1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
80 #include <trace/events/kmem.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
87 #include <asm/tlbflush.h>
89 #include "pgalloc-track.h"
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 static vm_fault_t do_fault(struct vm_fault *vmf);
98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
99 static bool vmf_pte_changed(struct vm_fault *vmf);
102 * Return true if the original pte was a uffd-wp pte marker (so the pte was
105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
107 if (!userfaultfd_wp(vmf->vma))
109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
112 return pte_marker_uffd_wp(vmf->orig_pte);
116 * Randomize the address space (stacks, mmaps, brk, etc.).
118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119 * as ancient (libc5 based) binaries can segfault. )
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
128 #ifndef arch_wants_old_prefaulted_pte
129 static inline bool arch_wants_old_prefaulted_pte(void)
132 * Transitioning a PTE from 'old' to 'young' can be expensive on
133 * some architectures, even if it's performed in hardware. By
134 * default, "false" means prefaulted entries will be 'young'.
140 static int __init disable_randmaps(char *s)
142 randomize_va_space = 0;
145 __setup("norandmaps", disable_randmaps);
147 unsigned long zero_pfn __read_mostly;
148 EXPORT_SYMBOL(zero_pfn);
150 unsigned long highest_memmap_pfn __read_mostly;
153 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
155 static int __init init_zero_pfn(void)
157 zero_pfn = page_to_pfn(ZERO_PAGE(0));
160 early_initcall(init_zero_pfn);
162 void mm_trace_rss_stat(struct mm_struct *mm, int member)
164 trace_rss_stat(mm, member);
168 * Note: this doesn't free the actual pages themselves. That
169 * has been handled earlier when unmapping all the memory regions.
171 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
174 pgtable_t token = pmd_pgtable(*pmd);
176 pte_free_tlb(tlb, token, addr);
177 mm_dec_nr_ptes(tlb->mm);
180 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
181 unsigned long addr, unsigned long end,
182 unsigned long floor, unsigned long ceiling)
189 pmd = pmd_offset(pud, addr);
191 next = pmd_addr_end(addr, end);
192 if (pmd_none_or_clear_bad(pmd))
194 free_pte_range(tlb, pmd, addr);
195 } while (pmd++, addr = next, addr != end);
205 if (end - 1 > ceiling - 1)
208 pmd = pmd_offset(pud, start);
210 pmd_free_tlb(tlb, pmd, start);
211 mm_dec_nr_pmds(tlb->mm);
214 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
215 unsigned long addr, unsigned long end,
216 unsigned long floor, unsigned long ceiling)
223 pud = pud_offset(p4d, addr);
225 next = pud_addr_end(addr, end);
226 if (pud_none_or_clear_bad(pud))
228 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
229 } while (pud++, addr = next, addr != end);
239 if (end - 1 > ceiling - 1)
242 pud = pud_offset(p4d, start);
244 pud_free_tlb(tlb, pud, start);
245 mm_dec_nr_puds(tlb->mm);
248 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
249 unsigned long addr, unsigned long end,
250 unsigned long floor, unsigned long ceiling)
257 p4d = p4d_offset(pgd, addr);
259 next = p4d_addr_end(addr, end);
260 if (p4d_none_or_clear_bad(p4d))
262 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
263 } while (p4d++, addr = next, addr != end);
269 ceiling &= PGDIR_MASK;
273 if (end - 1 > ceiling - 1)
276 p4d = p4d_offset(pgd, start);
278 p4d_free_tlb(tlb, p4d, start);
282 * free_pgd_range - Unmap and free page tables in the range
283 * @tlb: the mmu_gather containing pending TLB flush info
284 * @addr: virtual address start
285 * @end: virtual address end
286 * @floor: lowest address boundary
287 * @ceiling: highest address boundary
289 * This function tears down all user-level page tables in the
290 * specified virtual address range [@addr..@end). It is part of
291 * the memory unmap flow.
293 void free_pgd_range(struct mmu_gather *tlb,
294 unsigned long addr, unsigned long end,
295 unsigned long floor, unsigned long ceiling)
301 * The next few lines have given us lots of grief...
303 * Why are we testing PMD* at this top level? Because often
304 * there will be no work to do at all, and we'd prefer not to
305 * go all the way down to the bottom just to discover that.
307 * Why all these "- 1"s? Because 0 represents both the bottom
308 * of the address space and the top of it (using -1 for the
309 * top wouldn't help much: the masks would do the wrong thing).
310 * The rule is that addr 0 and floor 0 refer to the bottom of
311 * the address space, but end 0 and ceiling 0 refer to the top
312 * Comparisons need to use "end - 1" and "ceiling - 1" (though
313 * that end 0 case should be mythical).
315 * Wherever addr is brought up or ceiling brought down, we must
316 * be careful to reject "the opposite 0" before it confuses the
317 * subsequent tests. But what about where end is brought down
318 * by PMD_SIZE below? no, end can't go down to 0 there.
320 * Whereas we round start (addr) and ceiling down, by different
321 * masks at different levels, in order to test whether a table
322 * now has no other vmas using it, so can be freed, we don't
323 * bother to round floor or end up - the tests don't need that.
337 if (end - 1 > ceiling - 1)
342 * We add page table cache pages with PAGE_SIZE,
343 * (see pte_free_tlb()), flush the tlb if we need
345 tlb_change_page_size(tlb, PAGE_SIZE);
346 pgd = pgd_offset(tlb->mm, addr);
348 next = pgd_addr_end(addr, end);
349 if (pgd_none_or_clear_bad(pgd))
351 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
352 } while (pgd++, addr = next, addr != end);
355 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
356 struct vm_area_struct *vma, unsigned long floor,
357 unsigned long ceiling, bool mm_wr_locked)
359 struct unlink_vma_file_batch vb;
364 unsigned long addr = vma->vm_start;
365 struct vm_area_struct *next;
368 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
369 * be 0. This will underflow and is okay.
371 next = mas_find(mas, ceiling - 1);
372 if (unlikely(xa_is_zero(next)))
376 * Hide vma from rmap and truncate_pagecache before freeing
380 vma_start_write(vma);
381 unlink_anon_vmas(vma);
383 if (is_vm_hugetlb_page(vma)) {
384 unlink_file_vma(vma);
385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 floor, next ? next->vm_start : ceiling);
388 unlink_file_vma_batch_init(&vb);
389 unlink_file_vma_batch_add(&vb, vma);
392 * Optimization: gather nearby vmas into one call down
394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 && !is_vm_hugetlb_page(next)) {
397 next = mas_find(mas, ceiling - 1);
398 if (unlikely(xa_is_zero(next)))
401 vma_start_write(vma);
402 unlink_anon_vmas(vma);
403 unlink_file_vma_batch_add(&vb, vma);
405 unlink_file_vma_batch_final(&vb);
406 free_pgd_range(tlb, addr, vma->vm_end,
407 floor, next ? next->vm_start : ceiling);
413 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
415 spinlock_t *ptl = pmd_lock(mm, pmd);
417 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
420 * Ensure all pte setup (eg. pte page lock and page clearing) are
421 * visible before the pte is made visible to other CPUs by being
422 * put into page tables.
424 * The other side of the story is the pointer chasing in the page
425 * table walking code (when walking the page table without locking;
426 * ie. most of the time). Fortunately, these data accesses consist
427 * of a chain of data-dependent loads, meaning most CPUs (alpha
428 * being the notable exception) will already guarantee loads are
429 * seen in-order. See the alpha page table accessors for the
430 * smp_rmb() barriers in page table walking code.
432 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
433 pmd_populate(mm, pmd, *pte);
439 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
441 pgtable_t new = pte_alloc_one(mm);
445 pmd_install(mm, pmd, &new);
451 int __pte_alloc_kernel(pmd_t *pmd)
453 pte_t *new = pte_alloc_one_kernel(&init_mm);
457 spin_lock(&init_mm.page_table_lock);
458 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
459 smp_wmb(); /* See comment in pmd_install() */
460 pmd_populate_kernel(&init_mm, pmd, new);
463 spin_unlock(&init_mm.page_table_lock);
465 pte_free_kernel(&init_mm, new);
469 static inline void init_rss_vec(int *rss)
471 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
474 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
478 for (i = 0; i < NR_MM_COUNTERS; i++)
480 add_mm_counter(mm, i, rss[i]);
484 * This function is called to print an error when a bad pte
485 * is found. For example, we might have a PFN-mapped pte in
486 * a region that doesn't allow it.
488 * The calling function must still handle the error.
490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 pte_t pte, struct page *page)
493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 p4d_t *p4d = p4d_offset(pgd, addr);
495 pud_t *pud = pud_offset(p4d, addr);
496 pmd_t *pmd = pmd_offset(pud, addr);
497 struct address_space *mapping;
499 static unsigned long resume;
500 static unsigned long nr_shown;
501 static unsigned long nr_unshown;
504 * Allow a burst of 60 reports, then keep quiet for that minute;
505 * or allow a steady drip of one report per second.
507 if (nr_shown == 60) {
508 if (time_before(jiffies, resume)) {
513 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
520 resume = jiffies + 60 * HZ;
522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 index = linear_page_index(vma, addr);
525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
527 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 dump_page(page, "bad pte");
530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
534 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL,
537 mapping ? mapping->a_ops->read_folio : NULL);
539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
543 * vm_normal_page -- This function gets the "struct page" associated with a pte.
545 * "Special" mappings do not wish to be associated with a "struct page" (either
546 * it doesn't exist, or it exists but they don't want to touch it). In this
547 * case, NULL is returned here. "Normal" mappings do have a struct page.
549 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550 * pte bit, in which case this function is trivial. Secondly, an architecture
551 * may not have a spare pte bit, which requires a more complicated scheme,
554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555 * special mapping (even if there are underlying and valid "struct pages").
556 * COWed pages of a VM_PFNMAP are always normal.
558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561 * mapping will always honor the rule
563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
565 * And for normal mappings this is false.
567 * This restricts such mappings to be a linear translation from virtual address
568 * to pfn. To get around this restriction, we allow arbitrary mappings so long
569 * as the vma is not a COW mapping; in that case, we know that all ptes are
570 * special (because none can have been COWed).
573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576 * page" backing, however the difference is that _all_ pages with a struct
577 * page (that is, those where pfn_valid is true) are refcounted and considered
578 * normal pages by the VM. The only exception are zeropages, which are
579 * *never* refcounted.
581 * The disadvantage is that pages are refcounted (which can be slower and
582 * simply not an option for some PFNMAP users). The advantage is that we
583 * don't have to follow the strict linearity rule of PFNMAP mappings in
584 * order to support COWable mappings.
587 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
590 unsigned long pfn = pte_pfn(pte);
592 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
593 if (likely(!pte_special(pte)))
595 if (vma->vm_ops && vma->vm_ops->find_special_page)
596 return vma->vm_ops->find_special_page(vma, addr);
597 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
599 if (is_zero_pfn(pfn))
603 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
604 * and will have refcounts incremented on their struct pages
605 * when they are inserted into PTEs, thus they are safe to
606 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
607 * do not have refcounts. Example of legacy ZONE_DEVICE is
608 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
612 print_bad_pte(vma, addr, pte, NULL);
616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
622 if (is_zero_pfn(pfn))
627 off = (addr - vma->vm_start) >> PAGE_SHIFT;
628 if (pfn == vma->vm_pgoff + off)
630 if (!is_cow_mapping(vma->vm_flags))
635 if (is_zero_pfn(pfn))
639 if (unlikely(pfn > highest_memmap_pfn)) {
640 print_bad_pte(vma, addr, pte, NULL);
645 * NOTE! We still have PageReserved() pages in the page tables.
646 * eg. VDSO mappings can cause them to exist.
649 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
650 return pfn_to_page(pfn);
653 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
656 struct page *page = vm_normal_page(vma, addr, pte);
659 return page_folio(page);
663 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
664 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
667 unsigned long pfn = pmd_pfn(pmd);
669 /* Currently it's only used for huge pfnmaps */
670 if (unlikely(pmd_special(pmd)))
673 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
674 if (vma->vm_flags & VM_MIXEDMAP) {
680 off = (addr - vma->vm_start) >> PAGE_SHIFT;
681 if (pfn == vma->vm_pgoff + off)
683 if (!is_cow_mapping(vma->vm_flags))
690 if (is_huge_zero_pmd(pmd))
692 if (unlikely(pfn > highest_memmap_pfn))
696 * NOTE! We still have PageReserved() pages in the page tables.
697 * eg. VDSO mappings can cause them to exist.
700 return pfn_to_page(pfn);
703 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
704 unsigned long addr, pmd_t pmd)
706 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
709 return page_folio(page);
715 * restore_exclusive_pte - Restore a device-exclusive entry
716 * @vma: VMA covering @address
717 * @folio: the mapped folio
718 * @page: the mapped folio page
719 * @address: the virtual address
720 * @ptep: pte pointer into the locked page table mapping the folio page
721 * @orig_pte: pte value at @ptep
723 * Restore a device-exclusive non-swap entry to an ordinary present pte.
725 * The folio and the page table must be locked, and MMU notifiers must have
726 * been called to invalidate any (exclusive) device mappings.
728 * Locking the folio makes sure that anybody who just converted the pte to
729 * a device-exclusive entry can map it into the device to make forward
730 * progress without others converting it back until the folio was unlocked.
732 * If the folio lock ever becomes an issue, we can stop relying on the folio
733 * lock; it might make some scenarios with heavy thrashing less likely to
734 * make forward progress, but these scenarios might not be valid use cases.
736 * Note that the folio lock does not protect against all cases of concurrent
737 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
738 * must use MMU notifiers to sync against any concurrent changes.
740 static void restore_exclusive_pte(struct vm_area_struct *vma,
741 struct folio *folio, struct page *page, unsigned long address,
742 pte_t *ptep, pte_t orig_pte)
746 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
748 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
749 if (pte_swp_soft_dirty(orig_pte))
750 pte = pte_mksoft_dirty(pte);
752 if (pte_swp_uffd_wp(orig_pte))
753 pte = pte_mkuffd_wp(pte);
755 if ((vma->vm_flags & VM_WRITE) &&
756 can_change_pte_writable(vma, address, pte)) {
757 if (folio_test_dirty(folio))
758 pte = pte_mkdirty(pte);
759 pte = pte_mkwrite(pte, vma);
761 set_pte_at(vma->vm_mm, address, ptep, pte);
764 * No need to invalidate - it was non-present before. However
765 * secondary CPUs may have mappings that need invalidating.
767 update_mmu_cache(vma, address, ptep);
771 * Tries to restore an exclusive pte if the page lock can be acquired without
774 static int try_restore_exclusive_pte(struct vm_area_struct *vma,
775 unsigned long addr, pte_t *ptep, pte_t orig_pte)
777 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte));
778 struct folio *folio = page_folio(page);
780 if (folio_trylock(folio)) {
781 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte);
790 * copy one vm_area from one task to the other. Assumes the page tables
791 * already present in the new task to be cleared in the whole range
792 * covered by this vma.
796 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
797 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
798 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
800 unsigned long vm_flags = dst_vma->vm_flags;
801 pte_t orig_pte = ptep_get(src_pte);
802 pte_t pte = orig_pte;
805 swp_entry_t entry = pte_to_swp_entry(orig_pte);
807 if (likely(!non_swap_entry(entry))) {
808 if (swap_duplicate(entry) < 0)
811 /* make sure dst_mm is on swapoff's mmlist. */
812 if (unlikely(list_empty(&dst_mm->mmlist))) {
813 spin_lock(&mmlist_lock);
814 if (list_empty(&dst_mm->mmlist))
815 list_add(&dst_mm->mmlist,
817 spin_unlock(&mmlist_lock);
819 /* Mark the swap entry as shared. */
820 if (pte_swp_exclusive(orig_pte)) {
821 pte = pte_swp_clear_exclusive(orig_pte);
822 set_pte_at(src_mm, addr, src_pte, pte);
825 } else if (is_migration_entry(entry)) {
826 folio = pfn_swap_entry_folio(entry);
828 rss[mm_counter(folio)]++;
830 if (!is_readable_migration_entry(entry) &&
831 is_cow_mapping(vm_flags)) {
833 * COW mappings require pages in both parent and child
834 * to be set to read. A previously exclusive entry is
837 entry = make_readable_migration_entry(
839 pte = swp_entry_to_pte(entry);
840 if (pte_swp_soft_dirty(orig_pte))
841 pte = pte_swp_mksoft_dirty(pte);
842 if (pte_swp_uffd_wp(orig_pte))
843 pte = pte_swp_mkuffd_wp(pte);
844 set_pte_at(src_mm, addr, src_pte, pte);
846 } else if (is_device_private_entry(entry)) {
847 page = pfn_swap_entry_to_page(entry);
848 folio = page_folio(page);
851 * Update rss count even for unaddressable pages, as
852 * they should treated just like normal pages in this
855 * We will likely want to have some new rss counters
856 * for unaddressable pages, at some point. But for now
857 * keep things as they are.
860 rss[mm_counter(folio)]++;
861 /* Cannot fail as these pages cannot get pinned. */
862 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma);
865 * We do not preserve soft-dirty information, because so
866 * far, checkpoint/restore is the only feature that
867 * requires that. And checkpoint/restore does not work
868 * when a device driver is involved (you cannot easily
869 * save and restore device driver state).
871 if (is_writable_device_private_entry(entry) &&
872 is_cow_mapping(vm_flags)) {
873 entry = make_readable_device_private_entry(
875 pte = swp_entry_to_pte(entry);
876 if (pte_swp_uffd_wp(orig_pte))
877 pte = pte_swp_mkuffd_wp(pte);
878 set_pte_at(src_mm, addr, src_pte, pte);
880 } else if (is_device_exclusive_entry(entry)) {
882 * Make device exclusive entries present by restoring the
883 * original entry then copying as for a present pte. Device
884 * exclusive entries currently only support private writable
885 * (ie. COW) mappings.
887 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
888 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte))
891 } else if (is_pte_marker_entry(entry)) {
892 pte_marker marker = copy_pte_marker(entry, dst_vma);
895 set_pte_at(dst_mm, addr, dst_pte,
896 make_pte_marker(marker));
899 if (!userfaultfd_wp(dst_vma))
900 pte = pte_swp_clear_uffd_wp(pte);
901 set_pte_at(dst_mm, addr, dst_pte, pte);
906 * Copy a present and normal page.
908 * NOTE! The usual case is that this isn't required;
909 * instead, the caller can just increase the page refcount
910 * and re-use the pte the traditional way.
912 * And if we need a pre-allocated page but don't yet have
913 * one, return a negative error to let the preallocation
914 * code know so that it can do so outside the page table
918 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
919 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
920 struct folio **prealloc, struct page *page)
922 struct folio *new_folio;
925 new_folio = *prealloc;
930 * We have a prealloc page, all good! Take it
931 * over and copy the page & arm it.
934 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
938 __folio_mark_uptodate(new_folio);
939 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
940 folio_add_lru_vma(new_folio, dst_vma);
943 /* All done, just insert the new page copy in the child */
944 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot);
945 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
946 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
947 /* Uffd-wp needs to be delivered to dest pte as well */
948 pte = pte_mkuffd_wp(pte);
949 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
953 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
954 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
955 pte_t pte, unsigned long addr, int nr)
957 struct mm_struct *src_mm = src_vma->vm_mm;
959 /* If it's a COW mapping, write protect it both processes. */
960 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
961 wrprotect_ptes(src_mm, addr, src_pte, nr);
962 pte = pte_wrprotect(pte);
965 /* If it's a shared mapping, mark it clean in the child. */
966 if (src_vma->vm_flags & VM_SHARED)
967 pte = pte_mkclean(pte);
968 pte = pte_mkold(pte);
970 if (!userfaultfd_wp(dst_vma))
971 pte = pte_clear_uffd_wp(pte);
973 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
977 * Copy one present PTE, trying to batch-process subsequent PTEs that map
978 * consecutive pages of the same folio by copying them as well.
980 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
981 * Otherwise, returns the number of copied PTEs (at least 1).
984 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
985 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
986 int max_nr, int *rss, struct folio **prealloc)
994 page = vm_normal_page(src_vma, addr, pte);
998 folio = page_folio(page);
1001 * If we likely have to copy, just don't bother with batching. Make
1002 * sure that the common "small folio" case is as fast as possible
1003 * by keeping the batching logic separate.
1005 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1006 if (src_vma->vm_flags & VM_SHARED)
1007 flags |= FPB_IGNORE_DIRTY;
1008 if (!vma_soft_dirty_enabled(src_vma))
1009 flags |= FPB_IGNORE_SOFT_DIRTY;
1011 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1012 &any_writable, NULL, NULL);
1013 folio_ref_add(folio, nr);
1014 if (folio_test_anon(folio)) {
1015 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1016 nr, dst_vma, src_vma))) {
1017 folio_ref_sub(folio, nr);
1020 rss[MM_ANONPAGES] += nr;
1021 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1023 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma);
1024 rss[mm_counter_file(folio)] += nr;
1027 pte = pte_mkwrite(pte, src_vma);
1028 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1034 if (folio_test_anon(folio)) {
1036 * If this page may have been pinned by the parent process,
1037 * copy the page immediately for the child so that we'll always
1038 * guarantee the pinned page won't be randomly replaced in the
1041 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) {
1042 /* Page may be pinned, we have to copy. */
1044 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1045 addr, rss, prealloc, page);
1046 return err ? err : 1;
1048 rss[MM_ANONPAGES]++;
1049 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1051 folio_dup_file_rmap_pte(folio, page, dst_vma);
1052 rss[mm_counter_file(folio)]++;
1056 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1060 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1061 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1063 struct folio *new_folio;
1066 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1068 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1073 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1074 folio_put(new_folio);
1077 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1083 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1084 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1087 struct mm_struct *dst_mm = dst_vma->vm_mm;
1088 struct mm_struct *src_mm = src_vma->vm_mm;
1089 pte_t *orig_src_pte, *orig_dst_pte;
1090 pte_t *src_pte, *dst_pte;
1093 spinlock_t *src_ptl, *dst_ptl;
1094 int progress, max_nr, ret = 0;
1095 int rss[NR_MM_COUNTERS];
1096 swp_entry_t entry = (swp_entry_t){0};
1097 struct folio *prealloc = NULL;
1105 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1106 * error handling here, assume that exclusive mmap_lock on dst and src
1107 * protects anon from unexpected THP transitions; with shmem and file
1108 * protected by mmap_lock-less collapse skipping areas with anon_vma
1109 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1110 * can remove such assumptions later, but this is good enough for now.
1112 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1119 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1120 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1121 * the PTE page is stable, and there is no need to get pmdval and do
1124 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1127 pte_unmap_unlock(dst_pte, dst_ptl);
1131 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1132 orig_src_pte = src_pte;
1133 orig_dst_pte = dst_pte;
1134 arch_enter_lazy_mmu_mode();
1140 * We are holding two locks at this point - either of them
1141 * could generate latencies in another task on another CPU.
1143 if (progress >= 32) {
1145 if (need_resched() ||
1146 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1149 ptent = ptep_get(src_pte);
1150 if (pte_none(ptent)) {
1154 if (unlikely(!pte_present(ptent))) {
1155 ret = copy_nonpresent_pte(dst_mm, src_mm,
1160 entry = pte_to_swp_entry(ptep_get(src_pte));
1162 } else if (ret == -EBUSY) {
1168 ptent = ptep_get(src_pte);
1169 VM_WARN_ON_ONCE(!pte_present(ptent));
1172 * Device exclusive entry restored, continue by copying
1173 * the now present pte.
1175 WARN_ON_ONCE(ret != -ENOENT);
1177 /* copy_present_ptes() will clear `*prealloc' if consumed */
1178 max_nr = (end - addr) / PAGE_SIZE;
1179 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1180 ptent, addr, max_nr, rss, &prealloc);
1182 * If we need a pre-allocated page for this pte, drop the
1183 * locks, allocate, and try again.
1184 * If copy failed due to hwpoison in source page, break out.
1186 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1188 if (unlikely(prealloc)) {
1190 * pre-alloc page cannot be reused by next time so as
1191 * to strictly follow mempolicy (e.g., alloc_page_vma()
1192 * will allocate page according to address). This
1193 * could only happen if one pinned pte changed.
1195 folio_put(prealloc);
1200 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1203 arch_leave_lazy_mmu_mode();
1204 pte_unmap_unlock(orig_src_pte, src_ptl);
1205 add_mm_rss_vec(dst_mm, rss);
1206 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1210 VM_WARN_ON_ONCE(!entry.val);
1211 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1216 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1218 } else if (ret == -EAGAIN) {
1219 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1222 } else if (ret < 0) {
1226 /* We've captured and resolved the error. Reset, try again. */
1232 if (unlikely(prealloc))
1233 folio_put(prealloc);
1238 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1239 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1242 struct mm_struct *dst_mm = dst_vma->vm_mm;
1243 struct mm_struct *src_mm = src_vma->vm_mm;
1244 pmd_t *src_pmd, *dst_pmd;
1247 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1250 src_pmd = pmd_offset(src_pud, addr);
1252 next = pmd_addr_end(addr, end);
1253 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1254 || pmd_devmap(*src_pmd)) {
1256 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1257 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1258 addr, dst_vma, src_vma);
1265 if (pmd_none_or_clear_bad(src_pmd))
1267 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1270 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1275 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1276 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1279 struct mm_struct *dst_mm = dst_vma->vm_mm;
1280 struct mm_struct *src_mm = src_vma->vm_mm;
1281 pud_t *src_pud, *dst_pud;
1284 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1287 src_pud = pud_offset(src_p4d, addr);
1289 next = pud_addr_end(addr, end);
1290 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1293 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1294 err = copy_huge_pud(dst_mm, src_mm,
1295 dst_pud, src_pud, addr, src_vma);
1302 if (pud_none_or_clear_bad(src_pud))
1304 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1307 } while (dst_pud++, src_pud++, addr = next, addr != end);
1312 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1313 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1316 struct mm_struct *dst_mm = dst_vma->vm_mm;
1317 p4d_t *src_p4d, *dst_p4d;
1320 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1323 src_p4d = p4d_offset(src_pgd, addr);
1325 next = p4d_addr_end(addr, end);
1326 if (p4d_none_or_clear_bad(src_p4d))
1328 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1331 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1336 * Return true if the vma needs to copy the pgtable during this fork(). Return
1337 * false when we can speed up fork() by allowing lazy page faults later until
1338 * when the child accesses the memory range.
1341 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1344 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1345 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1346 * contains uffd-wp protection information, that's something we can't
1347 * retrieve from page cache, and skip copying will lose those info.
1349 if (userfaultfd_wp(dst_vma))
1352 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1355 if (src_vma->anon_vma)
1359 * Don't copy ptes where a page fault will fill them correctly. Fork
1360 * becomes much lighter when there are big shared or private readonly
1361 * mappings. The tradeoff is that copy_page_range is more efficient
1368 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1370 pgd_t *src_pgd, *dst_pgd;
1371 unsigned long addr = src_vma->vm_start;
1372 unsigned long end = src_vma->vm_end;
1373 struct mm_struct *dst_mm = dst_vma->vm_mm;
1374 struct mm_struct *src_mm = src_vma->vm_mm;
1375 struct mmu_notifier_range range;
1380 if (!vma_needs_copy(dst_vma, src_vma))
1383 if (is_vm_hugetlb_page(src_vma))
1384 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1387 * We need to invalidate the secondary MMU mappings only when
1388 * there could be a permission downgrade on the ptes of the
1389 * parent mm. And a permission downgrade will only happen if
1390 * is_cow_mapping() returns true.
1392 is_cow = is_cow_mapping(src_vma->vm_flags);
1395 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1396 0, src_mm, addr, end);
1397 mmu_notifier_invalidate_range_start(&range);
1399 * Disabling preemption is not needed for the write side, as
1400 * the read side doesn't spin, but goes to the mmap_lock.
1402 * Use the raw variant of the seqcount_t write API to avoid
1403 * lockdep complaining about preemptibility.
1405 vma_assert_write_locked(src_vma);
1406 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1410 dst_pgd = pgd_offset(dst_mm, addr);
1411 src_pgd = pgd_offset(src_mm, addr);
1413 next = pgd_addr_end(addr, end);
1414 if (pgd_none_or_clear_bad(src_pgd))
1416 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1421 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1424 raw_write_seqcount_end(&src_mm->write_protect_seq);
1425 mmu_notifier_invalidate_range_end(&range);
1430 /* Whether we should zap all COWed (private) pages too */
1431 static inline bool should_zap_cows(struct zap_details *details)
1433 /* By default, zap all pages */
1434 if (!details || details->reclaim_pt)
1437 /* Or, we zap COWed pages only if the caller wants to */
1438 return details->even_cows;
1441 /* Decides whether we should zap this folio with the folio pointer specified */
1442 static inline bool should_zap_folio(struct zap_details *details,
1443 struct folio *folio)
1445 /* If we can make a decision without *folio.. */
1446 if (should_zap_cows(details))
1449 /* Otherwise we should only zap non-anon folios */
1450 return !folio_test_anon(folio);
1453 static inline bool zap_drop_markers(struct zap_details *details)
1458 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1462 * This function makes sure that we'll replace the none pte with an uffd-wp
1463 * swap special pte marker when necessary. Must be with the pgtable lock held.
1465 * Returns true if uffd-wp ptes was installed, false otherwise.
1468 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1469 unsigned long addr, pte_t *pte, int nr,
1470 struct zap_details *details, pte_t pteval)
1472 bool was_installed = false;
1474 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1475 /* Zap on anonymous always means dropping everything */
1476 if (vma_is_anonymous(vma))
1479 if (zap_drop_markers(details))
1483 /* the PFN in the PTE is irrelevant. */
1484 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1485 was_installed = true;
1492 return was_installed;
1495 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1496 struct vm_area_struct *vma, struct folio *folio,
1497 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1498 unsigned long addr, struct zap_details *details, int *rss,
1499 bool *force_flush, bool *force_break, bool *any_skipped)
1501 struct mm_struct *mm = tlb->mm;
1502 bool delay_rmap = false;
1504 if (!folio_test_anon(folio)) {
1505 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1506 if (pte_dirty(ptent)) {
1507 folio_mark_dirty(folio);
1508 if (tlb_delay_rmap(tlb)) {
1510 *force_flush = true;
1513 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1514 folio_mark_accessed(folio);
1515 rss[mm_counter(folio)] -= nr;
1517 /* We don't need up-to-date accessed/dirty bits. */
1518 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1519 rss[MM_ANONPAGES] -= nr;
1521 /* Checking a single PTE in a batch is sufficient. */
1522 arch_check_zapped_pte(vma, ptent);
1523 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1524 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1525 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1526 nr, details, ptent);
1529 folio_remove_rmap_ptes(folio, page, nr, vma);
1531 if (unlikely(folio_mapcount(folio) < 0))
1532 print_bad_pte(vma, addr, ptent, page);
1534 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1535 *force_flush = true;
1536 *force_break = true;
1541 * Zap or skip at least one present PTE, trying to batch-process subsequent
1542 * PTEs that map consecutive pages of the same folio.
1544 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1546 static inline int zap_present_ptes(struct mmu_gather *tlb,
1547 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1548 unsigned int max_nr, unsigned long addr,
1549 struct zap_details *details, int *rss, bool *force_flush,
1550 bool *force_break, bool *any_skipped)
1552 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1553 struct mm_struct *mm = tlb->mm;
1554 struct folio *folio;
1558 page = vm_normal_page(vma, addr, ptent);
1560 /* We don't need up-to-date accessed/dirty bits. */
1561 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1562 arch_check_zapped_pte(vma, ptent);
1563 tlb_remove_tlb_entry(tlb, pte, addr);
1564 if (userfaultfd_pte_wp(vma, ptent))
1565 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1566 pte, 1, details, ptent);
1567 ksm_might_unmap_zero_page(mm, ptent);
1571 folio = page_folio(page);
1572 if (unlikely(!should_zap_folio(details, folio))) {
1573 *any_skipped = true;
1578 * Make sure that the common "small folio" case is as fast as possible
1579 * by keeping the batching logic separate.
1581 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1582 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1585 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1586 addr, details, rss, force_flush,
1587 force_break, any_skipped);
1590 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1591 details, rss, force_flush, force_break, any_skipped);
1595 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1596 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1597 unsigned int max_nr, unsigned long addr,
1598 struct zap_details *details, int *rss, bool *any_skipped)
1603 *any_skipped = true;
1604 entry = pte_to_swp_entry(ptent);
1605 if (is_device_private_entry(entry) ||
1606 is_device_exclusive_entry(entry)) {
1607 struct page *page = pfn_swap_entry_to_page(entry);
1608 struct folio *folio = page_folio(page);
1610 if (unlikely(!should_zap_folio(details, folio)))
1613 * Both device private/exclusive mappings should only
1614 * work with anonymous page so far, so we don't need to
1615 * consider uffd-wp bit when zap. For more information,
1616 * see zap_install_uffd_wp_if_needed().
1618 WARN_ON_ONCE(!vma_is_anonymous(vma));
1619 rss[mm_counter(folio)]--;
1620 folio_remove_rmap_pte(folio, page, vma);
1622 } else if (!non_swap_entry(entry)) {
1623 /* Genuine swap entries, hence a private anon pages */
1624 if (!should_zap_cows(details))
1627 nr = swap_pte_batch(pte, max_nr, ptent);
1628 rss[MM_SWAPENTS] -= nr;
1629 free_swap_and_cache_nr(entry, nr);
1630 } else if (is_migration_entry(entry)) {
1631 struct folio *folio = pfn_swap_entry_folio(entry);
1633 if (!should_zap_folio(details, folio))
1635 rss[mm_counter(folio)]--;
1636 } else if (pte_marker_entry_uffd_wp(entry)) {
1638 * For anon: always drop the marker; for file: only
1639 * drop the marker if explicitly requested.
1641 if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1643 } else if (is_guard_swp_entry(entry)) {
1645 * Ordinary zapping should not remove guard PTE
1646 * markers. Only do so if we should remove PTE markers
1649 if (!zap_drop_markers(details))
1651 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1652 if (!should_zap_cows(details))
1655 /* We should have covered all the swap entry types */
1656 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1659 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1660 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1665 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1666 struct vm_area_struct *vma, pte_t *pte,
1667 unsigned long addr, unsigned long end,
1668 struct zap_details *details, int *rss,
1669 bool *force_flush, bool *force_break,
1672 pte_t ptent = ptep_get(pte);
1673 int max_nr = (end - addr) / PAGE_SIZE;
1676 /* Skip all consecutive none ptes */
1677 if (pte_none(ptent)) {
1678 for (nr = 1; nr < max_nr; nr++) {
1679 ptent = ptep_get(pte + nr);
1680 if (!pte_none(ptent))
1687 addr += nr * PAGE_SIZE;
1690 if (pte_present(ptent))
1691 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1692 details, rss, force_flush, force_break,
1695 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1696 details, rss, any_skipped);
1701 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1702 struct vm_area_struct *vma, pmd_t *pmd,
1703 unsigned long addr, unsigned long end,
1704 struct zap_details *details)
1706 bool force_flush = false, force_break = false;
1707 struct mm_struct *mm = tlb->mm;
1708 int rss[NR_MM_COUNTERS];
1713 unsigned long start = addr;
1714 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1715 bool direct_reclaim = true;
1719 tlb_change_page_size(tlb, PAGE_SIZE);
1721 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1725 flush_tlb_batched_pending(mm);
1726 arch_enter_lazy_mmu_mode();
1728 bool any_skipped = false;
1730 if (need_resched()) {
1731 direct_reclaim = false;
1735 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1736 &force_flush, &force_break, &any_skipped);
1738 can_reclaim_pt = false;
1739 if (unlikely(force_break)) {
1740 addr += nr * PAGE_SIZE;
1741 direct_reclaim = false;
1744 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1747 * Fast path: try to hold the pmd lock and unmap the PTE page.
1749 * If the pte lock was released midway (retry case), or if the attempt
1750 * to hold the pmd lock failed, then we need to recheck all pte entries
1751 * to ensure they are still none, thereby preventing the pte entries
1752 * from being repopulated by another thread.
1754 if (can_reclaim_pt && direct_reclaim && addr == end)
1755 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1757 add_mm_rss_vec(mm, rss);
1758 arch_leave_lazy_mmu_mode();
1760 /* Do the actual TLB flush before dropping ptl */
1762 tlb_flush_mmu_tlbonly(tlb);
1763 tlb_flush_rmaps(tlb, vma);
1765 pte_unmap_unlock(start_pte, ptl);
1768 * If we forced a TLB flush (either due to running out of
1769 * batch buffers or because we needed to flush dirty TLB
1770 * entries before releasing the ptl), free the batched
1771 * memory too. Come back again if we didn't do everything.
1778 force_flush = false;
1779 force_break = false;
1783 if (can_reclaim_pt) {
1785 free_pte(mm, start, tlb, pmdval);
1787 try_to_free_pte(mm, pmd, start, tlb);
1793 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1794 struct vm_area_struct *vma, pud_t *pud,
1795 unsigned long addr, unsigned long end,
1796 struct zap_details *details)
1801 pmd = pmd_offset(pud, addr);
1803 next = pmd_addr_end(addr, end);
1804 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1805 if (next - addr != HPAGE_PMD_SIZE)
1806 __split_huge_pmd(vma, pmd, addr, false);
1807 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1812 } else if (details && details->single_folio &&
1813 folio_test_pmd_mappable(details->single_folio) &&
1814 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1815 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1817 * Take and drop THP pmd lock so that we cannot return
1818 * prematurely, while zap_huge_pmd() has cleared *pmd,
1819 * but not yet decremented compound_mapcount().
1823 if (pmd_none(*pmd)) {
1827 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1830 } while (pmd++, cond_resched(), addr != end);
1835 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1836 struct vm_area_struct *vma, p4d_t *p4d,
1837 unsigned long addr, unsigned long end,
1838 struct zap_details *details)
1843 pud = pud_offset(p4d, addr);
1845 next = pud_addr_end(addr, end);
1846 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1847 if (next - addr != HPAGE_PUD_SIZE) {
1848 mmap_assert_locked(tlb->mm);
1849 split_huge_pud(vma, pud, addr);
1850 } else if (zap_huge_pud(tlb, vma, pud, addr))
1854 if (pud_none_or_clear_bad(pud))
1856 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1859 } while (pud++, addr = next, addr != end);
1864 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1865 struct vm_area_struct *vma, pgd_t *pgd,
1866 unsigned long addr, unsigned long end,
1867 struct zap_details *details)
1872 p4d = p4d_offset(pgd, addr);
1874 next = p4d_addr_end(addr, end);
1875 if (p4d_none_or_clear_bad(p4d))
1877 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1878 } while (p4d++, addr = next, addr != end);
1883 void unmap_page_range(struct mmu_gather *tlb,
1884 struct vm_area_struct *vma,
1885 unsigned long addr, unsigned long end,
1886 struct zap_details *details)
1891 BUG_ON(addr >= end);
1892 tlb_start_vma(tlb, vma);
1893 pgd = pgd_offset(vma->vm_mm, addr);
1895 next = pgd_addr_end(addr, end);
1896 if (pgd_none_or_clear_bad(pgd))
1898 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1899 } while (pgd++, addr = next, addr != end);
1900 tlb_end_vma(tlb, vma);
1904 static void unmap_single_vma(struct mmu_gather *tlb,
1905 struct vm_area_struct *vma, unsigned long start_addr,
1906 unsigned long end_addr,
1907 struct zap_details *details, bool mm_wr_locked)
1909 unsigned long start = max(vma->vm_start, start_addr);
1912 if (start >= vma->vm_end)
1914 end = min(vma->vm_end, end_addr);
1915 if (end <= vma->vm_start)
1919 uprobe_munmap(vma, start, end);
1922 if (unlikely(is_vm_hugetlb_page(vma))) {
1924 * It is undesirable to test vma->vm_file as it
1925 * should be non-null for valid hugetlb area.
1926 * However, vm_file will be NULL in the error
1927 * cleanup path of mmap_region. When
1928 * hugetlbfs ->mmap method fails,
1929 * mmap_region() nullifies vma->vm_file
1930 * before calling this function to clean up.
1931 * Since no pte has actually been setup, it is
1932 * safe to do nothing in this case.
1935 zap_flags_t zap_flags = details ?
1936 details->zap_flags : 0;
1937 __unmap_hugepage_range(tlb, vma, start, end,
1941 unmap_page_range(tlb, vma, start, end, details);
1946 * unmap_vmas - unmap a range of memory covered by a list of vma's
1947 * @tlb: address of the caller's struct mmu_gather
1948 * @mas: the maple state
1949 * @vma: the starting vma
1950 * @start_addr: virtual address at which to start unmapping
1951 * @end_addr: virtual address at which to end unmapping
1952 * @tree_end: The maximum index to check
1953 * @mm_wr_locked: lock flag
1955 * Unmap all pages in the vma list.
1957 * Only addresses between `start' and `end' will be unmapped.
1959 * The VMA list must be sorted in ascending virtual address order.
1961 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1962 * range after unmap_vmas() returns. So the only responsibility here is to
1963 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1964 * drops the lock and schedules.
1966 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1967 struct vm_area_struct *vma, unsigned long start_addr,
1968 unsigned long end_addr, unsigned long tree_end,
1971 struct mmu_notifier_range range;
1972 struct zap_details details = {
1973 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1974 /* Careful - we need to zap private pages too! */
1978 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1979 start_addr, end_addr);
1980 mmu_notifier_invalidate_range_start(&range);
1982 unsigned long start = start_addr;
1983 unsigned long end = end_addr;
1984 hugetlb_zap_begin(vma, &start, &end);
1985 unmap_single_vma(tlb, vma, start, end, &details,
1987 hugetlb_zap_end(vma, &details);
1988 vma = mas_find(mas, tree_end - 1);
1989 } while (vma && likely(!xa_is_zero(vma)));
1990 mmu_notifier_invalidate_range_end(&range);
1994 * zap_page_range_single_batched - remove user pages in a given range
1995 * @tlb: pointer to the caller's struct mmu_gather
1996 * @vma: vm_area_struct holding the applicable pages
1997 * @address: starting address of pages to remove
1998 * @size: number of bytes to remove
1999 * @details: details of shared cache invalidation
2001 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for
2002 * hugetlb, @tlb is flushed and re-initialized by this function.
2004 void zap_page_range_single_batched(struct mmu_gather *tlb,
2005 struct vm_area_struct *vma, unsigned long address,
2006 unsigned long size, struct zap_details *details)
2008 const unsigned long end = address + size;
2009 struct mmu_notifier_range range;
2011 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm);
2013 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2015 hugetlb_zap_begin(vma, &range.start, &range.end);
2016 update_hiwater_rss(vma->vm_mm);
2017 mmu_notifier_invalidate_range_start(&range);
2019 * unmap 'address-end' not 'range.start-range.end' as range
2020 * could have been expanded for hugetlb pmd sharing.
2022 unmap_single_vma(tlb, vma, address, end, details, false);
2023 mmu_notifier_invalidate_range_end(&range);
2024 if (is_vm_hugetlb_page(vma)) {
2026 * flush tlb and free resources before hugetlb_zap_end(), to
2027 * avoid concurrent page faults' allocation failure.
2029 tlb_finish_mmu(tlb);
2030 hugetlb_zap_end(vma, details);
2031 tlb_gather_mmu(tlb, vma->vm_mm);
2036 * zap_page_range_single - remove user pages in a given range
2037 * @vma: vm_area_struct holding the applicable pages
2038 * @address: starting address of pages to zap
2039 * @size: number of bytes to zap
2040 * @details: details of shared cache invalidation
2042 * The range must fit into one VMA.
2044 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2045 unsigned long size, struct zap_details *details)
2047 struct mmu_gather tlb;
2049 tlb_gather_mmu(&tlb, vma->vm_mm);
2050 zap_page_range_single_batched(&tlb, vma, address, size, details);
2051 tlb_finish_mmu(&tlb);
2055 * zap_vma_ptes - remove ptes mapping the vma
2056 * @vma: vm_area_struct holding ptes to be zapped
2057 * @address: starting address of pages to zap
2058 * @size: number of bytes to zap
2060 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2062 * The entire address range must be fully contained within the vma.
2065 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2068 if (!range_in_vma(vma, address, address + size) ||
2069 !(vma->vm_flags & VM_PFNMAP))
2072 zap_page_range_single(vma, address, size, NULL);
2074 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2076 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2083 pgd = pgd_offset(mm, addr);
2084 p4d = p4d_alloc(mm, pgd, addr);
2087 pud = pud_alloc(mm, p4d, addr);
2090 pmd = pmd_alloc(mm, pud, addr);
2094 VM_BUG_ON(pmd_trans_huge(*pmd));
2098 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2101 pmd_t *pmd = walk_to_pmd(mm, addr);
2105 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2108 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2110 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2112 * Whoever wants to forbid the zeropage after some zeropages
2113 * might already have been mapped has to scan the page tables and
2114 * bail out on any zeropages. Zeropages in COW mappings can
2115 * be unshared using FAULT_FLAG_UNSHARE faults.
2117 if (mm_forbids_zeropage(vma->vm_mm))
2119 /* zeropages in COW mappings are common and unproblematic. */
2120 if (is_cow_mapping(vma->vm_flags))
2122 /* Mappings that do not allow for writable PTEs are unproblematic. */
2123 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2126 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2127 * find the shared zeropage and longterm-pin it, which would
2128 * be problematic as soon as the zeropage gets replaced by a different
2129 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2130 * now differ to what GUP looked up. FSDAX is incompatible to
2131 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2134 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2135 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2138 static int validate_page_before_insert(struct vm_area_struct *vma,
2141 struct folio *folio = page_folio(page);
2143 if (!folio_ref_count(folio))
2145 if (unlikely(is_zero_folio(folio))) {
2146 if (!vm_mixed_zeropage_allowed(vma))
2150 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2151 page_has_type(page))
2153 flush_dcache_folio(folio);
2157 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2158 unsigned long addr, struct page *page,
2159 pgprot_t prot, bool mkwrite)
2161 struct folio *folio = page_folio(page);
2162 pte_t pteval = ptep_get(pte);
2164 if (!pte_none(pteval)) {
2168 /* see insert_pfn(). */
2169 if (pte_pfn(pteval) != page_to_pfn(page)) {
2170 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval)));
2173 pteval = maybe_mkwrite(pteval, vma);
2174 pteval = pte_mkyoung(pteval);
2175 if (ptep_set_access_flags(vma, addr, pte, pteval, 1))
2176 update_mmu_cache(vma, addr, pte);
2180 /* Ok, finally just insert the thing.. */
2181 pteval = mk_pte(page, prot);
2182 if (unlikely(is_zero_folio(folio))) {
2183 pteval = pte_mkspecial(pteval);
2186 pteval = mk_pte(page, prot);
2188 pteval = pte_mkyoung(pteval);
2189 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma);
2191 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2192 folio_add_file_rmap_pte(folio, page, vma);
2194 set_pte_at(vma->vm_mm, addr, pte, pteval);
2198 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2199 struct page *page, pgprot_t prot, bool mkwrite)
2205 retval = validate_page_before_insert(vma, page);
2209 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2212 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot,
2214 pte_unmap_unlock(pte, ptl);
2219 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2220 unsigned long addr, struct page *page, pgprot_t prot)
2224 err = validate_page_before_insert(vma, page);
2227 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false);
2230 /* insert_pages() amortizes the cost of spinlock operations
2231 * when inserting pages in a loop.
2233 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2234 struct page **pages, unsigned long *num, pgprot_t prot)
2237 pte_t *start_pte, *pte;
2238 spinlock_t *pte_lock;
2239 struct mm_struct *const mm = vma->vm_mm;
2240 unsigned long curr_page_idx = 0;
2241 unsigned long remaining_pages_total = *num;
2242 unsigned long pages_to_write_in_pmd;
2246 pmd = walk_to_pmd(mm, addr);
2250 pages_to_write_in_pmd = min_t(unsigned long,
2251 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2253 /* Allocate the PTE if necessary; takes PMD lock once only. */
2255 if (pte_alloc(mm, pmd))
2258 while (pages_to_write_in_pmd) {
2260 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2262 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2267 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2268 int err = insert_page_in_batch_locked(vma, pte,
2269 addr, pages[curr_page_idx], prot);
2270 if (unlikely(err)) {
2271 pte_unmap_unlock(start_pte, pte_lock);
2273 remaining_pages_total -= pte_idx;
2279 pte_unmap_unlock(start_pte, pte_lock);
2280 pages_to_write_in_pmd -= batch_size;
2281 remaining_pages_total -= batch_size;
2283 if (remaining_pages_total)
2287 *num = remaining_pages_total;
2292 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2293 * @vma: user vma to map to
2294 * @addr: target start user address of these pages
2295 * @pages: source kernel pages
2296 * @num: in: number of pages to map. out: number of pages that were *not*
2297 * mapped. (0 means all pages were successfully mapped).
2299 * Preferred over vm_insert_page() when inserting multiple pages.
2301 * In case of error, we may have mapped a subset of the provided
2302 * pages. It is the caller's responsibility to account for this case.
2304 * The same restrictions apply as in vm_insert_page().
2306 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2307 struct page **pages, unsigned long *num)
2309 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2311 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2313 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2314 BUG_ON(mmap_read_trylock(vma->vm_mm));
2315 BUG_ON(vma->vm_flags & VM_PFNMAP);
2316 vm_flags_set(vma, VM_MIXEDMAP);
2318 /* Defer page refcount checking till we're about to map that page. */
2319 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2321 EXPORT_SYMBOL(vm_insert_pages);
2324 * vm_insert_page - insert single page into user vma
2325 * @vma: user vma to map to
2326 * @addr: target user address of this page
2327 * @page: source kernel page
2329 * This allows drivers to insert individual pages they've allocated
2330 * into a user vma. The zeropage is supported in some VMAs,
2331 * see vm_mixed_zeropage_allowed().
2333 * The page has to be a nice clean _individual_ kernel allocation.
2334 * If you allocate a compound page, you need to have marked it as
2335 * such (__GFP_COMP), or manually just split the page up yourself
2336 * (see split_page()).
2338 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2339 * took an arbitrary page protection parameter. This doesn't allow
2340 * that. Your vma protection will have to be set up correctly, which
2341 * means that if you want a shared writable mapping, you'd better
2342 * ask for a shared writable mapping!
2344 * The page does not need to be reserved.
2346 * Usually this function is called from f_op->mmap() handler
2347 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2348 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2349 * function from other places, for example from page-fault handler.
2351 * Return: %0 on success, negative error code otherwise.
2353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2356 if (addr < vma->vm_start || addr >= vma->vm_end)
2358 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2359 BUG_ON(mmap_read_trylock(vma->vm_mm));
2360 BUG_ON(vma->vm_flags & VM_PFNMAP);
2361 vm_flags_set(vma, VM_MIXEDMAP);
2363 return insert_page(vma, addr, page, vma->vm_page_prot, false);
2365 EXPORT_SYMBOL(vm_insert_page);
2368 * __vm_map_pages - maps range of kernel pages into user vma
2369 * @vma: user vma to map to
2370 * @pages: pointer to array of source kernel pages
2371 * @num: number of pages in page array
2372 * @offset: user's requested vm_pgoff
2374 * This allows drivers to map range of kernel pages into a user vma.
2375 * The zeropage is supported in some VMAs, see
2376 * vm_mixed_zeropage_allowed().
2378 * Return: 0 on success and error code otherwise.
2380 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2381 unsigned long num, unsigned long offset)
2383 unsigned long count = vma_pages(vma);
2384 unsigned long uaddr = vma->vm_start;
2387 /* Fail if the user requested offset is beyond the end of the object */
2391 /* Fail if the user requested size exceeds available object size */
2392 if (count > num - offset)
2395 for (i = 0; i < count; i++) {
2396 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2406 * vm_map_pages - maps range of kernel pages starts with non zero offset
2407 * @vma: user vma to map to
2408 * @pages: pointer to array of source kernel pages
2409 * @num: number of pages in page array
2411 * Maps an object consisting of @num pages, catering for the user's
2412 * requested vm_pgoff
2414 * If we fail to insert any page into the vma, the function will return
2415 * immediately leaving any previously inserted pages present. Callers
2416 * from the mmap handler may immediately return the error as their caller
2417 * will destroy the vma, removing any successfully inserted pages. Other
2418 * callers should make their own arrangements for calling unmap_region().
2420 * Context: Process context. Called by mmap handlers.
2421 * Return: 0 on success and error code otherwise.
2423 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2426 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2428 EXPORT_SYMBOL(vm_map_pages);
2431 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2432 * @vma: user vma to map to
2433 * @pages: pointer to array of source kernel pages
2434 * @num: number of pages in page array
2436 * Similar to vm_map_pages(), except that it explicitly sets the offset
2437 * to 0. This function is intended for the drivers that did not consider
2440 * Context: Process context. Called by mmap handlers.
2441 * Return: 0 on success and error code otherwise.
2443 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2446 return __vm_map_pages(vma, pages, num, 0);
2448 EXPORT_SYMBOL(vm_map_pages_zero);
2450 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2451 pfn_t pfn, pgprot_t prot, bool mkwrite)
2453 struct mm_struct *mm = vma->vm_mm;
2457 pte = get_locked_pte(mm, addr, &ptl);
2459 return VM_FAULT_OOM;
2460 entry = ptep_get(pte);
2461 if (!pte_none(entry)) {
2464 * For read faults on private mappings the PFN passed
2465 * in may not match the PFN we have mapped if the
2466 * mapped PFN is a writeable COW page. In the mkwrite
2467 * case we are creating a writable PTE for a shared
2468 * mapping and we expect the PFNs to match. If they
2469 * don't match, we are likely racing with block
2470 * allocation and mapping invalidation so just skip the
2473 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2474 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2477 entry = pte_mkyoung(entry);
2478 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2479 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2480 update_mmu_cache(vma, addr, pte);
2485 /* Ok, finally just insert the thing.. */
2486 if (pfn_t_devmap(pfn))
2487 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2489 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2492 entry = pte_mkyoung(entry);
2493 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2496 set_pte_at(mm, addr, pte, entry);
2497 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2500 pte_unmap_unlock(pte, ptl);
2501 return VM_FAULT_NOPAGE;
2505 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2506 * @vma: user vma to map to
2507 * @addr: target user address of this page
2508 * @pfn: source kernel pfn
2509 * @pgprot: pgprot flags for the inserted page
2511 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2512 * to override pgprot on a per-page basis.
2514 * This only makes sense for IO mappings, and it makes no sense for
2515 * COW mappings. In general, using multiple vmas is preferable;
2516 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2519 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2520 * caching- and encryption bits different than those of @vma->vm_page_prot,
2521 * because the caching- or encryption mode may not be known at mmap() time.
2523 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2524 * to set caching and encryption bits for those vmas (except for COW pages).
2525 * This is ensured by core vm only modifying these page table entries using
2526 * functions that don't touch caching- or encryption bits, using pte_modify()
2527 * if needed. (See for example mprotect()).
2529 * Also when new page-table entries are created, this is only done using the
2530 * fault() callback, and never using the value of vma->vm_page_prot,
2531 * except for page-table entries that point to anonymous pages as the result
2534 * Context: Process context. May allocate using %GFP_KERNEL.
2535 * Return: vm_fault_t value.
2537 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2538 unsigned long pfn, pgprot_t pgprot)
2541 * Technically, architectures with pte_special can avoid all these
2542 * restrictions (same for remap_pfn_range). However we would like
2543 * consistency in testing and feature parity among all, so we should
2544 * try to keep these invariants in place for everybody.
2546 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2547 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2548 (VM_PFNMAP|VM_MIXEDMAP));
2549 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2550 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2552 if (addr < vma->vm_start || addr >= vma->vm_end)
2553 return VM_FAULT_SIGBUS;
2555 if (!pfn_modify_allowed(pfn, pgprot))
2556 return VM_FAULT_SIGBUS;
2558 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2560 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2563 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2566 * vmf_insert_pfn - insert single pfn into user vma
2567 * @vma: user vma to map to
2568 * @addr: target user address of this page
2569 * @pfn: source kernel pfn
2571 * Similar to vm_insert_page, this allows drivers to insert individual pages
2572 * they've allocated into a user vma. Same comments apply.
2574 * This function should only be called from a vm_ops->fault handler, and
2575 * in that case the handler should return the result of this function.
2577 * vma cannot be a COW mapping.
2579 * As this is called only for pages that do not currently exist, we
2580 * do not need to flush old virtual caches or the TLB.
2582 * Context: Process context. May allocate using %GFP_KERNEL.
2583 * Return: vm_fault_t value.
2585 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2588 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2590 EXPORT_SYMBOL(vmf_insert_pfn);
2592 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2594 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2595 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2597 /* these checks mirror the abort conditions in vm_normal_page */
2598 if (vma->vm_flags & VM_MIXEDMAP)
2600 if (pfn_t_devmap(pfn))
2602 if (pfn_t_special(pfn))
2604 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2609 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2610 unsigned long addr, pfn_t pfn, bool mkwrite)
2612 pgprot_t pgprot = vma->vm_page_prot;
2615 if (!vm_mixed_ok(vma, pfn, mkwrite))
2616 return VM_FAULT_SIGBUS;
2618 if (addr < vma->vm_start || addr >= vma->vm_end)
2619 return VM_FAULT_SIGBUS;
2621 pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot);
2623 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2624 return VM_FAULT_SIGBUS;
2627 * If we don't have pte special, then we have to use the pfn_valid()
2628 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2629 * refcount the page if pfn_valid is true (hence insert_page rather
2630 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2631 * without pte special, it would there be refcounted as a normal page.
2633 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2634 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2638 * At this point we are committed to insert_page()
2639 * regardless of whether the caller specified flags that
2640 * result in pfn_t_has_page() == false.
2642 page = pfn_to_page(pfn_t_to_pfn(pfn));
2643 err = insert_page(vma, addr, page, pgprot, mkwrite);
2645 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2649 return VM_FAULT_OOM;
2650 if (err < 0 && err != -EBUSY)
2651 return VM_FAULT_SIGBUS;
2653 return VM_FAULT_NOPAGE;
2656 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
2659 pgprot_t pgprot = vmf->vma->vm_page_prot;
2660 unsigned long addr = vmf->address;
2663 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end)
2664 return VM_FAULT_SIGBUS;
2666 err = insert_page(vmf->vma, addr, page, pgprot, write);
2668 return VM_FAULT_OOM;
2669 if (err < 0 && err != -EBUSY)
2670 return VM_FAULT_SIGBUS;
2672 return VM_FAULT_NOPAGE;
2674 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite);
2676 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2679 return __vm_insert_mixed(vma, addr, pfn, false);
2681 EXPORT_SYMBOL(vmf_insert_mixed);
2684 * If the insertion of PTE failed because someone else already added a
2685 * different entry in the mean time, we treat that as success as we assume
2686 * the same entry was actually inserted.
2688 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2689 unsigned long addr, pfn_t pfn)
2691 return __vm_insert_mixed(vma, addr, pfn, true);
2695 * maps a range of physical memory into the requested pages. the old
2696 * mappings are removed. any references to nonexistent pages results
2697 * in null mappings (currently treated as "copy-on-access")
2699 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2700 unsigned long addr, unsigned long end,
2701 unsigned long pfn, pgprot_t prot)
2703 pte_t *pte, *mapped_pte;
2707 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2710 arch_enter_lazy_mmu_mode();
2712 BUG_ON(!pte_none(ptep_get(pte)));
2713 if (!pfn_modify_allowed(pfn, prot)) {
2717 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2719 } while (pte++, addr += PAGE_SIZE, addr != end);
2720 arch_leave_lazy_mmu_mode();
2721 pte_unmap_unlock(mapped_pte, ptl);
2725 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2726 unsigned long addr, unsigned long end,
2727 unsigned long pfn, pgprot_t prot)
2733 pfn -= addr >> PAGE_SHIFT;
2734 pmd = pmd_alloc(mm, pud, addr);
2737 VM_BUG_ON(pmd_trans_huge(*pmd));
2739 next = pmd_addr_end(addr, end);
2740 err = remap_pte_range(mm, pmd, addr, next,
2741 pfn + (addr >> PAGE_SHIFT), prot);
2744 } while (pmd++, addr = next, addr != end);
2748 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2749 unsigned long addr, unsigned long end,
2750 unsigned long pfn, pgprot_t prot)
2756 pfn -= addr >> PAGE_SHIFT;
2757 pud = pud_alloc(mm, p4d, addr);
2761 next = pud_addr_end(addr, end);
2762 err = remap_pmd_range(mm, pud, addr, next,
2763 pfn + (addr >> PAGE_SHIFT), prot);
2766 } while (pud++, addr = next, addr != end);
2770 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2771 unsigned long addr, unsigned long end,
2772 unsigned long pfn, pgprot_t prot)
2778 pfn -= addr >> PAGE_SHIFT;
2779 p4d = p4d_alloc(mm, pgd, addr);
2783 next = p4d_addr_end(addr, end);
2784 err = remap_pud_range(mm, p4d, addr, next,
2785 pfn + (addr >> PAGE_SHIFT), prot);
2788 } while (p4d++, addr = next, addr != end);
2792 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2793 unsigned long pfn, unsigned long size, pgprot_t prot)
2797 unsigned long end = addr + PAGE_ALIGN(size);
2798 struct mm_struct *mm = vma->vm_mm;
2801 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2805 * Physically remapped pages are special. Tell the
2806 * rest of the world about it:
2807 * VM_IO tells people not to look at these pages
2808 * (accesses can have side effects).
2809 * VM_PFNMAP tells the core MM that the base pages are just
2810 * raw PFN mappings, and do not have a "struct page" associated
2813 * Disable vma merging and expanding with mremap().
2815 * Omit vma from core dump, even when VM_IO turned off.
2817 * There's a horrible special case to handle copy-on-write
2818 * behaviour that some programs depend on. We mark the "original"
2819 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2820 * See vm_normal_page() for details.
2822 if (is_cow_mapping(vma->vm_flags)) {
2823 if (addr != vma->vm_start || end != vma->vm_end)
2825 vma->vm_pgoff = pfn;
2828 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2830 BUG_ON(addr >= end);
2831 pfn -= addr >> PAGE_SHIFT;
2832 pgd = pgd_offset(mm, addr);
2833 flush_cache_range(vma, addr, end);
2835 next = pgd_addr_end(addr, end);
2836 err = remap_p4d_range(mm, pgd, addr, next,
2837 pfn + (addr >> PAGE_SHIFT), prot);
2840 } while (pgd++, addr = next, addr != end);
2846 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2847 * must have pre-validated the caching bits of the pgprot_t.
2849 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2850 unsigned long pfn, unsigned long size, pgprot_t prot)
2852 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2858 * A partial pfn range mapping is dangerous: it does not
2859 * maintain page reference counts, and callers may free
2860 * pages due to the error. So zap it early.
2862 zap_page_range_single(vma, addr, size, NULL);
2866 #ifdef __HAVE_PFNMAP_TRACKING
2867 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn,
2868 unsigned long size, pgprot_t *prot)
2870 struct pfnmap_track_ctx *ctx;
2872 if (pfnmap_track(pfn, size, prot))
2873 return ERR_PTR(-EINVAL);
2875 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
2876 if (unlikely(!ctx)) {
2877 pfnmap_untrack(pfn, size);
2878 return ERR_PTR(-ENOMEM);
2883 kref_init(&ctx->kref);
2887 void pfnmap_track_ctx_release(struct kref *ref)
2889 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref);
2891 pfnmap_untrack(ctx->pfn, ctx->size);
2894 #endif /* __HAVE_PFNMAP_TRACKING */
2897 * remap_pfn_range - remap kernel memory to userspace
2898 * @vma: user vma to map to
2899 * @addr: target page aligned user address to start at
2900 * @pfn: page frame number of kernel physical memory address
2901 * @size: size of mapping area
2902 * @prot: page protection flags for this mapping
2904 * Note: this is only safe if the mm semaphore is held when called.
2906 * Return: %0 on success, negative error code otherwise.
2908 #ifdef __HAVE_PFNMAP_TRACKING
2909 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2910 unsigned long pfn, unsigned long size, pgprot_t prot)
2912 struct pfnmap_track_ctx *ctx = NULL;
2915 size = PAGE_ALIGN(size);
2918 * If we cover the full VMA, we'll perform actual tracking, and
2919 * remember to untrack when the last reference to our tracking
2920 * context from a VMA goes away. We'll keep tracking the whole pfn
2921 * range even during VMA splits and partial unmapping.
2923 * If we only cover parts of the VMA, we'll only setup the cachemode
2924 * in the pgprot for the pfn range.
2926 if (addr == vma->vm_start && addr + size == vma->vm_end) {
2927 if (vma->pfnmap_track_ctx)
2929 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot);
2931 return PTR_ERR(ctx);
2932 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) {
2936 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2939 kref_put(&ctx->kref, pfnmap_track_ctx_release);
2941 vma->pfnmap_track_ctx = ctx;
2947 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2948 unsigned long pfn, unsigned long size, pgprot_t prot)
2950 return remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2953 EXPORT_SYMBOL(remap_pfn_range);
2956 * vm_iomap_memory - remap memory to userspace
2957 * @vma: user vma to map to
2958 * @start: start of the physical memory to be mapped
2959 * @len: size of area
2961 * This is a simplified io_remap_pfn_range() for common driver use. The
2962 * driver just needs to give us the physical memory range to be mapped,
2963 * we'll figure out the rest from the vma information.
2965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2966 * whatever write-combining details or similar.
2968 * Return: %0 on success, negative error code otherwise.
2970 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2972 unsigned long vm_len, pfn, pages;
2974 /* Check that the physical memory area passed in looks valid */
2975 if (start + len < start)
2978 * You *really* shouldn't map things that aren't page-aligned,
2979 * but we've historically allowed it because IO memory might
2980 * just have smaller alignment.
2982 len += start & ~PAGE_MASK;
2983 pfn = start >> PAGE_SHIFT;
2984 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2985 if (pfn + pages < pfn)
2988 /* We start the mapping 'vm_pgoff' pages into the area */
2989 if (vma->vm_pgoff > pages)
2991 pfn += vma->vm_pgoff;
2992 pages -= vma->vm_pgoff;
2994 /* Can we fit all of the mapping? */
2995 vm_len = vma->vm_end - vma->vm_start;
2996 if (vm_len >> PAGE_SHIFT > pages)
2999 /* Ok, let it rip */
3000 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
3002 EXPORT_SYMBOL(vm_iomap_memory);
3004 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
3005 unsigned long addr, unsigned long end,
3006 pte_fn_t fn, void *data, bool create,
3007 pgtbl_mod_mask *mask)
3009 pte_t *pte, *mapped_pte;
3014 mapped_pte = pte = (mm == &init_mm) ?
3015 pte_alloc_kernel_track(pmd, addr, mask) :
3016 pte_alloc_map_lock(mm, pmd, addr, &ptl);
3020 mapped_pte = pte = (mm == &init_mm) ?
3021 pte_offset_kernel(pmd, addr) :
3022 pte_offset_map_lock(mm, pmd, addr, &ptl);
3027 arch_enter_lazy_mmu_mode();
3031 if (create || !pte_none(ptep_get(pte))) {
3032 err = fn(pte, addr, data);
3036 } while (pte++, addr += PAGE_SIZE, addr != end);
3038 *mask |= PGTBL_PTE_MODIFIED;
3040 arch_leave_lazy_mmu_mode();
3043 pte_unmap_unlock(mapped_pte, ptl);
3047 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
3048 unsigned long addr, unsigned long end,
3049 pte_fn_t fn, void *data, bool create,
3050 pgtbl_mod_mask *mask)
3056 BUG_ON(pud_leaf(*pud));
3059 pmd = pmd_alloc_track(mm, pud, addr, mask);
3063 pmd = pmd_offset(pud, addr);
3066 next = pmd_addr_end(addr, end);
3067 if (pmd_none(*pmd) && !create)
3069 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
3071 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
3076 err = apply_to_pte_range(mm, pmd, addr, next,
3077 fn, data, create, mask);
3080 } while (pmd++, addr = next, addr != end);
3085 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
3086 unsigned long addr, unsigned long end,
3087 pte_fn_t fn, void *data, bool create,
3088 pgtbl_mod_mask *mask)
3095 pud = pud_alloc_track(mm, p4d, addr, mask);
3099 pud = pud_offset(p4d, addr);
3102 next = pud_addr_end(addr, end);
3103 if (pud_none(*pud) && !create)
3105 if (WARN_ON_ONCE(pud_leaf(*pud)))
3107 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
3112 err = apply_to_pmd_range(mm, pud, addr, next,
3113 fn, data, create, mask);
3116 } while (pud++, addr = next, addr != end);
3121 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3122 unsigned long addr, unsigned long end,
3123 pte_fn_t fn, void *data, bool create,
3124 pgtbl_mod_mask *mask)
3131 p4d = p4d_alloc_track(mm, pgd, addr, mask);
3135 p4d = p4d_offset(pgd, addr);
3138 next = p4d_addr_end(addr, end);
3139 if (p4d_none(*p4d) && !create)
3141 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3143 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3148 err = apply_to_pud_range(mm, p4d, addr, next,
3149 fn, data, create, mask);
3152 } while (p4d++, addr = next, addr != end);
3157 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3158 unsigned long size, pte_fn_t fn,
3159 void *data, bool create)
3162 unsigned long start = addr, next;
3163 unsigned long end = addr + size;
3164 pgtbl_mod_mask mask = 0;
3167 if (WARN_ON(addr >= end))
3170 pgd = pgd_offset(mm, addr);
3172 next = pgd_addr_end(addr, end);
3173 if (pgd_none(*pgd) && !create)
3175 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3179 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3184 err = apply_to_p4d_range(mm, pgd, addr, next,
3185 fn, data, create, &mask);
3188 } while (pgd++, addr = next, addr != end);
3190 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3191 arch_sync_kernel_mappings(start, start + size);
3197 * Scan a region of virtual memory, filling in page tables as necessary
3198 * and calling a provided function on each leaf page table.
3200 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3201 unsigned long size, pte_fn_t fn, void *data)
3203 return __apply_to_page_range(mm, addr, size, fn, data, true);
3205 EXPORT_SYMBOL_GPL(apply_to_page_range);
3208 * Scan a region of virtual memory, calling a provided function on
3209 * each leaf page table where it exists.
3211 * Unlike apply_to_page_range, this does _not_ fill in page tables
3212 * where they are absent.
3214 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3215 unsigned long size, pte_fn_t fn, void *data)
3217 return __apply_to_page_range(mm, addr, size, fn, data, false);
3221 * handle_pte_fault chooses page fault handler according to an entry which was
3222 * read non-atomically. Before making any commitment, on those architectures
3223 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3224 * parts, do_swap_page must check under lock before unmapping the pte and
3225 * proceeding (but do_wp_page is only called after already making such a check;
3226 * and do_anonymous_page can safely check later on).
3228 static inline int pte_unmap_same(struct vm_fault *vmf)
3231 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3232 if (sizeof(pte_t) > sizeof(unsigned long)) {
3233 spin_lock(vmf->ptl);
3234 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3235 spin_unlock(vmf->ptl);
3238 pte_unmap(vmf->pte);
3245 * 0: copied succeeded
3246 * -EHWPOISON: copy failed due to hwpoison in source page
3247 * -EAGAIN: copied failed (some other reason)
3249 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3250 struct vm_fault *vmf)
3255 struct vm_area_struct *vma = vmf->vma;
3256 struct mm_struct *mm = vma->vm_mm;
3257 unsigned long addr = vmf->address;
3260 if (copy_mc_user_highpage(dst, src, addr, vma))
3266 * If the source page was a PFN mapping, we don't have
3267 * a "struct page" for it. We do a best-effort copy by
3268 * just copying from the original user address. If that
3269 * fails, we just zero-fill it. Live with it.
3271 kaddr = kmap_local_page(dst);
3272 pagefault_disable();
3273 uaddr = (void __user *)(addr & PAGE_MASK);
3276 * On architectures with software "accessed" bits, we would
3277 * take a double page fault, so mark it accessed here.
3280 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3283 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3284 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3286 * Other thread has already handled the fault
3287 * and update local tlb only
3290 update_mmu_tlb(vma, addr, vmf->pte);
3295 entry = pte_mkyoung(vmf->orig_pte);
3296 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3297 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3301 * This really shouldn't fail, because the page is there
3302 * in the page tables. But it might just be unreadable,
3303 * in which case we just give up and fill the result with
3306 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3310 /* Re-validate under PTL if the page is still mapped */
3311 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3312 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3313 /* The PTE changed under us, update local tlb */
3315 update_mmu_tlb(vma, addr, vmf->pte);
3321 * The same page can be mapped back since last copy attempt.
3322 * Try to copy again under PTL.
3324 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3326 * Give a warn in case there can be some obscure
3339 pte_unmap_unlock(vmf->pte, vmf->ptl);
3341 kunmap_local(kaddr);
3342 flush_dcache_page(dst);
3347 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3349 struct file *vm_file = vma->vm_file;
3352 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3355 * Special mappings (e.g. VDSO) do not have any file so fake
3356 * a default GFP_KERNEL for them.
3362 * Notify the address space that the page is about to become writable so that
3363 * it can prohibit this or wait for the page to get into an appropriate state.
3365 * We do this without the lock held, so that it can sleep if it needs to.
3367 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3370 unsigned int old_flags = vmf->flags;
3372 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3374 if (vmf->vma->vm_file &&
3375 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3376 return VM_FAULT_SIGBUS;
3378 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3379 /* Restore original flags so that caller is not surprised */
3380 vmf->flags = old_flags;
3381 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3383 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3385 if (!folio->mapping) {
3386 folio_unlock(folio);
3387 return 0; /* retry */
3389 ret |= VM_FAULT_LOCKED;
3391 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3396 * Handle dirtying of a page in shared file mapping on a write fault.
3398 * The function expects the page to be locked and unlocks it.
3400 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3402 struct vm_area_struct *vma = vmf->vma;
3403 struct address_space *mapping;
3404 struct folio *folio = page_folio(vmf->page);
3406 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3408 dirtied = folio_mark_dirty(folio);
3409 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3411 * Take a local copy of the address_space - folio.mapping may be zeroed
3412 * by truncate after folio_unlock(). The address_space itself remains
3413 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3414 * release semantics to prevent the compiler from undoing this copying.
3416 mapping = folio_raw_mapping(folio);
3417 folio_unlock(folio);
3420 file_update_time(vma->vm_file);
3423 * Throttle page dirtying rate down to writeback speed.
3425 * mapping may be NULL here because some device drivers do not
3426 * set page.mapping but still dirty their pages
3428 * Drop the mmap_lock before waiting on IO, if we can. The file
3429 * is pinning the mapping, as per above.
3431 if ((dirtied || page_mkwrite) && mapping) {
3434 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3435 balance_dirty_pages_ratelimited(mapping);
3438 return VM_FAULT_COMPLETED;
3446 * Handle write page faults for pages that can be reused in the current vma
3448 * This can happen either due to the mapping being with the VM_SHARED flag,
3449 * or due to us being the last reference standing to the page. In either
3450 * case, all we need to do here is to mark the page as writable and update
3451 * any related book-keeping.
3453 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3454 __releases(vmf->ptl)
3456 struct vm_area_struct *vma = vmf->vma;
3459 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3460 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3463 VM_BUG_ON(folio_test_anon(folio) &&
3464 !PageAnonExclusive(vmf->page));
3466 * Clear the folio's cpupid information as the existing
3467 * information potentially belongs to a now completely
3468 * unrelated process.
3470 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3473 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3474 entry = pte_mkyoung(vmf->orig_pte);
3475 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3476 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3477 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3478 pte_unmap_unlock(vmf->pte, vmf->ptl);
3479 count_vm_event(PGREUSE);
3483 * We could add a bitflag somewhere, but for now, we know that all
3484 * vm_ops that have a ->map_pages have been audited and don't need
3485 * the mmap_lock to be held.
3487 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3489 struct vm_area_struct *vma = vmf->vma;
3491 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3494 return VM_FAULT_RETRY;
3498 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3499 * @vmf: The vm_fault descriptor passed from the fault handler.
3501 * When preparing to insert an anonymous page into a VMA from a
3502 * fault handler, call this function rather than anon_vma_prepare().
3503 * If this vma does not already have an associated anon_vma and we are
3504 * only protected by the per-VMA lock, the caller must retry with the
3505 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3506 * determine if this VMA can share its anon_vma, and that's not safe to
3507 * do with only the per-VMA lock held for this VMA.
3509 * Return: 0 if fault handling can proceed. Any other value should be
3510 * returned to the caller.
3512 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3514 struct vm_area_struct *vma = vmf->vma;
3517 if (likely(vma->anon_vma))
3519 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3520 if (!mmap_read_trylock(vma->vm_mm))
3521 return VM_FAULT_RETRY;
3523 if (__anon_vma_prepare(vma))
3525 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3526 mmap_read_unlock(vma->vm_mm);
3531 * Handle the case of a page which we actually need to copy to a new page,
3532 * either due to COW or unsharing.
3534 * Called with mmap_lock locked and the old page referenced, but
3535 * without the ptl held.
3537 * High level logic flow:
3539 * - Allocate a page, copy the content of the old page to the new one.
3540 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3541 * - Take the PTL. If the pte changed, bail out and release the allocated page
3542 * - If the pte is still the way we remember it, update the page table and all
3543 * relevant references. This includes dropping the reference the page-table
3544 * held to the old page, as well as updating the rmap.
3545 * - In any case, unlock the PTL and drop the reference we took to the old page.
3547 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3549 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3550 struct vm_area_struct *vma = vmf->vma;
3551 struct mm_struct *mm = vma->vm_mm;
3552 struct folio *old_folio = NULL;
3553 struct folio *new_folio = NULL;
3555 int page_copied = 0;
3556 struct mmu_notifier_range range;
3560 delayacct_wpcopy_start();
3563 old_folio = page_folio(vmf->page);
3564 ret = vmf_anon_prepare(vmf);
3568 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3569 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3576 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3579 * COW failed, if the fault was solved by other,
3580 * it's fine. If not, userspace would re-fault on
3581 * the same address and we will handle the fault
3582 * from the second attempt.
3583 * The -EHWPOISON case will not be retried.
3585 folio_put(new_folio);
3587 folio_put(old_folio);
3589 delayacct_wpcopy_end();
3590 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3592 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3595 __folio_mark_uptodate(new_folio);
3597 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3598 vmf->address & PAGE_MASK,
3599 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3600 mmu_notifier_invalidate_range_start(&range);
3603 * Re-check the pte - we dropped the lock
3605 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3606 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3608 if (!folio_test_anon(old_folio)) {
3609 dec_mm_counter(mm, mm_counter_file(old_folio));
3610 inc_mm_counter(mm, MM_ANONPAGES);
3613 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3614 inc_mm_counter(mm, MM_ANONPAGES);
3616 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3617 entry = folio_mk_pte(new_folio, vma->vm_page_prot);
3618 entry = pte_sw_mkyoung(entry);
3619 if (unlikely(unshare)) {
3620 if (pte_soft_dirty(vmf->orig_pte))
3621 entry = pte_mksoft_dirty(entry);
3622 if (pte_uffd_wp(vmf->orig_pte))
3623 entry = pte_mkuffd_wp(entry);
3625 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3629 * Clear the pte entry and flush it first, before updating the
3630 * pte with the new entry, to keep TLBs on different CPUs in
3631 * sync. This code used to set the new PTE then flush TLBs, but
3632 * that left a window where the new PTE could be loaded into
3633 * some TLBs while the old PTE remains in others.
3635 ptep_clear_flush(vma, vmf->address, vmf->pte);
3636 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3637 folio_add_lru_vma(new_folio, vma);
3638 BUG_ON(unshare && pte_write(entry));
3639 set_pte_at(mm, vmf->address, vmf->pte, entry);
3640 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3643 * Only after switching the pte to the new page may
3644 * we remove the mapcount here. Otherwise another
3645 * process may come and find the rmap count decremented
3646 * before the pte is switched to the new page, and
3647 * "reuse" the old page writing into it while our pte
3648 * here still points into it and can be read by other
3651 * The critical issue is to order this
3652 * folio_remove_rmap_pte() with the ptp_clear_flush
3653 * above. Those stores are ordered by (if nothing else,)
3654 * the barrier present in the atomic_add_negative
3655 * in folio_remove_rmap_pte();
3657 * Then the TLB flush in ptep_clear_flush ensures that
3658 * no process can access the old page before the
3659 * decremented mapcount is visible. And the old page
3660 * cannot be reused until after the decremented
3661 * mapcount is visible. So transitively, TLBs to
3662 * old page will be flushed before it can be reused.
3664 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3667 /* Free the old page.. */
3668 new_folio = old_folio;
3670 pte_unmap_unlock(vmf->pte, vmf->ptl);
3671 } else if (vmf->pte) {
3672 update_mmu_tlb(vma, vmf->address, vmf->pte);
3673 pte_unmap_unlock(vmf->pte, vmf->ptl);
3676 mmu_notifier_invalidate_range_end(&range);
3679 folio_put(new_folio);
3682 free_swap_cache(old_folio);
3683 folio_put(old_folio);
3686 delayacct_wpcopy_end();
3692 folio_put(old_folio);
3694 delayacct_wpcopy_end();
3699 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3700 * writeable once the page is prepared
3702 * @vmf: structure describing the fault
3703 * @folio: the folio of vmf->page
3705 * This function handles all that is needed to finish a write page fault in a
3706 * shared mapping due to PTE being read-only once the mapped page is prepared.
3707 * It handles locking of PTE and modifying it.
3709 * The function expects the page to be locked or other protection against
3710 * concurrent faults / writeback (such as DAX radix tree locks).
3712 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3713 * we acquired PTE lock.
3715 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3717 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3718 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3721 return VM_FAULT_NOPAGE;
3723 * We might have raced with another page fault while we released the
3724 * pte_offset_map_lock.
3726 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3727 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3728 pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 return VM_FAULT_NOPAGE;
3731 wp_page_reuse(vmf, folio);
3736 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3739 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3741 struct vm_area_struct *vma = vmf->vma;
3743 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3746 pte_unmap_unlock(vmf->pte, vmf->ptl);
3747 ret = vmf_can_call_fault(vmf);
3751 vmf->flags |= FAULT_FLAG_MKWRITE;
3752 ret = vma->vm_ops->pfn_mkwrite(vmf);
3753 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3755 return finish_mkwrite_fault(vmf, NULL);
3757 wp_page_reuse(vmf, NULL);
3761 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3762 __releases(vmf->ptl)
3764 struct vm_area_struct *vma = vmf->vma;
3769 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3772 pte_unmap_unlock(vmf->pte, vmf->ptl);
3773 tmp = vmf_can_call_fault(vmf);
3779 tmp = do_page_mkwrite(vmf, folio);
3780 if (unlikely(!tmp || (tmp &
3781 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3785 tmp = finish_mkwrite_fault(vmf, folio);
3786 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3787 folio_unlock(folio);
3792 wp_page_reuse(vmf, folio);
3795 ret |= fault_dirty_shared_page(vmf);
3801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3802 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3803 struct vm_area_struct *vma)
3805 bool exclusive = false;
3807 /* Let's just free up a large folio if only a single page is mapped. */
3808 if (folio_large_mapcount(folio) <= 1)
3812 * The assumption for anonymous folios is that each page can only get
3813 * mapped once into each MM. The only exception are KSM folios, which
3816 * Each taken mapcount must be paired with exactly one taken reference,
3817 * whereby the refcount must be incremented before the mapcount when
3818 * mapping a page, and the refcount must be decremented after the
3819 * mapcount when unmapping a page.
3821 * If all folio references are from mappings, and all mappings are in
3822 * the page tables of this MM, then this folio is exclusive to this MM.
3824 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3827 VM_WARN_ON_ONCE(folio_test_ksm(folio));
3829 if (unlikely(folio_test_swapcache(folio))) {
3831 * Note: freeing up the swapcache will fail if some PTEs are
3832 * still swap entries.
3834 if (!folio_trylock(folio))
3836 folio_free_swap(folio);
3837 folio_unlock(folio);
3840 if (folio_large_mapcount(folio) != folio_ref_count(folio))
3843 /* Stabilize the mapcount vs. refcount and recheck. */
3844 folio_lock_large_mapcount(folio);
3845 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio);
3847 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3849 if (folio_large_mapcount(folio) != folio_ref_count(folio))
3852 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio);
3853 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio);
3854 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id &&
3855 folio_mm_id(folio, 1) != vma->vm_mm->mm_id);
3858 * Do we need the folio lock? Likely not. If there would have been
3859 * references from page migration/swapout, we would have detected
3860 * an additional folio reference and never ended up here.
3864 folio_unlock_large_mapcount(folio);
3867 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
3868 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3869 struct vm_area_struct *vma)
3873 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3875 static bool wp_can_reuse_anon_folio(struct folio *folio,
3876 struct vm_area_struct *vma)
3878 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio))
3879 return __wp_can_reuse_large_anon_folio(folio, vma);
3882 * We have to verify under folio lock: these early checks are
3883 * just an optimization to avoid locking the folio and freeing
3884 * the swapcache if there is little hope that we can reuse.
3886 * KSM doesn't necessarily raise the folio refcount.
3888 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3890 if (!folio_test_lru(folio))
3892 * We cannot easily detect+handle references from
3893 * remote LRU caches or references to LRU folios.
3896 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3898 if (!folio_trylock(folio))
3900 if (folio_test_swapcache(folio))
3901 folio_free_swap(folio);
3902 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3903 folio_unlock(folio);
3907 * Ok, we've got the only folio reference from our mapping
3908 * and the folio is locked, it's dark out, and we're wearing
3909 * sunglasses. Hit it.
3911 folio_move_anon_rmap(folio, vma);
3912 folio_unlock(folio);
3917 * This routine handles present pages, when
3918 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3919 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3920 * (FAULT_FLAG_UNSHARE)
3922 * It is done by copying the page to a new address and decrementing the
3923 * shared-page counter for the old page.
3925 * Note that this routine assumes that the protection checks have been
3926 * done by the caller (the low-level page fault routine in most cases).
3927 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3928 * done any necessary COW.
3930 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3931 * though the page will change only once the write actually happens. This
3932 * avoids a few races, and potentially makes it more efficient.
3934 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3935 * but allow concurrent faults), with pte both mapped and locked.
3936 * We return with mmap_lock still held, but pte unmapped and unlocked.
3938 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3939 __releases(vmf->ptl)
3941 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3942 struct vm_area_struct *vma = vmf->vma;
3943 struct folio *folio = NULL;
3946 if (likely(!unshare)) {
3947 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3948 if (!userfaultfd_wp_async(vma)) {
3949 pte_unmap_unlock(vmf->pte, vmf->ptl);
3950 return handle_userfault(vmf, VM_UFFD_WP);
3954 * Nothing needed (cache flush, TLB invalidations,
3955 * etc.) because we're only removing the uffd-wp bit,
3956 * which is completely invisible to the user.
3958 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3960 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3962 * Update this to be prepared for following up CoW
3965 vmf->orig_pte = pte;
3969 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3970 * is flushed in this case before copying.
3972 if (unlikely(userfaultfd_wp(vmf->vma) &&
3973 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3974 flush_tlb_page(vmf->vma, vmf->address);
3977 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3980 folio = page_folio(vmf->page);
3983 * Shared mapping: we are guaranteed to have VM_WRITE and
3984 * FAULT_FLAG_WRITE set at this point.
3986 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3988 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3989 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
3991 * We should not cow pages in a shared writeable mapping.
3992 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3994 if (!vmf->page || is_fsdax_page(vmf->page)) {
3996 return wp_pfn_shared(vmf);
3998 return wp_page_shared(vmf, folio);
4002 * Private mapping: create an exclusive anonymous page copy if reuse
4003 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
4005 * If we encounter a page that is marked exclusive, we must reuse
4006 * the page without further checks.
4008 if (folio && folio_test_anon(folio) &&
4009 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
4010 if (!PageAnonExclusive(vmf->page))
4011 SetPageAnonExclusive(vmf->page);
4012 if (unlikely(unshare)) {
4013 pte_unmap_unlock(vmf->pte, vmf->ptl);
4016 wp_page_reuse(vmf, folio);
4020 * Ok, we need to copy. Oh, well..
4025 pte_unmap_unlock(vmf->pte, vmf->ptl);
4027 if (folio && folio_test_ksm(folio))
4028 count_vm_event(COW_KSM);
4030 return wp_page_copy(vmf);
4033 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
4034 unsigned long start_addr, unsigned long end_addr,
4035 struct zap_details *details)
4037 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
4040 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
4041 pgoff_t first_index,
4043 struct zap_details *details)
4045 struct vm_area_struct *vma;
4046 pgoff_t vba, vea, zba, zea;
4048 vma_interval_tree_foreach(vma, root, first_index, last_index) {
4049 vba = vma->vm_pgoff;
4050 vea = vba + vma_pages(vma) - 1;
4051 zba = max(first_index, vba);
4052 zea = min(last_index, vea);
4054 unmap_mapping_range_vma(vma,
4055 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
4056 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
4062 * unmap_mapping_folio() - Unmap single folio from processes.
4063 * @folio: The locked folio to be unmapped.
4065 * Unmap this folio from any userspace process which still has it mmaped.
4066 * Typically, for efficiency, the range of nearby pages has already been
4067 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
4068 * truncation or invalidation holds the lock on a folio, it may find that
4069 * the page has been remapped again: and then uses unmap_mapping_folio()
4070 * to unmap it finally.
4072 void unmap_mapping_folio(struct folio *folio)
4074 struct address_space *mapping = folio->mapping;
4075 struct zap_details details = { };
4076 pgoff_t first_index;
4079 VM_BUG_ON(!folio_test_locked(folio));
4081 first_index = folio->index;
4082 last_index = folio_next_index(folio) - 1;
4084 details.even_cows = false;
4085 details.single_folio = folio;
4086 details.zap_flags = ZAP_FLAG_DROP_MARKER;
4088 i_mmap_lock_read(mapping);
4089 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4090 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4091 last_index, &details);
4092 i_mmap_unlock_read(mapping);
4096 * unmap_mapping_pages() - Unmap pages from processes.
4097 * @mapping: The address space containing pages to be unmapped.
4098 * @start: Index of first page to be unmapped.
4099 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
4100 * @even_cows: Whether to unmap even private COWed pages.
4102 * Unmap the pages in this address space from any userspace process which
4103 * has them mmaped. Generally, you want to remove COWed pages as well when
4104 * a file is being truncated, but not when invalidating pages from the page
4107 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
4108 pgoff_t nr, bool even_cows)
4110 struct zap_details details = { };
4111 pgoff_t first_index = start;
4112 pgoff_t last_index = start + nr - 1;
4114 details.even_cows = even_cows;
4115 if (last_index < first_index)
4116 last_index = ULONG_MAX;
4118 i_mmap_lock_read(mapping);
4119 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4120 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4121 last_index, &details);
4122 i_mmap_unlock_read(mapping);
4124 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
4127 * unmap_mapping_range - unmap the portion of all mmaps in the specified
4128 * address_space corresponding to the specified byte range in the underlying
4131 * @mapping: the address space containing mmaps to be unmapped.
4132 * @holebegin: byte in first page to unmap, relative to the start of
4133 * the underlying file. This will be rounded down to a PAGE_SIZE
4134 * boundary. Note that this is different from truncate_pagecache(), which
4135 * must keep the partial page. In contrast, we must get rid of
4137 * @holelen: size of prospective hole in bytes. This will be rounded
4138 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
4140 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
4141 * but 0 when invalidating pagecache, don't throw away private data.
4143 void unmap_mapping_range(struct address_space *mapping,
4144 loff_t const holebegin, loff_t const holelen, int even_cows)
4146 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
4147 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
4149 /* Check for overflow. */
4150 if (sizeof(holelen) > sizeof(hlen)) {
4152 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
4153 if (holeend & ~(long long)ULONG_MAX)
4154 hlen = ULONG_MAX - hba + 1;
4157 unmap_mapping_pages(mapping, hba, hlen, even_cows);
4159 EXPORT_SYMBOL(unmap_mapping_range);
4162 * Restore a potential device exclusive pte to a working pte entry
4164 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
4166 struct folio *folio = page_folio(vmf->page);
4167 struct vm_area_struct *vma = vmf->vma;
4168 struct mmu_notifier_range range;
4172 * We need a reference to lock the folio because we don't hold
4173 * the PTL so a racing thread can remove the device-exclusive
4174 * entry and unmap it. If the folio is free the entry must
4175 * have been removed already. If it happens to have already
4176 * been re-allocated after being freed all we do is lock and
4179 if (!folio_try_get(folio))
4182 ret = folio_lock_or_retry(folio, vmf);
4187 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0,
4188 vma->vm_mm, vmf->address & PAGE_MASK,
4189 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
4190 mmu_notifier_invalidate_range_start(&range);
4192 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4194 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4195 restore_exclusive_pte(vma, folio, vmf->page, vmf->address,
4196 vmf->pte, vmf->orig_pte);
4199 pte_unmap_unlock(vmf->pte, vmf->ptl);
4200 folio_unlock(folio);
4203 mmu_notifier_invalidate_range_end(&range);
4207 static inline bool should_try_to_free_swap(struct folio *folio,
4208 struct vm_area_struct *vma,
4209 unsigned int fault_flags)
4211 if (!folio_test_swapcache(folio))
4213 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4214 folio_test_mlocked(folio))
4217 * If we want to map a page that's in the swapcache writable, we
4218 * have to detect via the refcount if we're really the exclusive
4219 * user. Try freeing the swapcache to get rid of the swapcache
4220 * reference only in case it's likely that we'll be the exlusive user.
4222 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4223 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4226 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4228 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4229 vmf->address, &vmf->ptl);
4233 * Be careful so that we will only recover a special uffd-wp pte into a
4234 * none pte. Otherwise it means the pte could have changed, so retry.
4236 * This should also cover the case where e.g. the pte changed
4237 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4238 * So is_pte_marker() check is not enough to safely drop the pte.
4240 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4241 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4242 pte_unmap_unlock(vmf->pte, vmf->ptl);
4246 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4248 if (vma_is_anonymous(vmf->vma))
4249 return do_anonymous_page(vmf);
4251 return do_fault(vmf);
4255 * This is actually a page-missing access, but with uffd-wp special pte
4256 * installed. It means this pte was wr-protected before being unmapped.
4258 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4261 * Just in case there're leftover special ptes even after the region
4262 * got unregistered - we can simply clear them.
4264 if (unlikely(!userfaultfd_wp(vmf->vma)))
4265 return pte_marker_clear(vmf);
4267 return do_pte_missing(vmf);
4270 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4272 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4273 unsigned long marker = pte_marker_get(entry);
4276 * PTE markers should never be empty. If anything weird happened,
4277 * the best thing to do is to kill the process along with its mm.
4279 if (WARN_ON_ONCE(!marker))
4280 return VM_FAULT_SIGBUS;
4282 /* Higher priority than uffd-wp when data corrupted */
4283 if (marker & PTE_MARKER_POISONED)
4284 return VM_FAULT_HWPOISON;
4286 /* Hitting a guard page is always a fatal condition. */
4287 if (marker & PTE_MARKER_GUARD)
4288 return VM_FAULT_SIGSEGV;
4290 if (pte_marker_entry_uffd_wp(entry))
4291 return pte_marker_handle_uffd_wp(vmf);
4293 /* This is an unknown pte marker */
4294 return VM_FAULT_SIGBUS;
4297 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4299 struct vm_area_struct *vma = vmf->vma;
4300 struct folio *folio;
4303 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4307 entry = pte_to_swp_entry(vmf->orig_pte);
4308 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4309 GFP_KERNEL, entry)) {
4317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4319 * Check if the PTEs within a range are contiguous swap entries
4320 * and have consistent swapcache, zeromap.
4322 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4329 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4330 idx = (vmf->address - addr) / PAGE_SIZE;
4331 pte = ptep_get(ptep);
4333 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4335 entry = pte_to_swp_entry(pte);
4336 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4340 * swap_read_folio() can't handle the case a large folio is hybridly
4341 * from different backends. And they are likely corner cases. Similar
4342 * things might be added once zswap support large folios.
4344 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4346 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4352 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4354 unsigned long orders)
4358 order = highest_order(orders);
4361 * To swap in a THP with nr pages, we require that its first swap_offset
4362 * is aligned with that number, as it was when the THP was swapped out.
4363 * This helps filter out most invalid entries.
4367 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4369 order = next_order(&orders, order);
4375 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4377 struct vm_area_struct *vma = vmf->vma;
4378 unsigned long orders;
4379 struct folio *folio;
4388 * If uffd is active for the vma we need per-page fault fidelity to
4389 * maintain the uffd semantics.
4391 if (unlikely(userfaultfd_armed(vma)))
4395 * A large swapped out folio could be partially or fully in zswap. We
4396 * lack handling for such cases, so fallback to swapping in order-0
4399 if (!zswap_never_enabled())
4402 entry = pte_to_swp_entry(vmf->orig_pte);
4404 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4405 * and suitable for swapping THP.
4407 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4408 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4409 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4410 orders = thp_swap_suitable_orders(swp_offset(entry),
4411 vmf->address, orders);
4416 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4417 vmf->address & PMD_MASK, &ptl);
4422 * For do_swap_page, find the highest order where the aligned range is
4423 * completely swap entries with contiguous swap offsets.
4425 order = highest_order(orders);
4427 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4428 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4430 order = next_order(&orders, order);
4433 pte_unmap_unlock(pte, ptl);
4435 /* Try allocating the highest of the remaining orders. */
4436 gfp = vma_thp_gfp_mask(vma);
4438 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4439 folio = vma_alloc_folio(gfp, order, vma, addr);
4441 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4444 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4447 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4448 order = next_order(&orders, order);
4452 return __alloc_swap_folio(vmf);
4454 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4455 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4457 return __alloc_swap_folio(vmf);
4459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4461 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4464 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4465 * but allow concurrent faults), and pte mapped but not yet locked.
4466 * We return with pte unmapped and unlocked.
4468 * We return with the mmap_lock locked or unlocked in the same cases
4469 * as does filemap_fault().
4471 vm_fault_t do_swap_page(struct vm_fault *vmf)
4473 struct vm_area_struct *vma = vmf->vma;
4474 struct folio *swapcache, *folio = NULL;
4475 DECLARE_WAITQUEUE(wait, current);
4477 struct swap_info_struct *si = NULL;
4478 rmap_t rmap_flags = RMAP_NONE;
4479 bool need_clear_cache = false;
4480 bool exclusive = false;
4484 void *shadow = NULL;
4486 unsigned long page_idx;
4487 unsigned long address;
4490 if (!pte_unmap_same(vmf))
4493 entry = pte_to_swp_entry(vmf->orig_pte);
4494 if (unlikely(non_swap_entry(entry))) {
4495 if (is_migration_entry(entry)) {
4496 migration_entry_wait(vma->vm_mm, vmf->pmd,
4498 } else if (is_device_exclusive_entry(entry)) {
4499 vmf->page = pfn_swap_entry_to_page(entry);
4500 ret = remove_device_exclusive_entry(vmf);
4501 } else if (is_device_private_entry(entry)) {
4502 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4504 * migrate_to_ram is not yet ready to operate
4508 ret = VM_FAULT_RETRY;
4512 vmf->page = pfn_swap_entry_to_page(entry);
4513 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4514 vmf->address, &vmf->ptl);
4515 if (unlikely(!vmf->pte ||
4516 !pte_same(ptep_get(vmf->pte),
4521 * Get a page reference while we know the page can't be
4524 if (trylock_page(vmf->page)) {
4525 struct dev_pagemap *pgmap;
4527 get_page(vmf->page);
4528 pte_unmap_unlock(vmf->pte, vmf->ptl);
4529 pgmap = page_pgmap(vmf->page);
4530 ret = pgmap->ops->migrate_to_ram(vmf);
4531 unlock_page(vmf->page);
4532 put_page(vmf->page);
4534 pte_unmap_unlock(vmf->pte, vmf->ptl);
4536 } else if (is_hwpoison_entry(entry)) {
4537 ret = VM_FAULT_HWPOISON;
4538 } else if (is_pte_marker_entry(entry)) {
4539 ret = handle_pte_marker(vmf);
4541 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4542 ret = VM_FAULT_SIGBUS;
4547 /* Prevent swapoff from happening to us. */
4548 si = get_swap_device(entry);
4552 folio = swap_cache_get_folio(entry, vma, vmf->address);
4554 page = folio_file_page(folio, swp_offset(entry));
4558 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4559 __swap_count(entry) == 1) {
4560 /* skip swapcache */
4561 folio = alloc_swap_folio(vmf);
4563 __folio_set_locked(folio);
4564 __folio_set_swapbacked(folio);
4566 nr_pages = folio_nr_pages(folio);
4567 if (folio_test_large(folio))
4568 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4570 * Prevent parallel swapin from proceeding with
4571 * the cache flag. Otherwise, another thread
4572 * may finish swapin first, free the entry, and
4573 * swapout reusing the same entry. It's
4574 * undetectable as pte_same() returns true due
4577 if (swapcache_prepare(entry, nr_pages)) {
4579 * Relax a bit to prevent rapid
4580 * repeated page faults.
4582 add_wait_queue(&swapcache_wq, &wait);
4583 schedule_timeout_uninterruptible(1);
4584 remove_wait_queue(&swapcache_wq, &wait);
4587 need_clear_cache = true;
4589 memcg1_swapin(entry, nr_pages);
4591 shadow = get_shadow_from_swap_cache(entry);
4593 workingset_refault(folio, shadow);
4595 folio_add_lru(folio);
4597 /* To provide entry to swap_read_folio() */
4598 folio->swap = entry;
4599 swap_read_folio(folio, NULL);
4600 folio->private = NULL;
4603 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4610 * Back out if somebody else faulted in this pte
4611 * while we released the pte lock.
4613 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4614 vmf->address, &vmf->ptl);
4615 if (likely(vmf->pte &&
4616 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4621 /* Had to read the page from swap area: Major fault */
4622 ret = VM_FAULT_MAJOR;
4623 count_vm_event(PGMAJFAULT);
4624 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4625 page = folio_file_page(folio, swp_offset(entry));
4626 } else if (PageHWPoison(page)) {
4628 * hwpoisoned dirty swapcache pages are kept for killing
4629 * owner processes (which may be unknown at hwpoison time)
4631 ret = VM_FAULT_HWPOISON;
4635 ret |= folio_lock_or_retry(folio, vmf);
4636 if (ret & VM_FAULT_RETRY)
4641 * Make sure folio_free_swap() or swapoff did not release the
4642 * swapcache from under us. The page pin, and pte_same test
4643 * below, are not enough to exclude that. Even if it is still
4644 * swapcache, we need to check that the page's swap has not
4647 if (unlikely(!folio_test_swapcache(folio) ||
4648 page_swap_entry(page).val != entry.val))
4652 * KSM sometimes has to copy on read faults, for example, if
4653 * folio->index of non-ksm folios would be nonlinear inside the
4654 * anon VMA -- the ksm flag is lost on actual swapout.
4656 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4657 if (unlikely(!folio)) {
4661 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4662 ret = VM_FAULT_HWPOISON;
4666 if (folio != swapcache)
4667 page = folio_page(folio, 0);
4670 * If we want to map a page that's in the swapcache writable, we
4671 * have to detect via the refcount if we're really the exclusive
4672 * owner. Try removing the extra reference from the local LRU
4673 * caches if required.
4675 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4676 !folio_test_ksm(folio) && !folio_test_lru(folio))
4680 folio_throttle_swaprate(folio, GFP_KERNEL);
4683 * Back out if somebody else already faulted in this pte.
4685 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4687 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4690 if (unlikely(!folio_test_uptodate(folio))) {
4691 ret = VM_FAULT_SIGBUS;
4695 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4696 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4697 unsigned long nr = folio_nr_pages(folio);
4698 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4699 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4700 pte_t *folio_ptep = vmf->pte - idx;
4701 pte_t folio_pte = ptep_get(folio_ptep);
4703 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4704 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4708 address = folio_start;
4715 address = vmf->address;
4717 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4718 int nr = folio_nr_pages(folio);
4719 unsigned long idx = folio_page_idx(folio, page);
4720 unsigned long folio_start = address - idx * PAGE_SIZE;
4721 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4725 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4727 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4730 folio_ptep = vmf->pte - idx;
4731 folio_pte = ptep_get(folio_ptep);
4732 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4733 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4737 address = folio_start;
4740 entry = folio->swap;
4741 page = &folio->page;
4746 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4747 * must never point at an anonymous page in the swapcache that is
4748 * PG_anon_exclusive. Sanity check that this holds and especially, that
4749 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4750 * check after taking the PT lock and making sure that nobody
4751 * concurrently faulted in this page and set PG_anon_exclusive.
4753 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4754 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4757 * Check under PT lock (to protect against concurrent fork() sharing
4758 * the swap entry concurrently) for certainly exclusive pages.
4760 if (!folio_test_ksm(folio)) {
4761 exclusive = pte_swp_exclusive(vmf->orig_pte);
4762 if (folio != swapcache) {
4764 * We have a fresh page that is not exposed to the
4765 * swapcache -> certainly exclusive.
4768 } else if (exclusive && folio_test_writeback(folio) &&
4769 data_race(si->flags & SWP_STABLE_WRITES)) {
4771 * This is tricky: not all swap backends support
4772 * concurrent page modifications while under writeback.
4774 * So if we stumble over such a page in the swapcache
4775 * we must not set the page exclusive, otherwise we can
4776 * map it writable without further checks and modify it
4777 * while still under writeback.
4779 * For these problematic swap backends, simply drop the
4780 * exclusive marker: this is perfectly fine as we start
4781 * writeback only if we fully unmapped the page and
4782 * there are no unexpected references on the page after
4783 * unmapping succeeded. After fully unmapped, no
4784 * further GUP references (FOLL_GET and FOLL_PIN) can
4785 * appear, so dropping the exclusive marker and mapping
4786 * it only R/O is fine.
4793 * Some architectures may have to restore extra metadata to the page
4794 * when reading from swap. This metadata may be indexed by swap entry
4795 * so this must be called before swap_free().
4797 arch_swap_restore(folio_swap(entry, folio), folio);
4800 * Remove the swap entry and conditionally try to free up the swapcache.
4801 * We're already holding a reference on the page but haven't mapped it
4804 swap_free_nr(entry, nr_pages);
4805 if (should_try_to_free_swap(folio, vma, vmf->flags))
4806 folio_free_swap(folio);
4808 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4809 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4810 pte = mk_pte(page, vma->vm_page_prot);
4811 if (pte_swp_soft_dirty(vmf->orig_pte))
4812 pte = pte_mksoft_dirty(pte);
4813 if (pte_swp_uffd_wp(vmf->orig_pte))
4814 pte = pte_mkuffd_wp(pte);
4817 * Same logic as in do_wp_page(); however, optimize for pages that are
4818 * certainly not shared either because we just allocated them without
4819 * exposing them to the swapcache or because the swap entry indicates
4822 if (!folio_test_ksm(folio) &&
4823 (exclusive || folio_ref_count(folio) == 1)) {
4824 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4825 !pte_needs_soft_dirty_wp(vma, pte)) {
4826 pte = pte_mkwrite(pte, vma);
4827 if (vmf->flags & FAULT_FLAG_WRITE) {
4828 pte = pte_mkdirty(pte);
4829 vmf->flags &= ~FAULT_FLAG_WRITE;
4832 rmap_flags |= RMAP_EXCLUSIVE;
4834 folio_ref_add(folio, nr_pages - 1);
4835 flush_icache_pages(vma, page, nr_pages);
4836 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4838 /* ksm created a completely new copy */
4839 if (unlikely(folio != swapcache && swapcache)) {
4840 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4841 folio_add_lru_vma(folio, vma);
4842 } else if (!folio_test_anon(folio)) {
4844 * We currently only expect small !anon folios which are either
4845 * fully exclusive or fully shared, or new allocated large
4846 * folios which are fully exclusive. If we ever get large
4847 * folios within swapcache here, we have to be careful.
4849 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4850 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4851 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4853 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4857 VM_BUG_ON(!folio_test_anon(folio) ||
4858 (pte_write(pte) && !PageAnonExclusive(page)));
4859 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4860 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4861 pte, pte, nr_pages);
4863 folio_unlock(folio);
4864 if (folio != swapcache && swapcache) {
4866 * Hold the lock to avoid the swap entry to be reused
4867 * until we take the PT lock for the pte_same() check
4868 * (to avoid false positives from pte_same). For
4869 * further safety release the lock after the swap_free
4870 * so that the swap count won't change under a
4871 * parallel locked swapcache.
4873 folio_unlock(swapcache);
4874 folio_put(swapcache);
4877 if (vmf->flags & FAULT_FLAG_WRITE) {
4878 ret |= do_wp_page(vmf);
4879 if (ret & VM_FAULT_ERROR)
4880 ret &= VM_FAULT_ERROR;
4884 /* No need to invalidate - it was non-present before */
4885 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4888 pte_unmap_unlock(vmf->pte, vmf->ptl);
4890 /* Clear the swap cache pin for direct swapin after PTL unlock */
4891 if (need_clear_cache) {
4892 swapcache_clear(si, entry, nr_pages);
4893 if (waitqueue_active(&swapcache_wq))
4894 wake_up(&swapcache_wq);
4897 put_swap_device(si);
4901 pte_unmap_unlock(vmf->pte, vmf->ptl);
4903 folio_unlock(folio);
4906 if (folio != swapcache && swapcache) {
4907 folio_unlock(swapcache);
4908 folio_put(swapcache);
4910 if (need_clear_cache) {
4911 swapcache_clear(si, entry, nr_pages);
4912 if (waitqueue_active(&swapcache_wq))
4913 wake_up(&swapcache_wq);
4916 put_swap_device(si);
4920 static bool pte_range_none(pte_t *pte, int nr_pages)
4924 for (i = 0; i < nr_pages; i++) {
4925 if (!pte_none(ptep_get_lockless(pte + i)))
4932 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4934 struct vm_area_struct *vma = vmf->vma;
4935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4936 unsigned long orders;
4937 struct folio *folio;
4944 * If uffd is active for the vma we need per-page fault fidelity to
4945 * maintain the uffd semantics.
4947 if (unlikely(userfaultfd_armed(vma)))
4951 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4952 * for this vma. Then filter out the orders that can't be allocated over
4953 * the faulting address and still be fully contained in the vma.
4955 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4956 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4957 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4962 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4964 return ERR_PTR(-EAGAIN);
4967 * Find the highest order where the aligned range is completely
4968 * pte_none(). Note that all remaining orders will be completely
4971 order = highest_order(orders);
4973 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4974 if (pte_range_none(pte + pte_index(addr), 1 << order))
4976 order = next_order(&orders, order);
4984 /* Try allocating the highest of the remaining orders. */
4985 gfp = vma_thp_gfp_mask(vma);
4987 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4988 folio = vma_alloc_folio(gfp, order, vma, addr);
4990 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4991 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4995 folio_throttle_swaprate(folio, gfp);
4997 * When a folio is not zeroed during allocation
4998 * (__GFP_ZERO not used) or user folios require special
4999 * handling, folio_zero_user() is used to make sure
5000 * that the page corresponding to the faulting address
5001 * will be hot in the cache after zeroing.
5003 if (user_alloc_needs_zeroing())
5004 folio_zero_user(folio, vmf->address);
5008 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
5009 order = next_order(&orders, order);
5014 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
5018 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5019 * but allow concurrent faults), and pte mapped but not yet locked.
5020 * We return with mmap_lock still held, but pte unmapped and unlocked.
5022 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
5024 struct vm_area_struct *vma = vmf->vma;
5025 unsigned long addr = vmf->address;
5026 struct folio *folio;
5031 /* File mapping without ->vm_ops ? */
5032 if (vma->vm_flags & VM_SHARED)
5033 return VM_FAULT_SIGBUS;
5036 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
5037 * be distinguished from a transient failure of pte_offset_map().
5039 if (pte_alloc(vma->vm_mm, vmf->pmd))
5040 return VM_FAULT_OOM;
5042 /* Use the zero-page for reads */
5043 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
5044 !mm_forbids_zeropage(vma->vm_mm)) {
5045 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
5046 vma->vm_page_prot));
5047 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5048 vmf->address, &vmf->ptl);
5051 if (vmf_pte_changed(vmf)) {
5052 update_mmu_tlb(vma, vmf->address, vmf->pte);
5055 ret = check_stable_address_space(vma->vm_mm);
5058 /* Deliver the page fault to userland, check inside PT lock */
5059 if (userfaultfd_missing(vma)) {
5060 pte_unmap_unlock(vmf->pte, vmf->ptl);
5061 return handle_userfault(vmf, VM_UFFD_MISSING);
5066 /* Allocate our own private page. */
5067 ret = vmf_anon_prepare(vmf);
5070 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
5071 folio = alloc_anon_folio(vmf);
5077 nr_pages = folio_nr_pages(folio);
5078 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
5081 * The memory barrier inside __folio_mark_uptodate makes sure that
5082 * preceding stores to the page contents become visible before
5083 * the set_pte_at() write.
5085 __folio_mark_uptodate(folio);
5087 entry = folio_mk_pte(folio, vma->vm_page_prot);
5088 entry = pte_sw_mkyoung(entry);
5089 if (vma->vm_flags & VM_WRITE)
5090 entry = pte_mkwrite(pte_mkdirty(entry), vma);
5092 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
5095 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
5096 update_mmu_tlb(vma, addr, vmf->pte);
5098 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5099 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5103 ret = check_stable_address_space(vma->vm_mm);
5107 /* Deliver the page fault to userland, check inside PT lock */
5108 if (userfaultfd_missing(vma)) {
5109 pte_unmap_unlock(vmf->pte, vmf->ptl);
5111 return handle_userfault(vmf, VM_UFFD_MISSING);
5114 folio_ref_add(folio, nr_pages - 1);
5115 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
5116 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
5117 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5118 folio_add_lru_vma(folio, vma);
5120 if (vmf_orig_pte_uffd_wp(vmf))
5121 entry = pte_mkuffd_wp(entry);
5122 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
5124 /* No need to invalidate - it was non-present before */
5125 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
5128 pte_unmap_unlock(vmf->pte, vmf->ptl);
5134 return VM_FAULT_OOM;
5138 * The mmap_lock must have been held on entry, and may have been
5139 * released depending on flags and vma->vm_ops->fault() return value.
5140 * See filemap_fault() and __lock_page_retry().
5142 static vm_fault_t __do_fault(struct vm_fault *vmf)
5144 struct vm_area_struct *vma = vmf->vma;
5145 struct folio *folio;
5149 * Preallocate pte before we take page_lock because this might lead to
5150 * deadlocks for memcg reclaim which waits for pages under writeback:
5152 * SetPageWriteback(A)
5158 * wait_on_page_writeback(A)
5159 * SetPageWriteback(B)
5161 * # flush A, B to clear the writeback
5163 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
5164 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5165 if (!vmf->prealloc_pte)
5166 return VM_FAULT_OOM;
5169 ret = vma->vm_ops->fault(vmf);
5170 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
5171 VM_FAULT_DONE_COW)))
5174 folio = page_folio(vmf->page);
5175 if (unlikely(PageHWPoison(vmf->page))) {
5176 vm_fault_t poisonret = VM_FAULT_HWPOISON;
5177 if (ret & VM_FAULT_LOCKED) {
5178 if (page_mapped(vmf->page))
5179 unmap_mapping_folio(folio);
5180 /* Retry if a clean folio was removed from the cache. */
5181 if (mapping_evict_folio(folio->mapping, folio))
5182 poisonret = VM_FAULT_NOPAGE;
5183 folio_unlock(folio);
5190 if (unlikely(!(ret & VM_FAULT_LOCKED)))
5193 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5198 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5199 static void deposit_prealloc_pte(struct vm_fault *vmf)
5201 struct vm_area_struct *vma = vmf->vma;
5203 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5205 * We are going to consume the prealloc table,
5206 * count that as nr_ptes.
5208 mm_inc_nr_ptes(vma->vm_mm);
5209 vmf->prealloc_pte = NULL;
5212 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5214 struct vm_area_struct *vma = vmf->vma;
5215 bool write = vmf->flags & FAULT_FLAG_WRITE;
5216 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5218 vm_fault_t ret = VM_FAULT_FALLBACK;
5221 * It is too late to allocate a small folio, we already have a large
5222 * folio in the pagecache: especially s390 KVM cannot tolerate any
5223 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5224 * PMD mappings if THPs are disabled.
5226 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
5229 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5232 if (folio_order(folio) != HPAGE_PMD_ORDER)
5234 page = &folio->page;
5237 * Just backoff if any subpage of a THP is corrupted otherwise
5238 * the corrupted page may mapped by PMD silently to escape the
5239 * check. This kind of THP just can be PTE mapped. Access to
5240 * the corrupted subpage should trigger SIGBUS as expected.
5242 if (unlikely(folio_test_has_hwpoisoned(folio)))
5246 * Archs like ppc64 need additional space to store information
5247 * related to pte entry. Use the preallocated table for that.
5249 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5250 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5251 if (!vmf->prealloc_pte)
5252 return VM_FAULT_OOM;
5255 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5256 if (unlikely(!pmd_none(*vmf->pmd)))
5259 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5261 entry = folio_mk_pmd(folio, vma->vm_page_prot);
5263 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5265 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5266 folio_add_file_rmap_pmd(folio, page, vma);
5269 * deposit and withdraw with pmd lock held
5271 if (arch_needs_pgtable_deposit())
5272 deposit_prealloc_pte(vmf);
5274 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5276 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5278 /* fault is handled */
5280 count_vm_event(THP_FILE_MAPPED);
5282 spin_unlock(vmf->ptl);
5286 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5288 return VM_FAULT_FALLBACK;
5293 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5294 * @vmf: Fault decription.
5295 * @folio: The folio that contains @page.
5296 * @page: The first page to create a PTE for.
5297 * @nr: The number of PTEs to create.
5298 * @addr: The first address to create a PTE for.
5300 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5301 struct page *page, unsigned int nr, unsigned long addr)
5303 struct vm_area_struct *vma = vmf->vma;
5304 bool write = vmf->flags & FAULT_FLAG_WRITE;
5305 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5308 flush_icache_pages(vma, page, nr);
5309 entry = mk_pte(page, vma->vm_page_prot);
5311 if (prefault && arch_wants_old_prefaulted_pte())
5312 entry = pte_mkold(entry);
5314 entry = pte_sw_mkyoung(entry);
5317 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5318 else if (pte_write(entry) && folio_test_dirty(folio))
5319 entry = pte_mkdirty(entry);
5320 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5321 entry = pte_mkuffd_wp(entry);
5322 /* copy-on-write page */
5323 if (write && !(vma->vm_flags & VM_SHARED)) {
5324 VM_BUG_ON_FOLIO(nr != 1, folio);
5325 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5326 folio_add_lru_vma(folio, vma);
5328 folio_add_file_rmap_ptes(folio, page, nr, vma);
5330 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5332 /* no need to invalidate: a not-present page won't be cached */
5333 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5336 static bool vmf_pte_changed(struct vm_fault *vmf)
5338 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5339 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5341 return !pte_none(ptep_get(vmf->pte));
5345 * finish_fault - finish page fault once we have prepared the page to fault
5347 * @vmf: structure describing the fault
5349 * This function handles all that is needed to finish a page fault once the
5350 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5351 * given page, adds reverse page mapping, handles memcg charges and LRU
5354 * The function expects the page to be locked and on success it consumes a
5355 * reference of a page being mapped (for the PTE which maps it).
5357 * Return: %0 on success, %VM_FAULT_ code in case of error.
5359 vm_fault_t finish_fault(struct vm_fault *vmf)
5361 struct vm_area_struct *vma = vmf->vma;
5363 struct folio *folio;
5365 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5366 !(vma->vm_flags & VM_SHARED);
5369 bool needs_fallback = false;
5372 addr = vmf->address;
5374 /* Did we COW the page? */
5376 page = vmf->cow_page;
5380 folio = page_folio(page);
5382 * check even for read faults because we might have lost our CoWed
5385 if (!(vma->vm_flags & VM_SHARED)) {
5386 ret = check_stable_address_space(vma->vm_mm);
5391 if (pmd_none(*vmf->pmd)) {
5392 if (folio_test_pmd_mappable(folio)) {
5393 ret = do_set_pmd(vmf, folio, page);
5394 if (ret != VM_FAULT_FALLBACK)
5398 if (vmf->prealloc_pte)
5399 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5400 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5401 return VM_FAULT_OOM;
5404 nr_pages = folio_nr_pages(folio);
5407 * Using per-page fault to maintain the uffd semantics, and same
5408 * approach also applies to non-anonymous-shmem faults to avoid
5409 * inflating the RSS of the process.
5411 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
5412 unlikely(needs_fallback)) {
5414 } else if (nr_pages > 1) {
5415 pgoff_t idx = folio_page_idx(folio, page);
5416 /* The page offset of vmf->address within the VMA. */
5417 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5418 /* The index of the entry in the pagetable for fault page. */
5419 pgoff_t pte_off = pte_index(vmf->address);
5422 * Fallback to per-page fault in case the folio size in page
5423 * cache beyond the VMA limits and PMD pagetable limits.
5425 if (unlikely(vma_off < idx ||
5426 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5428 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5431 /* Now we can set mappings for the whole large folio. */
5432 addr = vmf->address - idx * PAGE_SIZE;
5433 page = &folio->page;
5437 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5440 return VM_FAULT_NOPAGE;
5442 /* Re-check under ptl */
5443 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5444 update_mmu_tlb(vma, addr, vmf->pte);
5445 ret = VM_FAULT_NOPAGE;
5447 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5448 needs_fallback = true;
5449 pte_unmap_unlock(vmf->pte, vmf->ptl);
5453 folio_ref_add(folio, nr_pages - 1);
5454 set_pte_range(vmf, folio, page, nr_pages, addr);
5455 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5456 add_mm_counter(vma->vm_mm, type, nr_pages);
5460 pte_unmap_unlock(vmf->pte, vmf->ptl);
5464 static unsigned long fault_around_pages __read_mostly =
5465 65536 >> PAGE_SHIFT;
5467 #ifdef CONFIG_DEBUG_FS
5468 static int fault_around_bytes_get(void *data, u64 *val)
5470 *val = fault_around_pages << PAGE_SHIFT;
5475 * fault_around_bytes must be rounded down to the nearest page order as it's
5476 * what do_fault_around() expects to see.
5478 static int fault_around_bytes_set(void *data, u64 val)
5480 if (val / PAGE_SIZE > PTRS_PER_PTE)
5484 * The minimum value is 1 page, however this results in no fault-around
5485 * at all. See should_fault_around().
5487 val = max(val, PAGE_SIZE);
5488 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5492 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5493 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5495 static int __init fault_around_debugfs(void)
5497 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5498 &fault_around_bytes_fops);
5501 late_initcall(fault_around_debugfs);
5505 * do_fault_around() tries to map few pages around the fault address. The hope
5506 * is that the pages will be needed soon and this will lower the number of
5509 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5510 * not ready to be mapped: not up-to-date, locked, etc.
5512 * This function doesn't cross VMA or page table boundaries, in order to call
5513 * map_pages() and acquire a PTE lock only once.
5515 * fault_around_pages defines how many pages we'll try to map.
5516 * do_fault_around() expects it to be set to a power of two less than or equal
5519 * The virtual address of the area that we map is naturally aligned to
5520 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5521 * (and therefore to page order). This way it's easier to guarantee
5522 * that we don't cross page table boundaries.
5524 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5526 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5527 pgoff_t pte_off = pte_index(vmf->address);
5528 /* The page offset of vmf->address within the VMA. */
5529 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5530 pgoff_t from_pte, to_pte;
5533 /* The PTE offset of the start address, clamped to the VMA. */
5534 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5535 pte_off - min(pte_off, vma_off));
5537 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5538 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5539 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5541 if (pmd_none(*vmf->pmd)) {
5542 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5543 if (!vmf->prealloc_pte)
5544 return VM_FAULT_OOM;
5548 ret = vmf->vma->vm_ops->map_pages(vmf,
5549 vmf->pgoff + from_pte - pte_off,
5550 vmf->pgoff + to_pte - pte_off);
5556 /* Return true if we should do read fault-around, false otherwise */
5557 static inline bool should_fault_around(struct vm_fault *vmf)
5559 /* No ->map_pages? No way to fault around... */
5560 if (!vmf->vma->vm_ops->map_pages)
5563 if (uffd_disable_fault_around(vmf->vma))
5566 /* A single page implies no faulting 'around' at all. */
5567 return fault_around_pages > 1;
5570 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5573 struct folio *folio;
5576 * Let's call ->map_pages() first and use ->fault() as fallback
5577 * if page by the offset is not ready to be mapped (cold cache or
5580 if (should_fault_around(vmf)) {
5581 ret = do_fault_around(vmf);
5586 ret = vmf_can_call_fault(vmf);
5590 ret = __do_fault(vmf);
5591 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5594 ret |= finish_fault(vmf);
5595 folio = page_folio(vmf->page);
5596 folio_unlock(folio);
5597 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5602 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5604 struct vm_area_struct *vma = vmf->vma;
5605 struct folio *folio;
5608 ret = vmf_can_call_fault(vmf);
5610 ret = vmf_anon_prepare(vmf);
5614 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5616 return VM_FAULT_OOM;
5618 vmf->cow_page = &folio->page;
5620 ret = __do_fault(vmf);
5621 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5623 if (ret & VM_FAULT_DONE_COW)
5626 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5627 ret = VM_FAULT_HWPOISON;
5630 __folio_mark_uptodate(folio);
5632 ret |= finish_fault(vmf);
5634 unlock_page(vmf->page);
5635 put_page(vmf->page);
5636 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5644 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5646 struct vm_area_struct *vma = vmf->vma;
5647 vm_fault_t ret, tmp;
5648 struct folio *folio;
5650 ret = vmf_can_call_fault(vmf);
5654 ret = __do_fault(vmf);
5655 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5658 folio = page_folio(vmf->page);
5661 * Check if the backing address space wants to know that the page is
5662 * about to become writable
5664 if (vma->vm_ops->page_mkwrite) {
5665 folio_unlock(folio);
5666 tmp = do_page_mkwrite(vmf, folio);
5667 if (unlikely(!tmp ||
5668 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5674 ret |= finish_fault(vmf);
5675 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5677 folio_unlock(folio);
5682 ret |= fault_dirty_shared_page(vmf);
5687 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5688 * but allow concurrent faults).
5689 * The mmap_lock may have been released depending on flags and our
5690 * return value. See filemap_fault() and __folio_lock_or_retry().
5691 * If mmap_lock is released, vma may become invalid (for example
5692 * by other thread calling munmap()).
5694 static vm_fault_t do_fault(struct vm_fault *vmf)
5696 struct vm_area_struct *vma = vmf->vma;
5697 struct mm_struct *vm_mm = vma->vm_mm;
5701 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5703 if (!vma->vm_ops->fault) {
5704 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5705 vmf->address, &vmf->ptl);
5706 if (unlikely(!vmf->pte))
5707 ret = VM_FAULT_SIGBUS;
5710 * Make sure this is not a temporary clearing of pte
5711 * by holding ptl and checking again. A R/M/W update
5712 * of pte involves: take ptl, clearing the pte so that
5713 * we don't have concurrent modification by hardware
5714 * followed by an update.
5716 if (unlikely(pte_none(ptep_get(vmf->pte))))
5717 ret = VM_FAULT_SIGBUS;
5719 ret = VM_FAULT_NOPAGE;
5721 pte_unmap_unlock(vmf->pte, vmf->ptl);
5723 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5724 ret = do_read_fault(vmf);
5725 else if (!(vma->vm_flags & VM_SHARED))
5726 ret = do_cow_fault(vmf);
5728 ret = do_shared_fault(vmf);
5730 /* preallocated pagetable is unused: free it */
5731 if (vmf->prealloc_pte) {
5732 pte_free(vm_mm, vmf->prealloc_pte);
5733 vmf->prealloc_pte = NULL;
5738 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5739 unsigned long addr, int *flags,
5740 bool writable, int *last_cpupid)
5742 struct vm_area_struct *vma = vmf->vma;
5745 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5746 * much anyway since they can be in shared cache state. This misses
5747 * the case where a mapping is writable but the process never writes
5748 * to it but pte_write gets cleared during protection updates and
5749 * pte_dirty has unpredictable behaviour between PTE scan updates,
5750 * background writeback, dirty balancing and application behaviour.
5753 *flags |= TNF_NO_GROUP;
5756 * Flag if the folio is shared between multiple address spaces. This
5757 * is later used when determining whether to group tasks together
5759 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5760 *flags |= TNF_SHARED;
5762 * For memory tiering mode, cpupid of slow memory page is used
5763 * to record page access time. So use default value.
5765 if (folio_use_access_time(folio))
5766 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5768 *last_cpupid = folio_last_cpupid(folio);
5770 /* Record the current PID acceesing VMA */
5771 vma_set_access_pid_bit(vma);
5773 count_vm_numa_event(NUMA_HINT_FAULTS);
5774 #ifdef CONFIG_NUMA_BALANCING
5775 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5777 if (folio_nid(folio) == numa_node_id()) {
5778 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5779 *flags |= TNF_FAULT_LOCAL;
5782 return mpol_misplaced(folio, vmf, addr);
5785 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5786 unsigned long fault_addr, pte_t *fault_pte,
5791 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5792 pte = pte_modify(old_pte, vma->vm_page_prot);
5793 pte = pte_mkyoung(pte);
5795 pte = pte_mkwrite(pte, vma);
5796 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5797 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5800 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5801 struct folio *folio, pte_t fault_pte,
5802 bool ignore_writable, bool pte_write_upgrade)
5804 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5805 unsigned long start, end, addr = vmf->address;
5806 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5807 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5810 /* Stay within the VMA and within the page table. */
5811 start = max3(addr_start, pt_start, vma->vm_start);
5812 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5814 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5816 /* Restore all PTEs' mapping of the large folio */
5817 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5818 pte_t ptent = ptep_get(start_ptep);
5819 bool writable = false;
5821 if (!pte_present(ptent) || !pte_protnone(ptent))
5824 if (pfn_folio(pte_pfn(ptent)) != folio)
5827 if (!ignore_writable) {
5828 ptent = pte_modify(ptent, vma->vm_page_prot);
5829 writable = pte_write(ptent);
5830 if (!writable && pte_write_upgrade &&
5831 can_change_pte_writable(vma, addr, ptent))
5835 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5839 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5841 struct vm_area_struct *vma = vmf->vma;
5842 struct folio *folio = NULL;
5843 int nid = NUMA_NO_NODE;
5844 bool writable = false, ignore_writable = false;
5845 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5849 int flags = 0, nr_pages;
5852 * The pte cannot be used safely until we verify, while holding the page
5853 * table lock, that its contents have not changed during fault handling.
5855 spin_lock(vmf->ptl);
5856 /* Read the live PTE from the page tables: */
5857 old_pte = ptep_get(vmf->pte);
5859 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5860 pte_unmap_unlock(vmf->pte, vmf->ptl);
5864 pte = pte_modify(old_pte, vma->vm_page_prot);
5867 * Detect now whether the PTE could be writable; this information
5868 * is only valid while holding the PT lock.
5870 writable = pte_write(pte);
5871 if (!writable && pte_write_upgrade &&
5872 can_change_pte_writable(vma, vmf->address, pte))
5875 folio = vm_normal_folio(vma, vmf->address, pte);
5876 if (!folio || folio_is_zone_device(folio))
5879 nid = folio_nid(folio);
5880 nr_pages = folio_nr_pages(folio);
5882 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5883 writable, &last_cpupid);
5884 if (target_nid == NUMA_NO_NODE)
5886 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5887 flags |= TNF_MIGRATE_FAIL;
5890 /* The folio is isolated and isolation code holds a folio reference. */
5891 pte_unmap_unlock(vmf->pte, vmf->ptl);
5893 ignore_writable = true;
5895 /* Migrate to the requested node */
5896 if (!migrate_misplaced_folio(folio, target_nid)) {
5898 flags |= TNF_MIGRATED;
5899 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5903 flags |= TNF_MIGRATE_FAIL;
5904 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5905 vmf->address, &vmf->ptl);
5906 if (unlikely(!vmf->pte))
5908 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5909 pte_unmap_unlock(vmf->pte, vmf->ptl);
5914 * Make it present again, depending on how arch implements
5915 * non-accessible ptes, some can allow access by kernel mode.
5917 if (folio && folio_test_large(folio))
5918 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5921 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5923 pte_unmap_unlock(vmf->pte, vmf->ptl);
5925 if (nid != NUMA_NO_NODE)
5926 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5930 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5932 struct vm_area_struct *vma = vmf->vma;
5933 if (vma_is_anonymous(vma))
5934 return do_huge_pmd_anonymous_page(vmf);
5935 if (vma->vm_ops->huge_fault)
5936 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5937 return VM_FAULT_FALLBACK;
5940 /* `inline' is required to avoid gcc 4.1.2 build error */
5941 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5943 struct vm_area_struct *vma = vmf->vma;
5944 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5947 if (vma_is_anonymous(vma)) {
5948 if (likely(!unshare) &&
5949 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5950 if (userfaultfd_wp_async(vmf->vma))
5952 return handle_userfault(vmf, VM_UFFD_WP);
5954 return do_huge_pmd_wp_page(vmf);
5957 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5958 if (vma->vm_ops->huge_fault) {
5959 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5960 if (!(ret & VM_FAULT_FALLBACK))
5966 /* COW or write-notify handled on pte level: split pmd. */
5967 __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
5969 return VM_FAULT_FALLBACK;
5972 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5974 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5975 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5976 struct vm_area_struct *vma = vmf->vma;
5977 /* No support for anonymous transparent PUD pages yet */
5978 if (vma_is_anonymous(vma))
5979 return VM_FAULT_FALLBACK;
5980 if (vma->vm_ops->huge_fault)
5981 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5982 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5983 return VM_FAULT_FALLBACK;
5986 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5988 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5989 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5990 struct vm_area_struct *vma = vmf->vma;
5993 /* No support for anonymous transparent PUD pages yet */
5994 if (vma_is_anonymous(vma))
5996 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5997 if (vma->vm_ops->huge_fault) {
5998 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5999 if (!(ret & VM_FAULT_FALLBACK))
6004 /* COW or write-notify not handled on PUD level: split pud.*/
6005 __split_huge_pud(vma, vmf->pud, vmf->address);
6006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
6007 return VM_FAULT_FALLBACK;
6011 * These routines also need to handle stuff like marking pages dirty
6012 * and/or accessed for architectures that don't do it in hardware (most
6013 * RISC architectures). The early dirtying is also good on the i386.
6015 * There is also a hook called "update_mmu_cache()" that architectures
6016 * with external mmu caches can use to update those (ie the Sparc or
6017 * PowerPC hashed page tables that act as extended TLBs).
6019 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
6020 * concurrent faults).
6022 * The mmap_lock may have been released depending on flags and our return value.
6023 * See filemap_fault() and __folio_lock_or_retry().
6025 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
6029 if (unlikely(pmd_none(*vmf->pmd))) {
6031 * Leave __pte_alloc() until later: because vm_ops->fault may
6032 * want to allocate huge page, and if we expose page table
6033 * for an instant, it will be difficult to retract from
6034 * concurrent faults and from rmap lookups.
6037 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
6042 * A regular pmd is established and it can't morph into a huge
6043 * pmd by anon khugepaged, since that takes mmap_lock in write
6044 * mode; but shmem or file collapse to THP could still morph
6045 * it into a huge pmd: just retry later if so.
6047 * Use the maywrite version to indicate that vmf->pte may be
6048 * modified, but since we will use pte_same() to detect the
6049 * change of the !pte_none() entry, there is no need to recheck
6050 * the pmdval. Here we chooes to pass a dummy variable instead
6051 * of NULL, which helps new user think about why this place is
6054 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
6055 vmf->address, &dummy_pmdval,
6057 if (unlikely(!vmf->pte))
6059 vmf->orig_pte = ptep_get_lockless(vmf->pte);
6060 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
6062 if (pte_none(vmf->orig_pte)) {
6063 pte_unmap(vmf->pte);
6069 return do_pte_missing(vmf);
6071 if (!pte_present(vmf->orig_pte))
6072 return do_swap_page(vmf);
6074 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
6075 return do_numa_page(vmf);
6077 spin_lock(vmf->ptl);
6078 entry = vmf->orig_pte;
6079 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
6080 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
6083 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6084 if (!pte_write(entry))
6085 return do_wp_page(vmf);
6086 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
6087 entry = pte_mkdirty(entry);
6089 entry = pte_mkyoung(entry);
6090 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
6091 vmf->flags & FAULT_FLAG_WRITE)) {
6092 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
6095 /* Skip spurious TLB flush for retried page fault */
6096 if (vmf->flags & FAULT_FLAG_TRIED)
6099 * This is needed only for protection faults but the arch code
6100 * is not yet telling us if this is a protection fault or not.
6101 * This still avoids useless tlb flushes for .text page faults
6104 if (vmf->flags & FAULT_FLAG_WRITE)
6105 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
6109 pte_unmap_unlock(vmf->pte, vmf->ptl);
6114 * On entry, we hold either the VMA lock or the mmap_lock
6115 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
6116 * the result, the mmap_lock is not held on exit. See filemap_fault()
6117 * and __folio_lock_or_retry().
6119 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
6120 unsigned long address, unsigned int flags)
6122 struct vm_fault vmf = {
6124 .address = address & PAGE_MASK,
6125 .real_address = address,
6127 .pgoff = linear_page_index(vma, address),
6128 .gfp_mask = __get_fault_gfp_mask(vma),
6130 struct mm_struct *mm = vma->vm_mm;
6131 unsigned long vm_flags = vma->vm_flags;
6136 pgd = pgd_offset(mm, address);
6137 p4d = p4d_alloc(mm, pgd, address);
6139 return VM_FAULT_OOM;
6141 vmf.pud = pud_alloc(mm, p4d, address);
6143 return VM_FAULT_OOM;
6145 if (pud_none(*vmf.pud) &&
6146 thp_vma_allowable_order(vma, vm_flags,
6147 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
6148 ret = create_huge_pud(&vmf);
6149 if (!(ret & VM_FAULT_FALLBACK))
6152 pud_t orig_pud = *vmf.pud;
6155 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
6158 * TODO once we support anonymous PUDs: NUMA case and
6159 * FAULT_FLAG_UNSHARE handling.
6161 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
6162 ret = wp_huge_pud(&vmf, orig_pud);
6163 if (!(ret & VM_FAULT_FALLBACK))
6166 huge_pud_set_accessed(&vmf, orig_pud);
6172 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
6174 return VM_FAULT_OOM;
6176 /* Huge pud page fault raced with pmd_alloc? */
6177 if (pud_trans_unstable(vmf.pud))
6180 if (pmd_none(*vmf.pmd) &&
6181 thp_vma_allowable_order(vma, vm_flags,
6182 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
6183 ret = create_huge_pmd(&vmf);
6184 if (!(ret & VM_FAULT_FALLBACK))
6187 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6189 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
6190 VM_BUG_ON(thp_migration_supported() &&
6191 !is_pmd_migration_entry(vmf.orig_pmd));
6192 if (is_pmd_migration_entry(vmf.orig_pmd))
6193 pmd_migration_entry_wait(mm, vmf.pmd);
6196 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
6197 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6198 return do_huge_pmd_numa_page(&vmf);
6200 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6201 !pmd_write(vmf.orig_pmd)) {
6202 ret = wp_huge_pmd(&vmf);
6203 if (!(ret & VM_FAULT_FALLBACK))
6206 huge_pmd_set_accessed(&vmf);
6212 return handle_pte_fault(&vmf);
6216 * mm_account_fault - Do page fault accounting
6217 * @mm: mm from which memcg should be extracted. It can be NULL.
6218 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6219 * of perf event counters, but we'll still do the per-task accounting to
6220 * the task who triggered this page fault.
6221 * @address: the faulted address.
6222 * @flags: the fault flags.
6223 * @ret: the fault retcode.
6225 * This will take care of most of the page fault accounting. Meanwhile, it
6226 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6227 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6228 * still be in per-arch page fault handlers at the entry of page fault.
6230 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6231 unsigned long address, unsigned int flags,
6236 /* Incomplete faults will be accounted upon completion. */
6237 if (ret & VM_FAULT_RETRY)
6241 * To preserve the behavior of older kernels, PGFAULT counters record
6242 * both successful and failed faults, as opposed to perf counters,
6243 * which ignore failed cases.
6245 count_vm_event(PGFAULT);
6246 count_memcg_event_mm(mm, PGFAULT);
6249 * Do not account for unsuccessful faults (e.g. when the address wasn't
6250 * valid). That includes arch_vma_access_permitted() failing before
6251 * reaching here. So this is not a "this many hardware page faults"
6252 * counter. We should use the hw profiling for that.
6254 if (ret & VM_FAULT_ERROR)
6258 * We define the fault as a major fault when the final successful fault
6259 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6260 * handle it immediately previously).
6262 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6270 * If the fault is done for GUP, regs will be NULL. We only do the
6271 * accounting for the per thread fault counters who triggered the
6272 * fault, and we skip the perf event updates.
6278 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6280 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6283 #ifdef CONFIG_LRU_GEN
6284 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6286 /* the LRU algorithm only applies to accesses with recency */
6287 current->in_lru_fault = vma_has_recency(vma);
6290 static void lru_gen_exit_fault(void)
6292 current->in_lru_fault = false;
6295 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6299 static void lru_gen_exit_fault(void)
6302 #endif /* CONFIG_LRU_GEN */
6304 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6305 unsigned int *flags)
6307 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6308 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6309 return VM_FAULT_SIGSEGV;
6311 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6312 * just treat it like an ordinary read-fault otherwise.
6314 if (!is_cow_mapping(vma->vm_flags))
6315 *flags &= ~FAULT_FLAG_UNSHARE;
6316 } else if (*flags & FAULT_FLAG_WRITE) {
6317 /* Write faults on read-only mappings are impossible ... */
6318 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6319 return VM_FAULT_SIGSEGV;
6320 /* ... and FOLL_FORCE only applies to COW mappings. */
6321 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6322 !is_cow_mapping(vma->vm_flags)))
6323 return VM_FAULT_SIGSEGV;
6325 #ifdef CONFIG_PER_VMA_LOCK
6327 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6328 * the assumption that lock is dropped on VM_FAULT_RETRY.
6330 if (WARN_ON_ONCE((*flags &
6331 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6332 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6333 return VM_FAULT_SIGSEGV;
6340 * By the time we get here, we already hold either the VMA lock or the
6341 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6343 * The mmap_lock may have been released depending on flags and our
6344 * return value. See filemap_fault() and __folio_lock_or_retry().
6346 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6347 unsigned int flags, struct pt_regs *regs)
6349 /* If the fault handler drops the mmap_lock, vma may be freed */
6350 struct mm_struct *mm = vma->vm_mm;
6354 __set_current_state(TASK_RUNNING);
6356 ret = sanitize_fault_flags(vma, &flags);
6360 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6361 flags & FAULT_FLAG_INSTRUCTION,
6362 flags & FAULT_FLAG_REMOTE)) {
6363 ret = VM_FAULT_SIGSEGV;
6367 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6370 * Enable the memcg OOM handling for faults triggered in user
6371 * space. Kernel faults are handled more gracefully.
6373 if (flags & FAULT_FLAG_USER)
6374 mem_cgroup_enter_user_fault();
6376 lru_gen_enter_fault(vma);
6378 if (unlikely(is_vm_hugetlb_page(vma)))
6379 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6381 ret = __handle_mm_fault(vma, address, flags);
6384 * Warning: It is no longer safe to dereference vma-> after this point,
6385 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6386 * vma might be destroyed from underneath us.
6389 lru_gen_exit_fault();
6391 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6393 ret &= ~VM_FAULT_OOM;
6395 if (flags & FAULT_FLAG_USER) {
6396 mem_cgroup_exit_user_fault();
6398 * The task may have entered a memcg OOM situation but
6399 * if the allocation error was handled gracefully (no
6400 * VM_FAULT_OOM), there is no need to kill anything.
6401 * Just clean up the OOM state peacefully.
6403 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6404 mem_cgroup_oom_synchronize(false);
6407 mm_account_fault(mm, regs, address, flags, ret);
6411 EXPORT_SYMBOL_GPL(handle_mm_fault);
6413 #ifndef __PAGETABLE_P4D_FOLDED
6415 * Allocate p4d page table.
6416 * We've already handled the fast-path in-line.
6418 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6420 p4d_t *new = p4d_alloc_one(mm, address);
6424 spin_lock(&mm->page_table_lock);
6425 if (pgd_present(*pgd)) { /* Another has populated it */
6428 smp_wmb(); /* See comment in pmd_install() */
6429 pgd_populate(mm, pgd, new);
6431 spin_unlock(&mm->page_table_lock);
6434 #endif /* __PAGETABLE_P4D_FOLDED */
6436 #ifndef __PAGETABLE_PUD_FOLDED
6438 * Allocate page upper directory.
6439 * We've already handled the fast-path in-line.
6441 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6443 pud_t *new = pud_alloc_one(mm, address);
6447 spin_lock(&mm->page_table_lock);
6448 if (!p4d_present(*p4d)) {
6450 smp_wmb(); /* See comment in pmd_install() */
6451 p4d_populate(mm, p4d, new);
6452 } else /* Another has populated it */
6454 spin_unlock(&mm->page_table_lock);
6457 #endif /* __PAGETABLE_PUD_FOLDED */
6459 #ifndef __PAGETABLE_PMD_FOLDED
6461 * Allocate page middle directory.
6462 * We've already handled the fast-path in-line.
6464 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6467 pmd_t *new = pmd_alloc_one(mm, address);
6471 ptl = pud_lock(mm, pud);
6472 if (!pud_present(*pud)) {
6474 smp_wmb(); /* See comment in pmd_install() */
6475 pud_populate(mm, pud, new);
6476 } else { /* Another has populated it */
6482 #endif /* __PAGETABLE_PMD_FOLDED */
6484 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6485 spinlock_t *lock, pte_t *ptep,
6486 pgprot_t pgprot, unsigned long pfn_base,
6487 unsigned long addr_mask, bool writable,
6492 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6493 args->addr_mask = addr_mask;
6494 args->pgprot = pgprot;
6495 args->writable = writable;
6496 args->special = special;
6499 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6501 #ifdef CONFIG_LOCKDEP
6502 struct file *file = vma->vm_file;
6503 struct address_space *mapping = file ? file->f_mapping : NULL;
6506 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6507 lockdep_is_held(&vma->vm_mm->mmap_lock));
6509 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6514 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6515 * @args: Pointer to struct @follow_pfnmap_args
6517 * The caller needs to setup args->vma and args->address to point to the
6518 * virtual address as the target of such lookup. On a successful return,
6519 * the results will be put into other output fields.
6521 * After the caller finished using the fields, the caller must invoke
6522 * another follow_pfnmap_end() to proper releases the locks and resources
6523 * of such look up request.
6525 * During the start() and end() calls, the results in @args will be valid
6526 * as proper locks will be held. After the end() is called, all the fields
6527 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6528 * use of such information after end() may require proper synchronizations
6529 * by the caller with page table updates, otherwise it can create a
6532 * If the PTE maps a refcounted page, callers are responsible to protect
6533 * against invalidation with MMU notifiers; otherwise access to the PFN at
6534 * a later point in time can trigger use-after-free.
6536 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6537 * should be taken for read, and the mmap semaphore cannot be released
6538 * before the end() is invoked.
6540 * This function must not be used to modify PTE content.
6542 * Return: zero on success, negative otherwise.
6544 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6546 struct vm_area_struct *vma = args->vma;
6547 unsigned long address = args->address;
6548 struct mm_struct *mm = vma->vm_mm;
6556 pfnmap_lockdep_assert(vma);
6558 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6561 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6564 pgdp = pgd_offset(mm, address);
6565 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6568 p4dp = p4d_offset(pgdp, address);
6569 p4d = READ_ONCE(*p4dp);
6570 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6573 pudp = pud_offset(p4dp, address);
6574 pud = READ_ONCE(*pudp);
6577 if (pud_leaf(pud)) {
6578 lock = pud_lock(mm, pudp);
6579 if (!unlikely(pud_leaf(pud))) {
6583 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6584 pud_pfn(pud), PUD_MASK, pud_write(pud),
6589 pmdp = pmd_offset(pudp, address);
6590 pmd = pmdp_get_lockless(pmdp);
6591 if (pmd_leaf(pmd)) {
6592 lock = pmd_lock(mm, pmdp);
6593 if (!unlikely(pmd_leaf(pmd))) {
6597 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6598 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6603 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6606 pte = ptep_get(ptep);
6607 if (!pte_present(pte))
6609 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6610 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6614 pte_unmap_unlock(ptep, lock);
6618 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6621 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6622 * @args: Pointer to struct @follow_pfnmap_args
6624 * Must be used in pair of follow_pfnmap_start(). See the start() function
6625 * above for more information.
6627 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6630 spin_unlock(args->lock);
6632 pte_unmap(args->ptep);
6634 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6636 #ifdef CONFIG_HAVE_IOREMAP_PROT
6638 * generic_access_phys - generic implementation for iomem mmap access
6639 * @vma: the vma to access
6640 * @addr: userspace address, not relative offset within @vma
6641 * @buf: buffer to read/write
6642 * @len: length of transfer
6643 * @write: set to FOLL_WRITE when writing, otherwise reading
6645 * This is a generic implementation for &vm_operations_struct.access for an
6646 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6649 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6650 void *buf, int len, int write)
6652 resource_size_t phys_addr;
6653 pgprot_t prot = __pgprot(0);
6654 void __iomem *maddr;
6655 int offset = offset_in_page(addr);
6658 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6661 if (follow_pfnmap_start(&args))
6664 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6665 writable = args.writable;
6666 follow_pfnmap_end(&args);
6668 if ((write & FOLL_WRITE) && !writable)
6671 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6675 if (follow_pfnmap_start(&args))
6678 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
6679 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6680 (writable != args.writable)) {
6681 follow_pfnmap_end(&args);
6687 memcpy_toio(maddr + offset, buf, len);
6689 memcpy_fromio(buf, maddr + offset, len);
6691 follow_pfnmap_end(&args);
6697 EXPORT_SYMBOL_GPL(generic_access_phys);
6701 * Access another process' address space as given in mm.
6703 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6704 void *buf, int len, unsigned int gup_flags)
6706 void *old_buf = buf;
6707 int write = gup_flags & FOLL_WRITE;
6709 if (mmap_read_lock_killable(mm))
6712 /* Untag the address before looking up the VMA */
6713 addr = untagged_addr_remote(mm, addr);
6715 /* Avoid triggering the temporary warning in __get_user_pages */
6716 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6719 /* ignore errors, just check how much was successfully transferred */
6723 struct vm_area_struct *vma = NULL;
6724 struct page *page = get_user_page_vma_remote(mm, addr,
6728 /* We might need to expand the stack to access it */
6729 vma = vma_lookup(mm, addr);
6731 vma = expand_stack(mm, addr);
6733 /* mmap_lock was dropped on failure */
6735 return buf - old_buf;
6737 /* Try again if stack expansion worked */
6742 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6743 * we can access using slightly different code.
6746 #ifdef CONFIG_HAVE_IOREMAP_PROT
6747 if (vma->vm_ops && vma->vm_ops->access)
6748 bytes = vma->vm_ops->access(vma, addr, buf,
6755 offset = addr & (PAGE_SIZE-1);
6756 if (bytes > PAGE_SIZE-offset)
6757 bytes = PAGE_SIZE-offset;
6759 maddr = kmap_local_page(page);
6761 copy_to_user_page(vma, page, addr,
6762 maddr + offset, buf, bytes);
6763 set_page_dirty_lock(page);
6765 copy_from_user_page(vma, page, addr,
6766 buf, maddr + offset, bytes);
6768 unmap_and_put_page(page, maddr);
6774 mmap_read_unlock(mm);
6776 return buf - old_buf;
6780 * access_remote_vm - access another process' address space
6781 * @mm: the mm_struct of the target address space
6782 * @addr: start address to access
6783 * @buf: source or destination buffer
6784 * @len: number of bytes to transfer
6785 * @gup_flags: flags modifying lookup behaviour
6787 * The caller must hold a reference on @mm.
6789 * Return: number of bytes copied from source to destination.
6791 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6792 void *buf, int len, unsigned int gup_flags)
6794 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6798 * Access another process' address space.
6799 * Source/target buffer must be kernel space,
6800 * Do not walk the page table directly, use get_user_pages
6802 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6803 void *buf, int len, unsigned int gup_flags)
6805 struct mm_struct *mm;
6808 mm = get_task_mm(tsk);
6812 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6818 EXPORT_SYMBOL_GPL(access_process_vm);
6820 #ifdef CONFIG_BPF_SYSCALL
6822 * Copy a string from another process's address space as given in mm.
6823 * If there is any error return -EFAULT.
6825 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
6826 void *buf, int len, unsigned int gup_flags)
6828 void *old_buf = buf;
6831 *(char *)buf = '\0';
6833 if (mmap_read_lock_killable(mm))
6836 addr = untagged_addr_remote(mm, addr);
6838 /* Avoid triggering the temporary warning in __get_user_pages */
6839 if (!vma_lookup(mm, addr)) {
6845 int bytes, offset, retval;
6848 struct vm_area_struct *vma = NULL;
6850 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma);
6853 * Treat as a total failure for now until we decide how
6854 * to handle the CONFIG_HAVE_IOREMAP_PROT case and
6857 *(char *)buf = '\0';
6863 offset = addr & (PAGE_SIZE - 1);
6864 if (bytes > PAGE_SIZE - offset)
6865 bytes = PAGE_SIZE - offset;
6867 maddr = kmap_local_page(page);
6868 retval = strscpy(buf, maddr + offset, bytes);
6870 /* Found the end of the string */
6872 unmap_and_put_page(page, maddr);
6878 * Because strscpy always NUL terminates we need to
6879 * copy the last byte in the page if we are going to
6884 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1);
6890 unmap_and_put_page(page, maddr);
6894 mmap_read_unlock(mm);
6897 return buf - old_buf;
6901 * copy_remote_vm_str - copy a string from another process's address space.
6902 * @tsk: the task of the target address space
6903 * @addr: start address to read from
6904 * @buf: destination buffer
6905 * @len: number of bytes to copy
6906 * @gup_flags: flags modifying lookup behaviour
6908 * The caller must hold a reference on @mm.
6910 * Return: number of bytes copied from @addr (source) to @buf (destination);
6911 * not including the trailing NUL. Always guaranteed to leave NUL-terminated
6912 * buffer. On any error, return -EFAULT.
6914 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
6915 void *buf, int len, unsigned int gup_flags)
6917 struct mm_struct *mm;
6920 if (unlikely(len == 0))
6923 mm = get_task_mm(tsk);
6925 *(char *)buf = '\0';
6929 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags);
6935 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
6936 #endif /* CONFIG_BPF_SYSCALL */
6939 * Print the name of a VMA.
6941 void print_vma_addr(char *prefix, unsigned long ip)
6943 struct mm_struct *mm = current->mm;
6944 struct vm_area_struct *vma;
6947 * we might be running from an atomic context so we cannot sleep
6949 if (!mmap_read_trylock(mm))
6952 vma = vma_lookup(mm, ip);
6953 if (vma && vma->vm_file) {
6954 struct file *f = vma->vm_file;
6955 ip -= vma->vm_start;
6956 ip += vma->vm_pgoff << PAGE_SHIFT;
6957 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6959 vma->vm_end - vma->vm_start);
6961 mmap_read_unlock(mm);
6964 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6965 void __might_fault(const char *file, int line)
6967 if (pagefault_disabled())
6969 __might_sleep(file, line);
6971 might_lock_read(¤t->mm->mmap_lock);
6973 EXPORT_SYMBOL(__might_fault);
6976 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6978 * Process all subpages of the specified huge page with the specified
6979 * operation. The target subpage will be processed last to keep its
6982 static inline int process_huge_page(
6983 unsigned long addr_hint, unsigned int nr_pages,
6984 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6987 int i, n, base, l, ret;
6988 unsigned long addr = addr_hint &
6989 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6991 /* Process target subpage last to keep its cache lines hot */
6993 n = (addr_hint - addr) / PAGE_SIZE;
6994 if (2 * n <= nr_pages) {
6995 /* If target subpage in first half of huge page */
6998 /* Process subpages at the end of huge page */
6999 for (i = nr_pages - 1; i >= 2 * n; i--) {
7001 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7006 /* If target subpage in second half of huge page */
7007 base = nr_pages - 2 * (nr_pages - n);
7009 /* Process subpages at the begin of huge page */
7010 for (i = 0; i < base; i++) {
7012 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7018 * Process remaining subpages in left-right-left-right pattern
7019 * towards the target subpage
7021 for (i = 0; i < l; i++) {
7022 int left_idx = base + i;
7023 int right_idx = base + 2 * l - 1 - i;
7026 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
7030 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
7037 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
7038 unsigned int nr_pages)
7040 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7044 for (i = 0; i < nr_pages; i++) {
7046 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
7050 static int clear_subpage(unsigned long addr, int idx, void *arg)
7052 struct folio *folio = arg;
7054 clear_user_highpage(folio_page(folio, idx), addr);
7059 * folio_zero_user - Zero a folio which will be mapped to userspace.
7060 * @folio: The folio to zero.
7061 * @addr_hint: The address will be accessed or the base address if uncelar.
7063 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7065 unsigned int nr_pages = folio_nr_pages(folio);
7067 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7068 clear_gigantic_page(folio, addr_hint, nr_pages);
7070 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
7073 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7074 unsigned long addr_hint,
7075 struct vm_area_struct *vma,
7076 unsigned int nr_pages)
7078 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7079 struct page *dst_page;
7080 struct page *src_page;
7083 for (i = 0; i < nr_pages; i++) {
7084 dst_page = folio_page(dst, i);
7085 src_page = folio_page(src, i);
7088 if (copy_mc_user_highpage(dst_page, src_page,
7089 addr + i*PAGE_SIZE, vma))
7095 struct copy_subpage_arg {
7098 struct vm_area_struct *vma;
7101 static int copy_subpage(unsigned long addr, int idx, void *arg)
7103 struct copy_subpage_arg *copy_arg = arg;
7104 struct page *dst = folio_page(copy_arg->dst, idx);
7105 struct page *src = folio_page(copy_arg->src, idx);
7107 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7112 int copy_user_large_folio(struct folio *dst, struct folio *src,
7113 unsigned long addr_hint, struct vm_area_struct *vma)
7115 unsigned int nr_pages = folio_nr_pages(dst);
7116 struct copy_subpage_arg arg = {
7122 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7123 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7125 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7128 long copy_folio_from_user(struct folio *dst_folio,
7129 const void __user *usr_src,
7130 bool allow_pagefault)
7133 unsigned long i, rc = 0;
7134 unsigned int nr_pages = folio_nr_pages(dst_folio);
7135 unsigned long ret_val = nr_pages * PAGE_SIZE;
7136 struct page *subpage;
7138 for (i = 0; i < nr_pages; i++) {
7139 subpage = folio_page(dst_folio, i);
7140 kaddr = kmap_local_page(subpage);
7141 if (!allow_pagefault)
7142 pagefault_disable();
7143 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7144 if (!allow_pagefault)
7146 kunmap_local(kaddr);
7148 ret_val -= (PAGE_SIZE - rc);
7152 flush_dcache_page(subpage);
7158 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7160 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7162 static struct kmem_cache *page_ptl_cachep;
7164 void __init ptlock_cache_init(void)
7166 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7170 bool ptlock_alloc(struct ptdesc *ptdesc)
7174 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7181 void ptlock_free(struct ptdesc *ptdesc)
7184 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7188 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7190 if (is_vm_hugetlb_page(vma))
7191 hugetlb_vma_lock_read(vma);
7194 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7196 if (is_vm_hugetlb_page(vma))
7197 hugetlb_vma_unlock_read(vma);