mm/ksm: use folio in write_protect_page
[linux-block.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                                       struct address_space *mapping)
109 {
110         if (vma_is_shared_maywrite(vma))
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167         unsigned long mapped_addr;
168
169         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170         if (IS_ERR_VALUE(mapped_addr))
171                 return mapped_addr;
172
173         return mlock_future_ok(current->mm, current->mm->def_flags, len)
174                 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177                 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180         unsigned long newbrk, oldbrk, origbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *brkvma, *next = NULL;
183         unsigned long min_brk;
184         bool populate = false;
185         LIST_HEAD(uf);
186         struct vma_iterator vmi;
187
188         if (mmap_write_lock_killable(mm))
189                 return -EINTR;
190
191         origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk) {
222                 mm->brk = brk;
223                 goto success;
224         }
225
226         /* Always allow shrinking brk. */
227         if (brk <= mm->brk) {
228                 /* Search one past newbrk */
229                 vma_iter_init(&vmi, mm, newbrk);
230                 brkvma = vma_find(&vmi, oldbrk);
231                 if (!brkvma || brkvma->vm_start >= oldbrk)
232                         goto out; /* mapping intersects with an existing non-brk vma. */
233                 /*
234                  * mm->brk must be protected by write mmap_lock.
235                  * do_vma_munmap() will drop the lock on success,  so update it
236                  * before calling do_vma_munmap().
237                  */
238                 mm->brk = brk;
239                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240                         goto out;
241
242                 goto success_unlocked;
243         }
244
245         if (check_brk_limits(oldbrk, newbrk - oldbrk))
246                 goto out;
247
248         /*
249          * Only check if the next VMA is within the stack_guard_gap of the
250          * expansion area
251          */
252         vma_iter_init(&vmi, mm, oldbrk);
253         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255                 goto out;
256
257         brkvma = vma_prev_limit(&vmi, mm->start_brk);
258         /* Ok, looks good - let it rip. */
259         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260                 goto out;
261
262         mm->brk = brk;
263         if (mm->def_flags & VM_LOCKED)
264                 populate = true;
265
266 success:
267         mmap_write_unlock(mm);
268 success_unlocked:
269         userfaultfd_unmap_complete(mm, &uf);
270         if (populate)
271                 mm_populate(oldbrk, newbrk - oldbrk);
272         return brk;
273
274 out:
275         mm->brk = origbrk;
276         mmap_write_unlock(mm);
277         return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283         int bug = 0;
284         int i = 0;
285         struct vm_area_struct *vma;
286         VMA_ITERATOR(vmi, mm, 0);
287
288         mt_validate(&mm->mm_mt);
289         for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291                 struct anon_vma *anon_vma = vma->anon_vma;
292                 struct anon_vma_chain *avc;
293 #endif
294                 unsigned long vmi_start, vmi_end;
295                 bool warn = 0;
296
297                 vmi_start = vma_iter_addr(&vmi);
298                 vmi_end = vma_iter_end(&vmi);
299                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300                         warn = 1;
301
302                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303                         warn = 1;
304
305                 if (warn) {
306                         pr_emerg("issue in %s\n", current->comm);
307                         dump_stack();
308                         dump_vma(vma);
309                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
310                                  vmi_start, vmi_end - 1);
311                         vma_iter_dump_tree(&vmi);
312                 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315                 if (anon_vma) {
316                         anon_vma_lock_read(anon_vma);
317                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318                                 anon_vma_interval_tree_verify(avc);
319                         anon_vma_unlock_read(anon_vma);
320                 }
321 #endif
322                 i++;
323         }
324         if (i != mm->map_count) {
325                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326                 bug = 1;
327         }
328         VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352         struct anon_vma_chain *avc;
353
354         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361         struct anon_vma_chain *avc;
362
363         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368                 unsigned long addr, unsigned long end)
369 {
370         VMA_ITERATOR(vmi, mm, addr);
371         struct vm_area_struct *vma;
372         unsigned long nr_pages = 0;
373
374         for_each_vma_range(vmi, vma, end) {
375                 unsigned long vm_start = max(addr, vma->vm_start);
376                 unsigned long vm_end = min(end, vma->vm_end);
377
378                 nr_pages += PHYS_PFN(vm_end - vm_start);
379         }
380
381         return nr_pages;
382 }
383
384 static void __vma_link_file(struct vm_area_struct *vma,
385                             struct address_space *mapping)
386 {
387         if (vma_is_shared_maywrite(vma))
388                 mapping_allow_writable(mapping);
389
390         flush_dcache_mmap_lock(mapping);
391         vma_interval_tree_insert(vma, &mapping->i_mmap);
392         flush_dcache_mmap_unlock(mapping);
393 }
394
395 static void vma_link_file(struct vm_area_struct *vma)
396 {
397         struct file *file = vma->vm_file;
398         struct address_space *mapping;
399
400         if (file) {
401                 mapping = file->f_mapping;
402                 i_mmap_lock_write(mapping);
403                 __vma_link_file(vma, mapping);
404                 i_mmap_unlock_write(mapping);
405         }
406 }
407
408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 {
410         VMA_ITERATOR(vmi, mm, 0);
411
412         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413         if (vma_iter_prealloc(&vmi, vma))
414                 return -ENOMEM;
415
416         vma_start_write(vma);
417         vma_iter_store(&vmi, vma);
418         vma_link_file(vma);
419         mm->map_count++;
420         validate_mm(mm);
421         return 0;
422 }
423
424 /*
425  * init_multi_vma_prep() - Initializer for struct vma_prepare
426  * @vp: The vma_prepare struct
427  * @vma: The vma that will be altered once locked
428  * @next: The next vma if it is to be adjusted
429  * @remove: The first vma to be removed
430  * @remove2: The second vma to be removed
431  */
432 static inline void init_multi_vma_prep(struct vma_prepare *vp,
433                 struct vm_area_struct *vma, struct vm_area_struct *next,
434                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
435 {
436         memset(vp, 0, sizeof(struct vma_prepare));
437         vp->vma = vma;
438         vp->anon_vma = vma->anon_vma;
439         vp->remove = remove;
440         vp->remove2 = remove2;
441         vp->adj_next = next;
442         if (!vp->anon_vma && next)
443                 vp->anon_vma = next->anon_vma;
444
445         vp->file = vma->vm_file;
446         if (vp->file)
447                 vp->mapping = vma->vm_file->f_mapping;
448
449 }
450
451 /*
452  * init_vma_prep() - Initializer wrapper for vma_prepare struct
453  * @vp: The vma_prepare struct
454  * @vma: The vma that will be altered once locked
455  */
456 static inline void init_vma_prep(struct vma_prepare *vp,
457                                  struct vm_area_struct *vma)
458 {
459         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460 }
461
462
463 /*
464  * vma_prepare() - Helper function for handling locking VMAs prior to altering
465  * @vp: The initialized vma_prepare struct
466  */
467 static inline void vma_prepare(struct vma_prepare *vp)
468 {
469         if (vp->file) {
470                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471
472                 if (vp->adj_next)
473                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474                                       vp->adj_next->vm_end);
475
476                 i_mmap_lock_write(vp->mapping);
477                 if (vp->insert && vp->insert->vm_file) {
478                         /*
479                          * Put into interval tree now, so instantiated pages
480                          * are visible to arm/parisc __flush_dcache_page
481                          * throughout; but we cannot insert into address
482                          * space until vma start or end is updated.
483                          */
484                         __vma_link_file(vp->insert,
485                                         vp->insert->vm_file->f_mapping);
486                 }
487         }
488
489         if (vp->anon_vma) {
490                 anon_vma_lock_write(vp->anon_vma);
491                 anon_vma_interval_tree_pre_update_vma(vp->vma);
492                 if (vp->adj_next)
493                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494         }
495
496         if (vp->file) {
497                 flush_dcache_mmap_lock(vp->mapping);
498                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499                 if (vp->adj_next)
500                         vma_interval_tree_remove(vp->adj_next,
501                                                  &vp->mapping->i_mmap);
502         }
503
504 }
505
506 /*
507  * vma_complete- Helper function for handling the unlocking after altering VMAs,
508  * or for inserting a VMA.
509  *
510  * @vp: The vma_prepare struct
511  * @vmi: The vma iterator
512  * @mm: The mm_struct
513  */
514 static inline void vma_complete(struct vma_prepare *vp,
515                                 struct vma_iterator *vmi, struct mm_struct *mm)
516 {
517         if (vp->file) {
518                 if (vp->adj_next)
519                         vma_interval_tree_insert(vp->adj_next,
520                                                  &vp->mapping->i_mmap);
521                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522                 flush_dcache_mmap_unlock(vp->mapping);
523         }
524
525         if (vp->remove && vp->file) {
526                 __remove_shared_vm_struct(vp->remove, vp->mapping);
527                 if (vp->remove2)
528                         __remove_shared_vm_struct(vp->remove2, vp->mapping);
529         } else if (vp->insert) {
530                 /*
531                  * split_vma has split insert from vma, and needs
532                  * us to insert it before dropping the locks
533                  * (it may either follow vma or precede it).
534                  */
535                 vma_iter_store(vmi, vp->insert);
536                 mm->map_count++;
537         }
538
539         if (vp->anon_vma) {
540                 anon_vma_interval_tree_post_update_vma(vp->vma);
541                 if (vp->adj_next)
542                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
543                 anon_vma_unlock_write(vp->anon_vma);
544         }
545
546         if (vp->file) {
547                 i_mmap_unlock_write(vp->mapping);
548                 uprobe_mmap(vp->vma);
549
550                 if (vp->adj_next)
551                         uprobe_mmap(vp->adj_next);
552         }
553
554         if (vp->remove) {
555 again:
556                 vma_mark_detached(vp->remove, true);
557                 if (vp->file) {
558                         uprobe_munmap(vp->remove, vp->remove->vm_start,
559                                       vp->remove->vm_end);
560                         fput(vp->file);
561                 }
562                 if (vp->remove->anon_vma)
563                         anon_vma_merge(vp->vma, vp->remove);
564                 mm->map_count--;
565                 mpol_put(vma_policy(vp->remove));
566                 if (!vp->remove2)
567                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568                 vm_area_free(vp->remove);
569
570                 /*
571                  * In mprotect's case 6 (see comments on vma_merge),
572                  * we are removing both mid and next vmas
573                  */
574                 if (vp->remove2) {
575                         vp->remove = vp->remove2;
576                         vp->remove2 = NULL;
577                         goto again;
578                 }
579         }
580         if (vp->insert && vp->file)
581                 uprobe_mmap(vp->insert);
582         validate_mm(mm);
583 }
584
585 /*
586  * dup_anon_vma() - Helper function to duplicate anon_vma
587  * @dst: The destination VMA
588  * @src: The source VMA
589  * @dup: Pointer to the destination VMA when successful.
590  *
591  * Returns: 0 on success.
592  */
593 static inline int dup_anon_vma(struct vm_area_struct *dst,
594                 struct vm_area_struct *src, struct vm_area_struct **dup)
595 {
596         /*
597          * Easily overlooked: when mprotect shifts the boundary, make sure the
598          * expanding vma has anon_vma set if the shrinking vma had, to cover any
599          * anon pages imported.
600          */
601         if (src->anon_vma && !dst->anon_vma) {
602                 int ret;
603
604                 vma_assert_write_locked(dst);
605                 dst->anon_vma = src->anon_vma;
606                 ret = anon_vma_clone(dst, src);
607                 if (ret)
608                         return ret;
609
610                 *dup = dst;
611         }
612
613         return 0;
614 }
615
616 /*
617  * vma_expand - Expand an existing VMA
618  *
619  * @vmi: The vma iterator
620  * @vma: The vma to expand
621  * @start: The start of the vma
622  * @end: The exclusive end of the vma
623  * @pgoff: The page offset of vma
624  * @next: The current of next vma.
625  *
626  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627  * expand over @next if it's different from @vma and @end == @next->vm_end.
628  * Checking if the @vma can expand and merge with @next needs to be handled by
629  * the caller.
630  *
631  * Returns: 0 on success
632  */
633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634                unsigned long start, unsigned long end, pgoff_t pgoff,
635                struct vm_area_struct *next)
636 {
637         struct vm_area_struct *anon_dup = NULL;
638         bool remove_next = false;
639         struct vma_prepare vp;
640
641         vma_start_write(vma);
642         if (next && (vma != next) && (end == next->vm_end)) {
643                 int ret;
644
645                 remove_next = true;
646                 vma_start_write(next);
647                 ret = dup_anon_vma(vma, next, &anon_dup);
648                 if (ret)
649                         return ret;
650         }
651
652         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653         /* Not merging but overwriting any part of next is not handled. */
654         VM_WARN_ON(next && !vp.remove &&
655                   next != vma && end > next->vm_start);
656         /* Only handles expanding */
657         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658
659         /* Note: vma iterator must be pointing to 'start' */
660         vma_iter_config(vmi, start, end);
661         if (vma_iter_prealloc(vmi, vma))
662                 goto nomem;
663
664         vma_prepare(&vp);
665         vma_adjust_trans_huge(vma, start, end, 0);
666         vma_set_range(vma, start, end, pgoff);
667         vma_iter_store(vmi, vma);
668
669         vma_complete(&vp, vmi, vma->vm_mm);
670         return 0;
671
672 nomem:
673         if (anon_dup)
674                 unlink_anon_vmas(anon_dup);
675         return -ENOMEM;
676 }
677
678 /*
679  * vma_shrink() - Reduce an existing VMAs memory area
680  * @vmi: The vma iterator
681  * @vma: The VMA to modify
682  * @start: The new start
683  * @end: The new end
684  *
685  * Returns: 0 on success, -ENOMEM otherwise
686  */
687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688                unsigned long start, unsigned long end, pgoff_t pgoff)
689 {
690         struct vma_prepare vp;
691
692         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693
694         if (vma->vm_start < start)
695                 vma_iter_config(vmi, vma->vm_start, start);
696         else
697                 vma_iter_config(vmi, end, vma->vm_end);
698
699         if (vma_iter_prealloc(vmi, NULL))
700                 return -ENOMEM;
701
702         vma_start_write(vma);
703
704         init_vma_prep(&vp, vma);
705         vma_prepare(&vp);
706         vma_adjust_trans_huge(vma, start, end, 0);
707
708         vma_iter_clear(vmi);
709         vma_set_range(vma, start, end, pgoff);
710         vma_complete(&vp, vmi, vma->vm_mm);
711         return 0;
712 }
713
714 /*
715  * If the vma has a ->close operation then the driver probably needs to release
716  * per-vma resources, so we don't attempt to merge those if the caller indicates
717  * the current vma may be removed as part of the merge.
718  */
719 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720                 struct file *file, unsigned long vm_flags,
721                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722                 struct anon_vma_name *anon_name, bool may_remove_vma)
723 {
724         /*
725          * VM_SOFTDIRTY should not prevent from VMA merging, if we
726          * match the flags but dirty bit -- the caller should mark
727          * merged VMA as dirty. If dirty bit won't be excluded from
728          * comparison, we increase pressure on the memory system forcing
729          * the kernel to generate new VMAs when old one could be
730          * extended instead.
731          */
732         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733                 return false;
734         if (vma->vm_file != file)
735                 return false;
736         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737                 return false;
738         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739                 return false;
740         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741                 return false;
742         return true;
743 }
744
745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747 {
748         /*
749          * The list_is_singular() test is to avoid merging VMA cloned from
750          * parents. This can improve scalability caused by anon_vma lock.
751          */
752         if ((!anon_vma1 || !anon_vma2) && (!vma ||
753                 list_is_singular(&vma->anon_vma_chain)))
754                 return true;
755         return anon_vma1 == anon_vma2;
756 }
757
758 /*
759  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760  * in front of (at a lower virtual address and file offset than) the vma.
761  *
762  * We cannot merge two vmas if they have differently assigned (non-NULL)
763  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764  *
765  * We don't check here for the merged mmap wrapping around the end of pagecache
766  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767  * wrap, nor mmaps which cover the final page at index -1UL.
768  *
769  * We assume the vma may be removed as part of the merge.
770  */
771 static bool
772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773                 struct anon_vma *anon_vma, struct file *file,
774                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775                 struct anon_vma_name *anon_name)
776 {
777         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779                 if (vma->vm_pgoff == vm_pgoff)
780                         return true;
781         }
782         return false;
783 }
784
785 /*
786  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787  * beyond (at a higher virtual address and file offset than) the vma.
788  *
789  * We cannot merge two vmas if they have differently assigned (non-NULL)
790  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791  *
792  * We assume that vma is not removed as part of the merge.
793  */
794 static bool
795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796                 struct anon_vma *anon_vma, struct file *file,
797                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798                 struct anon_vma_name *anon_name)
799 {
800         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802                 pgoff_t vm_pglen;
803                 vm_pglen = vma_pages(vma);
804                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805                         return true;
806         }
807         return false;
808 }
809
810 /*
811  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812  * figure out whether that can be merged with its predecessor or its
813  * successor.  Or both (it neatly fills a hole).
814  *
815  * In most cases - when called for mmap, brk or mremap - [addr,end) is
816  * certain not to be mapped by the time vma_merge is called; but when
817  * called for mprotect, it is certain to be already mapped (either at
818  * an offset within prev, or at the start of next), and the flags of
819  * this area are about to be changed to vm_flags - and the no-change
820  * case has already been eliminated.
821  *
822  * The following mprotect cases have to be considered, where **** is
823  * the area passed down from mprotect_fixup, never extending beyond one
824  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825  * at the same address as **** and is of the same or larger span, and
826  * NNNN the next vma after ****:
827  *
828  *     ****             ****                   ****
829  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830  *    cannot merge    might become       might become
831  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832  *    mmap, brk or    case 4 below       case 5 below
833  *    mremap move:
834  *                        ****               ****
835  *                    PPPP    NNNN       PPPPCCCCNNNN
836  *                    might become       might become
837  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840  *
841  * It is important for case 8 that the vma CCCC overlapping the
842  * region **** is never going to extended over NNNN. Instead NNNN must
843  * be extended in region **** and CCCC must be removed. This way in
844  * all cases where vma_merge succeeds, the moment vma_merge drops the
845  * rmap_locks, the properties of the merged vma will be already
846  * correct for the whole merged range. Some of those properties like
847  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848  * be correct for the whole merged range immediately after the
849  * rmap_locks are released. Otherwise if NNNN would be removed and
850  * CCCC would be extended over the NNNN range, remove_migration_ptes
851  * or other rmap walkers (if working on addresses beyond the "end"
852  * parameter) may establish ptes with the wrong permissions of CCCC
853  * instead of the right permissions of NNNN.
854  *
855  * In the code below:
856  * PPPP is represented by *prev
857  * CCCC is represented by *curr or not represented at all (NULL)
858  * NNNN is represented by *next or not represented at all (NULL)
859  * **** is not represented - it will be merged and the vma containing the
860  *      area is returned, or the function will return NULL
861  */
862 static struct vm_area_struct
863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864            struct vm_area_struct *src, unsigned long addr, unsigned long end,
865            unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866            struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867            struct anon_vma_name *anon_name)
868 {
869         struct mm_struct *mm = src->vm_mm;
870         struct anon_vma *anon_vma = src->anon_vma;
871         struct file *file = src->vm_file;
872         struct vm_area_struct *curr, *next, *res;
873         struct vm_area_struct *vma, *adjust, *remove, *remove2;
874         struct vm_area_struct *anon_dup = NULL;
875         struct vma_prepare vp;
876         pgoff_t vma_pgoff;
877         int err = 0;
878         bool merge_prev = false;
879         bool merge_next = false;
880         bool vma_expanded = false;
881         unsigned long vma_start = addr;
882         unsigned long vma_end = end;
883         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884         long adj_start = 0;
885
886         /*
887          * We later require that vma->vm_flags == vm_flags,
888          * so this tests vma->vm_flags & VM_SPECIAL, too.
889          */
890         if (vm_flags & VM_SPECIAL)
891                 return NULL;
892
893         /* Does the input range span an existing VMA? (cases 5 - 8) */
894         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895
896         if (!curr ||                    /* cases 1 - 4 */
897             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
898                 next = vma_lookup(mm, end);
899         else
900                 next = NULL;            /* case 5 */
901
902         if (prev) {
903                 vma_start = prev->vm_start;
904                 vma_pgoff = prev->vm_pgoff;
905
906                 /* Can we merge the predecessor? */
907                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
910                         merge_prev = true;
911                         vma_prev(vmi);
912                 }
913         }
914
915         /* Can we merge the successor? */
916         if (next && mpol_equal(policy, vma_policy(next)) &&
917             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918                                  vm_userfaultfd_ctx, anon_name)) {
919                 merge_next = true;
920         }
921
922         /* Verify some invariant that must be enforced by the caller. */
923         VM_WARN_ON(prev && addr <= prev->vm_start);
924         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925         VM_WARN_ON(addr >= end);
926
927         if (!merge_prev && !merge_next)
928                 return NULL; /* Not mergeable. */
929
930         if (merge_prev)
931                 vma_start_write(prev);
932
933         res = vma = prev;
934         remove = remove2 = adjust = NULL;
935
936         /* Can we merge both the predecessor and the successor? */
937         if (merge_prev && merge_next &&
938             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939                 vma_start_write(next);
940                 remove = next;                          /* case 1 */
941                 vma_end = next->vm_end;
942                 err = dup_anon_vma(prev, next, &anon_dup);
943                 if (curr) {                             /* case 6 */
944                         vma_start_write(curr);
945                         remove = curr;
946                         remove2 = next;
947                         /*
948                          * Note that the dup_anon_vma below cannot overwrite err
949                          * since the first caller would do nothing unless next
950                          * has an anon_vma.
951                          */
952                         if (!next->anon_vma)
953                                 err = dup_anon_vma(prev, curr, &anon_dup);
954                 }
955         } else if (merge_prev) {                        /* case 2 */
956                 if (curr) {
957                         vma_start_write(curr);
958                         if (end == curr->vm_end) {      /* case 7 */
959                                 /*
960                                  * can_vma_merge_after() assumed we would not be
961                                  * removing prev vma, so it skipped the check
962                                  * for vm_ops->close, but we are removing curr
963                                  */
964                                 if (curr->vm_ops && curr->vm_ops->close)
965                                         err = -EINVAL;
966                                 remove = curr;
967                         } else {                        /* case 5 */
968                                 adjust = curr;
969                                 adj_start = (end - curr->vm_start);
970                         }
971                         if (!err)
972                                 err = dup_anon_vma(prev, curr, &anon_dup);
973                 }
974         } else { /* merge_next */
975                 vma_start_write(next);
976                 res = next;
977                 if (prev && addr < prev->vm_end) {      /* case 4 */
978                         vma_start_write(prev);
979                         vma_end = addr;
980                         adjust = next;
981                         adj_start = -(prev->vm_end - addr);
982                         err = dup_anon_vma(next, prev, &anon_dup);
983                 } else {
984                         /*
985                          * Note that cases 3 and 8 are the ONLY ones where prev
986                          * is permitted to be (but is not necessarily) NULL.
987                          */
988                         vma = next;                     /* case 3 */
989                         vma_start = addr;
990                         vma_end = next->vm_end;
991                         vma_pgoff = next->vm_pgoff - pglen;
992                         if (curr) {                     /* case 8 */
993                                 vma_pgoff = curr->vm_pgoff;
994                                 vma_start_write(curr);
995                                 remove = curr;
996                                 err = dup_anon_vma(next, curr, &anon_dup);
997                         }
998                 }
999         }
1000
1001         /* Error in anon_vma clone. */
1002         if (err)
1003                 goto anon_vma_fail;
1004
1005         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006                 vma_expanded = true;
1007
1008         if (vma_expanded) {
1009                 vma_iter_config(vmi, vma_start, vma_end);
1010         } else {
1011                 vma_iter_config(vmi, adjust->vm_start + adj_start,
1012                                 adjust->vm_end);
1013         }
1014
1015         if (vma_iter_prealloc(vmi, vma))
1016                 goto prealloc_fail;
1017
1018         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020                    vp.anon_vma != adjust->anon_vma);
1021
1022         vma_prepare(&vp);
1023         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024         vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025
1026         if (vma_expanded)
1027                 vma_iter_store(vmi, vma);
1028
1029         if (adj_start) {
1030                 adjust->vm_start += adj_start;
1031                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032                 if (adj_start < 0) {
1033                         WARN_ON(vma_expanded);
1034                         vma_iter_store(vmi, next);
1035                 }
1036         }
1037
1038         vma_complete(&vp, vmi, mm);
1039         khugepaged_enter_vma(res, vm_flags);
1040         return res;
1041
1042 prealloc_fail:
1043         if (anon_dup)
1044                 unlink_anon_vmas(anon_dup);
1045
1046 anon_vma_fail:
1047         vma_iter_set(vmi, addr);
1048         vma_iter_load(vmi);
1049         return NULL;
1050 }
1051
1052 /*
1053  * Rough compatibility check to quickly see if it's even worth looking
1054  * at sharing an anon_vma.
1055  *
1056  * They need to have the same vm_file, and the flags can only differ
1057  * in things that mprotect may change.
1058  *
1059  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060  * we can merge the two vma's. For example, we refuse to merge a vma if
1061  * there is a vm_ops->close() function, because that indicates that the
1062  * driver is doing some kind of reference counting. But that doesn't
1063  * really matter for the anon_vma sharing case.
1064  */
1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067         return a->vm_end == b->vm_start &&
1068                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1069                 a->vm_file == b->vm_file &&
1070                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072 }
1073
1074 /*
1075  * Do some basic sanity checking to see if we can re-use the anon_vma
1076  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077  * the same as 'old', the other will be the new one that is trying
1078  * to share the anon_vma.
1079  *
1080  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081  * the anon_vma of 'old' is concurrently in the process of being set up
1082  * by another page fault trying to merge _that_. But that's ok: if it
1083  * is being set up, that automatically means that it will be a singleton
1084  * acceptable for merging, so we can do all of this optimistically. But
1085  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086  *
1087  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089  * is to return an anon_vma that is "complex" due to having gone through
1090  * a fork).
1091  *
1092  * We also make sure that the two vma's are compatible (adjacent,
1093  * and with the same memory policies). That's all stable, even with just
1094  * a read lock on the mmap_lock.
1095  */
1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097 {
1098         if (anon_vma_compatible(a, b)) {
1099                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100
1101                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102                         return anon_vma;
1103         }
1104         return NULL;
1105 }
1106
1107 /*
1108  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109  * neighbouring vmas for a suitable anon_vma, before it goes off
1110  * to allocate a new anon_vma.  It checks because a repetitive
1111  * sequence of mprotects and faults may otherwise lead to distinct
1112  * anon_vmas being allocated, preventing vma merge in subsequent
1113  * mprotect.
1114  */
1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116 {
1117         struct anon_vma *anon_vma = NULL;
1118         struct vm_area_struct *prev, *next;
1119         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1120
1121         /* Try next first. */
1122         next = vma_iter_load(&vmi);
1123         if (next) {
1124                 anon_vma = reusable_anon_vma(next, vma, next);
1125                 if (anon_vma)
1126                         return anon_vma;
1127         }
1128
1129         prev = vma_prev(&vmi);
1130         VM_BUG_ON_VMA(prev != vma, vma);
1131         prev = vma_prev(&vmi);
1132         /* Try prev next. */
1133         if (prev)
1134                 anon_vma = reusable_anon_vma(prev, prev, vma);
1135
1136         /*
1137          * We might reach here with anon_vma == NULL if we can't find
1138          * any reusable anon_vma.
1139          * There's no absolute need to look only at touching neighbours:
1140          * we could search further afield for "compatible" anon_vmas.
1141          * But it would probably just be a waste of time searching,
1142          * or lead to too many vmas hanging off the same anon_vma.
1143          * We're trying to allow mprotect remerging later on,
1144          * not trying to minimize memory used for anon_vmas.
1145          */
1146         return anon_vma;
1147 }
1148
1149 /*
1150  * If a hint addr is less than mmap_min_addr change hint to be as
1151  * low as possible but still greater than mmap_min_addr
1152  */
1153 static inline unsigned long round_hint_to_min(unsigned long hint)
1154 {
1155         hint &= PAGE_MASK;
1156         if (((void *)hint != NULL) &&
1157             (hint < mmap_min_addr))
1158                 return PAGE_ALIGN(mmap_min_addr);
1159         return hint;
1160 }
1161
1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163                         unsigned long bytes)
1164 {
1165         unsigned long locked_pages, limit_pages;
1166
1167         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168                 return true;
1169
1170         locked_pages = bytes >> PAGE_SHIFT;
1171         locked_pages += mm->locked_vm;
1172
1173         limit_pages = rlimit(RLIMIT_MEMLOCK);
1174         limit_pages >>= PAGE_SHIFT;
1175
1176         return locked_pages <= limit_pages;
1177 }
1178
1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180 {
1181         if (S_ISREG(inode->i_mode))
1182                 return MAX_LFS_FILESIZE;
1183
1184         if (S_ISBLK(inode->i_mode))
1185                 return MAX_LFS_FILESIZE;
1186
1187         if (S_ISSOCK(inode->i_mode))
1188                 return MAX_LFS_FILESIZE;
1189
1190         /* Special "we do even unsigned file positions" case */
1191         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192                 return 0;
1193
1194         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195         return ULONG_MAX;
1196 }
1197
1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199                                 unsigned long pgoff, unsigned long len)
1200 {
1201         u64 maxsize = file_mmap_size_max(file, inode);
1202
1203         if (maxsize && len > maxsize)
1204                 return false;
1205         maxsize -= len;
1206         if (pgoff > maxsize >> PAGE_SHIFT)
1207                 return false;
1208         return true;
1209 }
1210
1211 /*
1212  * The caller must write-lock current->mm->mmap_lock.
1213  */
1214 unsigned long do_mmap(struct file *file, unsigned long addr,
1215                         unsigned long len, unsigned long prot,
1216                         unsigned long flags, vm_flags_t vm_flags,
1217                         unsigned long pgoff, unsigned long *populate,
1218                         struct list_head *uf)
1219 {
1220         struct mm_struct *mm = current->mm;
1221         int pkey = 0;
1222
1223         *populate = 0;
1224
1225         if (!len)
1226                 return -EINVAL;
1227
1228         /*
1229          * Does the application expect PROT_READ to imply PROT_EXEC?
1230          *
1231          * (the exception is when the underlying filesystem is noexec
1232          *  mounted, in which case we don't add PROT_EXEC.)
1233          */
1234         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235                 if (!(file && path_noexec(&file->f_path)))
1236                         prot |= PROT_EXEC;
1237
1238         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1239         if (flags & MAP_FIXED_NOREPLACE)
1240                 flags |= MAP_FIXED;
1241
1242         if (!(flags & MAP_FIXED))
1243                 addr = round_hint_to_min(addr);
1244
1245         /* Careful about overflows.. */
1246         len = PAGE_ALIGN(len);
1247         if (!len)
1248                 return -ENOMEM;
1249
1250         /* offset overflow? */
1251         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252                 return -EOVERFLOW;
1253
1254         /* Too many mappings? */
1255         if (mm->map_count > sysctl_max_map_count)
1256                 return -ENOMEM;
1257
1258         if (prot == PROT_EXEC) {
1259                 pkey = execute_only_pkey(mm);
1260                 if (pkey < 0)
1261                         pkey = 0;
1262         }
1263
1264         /* Do simple checking here so the lower-level routines won't have
1265          * to. we assume access permissions have been handled by the open
1266          * of the memory object, so we don't do any here.
1267          */
1268         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1269                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1270
1271         /* Obtain the address to map to. we verify (or select) it and ensure
1272          * that it represents a valid section of the address space.
1273          */
1274         addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1275         if (IS_ERR_VALUE(addr))
1276                 return addr;
1277
1278         if (flags & MAP_FIXED_NOREPLACE) {
1279                 if (find_vma_intersection(mm, addr, addr + len))
1280                         return -EEXIST;
1281         }
1282
1283         if (flags & MAP_LOCKED)
1284                 if (!can_do_mlock())
1285                         return -EPERM;
1286
1287         if (!mlock_future_ok(mm, vm_flags, len))
1288                 return -EAGAIN;
1289
1290         if (file) {
1291                 struct inode *inode = file_inode(file);
1292                 unsigned long flags_mask;
1293
1294                 if (!file_mmap_ok(file, inode, pgoff, len))
1295                         return -EOVERFLOW;
1296
1297                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1298
1299                 switch (flags & MAP_TYPE) {
1300                 case MAP_SHARED:
1301                         /*
1302                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1303                          * flags. E.g. MAP_SYNC is dangerous to use with
1304                          * MAP_SHARED as you don't know which consistency model
1305                          * you will get. We silently ignore unsupported flags
1306                          * with MAP_SHARED to preserve backward compatibility.
1307                          */
1308                         flags &= LEGACY_MAP_MASK;
1309                         fallthrough;
1310                 case MAP_SHARED_VALIDATE:
1311                         if (flags & ~flags_mask)
1312                                 return -EOPNOTSUPP;
1313                         if (prot & PROT_WRITE) {
1314                                 if (!(file->f_mode & FMODE_WRITE))
1315                                         return -EACCES;
1316                                 if (IS_SWAPFILE(file->f_mapping->host))
1317                                         return -ETXTBSY;
1318                         }
1319
1320                         /*
1321                          * Make sure we don't allow writing to an append-only
1322                          * file..
1323                          */
1324                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1325                                 return -EACCES;
1326
1327                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1328                         if (!(file->f_mode & FMODE_WRITE))
1329                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1330                         fallthrough;
1331                 case MAP_PRIVATE:
1332                         if (!(file->f_mode & FMODE_READ))
1333                                 return -EACCES;
1334                         if (path_noexec(&file->f_path)) {
1335                                 if (vm_flags & VM_EXEC)
1336                                         return -EPERM;
1337                                 vm_flags &= ~VM_MAYEXEC;
1338                         }
1339
1340                         if (!file->f_op->mmap)
1341                                 return -ENODEV;
1342                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1343                                 return -EINVAL;
1344                         break;
1345
1346                 default:
1347                         return -EINVAL;
1348                 }
1349         } else {
1350                 switch (flags & MAP_TYPE) {
1351                 case MAP_SHARED:
1352                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1353                                 return -EINVAL;
1354                         /*
1355                          * Ignore pgoff.
1356                          */
1357                         pgoff = 0;
1358                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1359                         break;
1360                 case MAP_PRIVATE:
1361                         /*
1362                          * Set pgoff according to addr for anon_vma.
1363                          */
1364                         pgoff = addr >> PAGE_SHIFT;
1365                         break;
1366                 default:
1367                         return -EINVAL;
1368                 }
1369         }
1370
1371         /*
1372          * Set 'VM_NORESERVE' if we should not account for the
1373          * memory use of this mapping.
1374          */
1375         if (flags & MAP_NORESERVE) {
1376                 /* We honor MAP_NORESERVE if allowed to overcommit */
1377                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1378                         vm_flags |= VM_NORESERVE;
1379
1380                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1381                 if (file && is_file_hugepages(file))
1382                         vm_flags |= VM_NORESERVE;
1383         }
1384
1385         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1386         if (!IS_ERR_VALUE(addr) &&
1387             ((vm_flags & VM_LOCKED) ||
1388              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1389                 *populate = len;
1390         return addr;
1391 }
1392
1393 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1394                               unsigned long prot, unsigned long flags,
1395                               unsigned long fd, unsigned long pgoff)
1396 {
1397         struct file *file = NULL;
1398         unsigned long retval;
1399
1400         if (!(flags & MAP_ANONYMOUS)) {
1401                 audit_mmap_fd(fd, flags);
1402                 file = fget(fd);
1403                 if (!file)
1404                         return -EBADF;
1405                 if (is_file_hugepages(file)) {
1406                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1407                 } else if (unlikely(flags & MAP_HUGETLB)) {
1408                         retval = -EINVAL;
1409                         goto out_fput;
1410                 }
1411         } else if (flags & MAP_HUGETLB) {
1412                 struct hstate *hs;
1413
1414                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1415                 if (!hs)
1416                         return -EINVAL;
1417
1418                 len = ALIGN(len, huge_page_size(hs));
1419                 /*
1420                  * VM_NORESERVE is used because the reservations will be
1421                  * taken when vm_ops->mmap() is called
1422                  */
1423                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1424                                 VM_NORESERVE,
1425                                 HUGETLB_ANONHUGE_INODE,
1426                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427                 if (IS_ERR(file))
1428                         return PTR_ERR(file);
1429         }
1430
1431         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1432 out_fput:
1433         if (file)
1434                 fput(file);
1435         return retval;
1436 }
1437
1438 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1439                 unsigned long, prot, unsigned long, flags,
1440                 unsigned long, fd, unsigned long, pgoff)
1441 {
1442         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1443 }
1444
1445 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1446 struct mmap_arg_struct {
1447         unsigned long addr;
1448         unsigned long len;
1449         unsigned long prot;
1450         unsigned long flags;
1451         unsigned long fd;
1452         unsigned long offset;
1453 };
1454
1455 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1456 {
1457         struct mmap_arg_struct a;
1458
1459         if (copy_from_user(&a, arg, sizeof(a)))
1460                 return -EFAULT;
1461         if (offset_in_page(a.offset))
1462                 return -EINVAL;
1463
1464         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1465                                a.offset >> PAGE_SHIFT);
1466 }
1467 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1468
1469 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1470 {
1471         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1472 }
1473
1474 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1475 {
1476         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1477                 (VM_WRITE | VM_SHARED);
1478 }
1479
1480 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1481 {
1482         /* No managed pages to writeback. */
1483         if (vma->vm_flags & VM_PFNMAP)
1484                 return false;
1485
1486         return vma->vm_file && vma->vm_file->f_mapping &&
1487                 mapping_can_writeback(vma->vm_file->f_mapping);
1488 }
1489
1490 /*
1491  * Does this VMA require the underlying folios to have their dirty state
1492  * tracked?
1493  */
1494 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1495 {
1496         /* Only shared, writable VMAs require dirty tracking. */
1497         if (!vma_is_shared_writable(vma))
1498                 return false;
1499
1500         /* Does the filesystem need to be notified? */
1501         if (vm_ops_needs_writenotify(vma->vm_ops))
1502                 return true;
1503
1504         /*
1505          * Even if the filesystem doesn't indicate a need for writenotify, if it
1506          * can writeback, dirty tracking is still required.
1507          */
1508         return vma_fs_can_writeback(vma);
1509 }
1510
1511 /*
1512  * Some shared mappings will want the pages marked read-only
1513  * to track write events. If so, we'll downgrade vm_page_prot
1514  * to the private version (using protection_map[] without the
1515  * VM_SHARED bit).
1516  */
1517 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1518 {
1519         /* If it was private or non-writable, the write bit is already clear */
1520         if (!vma_is_shared_writable(vma))
1521                 return false;
1522
1523         /* The backer wishes to know when pages are first written to? */
1524         if (vm_ops_needs_writenotify(vma->vm_ops))
1525                 return true;
1526
1527         /* The open routine did something to the protections that pgprot_modify
1528          * won't preserve? */
1529         if (pgprot_val(vm_page_prot) !=
1530             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1531                 return false;
1532
1533         /*
1534          * Do we need to track softdirty? hugetlb does not support softdirty
1535          * tracking yet.
1536          */
1537         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1538                 return true;
1539
1540         /* Do we need write faults for uffd-wp tracking? */
1541         if (userfaultfd_wp(vma))
1542                 return true;
1543
1544         /* Can the mapping track the dirty pages? */
1545         return vma_fs_can_writeback(vma);
1546 }
1547
1548 /*
1549  * We account for memory if it's a private writeable mapping,
1550  * not hugepages and VM_NORESERVE wasn't set.
1551  */
1552 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1553 {
1554         /*
1555          * hugetlb has its own accounting separate from the core VM
1556          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1557          */
1558         if (file && is_file_hugepages(file))
1559                 return false;
1560
1561         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1562 }
1563
1564 /**
1565  * unmapped_area() - Find an area between the low_limit and the high_limit with
1566  * the correct alignment and offset, all from @info. Note: current->mm is used
1567  * for the search.
1568  *
1569  * @info: The unmapped area information including the range [low_limit -
1570  * high_limit), the alignment offset and mask.
1571  *
1572  * Return: A memory address or -ENOMEM.
1573  */
1574 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1575 {
1576         unsigned long length, gap;
1577         unsigned long low_limit, high_limit;
1578         struct vm_area_struct *tmp;
1579         VMA_ITERATOR(vmi, current->mm, 0);
1580
1581         /* Adjust search length to account for worst case alignment overhead */
1582         length = info->length + info->align_mask + info->start_gap;
1583         if (length < info->length)
1584                 return -ENOMEM;
1585
1586         low_limit = info->low_limit;
1587         if (low_limit < mmap_min_addr)
1588                 low_limit = mmap_min_addr;
1589         high_limit = info->high_limit;
1590 retry:
1591         if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1592                 return -ENOMEM;
1593
1594         /*
1595          * Adjust for the gap first so it doesn't interfere with the
1596          * later alignment. The first step is the minimum needed to
1597          * fulill the start gap, the next steps is the minimum to align
1598          * that. It is the minimum needed to fulill both.
1599          */
1600         gap = vma_iter_addr(&vmi) + info->start_gap;
1601         gap += (info->align_offset - gap) & info->align_mask;
1602         tmp = vma_next(&vmi);
1603         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1604                 if (vm_start_gap(tmp) < gap + length - 1) {
1605                         low_limit = tmp->vm_end;
1606                         vma_iter_reset(&vmi);
1607                         goto retry;
1608                 }
1609         } else {
1610                 tmp = vma_prev(&vmi);
1611                 if (tmp && vm_end_gap(tmp) > gap) {
1612                         low_limit = vm_end_gap(tmp);
1613                         vma_iter_reset(&vmi);
1614                         goto retry;
1615                 }
1616         }
1617
1618         return gap;
1619 }
1620
1621 /**
1622  * unmapped_area_topdown() - Find an area between the low_limit and the
1623  * high_limit with the correct alignment and offset at the highest available
1624  * address, all from @info. Note: current->mm is used for the search.
1625  *
1626  * @info: The unmapped area information including the range [low_limit -
1627  * high_limit), the alignment offset and mask.
1628  *
1629  * Return: A memory address or -ENOMEM.
1630  */
1631 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1632 {
1633         unsigned long length, gap, gap_end;
1634         unsigned long low_limit, high_limit;
1635         struct vm_area_struct *tmp;
1636         VMA_ITERATOR(vmi, current->mm, 0);
1637
1638         /* Adjust search length to account for worst case alignment overhead */
1639         length = info->length + info->align_mask + info->start_gap;
1640         if (length < info->length)
1641                 return -ENOMEM;
1642
1643         low_limit = info->low_limit;
1644         if (low_limit < mmap_min_addr)
1645                 low_limit = mmap_min_addr;
1646         high_limit = info->high_limit;
1647 retry:
1648         if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1649                 return -ENOMEM;
1650
1651         gap = vma_iter_end(&vmi) - info->length;
1652         gap -= (gap - info->align_offset) & info->align_mask;
1653         gap_end = vma_iter_end(&vmi);
1654         tmp = vma_next(&vmi);
1655         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1656                 if (vm_start_gap(tmp) < gap_end) {
1657                         high_limit = vm_start_gap(tmp);
1658                         vma_iter_reset(&vmi);
1659                         goto retry;
1660                 }
1661         } else {
1662                 tmp = vma_prev(&vmi);
1663                 if (tmp && vm_end_gap(tmp) > gap) {
1664                         high_limit = tmp->vm_start;
1665                         vma_iter_reset(&vmi);
1666                         goto retry;
1667                 }
1668         }
1669
1670         return gap;
1671 }
1672
1673 /*
1674  * Search for an unmapped address range.
1675  *
1676  * We are looking for a range that:
1677  * - does not intersect with any VMA;
1678  * - is contained within the [low_limit, high_limit) interval;
1679  * - is at least the desired size.
1680  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1681  */
1682 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1683 {
1684         unsigned long addr;
1685
1686         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1687                 addr = unmapped_area_topdown(info);
1688         else
1689                 addr = unmapped_area(info);
1690
1691         trace_vm_unmapped_area(addr, info);
1692         return addr;
1693 }
1694
1695 /* Get an address range which is currently unmapped.
1696  * For shmat() with addr=0.
1697  *
1698  * Ugly calling convention alert:
1699  * Return value with the low bits set means error value,
1700  * ie
1701  *      if (ret & ~PAGE_MASK)
1702  *              error = ret;
1703  *
1704  * This function "knows" that -ENOMEM has the bits set.
1705  */
1706 unsigned long
1707 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1708                           unsigned long len, unsigned long pgoff,
1709                           unsigned long flags)
1710 {
1711         struct mm_struct *mm = current->mm;
1712         struct vm_area_struct *vma, *prev;
1713         struct vm_unmapped_area_info info = {};
1714         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1715
1716         if (len > mmap_end - mmap_min_addr)
1717                 return -ENOMEM;
1718
1719         if (flags & MAP_FIXED)
1720                 return addr;
1721
1722         if (addr) {
1723                 addr = PAGE_ALIGN(addr);
1724                 vma = find_vma_prev(mm, addr, &prev);
1725                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1726                     (!vma || addr + len <= vm_start_gap(vma)) &&
1727                     (!prev || addr >= vm_end_gap(prev)))
1728                         return addr;
1729         }
1730
1731         info.length = len;
1732         info.low_limit = mm->mmap_base;
1733         info.high_limit = mmap_end;
1734         return vm_unmapped_area(&info);
1735 }
1736
1737 #ifndef HAVE_ARCH_UNMAPPED_AREA
1738 unsigned long
1739 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1740                        unsigned long len, unsigned long pgoff,
1741                        unsigned long flags)
1742 {
1743         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1744 }
1745 #endif
1746
1747 /*
1748  * This mmap-allocator allocates new areas top-down from below the
1749  * stack's low limit (the base):
1750  */
1751 unsigned long
1752 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1753                                   unsigned long len, unsigned long pgoff,
1754                                   unsigned long flags)
1755 {
1756         struct vm_area_struct *vma, *prev;
1757         struct mm_struct *mm = current->mm;
1758         struct vm_unmapped_area_info info = {};
1759         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1760
1761         /* requested length too big for entire address space */
1762         if (len > mmap_end - mmap_min_addr)
1763                 return -ENOMEM;
1764
1765         if (flags & MAP_FIXED)
1766                 return addr;
1767
1768         /* requesting a specific address */
1769         if (addr) {
1770                 addr = PAGE_ALIGN(addr);
1771                 vma = find_vma_prev(mm, addr, &prev);
1772                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1773                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1774                                 (!prev || addr >= vm_end_gap(prev)))
1775                         return addr;
1776         }
1777
1778         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1779         info.length = len;
1780         info.low_limit = PAGE_SIZE;
1781         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1782         addr = vm_unmapped_area(&info);
1783
1784         /*
1785          * A failed mmap() very likely causes application failure,
1786          * so fall back to the bottom-up function here. This scenario
1787          * can happen with large stack limits and large mmap()
1788          * allocations.
1789          */
1790         if (offset_in_page(addr)) {
1791                 VM_BUG_ON(addr != -ENOMEM);
1792                 info.flags = 0;
1793                 info.low_limit = TASK_UNMAPPED_BASE;
1794                 info.high_limit = mmap_end;
1795                 addr = vm_unmapped_area(&info);
1796         }
1797
1798         return addr;
1799 }
1800
1801 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1802 unsigned long
1803 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1804                                unsigned long len, unsigned long pgoff,
1805                                unsigned long flags)
1806 {
1807         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1808 }
1809 #endif
1810
1811 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1812 unsigned long
1813 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1814                                unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1815 {
1816         return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1817 }
1818
1819 unsigned long
1820 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1821                                        unsigned long len, unsigned long pgoff,
1822                                        unsigned long flags, vm_flags_t vm_flags)
1823 {
1824         return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1825 }
1826 #endif
1827
1828 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1829                                            unsigned long addr, unsigned long len,
1830                                            unsigned long pgoff, unsigned long flags,
1831                                            vm_flags_t vm_flags)
1832 {
1833         if (test_bit(MMF_TOPDOWN, &mm->flags))
1834                 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1835                                                               flags, vm_flags);
1836         return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1837 }
1838
1839 unsigned long
1840 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1841                 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1842 {
1843         unsigned long (*get_area)(struct file *, unsigned long,
1844                                   unsigned long, unsigned long, unsigned long)
1845                                   = NULL;
1846
1847         unsigned long error = arch_mmap_check(addr, len, flags);
1848         if (error)
1849                 return error;
1850
1851         /* Careful about overflows.. */
1852         if (len > TASK_SIZE)
1853                 return -ENOMEM;
1854
1855         if (file) {
1856                 if (file->f_op->get_unmapped_area)
1857                         get_area = file->f_op->get_unmapped_area;
1858         } else if (flags & MAP_SHARED) {
1859                 /*
1860                  * mmap_region() will call shmem_zero_setup() to create a file,
1861                  * so use shmem's get_unmapped_area in case it can be huge.
1862                  */
1863                 get_area = shmem_get_unmapped_area;
1864         }
1865
1866         /* Always treat pgoff as zero for anonymous memory. */
1867         if (!file)
1868                 pgoff = 0;
1869
1870         if (get_area) {
1871                 addr = get_area(file, addr, len, pgoff, flags);
1872         } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1873                 /* Ensures that larger anonymous mappings are THP aligned. */
1874                 addr = thp_get_unmapped_area_vmflags(file, addr, len,
1875                                                      pgoff, flags, vm_flags);
1876         } else {
1877                 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1878                                                     pgoff, flags, vm_flags);
1879         }
1880         if (IS_ERR_VALUE(addr))
1881                 return addr;
1882
1883         if (addr > TASK_SIZE - len)
1884                 return -ENOMEM;
1885         if (offset_in_page(addr))
1886                 return -EINVAL;
1887
1888         error = security_mmap_addr(addr);
1889         return error ? error : addr;
1890 }
1891
1892 unsigned long
1893 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1894                      unsigned long addr, unsigned long len,
1895                      unsigned long pgoff, unsigned long flags)
1896 {
1897         if (test_bit(MMF_TOPDOWN, &mm->flags))
1898                 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1899         return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1900 }
1901 EXPORT_SYMBOL(mm_get_unmapped_area);
1902
1903 /**
1904  * find_vma_intersection() - Look up the first VMA which intersects the interval
1905  * @mm: The process address space.
1906  * @start_addr: The inclusive start user address.
1907  * @end_addr: The exclusive end user address.
1908  *
1909  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1910  * start_addr < end_addr.
1911  */
1912 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1913                                              unsigned long start_addr,
1914                                              unsigned long end_addr)
1915 {
1916         unsigned long index = start_addr;
1917
1918         mmap_assert_locked(mm);
1919         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1920 }
1921 EXPORT_SYMBOL(find_vma_intersection);
1922
1923 /**
1924  * find_vma() - Find the VMA for a given address, or the next VMA.
1925  * @mm: The mm_struct to check
1926  * @addr: The address
1927  *
1928  * Returns: The VMA associated with addr, or the next VMA.
1929  * May return %NULL in the case of no VMA at addr or above.
1930  */
1931 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1932 {
1933         unsigned long index = addr;
1934
1935         mmap_assert_locked(mm);
1936         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1937 }
1938 EXPORT_SYMBOL(find_vma);
1939
1940 /**
1941  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1942  * set %pprev to the previous VMA, if any.
1943  * @mm: The mm_struct to check
1944  * @addr: The address
1945  * @pprev: The pointer to set to the previous VMA
1946  *
1947  * Note that RCU lock is missing here since the external mmap_lock() is used
1948  * instead.
1949  *
1950  * Returns: The VMA associated with @addr, or the next vma.
1951  * May return %NULL in the case of no vma at addr or above.
1952  */
1953 struct vm_area_struct *
1954 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1955                         struct vm_area_struct **pprev)
1956 {
1957         struct vm_area_struct *vma;
1958         VMA_ITERATOR(vmi, mm, addr);
1959
1960         vma = vma_iter_load(&vmi);
1961         *pprev = vma_prev(&vmi);
1962         if (!vma)
1963                 vma = vma_next(&vmi);
1964         return vma;
1965 }
1966
1967 /*
1968  * Verify that the stack growth is acceptable and
1969  * update accounting. This is shared with both the
1970  * grow-up and grow-down cases.
1971  */
1972 static int acct_stack_growth(struct vm_area_struct *vma,
1973                              unsigned long size, unsigned long grow)
1974 {
1975         struct mm_struct *mm = vma->vm_mm;
1976         unsigned long new_start;
1977
1978         /* address space limit tests */
1979         if (!may_expand_vm(mm, vma->vm_flags, grow))
1980                 return -ENOMEM;
1981
1982         /* Stack limit test */
1983         if (size > rlimit(RLIMIT_STACK))
1984                 return -ENOMEM;
1985
1986         /* mlock limit tests */
1987         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1988                 return -ENOMEM;
1989
1990         /* Check to ensure the stack will not grow into a hugetlb-only region */
1991         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1992                         vma->vm_end - size;
1993         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1994                 return -EFAULT;
1995
1996         /*
1997          * Overcommit..  This must be the final test, as it will
1998          * update security statistics.
1999          */
2000         if (security_vm_enough_memory_mm(mm, grow))
2001                 return -ENOMEM;
2002
2003         return 0;
2004 }
2005
2006 #if defined(CONFIG_STACK_GROWSUP)
2007 /*
2008  * PA-RISC uses this for its stack.
2009  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2010  */
2011 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2012 {
2013         struct mm_struct *mm = vma->vm_mm;
2014         struct vm_area_struct *next;
2015         unsigned long gap_addr;
2016         int error = 0;
2017         VMA_ITERATOR(vmi, mm, vma->vm_start);
2018
2019         if (!(vma->vm_flags & VM_GROWSUP))
2020                 return -EFAULT;
2021
2022         /* Guard against exceeding limits of the address space. */
2023         address &= PAGE_MASK;
2024         if (address >= (TASK_SIZE & PAGE_MASK))
2025                 return -ENOMEM;
2026         address += PAGE_SIZE;
2027
2028         /* Enforce stack_guard_gap */
2029         gap_addr = address + stack_guard_gap;
2030
2031         /* Guard against overflow */
2032         if (gap_addr < address || gap_addr > TASK_SIZE)
2033                 gap_addr = TASK_SIZE;
2034
2035         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2036         if (next && vma_is_accessible(next)) {
2037                 if (!(next->vm_flags & VM_GROWSUP))
2038                         return -ENOMEM;
2039                 /* Check that both stack segments have the same anon_vma? */
2040         }
2041
2042         if (next)
2043                 vma_iter_prev_range_limit(&vmi, address);
2044
2045         vma_iter_config(&vmi, vma->vm_start, address);
2046         if (vma_iter_prealloc(&vmi, vma))
2047                 return -ENOMEM;
2048
2049         /* We must make sure the anon_vma is allocated. */
2050         if (unlikely(anon_vma_prepare(vma))) {
2051                 vma_iter_free(&vmi);
2052                 return -ENOMEM;
2053         }
2054
2055         /* Lock the VMA before expanding to prevent concurrent page faults */
2056         vma_start_write(vma);
2057         /*
2058          * vma->vm_start/vm_end cannot change under us because the caller
2059          * is required to hold the mmap_lock in read mode.  We need the
2060          * anon_vma lock to serialize against concurrent expand_stacks.
2061          */
2062         anon_vma_lock_write(vma->anon_vma);
2063
2064         /* Somebody else might have raced and expanded it already */
2065         if (address > vma->vm_end) {
2066                 unsigned long size, grow;
2067
2068                 size = address - vma->vm_start;
2069                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2070
2071                 error = -ENOMEM;
2072                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2073                         error = acct_stack_growth(vma, size, grow);
2074                         if (!error) {
2075                                 /*
2076                                  * We only hold a shared mmap_lock lock here, so
2077                                  * we need to protect against concurrent vma
2078                                  * expansions.  anon_vma_lock_write() doesn't
2079                                  * help here, as we don't guarantee that all
2080                                  * growable vmas in a mm share the same root
2081                                  * anon vma.  So, we reuse mm->page_table_lock
2082                                  * to guard against concurrent vma expansions.
2083                                  */
2084                                 spin_lock(&mm->page_table_lock);
2085                                 if (vma->vm_flags & VM_LOCKED)
2086                                         mm->locked_vm += grow;
2087                                 vm_stat_account(mm, vma->vm_flags, grow);
2088                                 anon_vma_interval_tree_pre_update_vma(vma);
2089                                 vma->vm_end = address;
2090                                 /* Overwrite old entry in mtree. */
2091                                 vma_iter_store(&vmi, vma);
2092                                 anon_vma_interval_tree_post_update_vma(vma);
2093                                 spin_unlock(&mm->page_table_lock);
2094
2095                                 perf_event_mmap(vma);
2096                         }
2097                 }
2098         }
2099         anon_vma_unlock_write(vma->anon_vma);
2100         vma_iter_free(&vmi);
2101         validate_mm(mm);
2102         return error;
2103 }
2104 #endif /* CONFIG_STACK_GROWSUP */
2105
2106 /*
2107  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2108  * mmap_lock held for writing.
2109  */
2110 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2111 {
2112         struct mm_struct *mm = vma->vm_mm;
2113         struct vm_area_struct *prev;
2114         int error = 0;
2115         VMA_ITERATOR(vmi, mm, vma->vm_start);
2116
2117         if (!(vma->vm_flags & VM_GROWSDOWN))
2118                 return -EFAULT;
2119
2120         address &= PAGE_MASK;
2121         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2122                 return -EPERM;
2123
2124         /* Enforce stack_guard_gap */
2125         prev = vma_prev(&vmi);
2126         /* Check that both stack segments have the same anon_vma? */
2127         if (prev) {
2128                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2129                     vma_is_accessible(prev) &&
2130                     (address - prev->vm_end < stack_guard_gap))
2131                         return -ENOMEM;
2132         }
2133
2134         if (prev)
2135                 vma_iter_next_range_limit(&vmi, vma->vm_start);
2136
2137         vma_iter_config(&vmi, address, vma->vm_end);
2138         if (vma_iter_prealloc(&vmi, vma))
2139                 return -ENOMEM;
2140
2141         /* We must make sure the anon_vma is allocated. */
2142         if (unlikely(anon_vma_prepare(vma))) {
2143                 vma_iter_free(&vmi);
2144                 return -ENOMEM;
2145         }
2146
2147         /* Lock the VMA before expanding to prevent concurrent page faults */
2148         vma_start_write(vma);
2149         /*
2150          * vma->vm_start/vm_end cannot change under us because the caller
2151          * is required to hold the mmap_lock in read mode.  We need the
2152          * anon_vma lock to serialize against concurrent expand_stacks.
2153          */
2154         anon_vma_lock_write(vma->anon_vma);
2155
2156         /* Somebody else might have raced and expanded it already */
2157         if (address < vma->vm_start) {
2158                 unsigned long size, grow;
2159
2160                 size = vma->vm_end - address;
2161                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2162
2163                 error = -ENOMEM;
2164                 if (grow <= vma->vm_pgoff) {
2165                         error = acct_stack_growth(vma, size, grow);
2166                         if (!error) {
2167                                 /*
2168                                  * We only hold a shared mmap_lock lock here, so
2169                                  * we need to protect against concurrent vma
2170                                  * expansions.  anon_vma_lock_write() doesn't
2171                                  * help here, as we don't guarantee that all
2172                                  * growable vmas in a mm share the same root
2173                                  * anon vma.  So, we reuse mm->page_table_lock
2174                                  * to guard against concurrent vma expansions.
2175                                  */
2176                                 spin_lock(&mm->page_table_lock);
2177                                 if (vma->vm_flags & VM_LOCKED)
2178                                         mm->locked_vm += grow;
2179                                 vm_stat_account(mm, vma->vm_flags, grow);
2180                                 anon_vma_interval_tree_pre_update_vma(vma);
2181                                 vma->vm_start = address;
2182                                 vma->vm_pgoff -= grow;
2183                                 /* Overwrite old entry in mtree. */
2184                                 vma_iter_store(&vmi, vma);
2185                                 anon_vma_interval_tree_post_update_vma(vma);
2186                                 spin_unlock(&mm->page_table_lock);
2187
2188                                 perf_event_mmap(vma);
2189                         }
2190                 }
2191         }
2192         anon_vma_unlock_write(vma->anon_vma);
2193         vma_iter_free(&vmi);
2194         validate_mm(mm);
2195         return error;
2196 }
2197
2198 /* enforced gap between the expanding stack and other mappings. */
2199 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2200
2201 static int __init cmdline_parse_stack_guard_gap(char *p)
2202 {
2203         unsigned long val;
2204         char *endptr;
2205
2206         val = simple_strtoul(p, &endptr, 10);
2207         if (!*endptr)
2208                 stack_guard_gap = val << PAGE_SHIFT;
2209
2210         return 1;
2211 }
2212 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2213
2214 #ifdef CONFIG_STACK_GROWSUP
2215 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2216 {
2217         return expand_upwards(vma, address);
2218 }
2219
2220 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2221 {
2222         struct vm_area_struct *vma, *prev;
2223
2224         addr &= PAGE_MASK;
2225         vma = find_vma_prev(mm, addr, &prev);
2226         if (vma && (vma->vm_start <= addr))
2227                 return vma;
2228         if (!prev)
2229                 return NULL;
2230         if (expand_stack_locked(prev, addr))
2231                 return NULL;
2232         if (prev->vm_flags & VM_LOCKED)
2233                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2234         return prev;
2235 }
2236 #else
2237 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2238 {
2239         return expand_downwards(vma, address);
2240 }
2241
2242 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2243 {
2244         struct vm_area_struct *vma;
2245         unsigned long start;
2246
2247         addr &= PAGE_MASK;
2248         vma = find_vma(mm, addr);
2249         if (!vma)
2250                 return NULL;
2251         if (vma->vm_start <= addr)
2252                 return vma;
2253         start = vma->vm_start;
2254         if (expand_stack_locked(vma, addr))
2255                 return NULL;
2256         if (vma->vm_flags & VM_LOCKED)
2257                 populate_vma_page_range(vma, addr, start, NULL);
2258         return vma;
2259 }
2260 #endif
2261
2262 #if defined(CONFIG_STACK_GROWSUP)
2263
2264 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2265 #define vma_expand_down(vma, addr) (-EFAULT)
2266
2267 #else
2268
2269 #define vma_expand_up(vma,addr) (-EFAULT)
2270 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2271
2272 #endif
2273
2274 /*
2275  * expand_stack(): legacy interface for page faulting. Don't use unless
2276  * you have to.
2277  *
2278  * This is called with the mm locked for reading, drops the lock, takes
2279  * the lock for writing, tries to look up a vma again, expands it if
2280  * necessary, and downgrades the lock to reading again.
2281  *
2282  * If no vma is found or it can't be expanded, it returns NULL and has
2283  * dropped the lock.
2284  */
2285 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2286 {
2287         struct vm_area_struct *vma, *prev;
2288
2289         mmap_read_unlock(mm);
2290         if (mmap_write_lock_killable(mm))
2291                 return NULL;
2292
2293         vma = find_vma_prev(mm, addr, &prev);
2294         if (vma && vma->vm_start <= addr)
2295                 goto success;
2296
2297         if (prev && !vma_expand_up(prev, addr)) {
2298                 vma = prev;
2299                 goto success;
2300         }
2301
2302         if (vma && !vma_expand_down(vma, addr))
2303                 goto success;
2304
2305         mmap_write_unlock(mm);
2306         return NULL;
2307
2308 success:
2309         mmap_write_downgrade(mm);
2310         return vma;
2311 }
2312
2313 /*
2314  * Ok - we have the memory areas we should free on a maple tree so release them,
2315  * and do the vma updates.
2316  *
2317  * Called with the mm semaphore held.
2318  */
2319 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2320 {
2321         unsigned long nr_accounted = 0;
2322         struct vm_area_struct *vma;
2323
2324         /* Update high watermark before we lower total_vm */
2325         update_hiwater_vm(mm);
2326         mas_for_each(mas, vma, ULONG_MAX) {
2327                 long nrpages = vma_pages(vma);
2328
2329                 if (vma->vm_flags & VM_ACCOUNT)
2330                         nr_accounted += nrpages;
2331                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2332                 remove_vma(vma, false);
2333         }
2334         vm_unacct_memory(nr_accounted);
2335 }
2336
2337 /*
2338  * Get rid of page table information in the indicated region.
2339  *
2340  * Called with the mm semaphore held.
2341  */
2342 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2343                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2344                 struct vm_area_struct *next, unsigned long start,
2345                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2346 {
2347         struct mmu_gather tlb;
2348         unsigned long mt_start = mas->index;
2349
2350         lru_add_drain();
2351         tlb_gather_mmu(&tlb, mm);
2352         update_hiwater_rss(mm);
2353         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2354         mas_set(mas, mt_start);
2355         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2356                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2357                                  mm_wr_locked);
2358         tlb_finish_mmu(&tlb);
2359 }
2360
2361 /*
2362  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2363  * has already been checked or doesn't make sense to fail.
2364  * VMA Iterator will point to the end VMA.
2365  */
2366 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2367                        unsigned long addr, int new_below)
2368 {
2369         struct vma_prepare vp;
2370         struct vm_area_struct *new;
2371         int err;
2372
2373         WARN_ON(vma->vm_start >= addr);
2374         WARN_ON(vma->vm_end <= addr);
2375
2376         if (vma->vm_ops && vma->vm_ops->may_split) {
2377                 err = vma->vm_ops->may_split(vma, addr);
2378                 if (err)
2379                         return err;
2380         }
2381
2382         new = vm_area_dup(vma);
2383         if (!new)
2384                 return -ENOMEM;
2385
2386         if (new_below) {
2387                 new->vm_end = addr;
2388         } else {
2389                 new->vm_start = addr;
2390                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2391         }
2392
2393         err = -ENOMEM;
2394         vma_iter_config(vmi, new->vm_start, new->vm_end);
2395         if (vma_iter_prealloc(vmi, new))
2396                 goto out_free_vma;
2397
2398         err = vma_dup_policy(vma, new);
2399         if (err)
2400                 goto out_free_vmi;
2401
2402         err = anon_vma_clone(new, vma);
2403         if (err)
2404                 goto out_free_mpol;
2405
2406         if (new->vm_file)
2407                 get_file(new->vm_file);
2408
2409         if (new->vm_ops && new->vm_ops->open)
2410                 new->vm_ops->open(new);
2411
2412         vma_start_write(vma);
2413         vma_start_write(new);
2414
2415         init_vma_prep(&vp, vma);
2416         vp.insert = new;
2417         vma_prepare(&vp);
2418         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2419
2420         if (new_below) {
2421                 vma->vm_start = addr;
2422                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2423         } else {
2424                 vma->vm_end = addr;
2425         }
2426
2427         /* vma_complete stores the new vma */
2428         vma_complete(&vp, vmi, vma->vm_mm);
2429
2430         /* Success. */
2431         if (new_below)
2432                 vma_next(vmi);
2433         return 0;
2434
2435 out_free_mpol:
2436         mpol_put(vma_policy(new));
2437 out_free_vmi:
2438         vma_iter_free(vmi);
2439 out_free_vma:
2440         vm_area_free(new);
2441         return err;
2442 }
2443
2444 /*
2445  * Split a vma into two pieces at address 'addr', a new vma is allocated
2446  * either for the first part or the tail.
2447  */
2448 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2449                      unsigned long addr, int new_below)
2450 {
2451         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2452                 return -ENOMEM;
2453
2454         return __split_vma(vmi, vma, addr, new_below);
2455 }
2456
2457 /*
2458  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2459  * context and anonymous VMA name within the range [start, end).
2460  *
2461  * As a result, we might be able to merge the newly modified VMA range with an
2462  * adjacent VMA with identical properties.
2463  *
2464  * If no merge is possible and the range does not span the entirety of the VMA,
2465  * we then need to split the VMA to accommodate the change.
2466  *
2467  * The function returns either the merged VMA, the original VMA if a split was
2468  * required instead, or an error if the split failed.
2469  */
2470 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2471                                   struct vm_area_struct *prev,
2472                                   struct vm_area_struct *vma,
2473                                   unsigned long start, unsigned long end,
2474                                   unsigned long vm_flags,
2475                                   struct mempolicy *policy,
2476                                   struct vm_userfaultfd_ctx uffd_ctx,
2477                                   struct anon_vma_name *anon_name)
2478 {
2479         pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2480         struct vm_area_struct *merged;
2481
2482         merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2483                            pgoff, policy, uffd_ctx, anon_name);
2484         if (merged)
2485                 return merged;
2486
2487         if (vma->vm_start < start) {
2488                 int err = split_vma(vmi, vma, start, 1);
2489
2490                 if (err)
2491                         return ERR_PTR(err);
2492         }
2493
2494         if (vma->vm_end > end) {
2495                 int err = split_vma(vmi, vma, end, 0);
2496
2497                 if (err)
2498                         return ERR_PTR(err);
2499         }
2500
2501         return vma;
2502 }
2503
2504 /*
2505  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2506  * must ensure that [start, end) does not overlap any existing VMA.
2507  */
2508 static struct vm_area_struct
2509 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2510                    struct vm_area_struct *vma, unsigned long start,
2511                    unsigned long end, pgoff_t pgoff)
2512 {
2513         return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2514                          vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2515 }
2516
2517 /*
2518  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2519  * VMA with identical properties.
2520  */
2521 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2522                                         struct vm_area_struct *vma,
2523                                         unsigned long delta)
2524 {
2525         pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2526
2527         /* vma is specified as prev, so case 1 or 2 will apply. */
2528         return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2529                          vma->vm_flags, pgoff, vma_policy(vma),
2530                          vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2531 }
2532
2533 /*
2534  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2535  * @vmi: The vma iterator
2536  * @vma: The starting vm_area_struct
2537  * @mm: The mm_struct
2538  * @start: The aligned start address to munmap.
2539  * @end: The aligned end address to munmap.
2540  * @uf: The userfaultfd list_head
2541  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2542  * success.
2543  *
2544  * Return: 0 on success and drops the lock if so directed, error and leaves the
2545  * lock held otherwise.
2546  */
2547 static int
2548 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2549                     struct mm_struct *mm, unsigned long start,
2550                     unsigned long end, struct list_head *uf, bool unlock)
2551 {
2552         struct vm_area_struct *prev, *next = NULL;
2553         struct maple_tree mt_detach;
2554         int count = 0;
2555         int error = -ENOMEM;
2556         unsigned long locked_vm = 0;
2557         MA_STATE(mas_detach, &mt_detach, 0, 0);
2558         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2559         mt_on_stack(mt_detach);
2560
2561         /*
2562          * If we need to split any vma, do it now to save pain later.
2563          *
2564          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2565          * unmapped vm_area_struct will remain in use: so lower split_vma
2566          * places tmp vma above, and higher split_vma places tmp vma below.
2567          */
2568
2569         /* Does it split the first one? */
2570         if (start > vma->vm_start) {
2571
2572                 /*
2573                  * Make sure that map_count on return from munmap() will
2574                  * not exceed its limit; but let map_count go just above
2575                  * its limit temporarily, to help free resources as expected.
2576                  */
2577                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2578                         goto map_count_exceeded;
2579
2580                 error = __split_vma(vmi, vma, start, 1);
2581                 if (error)
2582                         goto start_split_failed;
2583         }
2584
2585         /*
2586          * Detach a range of VMAs from the mm. Using next as a temp variable as
2587          * it is always overwritten.
2588          */
2589         next = vma;
2590         do {
2591                 /* Does it split the end? */
2592                 if (next->vm_end > end) {
2593                         error = __split_vma(vmi, next, end, 0);
2594                         if (error)
2595                                 goto end_split_failed;
2596                 }
2597                 vma_start_write(next);
2598                 mas_set(&mas_detach, count);
2599                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2600                 if (error)
2601                         goto munmap_gather_failed;
2602                 vma_mark_detached(next, true);
2603                 if (next->vm_flags & VM_LOCKED)
2604                         locked_vm += vma_pages(next);
2605
2606                 count++;
2607                 if (unlikely(uf)) {
2608                         /*
2609                          * If userfaultfd_unmap_prep returns an error the vmas
2610                          * will remain split, but userland will get a
2611                          * highly unexpected error anyway. This is no
2612                          * different than the case where the first of the two
2613                          * __split_vma fails, but we don't undo the first
2614                          * split, despite we could. This is unlikely enough
2615                          * failure that it's not worth optimizing it for.
2616                          */
2617                         error = userfaultfd_unmap_prep(next, start, end, uf);
2618
2619                         if (error)
2620                                 goto userfaultfd_error;
2621                 }
2622 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2623                 BUG_ON(next->vm_start < start);
2624                 BUG_ON(next->vm_start > end);
2625 #endif
2626         } for_each_vma_range(*vmi, next, end);
2627
2628 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2629         /* Make sure no VMAs are about to be lost. */
2630         {
2631                 MA_STATE(test, &mt_detach, 0, 0);
2632                 struct vm_area_struct *vma_mas, *vma_test;
2633                 int test_count = 0;
2634
2635                 vma_iter_set(vmi, start);
2636                 rcu_read_lock();
2637                 vma_test = mas_find(&test, count - 1);
2638                 for_each_vma_range(*vmi, vma_mas, end) {
2639                         BUG_ON(vma_mas != vma_test);
2640                         test_count++;
2641                         vma_test = mas_next(&test, count - 1);
2642                 }
2643                 rcu_read_unlock();
2644                 BUG_ON(count != test_count);
2645         }
2646 #endif
2647
2648         while (vma_iter_addr(vmi) > start)
2649                 vma_iter_prev_range(vmi);
2650
2651         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2652         if (error)
2653                 goto clear_tree_failed;
2654
2655         /* Point of no return */
2656         mm->locked_vm -= locked_vm;
2657         mm->map_count -= count;
2658         if (unlock)
2659                 mmap_write_downgrade(mm);
2660
2661         prev = vma_iter_prev_range(vmi);
2662         next = vma_next(vmi);
2663         if (next)
2664                 vma_iter_prev_range(vmi);
2665
2666         /*
2667          * We can free page tables without write-locking mmap_lock because VMAs
2668          * were isolated before we downgraded mmap_lock.
2669          */
2670         mas_set(&mas_detach, 1);
2671         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2672                      !unlock);
2673         /* Statistics and freeing VMAs */
2674         mas_set(&mas_detach, 0);
2675         remove_mt(mm, &mas_detach);
2676         validate_mm(mm);
2677         if (unlock)
2678                 mmap_read_unlock(mm);
2679
2680         __mt_destroy(&mt_detach);
2681         return 0;
2682
2683 clear_tree_failed:
2684 userfaultfd_error:
2685 munmap_gather_failed:
2686 end_split_failed:
2687         mas_set(&mas_detach, 0);
2688         mas_for_each(&mas_detach, next, end)
2689                 vma_mark_detached(next, false);
2690
2691         __mt_destroy(&mt_detach);
2692 start_split_failed:
2693 map_count_exceeded:
2694         validate_mm(mm);
2695         return error;
2696 }
2697
2698 /*
2699  * do_vmi_munmap() - munmap a given range.
2700  * @vmi: The vma iterator
2701  * @mm: The mm_struct
2702  * @start: The start address to munmap
2703  * @len: The length of the range to munmap
2704  * @uf: The userfaultfd list_head
2705  * @unlock: set to true if the user wants to drop the mmap_lock on success
2706  *
2707  * This function takes a @mas that is either pointing to the previous VMA or set
2708  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2709  * aligned and any arch_unmap work will be preformed.
2710  *
2711  * Return: 0 on success and drops the lock if so directed, error and leaves the
2712  * lock held otherwise.
2713  */
2714 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2715                   unsigned long start, size_t len, struct list_head *uf,
2716                   bool unlock)
2717 {
2718         unsigned long end;
2719         struct vm_area_struct *vma;
2720
2721         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2722                 return -EINVAL;
2723
2724         end = start + PAGE_ALIGN(len);
2725         if (end == start)
2726                 return -EINVAL;
2727
2728          /* arch_unmap() might do unmaps itself.  */
2729         arch_unmap(mm, start, end);
2730
2731         /* Find the first overlapping VMA */
2732         vma = vma_find(vmi, end);
2733         if (!vma) {
2734                 if (unlock)
2735                         mmap_write_unlock(mm);
2736                 return 0;
2737         }
2738
2739         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2740 }
2741
2742 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2743  * @mm: The mm_struct
2744  * @start: The start address to munmap
2745  * @len: The length to be munmapped.
2746  * @uf: The userfaultfd list_head
2747  *
2748  * Return: 0 on success, error otherwise.
2749  */
2750 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2751               struct list_head *uf)
2752 {
2753         VMA_ITERATOR(vmi, mm, start);
2754
2755         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2756 }
2757
2758 unsigned long mmap_region(struct file *file, unsigned long addr,
2759                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2760                 struct list_head *uf)
2761 {
2762         struct mm_struct *mm = current->mm;
2763         struct vm_area_struct *vma = NULL;
2764         struct vm_area_struct *next, *prev, *merge;
2765         pgoff_t pglen = len >> PAGE_SHIFT;
2766         unsigned long charged = 0;
2767         unsigned long end = addr + len;
2768         unsigned long merge_start = addr, merge_end = end;
2769         bool writable_file_mapping = false;
2770         pgoff_t vm_pgoff;
2771         int error;
2772         VMA_ITERATOR(vmi, mm, addr);
2773
2774         /* Check against address space limit. */
2775         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2776                 unsigned long nr_pages;
2777
2778                 /*
2779                  * MAP_FIXED may remove pages of mappings that intersects with
2780                  * requested mapping. Account for the pages it would unmap.
2781                  */
2782                 nr_pages = count_vma_pages_range(mm, addr, end);
2783
2784                 if (!may_expand_vm(mm, vm_flags,
2785                                         (len >> PAGE_SHIFT) - nr_pages))
2786                         return -ENOMEM;
2787         }
2788
2789         /* Unmap any existing mapping in the area */
2790         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2791                 return -ENOMEM;
2792
2793         /*
2794          * Private writable mapping: check memory availability
2795          */
2796         if (accountable_mapping(file, vm_flags)) {
2797                 charged = len >> PAGE_SHIFT;
2798                 if (security_vm_enough_memory_mm(mm, charged))
2799                         return -ENOMEM;
2800                 vm_flags |= VM_ACCOUNT;
2801         }
2802
2803         next = vma_next(&vmi);
2804         prev = vma_prev(&vmi);
2805         if (vm_flags & VM_SPECIAL) {
2806                 if (prev)
2807                         vma_iter_next_range(&vmi);
2808                 goto cannot_expand;
2809         }
2810
2811         /* Attempt to expand an old mapping */
2812         /* Check next */
2813         if (next && next->vm_start == end && !vma_policy(next) &&
2814             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2815                                  NULL_VM_UFFD_CTX, NULL)) {
2816                 merge_end = next->vm_end;
2817                 vma = next;
2818                 vm_pgoff = next->vm_pgoff - pglen;
2819         }
2820
2821         /* Check prev */
2822         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2823             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2824                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2825                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2826                                        NULL_VM_UFFD_CTX, NULL))) {
2827                 merge_start = prev->vm_start;
2828                 vma = prev;
2829                 vm_pgoff = prev->vm_pgoff;
2830         } else if (prev) {
2831                 vma_iter_next_range(&vmi);
2832         }
2833
2834         /* Actually expand, if possible */
2835         if (vma &&
2836             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2837                 khugepaged_enter_vma(vma, vm_flags);
2838                 goto expanded;
2839         }
2840
2841         if (vma == prev)
2842                 vma_iter_set(&vmi, addr);
2843 cannot_expand:
2844
2845         /*
2846          * Determine the object being mapped and call the appropriate
2847          * specific mapper. the address has already been validated, but
2848          * not unmapped, but the maps are removed from the list.
2849          */
2850         vma = vm_area_alloc(mm);
2851         if (!vma) {
2852                 error = -ENOMEM;
2853                 goto unacct_error;
2854         }
2855
2856         vma_iter_config(&vmi, addr, end);
2857         vma_set_range(vma, addr, end, pgoff);
2858         vm_flags_init(vma, vm_flags);
2859         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2860
2861         if (file) {
2862                 vma->vm_file = get_file(file);
2863                 error = call_mmap(file, vma);
2864                 if (error)
2865                         goto unmap_and_free_vma;
2866
2867                 if (vma_is_shared_maywrite(vma)) {
2868                         error = mapping_map_writable(file->f_mapping);
2869                         if (error)
2870                                 goto close_and_free_vma;
2871
2872                         writable_file_mapping = true;
2873                 }
2874
2875                 /*
2876                  * Expansion is handled above, merging is handled below.
2877                  * Drivers should not alter the address of the VMA.
2878                  */
2879                 error = -EINVAL;
2880                 if (WARN_ON((addr != vma->vm_start)))
2881                         goto close_and_free_vma;
2882
2883                 vma_iter_config(&vmi, addr, end);
2884                 /*
2885                  * If vm_flags changed after call_mmap(), we should try merge
2886                  * vma again as we may succeed this time.
2887                  */
2888                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2889                         merge = vma_merge_new_vma(&vmi, prev, vma,
2890                                                   vma->vm_start, vma->vm_end,
2891                                                   vma->vm_pgoff);
2892                         if (merge) {
2893                                 /*
2894                                  * ->mmap() can change vma->vm_file and fput
2895                                  * the original file. So fput the vma->vm_file
2896                                  * here or we would add an extra fput for file
2897                                  * and cause general protection fault
2898                                  * ultimately.
2899                                  */
2900                                 fput(vma->vm_file);
2901                                 vm_area_free(vma);
2902                                 vma = merge;
2903                                 /* Update vm_flags to pick up the change. */
2904                                 vm_flags = vma->vm_flags;
2905                                 goto unmap_writable;
2906                         }
2907                 }
2908
2909                 vm_flags = vma->vm_flags;
2910         } else if (vm_flags & VM_SHARED) {
2911                 error = shmem_zero_setup(vma);
2912                 if (error)
2913                         goto free_vma;
2914         } else {
2915                 vma_set_anonymous(vma);
2916         }
2917
2918         if (map_deny_write_exec(vma, vma->vm_flags)) {
2919                 error = -EACCES;
2920                 goto close_and_free_vma;
2921         }
2922
2923         /* Allow architectures to sanity-check the vm_flags */
2924         error = -EINVAL;
2925         if (!arch_validate_flags(vma->vm_flags))
2926                 goto close_and_free_vma;
2927
2928         error = -ENOMEM;
2929         if (vma_iter_prealloc(&vmi, vma))
2930                 goto close_and_free_vma;
2931
2932         /* Lock the VMA since it is modified after insertion into VMA tree */
2933         vma_start_write(vma);
2934         vma_iter_store(&vmi, vma);
2935         mm->map_count++;
2936         vma_link_file(vma);
2937
2938         /*
2939          * vma_merge() calls khugepaged_enter_vma() either, the below
2940          * call covers the non-merge case.
2941          */
2942         khugepaged_enter_vma(vma, vma->vm_flags);
2943
2944         /* Once vma denies write, undo our temporary denial count */
2945 unmap_writable:
2946         if (writable_file_mapping)
2947                 mapping_unmap_writable(file->f_mapping);
2948         file = vma->vm_file;
2949         ksm_add_vma(vma);
2950 expanded:
2951         perf_event_mmap(vma);
2952
2953         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2954         if (vm_flags & VM_LOCKED) {
2955                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2956                                         is_vm_hugetlb_page(vma) ||
2957                                         vma == get_gate_vma(current->mm))
2958                         vm_flags_clear(vma, VM_LOCKED_MASK);
2959                 else
2960                         mm->locked_vm += (len >> PAGE_SHIFT);
2961         }
2962
2963         if (file)
2964                 uprobe_mmap(vma);
2965
2966         /*
2967          * New (or expanded) vma always get soft dirty status.
2968          * Otherwise user-space soft-dirty page tracker won't
2969          * be able to distinguish situation when vma area unmapped,
2970          * then new mapped in-place (which must be aimed as
2971          * a completely new data area).
2972          */
2973         vm_flags_set(vma, VM_SOFTDIRTY);
2974
2975         vma_set_page_prot(vma);
2976
2977         validate_mm(mm);
2978         return addr;
2979
2980 close_and_free_vma:
2981         if (file && vma->vm_ops && vma->vm_ops->close)
2982                 vma->vm_ops->close(vma);
2983
2984         if (file || vma->vm_file) {
2985 unmap_and_free_vma:
2986                 fput(vma->vm_file);
2987                 vma->vm_file = NULL;
2988
2989                 vma_iter_set(&vmi, vma->vm_end);
2990                 /* Undo any partial mapping done by a device driver. */
2991                 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2992                              vma->vm_end, vma->vm_end, true);
2993         }
2994         if (writable_file_mapping)
2995                 mapping_unmap_writable(file->f_mapping);
2996 free_vma:
2997         vm_area_free(vma);
2998 unacct_error:
2999         if (charged)
3000                 vm_unacct_memory(charged);
3001         validate_mm(mm);
3002         return error;
3003 }
3004
3005 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3006 {
3007         int ret;
3008         struct mm_struct *mm = current->mm;
3009         LIST_HEAD(uf);
3010         VMA_ITERATOR(vmi, mm, start);
3011
3012         if (mmap_write_lock_killable(mm))
3013                 return -EINTR;
3014
3015         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3016         if (ret || !unlock)
3017                 mmap_write_unlock(mm);
3018
3019         userfaultfd_unmap_complete(mm, &uf);
3020         return ret;
3021 }
3022
3023 int vm_munmap(unsigned long start, size_t len)
3024 {
3025         return __vm_munmap(start, len, false);
3026 }
3027 EXPORT_SYMBOL(vm_munmap);
3028
3029 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3030 {
3031         addr = untagged_addr(addr);
3032         return __vm_munmap(addr, len, true);
3033 }
3034
3035
3036 /*
3037  * Emulation of deprecated remap_file_pages() syscall.
3038  */
3039 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3040                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3041 {
3042
3043         struct mm_struct *mm = current->mm;
3044         struct vm_area_struct *vma;
3045         unsigned long populate = 0;
3046         unsigned long ret = -EINVAL;
3047         struct file *file;
3048
3049         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3050                      current->comm, current->pid);
3051
3052         if (prot)
3053                 return ret;
3054         start = start & PAGE_MASK;
3055         size = size & PAGE_MASK;
3056
3057         if (start + size <= start)
3058                 return ret;
3059
3060         /* Does pgoff wrap? */
3061         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3062                 return ret;
3063
3064         if (mmap_write_lock_killable(mm))
3065                 return -EINTR;
3066
3067         vma = vma_lookup(mm, start);
3068
3069         if (!vma || !(vma->vm_flags & VM_SHARED))
3070                 goto out;
3071
3072         if (start + size > vma->vm_end) {
3073                 VMA_ITERATOR(vmi, mm, vma->vm_end);
3074                 struct vm_area_struct *next, *prev = vma;
3075
3076                 for_each_vma_range(vmi, next, start + size) {
3077                         /* hole between vmas ? */
3078                         if (next->vm_start != prev->vm_end)
3079                                 goto out;
3080
3081                         if (next->vm_file != vma->vm_file)
3082                                 goto out;
3083
3084                         if (next->vm_flags != vma->vm_flags)
3085                                 goto out;
3086
3087                         if (start + size <= next->vm_end)
3088                                 break;
3089
3090                         prev = next;
3091                 }
3092
3093                 if (!next)
3094                         goto out;
3095         }
3096
3097         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3098         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3099         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3100
3101         flags &= MAP_NONBLOCK;
3102         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3103         if (vma->vm_flags & VM_LOCKED)
3104                 flags |= MAP_LOCKED;
3105
3106         file = get_file(vma->vm_file);
3107         ret = do_mmap(vma->vm_file, start, size,
3108                         prot, flags, 0, pgoff, &populate, NULL);
3109         fput(file);
3110 out:
3111         mmap_write_unlock(mm);
3112         if (populate)
3113                 mm_populate(ret, populate);
3114         if (!IS_ERR_VALUE(ret))
3115                 ret = 0;
3116         return ret;
3117 }
3118
3119 /*
3120  * do_vma_munmap() - Unmap a full or partial vma.
3121  * @vmi: The vma iterator pointing at the vma
3122  * @vma: The first vma to be munmapped
3123  * @start: the start of the address to unmap
3124  * @end: The end of the address to unmap
3125  * @uf: The userfaultfd list_head
3126  * @unlock: Drop the lock on success
3127  *
3128  * unmaps a VMA mapping when the vma iterator is already in position.
3129  * Does not handle alignment.
3130  *
3131  * Return: 0 on success drops the lock of so directed, error on failure and will
3132  * still hold the lock.
3133  */
3134 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3135                 unsigned long start, unsigned long end, struct list_head *uf,
3136                 bool unlock)
3137 {
3138         struct mm_struct *mm = vma->vm_mm;
3139
3140         arch_unmap(mm, start, end);
3141         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3142 }
3143
3144 /*
3145  * do_brk_flags() - Increase the brk vma if the flags match.
3146  * @vmi: The vma iterator
3147  * @addr: The start address
3148  * @len: The length of the increase
3149  * @vma: The vma,
3150  * @flags: The VMA Flags
3151  *
3152  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3153  * do not match then create a new anonymous VMA.  Eventually we may be able to
3154  * do some brk-specific accounting here.
3155  */
3156 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3157                 unsigned long addr, unsigned long len, unsigned long flags)
3158 {
3159         struct mm_struct *mm = current->mm;
3160         struct vma_prepare vp;
3161
3162         /*
3163          * Check against address space limits by the changed size
3164          * Note: This happens *after* clearing old mappings in some code paths.
3165          */
3166         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3167         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3168                 return -ENOMEM;
3169
3170         if (mm->map_count > sysctl_max_map_count)
3171                 return -ENOMEM;
3172
3173         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3174                 return -ENOMEM;
3175
3176         /*
3177          * Expand the existing vma if possible; Note that singular lists do not
3178          * occur after forking, so the expand will only happen on new VMAs.
3179          */
3180         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3181             can_vma_merge_after(vma, flags, NULL, NULL,
3182                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3183                 vma_iter_config(vmi, vma->vm_start, addr + len);
3184                 if (vma_iter_prealloc(vmi, vma))
3185                         goto unacct_fail;
3186
3187                 vma_start_write(vma);
3188
3189                 init_vma_prep(&vp, vma);
3190                 vma_prepare(&vp);
3191                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3192                 vma->vm_end = addr + len;
3193                 vm_flags_set(vma, VM_SOFTDIRTY);
3194                 vma_iter_store(vmi, vma);
3195
3196                 vma_complete(&vp, vmi, mm);
3197                 khugepaged_enter_vma(vma, flags);
3198                 goto out;
3199         }
3200
3201         if (vma)
3202                 vma_iter_next_range(vmi);
3203         /* create a vma struct for an anonymous mapping */
3204         vma = vm_area_alloc(mm);
3205         if (!vma)
3206                 goto unacct_fail;
3207
3208         vma_set_anonymous(vma);
3209         vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3210         vm_flags_init(vma, flags);
3211         vma->vm_page_prot = vm_get_page_prot(flags);
3212         vma_start_write(vma);
3213         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3214                 goto mas_store_fail;
3215
3216         mm->map_count++;
3217         validate_mm(mm);
3218         ksm_add_vma(vma);
3219 out:
3220         perf_event_mmap(vma);
3221         mm->total_vm += len >> PAGE_SHIFT;
3222         mm->data_vm += len >> PAGE_SHIFT;
3223         if (flags & VM_LOCKED)
3224                 mm->locked_vm += (len >> PAGE_SHIFT);
3225         vm_flags_set(vma, VM_SOFTDIRTY);
3226         return 0;
3227
3228 mas_store_fail:
3229         vm_area_free(vma);
3230 unacct_fail:
3231         vm_unacct_memory(len >> PAGE_SHIFT);
3232         return -ENOMEM;
3233 }
3234
3235 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3236 {
3237         struct mm_struct *mm = current->mm;
3238         struct vm_area_struct *vma = NULL;
3239         unsigned long len;
3240         int ret;
3241         bool populate;
3242         LIST_HEAD(uf);
3243         VMA_ITERATOR(vmi, mm, addr);
3244
3245         len = PAGE_ALIGN(request);
3246         if (len < request)
3247                 return -ENOMEM;
3248         if (!len)
3249                 return 0;
3250
3251         /* Until we need other flags, refuse anything except VM_EXEC. */
3252         if ((flags & (~VM_EXEC)) != 0)
3253                 return -EINVAL;
3254
3255         if (mmap_write_lock_killable(mm))
3256                 return -EINTR;
3257
3258         ret = check_brk_limits(addr, len);
3259         if (ret)
3260                 goto limits_failed;
3261
3262         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3263         if (ret)
3264                 goto munmap_failed;
3265
3266         vma = vma_prev(&vmi);
3267         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3268         populate = ((mm->def_flags & VM_LOCKED) != 0);
3269         mmap_write_unlock(mm);
3270         userfaultfd_unmap_complete(mm, &uf);
3271         if (populate && !ret)
3272                 mm_populate(addr, len);
3273         return ret;
3274
3275 munmap_failed:
3276 limits_failed:
3277         mmap_write_unlock(mm);
3278         return ret;
3279 }
3280 EXPORT_SYMBOL(vm_brk_flags);
3281
3282 /* Release all mmaps. */
3283 void exit_mmap(struct mm_struct *mm)
3284 {
3285         struct mmu_gather tlb;
3286         struct vm_area_struct *vma;
3287         unsigned long nr_accounted = 0;
3288         VMA_ITERATOR(vmi, mm, 0);
3289         int count = 0;
3290
3291         /* mm's last user has gone, and its about to be pulled down */
3292         mmu_notifier_release(mm);
3293
3294         mmap_read_lock(mm);
3295         arch_exit_mmap(mm);
3296
3297         vma = vma_next(&vmi);
3298         if (!vma || unlikely(xa_is_zero(vma))) {
3299                 /* Can happen if dup_mmap() received an OOM */
3300                 mmap_read_unlock(mm);
3301                 mmap_write_lock(mm);
3302                 goto destroy;
3303         }
3304
3305         lru_add_drain();
3306         flush_cache_mm(mm);
3307         tlb_gather_mmu_fullmm(&tlb, mm);
3308         /* update_hiwater_rss(mm) here? but nobody should be looking */
3309         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3310         unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3311         mmap_read_unlock(mm);
3312
3313         /*
3314          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3315          * because the memory has been already freed.
3316          */
3317         set_bit(MMF_OOM_SKIP, &mm->flags);
3318         mmap_write_lock(mm);
3319         mt_clear_in_rcu(&mm->mm_mt);
3320         vma_iter_set(&vmi, vma->vm_end);
3321         free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3322                       USER_PGTABLES_CEILING, true);
3323         tlb_finish_mmu(&tlb);
3324
3325         /*
3326          * Walk the list again, actually closing and freeing it, with preemption
3327          * enabled, without holding any MM locks besides the unreachable
3328          * mmap_write_lock.
3329          */
3330         vma_iter_set(&vmi, vma->vm_end);
3331         do {
3332                 if (vma->vm_flags & VM_ACCOUNT)
3333                         nr_accounted += vma_pages(vma);
3334                 remove_vma(vma, true);
3335                 count++;
3336                 cond_resched();
3337                 vma = vma_next(&vmi);
3338         } while (vma && likely(!xa_is_zero(vma)));
3339
3340         BUG_ON(count != mm->map_count);
3341
3342         trace_exit_mmap(mm);
3343 destroy:
3344         __mt_destroy(&mm->mm_mt);
3345         mmap_write_unlock(mm);
3346         vm_unacct_memory(nr_accounted);
3347 }
3348
3349 /* Insert vm structure into process list sorted by address
3350  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3351  * then i_mmap_rwsem is taken here.
3352  */
3353 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3354 {
3355         unsigned long charged = vma_pages(vma);
3356
3357
3358         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3359                 return -ENOMEM;
3360
3361         if ((vma->vm_flags & VM_ACCOUNT) &&
3362              security_vm_enough_memory_mm(mm, charged))
3363                 return -ENOMEM;
3364
3365         /*
3366          * The vm_pgoff of a purely anonymous vma should be irrelevant
3367          * until its first write fault, when page's anon_vma and index
3368          * are set.  But now set the vm_pgoff it will almost certainly
3369          * end up with (unless mremap moves it elsewhere before that
3370          * first wfault), so /proc/pid/maps tells a consistent story.
3371          *
3372          * By setting it to reflect the virtual start address of the
3373          * vma, merges and splits can happen in a seamless way, just
3374          * using the existing file pgoff checks and manipulations.
3375          * Similarly in do_mmap and in do_brk_flags.
3376          */
3377         if (vma_is_anonymous(vma)) {
3378                 BUG_ON(vma->anon_vma);
3379                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3380         }
3381
3382         if (vma_link(mm, vma)) {
3383                 if (vma->vm_flags & VM_ACCOUNT)
3384                         vm_unacct_memory(charged);
3385                 return -ENOMEM;
3386         }
3387
3388         return 0;
3389 }
3390
3391 /*
3392  * Copy the vma structure to a new location in the same mm,
3393  * prior to moving page table entries, to effect an mremap move.
3394  */
3395 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3396         unsigned long addr, unsigned long len, pgoff_t pgoff,
3397         bool *need_rmap_locks)
3398 {
3399         struct vm_area_struct *vma = *vmap;
3400         unsigned long vma_start = vma->vm_start;
3401         struct mm_struct *mm = vma->vm_mm;
3402         struct vm_area_struct *new_vma, *prev;
3403         bool faulted_in_anon_vma = true;
3404         VMA_ITERATOR(vmi, mm, addr);
3405
3406         /*
3407          * If anonymous vma has not yet been faulted, update new pgoff
3408          * to match new location, to increase its chance of merging.
3409          */
3410         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3411                 pgoff = addr >> PAGE_SHIFT;
3412                 faulted_in_anon_vma = false;
3413         }
3414
3415         new_vma = find_vma_prev(mm, addr, &prev);
3416         if (new_vma && new_vma->vm_start < addr + len)
3417                 return NULL;    /* should never get here */
3418
3419         new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3420         if (new_vma) {
3421                 /*
3422                  * Source vma may have been merged into new_vma
3423                  */
3424                 if (unlikely(vma_start >= new_vma->vm_start &&
3425                              vma_start < new_vma->vm_end)) {
3426                         /*
3427                          * The only way we can get a vma_merge with
3428                          * self during an mremap is if the vma hasn't
3429                          * been faulted in yet and we were allowed to
3430                          * reset the dst vma->vm_pgoff to the
3431                          * destination address of the mremap to allow
3432                          * the merge to happen. mremap must change the
3433                          * vm_pgoff linearity between src and dst vmas
3434                          * (in turn preventing a vma_merge) to be
3435                          * safe. It is only safe to keep the vm_pgoff
3436                          * linear if there are no pages mapped yet.
3437                          */
3438                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3439                         *vmap = vma = new_vma;
3440                 }
3441                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3442         } else {
3443                 new_vma = vm_area_dup(vma);
3444                 if (!new_vma)
3445                         goto out;
3446                 vma_set_range(new_vma, addr, addr + len, pgoff);
3447                 if (vma_dup_policy(vma, new_vma))
3448                         goto out_free_vma;
3449                 if (anon_vma_clone(new_vma, vma))
3450                         goto out_free_mempol;
3451                 if (new_vma->vm_file)
3452                         get_file(new_vma->vm_file);
3453                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3454                         new_vma->vm_ops->open(new_vma);
3455                 if (vma_link(mm, new_vma))
3456                         goto out_vma_link;
3457                 *need_rmap_locks = false;
3458         }
3459         return new_vma;
3460
3461 out_vma_link:
3462         if (new_vma->vm_ops && new_vma->vm_ops->close)
3463                 new_vma->vm_ops->close(new_vma);
3464
3465         if (new_vma->vm_file)
3466                 fput(new_vma->vm_file);
3467
3468         unlink_anon_vmas(new_vma);
3469 out_free_mempol:
3470         mpol_put(vma_policy(new_vma));
3471 out_free_vma:
3472         vm_area_free(new_vma);
3473 out:
3474         return NULL;
3475 }
3476
3477 /*
3478  * Return true if the calling process may expand its vm space by the passed
3479  * number of pages
3480  */
3481 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3482 {
3483         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3484                 return false;
3485
3486         if (is_data_mapping(flags) &&
3487             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3488                 /* Workaround for Valgrind */
3489                 if (rlimit(RLIMIT_DATA) == 0 &&
3490                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3491                         return true;
3492
3493                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3494                              current->comm, current->pid,
3495                              (mm->data_vm + npages) << PAGE_SHIFT,
3496                              rlimit(RLIMIT_DATA),
3497                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3498
3499                 if (!ignore_rlimit_data)
3500                         return false;
3501         }
3502
3503         return true;
3504 }
3505
3506 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3507 {
3508         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3509
3510         if (is_exec_mapping(flags))
3511                 mm->exec_vm += npages;
3512         else if (is_stack_mapping(flags))
3513                 mm->stack_vm += npages;
3514         else if (is_data_mapping(flags))
3515                 mm->data_vm += npages;
3516 }
3517
3518 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3519
3520 /*
3521  * Having a close hook prevents vma merging regardless of flags.
3522  */
3523 static void special_mapping_close(struct vm_area_struct *vma)
3524 {
3525 }
3526
3527 static const char *special_mapping_name(struct vm_area_struct *vma)
3528 {
3529         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3530 }
3531
3532 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3533 {
3534         struct vm_special_mapping *sm = new_vma->vm_private_data;
3535
3536         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3537                 return -EFAULT;
3538
3539         if (sm->mremap)
3540                 return sm->mremap(sm, new_vma);
3541
3542         return 0;
3543 }
3544
3545 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3546 {
3547         /*
3548          * Forbid splitting special mappings - kernel has expectations over
3549          * the number of pages in mapping. Together with VM_DONTEXPAND
3550          * the size of vma should stay the same over the special mapping's
3551          * lifetime.
3552          */
3553         return -EINVAL;
3554 }
3555
3556 static const struct vm_operations_struct special_mapping_vmops = {
3557         .close = special_mapping_close,
3558         .fault = special_mapping_fault,
3559         .mremap = special_mapping_mremap,
3560         .name = special_mapping_name,
3561         /* vDSO code relies that VVAR can't be accessed remotely */
3562         .access = NULL,
3563         .may_split = special_mapping_split,
3564 };
3565
3566 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3567         .close = special_mapping_close,
3568         .fault = special_mapping_fault,
3569 };
3570
3571 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3572 {
3573         struct vm_area_struct *vma = vmf->vma;
3574         pgoff_t pgoff;
3575         struct page **pages;
3576
3577         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3578                 pages = vma->vm_private_data;
3579         } else {
3580                 struct vm_special_mapping *sm = vma->vm_private_data;
3581
3582                 if (sm->fault)
3583                         return sm->fault(sm, vmf->vma, vmf);
3584
3585                 pages = sm->pages;
3586         }
3587
3588         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3589                 pgoff--;
3590
3591         if (*pages) {
3592                 struct page *page = *pages;
3593                 get_page(page);
3594                 vmf->page = page;
3595                 return 0;
3596         }
3597
3598         return VM_FAULT_SIGBUS;
3599 }
3600
3601 static struct vm_area_struct *__install_special_mapping(
3602         struct mm_struct *mm,
3603         unsigned long addr, unsigned long len,
3604         unsigned long vm_flags, void *priv,
3605         const struct vm_operations_struct *ops)
3606 {
3607         int ret;
3608         struct vm_area_struct *vma;
3609
3610         vma = vm_area_alloc(mm);
3611         if (unlikely(vma == NULL))
3612                 return ERR_PTR(-ENOMEM);
3613
3614         vma_set_range(vma, addr, addr + len, 0);
3615         vm_flags_init(vma, (vm_flags | mm->def_flags |
3616                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3617         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3618
3619         vma->vm_ops = ops;
3620         vma->vm_private_data = priv;
3621
3622         ret = insert_vm_struct(mm, vma);
3623         if (ret)
3624                 goto out;
3625
3626         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3627
3628         perf_event_mmap(vma);
3629
3630         return vma;
3631
3632 out:
3633         vm_area_free(vma);
3634         return ERR_PTR(ret);
3635 }
3636
3637 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3638         const struct vm_special_mapping *sm)
3639 {
3640         return vma->vm_private_data == sm &&
3641                 (vma->vm_ops == &special_mapping_vmops ||
3642                  vma->vm_ops == &legacy_special_mapping_vmops);
3643 }
3644
3645 /*
3646  * Called with mm->mmap_lock held for writing.
3647  * Insert a new vma covering the given region, with the given flags.
3648  * Its pages are supplied by the given array of struct page *.
3649  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3650  * The region past the last page supplied will always produce SIGBUS.
3651  * The array pointer and the pages it points to are assumed to stay alive
3652  * for as long as this mapping might exist.
3653  */
3654 struct vm_area_struct *_install_special_mapping(
3655         struct mm_struct *mm,
3656         unsigned long addr, unsigned long len,
3657         unsigned long vm_flags, const struct vm_special_mapping *spec)
3658 {
3659         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3660                                         &special_mapping_vmops);
3661 }
3662
3663 int install_special_mapping(struct mm_struct *mm,
3664                             unsigned long addr, unsigned long len,
3665                             unsigned long vm_flags, struct page **pages)
3666 {
3667         struct vm_area_struct *vma = __install_special_mapping(
3668                 mm, addr, len, vm_flags, (void *)pages,
3669                 &legacy_special_mapping_vmops);
3670
3671         return PTR_ERR_OR_ZERO(vma);
3672 }
3673
3674 static DEFINE_MUTEX(mm_all_locks_mutex);
3675
3676 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3677 {
3678         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3679                 /*
3680                  * The LSB of head.next can't change from under us
3681                  * because we hold the mm_all_locks_mutex.
3682                  */
3683                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3684                 /*
3685                  * We can safely modify head.next after taking the
3686                  * anon_vma->root->rwsem. If some other vma in this mm shares
3687                  * the same anon_vma we won't take it again.
3688                  *
3689                  * No need of atomic instructions here, head.next
3690                  * can't change from under us thanks to the
3691                  * anon_vma->root->rwsem.
3692                  */
3693                 if (__test_and_set_bit(0, (unsigned long *)
3694                                        &anon_vma->root->rb_root.rb_root.rb_node))
3695                         BUG();
3696         }
3697 }
3698
3699 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3700 {
3701         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3702                 /*
3703                  * AS_MM_ALL_LOCKS can't change from under us because
3704                  * we hold the mm_all_locks_mutex.
3705                  *
3706                  * Operations on ->flags have to be atomic because
3707                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3708                  * mm_all_locks_mutex, there may be other cpus
3709                  * changing other bitflags in parallel to us.
3710                  */
3711                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3712                         BUG();
3713                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3714         }
3715 }
3716
3717 /*
3718  * This operation locks against the VM for all pte/vma/mm related
3719  * operations that could ever happen on a certain mm. This includes
3720  * vmtruncate, try_to_unmap, and all page faults.
3721  *
3722  * The caller must take the mmap_lock in write mode before calling
3723  * mm_take_all_locks(). The caller isn't allowed to release the
3724  * mmap_lock until mm_drop_all_locks() returns.
3725  *
3726  * mmap_lock in write mode is required in order to block all operations
3727  * that could modify pagetables and free pages without need of
3728  * altering the vma layout. It's also needed in write mode to avoid new
3729  * anon_vmas to be associated with existing vmas.
3730  *
3731  * A single task can't take more than one mm_take_all_locks() in a row
3732  * or it would deadlock.
3733  *
3734  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3735  * mapping->flags avoid to take the same lock twice, if more than one
3736  * vma in this mm is backed by the same anon_vma or address_space.
3737  *
3738  * We take locks in following order, accordingly to comment at beginning
3739  * of mm/rmap.c:
3740  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3741  *     hugetlb mapping);
3742  *   - all vmas marked locked
3743  *   - all i_mmap_rwsem locks;
3744  *   - all anon_vma->rwseml
3745  *
3746  * We can take all locks within these types randomly because the VM code
3747  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3748  * mm_all_locks_mutex.
3749  *
3750  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3751  * that may have to take thousand of locks.
3752  *
3753  * mm_take_all_locks() can fail if it's interrupted by signals.
3754  */
3755 int mm_take_all_locks(struct mm_struct *mm)
3756 {
3757         struct vm_area_struct *vma;
3758         struct anon_vma_chain *avc;
3759         VMA_ITERATOR(vmi, mm, 0);
3760
3761         mmap_assert_write_locked(mm);
3762
3763         mutex_lock(&mm_all_locks_mutex);
3764
3765         /*
3766          * vma_start_write() does not have a complement in mm_drop_all_locks()
3767          * because vma_start_write() is always asymmetrical; it marks a VMA as
3768          * being written to until mmap_write_unlock() or mmap_write_downgrade()
3769          * is reached.
3770          */
3771         for_each_vma(vmi, vma) {
3772                 if (signal_pending(current))
3773                         goto out_unlock;
3774                 vma_start_write(vma);
3775         }
3776
3777         vma_iter_init(&vmi, mm, 0);
3778         for_each_vma(vmi, vma) {
3779                 if (signal_pending(current))
3780                         goto out_unlock;
3781                 if (vma->vm_file && vma->vm_file->f_mapping &&
3782                                 is_vm_hugetlb_page(vma))
3783                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3784         }
3785
3786         vma_iter_init(&vmi, mm, 0);
3787         for_each_vma(vmi, vma) {
3788                 if (signal_pending(current))
3789                         goto out_unlock;
3790                 if (vma->vm_file && vma->vm_file->f_mapping &&
3791                                 !is_vm_hugetlb_page(vma))
3792                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3793         }
3794
3795         vma_iter_init(&vmi, mm, 0);
3796         for_each_vma(vmi, vma) {
3797                 if (signal_pending(current))
3798                         goto out_unlock;
3799                 if (vma->anon_vma)
3800                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3801                                 vm_lock_anon_vma(mm, avc->anon_vma);
3802         }
3803
3804         return 0;
3805
3806 out_unlock:
3807         mm_drop_all_locks(mm);
3808         return -EINTR;
3809 }
3810
3811 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3812 {
3813         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3814                 /*
3815                  * The LSB of head.next can't change to 0 from under
3816                  * us because we hold the mm_all_locks_mutex.
3817                  *
3818                  * We must however clear the bitflag before unlocking
3819                  * the vma so the users using the anon_vma->rb_root will
3820                  * never see our bitflag.
3821                  *
3822                  * No need of atomic instructions here, head.next
3823                  * can't change from under us until we release the
3824                  * anon_vma->root->rwsem.
3825                  */
3826                 if (!__test_and_clear_bit(0, (unsigned long *)
3827                                           &anon_vma->root->rb_root.rb_root.rb_node))
3828                         BUG();
3829                 anon_vma_unlock_write(anon_vma);
3830         }
3831 }
3832
3833 static void vm_unlock_mapping(struct address_space *mapping)
3834 {
3835         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3836                 /*
3837                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3838                  * because we hold the mm_all_locks_mutex.
3839                  */
3840                 i_mmap_unlock_write(mapping);
3841                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3842                                         &mapping->flags))
3843                         BUG();
3844         }
3845 }
3846
3847 /*
3848  * The mmap_lock cannot be released by the caller until
3849  * mm_drop_all_locks() returns.
3850  */
3851 void mm_drop_all_locks(struct mm_struct *mm)
3852 {
3853         struct vm_area_struct *vma;
3854         struct anon_vma_chain *avc;
3855         VMA_ITERATOR(vmi, mm, 0);
3856
3857         mmap_assert_write_locked(mm);
3858         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3859
3860         for_each_vma(vmi, vma) {
3861                 if (vma->anon_vma)
3862                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3863                                 vm_unlock_anon_vma(avc->anon_vma);
3864                 if (vma->vm_file && vma->vm_file->f_mapping)
3865                         vm_unlock_mapping(vma->vm_file->f_mapping);
3866         }
3867
3868         mutex_unlock(&mm_all_locks_mutex);
3869 }
3870
3871 /*
3872  * initialise the percpu counter for VM
3873  */
3874 void __init mmap_init(void)
3875 {
3876         int ret;
3877
3878         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3879         VM_BUG_ON(ret);
3880 }
3881
3882 /*
3883  * Initialise sysctl_user_reserve_kbytes.
3884  *
3885  * This is intended to prevent a user from starting a single memory hogging
3886  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3887  * mode.
3888  *
3889  * The default value is min(3% of free memory, 128MB)
3890  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3891  */
3892 static int init_user_reserve(void)
3893 {
3894         unsigned long free_kbytes;
3895
3896         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3897
3898         sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3899         return 0;
3900 }
3901 subsys_initcall(init_user_reserve);
3902
3903 /*
3904  * Initialise sysctl_admin_reserve_kbytes.
3905  *
3906  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3907  * to log in and kill a memory hogging process.
3908  *
3909  * Systems with more than 256MB will reserve 8MB, enough to recover
3910  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3911  * only reserve 3% of free pages by default.
3912  */
3913 static int init_admin_reserve(void)
3914 {
3915         unsigned long free_kbytes;
3916
3917         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3918
3919         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3920         return 0;
3921 }
3922 subsys_initcall(init_admin_reserve);
3923
3924 /*
3925  * Reinititalise user and admin reserves if memory is added or removed.
3926  *
3927  * The default user reserve max is 128MB, and the default max for the
3928  * admin reserve is 8MB. These are usually, but not always, enough to
3929  * enable recovery from a memory hogging process using login/sshd, a shell,
3930  * and tools like top. It may make sense to increase or even disable the
3931  * reserve depending on the existence of swap or variations in the recovery
3932  * tools. So, the admin may have changed them.
3933  *
3934  * If memory is added and the reserves have been eliminated or increased above
3935  * the default max, then we'll trust the admin.
3936  *
3937  * If memory is removed and there isn't enough free memory, then we
3938  * need to reset the reserves.
3939  *
3940  * Otherwise keep the reserve set by the admin.
3941  */
3942 static int reserve_mem_notifier(struct notifier_block *nb,
3943                              unsigned long action, void *data)
3944 {
3945         unsigned long tmp, free_kbytes;
3946
3947         switch (action) {
3948         case MEM_ONLINE:
3949                 /* Default max is 128MB. Leave alone if modified by operator. */
3950                 tmp = sysctl_user_reserve_kbytes;
3951                 if (tmp > 0 && tmp < SZ_128K)
3952                         init_user_reserve();
3953
3954                 /* Default max is 8MB.  Leave alone if modified by operator. */
3955                 tmp = sysctl_admin_reserve_kbytes;
3956                 if (tmp > 0 && tmp < SZ_8K)
3957                         init_admin_reserve();
3958
3959                 break;
3960         case MEM_OFFLINE:
3961                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3962
3963                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3964                         init_user_reserve();
3965                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3966                                 sysctl_user_reserve_kbytes);
3967                 }
3968
3969                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3970                         init_admin_reserve();
3971                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3972                                 sysctl_admin_reserve_kbytes);
3973                 }
3974                 break;
3975         default:
3976                 break;
3977         }
3978         return NOTIFY_OK;
3979 }
3980
3981 static int __meminit init_reserve_notifier(void)
3982 {
3983         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3984                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3985
3986         return 0;
3987 }
3988 subsys_initcall(init_reserve_notifier);