mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page
[linux-block.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62         struct address_space *mapping;
63
64         /*
65          * Avoid burning cycles with pages that are yet under __free_pages(),
66          * or just got freed under us.
67          *
68          * In case we 'win' a race for a movable page being freed under us and
69          * raise its refcount preventing __free_pages() from doing its job
70          * the put_page() at the end of this block will take care of
71          * release this page, thus avoiding a nasty leakage.
72          */
73         if (unlikely(!get_page_unless_zero(page)))
74                 goto out;
75
76         /*
77          * Check PageMovable before holding a PG_lock because page's owner
78          * assumes anybody doesn't touch PG_lock of newly allocated page
79          * so unconditionally grabbing the lock ruins page's owner side.
80          */
81         if (unlikely(!__PageMovable(page)))
82                 goto out_putpage;
83         /*
84          * As movable pages are not isolated from LRU lists, concurrent
85          * compaction threads can race against page migration functions
86          * as well as race against the releasing a page.
87          *
88          * In order to avoid having an already isolated movable page
89          * being (wrongly) re-isolated while it is under migration,
90          * or to avoid attempting to isolate pages being released,
91          * lets be sure we have the page lock
92          * before proceeding with the movable page isolation steps.
93          */
94         if (unlikely(!trylock_page(page)))
95                 goto out_putpage;
96
97         if (!PageMovable(page) || PageIsolated(page))
98                 goto out_no_isolated;
99
100         mapping = page_mapping(page);
101         VM_BUG_ON_PAGE(!mapping, page);
102
103         if (!mapping->a_ops->isolate_page(page, mode))
104                 goto out_no_isolated;
105
106         /* Driver shouldn't use PG_isolated bit of page->flags */
107         WARN_ON_ONCE(PageIsolated(page));
108         __SetPageIsolated(page);
109         unlock_page(page);
110
111         return 0;
112
113 out_no_isolated:
114         unlock_page(page);
115 out_putpage:
116         put_page(page);
117 out:
118         return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123         struct address_space *mapping;
124
125         mapping = page_mapping(page);
126         mapping->a_ops->putback_page(page);
127         __ClearPageIsolated(page);
128 }
129
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140         struct page *page;
141         struct page *page2;
142
143         list_for_each_entry_safe(page, page2, l, lru) {
144                 if (unlikely(PageHuge(page))) {
145                         putback_active_hugepage(page);
146                         continue;
147                 }
148                 list_del(&page->lru);
149                 /*
150                  * We isolated non-lru movable page so here we can use
151                  * __PageMovable because LRU page's mapping cannot have
152                  * PAGE_MAPPING_MOVABLE.
153                  */
154                 if (unlikely(__PageMovable(page))) {
155                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
156                         lock_page(page);
157                         if (PageMovable(page))
158                                 putback_movable_page(page);
159                         else
160                                 __ClearPageIsolated(page);
161                         unlock_page(page);
162                         put_page(page);
163                 } else {
164                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165                                         page_is_file_lru(page), -thp_nr_pages(page));
166                         putback_lru_page(page);
167                 }
168         }
169 }
170
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175                                  unsigned long addr, void *old)
176 {
177         struct page_vma_mapped_walk pvmw = {
178                 .page = old,
179                 .vma = vma,
180                 .address = addr,
181                 .flags = PVMW_SYNC | PVMW_MIGRATION,
182         };
183         struct page *new;
184         pte_t pte;
185         swp_entry_t entry;
186
187         VM_BUG_ON_PAGE(PageTail(page), page);
188         while (page_vma_mapped_walk(&pvmw)) {
189                 if (PageKsm(page))
190                         new = page;
191                 else
192                         new = page - pvmw.page->index +
193                                 linear_page_index(vma, pvmw.address);
194
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196                 /* PMD-mapped THP migration entry */
197                 if (!pvmw.pte) {
198                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199                         remove_migration_pmd(&pvmw, new);
200                         continue;
201                 }
202 #endif
203
204                 get_page(new);
205                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206                 if (pte_swp_soft_dirty(*pvmw.pte))
207                         pte = pte_mksoft_dirty(pte);
208
209                 /*
210                  * Recheck VMA as permissions can change since migration started
211                  */
212                 entry = pte_to_swp_entry(*pvmw.pte);
213                 if (is_write_migration_entry(entry))
214                         pte = maybe_mkwrite(pte, vma);
215                 else if (pte_swp_uffd_wp(*pvmw.pte))
216                         pte = pte_mkuffd_wp(pte);
217
218                 if (unlikely(is_device_private_page(new))) {
219                         entry = make_device_private_entry(new, pte_write(pte));
220                         pte = swp_entry_to_pte(entry);
221                         if (pte_swp_soft_dirty(*pvmw.pte))
222                                 pte = pte_swp_mksoft_dirty(pte);
223                         if (pte_swp_uffd_wp(*pvmw.pte))
224                                 pte = pte_swp_mkuffd_wp(pte);
225                 }
226
227 #ifdef CONFIG_HUGETLB_PAGE
228                 if (PageHuge(new)) {
229                         pte = pte_mkhuge(pte);
230                         pte = arch_make_huge_pte(pte, vma, new, 0);
231                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
232                         if (PageAnon(new))
233                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
234                         else
235                                 page_dup_rmap(new, true);
236                 } else
237 #endif
238                 {
239                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240
241                         if (PageAnon(new))
242                                 page_add_anon_rmap(new, vma, pvmw.address, false);
243                         else
244                                 page_add_file_rmap(new, false);
245                 }
246                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247                         mlock_vma_page(new);
248
249                 if (PageTransHuge(page) && PageMlocked(page))
250                         clear_page_mlock(page);
251
252                 /* No need to invalidate - it was non-present before */
253                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
254         }
255
256         return true;
257 }
258
259 /*
260  * Get rid of all migration entries and replace them by
261  * references to the indicated page.
262  */
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264 {
265         struct rmap_walk_control rwc = {
266                 .rmap_one = remove_migration_pte,
267                 .arg = old,
268         };
269
270         if (locked)
271                 rmap_walk_locked(new, &rwc);
272         else
273                 rmap_walk(new, &rwc);
274 }
275
276 /*
277  * Something used the pte of a page under migration. We need to
278  * get to the page and wait until migration is finished.
279  * When we return from this function the fault will be retried.
280  */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282                                 spinlock_t *ptl)
283 {
284         pte_t pte;
285         swp_entry_t entry;
286         struct page *page;
287
288         spin_lock(ptl);
289         pte = *ptep;
290         if (!is_swap_pte(pte))
291                 goto out;
292
293         entry = pte_to_swp_entry(pte);
294         if (!is_migration_entry(entry))
295                 goto out;
296
297         page = migration_entry_to_page(entry);
298         page = compound_head(page);
299
300         /*
301          * Once page cache replacement of page migration started, page_count
302          * is zero; but we must not call put_and_wait_on_page_locked() without
303          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
304          */
305         if (!get_page_unless_zero(page))
306                 goto out;
307         pte_unmap_unlock(ptep, ptl);
308         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
309         return;
310 out:
311         pte_unmap_unlock(ptep, ptl);
312 }
313
314 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
315                                 unsigned long address)
316 {
317         spinlock_t *ptl = pte_lockptr(mm, pmd);
318         pte_t *ptep = pte_offset_map(pmd, address);
319         __migration_entry_wait(mm, ptep, ptl);
320 }
321
322 void migration_entry_wait_huge(struct vm_area_struct *vma,
323                 struct mm_struct *mm, pte_t *pte)
324 {
325         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
326         __migration_entry_wait(mm, pte, ptl);
327 }
328
329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
330 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
331 {
332         spinlock_t *ptl;
333         struct page *page;
334
335         ptl = pmd_lock(mm, pmd);
336         if (!is_pmd_migration_entry(*pmd))
337                 goto unlock;
338         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
339         if (!get_page_unless_zero(page))
340                 goto unlock;
341         spin_unlock(ptl);
342         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
343         return;
344 unlock:
345         spin_unlock(ptl);
346 }
347 #endif
348
349 static int expected_page_refs(struct address_space *mapping, struct page *page)
350 {
351         int expected_count = 1;
352
353         /*
354          * Device private pages have an extra refcount as they are
355          * ZONE_DEVICE pages.
356          */
357         expected_count += is_device_private_page(page);
358         if (mapping)
359                 expected_count += thp_nr_pages(page) + page_has_private(page);
360
361         return expected_count;
362 }
363
364 /*
365  * Replace the page in the mapping.
366  *
367  * The number of remaining references must be:
368  * 1 for anonymous pages without a mapping
369  * 2 for pages with a mapping
370  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
371  */
372 int migrate_page_move_mapping(struct address_space *mapping,
373                 struct page *newpage, struct page *page, int extra_count)
374 {
375         XA_STATE(xas, &mapping->i_pages, page_index(page));
376         struct zone *oldzone, *newzone;
377         int dirty;
378         int expected_count = expected_page_refs(mapping, page) + extra_count;
379         int nr = thp_nr_pages(page);
380
381         if (!mapping) {
382                 /* Anonymous page without mapping */
383                 if (page_count(page) != expected_count)
384                         return -EAGAIN;
385
386                 /* No turning back from here */
387                 newpage->index = page->index;
388                 newpage->mapping = page->mapping;
389                 if (PageSwapBacked(page))
390                         __SetPageSwapBacked(newpage);
391
392                 return MIGRATEPAGE_SUCCESS;
393         }
394
395         oldzone = page_zone(page);
396         newzone = page_zone(newpage);
397
398         xas_lock_irq(&xas);
399         if (page_count(page) != expected_count || xas_load(&xas) != page) {
400                 xas_unlock_irq(&xas);
401                 return -EAGAIN;
402         }
403
404         if (!page_ref_freeze(page, expected_count)) {
405                 xas_unlock_irq(&xas);
406                 return -EAGAIN;
407         }
408
409         /*
410          * Now we know that no one else is looking at the page:
411          * no turning back from here.
412          */
413         newpage->index = page->index;
414         newpage->mapping = page->mapping;
415         page_ref_add(newpage, nr); /* add cache reference */
416         if (PageSwapBacked(page)) {
417                 __SetPageSwapBacked(newpage);
418                 if (PageSwapCache(page)) {
419                         SetPageSwapCache(newpage);
420                         set_page_private(newpage, page_private(page));
421                 }
422         } else {
423                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
424         }
425
426         /* Move dirty while page refs frozen and newpage not yet exposed */
427         dirty = PageDirty(page);
428         if (dirty) {
429                 ClearPageDirty(page);
430                 SetPageDirty(newpage);
431         }
432
433         xas_store(&xas, newpage);
434         if (PageTransHuge(page)) {
435                 int i;
436
437                 for (i = 1; i < nr; i++) {
438                         xas_next(&xas);
439                         xas_store(&xas, newpage);
440                 }
441         }
442
443         /*
444          * Drop cache reference from old page by unfreezing
445          * to one less reference.
446          * We know this isn't the last reference.
447          */
448         page_ref_unfreeze(page, expected_count - nr);
449
450         xas_unlock(&xas);
451         /* Leave irq disabled to prevent preemption while updating stats */
452
453         /*
454          * If moved to a different zone then also account
455          * the page for that zone. Other VM counters will be
456          * taken care of when we establish references to the
457          * new page and drop references to the old page.
458          *
459          * Note that anonymous pages are accounted for
460          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
461          * are mapped to swap space.
462          */
463         if (newzone != oldzone) {
464                 struct lruvec *old_lruvec, *new_lruvec;
465                 struct mem_cgroup *memcg;
466
467                 memcg = page_memcg(page);
468                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
469                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
470
471                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
472                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
473                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
474                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
475                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
476                 }
477 #ifdef CONFIG_SWAP
478                 if (PageSwapCache(page)) {
479                         __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
480                         __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
481                 }
482 #endif
483                 if (dirty && mapping_can_writeback(mapping)) {
484                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
485                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
486                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
487                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
488                 }
489         }
490         local_irq_enable();
491
492         return MIGRATEPAGE_SUCCESS;
493 }
494 EXPORT_SYMBOL(migrate_page_move_mapping);
495
496 /*
497  * The expected number of remaining references is the same as that
498  * of migrate_page_move_mapping().
499  */
500 int migrate_huge_page_move_mapping(struct address_space *mapping,
501                                    struct page *newpage, struct page *page)
502 {
503         XA_STATE(xas, &mapping->i_pages, page_index(page));
504         int expected_count;
505
506         xas_lock_irq(&xas);
507         expected_count = 2 + page_has_private(page);
508         if (page_count(page) != expected_count || xas_load(&xas) != page) {
509                 xas_unlock_irq(&xas);
510                 return -EAGAIN;
511         }
512
513         if (!page_ref_freeze(page, expected_count)) {
514                 xas_unlock_irq(&xas);
515                 return -EAGAIN;
516         }
517
518         newpage->index = page->index;
519         newpage->mapping = page->mapping;
520
521         get_page(newpage);
522
523         xas_store(&xas, newpage);
524
525         page_ref_unfreeze(page, expected_count - 1);
526
527         xas_unlock_irq(&xas);
528
529         return MIGRATEPAGE_SUCCESS;
530 }
531
532 /*
533  * Gigantic pages are so large that we do not guarantee that page++ pointer
534  * arithmetic will work across the entire page.  We need something more
535  * specialized.
536  */
537 static void __copy_gigantic_page(struct page *dst, struct page *src,
538                                 int nr_pages)
539 {
540         int i;
541         struct page *dst_base = dst;
542         struct page *src_base = src;
543
544         for (i = 0; i < nr_pages; ) {
545                 cond_resched();
546                 copy_highpage(dst, src);
547
548                 i++;
549                 dst = mem_map_next(dst, dst_base, i);
550                 src = mem_map_next(src, src_base, i);
551         }
552 }
553
554 static void copy_huge_page(struct page *dst, struct page *src)
555 {
556         int i;
557         int nr_pages;
558
559         if (PageHuge(src)) {
560                 /* hugetlbfs page */
561                 struct hstate *h = page_hstate(src);
562                 nr_pages = pages_per_huge_page(h);
563
564                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
565                         __copy_gigantic_page(dst, src, nr_pages);
566                         return;
567                 }
568         } else {
569                 /* thp page */
570                 BUG_ON(!PageTransHuge(src));
571                 nr_pages = thp_nr_pages(src);
572         }
573
574         for (i = 0; i < nr_pages; i++) {
575                 cond_resched();
576                 copy_highpage(dst + i, src + i);
577         }
578 }
579
580 /*
581  * Copy the page to its new location
582  */
583 void migrate_page_states(struct page *newpage, struct page *page)
584 {
585         int cpupid;
586
587         if (PageError(page))
588                 SetPageError(newpage);
589         if (PageReferenced(page))
590                 SetPageReferenced(newpage);
591         if (PageUptodate(page))
592                 SetPageUptodate(newpage);
593         if (TestClearPageActive(page)) {
594                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
595                 SetPageActive(newpage);
596         } else if (TestClearPageUnevictable(page))
597                 SetPageUnevictable(newpage);
598         if (PageWorkingset(page))
599                 SetPageWorkingset(newpage);
600         if (PageChecked(page))
601                 SetPageChecked(newpage);
602         if (PageMappedToDisk(page))
603                 SetPageMappedToDisk(newpage);
604
605         /* Move dirty on pages not done by migrate_page_move_mapping() */
606         if (PageDirty(page))
607                 SetPageDirty(newpage);
608
609         if (page_is_young(page))
610                 set_page_young(newpage);
611         if (page_is_idle(page))
612                 set_page_idle(newpage);
613
614         /*
615          * Copy NUMA information to the new page, to prevent over-eager
616          * future migrations of this same page.
617          */
618         cpupid = page_cpupid_xchg_last(page, -1);
619         page_cpupid_xchg_last(newpage, cpupid);
620
621         ksm_migrate_page(newpage, page);
622         /*
623          * Please do not reorder this without considering how mm/ksm.c's
624          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
625          */
626         if (PageSwapCache(page))
627                 ClearPageSwapCache(page);
628         ClearPagePrivate(page);
629
630         /* page->private contains hugetlb specific flags */
631         if (!PageHuge(page))
632                 set_page_private(page, 0);
633
634         /*
635          * If any waiters have accumulated on the new page then
636          * wake them up.
637          */
638         if (PageWriteback(newpage))
639                 end_page_writeback(newpage);
640
641         /*
642          * PG_readahead shares the same bit with PG_reclaim.  The above
643          * end_page_writeback() may clear PG_readahead mistakenly, so set the
644          * bit after that.
645          */
646         if (PageReadahead(page))
647                 SetPageReadahead(newpage);
648
649         copy_page_owner(page, newpage);
650
651         if (!PageHuge(page))
652                 mem_cgroup_migrate(page, newpage);
653 }
654 EXPORT_SYMBOL(migrate_page_states);
655
656 void migrate_page_copy(struct page *newpage, struct page *page)
657 {
658         if (PageHuge(page) || PageTransHuge(page))
659                 copy_huge_page(newpage, page);
660         else
661                 copy_highpage(newpage, page);
662
663         migrate_page_states(newpage, page);
664 }
665 EXPORT_SYMBOL(migrate_page_copy);
666
667 /************************************************************
668  *                    Migration functions
669  ***********************************************************/
670
671 /*
672  * Common logic to directly migrate a single LRU page suitable for
673  * pages that do not use PagePrivate/PagePrivate2.
674  *
675  * Pages are locked upon entry and exit.
676  */
677 int migrate_page(struct address_space *mapping,
678                 struct page *newpage, struct page *page,
679                 enum migrate_mode mode)
680 {
681         int rc;
682
683         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
684
685         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
686
687         if (rc != MIGRATEPAGE_SUCCESS)
688                 return rc;
689
690         if (mode != MIGRATE_SYNC_NO_COPY)
691                 migrate_page_copy(newpage, page);
692         else
693                 migrate_page_states(newpage, page);
694         return MIGRATEPAGE_SUCCESS;
695 }
696 EXPORT_SYMBOL(migrate_page);
697
698 #ifdef CONFIG_BLOCK
699 /* Returns true if all buffers are successfully locked */
700 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701                                                         enum migrate_mode mode)
702 {
703         struct buffer_head *bh = head;
704
705         /* Simple case, sync compaction */
706         if (mode != MIGRATE_ASYNC) {
707                 do {
708                         lock_buffer(bh);
709                         bh = bh->b_this_page;
710
711                 } while (bh != head);
712
713                 return true;
714         }
715
716         /* async case, we cannot block on lock_buffer so use trylock_buffer */
717         do {
718                 if (!trylock_buffer(bh)) {
719                         /*
720                          * We failed to lock the buffer and cannot stall in
721                          * async migration. Release the taken locks
722                          */
723                         struct buffer_head *failed_bh = bh;
724                         bh = head;
725                         while (bh != failed_bh) {
726                                 unlock_buffer(bh);
727                                 bh = bh->b_this_page;
728                         }
729                         return false;
730                 }
731
732                 bh = bh->b_this_page;
733         } while (bh != head);
734         return true;
735 }
736
737 static int __buffer_migrate_page(struct address_space *mapping,
738                 struct page *newpage, struct page *page, enum migrate_mode mode,
739                 bool check_refs)
740 {
741         struct buffer_head *bh, *head;
742         int rc;
743         int expected_count;
744
745         if (!page_has_buffers(page))
746                 return migrate_page(mapping, newpage, page, mode);
747
748         /* Check whether page does not have extra refs before we do more work */
749         expected_count = expected_page_refs(mapping, page);
750         if (page_count(page) != expected_count)
751                 return -EAGAIN;
752
753         head = page_buffers(page);
754         if (!buffer_migrate_lock_buffers(head, mode))
755                 return -EAGAIN;
756
757         if (check_refs) {
758                 bool busy;
759                 bool invalidated = false;
760
761 recheck_buffers:
762                 busy = false;
763                 spin_lock(&mapping->private_lock);
764                 bh = head;
765                 do {
766                         if (atomic_read(&bh->b_count)) {
767                                 busy = true;
768                                 break;
769                         }
770                         bh = bh->b_this_page;
771                 } while (bh != head);
772                 if (busy) {
773                         if (invalidated) {
774                                 rc = -EAGAIN;
775                                 goto unlock_buffers;
776                         }
777                         spin_unlock(&mapping->private_lock);
778                         invalidate_bh_lrus();
779                         invalidated = true;
780                         goto recheck_buffers;
781                 }
782         }
783
784         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
785         if (rc != MIGRATEPAGE_SUCCESS)
786                 goto unlock_buffers;
787
788         attach_page_private(newpage, detach_page_private(page));
789
790         bh = head;
791         do {
792                 set_bh_page(bh, newpage, bh_offset(bh));
793                 bh = bh->b_this_page;
794
795         } while (bh != head);
796
797         if (mode != MIGRATE_SYNC_NO_COPY)
798                 migrate_page_copy(newpage, page);
799         else
800                 migrate_page_states(newpage, page);
801
802         rc = MIGRATEPAGE_SUCCESS;
803 unlock_buffers:
804         if (check_refs)
805                 spin_unlock(&mapping->private_lock);
806         bh = head;
807         do {
808                 unlock_buffer(bh);
809                 bh = bh->b_this_page;
810
811         } while (bh != head);
812
813         return rc;
814 }
815
816 /*
817  * Migration function for pages with buffers. This function can only be used
818  * if the underlying filesystem guarantees that no other references to "page"
819  * exist. For example attached buffer heads are accessed only under page lock.
820  */
821 int buffer_migrate_page(struct address_space *mapping,
822                 struct page *newpage, struct page *page, enum migrate_mode mode)
823 {
824         return __buffer_migrate_page(mapping, newpage, page, mode, false);
825 }
826 EXPORT_SYMBOL(buffer_migrate_page);
827
828 /*
829  * Same as above except that this variant is more careful and checks that there
830  * are also no buffer head references. This function is the right one for
831  * mappings where buffer heads are directly looked up and referenced (such as
832  * block device mappings).
833  */
834 int buffer_migrate_page_norefs(struct address_space *mapping,
835                 struct page *newpage, struct page *page, enum migrate_mode mode)
836 {
837         return __buffer_migrate_page(mapping, newpage, page, mode, true);
838 }
839 #endif
840
841 /*
842  * Writeback a page to clean the dirty state
843  */
844 static int writeout(struct address_space *mapping, struct page *page)
845 {
846         struct writeback_control wbc = {
847                 .sync_mode = WB_SYNC_NONE,
848                 .nr_to_write = 1,
849                 .range_start = 0,
850                 .range_end = LLONG_MAX,
851                 .for_reclaim = 1
852         };
853         int rc;
854
855         if (!mapping->a_ops->writepage)
856                 /* No write method for the address space */
857                 return -EINVAL;
858
859         if (!clear_page_dirty_for_io(page))
860                 /* Someone else already triggered a write */
861                 return -EAGAIN;
862
863         /*
864          * A dirty page may imply that the underlying filesystem has
865          * the page on some queue. So the page must be clean for
866          * migration. Writeout may mean we loose the lock and the
867          * page state is no longer what we checked for earlier.
868          * At this point we know that the migration attempt cannot
869          * be successful.
870          */
871         remove_migration_ptes(page, page, false);
872
873         rc = mapping->a_ops->writepage(page, &wbc);
874
875         if (rc != AOP_WRITEPAGE_ACTIVATE)
876                 /* unlocked. Relock */
877                 lock_page(page);
878
879         return (rc < 0) ? -EIO : -EAGAIN;
880 }
881
882 /*
883  * Default handling if a filesystem does not provide a migration function.
884  */
885 static int fallback_migrate_page(struct address_space *mapping,
886         struct page *newpage, struct page *page, enum migrate_mode mode)
887 {
888         if (PageDirty(page)) {
889                 /* Only writeback pages in full synchronous migration */
890                 switch (mode) {
891                 case MIGRATE_SYNC:
892                 case MIGRATE_SYNC_NO_COPY:
893                         break;
894                 default:
895                         return -EBUSY;
896                 }
897                 return writeout(mapping, page);
898         }
899
900         /*
901          * Buffers may be managed in a filesystem specific way.
902          * We must have no buffers or drop them.
903          */
904         if (page_has_private(page) &&
905             !try_to_release_page(page, GFP_KERNEL))
906                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
907
908         return migrate_page(mapping, newpage, page, mode);
909 }
910
911 /*
912  * Move a page to a newly allocated page
913  * The page is locked and all ptes have been successfully removed.
914  *
915  * The new page will have replaced the old page if this function
916  * is successful.
917  *
918  * Return value:
919  *   < 0 - error code
920  *  MIGRATEPAGE_SUCCESS - success
921  */
922 static int move_to_new_page(struct page *newpage, struct page *page,
923                                 enum migrate_mode mode)
924 {
925         struct address_space *mapping;
926         int rc = -EAGAIN;
927         bool is_lru = !__PageMovable(page);
928
929         VM_BUG_ON_PAGE(!PageLocked(page), page);
930         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
931
932         mapping = page_mapping(page);
933
934         if (likely(is_lru)) {
935                 if (!mapping)
936                         rc = migrate_page(mapping, newpage, page, mode);
937                 else if (mapping->a_ops->migratepage)
938                         /*
939                          * Most pages have a mapping and most filesystems
940                          * provide a migratepage callback. Anonymous pages
941                          * are part of swap space which also has its own
942                          * migratepage callback. This is the most common path
943                          * for page migration.
944                          */
945                         rc = mapping->a_ops->migratepage(mapping, newpage,
946                                                         page, mode);
947                 else
948                         rc = fallback_migrate_page(mapping, newpage,
949                                                         page, mode);
950         } else {
951                 /*
952                  * In case of non-lru page, it could be released after
953                  * isolation step. In that case, we shouldn't try migration.
954                  */
955                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
956                 if (!PageMovable(page)) {
957                         rc = MIGRATEPAGE_SUCCESS;
958                         __ClearPageIsolated(page);
959                         goto out;
960                 }
961
962                 rc = mapping->a_ops->migratepage(mapping, newpage,
963                                                 page, mode);
964                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
965                         !PageIsolated(page));
966         }
967
968         /*
969          * When successful, old pagecache page->mapping must be cleared before
970          * page is freed; but stats require that PageAnon be left as PageAnon.
971          */
972         if (rc == MIGRATEPAGE_SUCCESS) {
973                 if (__PageMovable(page)) {
974                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
975
976                         /*
977                          * We clear PG_movable under page_lock so any compactor
978                          * cannot try to migrate this page.
979                          */
980                         __ClearPageIsolated(page);
981                 }
982
983                 /*
984                  * Anonymous and movable page->mapping will be cleared by
985                  * free_pages_prepare so don't reset it here for keeping
986                  * the type to work PageAnon, for example.
987                  */
988                 if (!PageMappingFlags(page))
989                         page->mapping = NULL;
990
991                 if (likely(!is_zone_device_page(newpage)))
992                         flush_dcache_page(newpage);
993
994         }
995 out:
996         return rc;
997 }
998
999 static int __unmap_and_move(struct page *page, struct page *newpage,
1000                                 int force, enum migrate_mode mode)
1001 {
1002         int rc = -EAGAIN;
1003         int page_was_mapped = 0;
1004         struct anon_vma *anon_vma = NULL;
1005         bool is_lru = !__PageMovable(page);
1006
1007         if (!trylock_page(page)) {
1008                 if (!force || mode == MIGRATE_ASYNC)
1009                         goto out;
1010
1011                 /*
1012                  * It's not safe for direct compaction to call lock_page.
1013                  * For example, during page readahead pages are added locked
1014                  * to the LRU. Later, when the IO completes the pages are
1015                  * marked uptodate and unlocked. However, the queueing
1016                  * could be merging multiple pages for one bio (e.g.
1017                  * mpage_readahead). If an allocation happens for the
1018                  * second or third page, the process can end up locking
1019                  * the same page twice and deadlocking. Rather than
1020                  * trying to be clever about what pages can be locked,
1021                  * avoid the use of lock_page for direct compaction
1022                  * altogether.
1023                  */
1024                 if (current->flags & PF_MEMALLOC)
1025                         goto out;
1026
1027                 lock_page(page);
1028         }
1029
1030         if (PageWriteback(page)) {
1031                 /*
1032                  * Only in the case of a full synchronous migration is it
1033                  * necessary to wait for PageWriteback. In the async case,
1034                  * the retry loop is too short and in the sync-light case,
1035                  * the overhead of stalling is too much
1036                  */
1037                 switch (mode) {
1038                 case MIGRATE_SYNC:
1039                 case MIGRATE_SYNC_NO_COPY:
1040                         break;
1041                 default:
1042                         rc = -EBUSY;
1043                         goto out_unlock;
1044                 }
1045                 if (!force)
1046                         goto out_unlock;
1047                 wait_on_page_writeback(page);
1048         }
1049
1050         /*
1051          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1052          * we cannot notice that anon_vma is freed while we migrates a page.
1053          * This get_anon_vma() delays freeing anon_vma pointer until the end
1054          * of migration. File cache pages are no problem because of page_lock()
1055          * File Caches may use write_page() or lock_page() in migration, then,
1056          * just care Anon page here.
1057          *
1058          * Only page_get_anon_vma() understands the subtleties of
1059          * getting a hold on an anon_vma from outside one of its mms.
1060          * But if we cannot get anon_vma, then we won't need it anyway,
1061          * because that implies that the anon page is no longer mapped
1062          * (and cannot be remapped so long as we hold the page lock).
1063          */
1064         if (PageAnon(page) && !PageKsm(page))
1065                 anon_vma = page_get_anon_vma(page);
1066
1067         /*
1068          * Block others from accessing the new page when we get around to
1069          * establishing additional references. We are usually the only one
1070          * holding a reference to newpage at this point. We used to have a BUG
1071          * here if trylock_page(newpage) fails, but would like to allow for
1072          * cases where there might be a race with the previous use of newpage.
1073          * This is much like races on refcount of oldpage: just don't BUG().
1074          */
1075         if (unlikely(!trylock_page(newpage)))
1076                 goto out_unlock;
1077
1078         if (unlikely(!is_lru)) {
1079                 rc = move_to_new_page(newpage, page, mode);
1080                 goto out_unlock_both;
1081         }
1082
1083         /*
1084          * Corner case handling:
1085          * 1. When a new swap-cache page is read into, it is added to the LRU
1086          * and treated as swapcache but it has no rmap yet.
1087          * Calling try_to_unmap() against a page->mapping==NULL page will
1088          * trigger a BUG.  So handle it here.
1089          * 2. An orphaned page (see truncate_cleanup_page) might have
1090          * fs-private metadata. The page can be picked up due to memory
1091          * offlining.  Everywhere else except page reclaim, the page is
1092          * invisible to the vm, so the page can not be migrated.  So try to
1093          * free the metadata, so the page can be freed.
1094          */
1095         if (!page->mapping) {
1096                 VM_BUG_ON_PAGE(PageAnon(page), page);
1097                 if (page_has_private(page)) {
1098                         try_to_free_buffers(page);
1099                         goto out_unlock_both;
1100                 }
1101         } else if (page_mapped(page)) {
1102                 /* Establish migration ptes */
1103                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1104                                 page);
1105                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1106                 page_was_mapped = 1;
1107         }
1108
1109         if (!page_mapped(page))
1110                 rc = move_to_new_page(newpage, page, mode);
1111
1112         if (page_was_mapped)
1113                 remove_migration_ptes(page,
1114                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1115
1116 out_unlock_both:
1117         unlock_page(newpage);
1118 out_unlock:
1119         /* Drop an anon_vma reference if we took one */
1120         if (anon_vma)
1121                 put_anon_vma(anon_vma);
1122         unlock_page(page);
1123 out:
1124         /*
1125          * If migration is successful, decrease refcount of the newpage
1126          * which will not free the page because new page owner increased
1127          * refcounter. As well, if it is LRU page, add the page to LRU
1128          * list in here. Use the old state of the isolated source page to
1129          * determine if we migrated a LRU page. newpage was already unlocked
1130          * and possibly modified by its owner - don't rely on the page
1131          * state.
1132          */
1133         if (rc == MIGRATEPAGE_SUCCESS) {
1134                 if (unlikely(!is_lru))
1135                         put_page(newpage);
1136                 else
1137                         putback_lru_page(newpage);
1138         }
1139
1140         return rc;
1141 }
1142
1143 /*
1144  * Obtain the lock on page, remove all ptes and migrate the page
1145  * to the newly allocated page in newpage.
1146  */
1147 static int unmap_and_move(new_page_t get_new_page,
1148                                    free_page_t put_new_page,
1149                                    unsigned long private, struct page *page,
1150                                    int force, enum migrate_mode mode,
1151                                    enum migrate_reason reason,
1152                                    struct list_head *ret)
1153 {
1154         int rc = MIGRATEPAGE_SUCCESS;
1155         struct page *newpage = NULL;
1156
1157         if (!thp_migration_supported() && PageTransHuge(page))
1158                 return -ENOSYS;
1159
1160         if (page_count(page) == 1) {
1161                 /* page was freed from under us. So we are done. */
1162                 ClearPageActive(page);
1163                 ClearPageUnevictable(page);
1164                 if (unlikely(__PageMovable(page))) {
1165                         lock_page(page);
1166                         if (!PageMovable(page))
1167                                 __ClearPageIsolated(page);
1168                         unlock_page(page);
1169                 }
1170                 goto out;
1171         }
1172
1173         newpage = get_new_page(page, private);
1174         if (!newpage)
1175                 return -ENOMEM;
1176
1177         rc = __unmap_and_move(page, newpage, force, mode);
1178         if (rc == MIGRATEPAGE_SUCCESS)
1179                 set_page_owner_migrate_reason(newpage, reason);
1180
1181 out:
1182         if (rc != -EAGAIN) {
1183                 /*
1184                  * A page that has been migrated has all references
1185                  * removed and will be freed. A page that has not been
1186                  * migrated will have kept its references and be restored.
1187                  */
1188                 list_del(&page->lru);
1189         }
1190
1191         /*
1192          * If migration is successful, releases reference grabbed during
1193          * isolation. Otherwise, restore the page to right list unless
1194          * we want to retry.
1195          */
1196         if (rc == MIGRATEPAGE_SUCCESS) {
1197                 /*
1198                  * Compaction can migrate also non-LRU pages which are
1199                  * not accounted to NR_ISOLATED_*. They can be recognized
1200                  * as __PageMovable
1201                  */
1202                 if (likely(!__PageMovable(page)))
1203                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1204                                         page_is_file_lru(page), -thp_nr_pages(page));
1205
1206                 if (reason != MR_MEMORY_FAILURE)
1207                         /*
1208                          * We release the page in page_handle_poison.
1209                          */
1210                         put_page(page);
1211         } else {
1212                 if (rc != -EAGAIN)
1213                         list_add_tail(&page->lru, ret);
1214
1215                 if (put_new_page)
1216                         put_new_page(newpage, private);
1217                 else
1218                         put_page(newpage);
1219         }
1220
1221         return rc;
1222 }
1223
1224 /*
1225  * Counterpart of unmap_and_move_page() for hugepage migration.
1226  *
1227  * This function doesn't wait the completion of hugepage I/O
1228  * because there is no race between I/O and migration for hugepage.
1229  * Note that currently hugepage I/O occurs only in direct I/O
1230  * where no lock is held and PG_writeback is irrelevant,
1231  * and writeback status of all subpages are counted in the reference
1232  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1233  * under direct I/O, the reference of the head page is 512 and a bit more.)
1234  * This means that when we try to migrate hugepage whose subpages are
1235  * doing direct I/O, some references remain after try_to_unmap() and
1236  * hugepage migration fails without data corruption.
1237  *
1238  * There is also no race when direct I/O is issued on the page under migration,
1239  * because then pte is replaced with migration swap entry and direct I/O code
1240  * will wait in the page fault for migration to complete.
1241  */
1242 static int unmap_and_move_huge_page(new_page_t get_new_page,
1243                                 free_page_t put_new_page, unsigned long private,
1244                                 struct page *hpage, int force,
1245                                 enum migrate_mode mode, int reason,
1246                                 struct list_head *ret)
1247 {
1248         int rc = -EAGAIN;
1249         int page_was_mapped = 0;
1250         struct page *new_hpage;
1251         struct anon_vma *anon_vma = NULL;
1252         struct address_space *mapping = NULL;
1253
1254         /*
1255          * Migratability of hugepages depends on architectures and their size.
1256          * This check is necessary because some callers of hugepage migration
1257          * like soft offline and memory hotremove don't walk through page
1258          * tables or check whether the hugepage is pmd-based or not before
1259          * kicking migration.
1260          */
1261         if (!hugepage_migration_supported(page_hstate(hpage))) {
1262                 list_move_tail(&hpage->lru, ret);
1263                 return -ENOSYS;
1264         }
1265
1266         if (page_count(hpage) == 1) {
1267                 /* page was freed from under us. So we are done. */
1268                 putback_active_hugepage(hpage);
1269                 return MIGRATEPAGE_SUCCESS;
1270         }
1271
1272         new_hpage = get_new_page(hpage, private);
1273         if (!new_hpage)
1274                 return -ENOMEM;
1275
1276         if (!trylock_page(hpage)) {
1277                 if (!force)
1278                         goto out;
1279                 switch (mode) {
1280                 case MIGRATE_SYNC:
1281                 case MIGRATE_SYNC_NO_COPY:
1282                         break;
1283                 default:
1284                         goto out;
1285                 }
1286                 lock_page(hpage);
1287         }
1288
1289         /*
1290          * Check for pages which are in the process of being freed.  Without
1291          * page_mapping() set, hugetlbfs specific move page routine will not
1292          * be called and we could leak usage counts for subpools.
1293          */
1294         if (page_private(hpage) && !page_mapping(hpage)) {
1295                 rc = -EBUSY;
1296                 goto out_unlock;
1297         }
1298
1299         if (PageAnon(hpage))
1300                 anon_vma = page_get_anon_vma(hpage);
1301
1302         if (unlikely(!trylock_page(new_hpage)))
1303                 goto put_anon;
1304
1305         if (page_mapped(hpage)) {
1306                 bool mapping_locked = false;
1307                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1308
1309                 if (!PageAnon(hpage)) {
1310                         /*
1311                          * In shared mappings, try_to_unmap could potentially
1312                          * call huge_pmd_unshare.  Because of this, take
1313                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1314                          * to let lower levels know we have taken the lock.
1315                          */
1316                         mapping = hugetlb_page_mapping_lock_write(hpage);
1317                         if (unlikely(!mapping))
1318                                 goto unlock_put_anon;
1319
1320                         mapping_locked = true;
1321                         ttu |= TTU_RMAP_LOCKED;
1322                 }
1323
1324                 try_to_unmap(hpage, ttu);
1325                 page_was_mapped = 1;
1326
1327                 if (mapping_locked)
1328                         i_mmap_unlock_write(mapping);
1329         }
1330
1331         if (!page_mapped(hpage))
1332                 rc = move_to_new_page(new_hpage, hpage, mode);
1333
1334         if (page_was_mapped)
1335                 remove_migration_ptes(hpage,
1336                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1337
1338 unlock_put_anon:
1339         unlock_page(new_hpage);
1340
1341 put_anon:
1342         if (anon_vma)
1343                 put_anon_vma(anon_vma);
1344
1345         if (rc == MIGRATEPAGE_SUCCESS) {
1346                 move_hugetlb_state(hpage, new_hpage, reason);
1347                 put_new_page = NULL;
1348         }
1349
1350 out_unlock:
1351         unlock_page(hpage);
1352 out:
1353         if (rc == MIGRATEPAGE_SUCCESS)
1354                 putback_active_hugepage(hpage);
1355         else if (rc != -EAGAIN)
1356                 list_move_tail(&hpage->lru, ret);
1357
1358         /*
1359          * If migration was not successful and there's a freeing callback, use
1360          * it.  Otherwise, put_page() will drop the reference grabbed during
1361          * isolation.
1362          */
1363         if (put_new_page)
1364                 put_new_page(new_hpage, private);
1365         else
1366                 putback_active_hugepage(new_hpage);
1367
1368         return rc;
1369 }
1370
1371 static inline int try_split_thp(struct page *page, struct page **page2,
1372                                 struct list_head *from)
1373 {
1374         int rc = 0;
1375
1376         lock_page(page);
1377         rc = split_huge_page_to_list(page, from);
1378         unlock_page(page);
1379         if (!rc)
1380                 list_safe_reset_next(page, *page2, lru);
1381
1382         return rc;
1383 }
1384
1385 /*
1386  * migrate_pages - migrate the pages specified in a list, to the free pages
1387  *                 supplied as the target for the page migration
1388  *
1389  * @from:               The list of pages to be migrated.
1390  * @get_new_page:       The function used to allocate free pages to be used
1391  *                      as the target of the page migration.
1392  * @put_new_page:       The function used to free target pages if migration
1393  *                      fails, or NULL if no special handling is necessary.
1394  * @private:            Private data to be passed on to get_new_page()
1395  * @mode:               The migration mode that specifies the constraints for
1396  *                      page migration, if any.
1397  * @reason:             The reason for page migration.
1398  *
1399  * The function returns after 10 attempts or if no pages are movable any more
1400  * because the list has become empty or no retryable pages exist any more.
1401  * It is caller's responsibility to call putback_movable_pages() to return pages
1402  * to the LRU or free list only if ret != 0.
1403  *
1404  * Returns the number of pages that were not migrated, or an error code.
1405  */
1406 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1407                 free_page_t put_new_page, unsigned long private,
1408                 enum migrate_mode mode, int reason)
1409 {
1410         int retry = 1;
1411         int thp_retry = 1;
1412         int nr_failed = 0;
1413         int nr_succeeded = 0;
1414         int nr_thp_succeeded = 0;
1415         int nr_thp_failed = 0;
1416         int nr_thp_split = 0;
1417         int pass = 0;
1418         bool is_thp = false;
1419         struct page *page;
1420         struct page *page2;
1421         int swapwrite = current->flags & PF_SWAPWRITE;
1422         int rc, nr_subpages;
1423         LIST_HEAD(ret_pages);
1424
1425         trace_mm_migrate_pages_start(mode, reason);
1426
1427         if (!swapwrite)
1428                 current->flags |= PF_SWAPWRITE;
1429
1430         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1431                 retry = 0;
1432                 thp_retry = 0;
1433
1434                 list_for_each_entry_safe(page, page2, from, lru) {
1435 retry:
1436                         /*
1437                          * THP statistics is based on the source huge page.
1438                          * Capture required information that might get lost
1439                          * during migration.
1440                          */
1441                         is_thp = PageTransHuge(page) && !PageHuge(page);
1442                         nr_subpages = thp_nr_pages(page);
1443                         cond_resched();
1444
1445                         if (PageHuge(page))
1446                                 rc = unmap_and_move_huge_page(get_new_page,
1447                                                 put_new_page, private, page,
1448                                                 pass > 2, mode, reason,
1449                                                 &ret_pages);
1450                         else
1451                                 rc = unmap_and_move(get_new_page, put_new_page,
1452                                                 private, page, pass > 2, mode,
1453                                                 reason, &ret_pages);
1454                         /*
1455                          * The rules are:
1456                          *      Success: non hugetlb page will be freed, hugetlb
1457                          *               page will be put back
1458                          *      -EAGAIN: stay on the from list
1459                          *      -ENOMEM: stay on the from list
1460                          *      Other errno: put on ret_pages list then splice to
1461                          *                   from list
1462                          */
1463                         switch(rc) {
1464                         /*
1465                          * THP migration might be unsupported or the
1466                          * allocation could've failed so we should
1467                          * retry on the same page with the THP split
1468                          * to base pages.
1469                          *
1470                          * Head page is retried immediately and tail
1471                          * pages are added to the tail of the list so
1472                          * we encounter them after the rest of the list
1473                          * is processed.
1474                          */
1475                         case -ENOSYS:
1476                                 /* THP migration is unsupported */
1477                                 if (is_thp) {
1478                                         if (!try_split_thp(page, &page2, from)) {
1479                                                 nr_thp_split++;
1480                                                 goto retry;
1481                                         }
1482
1483                                         nr_thp_failed++;
1484                                         nr_failed += nr_subpages;
1485                                         break;
1486                                 }
1487
1488                                 /* Hugetlb migration is unsupported */
1489                                 nr_failed++;
1490                                 break;
1491                         case -ENOMEM:
1492                                 /*
1493                                  * When memory is low, don't bother to try to migrate
1494                                  * other pages, just exit.
1495                                  */
1496                                 if (is_thp) {
1497                                         if (!try_split_thp(page, &page2, from)) {
1498                                                 nr_thp_split++;
1499                                                 goto retry;
1500                                         }
1501
1502                                         nr_thp_failed++;
1503                                         nr_failed += nr_subpages;
1504                                         goto out;
1505                                 }
1506                                 nr_failed++;
1507                                 goto out;
1508                         case -EAGAIN:
1509                                 if (is_thp) {
1510                                         thp_retry++;
1511                                         break;
1512                                 }
1513                                 retry++;
1514                                 break;
1515                         case MIGRATEPAGE_SUCCESS:
1516                                 if (is_thp) {
1517                                         nr_thp_succeeded++;
1518                                         nr_succeeded += nr_subpages;
1519                                         break;
1520                                 }
1521                                 nr_succeeded++;
1522                                 break;
1523                         default:
1524                                 /*
1525                                  * Permanent failure (-EBUSY, etc.):
1526                                  * unlike -EAGAIN case, the failed page is
1527                                  * removed from migration page list and not
1528                                  * retried in the next outer loop.
1529                                  */
1530                                 if (is_thp) {
1531                                         nr_thp_failed++;
1532                                         nr_failed += nr_subpages;
1533                                         break;
1534                                 }
1535                                 nr_failed++;
1536                                 break;
1537                         }
1538                 }
1539         }
1540         nr_failed += retry + thp_retry;
1541         nr_thp_failed += thp_retry;
1542         rc = nr_failed;
1543 out:
1544         /*
1545          * Put the permanent failure page back to migration list, they
1546          * will be put back to the right list by the caller.
1547          */
1548         list_splice(&ret_pages, from);
1549
1550         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1551         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1552         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1553         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1554         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1555         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1556                                nr_thp_failed, nr_thp_split, mode, reason);
1557
1558         if (!swapwrite)
1559                 current->flags &= ~PF_SWAPWRITE;
1560
1561         return rc;
1562 }
1563
1564 struct page *alloc_migration_target(struct page *page, unsigned long private)
1565 {
1566         struct migration_target_control *mtc;
1567         gfp_t gfp_mask;
1568         unsigned int order = 0;
1569         struct page *new_page = NULL;
1570         int nid;
1571         int zidx;
1572
1573         mtc = (struct migration_target_control *)private;
1574         gfp_mask = mtc->gfp_mask;
1575         nid = mtc->nid;
1576         if (nid == NUMA_NO_NODE)
1577                 nid = page_to_nid(page);
1578
1579         if (PageHuge(page)) {
1580                 struct hstate *h = page_hstate(compound_head(page));
1581
1582                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1583                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1584         }
1585
1586         if (PageTransHuge(page)) {
1587                 /*
1588                  * clear __GFP_RECLAIM to make the migration callback
1589                  * consistent with regular THP allocations.
1590                  */
1591                 gfp_mask &= ~__GFP_RECLAIM;
1592                 gfp_mask |= GFP_TRANSHUGE;
1593                 order = HPAGE_PMD_ORDER;
1594         }
1595         zidx = zone_idx(page_zone(page));
1596         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1597                 gfp_mask |= __GFP_HIGHMEM;
1598
1599         new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1600
1601         if (new_page && PageTransHuge(new_page))
1602                 prep_transhuge_page(new_page);
1603
1604         return new_page;
1605 }
1606
1607 #ifdef CONFIG_NUMA
1608
1609 static int store_status(int __user *status, int start, int value, int nr)
1610 {
1611         while (nr-- > 0) {
1612                 if (put_user(value, status + start))
1613                         return -EFAULT;
1614                 start++;
1615         }
1616
1617         return 0;
1618 }
1619
1620 static int do_move_pages_to_node(struct mm_struct *mm,
1621                 struct list_head *pagelist, int node)
1622 {
1623         int err;
1624         struct migration_target_control mtc = {
1625                 .nid = node,
1626                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1627         };
1628
1629         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1630                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1631         if (err)
1632                 putback_movable_pages(pagelist);
1633         return err;
1634 }
1635
1636 /*
1637  * Resolves the given address to a struct page, isolates it from the LRU and
1638  * puts it to the given pagelist.
1639  * Returns:
1640  *     errno - if the page cannot be found/isolated
1641  *     0 - when it doesn't have to be migrated because it is already on the
1642  *         target node
1643  *     1 - when it has been queued
1644  */
1645 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1646                 int node, struct list_head *pagelist, bool migrate_all)
1647 {
1648         struct vm_area_struct *vma;
1649         struct page *page;
1650         unsigned int follflags;
1651         int err;
1652
1653         mmap_read_lock(mm);
1654         err = -EFAULT;
1655         vma = find_vma(mm, addr);
1656         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1657                 goto out;
1658
1659         /* FOLL_DUMP to ignore special (like zero) pages */
1660         follflags = FOLL_GET | FOLL_DUMP;
1661         page = follow_page(vma, addr, follflags);
1662
1663         err = PTR_ERR(page);
1664         if (IS_ERR(page))
1665                 goto out;
1666
1667         err = -ENOENT;
1668         if (!page)
1669                 goto out;
1670
1671         err = 0;
1672         if (page_to_nid(page) == node)
1673                 goto out_putpage;
1674
1675         err = -EACCES;
1676         if (page_mapcount(page) > 1 && !migrate_all)
1677                 goto out_putpage;
1678
1679         if (PageHuge(page)) {
1680                 if (PageHead(page)) {
1681                         isolate_huge_page(page, pagelist);
1682                         err = 1;
1683                 }
1684         } else {
1685                 struct page *head;
1686
1687                 head = compound_head(page);
1688                 err = isolate_lru_page(head);
1689                 if (err)
1690                         goto out_putpage;
1691
1692                 err = 1;
1693                 list_add_tail(&head->lru, pagelist);
1694                 mod_node_page_state(page_pgdat(head),
1695                         NR_ISOLATED_ANON + page_is_file_lru(head),
1696                         thp_nr_pages(head));
1697         }
1698 out_putpage:
1699         /*
1700          * Either remove the duplicate refcount from
1701          * isolate_lru_page() or drop the page ref if it was
1702          * not isolated.
1703          */
1704         put_page(page);
1705 out:
1706         mmap_read_unlock(mm);
1707         return err;
1708 }
1709
1710 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1711                 struct list_head *pagelist, int __user *status,
1712                 int start, int i, unsigned long nr_pages)
1713 {
1714         int err;
1715
1716         if (list_empty(pagelist))
1717                 return 0;
1718
1719         err = do_move_pages_to_node(mm, pagelist, node);
1720         if (err) {
1721                 /*
1722                  * Positive err means the number of failed
1723                  * pages to migrate.  Since we are going to
1724                  * abort and return the number of non-migrated
1725                  * pages, so need to include the rest of the
1726                  * nr_pages that have not been attempted as
1727                  * well.
1728                  */
1729                 if (err > 0)
1730                         err += nr_pages - i - 1;
1731                 return err;
1732         }
1733         return store_status(status, start, node, i - start);
1734 }
1735
1736 /*
1737  * Migrate an array of page address onto an array of nodes and fill
1738  * the corresponding array of status.
1739  */
1740 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1741                          unsigned long nr_pages,
1742                          const void __user * __user *pages,
1743                          const int __user *nodes,
1744                          int __user *status, int flags)
1745 {
1746         int current_node = NUMA_NO_NODE;
1747         LIST_HEAD(pagelist);
1748         int start, i;
1749         int err = 0, err1;
1750
1751         lru_cache_disable();
1752
1753         for (i = start = 0; i < nr_pages; i++) {
1754                 const void __user *p;
1755                 unsigned long addr;
1756                 int node;
1757
1758                 err = -EFAULT;
1759                 if (get_user(p, pages + i))
1760                         goto out_flush;
1761                 if (get_user(node, nodes + i))
1762                         goto out_flush;
1763                 addr = (unsigned long)untagged_addr(p);
1764
1765                 err = -ENODEV;
1766                 if (node < 0 || node >= MAX_NUMNODES)
1767                         goto out_flush;
1768                 if (!node_state(node, N_MEMORY))
1769                         goto out_flush;
1770
1771                 err = -EACCES;
1772                 if (!node_isset(node, task_nodes))
1773                         goto out_flush;
1774
1775                 if (current_node == NUMA_NO_NODE) {
1776                         current_node = node;
1777                         start = i;
1778                 } else if (node != current_node) {
1779                         err = move_pages_and_store_status(mm, current_node,
1780                                         &pagelist, status, start, i, nr_pages);
1781                         if (err)
1782                                 goto out;
1783                         start = i;
1784                         current_node = node;
1785                 }
1786
1787                 /*
1788                  * Errors in the page lookup or isolation are not fatal and we simply
1789                  * report them via status
1790                  */
1791                 err = add_page_for_migration(mm, addr, current_node,
1792                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1793
1794                 if (err > 0) {
1795                         /* The page is successfully queued for migration */
1796                         continue;
1797                 }
1798
1799                 /*
1800                  * If the page is already on the target node (!err), store the
1801                  * node, otherwise, store the err.
1802                  */
1803                 err = store_status(status, i, err ? : current_node, 1);
1804                 if (err)
1805                         goto out_flush;
1806
1807                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1808                                 status, start, i, nr_pages);
1809                 if (err)
1810                         goto out;
1811                 current_node = NUMA_NO_NODE;
1812         }
1813 out_flush:
1814         /* Make sure we do not overwrite the existing error */
1815         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1816                                 status, start, i, nr_pages);
1817         if (err >= 0)
1818                 err = err1;
1819 out:
1820         lru_cache_enable();
1821         return err;
1822 }
1823
1824 /*
1825  * Determine the nodes of an array of pages and store it in an array of status.
1826  */
1827 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1828                                 const void __user **pages, int *status)
1829 {
1830         unsigned long i;
1831
1832         mmap_read_lock(mm);
1833
1834         for (i = 0; i < nr_pages; i++) {
1835                 unsigned long addr = (unsigned long)(*pages);
1836                 struct vm_area_struct *vma;
1837                 struct page *page;
1838                 int err = -EFAULT;
1839
1840                 vma = vma_lookup(mm, addr);
1841                 if (!vma)
1842                         goto set_status;
1843
1844                 /* FOLL_DUMP to ignore special (like zero) pages */
1845                 page = follow_page(vma, addr, FOLL_DUMP);
1846
1847                 err = PTR_ERR(page);
1848                 if (IS_ERR(page))
1849                         goto set_status;
1850
1851                 err = page ? page_to_nid(page) : -ENOENT;
1852 set_status:
1853                 *status = err;
1854
1855                 pages++;
1856                 status++;
1857         }
1858
1859         mmap_read_unlock(mm);
1860 }
1861
1862 /*
1863  * Determine the nodes of a user array of pages and store it in
1864  * a user array of status.
1865  */
1866 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1867                          const void __user * __user *pages,
1868                          int __user *status)
1869 {
1870 #define DO_PAGES_STAT_CHUNK_NR 16
1871         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1872         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1873
1874         while (nr_pages) {
1875                 unsigned long chunk_nr;
1876
1877                 chunk_nr = nr_pages;
1878                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1879                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1880
1881                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1882                         break;
1883
1884                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1885
1886                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1887                         break;
1888
1889                 pages += chunk_nr;
1890                 status += chunk_nr;
1891                 nr_pages -= chunk_nr;
1892         }
1893         return nr_pages ? -EFAULT : 0;
1894 }
1895
1896 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1897 {
1898         struct task_struct *task;
1899         struct mm_struct *mm;
1900
1901         /*
1902          * There is no need to check if current process has the right to modify
1903          * the specified process when they are same.
1904          */
1905         if (!pid) {
1906                 mmget(current->mm);
1907                 *mem_nodes = cpuset_mems_allowed(current);
1908                 return current->mm;
1909         }
1910
1911         /* Find the mm_struct */
1912         rcu_read_lock();
1913         task = find_task_by_vpid(pid);
1914         if (!task) {
1915                 rcu_read_unlock();
1916                 return ERR_PTR(-ESRCH);
1917         }
1918         get_task_struct(task);
1919
1920         /*
1921          * Check if this process has the right to modify the specified
1922          * process. Use the regular "ptrace_may_access()" checks.
1923          */
1924         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1925                 rcu_read_unlock();
1926                 mm = ERR_PTR(-EPERM);
1927                 goto out;
1928         }
1929         rcu_read_unlock();
1930
1931         mm = ERR_PTR(security_task_movememory(task));
1932         if (IS_ERR(mm))
1933                 goto out;
1934         *mem_nodes = cpuset_mems_allowed(task);
1935         mm = get_task_mm(task);
1936 out:
1937         put_task_struct(task);
1938         if (!mm)
1939                 mm = ERR_PTR(-EINVAL);
1940         return mm;
1941 }
1942
1943 /*
1944  * Move a list of pages in the address space of the currently executing
1945  * process.
1946  */
1947 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1948                              const void __user * __user *pages,
1949                              const int __user *nodes,
1950                              int __user *status, int flags)
1951 {
1952         struct mm_struct *mm;
1953         int err;
1954         nodemask_t task_nodes;
1955
1956         /* Check flags */
1957         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1958                 return -EINVAL;
1959
1960         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1961                 return -EPERM;
1962
1963         mm = find_mm_struct(pid, &task_nodes);
1964         if (IS_ERR(mm))
1965                 return PTR_ERR(mm);
1966
1967         if (nodes)
1968                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1969                                     nodes, status, flags);
1970         else
1971                 err = do_pages_stat(mm, nr_pages, pages, status);
1972
1973         mmput(mm);
1974         return err;
1975 }
1976
1977 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1978                 const void __user * __user *, pages,
1979                 const int __user *, nodes,
1980                 int __user *, status, int, flags)
1981 {
1982         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1983 }
1984
1985 #ifdef CONFIG_COMPAT
1986 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1987                        compat_uptr_t __user *, pages32,
1988                        const int __user *, nodes,
1989                        int __user *, status,
1990                        int, flags)
1991 {
1992         const void __user * __user *pages;
1993         int i;
1994
1995         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1996         for (i = 0; i < nr_pages; i++) {
1997                 compat_uptr_t p;
1998
1999                 if (get_user(p, pages32 + i) ||
2000                         put_user(compat_ptr(p), pages + i))
2001                         return -EFAULT;
2002         }
2003         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2004 }
2005 #endif /* CONFIG_COMPAT */
2006
2007 #ifdef CONFIG_NUMA_BALANCING
2008 /*
2009  * Returns true if this is a safe migration target node for misplaced NUMA
2010  * pages. Currently it only checks the watermarks which crude
2011  */
2012 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2013                                    unsigned long nr_migrate_pages)
2014 {
2015         int z;
2016
2017         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2018                 struct zone *zone = pgdat->node_zones + z;
2019
2020                 if (!populated_zone(zone))
2021                         continue;
2022
2023                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2024                 if (!zone_watermark_ok(zone, 0,
2025                                        high_wmark_pages(zone) +
2026                                        nr_migrate_pages,
2027                                        ZONE_MOVABLE, 0))
2028                         continue;
2029                 return true;
2030         }
2031         return false;
2032 }
2033
2034 static struct page *alloc_misplaced_dst_page(struct page *page,
2035                                            unsigned long data)
2036 {
2037         int nid = (int) data;
2038         struct page *newpage;
2039
2040         newpage = __alloc_pages_node(nid,
2041                                          (GFP_HIGHUSER_MOVABLE |
2042                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2043                                           __GFP_NORETRY | __GFP_NOWARN) &
2044                                          ~__GFP_RECLAIM, 0);
2045
2046         return newpage;
2047 }
2048
2049 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2050 {
2051         int page_lru;
2052
2053         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2054
2055         /* Avoid migrating to a node that is nearly full */
2056         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2057                 return 0;
2058
2059         if (isolate_lru_page(page))
2060                 return 0;
2061
2062         /*
2063          * migrate_misplaced_transhuge_page() skips page migration's usual
2064          * check on page_count(), so we must do it here, now that the page
2065          * has been isolated: a GUP pin, or any other pin, prevents migration.
2066          * The expected page count is 3: 1 for page's mapcount and 1 for the
2067          * caller's pin and 1 for the reference taken by isolate_lru_page().
2068          */
2069         if (PageTransHuge(page) && page_count(page) != 3) {
2070                 putback_lru_page(page);
2071                 return 0;
2072         }
2073
2074         page_lru = page_is_file_lru(page);
2075         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2076                                 thp_nr_pages(page));
2077
2078         /*
2079          * Isolating the page has taken another reference, so the
2080          * caller's reference can be safely dropped without the page
2081          * disappearing underneath us during migration.
2082          */
2083         put_page(page);
2084         return 1;
2085 }
2086
2087 bool pmd_trans_migrating(pmd_t pmd)
2088 {
2089         struct page *page = pmd_page(pmd);
2090         return PageLocked(page);
2091 }
2092
2093 /*
2094  * Attempt to migrate a misplaced page to the specified destination
2095  * node. Caller is expected to have an elevated reference count on
2096  * the page that will be dropped by this function before returning.
2097  */
2098 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2099                            int node)
2100 {
2101         pg_data_t *pgdat = NODE_DATA(node);
2102         int isolated;
2103         int nr_remaining;
2104         LIST_HEAD(migratepages);
2105
2106         /*
2107          * Don't migrate file pages that are mapped in multiple processes
2108          * with execute permissions as they are probably shared libraries.
2109          */
2110         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2111             (vma->vm_flags & VM_EXEC))
2112                 goto out;
2113
2114         /*
2115          * Also do not migrate dirty pages as not all filesystems can move
2116          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2117          */
2118         if (page_is_file_lru(page) && PageDirty(page))
2119                 goto out;
2120
2121         isolated = numamigrate_isolate_page(pgdat, page);
2122         if (!isolated)
2123                 goto out;
2124
2125         list_add(&page->lru, &migratepages);
2126         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2127                                      NULL, node, MIGRATE_ASYNC,
2128                                      MR_NUMA_MISPLACED);
2129         if (nr_remaining) {
2130                 if (!list_empty(&migratepages)) {
2131                         list_del(&page->lru);
2132                         dec_node_page_state(page, NR_ISOLATED_ANON +
2133                                         page_is_file_lru(page));
2134                         putback_lru_page(page);
2135                 }
2136                 isolated = 0;
2137         } else
2138                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2139         BUG_ON(!list_empty(&migratepages));
2140         return isolated;
2141
2142 out:
2143         put_page(page);
2144         return 0;
2145 }
2146 #endif /* CONFIG_NUMA_BALANCING */
2147
2148 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2149 /*
2150  * Migrates a THP to a given target node. page must be locked and is unlocked
2151  * before returning.
2152  */
2153 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2154                                 struct vm_area_struct *vma,
2155                                 pmd_t *pmd, pmd_t entry,
2156                                 unsigned long address,
2157                                 struct page *page, int node)
2158 {
2159         spinlock_t *ptl;
2160         pg_data_t *pgdat = NODE_DATA(node);
2161         int isolated = 0;
2162         struct page *new_page = NULL;
2163         int page_lru = page_is_file_lru(page);
2164         unsigned long start = address & HPAGE_PMD_MASK;
2165
2166         new_page = alloc_pages_node(node,
2167                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2168                 HPAGE_PMD_ORDER);
2169         if (!new_page)
2170                 goto out_fail;
2171         prep_transhuge_page(new_page);
2172
2173         isolated = numamigrate_isolate_page(pgdat, page);
2174         if (!isolated) {
2175                 put_page(new_page);
2176                 goto out_fail;
2177         }
2178
2179         /* Prepare a page as a migration target */
2180         __SetPageLocked(new_page);
2181         if (PageSwapBacked(page))
2182                 __SetPageSwapBacked(new_page);
2183
2184         /* anon mapping, we can simply copy page->mapping to the new page: */
2185         new_page->mapping = page->mapping;
2186         new_page->index = page->index;
2187         /* flush the cache before copying using the kernel virtual address */
2188         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2189         migrate_page_copy(new_page, page);
2190         WARN_ON(PageLRU(new_page));
2191
2192         /* Recheck the target PMD */
2193         ptl = pmd_lock(mm, pmd);
2194         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2195                 spin_unlock(ptl);
2196
2197                 /* Reverse changes made by migrate_page_copy() */
2198                 if (TestClearPageActive(new_page))
2199                         SetPageActive(page);
2200                 if (TestClearPageUnevictable(new_page))
2201                         SetPageUnevictable(page);
2202
2203                 unlock_page(new_page);
2204                 put_page(new_page);             /* Free it */
2205
2206                 /* Retake the callers reference and putback on LRU */
2207                 get_page(page);
2208                 putback_lru_page(page);
2209                 mod_node_page_state(page_pgdat(page),
2210                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2211
2212                 goto out_unlock;
2213         }
2214
2215         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2216         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2217
2218         /*
2219          * Overwrite the old entry under pagetable lock and establish
2220          * the new PTE. Any parallel GUP will either observe the old
2221          * page blocking on the page lock, block on the page table
2222          * lock or observe the new page. The SetPageUptodate on the
2223          * new page and page_add_new_anon_rmap guarantee the copy is
2224          * visible before the pagetable update.
2225          */
2226         page_add_anon_rmap(new_page, vma, start, true);
2227         /*
2228          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2229          * has already been flushed globally.  So no TLB can be currently
2230          * caching this non present pmd mapping.  There's no need to clear the
2231          * pmd before doing set_pmd_at(), nor to flush the TLB after
2232          * set_pmd_at().  Clearing the pmd here would introduce a race
2233          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2234          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2235          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2236          * pmd.
2237          */
2238         set_pmd_at(mm, start, pmd, entry);
2239         update_mmu_cache_pmd(vma, address, &entry);
2240
2241         page_ref_unfreeze(page, 2);
2242         mlock_migrate_page(new_page, page);
2243         page_remove_rmap(page, true);
2244         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2245
2246         spin_unlock(ptl);
2247
2248         /* Take an "isolate" reference and put new page on the LRU. */
2249         get_page(new_page);
2250         putback_lru_page(new_page);
2251
2252         unlock_page(new_page);
2253         unlock_page(page);
2254         put_page(page);                 /* Drop the rmap reference */
2255         put_page(page);                 /* Drop the LRU isolation reference */
2256
2257         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2258         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2259
2260         mod_node_page_state(page_pgdat(page),
2261                         NR_ISOLATED_ANON + page_lru,
2262                         -HPAGE_PMD_NR);
2263         return isolated;
2264
2265 out_fail:
2266         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2267         ptl = pmd_lock(mm, pmd);
2268         if (pmd_same(*pmd, entry)) {
2269                 entry = pmd_modify(entry, vma->vm_page_prot);
2270                 set_pmd_at(mm, start, pmd, entry);
2271                 update_mmu_cache_pmd(vma, address, &entry);
2272         }
2273         spin_unlock(ptl);
2274
2275 out_unlock:
2276         unlock_page(page);
2277         put_page(page);
2278         return 0;
2279 }
2280 #endif /* CONFIG_NUMA_BALANCING */
2281
2282 #endif /* CONFIG_NUMA */
2283
2284 #ifdef CONFIG_DEVICE_PRIVATE
2285 static int migrate_vma_collect_skip(unsigned long start,
2286                                     unsigned long end,
2287                                     struct mm_walk *walk)
2288 {
2289         struct migrate_vma *migrate = walk->private;
2290         unsigned long addr;
2291
2292         for (addr = start; addr < end; addr += PAGE_SIZE) {
2293                 migrate->dst[migrate->npages] = 0;
2294                 migrate->src[migrate->npages++] = 0;
2295         }
2296
2297         return 0;
2298 }
2299
2300 static int migrate_vma_collect_hole(unsigned long start,
2301                                     unsigned long end,
2302                                     __always_unused int depth,
2303                                     struct mm_walk *walk)
2304 {
2305         struct migrate_vma *migrate = walk->private;
2306         unsigned long addr;
2307
2308         /* Only allow populating anonymous memory. */
2309         if (!vma_is_anonymous(walk->vma))
2310                 return migrate_vma_collect_skip(start, end, walk);
2311
2312         for (addr = start; addr < end; addr += PAGE_SIZE) {
2313                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2314                 migrate->dst[migrate->npages] = 0;
2315                 migrate->npages++;
2316                 migrate->cpages++;
2317         }
2318
2319         return 0;
2320 }
2321
2322 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2323                                    unsigned long start,
2324                                    unsigned long end,
2325                                    struct mm_walk *walk)
2326 {
2327         struct migrate_vma *migrate = walk->private;
2328         struct vm_area_struct *vma = walk->vma;
2329         struct mm_struct *mm = vma->vm_mm;
2330         unsigned long addr = start, unmapped = 0;
2331         spinlock_t *ptl;
2332         pte_t *ptep;
2333
2334 again:
2335         if (pmd_none(*pmdp))
2336                 return migrate_vma_collect_hole(start, end, -1, walk);
2337
2338         if (pmd_trans_huge(*pmdp)) {
2339                 struct page *page;
2340
2341                 ptl = pmd_lock(mm, pmdp);
2342                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2343                         spin_unlock(ptl);
2344                         goto again;
2345                 }
2346
2347                 page = pmd_page(*pmdp);
2348                 if (is_huge_zero_page(page)) {
2349                         spin_unlock(ptl);
2350                         split_huge_pmd(vma, pmdp, addr);
2351                         if (pmd_trans_unstable(pmdp))
2352                                 return migrate_vma_collect_skip(start, end,
2353                                                                 walk);
2354                 } else {
2355                         int ret;
2356
2357                         get_page(page);
2358                         spin_unlock(ptl);
2359                         if (unlikely(!trylock_page(page)))
2360                                 return migrate_vma_collect_skip(start, end,
2361                                                                 walk);
2362                         ret = split_huge_page(page);
2363                         unlock_page(page);
2364                         put_page(page);
2365                         if (ret)
2366                                 return migrate_vma_collect_skip(start, end,
2367                                                                 walk);
2368                         if (pmd_none(*pmdp))
2369                                 return migrate_vma_collect_hole(start, end, -1,
2370                                                                 walk);
2371                 }
2372         }
2373
2374         if (unlikely(pmd_bad(*pmdp)))
2375                 return migrate_vma_collect_skip(start, end, walk);
2376
2377         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2378         arch_enter_lazy_mmu_mode();
2379
2380         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2381                 unsigned long mpfn = 0, pfn;
2382                 struct page *page;
2383                 swp_entry_t entry;
2384                 pte_t pte;
2385
2386                 pte = *ptep;
2387
2388                 if (pte_none(pte)) {
2389                         if (vma_is_anonymous(vma)) {
2390                                 mpfn = MIGRATE_PFN_MIGRATE;
2391                                 migrate->cpages++;
2392                         }
2393                         goto next;
2394                 }
2395
2396                 if (!pte_present(pte)) {
2397                         /*
2398                          * Only care about unaddressable device page special
2399                          * page table entry. Other special swap entries are not
2400                          * migratable, and we ignore regular swapped page.
2401                          */
2402                         entry = pte_to_swp_entry(pte);
2403                         if (!is_device_private_entry(entry))
2404                                 goto next;
2405
2406                         page = device_private_entry_to_page(entry);
2407                         if (!(migrate->flags &
2408                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2409                             page->pgmap->owner != migrate->pgmap_owner)
2410                                 goto next;
2411
2412                         mpfn = migrate_pfn(page_to_pfn(page)) |
2413                                         MIGRATE_PFN_MIGRATE;
2414                         if (is_write_device_private_entry(entry))
2415                                 mpfn |= MIGRATE_PFN_WRITE;
2416                 } else {
2417                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2418                                 goto next;
2419                         pfn = pte_pfn(pte);
2420                         if (is_zero_pfn(pfn)) {
2421                                 mpfn = MIGRATE_PFN_MIGRATE;
2422                                 migrate->cpages++;
2423                                 goto next;
2424                         }
2425                         page = vm_normal_page(migrate->vma, addr, pte);
2426                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2427                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2428                 }
2429
2430                 /* FIXME support THP */
2431                 if (!page || !page->mapping || PageTransCompound(page)) {
2432                         mpfn = 0;
2433                         goto next;
2434                 }
2435
2436                 /*
2437                  * By getting a reference on the page we pin it and that blocks
2438                  * any kind of migration. Side effect is that it "freezes" the
2439                  * pte.
2440                  *
2441                  * We drop this reference after isolating the page from the lru
2442                  * for non device page (device page are not on the lru and thus
2443                  * can't be dropped from it).
2444                  */
2445                 get_page(page);
2446                 migrate->cpages++;
2447
2448                 /*
2449                  * Optimize for the common case where page is only mapped once
2450                  * in one process. If we can lock the page, then we can safely
2451                  * set up a special migration page table entry now.
2452                  */
2453                 if (trylock_page(page)) {
2454                         pte_t swp_pte;
2455
2456                         mpfn |= MIGRATE_PFN_LOCKED;
2457                         ptep_get_and_clear(mm, addr, ptep);
2458
2459                         /* Setup special migration page table entry */
2460                         entry = make_migration_entry(page, mpfn &
2461                                                      MIGRATE_PFN_WRITE);
2462                         swp_pte = swp_entry_to_pte(entry);
2463                         if (pte_present(pte)) {
2464                                 if (pte_soft_dirty(pte))
2465                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2466                                 if (pte_uffd_wp(pte))
2467                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2468                         } else {
2469                                 if (pte_swp_soft_dirty(pte))
2470                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2471                                 if (pte_swp_uffd_wp(pte))
2472                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2473                         }
2474                         set_pte_at(mm, addr, ptep, swp_pte);
2475
2476                         /*
2477                          * This is like regular unmap: we remove the rmap and
2478                          * drop page refcount. Page won't be freed, as we took
2479                          * a reference just above.
2480                          */
2481                         page_remove_rmap(page, false);
2482                         put_page(page);
2483
2484                         if (pte_present(pte))
2485                                 unmapped++;
2486                 }
2487
2488 next:
2489                 migrate->dst[migrate->npages] = 0;
2490                 migrate->src[migrate->npages++] = mpfn;
2491         }
2492         arch_leave_lazy_mmu_mode();
2493         pte_unmap_unlock(ptep - 1, ptl);
2494
2495         /* Only flush the TLB if we actually modified any entries */
2496         if (unmapped)
2497                 flush_tlb_range(walk->vma, start, end);
2498
2499         return 0;
2500 }
2501
2502 static const struct mm_walk_ops migrate_vma_walk_ops = {
2503         .pmd_entry              = migrate_vma_collect_pmd,
2504         .pte_hole               = migrate_vma_collect_hole,
2505 };
2506
2507 /*
2508  * migrate_vma_collect() - collect pages over a range of virtual addresses
2509  * @migrate: migrate struct containing all migration information
2510  *
2511  * This will walk the CPU page table. For each virtual address backed by a
2512  * valid page, it updates the src array and takes a reference on the page, in
2513  * order to pin the page until we lock it and unmap it.
2514  */
2515 static void migrate_vma_collect(struct migrate_vma *migrate)
2516 {
2517         struct mmu_notifier_range range;
2518
2519         /*
2520          * Note that the pgmap_owner is passed to the mmu notifier callback so
2521          * that the registered device driver can skip invalidating device
2522          * private page mappings that won't be migrated.
2523          */
2524         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2525                 migrate->vma->vm_mm, migrate->start, migrate->end,
2526                 migrate->pgmap_owner);
2527         mmu_notifier_invalidate_range_start(&range);
2528
2529         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2530                         &migrate_vma_walk_ops, migrate);
2531
2532         mmu_notifier_invalidate_range_end(&range);
2533         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2534 }
2535
2536 /*
2537  * migrate_vma_check_page() - check if page is pinned or not
2538  * @page: struct page to check
2539  *
2540  * Pinned pages cannot be migrated. This is the same test as in
2541  * migrate_page_move_mapping(), except that here we allow migration of a
2542  * ZONE_DEVICE page.
2543  */
2544 static bool migrate_vma_check_page(struct page *page)
2545 {
2546         /*
2547          * One extra ref because caller holds an extra reference, either from
2548          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2549          * a device page.
2550          */
2551         int extra = 1;
2552
2553         /*
2554          * FIXME support THP (transparent huge page), it is bit more complex to
2555          * check them than regular pages, because they can be mapped with a pmd
2556          * or with a pte (split pte mapping).
2557          */
2558         if (PageCompound(page))
2559                 return false;
2560
2561         /* Page from ZONE_DEVICE have one extra reference */
2562         if (is_zone_device_page(page)) {
2563                 /*
2564                  * Private page can never be pin as they have no valid pte and
2565                  * GUP will fail for those. Yet if there is a pending migration
2566                  * a thread might try to wait on the pte migration entry and
2567                  * will bump the page reference count. Sadly there is no way to
2568                  * differentiate a regular pin from migration wait. Hence to
2569                  * avoid 2 racing thread trying to migrate back to CPU to enter
2570                  * infinite loop (one stopping migration because the other is
2571                  * waiting on pte migration entry). We always return true here.
2572                  *
2573                  * FIXME proper solution is to rework migration_entry_wait() so
2574                  * it does not need to take a reference on page.
2575                  */
2576                 return is_device_private_page(page);
2577         }
2578
2579         /* For file back page */
2580         if (page_mapping(page))
2581                 extra += 1 + page_has_private(page);
2582
2583         if ((page_count(page) - extra) > page_mapcount(page))
2584                 return false;
2585
2586         return true;
2587 }
2588
2589 /*
2590  * migrate_vma_prepare() - lock pages and isolate them from the lru
2591  * @migrate: migrate struct containing all migration information
2592  *
2593  * This locks pages that have been collected by migrate_vma_collect(). Once each
2594  * page is locked it is isolated from the lru (for non-device pages). Finally,
2595  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2596  * migrated by concurrent kernel threads.
2597  */
2598 static void migrate_vma_prepare(struct migrate_vma *migrate)
2599 {
2600         const unsigned long npages = migrate->npages;
2601         const unsigned long start = migrate->start;
2602         unsigned long addr, i, restore = 0;
2603         bool allow_drain = true;
2604
2605         lru_add_drain();
2606
2607         for (i = 0; (i < npages) && migrate->cpages; i++) {
2608                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2609                 bool remap = true;
2610
2611                 if (!page)
2612                         continue;
2613
2614                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2615                         /*
2616                          * Because we are migrating several pages there can be
2617                          * a deadlock between 2 concurrent migration where each
2618                          * are waiting on each other page lock.
2619                          *
2620                          * Make migrate_vma() a best effort thing and backoff
2621                          * for any page we can not lock right away.
2622                          */
2623                         if (!trylock_page(page)) {
2624                                 migrate->src[i] = 0;
2625                                 migrate->cpages--;
2626                                 put_page(page);
2627                                 continue;
2628                         }
2629                         remap = false;
2630                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2631                 }
2632
2633                 /* ZONE_DEVICE pages are not on LRU */
2634                 if (!is_zone_device_page(page)) {
2635                         if (!PageLRU(page) && allow_drain) {
2636                                 /* Drain CPU's pagevec */
2637                                 lru_add_drain_all();
2638                                 allow_drain = false;
2639                         }
2640
2641                         if (isolate_lru_page(page)) {
2642                                 if (remap) {
2643                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2644                                         migrate->cpages--;
2645                                         restore++;
2646                                 } else {
2647                                         migrate->src[i] = 0;
2648                                         unlock_page(page);
2649                                         migrate->cpages--;
2650                                         put_page(page);
2651                                 }
2652                                 continue;
2653                         }
2654
2655                         /* Drop the reference we took in collect */
2656                         put_page(page);
2657                 }
2658
2659                 if (!migrate_vma_check_page(page)) {
2660                         if (remap) {
2661                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2662                                 migrate->cpages--;
2663                                 restore++;
2664
2665                                 if (!is_zone_device_page(page)) {
2666                                         get_page(page);
2667                                         putback_lru_page(page);
2668                                 }
2669                         } else {
2670                                 migrate->src[i] = 0;
2671                                 unlock_page(page);
2672                                 migrate->cpages--;
2673
2674                                 if (!is_zone_device_page(page))
2675                                         putback_lru_page(page);
2676                                 else
2677                                         put_page(page);
2678                         }
2679                 }
2680         }
2681
2682         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2683                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2684
2685                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2686                         continue;
2687
2688                 remove_migration_pte(page, migrate->vma, addr, page);
2689
2690                 migrate->src[i] = 0;
2691                 unlock_page(page);
2692                 put_page(page);
2693                 restore--;
2694         }
2695 }
2696
2697 /*
2698  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2699  * @migrate: migrate struct containing all migration information
2700  *
2701  * Replace page mapping (CPU page table pte) with a special migration pte entry
2702  * and check again if it has been pinned. Pinned pages are restored because we
2703  * cannot migrate them.
2704  *
2705  * This is the last step before we call the device driver callback to allocate
2706  * destination memory and copy contents of original page over to new page.
2707  */
2708 static void migrate_vma_unmap(struct migrate_vma *migrate)
2709 {
2710         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2711         const unsigned long npages = migrate->npages;
2712         const unsigned long start = migrate->start;
2713         unsigned long addr, i, restore = 0;
2714
2715         for (i = 0; i < npages; i++) {
2716                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2717
2718                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2719                         continue;
2720
2721                 if (page_mapped(page)) {
2722                         try_to_unmap(page, flags);
2723                         if (page_mapped(page))
2724                                 goto restore;
2725                 }
2726
2727                 if (migrate_vma_check_page(page))
2728                         continue;
2729
2730 restore:
2731                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2732                 migrate->cpages--;
2733                 restore++;
2734         }
2735
2736         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2737                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2738
2739                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2740                         continue;
2741
2742                 remove_migration_ptes(page, page, false);
2743
2744                 migrate->src[i] = 0;
2745                 unlock_page(page);
2746                 restore--;
2747
2748                 if (is_zone_device_page(page))
2749                         put_page(page);
2750                 else
2751                         putback_lru_page(page);
2752         }
2753 }
2754
2755 /**
2756  * migrate_vma_setup() - prepare to migrate a range of memory
2757  * @args: contains the vma, start, and pfns arrays for the migration
2758  *
2759  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2760  * without an error.
2761  *
2762  * Prepare to migrate a range of memory virtual address range by collecting all
2763  * the pages backing each virtual address in the range, saving them inside the
2764  * src array.  Then lock those pages and unmap them. Once the pages are locked
2765  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2766  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2767  * corresponding src array entry.  Then restores any pages that are pinned, by
2768  * remapping and unlocking those pages.
2769  *
2770  * The caller should then allocate destination memory and copy source memory to
2771  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2772  * flag set).  Once these are allocated and copied, the caller must update each
2773  * corresponding entry in the dst array with the pfn value of the destination
2774  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2775  * (destination pages must have their struct pages locked, via lock_page()).
2776  *
2777  * Note that the caller does not have to migrate all the pages that are marked
2778  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2779  * device memory to system memory.  If the caller cannot migrate a device page
2780  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2781  * consequences for the userspace process, so it must be avoided if at all
2782  * possible.
2783  *
2784  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2785  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2786  * allowing the caller to allocate device memory for those unbacked virtual
2787  * addresses.  For this the caller simply has to allocate device memory and
2788  * properly set the destination entry like for regular migration.  Note that
2789  * this can still fail, and thus inside the device driver you must check if the
2790  * migration was successful for those entries after calling migrate_vma_pages(),
2791  * just like for regular migration.
2792  *
2793  * After that, the callers must call migrate_vma_pages() to go over each entry
2794  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2795  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2796  * then migrate_vma_pages() to migrate struct page information from the source
2797  * struct page to the destination struct page.  If it fails to migrate the
2798  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2799  * src array.
2800  *
2801  * At this point all successfully migrated pages have an entry in the src
2802  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2803  * array entry with MIGRATE_PFN_VALID flag set.
2804  *
2805  * Once migrate_vma_pages() returns the caller may inspect which pages were
2806  * successfully migrated, and which were not.  Successfully migrated pages will
2807  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2808  *
2809  * It is safe to update device page table after migrate_vma_pages() because
2810  * both destination and source page are still locked, and the mmap_lock is held
2811  * in read mode (hence no one can unmap the range being migrated).
2812  *
2813  * Once the caller is done cleaning up things and updating its page table (if it
2814  * chose to do so, this is not an obligation) it finally calls
2815  * migrate_vma_finalize() to update the CPU page table to point to new pages
2816  * for successfully migrated pages or otherwise restore the CPU page table to
2817  * point to the original source pages.
2818  */
2819 int migrate_vma_setup(struct migrate_vma *args)
2820 {
2821         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2822
2823         args->start &= PAGE_MASK;
2824         args->end &= PAGE_MASK;
2825         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2826             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2827                 return -EINVAL;
2828         if (nr_pages <= 0)
2829                 return -EINVAL;
2830         if (args->start < args->vma->vm_start ||
2831             args->start >= args->vma->vm_end)
2832                 return -EINVAL;
2833         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2834                 return -EINVAL;
2835         if (!args->src || !args->dst)
2836                 return -EINVAL;
2837
2838         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2839         args->cpages = 0;
2840         args->npages = 0;
2841
2842         migrate_vma_collect(args);
2843
2844         if (args->cpages)
2845                 migrate_vma_prepare(args);
2846         if (args->cpages)
2847                 migrate_vma_unmap(args);
2848
2849         /*
2850          * At this point pages are locked and unmapped, and thus they have
2851          * stable content and can safely be copied to destination memory that
2852          * is allocated by the drivers.
2853          */
2854         return 0;
2855
2856 }
2857 EXPORT_SYMBOL(migrate_vma_setup);
2858
2859 /*
2860  * This code closely matches the code in:
2861  *   __handle_mm_fault()
2862  *     handle_pte_fault()
2863  *       do_anonymous_page()
2864  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2865  * private page.
2866  */
2867 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2868                                     unsigned long addr,
2869                                     struct page *page,
2870                                     unsigned long *src)
2871 {
2872         struct vm_area_struct *vma = migrate->vma;
2873         struct mm_struct *mm = vma->vm_mm;
2874         bool flush = false;
2875         spinlock_t *ptl;
2876         pte_t entry;
2877         pgd_t *pgdp;
2878         p4d_t *p4dp;
2879         pud_t *pudp;
2880         pmd_t *pmdp;
2881         pte_t *ptep;
2882
2883         /* Only allow populating anonymous memory */
2884         if (!vma_is_anonymous(vma))
2885                 goto abort;
2886
2887         pgdp = pgd_offset(mm, addr);
2888         p4dp = p4d_alloc(mm, pgdp, addr);
2889         if (!p4dp)
2890                 goto abort;
2891         pudp = pud_alloc(mm, p4dp, addr);
2892         if (!pudp)
2893                 goto abort;
2894         pmdp = pmd_alloc(mm, pudp, addr);
2895         if (!pmdp)
2896                 goto abort;
2897
2898         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2899                 goto abort;
2900
2901         /*
2902          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2903          * pte_offset_map() on pmds where a huge pmd might be created
2904          * from a different thread.
2905          *
2906          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2907          * parallel threads are excluded by other means.
2908          *
2909          * Here we only have mmap_read_lock(mm).
2910          */
2911         if (pte_alloc(mm, pmdp))
2912                 goto abort;
2913
2914         /* See the comment in pte_alloc_one_map() */
2915         if (unlikely(pmd_trans_unstable(pmdp)))
2916                 goto abort;
2917
2918         if (unlikely(anon_vma_prepare(vma)))
2919                 goto abort;
2920         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2921                 goto abort;
2922
2923         /*
2924          * The memory barrier inside __SetPageUptodate makes sure that
2925          * preceding stores to the page contents become visible before
2926          * the set_pte_at() write.
2927          */
2928         __SetPageUptodate(page);
2929
2930         if (is_zone_device_page(page)) {
2931                 if (is_device_private_page(page)) {
2932                         swp_entry_t swp_entry;
2933
2934                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2935                         entry = swp_entry_to_pte(swp_entry);
2936                 } else {
2937                         /*
2938                          * For now we only support migrating to un-addressable
2939                          * device memory.
2940                          */
2941                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2942                         goto abort;
2943                 }
2944         } else {
2945                 entry = mk_pte(page, vma->vm_page_prot);
2946                 if (vma->vm_flags & VM_WRITE)
2947                         entry = pte_mkwrite(pte_mkdirty(entry));
2948         }
2949
2950         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2951
2952         if (check_stable_address_space(mm))
2953                 goto unlock_abort;
2954
2955         if (pte_present(*ptep)) {
2956                 unsigned long pfn = pte_pfn(*ptep);
2957
2958                 if (!is_zero_pfn(pfn))
2959                         goto unlock_abort;
2960                 flush = true;
2961         } else if (!pte_none(*ptep))
2962                 goto unlock_abort;
2963
2964         /*
2965          * Check for userfaultfd but do not deliver the fault. Instead,
2966          * just back off.
2967          */
2968         if (userfaultfd_missing(vma))
2969                 goto unlock_abort;
2970
2971         inc_mm_counter(mm, MM_ANONPAGES);
2972         page_add_new_anon_rmap(page, vma, addr, false);
2973         if (!is_zone_device_page(page))
2974                 lru_cache_add_inactive_or_unevictable(page, vma);
2975         get_page(page);
2976
2977         if (flush) {
2978                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2979                 ptep_clear_flush_notify(vma, addr, ptep);
2980                 set_pte_at_notify(mm, addr, ptep, entry);
2981                 update_mmu_cache(vma, addr, ptep);
2982         } else {
2983                 /* No need to invalidate - it was non-present before */
2984                 set_pte_at(mm, addr, ptep, entry);
2985                 update_mmu_cache(vma, addr, ptep);
2986         }
2987
2988         pte_unmap_unlock(ptep, ptl);
2989         *src = MIGRATE_PFN_MIGRATE;
2990         return;
2991
2992 unlock_abort:
2993         pte_unmap_unlock(ptep, ptl);
2994 abort:
2995         *src &= ~MIGRATE_PFN_MIGRATE;
2996 }
2997
2998 /**
2999  * migrate_vma_pages() - migrate meta-data from src page to dst page
3000  * @migrate: migrate struct containing all migration information
3001  *
3002  * This migrates struct page meta-data from source struct page to destination
3003  * struct page. This effectively finishes the migration from source page to the
3004  * destination page.
3005  */
3006 void migrate_vma_pages(struct migrate_vma *migrate)
3007 {
3008         const unsigned long npages = migrate->npages;
3009         const unsigned long start = migrate->start;
3010         struct mmu_notifier_range range;
3011         unsigned long addr, i;
3012         bool notified = false;
3013
3014         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3015                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3016                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3017                 struct address_space *mapping;
3018                 int r;
3019
3020                 if (!newpage) {
3021                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3022                         continue;
3023                 }
3024
3025                 if (!page) {
3026                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3027                                 continue;
3028                         if (!notified) {
3029                                 notified = true;
3030
3031                                 mmu_notifier_range_init_migrate(&range, 0,
3032                                         migrate->vma, migrate->vma->vm_mm,
3033                                         addr, migrate->end,
3034                                         migrate->pgmap_owner);
3035                                 mmu_notifier_invalidate_range_start(&range);
3036                         }
3037                         migrate_vma_insert_page(migrate, addr, newpage,
3038                                                 &migrate->src[i]);
3039                         continue;
3040                 }
3041
3042                 mapping = page_mapping(page);
3043
3044                 if (is_zone_device_page(newpage)) {
3045                         if (is_device_private_page(newpage)) {
3046                                 /*
3047                                  * For now only support private anonymous when
3048                                  * migrating to un-addressable device memory.
3049                                  */
3050                                 if (mapping) {
3051                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3052                                         continue;
3053                                 }
3054                         } else {
3055                                 /*
3056                                  * Other types of ZONE_DEVICE page are not
3057                                  * supported.
3058                                  */
3059                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3060                                 continue;
3061                         }
3062                 }
3063
3064                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3065                 if (r != MIGRATEPAGE_SUCCESS)
3066                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3067         }
3068
3069         /*
3070          * No need to double call mmu_notifier->invalidate_range() callback as
3071          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3072          * did already call it.
3073          */
3074         if (notified)
3075                 mmu_notifier_invalidate_range_only_end(&range);
3076 }
3077 EXPORT_SYMBOL(migrate_vma_pages);
3078
3079 /**
3080  * migrate_vma_finalize() - restore CPU page table entry
3081  * @migrate: migrate struct containing all migration information
3082  *
3083  * This replaces the special migration pte entry with either a mapping to the
3084  * new page if migration was successful for that page, or to the original page
3085  * otherwise.
3086  *
3087  * This also unlocks the pages and puts them back on the lru, or drops the extra
3088  * refcount, for device pages.
3089  */
3090 void migrate_vma_finalize(struct migrate_vma *migrate)
3091 {
3092         const unsigned long npages = migrate->npages;
3093         unsigned long i;
3094
3095         for (i = 0; i < npages; i++) {
3096                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3097                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3098
3099                 if (!page) {
3100                         if (newpage) {
3101                                 unlock_page(newpage);
3102                                 put_page(newpage);
3103                         }
3104                         continue;
3105                 }
3106
3107                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3108                         if (newpage) {
3109                                 unlock_page(newpage);
3110                                 put_page(newpage);
3111                         }
3112                         newpage = page;
3113                 }
3114
3115                 remove_migration_ptes(page, newpage, false);
3116                 unlock_page(page);
3117
3118                 if (is_zone_device_page(page))
3119                         put_page(page);
3120                 else
3121                         putback_lru_page(page);
3122
3123                 if (newpage != page) {
3124                         unlock_page(newpage);
3125                         if (is_zone_device_page(newpage))
3126                                 put_page(newpage);
3127                         else
3128                                 putback_lru_page(newpage);
3129                 }
3130         }
3131 }
3132 EXPORT_SYMBOL(migrate_vma_finalize);
3133 #endif /* CONFIG_DEVICE_PRIVATE */