)) {
2775                 merge_end = next->vm_end;
2776                 vma = next;
2777                 vm_pgoff = next->vm_pgoff - pglen;
2778         }
2779
2780         /* Check prev */
2781         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2782             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2783                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2784                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2785                                        NULL_VM_UFFD_CTX, NULL))) {
2786                 merge_start = prev->vm_start;
2787                 vma = prev;
2788                 vm_pgoff = prev->vm_pgoff;
2789         } else if (prev) {
2790                 vma_iter_next_range(&vmi);
2791         }
2792
2793         /* Actually expand, if possible */
2794         if (vma &&
2795             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2796                 khugepaged_enter_vma(vma, vm_flags);
2797                 goto expanded;
2798         }
2799
2800         if (vma == prev)
2801                 vma_iter_set(&vmi, addr);
2802 cannot_expand:
2803
2804         /*
2805          * Determine the object being mapped and call the appropriate
2806          * specific mapper. the address has already been validated, but
2807          * not unmapped, but the maps are removed from the list.
2808          */
2809         vma = vm_area_alloc(mm);
2810         if (!vma) {
2811                 error = -ENOMEM;
2812                 goto unacct_error;
2813         }
2814
2815         vma_iter_config(&vmi, addr, end);
2816         vma_set_range(vma, addr, end, pgoff);
2817         vm_flags_init(vma, vm_flags);
2818         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2819
2820         if (file) {
2821                 vma->vm_file = get_file(file);
2822                 error = call_mmap(file, vma);
2823                 if (error)
2824                         goto unmap_and_free_vma;
2825
2826                 if (vma_is_shared_maywrite(vma)) {
2827                         error = mapping_map_writable(file->f_mapping);
2828                         if (error)
2829                                 goto close_and_free_vma;
2830
2831                         writable_file_mapping = true;
2832                 }
2833
2834                 /*
2835                  * Expansion is handled above, merging is handled below.
2836                  * Drivers should not alter the address of the VMA.
2837                  */
2838                 error = -EINVAL;
2839                 if (WARN_ON((addr != vma->vm_start)))
2840                         goto close_and_free_vma;
2841
2842                 vma_iter_config(&vmi, addr, end);
2843                 /*
2844                  * If vm_flags changed after call_mmap(), we should try merge
2845                  * vma again as we may succeed this time.
2846                  */
2847                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2848                         merge = vma_merge_new_vma(&vmi, prev, vma,
2849                                                   vma->vm_start, vma->vm_end,
2850                                                   vma->vm_pgoff);
2851                         if (merge) {
2852                                 /*
2853                                  * ->mmap() can change vma->vm_file and fput
2854                                  * the original file. So fput the vma->vm_file
2855                                  * here or we would add an extra fput for file
2856                                  * and cause general protection fault
2857                                  * ultimately.
2858                                  */
2859                                 fput(vma->vm_file);
2860                                 vm_area_free(vma);
2861                                 vma = merge;
2862                                 /* Update vm_flags to pick up the change. */
2863                                 vm_flags = vma->vm_flags;
2864                                 goto unmap_writable;
2865                         }
2866                 }
2867
2868                 vm_flags = vma->vm_flags;
2869         } else if (vm_flags & VM_SHARED) {
2870                 error = shmem_zero_setup(vma);
2871                 if (error)
2872                         goto free_vma;
2873         } else {
2874                 vma_set_anonymous(vma);
2875         }
2876
2877         if (map_deny_write_exec(vma, vma->vm_flags)) {
2878                 error = -EACCES;
2879                 goto close_and_free_vma;
2880         }
2881
2882         /* Allow architectures to sanity-check the vm_flags */
2883         error = -EINVAL;
2884         if (!arch_validate_flags(vma->vm_flags))
2885                 goto close_and_free_vma;
2886
2887         error = -ENOMEM;
2888         if (vma_iter_prealloc(&vmi, vma))
2889                 goto close_and_free_vma;
2890
2891         /* Lock the VMA since it is modified after insertion into VMA tree */
2892         vma_start_write(vma);
2893         vma_iter_store(&vmi, vma);
2894         mm->map_count++;
2895         vma_link_file(vma);
2896
2897         /*
2898          * vma_merge() calls khugepaged_enter_vma() either, the below
2899          * call covers the non-merge case.
2900          */
2901         khugepaged_enter_vma(vma, vma->vm_flags);
2902
2903         /* Once vma denies write, undo our temporary denial count */
2904 unmap_writable:
2905         if (writable_file_mapping)
2906                 mapping_unmap_writable(file->f_mapping);
2907         file = vma->vm_file;
2908         ksm_add_vma(vma);
2909 expanded:
2910         perf_event_mmap(vma);
2911
2912         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2913         if (vm_flags & VM_LOCKED) {
2914                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2915                                         is_vm_hugetlb_page(vma) ||
2916                                         vma == get_gate_vma(current->mm))
2917                         vm_flags_clear(vma, VM_LOCKED_MASK);
2918                 else
2919                         mm->locked_vm += (len >> PAGE_SHIFT);
2920         }
2921
2922         if (file)
2923                 uprobe_mmap(vma);
2924
2925         /*
2926          * New (or expanded) vma always get soft dirty status.
2927          * Otherwise user-space soft-dirty page tracker won't
2928          * be able to distinguish situation when vma area unmapped,
2929          * then new mapped in-place (which must be aimed as
2930          * a completely new data area).
2931          */
2932         vm_flags_set(vma, VM_SOFTDIRTY);
2933
2934         vma_set_page_prot(vma);
2935
2936         validate_mm(mm);
2937         return addr;
2938
2939 close_and_free_vma:
2940         if (file && vma->vm_ops && vma->vm_ops->close)
2941                 vma->vm_ops->close(vma);
2942
2943         if (file || vma->vm_file) {
2944 unmap_and_free_vma:
2945                 fput(vma->vm_file);
2946                 vma->vm_file = NULL;
2947
2948                 vma_iter_set(&vmi, vma->vm_end);
2949                 /* Undo any partial mapping done by a device driver. */
2950                 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2951                              vma->vm_end, vma->vm_end, true);
2952         }
2953         if (writable_file_mapping)
2954                 mapping_unmap_writable(file->f_mapping);
2955 free_vma:
2956         vm_area_free(vma);
2957 unacct_error:
2958         if (charged)
2959                 vm_unacct_memory(charged);
2960         validate_mm(mm);
2961         return error;
2962 }
2963
2964 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2965 {
2966         int ret;
2967         struct mm_struct *mm = current->mm;
2968         LIST_HEAD(uf);
2969         VMA_ITERATOR(vmi, mm, start);
2970
2971         if (mmap_write_lock_killable(mm))
2972                 return -EINTR;
2973
2974         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2975         if (ret || !unlock)
2976                 mmap_write_unlock(mm);
2977
2978         userfaultfd_unmap_complete(mm, &uf);
2979         return ret;
2980 }
2981
2982 int vm_munmap(unsigned long start, size_t len)
2983 {
2984         return __vm_munmap(start, len, false);
2985 }
2986 EXPORT_SYMBOL(vm_munmap);
2987
2988 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2989 {
2990         addr = untagged_addr(addr);
2991         return __vm_munmap(addr, len, true);
2992 }
2993
2994
2995 /*
2996  * Emulation of deprecated remap_file_pages() syscall.
2997  */
2998 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2999                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3000 {
3001
3002         struct mm_struct *mm = current->mm;
3003         struct vm_area_struct *vma;
3004         unsigned long populate = 0;
3005         unsigned long ret = -EINVAL;
3006         struct file *file;
3007
3008         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3009                      current->comm, current->pid);
3010
3011         if (prot)
3012                 return ret;
3013         start = start & PAGE_MASK;
3014         size = size & PAGE_MASK;
3015
3016         if (start + size <= start)
3017                 return ret;
3018
3019         /* Does pgoff wrap? */
3020         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3021                 return ret;
3022
3023         if (mmap_write_lock_killable(mm))
3024                 return -EINTR;
3025
3026         vma = vma_lookup(mm, start);
3027
3028         if (!vma || !(vma->vm_flags & VM_SHARED))
3029                 goto out;
3030
3031         if (start + size > vma->vm_end) {
3032                 VMA_ITERATOR(vmi, mm, vma->vm_end);
3033                 struct vm_area_struct *next, *prev = vma;
3034
3035                 for_each_vma_range(vmi, next, start + size) {
3036                         /* hole between vmas ? */
3037                         if (next->vm_start != prev->vm_end)
3038                                 goto out;
3039
3040                         if (next->vm_file != vma->vm_file)
3041                                 goto out;
3042
3043                         if (next->vm_flags != vma->vm_flags)
3044                                 goto out;
3045
3046                         if (start + size <= next->vm_end)
3047                                 break;
3048
3049                         prev = next;
3050                 }
3051
3052                 if (!next)
3053                         goto out;
3054         }
3055
3056         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3057         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3058         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3059
3060         flags &= MAP_NONBLOCK;
3061         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3062         if (vma->vm_flags & VM_LOCKED)
3063                 flags |= MAP_LOCKED;
3064
3065         file = get_file(vma->vm_file);
3066         ret = do_mmap(vma->vm_file, start, size,
3067                         prot, flags, 0, pgoff, &populate, NULL);
3068         fput(file);
3069 out:
3070         mmap_write_unlock(mm);
3071         if (populate)
3072                 mm_populate(ret, populate);
3073         if (!IS_ERR_VALUE(ret))
3074                 ret = 0;
3075         return ret;
3076 }
3077
3078 /*
3079  * do_vma_munmap() - Unmap a full or partial vma.
3080  * @vmi: The vma iterator pointing at the vma
3081  * @vma: The first vma to be munmapped
3082  * @start: the start of the address to unmap
3083  * @end: The end of the address to unmap
3084  * @uf: The userfaultfd list_head
3085  * @unlock: Drop the lock on success
3086  *
3087  * unmaps a VMA mapping when the vma iterator is already in position.
3088  * Does not handle alignment.
3089  *
3090  * Return: 0 on success drops the lock of so directed, error on failure and will
3091  * still hold the lock.
3092  */
3093 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3094                 unsigned long start, unsigned long end, struct list_head *uf,
3095                 bool unlock)
3096 {
3097         struct mm_struct *mm = vma->vm_mm;
3098
3099         arch_unmap(mm, start, end);
3100         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3101 }
3102
3103 /*
3104  * do_brk_flags() - Increase the brk vma if the flags match.
3105  * @vmi: The vma iterator
3106  * @addr: The start address
3107  * @len: The length of the increase
3108  * @vma: The vma,
3109  * @flags: The VMA Flags
3110  *
3111  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3112  * do not match then create a new anonymous VMA.  Eventually we may be able to
3113  * do some brk-specific accounting here.
3114  */
3115 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3116                 unsigned long addr, unsigned long len, unsigned long flags)
3117 {
3118         struct mm_struct *mm = current->mm;
3119         struct vma_prepare vp;
3120
3121         /*
3122          * Check against address space limits by the changed size
3123          * Note: This happens *after* clearing old mappings in some code paths.
3124          */
3125         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3126         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3127                 return -ENOMEM;
3128
3129         if (mm->map_count > sysctl_max_map_count)
3130                 return -ENOMEM;
3131
3132         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3133                 return -ENOMEM;
3134
3135         /*
3136          * Expand the existing vma if possible; Note that singular lists do not
3137          * occur after forking, so the expand will only happen on new VMAs.
3138          */
3139         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3140             can_vma_merge_after(vma, flags, NULL, NULL,
3141                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3142                 vma_iter_config(vmi, vma->vm_start, addr + len);
3143                 if (vma_iter_prealloc(vmi, vma))
3144                         goto unacct_fail;
3145
3146                 vma_start_write(vma);
3147
3148                 init_vma_prep(&vp, vma);
3149                 vma_prepare(&vp);
3150                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3151                 vma->vm_end = addr + len;
3152                 vm_flags_set(vma, VM_SOFTDIRTY);
3153                 vma_iter_store(vmi, vma);
3154
3155                 vma_complete(&vp, vmi, mm);
3156                 khugepaged_enter_vma(vma, flags);
3157                 goto out;
3158         }
3159
3160         if (vma)
3161                 vma_iter_next_range(vmi);
3162         /* create a vma struct for an anonymous mapping */
3163         vma = vm_area_alloc(mm);
3164         if (!vma)
3165                 goto unacct_fail;
3166
3167         vma_set_anonymous(vma);
3168         vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3169         vm_flags_init(vma, flags);
3170         vma->vm_page_prot = vm_get_page_prot(flags);
3171         vma_start_write(vma);
3172         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3173                 goto mas_store_fail;
3174
3175         mm->map_count++;
3176         validate_mm(mm);
3177         ksm_add_vma(vma);
3178 out:
3179         perf_event_mmap(vma);
3180         mm->total_vm += len >> PAGE_SHIFT;
3181         mm->data_vm += len >> PAGE_SHIFT;
3182         if (flags & VM_LOCKED)
3183                 mm->locked_vm += (len >> PAGE_SHIFT);
3184         vm_flags_set(vma, VM_SOFTDIRTY);
3185         return 0;
3186
3187 mas_store_fail:
3188         vm_area_free(vma);
3189 unacct_fail:
3190         vm_unacct_memory(len >> PAGE_SHIFT);
3191         return -ENOMEM;
3192 }
3193
3194 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3195 {
3196         struct mm_struct *mm = current->mm;
3197         struct vm_area_struct *vma = NULL;
3198         unsigned long len;
3199         int ret;
3200         bool populate;
3201         LIST_HEAD(uf);
3202         VMA_ITERATOR(vmi, mm, addr);
3203
3204         len = PAGE_ALIGN(request);
3205         if (len < request)
3206                 return -ENOMEM;
3207         if (!len)
3208                 return 0;
3209
3210         /* Until we need other flags, refuse anything except VM_EXEC. */
3211         if ((flags & (~VM_EXEC)) != 0)
3212                 return -EINVAL;
3213
3214         if (mmap_write_lock_killable(mm))
3215                 return -EINTR;
3216
3217         ret = check_brk_limits(addr, len);
3218         if (ret)
3219                 goto limits_failed;
3220
3221         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3222         if (ret)
3223                 goto munmap_failed;
3224
3225         vma = vma_prev(&vmi);
3226         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3227         populate = ((mm->def_flags & VM_LOCKED) != 0);
3228         mmap_write_unlock(mm);
3229         userfaultfd_unmap_complete(mm, &uf);
3230         if (populate && !ret)
3231                 mm_populate(addr, len);
3232         return ret;
3233
3234 munmap_failed:
3235 limits_failed:
3236         mmap_write_unlock(mm);
3237         return ret;
3238 }
3239 EXPORT_SYMBOL(vm_brk_flags);
3240
3241 /* Release all mmaps. */
3242 void exit_mmap(struct mm_struct *mm)
3243 {
3244         struct mmu_gather tlb;
3245         struct vm_area_struct *vma;
3246         unsigned long nr_accounted = 0;
3247         MA_STATE(mas, &mm->mm_mt, 0, 0);
3248         int count = 0;
3249
3250         /* mm's last user has gone, and its about to be pulled down */
3251         mmu_notifier_release(mm);
3252
3253         mmap_read_lock(mm);
3254         arch_exit_mmap(mm);
3255
3256         vma = mas_find(&mas, ULONG_MAX);
3257         if (!vma || unlikely(xa_is_zero(vma))) {
3258                 /* Can happen if dup_mmap() received an OOM */
3259                 mmap_read_unlock(mm);
3260                 mmap_write_lock(mm);
3261                 goto destroy;
3262         }
3263
3264         lru_add_drain();
3265         flush_cache_mm(mm);
3266         tlb_gather_mmu_fullmm(&tlb, mm);
3267         /* update_hiwater_rss(mm) here? but nobody should be looking */
3268         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3269         unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3270         mmap_read_unlock(mm);
3271
3272         /*
3273          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3274          * because the memory has been already freed.
3275          */
3276         set_bit(MMF_OOM_SKIP, &mm->flags);
3277         mmap_write_lock(mm);
3278         mt_clear_in_rcu(&mm->mm_mt);
3279         mas_set(&mas, vma->vm_end);
3280         free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3281                       USER_PGTABLES_CEILING, true);
3282         tlb_finish_mmu(&tlb);
3283
3284         /*
3285          * Walk the list again, actually closing and freeing it, with preemption
3286          * enabled, without holding any MM locks besides the unreachable
3287          * mmap_write_lock.
3288          */
3289         mas_set(&mas, vma->vm_end);
3290         do {
3291                 if (vma->vm_flags & VM_ACCOUNT)
3292                         nr_accounted += vma_pages(vma);
3293                 remove_vma(vma, true);
3294                 count++;
3295                 cond_resched();
3296                 vma = mas_find(&mas, ULONG_MAX);
3297         } while (vma && likely(!xa_is_zero(vma)));
3298
3299         BUG_ON(count != mm->map_count);
3300
3301         trace_exit_mmap(mm);
3302 destroy:
3303         __mt_destroy(&mm->mm_mt);
3304         mmap_write_unlock(mm);
3305         vm_unacct_memory(nr_accounted);
3306 }
3307
3308 /* Insert vm structure into process list sorted by address
3309  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3310  * then i_mmap_rwsem is taken here.
3311  */
3312 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3313 {
3314         unsigned long charged = vma_pages(vma);
3315
3316
3317         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3318                 return -ENOMEM;
3319
3320         if ((vma->vm_flags & VM_ACCOUNT) &&
3321              security_vm_enough_memory_mm(mm, charged))
3322                 return -ENOMEM;
3323
3324         /*
3325          * The vm_pgoff of a purely anonymous vma should be irrelevant
3326          * until its first write fault, when page's anon_vma and index
3327          * are set.  But now set the vm_pgoff it will almost certainly
3328          * end up with (unless mremap moves it elsewhere before that
3329          * first wfault), so /proc/pid/maps tells a consistent story.
3330          *
3331          * By setting it to reflect the virtual start address of the
3332          * vma, merges and splits can happen in a seamless way, just
3333          * using the existing file pgoff checks and manipulations.
3334          * Similarly in do_mmap and in do_brk_flags.
3335          */
3336         if (vma_is_anonymous(vma)) {
3337                 BUG_ON(vma->anon_vma);
3338                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3339         }
3340
3341         if (vma_link(mm, vma)) {
3342                 if (vma->vm_flags & VM_ACCOUNT)
3343                         vm_unacct_memory(charged);
3344                 return -ENOMEM;
3345         }
3346
3347         return 0;
3348 }
3349
3350 /*
3351  * Copy the vma structure to a new location in the same mm,
3352  * prior to moving page table entries, to effect an mremap move.
3353  */
3354 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3355         unsigned long addr, unsigned long len, pgoff_t pgoff,
3356         bool *need_rmap_locks)
3357 {
3358         struct vm_area_struct *vma = *vmap;
3359         unsigned long vma_start = vma->vm_start;
3360         struct mm_struct *mm = vma->vm_mm;
3361         struct vm_area_struct *new_vma, *prev;
3362         bool faulted_in_anon_vma = true;
3363         VMA_ITERATOR(vmi, mm, addr);
3364
3365         /*
3366          * If anonymous vma has not yet been faulted, update new pgoff
3367          * to match new location, to increase its chance of merging.
3368          */
3369         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3370                 pgoff = addr >> PAGE_SHIFT;
3371                 faulted_in_anon_vma = false;
3372         }
3373
3374         new_vma = find_vma_prev(mm, addr, &prev);
3375         if (new_vma && new_vma->vm_start < addr + len)
3376                 return NULL;    /* should never get here */
3377
3378         new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3379         if (new_vma) {
3380                 /*
3381                  * Source vma may have been merged into new_vma
3382                  */
3383                 if (unlikely(vma_start >= new_vma->vm_start &&
3384                              vma_start < new_vma->vm_end)) {
3385                         /*
3386                          * The only way we can get a vma_merge with
3387                          * self during an mremap is if the vma hasn't
3388                          * been faulted in yet and we were allowed to
3389                          * reset the dst vma->vm_pgoff to the
3390                          * destination address of the mremap to allow
3391                          * the merge to happen. mremap must change the
3392                          * vm_pgoff linearity between src and dst vmas
3393                          * (in turn preventing a vma_merge) to be
3394                          * safe. It is only safe to keep the vm_pgoff
3395                          * linear if there are no pages mapped yet.
3396                          */
3397                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3398                         *vmap = vma = new_vma;
3399                 }
3400                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3401         } else {
3402                 new_vma = vm_area_dup(vma);
3403                 if (!new_vma)
3404                         goto out;
3405                 vma_set_range(new_vma, addr, addr + len, pgoff);
3406                 if (vma_dup_policy(vma, new_vma))
3407                         goto out_free_vma;
3408                 if (anon_vma_clone(new_vma, vma))
3409                         goto out_free_mempol;
3410                 if (new_vma->vm_file)
3411                         get_file(new_vma->vm_file);
3412                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3413                         new_vma->vm_ops->open(new_vma);
3414                 if (vma_link(mm, new_vma))
3415                         goto out_vma_link;
3416                 *need_rmap_locks = false;
3417         }
3418         return new_vma;
3419
3420 out_vma_link:
3421         if (new_vma->vm_ops && new_vma->vm_ops->close)
3422                 new_vma->vm_ops->close(new_vma);
3423
3424         if (new_vma->vm_file)
3425                 fput(new_vma->vm_file);
3426
3427         unlink_anon_vmas(new_vma);
3428 out_free_mempol:
3429         mpol_put(vma_policy(new_vma));
3430 out_free_vma:
3431         vm_area_free(new_vma);
3432 out:
3433         return NULL;
3434 }
3435
3436 /*
3437  * Return true if the calling process may expand its vm space by the passed
3438  * number of pages
3439  */
3440 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3441 {
3442         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3443                 return false;
3444
3445         if (is_data_mapping(flags) &&
3446             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3447                 /* Workaround for Valgrind */
3448                 if (rlimit(RLIMIT_DATA) == 0 &&
3449                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3450                         return true;
3451
3452                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3453                              current->comm, current->pid,
3454                              (mm->data_vm + npages) << PAGE_SHIFT,
3455                              rlimit(RLIMIT_DATA),
3456                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3457
3458                 if (!ignore_rlimit_data)
3459                         return false;
3460         }
3461
3462         return true;
3463 }
3464
3465 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3466 {
3467         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3468
3469         if (is_exec_mapping(flags))
3470                 mm->exec_vm += npages;
3471         else if (is_stack_mapping(flags))
3472                 mm->stack_vm += npages;
3473         else if (is_data_mapping(flags))
3474                 mm->data_vm += npages;
3475 }
3476
3477 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3478
3479 /*
3480  * Having a close hook prevents vma merging regardless of flags.
3481  */
3482 static void special_mapping_close(struct vm_area_struct *vma)
3483 {
3484 }
3485
3486 static const char *special_mapping_name(struct vm_area_struct *vma)
3487 {
3488         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3489 }
3490
3491 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3492 {
3493         struct vm_special_mapping *sm = new_vma->vm_private_data;
3494
3495         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3496                 return -EFAULT;
3497
3498         if (sm->mremap)
3499                 return sm->mremap(sm, new_vma);
3500
3501         return 0;
3502 }
3503
3504 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3505 {
3506         /*
3507          * Forbid splitting special mappings - kernel has expectations over
3508          * the number of pages in mapping. Together with VM_DONTEXPAND
3509          * the size of vma should stay the same over the special mapping's
3510          * lifetime.
3511          */
3512         return -EINVAL;
3513 }
3514
3515 static const struct vm_operations_struct special_mapping_vmops = {
3516         .close = special_mapping_close,
3517         .fault = special_mapping_fault,
3518         .mremap = special_mapping_mremap,
3519         .name = special_mapping_name,
3520         /* vDSO code relies that VVAR can't be accessed remotely */
3521         .access = NULL,
3522         .may_split = special_mapping_split,
3523 };
3524
3525 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3526         .close = special_mapping_close,
3527         .fault = special_mapping_fault,
3528 };
3529
3530 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3531 {
3532         struct vm_area_struct *vma = vmf->vma;
3533         pgoff_t pgoff;
3534         struct page **pages;
3535
3536         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3537                 pages = vma->vm_private_data;
3538         } else {
3539                 struct vm_special_mapping *sm = vma->vm_private_data;
3540
3541                 if (sm->fault)
3542                         return sm->fault(sm, vmf->vma, vmf);
3543
3544                 pages = sm->pages;
3545         }
3546
3547         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3548                 pgoff--;
3549
3550         if (*pages) {
3551                 struct page *page = *pages;
3552                 get_page(page);
3553                 vmf->page = page;
3554                 return 0;
3555         }
3556
3557         return VM_FAULT_SIGBUS;
3558 }
3559
3560 static struct vm_area_struct *__install_special_mapping(
3561         struct mm_struct *mm,
3562         unsigned long addr, unsigned long len,
3563         unsigned long vm_flags, void *priv,
3564         const struct vm_operations_struct *ops)
3565 {
3566         int ret;
3567         struct vm_area_struct *vma;
3568
3569         vma = vm_area_alloc(mm);
3570         if (unlikely(vma == NULL))
3571                 return ERR_PTR(-ENOMEM);
3572
3573         vma_set_range(vma, addr, addr + len, 0);
3574         vm_flags_init(vma, (vm_flags | mm->def_flags |
3575                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3576         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3577
3578         vma->vm_ops = ops;
3579         vma->vm_private_data = priv;
3580
3581         ret = insert_vm_struct(mm, vma);
3582         if (ret)
3583                 goto out;
3584
3585         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3586
3587         perf_event_mmap(vma);
3588
3589         return vma;
3590
3591 out:
3592         vm_area_free(vma);
3593         return ERR_PTR(ret);
3594 }
3595
3596 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3597         const struct vm_special_mapping *sm)
3598 {
3599         return vma->vm_private_data == sm &&
3600                 (vma->vm_ops == &special_mapping_vmops ||
3601                  vma->vm_ops == &legacy_special_mapping_vmops);
3602 }
3603
3604 /*
3605  * Called with mm->mmap_lock held for writing.
3606  * Insert a new vma covering the given region, with the given flags.
3607  * Its pages are supplied by the given array of struct page *.
3608  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3609  * The region past the last page supplied will always produce SIGBUS.
3610  * The array pointer and the pages it points to are assumed to stay alive
3611  * for as long as this mapping might exist.
3612  */
3613 struct vm_area_struct *_install_special_mapping(
3614         struct mm_struct *mm,
3615         unsigned long addr, unsigned long len,
3616         unsigned long vm_flags, const struct vm_special_mapping *spec)
3617 {
3618         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3619                                         &special_mapping_vmops);
3620 }
3621
3622 int install_special_mapping(struct mm_struct *mm,
3623                             unsigned long addr, unsigned long len,
3624                             unsigned long vm_flags, struct page **pages)
3625 {
3626         struct vm_area_struct *vma = __install_special_mapping(
3627                 mm, addr, len, vm_flags, (void *)pages,
3628                 &legacy_special_mapping_vmops);
3629
3630         return PTR_ERR_OR_ZERO(vma);
3631 }
3632
3633 static DEFINE_MUTEX(mm_all_locks_mutex);
3634
3635 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3636 {
3637         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3638                 /*
3639                  * The LSB of head.next can't change from under us
3640                  * because we hold the mm_all_locks_mutex.
3641                  */
3642                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3643                 /*
3644                  * We can safely modify head.next after taking the
3645                  * anon_vma->root->rwsem. If some other vma in this mm shares
3646                  * the same anon_vma we won't take it again.
3647                  *
3648                  * No need of atomic instructions here, head.next
3649                  * can't change from under us thanks to the
3650                  * anon_vma->root->rwsem.
3651                  */
3652                 if (__test_and_set_bit(0, (unsigned long *)
3653                                        &anon_vma->root->rb_root.rb_root.rb_node))
3654                         BUG();
3655         }
3656 }
3657
3658 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3659 {
3660         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3661                 /*
3662                  * AS_MM_ALL_LOCKS can't change from under us because
3663                  * we hold the mm_all_locks_mutex.
3664                  *
3665                  * Operations on ->flags have to be atomic because
3666                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3667                  * mm_all_locks_mutex, there may be other cpus
3668                  * changing other bitflags in parallel to us.
3669                  */
3670                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3671                         BUG();
3672                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3673         }
3674 }
3675
3676 /*
3677  * This operation locks against the VM for all pte/vma/mm related
3678  * operations that could ever happen on a certain mm. This includes
3679  * vmtruncate, try_to_unmap, and all page faults.
3680  *
3681  * The caller must take the mmap_lock in write mode before calling
3682  * mm_take_all_locks(). The caller isn't allowed to release the
3683  * mmap_lock until mm_drop_all_locks() returns.
3684  *
3685  * mmap_lock in write mode is required in order to block all operations
3686  * that could modify pagetables and free pages without need of
3687  * altering the vma layout. It's also needed in write mode to avoid new
3688  * anon_vmas to be associated with existing vmas.
3689  *
3690  * A single task can't take more than one mm_take_all_locks() in a row
3691  * or it would deadlock.
3692  *
3693  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3694  * mapping->flags avoid to take the same lock twice, if more than one
3695  * vma in this mm is backed by the same anon_vma or address_space.
3696  *
3697  * We take locks in following order, accordingly to comment at beginning
3698  * of mm/rmap.c:
3699  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3700  *     hugetlb mapping);
3701  *   - all vmas marked locked
3702  *   - all i_mmap_rwsem locks;
3703  *   - all anon_vma->rwseml
3704  *
3705  * We can take all locks within these types randomly because the VM code
3706  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3707  * mm_all_locks_mutex.
3708  *
3709  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3710  * that may have to take thousand of locks.
3711  *
3712  * mm_take_all_locks() can fail if it's interrupted by signals.
3713  */
3714 int mm_take_all_locks(struct mm_struct *mm)
3715 {
3716         struct vm_area_struct *vma;
3717         struct anon_vma_chain *avc;
3718         MA_STATE(mas, &mm->mm_mt, 0, 0);
3719
3720         mmap_assert_write_locked(mm);
3721
3722         mutex_lock(&mm_all_locks_mutex);
3723
3724         /*
3725          * vma_start_write() does not have a complement in mm_drop_all_locks()
3726          * because vma_start_write() is always asymmetrical; it marks a VMA as
3727          * being written to until mmap_write_unlock() or mmap_write_downgrade()
3728          * is reached.
3729          */
3730         mas_for_each(&mas, vma, ULONG_MAX) {
3731                 if (signal_pending(current))
3732                         goto out_unlock;
3733                 vma_start_write(vma);
3734         }
3735
3736         mas_set(&mas, 0);
3737         mas_for_each(&mas, vma, ULONG_MAX) {
3738                 if (signal_pending(current))
3739                         goto out_unlock;
3740                 if (vma->vm_file && vma->vm_file->f_mapping &&
3741                                 is_vm_hugetlb_page(vma))
3742                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3743         }
3744
3745         mas_set(&mas, 0);
3746         mas_for_each(&mas, vma, ULONG_MAX) {
3747                 if (signal_pending(current))
3748                         goto out_unlock;
3749                 if (vma->vm_file && vma->vm_file->f_mapping &&
3750                                 !is_vm_hugetlb_page(vma))
3751                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3752         }
3753
3754         mas_set(&mas, 0);
3755         mas_for_each(&mas, vma, ULONG_MAX) {
3756                 if (signal_pending(current))
3757                         goto out_unlock;
3758                 if (vma->anon_vma)
3759                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3760                                 vm_lock_anon_vma(mm, avc->anon_vma);
3761         }
3762
3763         return 0;
3764
3765 out_unlock:
3766         mm_drop_all_locks(mm);
3767         return -EINTR;
3768 }
3769
3770 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3771 {
3772         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3773                 /*
3774                  * The LSB of head.next can't change to 0 from under
3775                  * us because we hold the mm_all_locks_mutex.
3776                  *
3777                  * We must however clear the bitflag before unlocking
3778                  * the vma so the users using the anon_vma->rb_root will
3779                  * never see our bitflag.
3780                  *
3781                  * No need of atomic instructions here, head.next
3782                  * can't change from under us until we release the
3783                  * anon_vma->root->rwsem.
3784                  */
3785                 if (!__test_and_clear_bit(0, (unsigned long *)
3786                                           &anon_vma->root->rb_root.rb_root.rb_node))
3787                         BUG();
3788                 anon_vma_unlock_write(anon_vma);
3789         }
3790 }
3791
3792 static void vm_unlock_mapping(struct address_space *mapping)
3793 {
3794         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3795                 /*
3796                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3797                  * because we hold the mm_all_locks_mutex.
3798                  */
3799                 i_mmap_unlock_write(mapping);
3800                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3801                                         &mapping->flags))
3802                         BUG();
3803         }
3804 }
3805
3806 /*
3807  * The mmap_lock cannot be released by the caller until
3808  * mm_drop_all_locks() returns.
3809  */
3810 void mm_drop_all_locks(struct mm_struct *mm)
3811 {
3812         struct vm_area_struct *vma;
3813         struct anon_vma_chain *avc;
3814         MA_STATE(mas, &mm->mm_mt, 0, 0);
3815
3816         mmap_assert_write_locked(mm);
3817         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3818
3819         mas_for_each(&mas, vma, ULONG_MAX) {
3820                 if (vma->anon_vma)
3821                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3822                                 vm_unlock_anon_vma(avc->anon_vma);
3823                 if (vma->vm_file && vma->vm_file->f_mapping)
3824                         vm_unlock_mapping(vma->vm_file->f_mapping);
3825         }
3826
3827         mutex_unlock(&mm_all_locks_mutex);
3828 }
3829
3830 /*
3831  * initialise the percpu counter for VM
3832  */
3833 void __init mmap_init(void)
3834 {
3835         int ret;
3836
3837         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3838         VM_BUG_ON(ret);
3839 }
3840
3841 /*
3842  * Initialise sysctl_user_reserve_kbytes.
3843  *
3844  * This is intended to prevent a user from starting a single memory hogging
3845  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3846  * mode.
3847  *
3848  * The default value is min(3% of free memory, 128MB)
3849  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3850  */
3851 static int init_user_reserve(void)
3852 {
3853         unsigned long free_kbytes;
3854
3855         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3856
3857         sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3858         return 0;
3859 }
3860 subsys_initcall(init_user_reserve);
3861
3862 /*
3863  * Initialise sysctl_admin_reserve_kbytes.
3864  *
3865  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3866  * to log in and kill a memory hogging process.
3867  *
3868  * Systems with more than 256MB will reserve 8MB, enough to recover
3869  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3870  * only reserve 3% of free pages by default.
3871  */
3872 static int init_admin_reserve(void)
3873 {
3874         unsigned long free_kbytes;
3875
3876         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3877
3878         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3879         return 0;
3880 }
3881 subsys_initcall(init_admin_reserve);
3882
3883 /*
3884  * Reinititalise user and admin reserves if memory is added or removed.
3885  *
3886  * The default user reserve max is 128MB, and the default max for the
3887  * admin reserve is 8MB. These are usually, but not always, enough to
3888  * enable recovery from a memory hogging process using login/sshd, a shell,
3889  * and tools like top. It may make sense to increase or even disable the
3890  * reserve depending on the existence of swap or variations in the recovery
3891  * tools. So, the admin may have changed them.
3892  *
3893  * If memory is added and the reserves have been eliminated or increased above
3894  * the default max, then we'll trust the admin.
3895  *
3896  * If memory is removed and there isn't enough free memory, then we
3897  * need to reset the reserves.
3898  *
3899  * Otherwise keep the reserve set by the admin.
3900  */
3901 static int reserve_mem_notifier(struct notifier_block *nb,
3902                              unsigned long action, void *data)
3903 {
3904         unsigned long tmp, free_kbytes;
3905
3906         switch (action) {
3907         case MEM_ONLINE:
3908                 /* Default max is 128MB. Leave alone if modified by operator. */
3909                 tmp = sysctl_user_reserve_kbytes;
3910                 if (tmp > 0 && tmp < SZ_128K)
3911                         init_user_reserve();
3912
3913                 /* Default max is 8MB.  Leave alone if modified by operator. */
3914                 tmp = sysctl_admin_reserve_kbytes;
3915                 if (tmp > 0 && tmp < SZ_8K)
3916                         init_admin_reserve();
3917
3918                 break;
3919         case MEM_OFFLINE:
3920                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3921
3922                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3923                         init_user_reserve();
3924                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3925                                 sysctl_user_reserve_kbytes);
3926                 }
3927
3928                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3929                         init_admin_reserve();
3930                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3931                                 sysctl_admin_reserve_kbytes);
3932                 }
3933                 break;
3934         default:
3935                 break;
3936         }
3937         return NOTIFY_OK;
3938 }
3939
3940 static int __meminit init_reserve_notifier(void)
3941 {
3942         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3943                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3944
3945         return 0;
3946 }
3947 subsys_initcall(init_reserve_notifier);