mm: define pte_index as macro for x86
[linux-block.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118                                         1;
119 #else
120                                         2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126         /*
127          * Those arches which don't have hw access flag feature need to
128          * implement their own helper. By default, "true" means pagefault
129          * will be hit on old pte.
130          */
131         return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137         randomize_va_space = 0;
138         return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152         zero_pfn = page_to_pfn(ZERO_PAGE(0));
153         return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159         trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166         int i;
167
168         for (i = 0; i < NR_MM_COUNTERS; i++) {
169                 if (current->rss_stat.count[i]) {
170                         add_mm_counter(mm, i, current->rss_stat.count[i]);
171                         current->rss_stat.count[i] = 0;
172                 }
173         }
174         current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179         struct task_struct *task = current;
180
181         if (likely(task->mm == mm))
182                 task->rss_stat.count[member] += val;
183         else
184                 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH  (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193         if (unlikely(task != current))
194                 return;
195         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196                 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214                            unsigned long addr)
215 {
216         pgtable_t token = pmd_pgtable(*pmd);
217         pmd_clear(pmd);
218         pte_free_tlb(tlb, token, addr);
219         mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223                                 unsigned long addr, unsigned long end,
224                                 unsigned long floor, unsigned long ceiling)
225 {
226         pmd_t *pmd;
227         unsigned long next;
228         unsigned long start;
229
230         start = addr;
231         pmd = pmd_offset(pud, addr);
232         do {
233                 next = pmd_addr_end(addr, end);
234                 if (pmd_none_or_clear_bad(pmd))
235                         continue;
236                 free_pte_range(tlb, pmd, addr);
237         } while (pmd++, addr = next, addr != end);
238
239         start &= PUD_MASK;
240         if (start < floor)
241                 return;
242         if (ceiling) {
243                 ceiling &= PUD_MASK;
244                 if (!ceiling)
245                         return;
246         }
247         if (end - 1 > ceiling - 1)
248                 return;
249
250         pmd = pmd_offset(pud, start);
251         pud_clear(pud);
252         pmd_free_tlb(tlb, pmd, start);
253         mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257                                 unsigned long addr, unsigned long end,
258                                 unsigned long floor, unsigned long ceiling)
259 {
260         pud_t *pud;
261         unsigned long next;
262         unsigned long start;
263
264         start = addr;
265         pud = pud_offset(p4d, addr);
266         do {
267                 next = pud_addr_end(addr, end);
268                 if (pud_none_or_clear_bad(pud))
269                         continue;
270                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271         } while (pud++, addr = next, addr != end);
272
273         start &= P4D_MASK;
274         if (start < floor)
275                 return;
276         if (ceiling) {
277                 ceiling &= P4D_MASK;
278                 if (!ceiling)
279                         return;
280         }
281         if (end - 1 > ceiling - 1)
282                 return;
283
284         pud = pud_offset(p4d, start);
285         p4d_clear(p4d);
286         pud_free_tlb(tlb, pud, start);
287         mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291                                 unsigned long addr, unsigned long end,
292                                 unsigned long floor, unsigned long ceiling)
293 {
294         p4d_t *p4d;
295         unsigned long next;
296         unsigned long start;
297
298         start = addr;
299         p4d = p4d_offset(pgd, addr);
300         do {
301                 next = p4d_addr_end(addr, end);
302                 if (p4d_none_or_clear_bad(p4d))
303                         continue;
304                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305         } while (p4d++, addr = next, addr != end);
306
307         start &= PGDIR_MASK;
308         if (start < floor)
309                 return;
310         if (ceiling) {
311                 ceiling &= PGDIR_MASK;
312                 if (!ceiling)
313                         return;
314         }
315         if (end - 1 > ceiling - 1)
316                 return;
317
318         p4d = p4d_offset(pgd, start);
319         pgd_clear(pgd);
320         p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327                         unsigned long addr, unsigned long end,
328                         unsigned long floor, unsigned long ceiling)
329 {
330         pgd_t *pgd;
331         unsigned long next;
332
333         /*
334          * The next few lines have given us lots of grief...
335          *
336          * Why are we testing PMD* at this top level?  Because often
337          * there will be no work to do at all, and we'd prefer not to
338          * go all the way down to the bottom just to discover that.
339          *
340          * Why all these "- 1"s?  Because 0 represents both the bottom
341          * of the address space and the top of it (using -1 for the
342          * top wouldn't help much: the masks would do the wrong thing).
343          * The rule is that addr 0 and floor 0 refer to the bottom of
344          * the address space, but end 0 and ceiling 0 refer to the top
345          * Comparisons need to use "end - 1" and "ceiling - 1" (though
346          * that end 0 case should be mythical).
347          *
348          * Wherever addr is brought up or ceiling brought down, we must
349          * be careful to reject "the opposite 0" before it confuses the
350          * subsequent tests.  But what about where end is brought down
351          * by PMD_SIZE below? no, end can't go down to 0 there.
352          *
353          * Whereas we round start (addr) and ceiling down, by different
354          * masks at different levels, in order to test whether a table
355          * now has no other vmas using it, so can be freed, we don't
356          * bother to round floor or end up - the tests don't need that.
357          */
358
359         addr &= PMD_MASK;
360         if (addr < floor) {
361                 addr += PMD_SIZE;
362                 if (!addr)
363                         return;
364         }
365         if (ceiling) {
366                 ceiling &= PMD_MASK;
367                 if (!ceiling)
368                         return;
369         }
370         if (end - 1 > ceiling - 1)
371                 end -= PMD_SIZE;
372         if (addr > end - 1)
373                 return;
374         /*
375          * We add page table cache pages with PAGE_SIZE,
376          * (see pte_free_tlb()), flush the tlb if we need
377          */
378         tlb_change_page_size(tlb, PAGE_SIZE);
379         pgd = pgd_offset(tlb->mm, addr);
380         do {
381                 next = pgd_addr_end(addr, end);
382                 if (pgd_none_or_clear_bad(pgd))
383                         continue;
384                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385         } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389                 unsigned long floor, unsigned long ceiling)
390 {
391         while (vma) {
392                 struct vm_area_struct *next = vma->vm_next;
393                 unsigned long addr = vma->vm_start;
394
395                 /*
396                  * Hide vma from rmap and truncate_pagecache before freeing
397                  * pgtables
398                  */
399                 unlink_anon_vmas(vma);
400                 unlink_file_vma(vma);
401
402                 if (is_vm_hugetlb_page(vma)) {
403                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404                                 floor, next ? next->vm_start : ceiling);
405                 } else {
406                         /*
407                          * Optimization: gather nearby vmas into one call down
408                          */
409                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410                                && !is_vm_hugetlb_page(next)) {
411                                 vma = next;
412                                 next = vma->vm_next;
413                                 unlink_anon_vmas(vma);
414                                 unlink_file_vma(vma);
415                         }
416                         free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 }
419                 vma = next;
420         }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425         spinlock_t *ptl;
426         pgtable_t new = pte_alloc_one(mm);
427         if (!new)
428                 return -ENOMEM;
429
430         /*
431          * Ensure all pte setup (eg. pte page lock and page clearing) are
432          * visible before the pte is made visible to other CPUs by being
433          * put into page tables.
434          *
435          * The other side of the story is the pointer chasing in the page
436          * table walking code (when walking the page table without locking;
437          * ie. most of the time). Fortunately, these data accesses consist
438          * of a chain of data-dependent loads, meaning most CPUs (alpha
439          * being the notable exception) will already guarantee loads are
440          * seen in-order. See the alpha page table accessors for the
441          * smp_read_barrier_depends() barriers in page table walking code.
442          */
443         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445         ptl = pmd_lock(mm, pmd);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 mm_inc_nr_ptes(mm);
448                 pmd_populate(mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(ptl);
452         if (new)
453                 pte_free(mm, new);
454         return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459         pte_t *new = pte_alloc_one_kernel(&init_mm);
460         if (!new)
461                 return -ENOMEM;
462
463         smp_wmb(); /* See comment in __pte_alloc */
464
465         spin_lock(&init_mm.page_table_lock);
466         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
467                 pmd_populate_kernel(&init_mm, pmd, new);
468                 new = NULL;
469         }
470         spin_unlock(&init_mm.page_table_lock);
471         if (new)
472                 pte_free_kernel(&init_mm, new);
473         return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483         int i;
484
485         if (current->mm == mm)
486                 sync_mm_rss(mm);
487         for (i = 0; i < NR_MM_COUNTERS; i++)
488                 if (rss[i])
489                         add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500                           pte_t pte, struct page *page)
501 {
502         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503         p4d_t *p4d = p4d_offset(pgd, addr);
504         pud_t *pud = pud_offset(p4d, addr);
505         pmd_t *pmd = pmd_offset(pud, addr);
506         struct address_space *mapping;
507         pgoff_t index;
508         static unsigned long resume;
509         static unsigned long nr_shown;
510         static unsigned long nr_unshown;
511
512         /*
513          * Allow a burst of 60 reports, then keep quiet for that minute;
514          * or allow a steady drip of one report per second.
515          */
516         if (nr_shown == 60) {
517                 if (time_before(jiffies, resume)) {
518                         nr_unshown++;
519                         return;
520                 }
521                 if (nr_unshown) {
522                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523                                  nr_unshown);
524                         nr_unshown = 0;
525                 }
526                 nr_shown = 0;
527         }
528         if (nr_shown++ == 0)
529                 resume = jiffies + 60 * HZ;
530
531         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532         index = linear_page_index(vma, addr);
533
534         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535                  current->comm,
536                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
537         if (page)
538                 dump_page(page, "bad pte");
539         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542                  vma->vm_file,
543                  vma->vm_ops ? vma->vm_ops->fault : NULL,
544                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545                  mapping ? mapping->a_ops->readpage : NULL);
546         dump_stack();
547         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593                             pte_t pte)
594 {
595         unsigned long pfn = pte_pfn(pte);
596
597         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598                 if (likely(!pte_special(pte)))
599                         goto check_pfn;
600                 if (vma->vm_ops && vma->vm_ops->find_special_page)
601                         return vma->vm_ops->find_special_page(vma, addr);
602                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603                         return NULL;
604                 if (is_zero_pfn(pfn))
605                         return NULL;
606                 if (pte_devmap(pte))
607                         return NULL;
608
609                 print_bad_pte(vma, addr, pte, NULL);
610                 return NULL;
611         }
612
613         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616                 if (vma->vm_flags & VM_MIXEDMAP) {
617                         if (!pfn_valid(pfn))
618                                 return NULL;
619                         goto out;
620                 } else {
621                         unsigned long off;
622                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
623                         if (pfn == vma->vm_pgoff + off)
624                                 return NULL;
625                         if (!is_cow_mapping(vma->vm_flags))
626                                 return NULL;
627                 }
628         }
629
630         if (is_zero_pfn(pfn))
631                 return NULL;
632
633 check_pfn:
634         if (unlikely(pfn > highest_memmap_pfn)) {
635                 print_bad_pte(vma, addr, pte, NULL);
636                 return NULL;
637         }
638
639         /*
640          * NOTE! We still have PageReserved() pages in the page tables.
641          * eg. VDSO mappings can cause them to exist.
642          */
643 out:
644         return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649                                 pmd_t pmd)
650 {
651         unsigned long pfn = pmd_pfn(pmd);
652
653         /*
654          * There is no pmd_special() but there may be special pmds, e.g.
655          * in a direct-access (dax) mapping, so let's just replicate the
656          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657          */
658         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659                 if (vma->vm_flags & VM_MIXEDMAP) {
660                         if (!pfn_valid(pfn))
661                                 return NULL;
662                         goto out;
663                 } else {
664                         unsigned long off;
665                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
666                         if (pfn == vma->vm_pgoff + off)
667                                 return NULL;
668                         if (!is_cow_mapping(vma->vm_flags))
669                                 return NULL;
670                 }
671         }
672
673         if (pmd_devmap(pmd))
674                 return NULL;
675         if (is_huge_zero_pmd(pmd))
676                 return NULL;
677         if (unlikely(pfn > highest_memmap_pfn))
678                 return NULL;
679
680         /*
681          * NOTE! We still have PageReserved() pages in the page tables.
682          * eg. VDSO mappings can cause them to exist.
683          */
684 out:
685         return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698                 unsigned long addr, int *rss)
699 {
700         unsigned long vm_flags = vma->vm_flags;
701         pte_t pte = *src_pte;
702         struct page *page;
703
704         /* pte contains position in swap or file, so copy. */
705         if (unlikely(!pte_present(pte))) {
706                 swp_entry_t entry = pte_to_swp_entry(pte);
707
708                 if (likely(!non_swap_entry(entry))) {
709                         if (swap_duplicate(entry) < 0)
710                                 return entry.val;
711
712                         /* make sure dst_mm is on swapoff's mmlist. */
713                         if (unlikely(list_empty(&dst_mm->mmlist))) {
714                                 spin_lock(&mmlist_lock);
715                                 if (list_empty(&dst_mm->mmlist))
716                                         list_add(&dst_mm->mmlist,
717                                                         &src_mm->mmlist);
718                                 spin_unlock(&mmlist_lock);
719                         }
720                         rss[MM_SWAPENTS]++;
721                 } else if (is_migration_entry(entry)) {
722                         page = migration_entry_to_page(entry);
723
724                         rss[mm_counter(page)]++;
725
726                         if (is_write_migration_entry(entry) &&
727                                         is_cow_mapping(vm_flags)) {
728                                 /*
729                                  * COW mappings require pages in both
730                                  * parent and child to be set to read.
731                                  */
732                                 make_migration_entry_read(&entry);
733                                 pte = swp_entry_to_pte(entry);
734                                 if (pte_swp_soft_dirty(*src_pte))
735                                         pte = pte_swp_mksoft_dirty(pte);
736                                 if (pte_swp_uffd_wp(*src_pte))
737                                         pte = pte_swp_mkuffd_wp(pte);
738                                 set_pte_at(src_mm, addr, src_pte, pte);
739                         }
740                 } else if (is_device_private_entry(entry)) {
741                         page = device_private_entry_to_page(entry);
742
743                         /*
744                          * Update rss count even for unaddressable pages, as
745                          * they should treated just like normal pages in this
746                          * respect.
747                          *
748                          * We will likely want to have some new rss counters
749                          * for unaddressable pages, at some point. But for now
750                          * keep things as they are.
751                          */
752                         get_page(page);
753                         rss[mm_counter(page)]++;
754                         page_dup_rmap(page, false);
755
756                         /*
757                          * We do not preserve soft-dirty information, because so
758                          * far, checkpoint/restore is the only feature that
759                          * requires that. And checkpoint/restore does not work
760                          * when a device driver is involved (you cannot easily
761                          * save and restore device driver state).
762                          */
763                         if (is_write_device_private_entry(entry) &&
764                             is_cow_mapping(vm_flags)) {
765                                 make_device_private_entry_read(&entry);
766                                 pte = swp_entry_to_pte(entry);
767                                 if (pte_swp_uffd_wp(*src_pte))
768                                         pte = pte_swp_mkuffd_wp(pte);
769                                 set_pte_at(src_mm, addr, src_pte, pte);
770                         }
771                 }
772                 goto out_set_pte;
773         }
774
775         /*
776          * If it's a COW mapping, write protect it both
777          * in the parent and the child
778          */
779         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780                 ptep_set_wrprotect(src_mm, addr, src_pte);
781                 pte = pte_wrprotect(pte);
782         }
783
784         /*
785          * If it's a shared mapping, mark it clean in
786          * the child
787          */
788         if (vm_flags & VM_SHARED)
789                 pte = pte_mkclean(pte);
790         pte = pte_mkold(pte);
791
792         /*
793          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794          * does not have the VM_UFFD_WP, which means that the uffd
795          * fork event is not enabled.
796          */
797         if (!(vm_flags & VM_UFFD_WP))
798                 pte = pte_clear_uffd_wp(pte);
799
800         page = vm_normal_page(vma, addr, pte);
801         if (page) {
802                 get_page(page);
803                 page_dup_rmap(page, false);
804                 rss[mm_counter(page)]++;
805         } else if (pte_devmap(pte)) {
806                 page = pte_page(pte);
807         }
808
809 out_set_pte:
810         set_pte_at(dst_mm, addr, dst_pte, pte);
811         return 0;
812 }
813
814 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
815                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
816                    unsigned long addr, unsigned long end)
817 {
818         pte_t *orig_src_pte, *orig_dst_pte;
819         pte_t *src_pte, *dst_pte;
820         spinlock_t *src_ptl, *dst_ptl;
821         int progress = 0;
822         int rss[NR_MM_COUNTERS];
823         swp_entry_t entry = (swp_entry_t){0};
824
825 again:
826         init_rss_vec(rss);
827
828         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
829         if (!dst_pte)
830                 return -ENOMEM;
831         src_pte = pte_offset_map(src_pmd, addr);
832         src_ptl = pte_lockptr(src_mm, src_pmd);
833         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
834         orig_src_pte = src_pte;
835         orig_dst_pte = dst_pte;
836         arch_enter_lazy_mmu_mode();
837
838         do {
839                 /*
840                  * We are holding two locks at this point - either of them
841                  * could generate latencies in another task on another CPU.
842                  */
843                 if (progress >= 32) {
844                         progress = 0;
845                         if (need_resched() ||
846                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
847                                 break;
848                 }
849                 if (pte_none(*src_pte)) {
850                         progress++;
851                         continue;
852                 }
853                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
854                                                         vma, addr, rss);
855                 if (entry.val)
856                         break;
857                 progress += 8;
858         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
859
860         arch_leave_lazy_mmu_mode();
861         spin_unlock(src_ptl);
862         pte_unmap(orig_src_pte);
863         add_mm_rss_vec(dst_mm, rss);
864         pte_unmap_unlock(orig_dst_pte, dst_ptl);
865         cond_resched();
866
867         if (entry.val) {
868                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
869                         return -ENOMEM;
870                 progress = 0;
871         }
872         if (addr != end)
873                 goto again;
874         return 0;
875 }
876
877 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
879                 unsigned long addr, unsigned long end)
880 {
881         pmd_t *src_pmd, *dst_pmd;
882         unsigned long next;
883
884         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
885         if (!dst_pmd)
886                 return -ENOMEM;
887         src_pmd = pmd_offset(src_pud, addr);
888         do {
889                 next = pmd_addr_end(addr, end);
890                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
891                         || pmd_devmap(*src_pmd)) {
892                         int err;
893                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
894                         err = copy_huge_pmd(dst_mm, src_mm,
895                                             dst_pmd, src_pmd, addr, vma);
896                         if (err == -ENOMEM)
897                                 return -ENOMEM;
898                         if (!err)
899                                 continue;
900                         /* fall through */
901                 }
902                 if (pmd_none_or_clear_bad(src_pmd))
903                         continue;
904                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
905                                                 vma, addr, next))
906                         return -ENOMEM;
907         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
908         return 0;
909 }
910
911 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
912                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
913                 unsigned long addr, unsigned long end)
914 {
915         pud_t *src_pud, *dst_pud;
916         unsigned long next;
917
918         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
919         if (!dst_pud)
920                 return -ENOMEM;
921         src_pud = pud_offset(src_p4d, addr);
922         do {
923                 next = pud_addr_end(addr, end);
924                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
925                         int err;
926
927                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
928                         err = copy_huge_pud(dst_mm, src_mm,
929                                             dst_pud, src_pud, addr, vma);
930                         if (err == -ENOMEM)
931                                 return -ENOMEM;
932                         if (!err)
933                                 continue;
934                         /* fall through */
935                 }
936                 if (pud_none_or_clear_bad(src_pud))
937                         continue;
938                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
939                                                 vma, addr, next))
940                         return -ENOMEM;
941         } while (dst_pud++, src_pud++, addr = next, addr != end);
942         return 0;
943 }
944
945 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
947                 unsigned long addr, unsigned long end)
948 {
949         p4d_t *src_p4d, *dst_p4d;
950         unsigned long next;
951
952         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
953         if (!dst_p4d)
954                 return -ENOMEM;
955         src_p4d = p4d_offset(src_pgd, addr);
956         do {
957                 next = p4d_addr_end(addr, end);
958                 if (p4d_none_or_clear_bad(src_p4d))
959                         continue;
960                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
961                                                 vma, addr, next))
962                         return -ENOMEM;
963         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
964         return 0;
965 }
966
967 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968                 struct vm_area_struct *vma)
969 {
970         pgd_t *src_pgd, *dst_pgd;
971         unsigned long next;
972         unsigned long addr = vma->vm_start;
973         unsigned long end = vma->vm_end;
974         struct mmu_notifier_range range;
975         bool is_cow;
976         int ret;
977
978         /*
979          * Don't copy ptes where a page fault will fill them correctly.
980          * Fork becomes much lighter when there are big shared or private
981          * readonly mappings. The tradeoff is that copy_page_range is more
982          * efficient than faulting.
983          */
984         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
985                         !vma->anon_vma)
986                 return 0;
987
988         if (is_vm_hugetlb_page(vma))
989                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
990
991         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
992                 /*
993                  * We do not free on error cases below as remove_vma
994                  * gets called on error from higher level routine
995                  */
996                 ret = track_pfn_copy(vma);
997                 if (ret)
998                         return ret;
999         }
1000
1001         /*
1002          * We need to invalidate the secondary MMU mappings only when
1003          * there could be a permission downgrade on the ptes of the
1004          * parent mm. And a permission downgrade will only happen if
1005          * is_cow_mapping() returns true.
1006          */
1007         is_cow = is_cow_mapping(vma->vm_flags);
1008
1009         if (is_cow) {
1010                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1011                                         0, vma, src_mm, addr, end);
1012                 mmu_notifier_invalidate_range_start(&range);
1013         }
1014
1015         ret = 0;
1016         dst_pgd = pgd_offset(dst_mm, addr);
1017         src_pgd = pgd_offset(src_mm, addr);
1018         do {
1019                 next = pgd_addr_end(addr, end);
1020                 if (pgd_none_or_clear_bad(src_pgd))
1021                         continue;
1022                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1023                                             vma, addr, next))) {
1024                         ret = -ENOMEM;
1025                         break;
1026                 }
1027         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1028
1029         if (is_cow)
1030                 mmu_notifier_invalidate_range_end(&range);
1031         return ret;
1032 }
1033
1034 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1035                                 struct vm_area_struct *vma, pmd_t *pmd,
1036                                 unsigned long addr, unsigned long end,
1037                                 struct zap_details *details)
1038 {
1039         struct mm_struct *mm = tlb->mm;
1040         int force_flush = 0;
1041         int rss[NR_MM_COUNTERS];
1042         spinlock_t *ptl;
1043         pte_t *start_pte;
1044         pte_t *pte;
1045         swp_entry_t entry;
1046
1047         tlb_change_page_size(tlb, PAGE_SIZE);
1048 again:
1049         init_rss_vec(rss);
1050         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1051         pte = start_pte;
1052         flush_tlb_batched_pending(mm);
1053         arch_enter_lazy_mmu_mode();
1054         do {
1055                 pte_t ptent = *pte;
1056                 if (pte_none(ptent))
1057                         continue;
1058
1059                 if (need_resched())
1060                         break;
1061
1062                 if (pte_present(ptent)) {
1063                         struct page *page;
1064
1065                         page = vm_normal_page(vma, addr, ptent);
1066                         if (unlikely(details) && page) {
1067                                 /*
1068                                  * unmap_shared_mapping_pages() wants to
1069                                  * invalidate cache without truncating:
1070                                  * unmap shared but keep private pages.
1071                                  */
1072                                 if (details->check_mapping &&
1073                                     details->check_mapping != page_rmapping(page))
1074                                         continue;
1075                         }
1076                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1077                                                         tlb->fullmm);
1078                         tlb_remove_tlb_entry(tlb, pte, addr);
1079                         if (unlikely(!page))
1080                                 continue;
1081
1082                         if (!PageAnon(page)) {
1083                                 if (pte_dirty(ptent)) {
1084                                         force_flush = 1;
1085                                         set_page_dirty(page);
1086                                 }
1087                                 if (pte_young(ptent) &&
1088                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1089                                         mark_page_accessed(page);
1090                         }
1091                         rss[mm_counter(page)]--;
1092                         page_remove_rmap(page, false);
1093                         if (unlikely(page_mapcount(page) < 0))
1094                                 print_bad_pte(vma, addr, ptent, page);
1095                         if (unlikely(__tlb_remove_page(tlb, page))) {
1096                                 force_flush = 1;
1097                                 addr += PAGE_SIZE;
1098                                 break;
1099                         }
1100                         continue;
1101                 }
1102
1103                 entry = pte_to_swp_entry(ptent);
1104                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105                         struct page *page = device_private_entry_to_page(entry);
1106
1107                         if (unlikely(details && details->check_mapping)) {
1108                                 /*
1109                                  * unmap_shared_mapping_pages() wants to
1110                                  * invalidate cache without truncating:
1111                                  * unmap shared but keep private pages.
1112                                  */
1113                                 if (details->check_mapping !=
1114                                     page_rmapping(page))
1115                                         continue;
1116                         }
1117
1118                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119                         rss[mm_counter(page)]--;
1120                         page_remove_rmap(page, false);
1121                         put_page(page);
1122                         continue;
1123                 }
1124
1125                 /* If details->check_mapping, we leave swap entries. */
1126                 if (unlikely(details))
1127                         continue;
1128
1129                 if (!non_swap_entry(entry))
1130                         rss[MM_SWAPENTS]--;
1131                 else if (is_migration_entry(entry)) {
1132                         struct page *page;
1133
1134                         page = migration_entry_to_page(entry);
1135                         rss[mm_counter(page)]--;
1136                 }
1137                 if (unlikely(!free_swap_and_cache(entry)))
1138                         print_bad_pte(vma, addr, ptent, NULL);
1139                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140         } while (pte++, addr += PAGE_SIZE, addr != end);
1141
1142         add_mm_rss_vec(mm, rss);
1143         arch_leave_lazy_mmu_mode();
1144
1145         /* Do the actual TLB flush before dropping ptl */
1146         if (force_flush)
1147                 tlb_flush_mmu_tlbonly(tlb);
1148         pte_unmap_unlock(start_pte, ptl);
1149
1150         /*
1151          * If we forced a TLB flush (either due to running out of
1152          * batch buffers or because we needed to flush dirty TLB
1153          * entries before releasing the ptl), free the batched
1154          * memory too. Restart if we didn't do everything.
1155          */
1156         if (force_flush) {
1157                 force_flush = 0;
1158                 tlb_flush_mmu(tlb);
1159         }
1160
1161         if (addr != end) {
1162                 cond_resched();
1163                 goto again;
1164         }
1165
1166         return addr;
1167 }
1168
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170                                 struct vm_area_struct *vma, pud_t *pud,
1171                                 unsigned long addr, unsigned long end,
1172                                 struct zap_details *details)
1173 {
1174         pmd_t *pmd;
1175         unsigned long next;
1176
1177         pmd = pmd_offset(pud, addr);
1178         do {
1179                 next = pmd_addr_end(addr, end);
1180                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181                         if (next - addr != HPAGE_PMD_SIZE)
1182                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1183                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1184                                 goto next;
1185                         /* fall through */
1186                 }
1187                 /*
1188                  * Here there can be other concurrent MADV_DONTNEED or
1189                  * trans huge page faults running, and if the pmd is
1190                  * none or trans huge it can change under us. This is
1191                  * because MADV_DONTNEED holds the mmap_sem in read
1192                  * mode.
1193                  */
1194                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195                         goto next;
1196                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1197 next:
1198                 cond_resched();
1199         } while (pmd++, addr = next, addr != end);
1200
1201         return addr;
1202 }
1203
1204 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1205                                 struct vm_area_struct *vma, p4d_t *p4d,
1206                                 unsigned long addr, unsigned long end,
1207                                 struct zap_details *details)
1208 {
1209         pud_t *pud;
1210         unsigned long next;
1211
1212         pud = pud_offset(p4d, addr);
1213         do {
1214                 next = pud_addr_end(addr, end);
1215                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1216                         if (next - addr != HPAGE_PUD_SIZE) {
1217                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1218                                 split_huge_pud(vma, pud, addr);
1219                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1220                                 goto next;
1221                         /* fall through */
1222                 }
1223                 if (pud_none_or_clear_bad(pud))
1224                         continue;
1225                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226 next:
1227                 cond_resched();
1228         } while (pud++, addr = next, addr != end);
1229
1230         return addr;
1231 }
1232
1233 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1234                                 struct vm_area_struct *vma, pgd_t *pgd,
1235                                 unsigned long addr, unsigned long end,
1236                                 struct zap_details *details)
1237 {
1238         p4d_t *p4d;
1239         unsigned long next;
1240
1241         p4d = p4d_offset(pgd, addr);
1242         do {
1243                 next = p4d_addr_end(addr, end);
1244                 if (p4d_none_or_clear_bad(p4d))
1245                         continue;
1246                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1247         } while (p4d++, addr = next, addr != end);
1248
1249         return addr;
1250 }
1251
1252 void unmap_page_range(struct mmu_gather *tlb,
1253                              struct vm_area_struct *vma,
1254                              unsigned long addr, unsigned long end,
1255                              struct zap_details *details)
1256 {
1257         pgd_t *pgd;
1258         unsigned long next;
1259
1260         BUG_ON(addr >= end);
1261         tlb_start_vma(tlb, vma);
1262         pgd = pgd_offset(vma->vm_mm, addr);
1263         do {
1264                 next = pgd_addr_end(addr, end);
1265                 if (pgd_none_or_clear_bad(pgd))
1266                         continue;
1267                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1268         } while (pgd++, addr = next, addr != end);
1269         tlb_end_vma(tlb, vma);
1270 }
1271
1272
1273 static void unmap_single_vma(struct mmu_gather *tlb,
1274                 struct vm_area_struct *vma, unsigned long start_addr,
1275                 unsigned long end_addr,
1276                 struct zap_details *details)
1277 {
1278         unsigned long start = max(vma->vm_start, start_addr);
1279         unsigned long end;
1280
1281         if (start >= vma->vm_end)
1282                 return;
1283         end = min(vma->vm_end, end_addr);
1284         if (end <= vma->vm_start)
1285                 return;
1286
1287         if (vma->vm_file)
1288                 uprobe_munmap(vma, start, end);
1289
1290         if (unlikely(vma->vm_flags & VM_PFNMAP))
1291                 untrack_pfn(vma, 0, 0);
1292
1293         if (start != end) {
1294                 if (unlikely(is_vm_hugetlb_page(vma))) {
1295                         /*
1296                          * It is undesirable to test vma->vm_file as it
1297                          * should be non-null for valid hugetlb area.
1298                          * However, vm_file will be NULL in the error
1299                          * cleanup path of mmap_region. When
1300                          * hugetlbfs ->mmap method fails,
1301                          * mmap_region() nullifies vma->vm_file
1302                          * before calling this function to clean up.
1303                          * Since no pte has actually been setup, it is
1304                          * safe to do nothing in this case.
1305                          */
1306                         if (vma->vm_file) {
1307                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1308                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1309                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1310                         }
1311                 } else
1312                         unmap_page_range(tlb, vma, start, end, details);
1313         }
1314 }
1315
1316 /**
1317  * unmap_vmas - unmap a range of memory covered by a list of vma's
1318  * @tlb: address of the caller's struct mmu_gather
1319  * @vma: the starting vma
1320  * @start_addr: virtual address at which to start unmapping
1321  * @end_addr: virtual address at which to end unmapping
1322  *
1323  * Unmap all pages in the vma list.
1324  *
1325  * Only addresses between `start' and `end' will be unmapped.
1326  *
1327  * The VMA list must be sorted in ascending virtual address order.
1328  *
1329  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330  * range after unmap_vmas() returns.  So the only responsibility here is to
1331  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332  * drops the lock and schedules.
1333  */
1334 void unmap_vmas(struct mmu_gather *tlb,
1335                 struct vm_area_struct *vma, unsigned long start_addr,
1336                 unsigned long end_addr)
1337 {
1338         struct mmu_notifier_range range;
1339
1340         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1341                                 start_addr, end_addr);
1342         mmu_notifier_invalidate_range_start(&range);
1343         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1344                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1345         mmu_notifier_invalidate_range_end(&range);
1346 }
1347
1348 /**
1349  * zap_page_range - remove user pages in a given range
1350  * @vma: vm_area_struct holding the applicable pages
1351  * @start: starting address of pages to zap
1352  * @size: number of bytes to zap
1353  *
1354  * Caller must protect the VMA list
1355  */
1356 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1357                 unsigned long size)
1358 {
1359         struct mmu_notifier_range range;
1360         struct mmu_gather tlb;
1361
1362         lru_add_drain();
1363         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1364                                 start, start + size);
1365         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1366         update_hiwater_rss(vma->vm_mm);
1367         mmu_notifier_invalidate_range_start(&range);
1368         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1369                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1370         mmu_notifier_invalidate_range_end(&range);
1371         tlb_finish_mmu(&tlb, start, range.end);
1372 }
1373
1374 /**
1375  * zap_page_range_single - remove user pages in a given range
1376  * @vma: vm_area_struct holding the applicable pages
1377  * @address: starting address of pages to zap
1378  * @size: number of bytes to zap
1379  * @details: details of shared cache invalidation
1380  *
1381  * The range must fit into one VMA.
1382  */
1383 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1384                 unsigned long size, struct zap_details *details)
1385 {
1386         struct mmu_notifier_range range;
1387         struct mmu_gather tlb;
1388
1389         lru_add_drain();
1390         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1391                                 address, address + size);
1392         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1393         update_hiwater_rss(vma->vm_mm);
1394         mmu_notifier_invalidate_range_start(&range);
1395         unmap_single_vma(&tlb, vma, address, range.end, details);
1396         mmu_notifier_invalidate_range_end(&range);
1397         tlb_finish_mmu(&tlb, address, range.end);
1398 }
1399
1400 /**
1401  * zap_vma_ptes - remove ptes mapping the vma
1402  * @vma: vm_area_struct holding ptes to be zapped
1403  * @address: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  *
1406  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407  *
1408  * The entire address range must be fully contained within the vma.
1409  *
1410  */
1411 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1412                 unsigned long size)
1413 {
1414         if (address < vma->vm_start || address + size > vma->vm_end ||
1415                         !(vma->vm_flags & VM_PFNMAP))
1416                 return;
1417
1418         zap_page_range_single(vma, address, size, NULL);
1419 }
1420 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421
1422 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1423                         spinlock_t **ptl)
1424 {
1425         pgd_t *pgd;
1426         p4d_t *p4d;
1427         pud_t *pud;
1428         pmd_t *pmd;
1429
1430         pgd = pgd_offset(mm, addr);
1431         p4d = p4d_alloc(mm, pgd, addr);
1432         if (!p4d)
1433                 return NULL;
1434         pud = pud_alloc(mm, p4d, addr);
1435         if (!pud)
1436                 return NULL;
1437         pmd = pmd_alloc(mm, pud, addr);
1438         if (!pmd)
1439                 return NULL;
1440
1441         VM_BUG_ON(pmd_trans_huge(*pmd));
1442         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1443 }
1444
1445 static int validate_page_before_insert(struct page *page)
1446 {
1447         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1448                 return -EINVAL;
1449         flush_dcache_page(page);
1450         return 0;
1451 }
1452
1453 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1454                         unsigned long addr, struct page *page, pgprot_t prot)
1455 {
1456         if (!pte_none(*pte))
1457                 return -EBUSY;
1458         /* Ok, finally just insert the thing.. */
1459         get_page(page);
1460         inc_mm_counter_fast(mm, mm_counter_file(page));
1461         page_add_file_rmap(page, false);
1462         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1463         return 0;
1464 }
1465
1466 /*
1467  * This is the old fallback for page remapping.
1468  *
1469  * For historical reasons, it only allows reserved pages. Only
1470  * old drivers should use this, and they needed to mark their
1471  * pages reserved for the old functions anyway.
1472  */
1473 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1474                         struct page *page, pgprot_t prot)
1475 {
1476         struct mm_struct *mm = vma->vm_mm;
1477         int retval;
1478         pte_t *pte;
1479         spinlock_t *ptl;
1480
1481         retval = validate_page_before_insert(page);
1482         if (retval)
1483                 goto out;
1484         retval = -ENOMEM;
1485         pte = get_locked_pte(mm, addr, &ptl);
1486         if (!pte)
1487                 goto out;
1488         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1489         pte_unmap_unlock(pte, ptl);
1490 out:
1491         return retval;
1492 }
1493
1494 /**
1495  * vm_insert_page - insert single page into user vma
1496  * @vma: user vma to map to
1497  * @addr: target user address of this page
1498  * @page: source kernel page
1499  *
1500  * This allows drivers to insert individual pages they've allocated
1501  * into a user vma.
1502  *
1503  * The page has to be a nice clean _individual_ kernel allocation.
1504  * If you allocate a compound page, you need to have marked it as
1505  * such (__GFP_COMP), or manually just split the page up yourself
1506  * (see split_page()).
1507  *
1508  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1509  * took an arbitrary page protection parameter. This doesn't allow
1510  * that. Your vma protection will have to be set up correctly, which
1511  * means that if you want a shared writable mapping, you'd better
1512  * ask for a shared writable mapping!
1513  *
1514  * The page does not need to be reserved.
1515  *
1516  * Usually this function is called from f_op->mmap() handler
1517  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1518  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1519  * function from other places, for example from page-fault handler.
1520  *
1521  * Return: %0 on success, negative error code otherwise.
1522  */
1523 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1524                         struct page *page)
1525 {
1526         if (addr < vma->vm_start || addr >= vma->vm_end)
1527                 return -EFAULT;
1528         if (!page_count(page))
1529                 return -EINVAL;
1530         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1531                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1532                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1533                 vma->vm_flags |= VM_MIXEDMAP;
1534         }
1535         return insert_page(vma, addr, page, vma->vm_page_prot);
1536 }
1537 EXPORT_SYMBOL(vm_insert_page);
1538
1539 /*
1540  * __vm_map_pages - maps range of kernel pages into user vma
1541  * @vma: user vma to map to
1542  * @pages: pointer to array of source kernel pages
1543  * @num: number of pages in page array
1544  * @offset: user's requested vm_pgoff
1545  *
1546  * This allows drivers to map range of kernel pages into a user vma.
1547  *
1548  * Return: 0 on success and error code otherwise.
1549  */
1550 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1551                                 unsigned long num, unsigned long offset)
1552 {
1553         unsigned long count = vma_pages(vma);
1554         unsigned long uaddr = vma->vm_start;
1555         int ret, i;
1556
1557         /* Fail if the user requested offset is beyond the end of the object */
1558         if (offset >= num)
1559                 return -ENXIO;
1560
1561         /* Fail if the user requested size exceeds available object size */
1562         if (count > num - offset)
1563                 return -ENXIO;
1564
1565         for (i = 0; i < count; i++) {
1566                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1567                 if (ret < 0)
1568                         return ret;
1569                 uaddr += PAGE_SIZE;
1570         }
1571
1572         return 0;
1573 }
1574
1575 /**
1576  * vm_map_pages - maps range of kernel pages starts with non zero offset
1577  * @vma: user vma to map to
1578  * @pages: pointer to array of source kernel pages
1579  * @num: number of pages in page array
1580  *
1581  * Maps an object consisting of @num pages, catering for the user's
1582  * requested vm_pgoff
1583  *
1584  * If we fail to insert any page into the vma, the function will return
1585  * immediately leaving any previously inserted pages present.  Callers
1586  * from the mmap handler may immediately return the error as their caller
1587  * will destroy the vma, removing any successfully inserted pages. Other
1588  * callers should make their own arrangements for calling unmap_region().
1589  *
1590  * Context: Process context. Called by mmap handlers.
1591  * Return: 0 on success and error code otherwise.
1592  */
1593 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1594                                 unsigned long num)
1595 {
1596         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1597 }
1598 EXPORT_SYMBOL(vm_map_pages);
1599
1600 /**
1601  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1602  * @vma: user vma to map to
1603  * @pages: pointer to array of source kernel pages
1604  * @num: number of pages in page array
1605  *
1606  * Similar to vm_map_pages(), except that it explicitly sets the offset
1607  * to 0. This function is intended for the drivers that did not consider
1608  * vm_pgoff.
1609  *
1610  * Context: Process context. Called by mmap handlers.
1611  * Return: 0 on success and error code otherwise.
1612  */
1613 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1614                                 unsigned long num)
1615 {
1616         return __vm_map_pages(vma, pages, num, 0);
1617 }
1618 EXPORT_SYMBOL(vm_map_pages_zero);
1619
1620 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1621                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1622 {
1623         struct mm_struct *mm = vma->vm_mm;
1624         pte_t *pte, entry;
1625         spinlock_t *ptl;
1626
1627         pte = get_locked_pte(mm, addr, &ptl);
1628         if (!pte)
1629                 return VM_FAULT_OOM;
1630         if (!pte_none(*pte)) {
1631                 if (mkwrite) {
1632                         /*
1633                          * For read faults on private mappings the PFN passed
1634                          * in may not match the PFN we have mapped if the
1635                          * mapped PFN is a writeable COW page.  In the mkwrite
1636                          * case we are creating a writable PTE for a shared
1637                          * mapping and we expect the PFNs to match. If they
1638                          * don't match, we are likely racing with block
1639                          * allocation and mapping invalidation so just skip the
1640                          * update.
1641                          */
1642                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1643                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1644                                 goto out_unlock;
1645                         }
1646                         entry = pte_mkyoung(*pte);
1647                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1648                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1649                                 update_mmu_cache(vma, addr, pte);
1650                 }
1651                 goto out_unlock;
1652         }
1653
1654         /* Ok, finally just insert the thing.. */
1655         if (pfn_t_devmap(pfn))
1656                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1657         else
1658                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1659
1660         if (mkwrite) {
1661                 entry = pte_mkyoung(entry);
1662                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1663         }
1664
1665         set_pte_at(mm, addr, pte, entry);
1666         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1667
1668 out_unlock:
1669         pte_unmap_unlock(pte, ptl);
1670         return VM_FAULT_NOPAGE;
1671 }
1672
1673 /**
1674  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1675  * @vma: user vma to map to
1676  * @addr: target user address of this page
1677  * @pfn: source kernel pfn
1678  * @pgprot: pgprot flags for the inserted page
1679  *
1680  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1681  * to override pgprot on a per-page basis.
1682  *
1683  * This only makes sense for IO mappings, and it makes no sense for
1684  * COW mappings.  In general, using multiple vmas is preferable;
1685  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1686  * impractical.
1687  *
1688  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1689  * a value of @pgprot different from that of @vma->vm_page_prot.
1690  *
1691  * Context: Process context.  May allocate using %GFP_KERNEL.
1692  * Return: vm_fault_t value.
1693  */
1694 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1695                         unsigned long pfn, pgprot_t pgprot)
1696 {
1697         /*
1698          * Technically, architectures with pte_special can avoid all these
1699          * restrictions (same for remap_pfn_range).  However we would like
1700          * consistency in testing and feature parity among all, so we should
1701          * try to keep these invariants in place for everybody.
1702          */
1703         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1704         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1705                                                 (VM_PFNMAP|VM_MIXEDMAP));
1706         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1707         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1708
1709         if (addr < vma->vm_start || addr >= vma->vm_end)
1710                 return VM_FAULT_SIGBUS;
1711
1712         if (!pfn_modify_allowed(pfn, pgprot))
1713                 return VM_FAULT_SIGBUS;
1714
1715         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1716
1717         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1718                         false);
1719 }
1720 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1721
1722 /**
1723  * vmf_insert_pfn - insert single pfn into user vma
1724  * @vma: user vma to map to
1725  * @addr: target user address of this page
1726  * @pfn: source kernel pfn
1727  *
1728  * Similar to vm_insert_page, this allows drivers to insert individual pages
1729  * they've allocated into a user vma. Same comments apply.
1730  *
1731  * This function should only be called from a vm_ops->fault handler, and
1732  * in that case the handler should return the result of this function.
1733  *
1734  * vma cannot be a COW mapping.
1735  *
1736  * As this is called only for pages that do not currently exist, we
1737  * do not need to flush old virtual caches or the TLB.
1738  *
1739  * Context: Process context.  May allocate using %GFP_KERNEL.
1740  * Return: vm_fault_t value.
1741  */
1742 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1743                         unsigned long pfn)
1744 {
1745         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1746 }
1747 EXPORT_SYMBOL(vmf_insert_pfn);
1748
1749 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1750 {
1751         /* these checks mirror the abort conditions in vm_normal_page */
1752         if (vma->vm_flags & VM_MIXEDMAP)
1753                 return true;
1754         if (pfn_t_devmap(pfn))
1755                 return true;
1756         if (pfn_t_special(pfn))
1757                 return true;
1758         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1759                 return true;
1760         return false;
1761 }
1762
1763 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1764                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1765                 bool mkwrite)
1766 {
1767         int err;
1768
1769         BUG_ON(!vm_mixed_ok(vma, pfn));
1770
1771         if (addr < vma->vm_start || addr >= vma->vm_end)
1772                 return VM_FAULT_SIGBUS;
1773
1774         track_pfn_insert(vma, &pgprot, pfn);
1775
1776         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1777                 return VM_FAULT_SIGBUS;
1778
1779         /*
1780          * If we don't have pte special, then we have to use the pfn_valid()
1781          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1782          * refcount the page if pfn_valid is true (hence insert_page rather
1783          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1784          * without pte special, it would there be refcounted as a normal page.
1785          */
1786         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1787             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1788                 struct page *page;
1789
1790                 /*
1791                  * At this point we are committed to insert_page()
1792                  * regardless of whether the caller specified flags that
1793                  * result in pfn_t_has_page() == false.
1794                  */
1795                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1796                 err = insert_page(vma, addr, page, pgprot);
1797         } else {
1798                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1799         }
1800
1801         if (err == -ENOMEM)
1802                 return VM_FAULT_OOM;
1803         if (err < 0 && err != -EBUSY)
1804                 return VM_FAULT_SIGBUS;
1805
1806         return VM_FAULT_NOPAGE;
1807 }
1808
1809 /**
1810  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1811  * @vma: user vma to map to
1812  * @addr: target user address of this page
1813  * @pfn: source kernel pfn
1814  * @pgprot: pgprot flags for the inserted page
1815  *
1816  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1817  * to override pgprot on a per-page basis.
1818  *
1819  * Typically this function should be used by drivers to set caching- and
1820  * encryption bits different than those of @vma->vm_page_prot, because
1821  * the caching- or encryption mode may not be known at mmap() time.
1822  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1823  * to set caching and encryption bits for those vmas (except for COW pages).
1824  * This is ensured by core vm only modifying these page table entries using
1825  * functions that don't touch caching- or encryption bits, using pte_modify()
1826  * if needed. (See for example mprotect()).
1827  * Also when new page-table entries are created, this is only done using the
1828  * fault() callback, and never using the value of vma->vm_page_prot,
1829  * except for page-table entries that point to anonymous pages as the result
1830  * of COW.
1831  *
1832  * Context: Process context.  May allocate using %GFP_KERNEL.
1833  * Return: vm_fault_t value.
1834  */
1835 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1836                                  pfn_t pfn, pgprot_t pgprot)
1837 {
1838         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1839 }
1840 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1841
1842 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1843                 pfn_t pfn)
1844 {
1845         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1846 }
1847 EXPORT_SYMBOL(vmf_insert_mixed);
1848
1849 /*
1850  *  If the insertion of PTE failed because someone else already added a
1851  *  different entry in the mean time, we treat that as success as we assume
1852  *  the same entry was actually inserted.
1853  */
1854 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1855                 unsigned long addr, pfn_t pfn)
1856 {
1857         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1858 }
1859 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1860
1861 /*
1862  * maps a range of physical memory into the requested pages. the old
1863  * mappings are removed. any references to nonexistent pages results
1864  * in null mappings (currently treated as "copy-on-access")
1865  */
1866 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1867                         unsigned long addr, unsigned long end,
1868                         unsigned long pfn, pgprot_t prot)
1869 {
1870         pte_t *pte;
1871         spinlock_t *ptl;
1872         int err = 0;
1873
1874         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1875         if (!pte)
1876                 return -ENOMEM;
1877         arch_enter_lazy_mmu_mode();
1878         do {
1879                 BUG_ON(!pte_none(*pte));
1880                 if (!pfn_modify_allowed(pfn, prot)) {
1881                         err = -EACCES;
1882                         break;
1883                 }
1884                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1885                 pfn++;
1886         } while (pte++, addr += PAGE_SIZE, addr != end);
1887         arch_leave_lazy_mmu_mode();
1888         pte_unmap_unlock(pte - 1, ptl);
1889         return err;
1890 }
1891
1892 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1893                         unsigned long addr, unsigned long end,
1894                         unsigned long pfn, pgprot_t prot)
1895 {
1896         pmd_t *pmd;
1897         unsigned long next;
1898         int err;
1899
1900         pfn -= addr >> PAGE_SHIFT;
1901         pmd = pmd_alloc(mm, pud, addr);
1902         if (!pmd)
1903                 return -ENOMEM;
1904         VM_BUG_ON(pmd_trans_huge(*pmd));
1905         do {
1906                 next = pmd_addr_end(addr, end);
1907                 err = remap_pte_range(mm, pmd, addr, next,
1908                                 pfn + (addr >> PAGE_SHIFT), prot);
1909                 if (err)
1910                         return err;
1911         } while (pmd++, addr = next, addr != end);
1912         return 0;
1913 }
1914
1915 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1916                         unsigned long addr, unsigned long end,
1917                         unsigned long pfn, pgprot_t prot)
1918 {
1919         pud_t *pud;
1920         unsigned long next;
1921         int err;
1922
1923         pfn -= addr >> PAGE_SHIFT;
1924         pud = pud_alloc(mm, p4d, addr);
1925         if (!pud)
1926                 return -ENOMEM;
1927         do {
1928                 next = pud_addr_end(addr, end);
1929                 err = remap_pmd_range(mm, pud, addr, next,
1930                                 pfn + (addr >> PAGE_SHIFT), prot);
1931                 if (err)
1932                         return err;
1933         } while (pud++, addr = next, addr != end);
1934         return 0;
1935 }
1936
1937 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1938                         unsigned long addr, unsigned long end,
1939                         unsigned long pfn, pgprot_t prot)
1940 {
1941         p4d_t *p4d;
1942         unsigned long next;
1943         int err;
1944
1945         pfn -= addr >> PAGE_SHIFT;
1946         p4d = p4d_alloc(mm, pgd, addr);
1947         if (!p4d)
1948                 return -ENOMEM;
1949         do {
1950                 next = p4d_addr_end(addr, end);
1951                 err = remap_pud_range(mm, p4d, addr, next,
1952                                 pfn + (addr >> PAGE_SHIFT), prot);
1953                 if (err)
1954                         return err;
1955         } while (p4d++, addr = next, addr != end);
1956         return 0;
1957 }
1958
1959 /**
1960  * remap_pfn_range - remap kernel memory to userspace
1961  * @vma: user vma to map to
1962  * @addr: target user address to start at
1963  * @pfn: page frame number of kernel physical memory address
1964  * @size: size of mapping area
1965  * @prot: page protection flags for this mapping
1966  *
1967  * Note: this is only safe if the mm semaphore is held when called.
1968  *
1969  * Return: %0 on success, negative error code otherwise.
1970  */
1971 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1972                     unsigned long pfn, unsigned long size, pgprot_t prot)
1973 {
1974         pgd_t *pgd;
1975         unsigned long next;
1976         unsigned long end = addr + PAGE_ALIGN(size);
1977         struct mm_struct *mm = vma->vm_mm;
1978         unsigned long remap_pfn = pfn;
1979         int err;
1980
1981         /*
1982          * Physically remapped pages are special. Tell the
1983          * rest of the world about it:
1984          *   VM_IO tells people not to look at these pages
1985          *      (accesses can have side effects).
1986          *   VM_PFNMAP tells the core MM that the base pages are just
1987          *      raw PFN mappings, and do not have a "struct page" associated
1988          *      with them.
1989          *   VM_DONTEXPAND
1990          *      Disable vma merging and expanding with mremap().
1991          *   VM_DONTDUMP
1992          *      Omit vma from core dump, even when VM_IO turned off.
1993          *
1994          * There's a horrible special case to handle copy-on-write
1995          * behaviour that some programs depend on. We mark the "original"
1996          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1997          * See vm_normal_page() for details.
1998          */
1999         if (is_cow_mapping(vma->vm_flags)) {
2000                 if (addr != vma->vm_start || end != vma->vm_end)
2001                         return -EINVAL;
2002                 vma->vm_pgoff = pfn;
2003         }
2004
2005         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2006         if (err)
2007                 return -EINVAL;
2008
2009         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2010
2011         BUG_ON(addr >= end);
2012         pfn -= addr >> PAGE_SHIFT;
2013         pgd = pgd_offset(mm, addr);
2014         flush_cache_range(vma, addr, end);
2015         do {
2016                 next = pgd_addr_end(addr, end);
2017                 err = remap_p4d_range(mm, pgd, addr, next,
2018                                 pfn + (addr >> PAGE_SHIFT), prot);
2019                 if (err)
2020                         break;
2021         } while (pgd++, addr = next, addr != end);
2022
2023         if (err)
2024                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2025
2026         return err;
2027 }
2028 EXPORT_SYMBOL(remap_pfn_range);
2029
2030 /**
2031  * vm_iomap_memory - remap memory to userspace
2032  * @vma: user vma to map to
2033  * @start: start of the physical memory to be mapped
2034  * @len: size of area
2035  *
2036  * This is a simplified io_remap_pfn_range() for common driver use. The
2037  * driver just needs to give us the physical memory range to be mapped,
2038  * we'll figure out the rest from the vma information.
2039  *
2040  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2041  * whatever write-combining details or similar.
2042  *
2043  * Return: %0 on success, negative error code otherwise.
2044  */
2045 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2046 {
2047         unsigned long vm_len, pfn, pages;
2048
2049         /* Check that the physical memory area passed in looks valid */
2050         if (start + len < start)
2051                 return -EINVAL;
2052         /*
2053          * You *really* shouldn't map things that aren't page-aligned,
2054          * but we've historically allowed it because IO memory might
2055          * just have smaller alignment.
2056          */
2057         len += start & ~PAGE_MASK;
2058         pfn = start >> PAGE_SHIFT;
2059         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2060         if (pfn + pages < pfn)
2061                 return -EINVAL;
2062
2063         /* We start the mapping 'vm_pgoff' pages into the area */
2064         if (vma->vm_pgoff > pages)
2065                 return -EINVAL;
2066         pfn += vma->vm_pgoff;
2067         pages -= vma->vm_pgoff;
2068
2069         /* Can we fit all of the mapping? */
2070         vm_len = vma->vm_end - vma->vm_start;
2071         if (vm_len >> PAGE_SHIFT > pages)
2072                 return -EINVAL;
2073
2074         /* Ok, let it rip */
2075         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2076 }
2077 EXPORT_SYMBOL(vm_iomap_memory);
2078
2079 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2080                                      unsigned long addr, unsigned long end,
2081                                      pte_fn_t fn, void *data, bool create)
2082 {
2083         pte_t *pte;
2084         int err = 0;
2085         spinlock_t *uninitialized_var(ptl);
2086
2087         if (create) {
2088                 pte = (mm == &init_mm) ?
2089                         pte_alloc_kernel(pmd, addr) :
2090                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2091                 if (!pte)
2092                         return -ENOMEM;
2093         } else {
2094                 pte = (mm == &init_mm) ?
2095                         pte_offset_kernel(pmd, addr) :
2096                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2097         }
2098
2099         BUG_ON(pmd_huge(*pmd));
2100
2101         arch_enter_lazy_mmu_mode();
2102
2103         do {
2104                 if (create || !pte_none(*pte)) {
2105                         err = fn(pte++, addr, data);
2106                         if (err)
2107                                 break;
2108                 }
2109         } while (addr += PAGE_SIZE, addr != end);
2110
2111         arch_leave_lazy_mmu_mode();
2112
2113         if (mm != &init_mm)
2114                 pte_unmap_unlock(pte-1, ptl);
2115         return err;
2116 }
2117
2118 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2119                                      unsigned long addr, unsigned long end,
2120                                      pte_fn_t fn, void *data, bool create)
2121 {
2122         pmd_t *pmd;
2123         unsigned long next;
2124         int err = 0;
2125
2126         BUG_ON(pud_huge(*pud));
2127
2128         if (create) {
2129                 pmd = pmd_alloc(mm, pud, addr);
2130                 if (!pmd)
2131                         return -ENOMEM;
2132         } else {
2133                 pmd = pmd_offset(pud, addr);
2134         }
2135         do {
2136                 next = pmd_addr_end(addr, end);
2137                 if (create || !pmd_none_or_clear_bad(pmd)) {
2138                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2139                                                  create);
2140                         if (err)
2141                                 break;
2142                 }
2143         } while (pmd++, addr = next, addr != end);
2144         return err;
2145 }
2146
2147 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2148                                      unsigned long addr, unsigned long end,
2149                                      pte_fn_t fn, void *data, bool create)
2150 {
2151         pud_t *pud;
2152         unsigned long next;
2153         int err = 0;
2154
2155         if (create) {
2156                 pud = pud_alloc(mm, p4d, addr);
2157                 if (!pud)
2158                         return -ENOMEM;
2159         } else {
2160                 pud = pud_offset(p4d, addr);
2161         }
2162         do {
2163                 next = pud_addr_end(addr, end);
2164                 if (create || !pud_none_or_clear_bad(pud)) {
2165                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2166                                                  create);
2167                         if (err)
2168                                 break;
2169                 }
2170         } while (pud++, addr = next, addr != end);
2171         return err;
2172 }
2173
2174 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2175                                      unsigned long addr, unsigned long end,
2176                                      pte_fn_t fn, void *data, bool create)
2177 {
2178         p4d_t *p4d;
2179         unsigned long next;
2180         int err = 0;
2181
2182         if (create) {
2183                 p4d = p4d_alloc(mm, pgd, addr);
2184                 if (!p4d)
2185                         return -ENOMEM;
2186         } else {
2187                 p4d = p4d_offset(pgd, addr);
2188         }
2189         do {
2190                 next = p4d_addr_end(addr, end);
2191                 if (create || !p4d_none_or_clear_bad(p4d)) {
2192                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2193                                                  create);
2194                         if (err)
2195                                 break;
2196                 }
2197         } while (p4d++, addr = next, addr != end);
2198         return err;
2199 }
2200
2201 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2202                                  unsigned long size, pte_fn_t fn,
2203                                  void *data, bool create)
2204 {
2205         pgd_t *pgd;
2206         unsigned long next;
2207         unsigned long end = addr + size;
2208         int err = 0;
2209
2210         if (WARN_ON(addr >= end))
2211                 return -EINVAL;
2212
2213         pgd = pgd_offset(mm, addr);
2214         do {
2215                 next = pgd_addr_end(addr, end);
2216                 if (!create && pgd_none_or_clear_bad(pgd))
2217                         continue;
2218                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2219                 if (err)
2220                         break;
2221         } while (pgd++, addr = next, addr != end);
2222
2223         return err;
2224 }
2225
2226 /*
2227  * Scan a region of virtual memory, filling in page tables as necessary
2228  * and calling a provided function on each leaf page table.
2229  */
2230 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2231                         unsigned long size, pte_fn_t fn, void *data)
2232 {
2233         return __apply_to_page_range(mm, addr, size, fn, data, true);
2234 }
2235 EXPORT_SYMBOL_GPL(apply_to_page_range);
2236
2237 /*
2238  * Scan a region of virtual memory, calling a provided function on
2239  * each leaf page table where it exists.
2240  *
2241  * Unlike apply_to_page_range, this does _not_ fill in page tables
2242  * where they are absent.
2243  */
2244 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2245                                  unsigned long size, pte_fn_t fn, void *data)
2246 {
2247         return __apply_to_page_range(mm, addr, size, fn, data, false);
2248 }
2249 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2250
2251 /*
2252  * handle_pte_fault chooses page fault handler according to an entry which was
2253  * read non-atomically.  Before making any commitment, on those architectures
2254  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2255  * parts, do_swap_page must check under lock before unmapping the pte and
2256  * proceeding (but do_wp_page is only called after already making such a check;
2257  * and do_anonymous_page can safely check later on).
2258  */
2259 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2260                                 pte_t *page_table, pte_t orig_pte)
2261 {
2262         int same = 1;
2263 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2264         if (sizeof(pte_t) > sizeof(unsigned long)) {
2265                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2266                 spin_lock(ptl);
2267                 same = pte_same(*page_table, orig_pte);
2268                 spin_unlock(ptl);
2269         }
2270 #endif
2271         pte_unmap(page_table);
2272         return same;
2273 }
2274
2275 static inline bool cow_user_page(struct page *dst, struct page *src,
2276                                  struct vm_fault *vmf)
2277 {
2278         bool ret;
2279         void *kaddr;
2280         void __user *uaddr;
2281         bool locked = false;
2282         struct vm_area_struct *vma = vmf->vma;
2283         struct mm_struct *mm = vma->vm_mm;
2284         unsigned long addr = vmf->address;
2285
2286         debug_dma_assert_idle(src);
2287
2288         if (likely(src)) {
2289                 copy_user_highpage(dst, src, addr, vma);
2290                 return true;
2291         }
2292
2293         /*
2294          * If the source page was a PFN mapping, we don't have
2295          * a "struct page" for it. We do a best-effort copy by
2296          * just copying from the original user address. If that
2297          * fails, we just zero-fill it. Live with it.
2298          */
2299         kaddr = kmap_atomic(dst);
2300         uaddr = (void __user *)(addr & PAGE_MASK);
2301
2302         /*
2303          * On architectures with software "accessed" bits, we would
2304          * take a double page fault, so mark it accessed here.
2305          */
2306         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2307                 pte_t entry;
2308
2309                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2310                 locked = true;
2311                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2312                         /*
2313                          * Other thread has already handled the fault
2314                          * and we don't need to do anything. If it's
2315                          * not the case, the fault will be triggered
2316                          * again on the same address.
2317                          */
2318                         ret = false;
2319                         goto pte_unlock;
2320                 }
2321
2322                 entry = pte_mkyoung(vmf->orig_pte);
2323                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2324                         update_mmu_cache(vma, addr, vmf->pte);
2325         }
2326
2327         /*
2328          * This really shouldn't fail, because the page is there
2329          * in the page tables. But it might just be unreadable,
2330          * in which case we just give up and fill the result with
2331          * zeroes.
2332          */
2333         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2334                 if (locked)
2335                         goto warn;
2336
2337                 /* Re-validate under PTL if the page is still mapped */
2338                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2339                 locked = true;
2340                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2341                         /* The PTE changed under us. Retry page fault. */
2342                         ret = false;
2343                         goto pte_unlock;
2344                 }
2345
2346                 /*
2347                  * The same page can be mapped back since last copy attampt.
2348                  * Try to copy again under PTL.
2349                  */
2350                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2351                         /*
2352                          * Give a warn in case there can be some obscure
2353                          * use-case
2354                          */
2355 warn:
2356                         WARN_ON_ONCE(1);
2357                         clear_page(kaddr);
2358                 }
2359         }
2360
2361         ret = true;
2362
2363 pte_unlock:
2364         if (locked)
2365                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2366         kunmap_atomic(kaddr);
2367         flush_dcache_page(dst);
2368
2369         return ret;
2370 }
2371
2372 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2373 {
2374         struct file *vm_file = vma->vm_file;
2375
2376         if (vm_file)
2377                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2378
2379         /*
2380          * Special mappings (e.g. VDSO) do not have any file so fake
2381          * a default GFP_KERNEL for them.
2382          */
2383         return GFP_KERNEL;
2384 }
2385
2386 /*
2387  * Notify the address space that the page is about to become writable so that
2388  * it can prohibit this or wait for the page to get into an appropriate state.
2389  *
2390  * We do this without the lock held, so that it can sleep if it needs to.
2391  */
2392 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2393 {
2394         vm_fault_t ret;
2395         struct page *page = vmf->page;
2396         unsigned int old_flags = vmf->flags;
2397
2398         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2399
2400         if (vmf->vma->vm_file &&
2401             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2402                 return VM_FAULT_SIGBUS;
2403
2404         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2405         /* Restore original flags so that caller is not surprised */
2406         vmf->flags = old_flags;
2407         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2408                 return ret;
2409         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2410                 lock_page(page);
2411                 if (!page->mapping) {
2412                         unlock_page(page);
2413                         return 0; /* retry */
2414                 }
2415                 ret |= VM_FAULT_LOCKED;
2416         } else
2417                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2418         return ret;
2419 }
2420
2421 /*
2422  * Handle dirtying of a page in shared file mapping on a write fault.
2423  *
2424  * The function expects the page to be locked and unlocks it.
2425  */
2426 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2427 {
2428         struct vm_area_struct *vma = vmf->vma;
2429         struct address_space *mapping;
2430         struct page *page = vmf->page;
2431         bool dirtied;
2432         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2433
2434         dirtied = set_page_dirty(page);
2435         VM_BUG_ON_PAGE(PageAnon(page), page);
2436         /*
2437          * Take a local copy of the address_space - page.mapping may be zeroed
2438          * by truncate after unlock_page().   The address_space itself remains
2439          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2440          * release semantics to prevent the compiler from undoing this copying.
2441          */
2442         mapping = page_rmapping(page);
2443         unlock_page(page);
2444
2445         if (!page_mkwrite)
2446                 file_update_time(vma->vm_file);
2447
2448         /*
2449          * Throttle page dirtying rate down to writeback speed.
2450          *
2451          * mapping may be NULL here because some device drivers do not
2452          * set page.mapping but still dirty their pages
2453          *
2454          * Drop the mmap_sem before waiting on IO, if we can. The file
2455          * is pinning the mapping, as per above.
2456          */
2457         if ((dirtied || page_mkwrite) && mapping) {
2458                 struct file *fpin;
2459
2460                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2461                 balance_dirty_pages_ratelimited(mapping);
2462                 if (fpin) {
2463                         fput(fpin);
2464                         return VM_FAULT_RETRY;
2465                 }
2466         }
2467
2468         return 0;
2469 }
2470
2471 /*
2472  * Handle write page faults for pages that can be reused in the current vma
2473  *
2474  * This can happen either due to the mapping being with the VM_SHARED flag,
2475  * or due to us being the last reference standing to the page. In either
2476  * case, all we need to do here is to mark the page as writable and update
2477  * any related book-keeping.
2478  */
2479 static inline void wp_page_reuse(struct vm_fault *vmf)
2480         __releases(vmf->ptl)
2481 {
2482         struct vm_area_struct *vma = vmf->vma;
2483         struct page *page = vmf->page;
2484         pte_t entry;
2485         /*
2486          * Clear the pages cpupid information as the existing
2487          * information potentially belongs to a now completely
2488          * unrelated process.
2489          */
2490         if (page)
2491                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2492
2493         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2494         entry = pte_mkyoung(vmf->orig_pte);
2495         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2496         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2497                 update_mmu_cache(vma, vmf->address, vmf->pte);
2498         pte_unmap_unlock(vmf->pte, vmf->ptl);
2499 }
2500
2501 /*
2502  * Handle the case of a page which we actually need to copy to a new page.
2503  *
2504  * Called with mmap_sem locked and the old page referenced, but
2505  * without the ptl held.
2506  *
2507  * High level logic flow:
2508  *
2509  * - Allocate a page, copy the content of the old page to the new one.
2510  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2511  * - Take the PTL. If the pte changed, bail out and release the allocated page
2512  * - If the pte is still the way we remember it, update the page table and all
2513  *   relevant references. This includes dropping the reference the page-table
2514  *   held to the old page, as well as updating the rmap.
2515  * - In any case, unlock the PTL and drop the reference we took to the old page.
2516  */
2517 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2518 {
2519         struct vm_area_struct *vma = vmf->vma;
2520         struct mm_struct *mm = vma->vm_mm;
2521         struct page *old_page = vmf->page;
2522         struct page *new_page = NULL;
2523         pte_t entry;
2524         int page_copied = 0;
2525         struct mem_cgroup *memcg;
2526         struct mmu_notifier_range range;
2527
2528         if (unlikely(anon_vma_prepare(vma)))
2529                 goto oom;
2530
2531         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2532                 new_page = alloc_zeroed_user_highpage_movable(vma,
2533                                                               vmf->address);
2534                 if (!new_page)
2535                         goto oom;
2536         } else {
2537                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2538                                 vmf->address);
2539                 if (!new_page)
2540                         goto oom;
2541
2542                 if (!cow_user_page(new_page, old_page, vmf)) {
2543                         /*
2544                          * COW failed, if the fault was solved by other,
2545                          * it's fine. If not, userspace would re-fault on
2546                          * the same address and we will handle the fault
2547                          * from the second attempt.
2548                          */
2549                         put_page(new_page);
2550                         if (old_page)
2551                                 put_page(old_page);
2552                         return 0;
2553                 }
2554         }
2555
2556         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2557                 goto oom_free_new;
2558
2559         __SetPageUptodate(new_page);
2560
2561         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2562                                 vmf->address & PAGE_MASK,
2563                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2564         mmu_notifier_invalidate_range_start(&range);
2565
2566         /*
2567          * Re-check the pte - we dropped the lock
2568          */
2569         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2570         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2571                 if (old_page) {
2572                         if (!PageAnon(old_page)) {
2573                                 dec_mm_counter_fast(mm,
2574                                                 mm_counter_file(old_page));
2575                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2576                         }
2577                 } else {
2578                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2579                 }
2580                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2581                 entry = mk_pte(new_page, vma->vm_page_prot);
2582                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2583                 /*
2584                  * Clear the pte entry and flush it first, before updating the
2585                  * pte with the new entry. This will avoid a race condition
2586                  * seen in the presence of one thread doing SMC and another
2587                  * thread doing COW.
2588                  */
2589                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2590                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2591                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2592                 lru_cache_add_active_or_unevictable(new_page, vma);
2593                 /*
2594                  * We call the notify macro here because, when using secondary
2595                  * mmu page tables (such as kvm shadow page tables), we want the
2596                  * new page to be mapped directly into the secondary page table.
2597                  */
2598                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2599                 update_mmu_cache(vma, vmf->address, vmf->pte);
2600                 if (old_page) {
2601                         /*
2602                          * Only after switching the pte to the new page may
2603                          * we remove the mapcount here. Otherwise another
2604                          * process may come and find the rmap count decremented
2605                          * before the pte is switched to the new page, and
2606                          * "reuse" the old page writing into it while our pte
2607                          * here still points into it and can be read by other
2608                          * threads.
2609                          *
2610                          * The critical issue is to order this
2611                          * page_remove_rmap with the ptp_clear_flush above.
2612                          * Those stores are ordered by (if nothing else,)
2613                          * the barrier present in the atomic_add_negative
2614                          * in page_remove_rmap.
2615                          *
2616                          * Then the TLB flush in ptep_clear_flush ensures that
2617                          * no process can access the old page before the
2618                          * decremented mapcount is visible. And the old page
2619                          * cannot be reused until after the decremented
2620                          * mapcount is visible. So transitively, TLBs to
2621                          * old page will be flushed before it can be reused.
2622                          */
2623                         page_remove_rmap(old_page, false);
2624                 }
2625
2626                 /* Free the old page.. */
2627                 new_page = old_page;
2628                 page_copied = 1;
2629         } else {
2630                 mem_cgroup_cancel_charge(new_page, memcg, false);
2631         }
2632
2633         if (new_page)
2634                 put_page(new_page);
2635
2636         pte_unmap_unlock(vmf->pte, vmf->ptl);
2637         /*
2638          * No need to double call mmu_notifier->invalidate_range() callback as
2639          * the above ptep_clear_flush_notify() did already call it.
2640          */
2641         mmu_notifier_invalidate_range_only_end(&range);
2642         if (old_page) {
2643                 /*
2644                  * Don't let another task, with possibly unlocked vma,
2645                  * keep the mlocked page.
2646                  */
2647                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2648                         lock_page(old_page);    /* LRU manipulation */
2649                         if (PageMlocked(old_page))
2650                                 munlock_vma_page(old_page);
2651                         unlock_page(old_page);
2652                 }
2653                 put_page(old_page);
2654         }
2655         return page_copied ? VM_FAULT_WRITE : 0;
2656 oom_free_new:
2657         put_page(new_page);
2658 oom:
2659         if (old_page)
2660                 put_page(old_page);
2661         return VM_FAULT_OOM;
2662 }
2663
2664 /**
2665  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2666  *                        writeable once the page is prepared
2667  *
2668  * @vmf: structure describing the fault
2669  *
2670  * This function handles all that is needed to finish a write page fault in a
2671  * shared mapping due to PTE being read-only once the mapped page is prepared.
2672  * It handles locking of PTE and modifying it.
2673  *
2674  * The function expects the page to be locked or other protection against
2675  * concurrent faults / writeback (such as DAX radix tree locks).
2676  *
2677  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2678  * we acquired PTE lock.
2679  */
2680 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2681 {
2682         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2683         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2684                                        &vmf->ptl);
2685         /*
2686          * We might have raced with another page fault while we released the
2687          * pte_offset_map_lock.
2688          */
2689         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2690                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2691                 return VM_FAULT_NOPAGE;
2692         }
2693         wp_page_reuse(vmf);
2694         return 0;
2695 }
2696
2697 /*
2698  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2699  * mapping
2700  */
2701 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2702 {
2703         struct vm_area_struct *vma = vmf->vma;
2704
2705         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2706                 vm_fault_t ret;
2707
2708                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2709                 vmf->flags |= FAULT_FLAG_MKWRITE;
2710                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2711                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2712                         return ret;
2713                 return finish_mkwrite_fault(vmf);
2714         }
2715         wp_page_reuse(vmf);
2716         return VM_FAULT_WRITE;
2717 }
2718
2719 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2720         __releases(vmf->ptl)
2721 {
2722         struct vm_area_struct *vma = vmf->vma;
2723         vm_fault_t ret = VM_FAULT_WRITE;
2724
2725         get_page(vmf->page);
2726
2727         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2728                 vm_fault_t tmp;
2729
2730                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2731                 tmp = do_page_mkwrite(vmf);
2732                 if (unlikely(!tmp || (tmp &
2733                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2734                         put_page(vmf->page);
2735                         return tmp;
2736                 }
2737                 tmp = finish_mkwrite_fault(vmf);
2738                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2739                         unlock_page(vmf->page);
2740                         put_page(vmf->page);
2741                         return tmp;
2742                 }
2743         } else {
2744                 wp_page_reuse(vmf);
2745                 lock_page(vmf->page);
2746         }
2747         ret |= fault_dirty_shared_page(vmf);
2748         put_page(vmf->page);
2749
2750         return ret;
2751 }
2752
2753 /*
2754  * This routine handles present pages, when users try to write
2755  * to a shared page. It is done by copying the page to a new address
2756  * and decrementing the shared-page counter for the old page.
2757  *
2758  * Note that this routine assumes that the protection checks have been
2759  * done by the caller (the low-level page fault routine in most cases).
2760  * Thus we can safely just mark it writable once we've done any necessary
2761  * COW.
2762  *
2763  * We also mark the page dirty at this point even though the page will
2764  * change only once the write actually happens. This avoids a few races,
2765  * and potentially makes it more efficient.
2766  *
2767  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2768  * but allow concurrent faults), with pte both mapped and locked.
2769  * We return with mmap_sem still held, but pte unmapped and unlocked.
2770  */
2771 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2772         __releases(vmf->ptl)
2773 {
2774         struct vm_area_struct *vma = vmf->vma;
2775
2776         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2777                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2778                 return handle_userfault(vmf, VM_UFFD_WP);
2779         }
2780
2781         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2782         if (!vmf->page) {
2783                 /*
2784                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2785                  * VM_PFNMAP VMA.
2786                  *
2787                  * We should not cow pages in a shared writeable mapping.
2788                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2789                  */
2790                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2791                                      (VM_WRITE|VM_SHARED))
2792                         return wp_pfn_shared(vmf);
2793
2794                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2795                 return wp_page_copy(vmf);
2796         }
2797
2798         /*
2799          * Take out anonymous pages first, anonymous shared vmas are
2800          * not dirty accountable.
2801          */
2802         if (PageAnon(vmf->page)) {
2803                 int total_map_swapcount;
2804                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2805                                            page_count(vmf->page) != 1))
2806                         goto copy;
2807                 if (!trylock_page(vmf->page)) {
2808                         get_page(vmf->page);
2809                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2810                         lock_page(vmf->page);
2811                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2812                                         vmf->address, &vmf->ptl);
2813                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2814                                 unlock_page(vmf->page);
2815                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2816                                 put_page(vmf->page);
2817                                 return 0;
2818                         }
2819                         put_page(vmf->page);
2820                 }
2821                 if (PageKsm(vmf->page)) {
2822                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2823                                                      vmf->address);
2824                         unlock_page(vmf->page);
2825                         if (!reused)
2826                                 goto copy;
2827                         wp_page_reuse(vmf);
2828                         return VM_FAULT_WRITE;
2829                 }
2830                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2831                         if (total_map_swapcount == 1) {
2832                                 /*
2833                                  * The page is all ours. Move it to
2834                                  * our anon_vma so the rmap code will
2835                                  * not search our parent or siblings.
2836                                  * Protected against the rmap code by
2837                                  * the page lock.
2838                                  */
2839                                 page_move_anon_rmap(vmf->page, vma);
2840                         }
2841                         unlock_page(vmf->page);
2842                         wp_page_reuse(vmf);
2843                         return VM_FAULT_WRITE;
2844                 }
2845                 unlock_page(vmf->page);
2846         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2847                                         (VM_WRITE|VM_SHARED))) {
2848                 return wp_page_shared(vmf);
2849         }
2850 copy:
2851         /*
2852          * Ok, we need to copy. Oh, well..
2853          */
2854         get_page(vmf->page);
2855
2856         pte_unmap_unlock(vmf->pte, vmf->ptl);
2857         return wp_page_copy(vmf);
2858 }
2859
2860 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2861                 unsigned long start_addr, unsigned long end_addr,
2862                 struct zap_details *details)
2863 {
2864         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2865 }
2866
2867 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2868                                             struct zap_details *details)
2869 {
2870         struct vm_area_struct *vma;
2871         pgoff_t vba, vea, zba, zea;
2872
2873         vma_interval_tree_foreach(vma, root,
2874                         details->first_index, details->last_index) {
2875
2876                 vba = vma->vm_pgoff;
2877                 vea = vba + vma_pages(vma) - 1;
2878                 zba = details->first_index;
2879                 if (zba < vba)
2880                         zba = vba;
2881                 zea = details->last_index;
2882                 if (zea > vea)
2883                         zea = vea;
2884
2885                 unmap_mapping_range_vma(vma,
2886                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2887                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2888                                 details);
2889         }
2890 }
2891
2892 /**
2893  * unmap_mapping_pages() - Unmap pages from processes.
2894  * @mapping: The address space containing pages to be unmapped.
2895  * @start: Index of first page to be unmapped.
2896  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2897  * @even_cows: Whether to unmap even private COWed pages.
2898  *
2899  * Unmap the pages in this address space from any userspace process which
2900  * has them mmaped.  Generally, you want to remove COWed pages as well when
2901  * a file is being truncated, but not when invalidating pages from the page
2902  * cache.
2903  */
2904 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2905                 pgoff_t nr, bool even_cows)
2906 {
2907         struct zap_details details = { };
2908
2909         details.check_mapping = even_cows ? NULL : mapping;
2910         details.first_index = start;
2911         details.last_index = start + nr - 1;
2912         if (details.last_index < details.first_index)
2913                 details.last_index = ULONG_MAX;
2914
2915         i_mmap_lock_write(mapping);
2916         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2917                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2918         i_mmap_unlock_write(mapping);
2919 }
2920
2921 /**
2922  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2923  * address_space corresponding to the specified byte range in the underlying
2924  * file.
2925  *
2926  * @mapping: the address space containing mmaps to be unmapped.
2927  * @holebegin: byte in first page to unmap, relative to the start of
2928  * the underlying file.  This will be rounded down to a PAGE_SIZE
2929  * boundary.  Note that this is different from truncate_pagecache(), which
2930  * must keep the partial page.  In contrast, we must get rid of
2931  * partial pages.
2932  * @holelen: size of prospective hole in bytes.  This will be rounded
2933  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2934  * end of the file.
2935  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2936  * but 0 when invalidating pagecache, don't throw away private data.
2937  */
2938 void unmap_mapping_range(struct address_space *mapping,
2939                 loff_t const holebegin, loff_t const holelen, int even_cows)
2940 {
2941         pgoff_t hba = holebegin >> PAGE_SHIFT;
2942         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2943
2944         /* Check for overflow. */
2945         if (sizeof(holelen) > sizeof(hlen)) {
2946                 long long holeend =
2947                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2948                 if (holeend & ~(long long)ULONG_MAX)
2949                         hlen = ULONG_MAX - hba + 1;
2950         }
2951
2952         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2953 }
2954 EXPORT_SYMBOL(unmap_mapping_range);
2955
2956 /*
2957  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2958  * but allow concurrent faults), and pte mapped but not yet locked.
2959  * We return with pte unmapped and unlocked.
2960  *
2961  * We return with the mmap_sem locked or unlocked in the same cases
2962  * as does filemap_fault().
2963  */
2964 vm_fault_t do_swap_page(struct vm_fault *vmf)
2965 {
2966         struct vm_area_struct *vma = vmf->vma;
2967         struct page *page = NULL, *swapcache;
2968         struct mem_cgroup *memcg;
2969         swp_entry_t entry;
2970         pte_t pte;
2971         int locked;
2972         int exclusive = 0;
2973         vm_fault_t ret = 0;
2974
2975         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2976                 goto out;
2977
2978         entry = pte_to_swp_entry(vmf->orig_pte);
2979         if (unlikely(non_swap_entry(entry))) {
2980                 if (is_migration_entry(entry)) {
2981                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2982                                              vmf->address);
2983                 } else if (is_device_private_entry(entry)) {
2984                         vmf->page = device_private_entry_to_page(entry);
2985                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2986                 } else if (is_hwpoison_entry(entry)) {
2987                         ret = VM_FAULT_HWPOISON;
2988                 } else {
2989                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2990                         ret = VM_FAULT_SIGBUS;
2991                 }
2992                 goto out;
2993         }
2994
2995
2996         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2997         page = lookup_swap_cache(entry, vma, vmf->address);
2998         swapcache = page;
2999
3000         if (!page) {
3001                 struct swap_info_struct *si = swp_swap_info(entry);
3002
3003                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3004                                 __swap_count(entry) == 1) {
3005                         /* skip swapcache */
3006                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3007                                                         vmf->address);
3008                         if (page) {
3009                                 __SetPageLocked(page);
3010                                 __SetPageSwapBacked(page);
3011                                 set_page_private(page, entry.val);
3012                                 lru_cache_add_anon(page);
3013                                 swap_readpage(page, true);
3014                         }
3015                 } else {
3016                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3017                                                 vmf);
3018                         swapcache = page;
3019                 }
3020
3021                 if (!page) {
3022                         /*
3023                          * Back out if somebody else faulted in this pte
3024                          * while we released the pte lock.
3025                          */
3026                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3027                                         vmf->address, &vmf->ptl);
3028                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3029                                 ret = VM_FAULT_OOM;
3030                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3031                         goto unlock;
3032                 }
3033
3034                 /* Had to read the page from swap area: Major fault */
3035                 ret = VM_FAULT_MAJOR;
3036                 count_vm_event(PGMAJFAULT);
3037                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3038         } else if (PageHWPoison(page)) {
3039                 /*
3040                  * hwpoisoned dirty swapcache pages are kept for killing
3041                  * owner processes (which may be unknown at hwpoison time)
3042                  */
3043                 ret = VM_FAULT_HWPOISON;
3044                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3045                 goto out_release;
3046         }
3047
3048         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3049
3050         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3051         if (!locked) {
3052                 ret |= VM_FAULT_RETRY;
3053                 goto out_release;
3054         }
3055
3056         /*
3057          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3058          * release the swapcache from under us.  The page pin, and pte_same
3059          * test below, are not enough to exclude that.  Even if it is still
3060          * swapcache, we need to check that the page's swap has not changed.
3061          */
3062         if (unlikely((!PageSwapCache(page) ||
3063                         page_private(page) != entry.val)) && swapcache)
3064                 goto out_page;
3065
3066         page = ksm_might_need_to_copy(page, vma, vmf->address);
3067         if (unlikely(!page)) {
3068                 ret = VM_FAULT_OOM;
3069                 page = swapcache;
3070                 goto out_page;
3071         }
3072
3073         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3074                                         &memcg, false)) {
3075                 ret = VM_FAULT_OOM;
3076                 goto out_page;
3077         }
3078
3079         /*
3080          * Back out if somebody else already faulted in this pte.
3081          */
3082         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3083                         &vmf->ptl);
3084         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3085                 goto out_nomap;
3086
3087         if (unlikely(!PageUptodate(page))) {
3088                 ret = VM_FAULT_SIGBUS;
3089                 goto out_nomap;
3090         }
3091
3092         /*
3093          * The page isn't present yet, go ahead with the fault.
3094          *
3095          * Be careful about the sequence of operations here.
3096          * To get its accounting right, reuse_swap_page() must be called
3097          * while the page is counted on swap but not yet in mapcount i.e.
3098          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3099          * must be called after the swap_free(), or it will never succeed.
3100          */
3101
3102         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3103         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3104         pte = mk_pte(page, vma->vm_page_prot);
3105         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3106                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3107                 vmf->flags &= ~FAULT_FLAG_WRITE;
3108                 ret |= VM_FAULT_WRITE;
3109                 exclusive = RMAP_EXCLUSIVE;
3110         }
3111         flush_icache_page(vma, page);
3112         if (pte_swp_soft_dirty(vmf->orig_pte))
3113                 pte = pte_mksoft_dirty(pte);
3114         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3115                 pte = pte_mkuffd_wp(pte);
3116                 pte = pte_wrprotect(pte);
3117         }
3118         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3119         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3120         vmf->orig_pte = pte;
3121
3122         /* ksm created a completely new copy */
3123         if (unlikely(page != swapcache && swapcache)) {
3124                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3125                 mem_cgroup_commit_charge(page, memcg, false, false);
3126                 lru_cache_add_active_or_unevictable(page, vma);
3127         } else {
3128                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3129                 mem_cgroup_commit_charge(page, memcg, true, false);
3130                 activate_page(page);
3131         }
3132
3133         swap_free(entry);
3134         if (mem_cgroup_swap_full(page) ||
3135             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3136                 try_to_free_swap(page);
3137         unlock_page(page);
3138         if (page != swapcache && swapcache) {
3139                 /*
3140                  * Hold the lock to avoid the swap entry to be reused
3141                  * until we take the PT lock for the pte_same() check
3142                  * (to avoid false positives from pte_same). For
3143                  * further safety release the lock after the swap_free
3144                  * so that the swap count won't change under a
3145                  * parallel locked swapcache.
3146                  */
3147                 unlock_page(swapcache);
3148                 put_page(swapcache);
3149         }
3150
3151         if (vmf->flags & FAULT_FLAG_WRITE) {
3152                 ret |= do_wp_page(vmf);
3153                 if (ret & VM_FAULT_ERROR)
3154                         ret &= VM_FAULT_ERROR;
3155                 goto out;
3156         }
3157
3158         /* No need to invalidate - it was non-present before */
3159         update_mmu_cache(vma, vmf->address, vmf->pte);
3160 unlock:
3161         pte_unmap_unlock(vmf->pte, vmf->ptl);
3162 out:
3163         return ret;
3164 out_nomap:
3165         mem_cgroup_cancel_charge(page, memcg, false);
3166         pte_unmap_unlock(vmf->pte, vmf->ptl);
3167 out_page:
3168         unlock_page(page);
3169 out_release:
3170         put_page(page);
3171         if (page != swapcache && swapcache) {
3172                 unlock_page(swapcache);
3173                 put_page(swapcache);
3174         }
3175         return ret;
3176 }
3177
3178 /*
3179  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3180  * but allow concurrent faults), and pte mapped but not yet locked.
3181  * We return with mmap_sem still held, but pte unmapped and unlocked.
3182  */
3183 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3184 {
3185         struct vm_area_struct *vma = vmf->vma;
3186         struct mem_cgroup *memcg;
3187         struct page *page;
3188         vm_fault_t ret = 0;
3189         pte_t entry;
3190
3191         /* File mapping without ->vm_ops ? */
3192         if (vma->vm_flags & VM_SHARED)
3193                 return VM_FAULT_SIGBUS;
3194
3195         /*
3196          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3197          * pte_offset_map() on pmds where a huge pmd might be created
3198          * from a different thread.
3199          *
3200          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3201          * parallel threads are excluded by other means.
3202          *
3203          * Here we only have down_read(mmap_sem).
3204          */
3205         if (pte_alloc(vma->vm_mm, vmf->pmd))
3206                 return VM_FAULT_OOM;
3207
3208         /* See the comment in pte_alloc_one_map() */
3209         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3210                 return 0;
3211
3212         /* Use the zero-page for reads */
3213         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3214                         !mm_forbids_zeropage(vma->vm_mm)) {
3215                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3216                                                 vma->vm_page_prot));
3217                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3218                                 vmf->address, &vmf->ptl);
3219                 if (!pte_none(*vmf->pte))
3220                         goto unlock;
3221                 ret = check_stable_address_space(vma->vm_mm);
3222                 if (ret)
3223                         goto unlock;
3224                 /* Deliver the page fault to userland, check inside PT lock */
3225                 if (userfaultfd_missing(vma)) {
3226                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3227                         return handle_userfault(vmf, VM_UFFD_MISSING);
3228                 }
3229                 goto setpte;
3230         }
3231
3232         /* Allocate our own private page. */
3233         if (unlikely(anon_vma_prepare(vma)))
3234                 goto oom;
3235         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3236         if (!page)
3237                 goto oom;
3238
3239         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3240                                         false))
3241                 goto oom_free_page;
3242
3243         /*
3244          * The memory barrier inside __SetPageUptodate makes sure that
3245          * preceding stores to the page contents become visible before
3246          * the set_pte_at() write.
3247          */
3248         __SetPageUptodate(page);
3249
3250         entry = mk_pte(page, vma->vm_page_prot);
3251         if (vma->vm_flags & VM_WRITE)
3252                 entry = pte_mkwrite(pte_mkdirty(entry));
3253
3254         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3255                         &vmf->ptl);
3256         if (!pte_none(*vmf->pte))
3257                 goto release;
3258
3259         ret = check_stable_address_space(vma->vm_mm);
3260         if (ret)
3261                 goto release;
3262
3263         /* Deliver the page fault to userland, check inside PT lock */
3264         if (userfaultfd_missing(vma)) {
3265                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3266                 mem_cgroup_cancel_charge(page, memcg, false);
3267                 put_page(page);
3268                 return handle_userfault(vmf, VM_UFFD_MISSING);
3269         }
3270
3271         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3272         page_add_new_anon_rmap(page, vma, vmf->address, false);
3273         mem_cgroup_commit_charge(page, memcg, false, false);
3274         lru_cache_add_active_or_unevictable(page, vma);
3275 setpte:
3276         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3277
3278         /* No need to invalidate - it was non-present before */
3279         update_mmu_cache(vma, vmf->address, vmf->pte);
3280 unlock:
3281         pte_unmap_unlock(vmf->pte, vmf->ptl);
3282         return ret;
3283 release:
3284         mem_cgroup_cancel_charge(page, memcg, false);
3285         put_page(page);
3286         goto unlock;
3287 oom_free_page:
3288         put_page(page);
3289 oom:
3290         return VM_FAULT_OOM;
3291 }
3292
3293 /*
3294  * The mmap_sem must have been held on entry, and may have been
3295  * released depending on flags and vma->vm_ops->fault() return value.
3296  * See filemap_fault() and __lock_page_retry().
3297  */
3298 static vm_fault_t __do_fault(struct vm_fault *vmf)
3299 {
3300         struct vm_area_struct *vma = vmf->vma;
3301         vm_fault_t ret;
3302
3303         /*
3304          * Preallocate pte before we take page_lock because this might lead to
3305          * deadlocks for memcg reclaim which waits for pages under writeback:
3306          *                              lock_page(A)
3307          *                              SetPageWriteback(A)
3308          *                              unlock_page(A)
3309          * lock_page(B)
3310          *                              lock_page(B)
3311          * pte_alloc_pne
3312          *   shrink_page_list
3313          *     wait_on_page_writeback(A)
3314          *                              SetPageWriteback(B)
3315          *                              unlock_page(B)
3316          *                              # flush A, B to clear the writeback
3317          */
3318         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3319                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3320                 if (!vmf->prealloc_pte)
3321                         return VM_FAULT_OOM;
3322                 smp_wmb(); /* See comment in __pte_alloc() */
3323         }
3324
3325         ret = vma->vm_ops->fault(vmf);
3326         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3327                             VM_FAULT_DONE_COW)))
3328                 return ret;
3329
3330         if (unlikely(PageHWPoison(vmf->page))) {
3331                 if (ret & VM_FAULT_LOCKED)
3332                         unlock_page(vmf->page);
3333                 put_page(vmf->page);
3334                 vmf->page = NULL;
3335                 return VM_FAULT_HWPOISON;
3336         }
3337
3338         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3339                 lock_page(vmf->page);
3340         else
3341                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3342
3343         return ret;
3344 }
3345
3346 /*
3347  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3348  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3349  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3350  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3351  */
3352 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3353 {
3354         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3355 }
3356
3357 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3358 {
3359         struct vm_area_struct *vma = vmf->vma;
3360
3361         if (!pmd_none(*vmf->pmd))
3362                 goto map_pte;
3363         if (vmf->prealloc_pte) {
3364                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3365                 if (unlikely(!pmd_none(*vmf->pmd))) {
3366                         spin_unlock(vmf->ptl);
3367                         goto map_pte;
3368                 }
3369
3370                 mm_inc_nr_ptes(vma->vm_mm);
3371                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3372                 spin_unlock(vmf->ptl);
3373                 vmf->prealloc_pte = NULL;
3374         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3375                 return VM_FAULT_OOM;
3376         }
3377 map_pte:
3378         /*
3379          * If a huge pmd materialized under us just retry later.  Use
3380          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3381          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3382          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3383          * running immediately after a huge pmd fault in a different thread of
3384          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3385          * All we have to ensure is that it is a regular pmd that we can walk
3386          * with pte_offset_map() and we can do that through an atomic read in
3387          * C, which is what pmd_trans_unstable() provides.
3388          */
3389         if (pmd_devmap_trans_unstable(vmf->pmd))
3390                 return VM_FAULT_NOPAGE;
3391
3392         /*
3393          * At this point we know that our vmf->pmd points to a page of ptes
3394          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3395          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3396          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3397          * be valid and we will re-check to make sure the vmf->pte isn't
3398          * pte_none() under vmf->ptl protection when we return to
3399          * alloc_set_pte().
3400          */
3401         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3402                         &vmf->ptl);
3403         return 0;
3404 }
3405
3406 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3407 static void deposit_prealloc_pte(struct vm_fault *vmf)
3408 {
3409         struct vm_area_struct *vma = vmf->vma;
3410
3411         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3412         /*
3413          * We are going to consume the prealloc table,
3414          * count that as nr_ptes.
3415          */
3416         mm_inc_nr_ptes(vma->vm_mm);
3417         vmf->prealloc_pte = NULL;
3418 }
3419
3420 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3421 {
3422         struct vm_area_struct *vma = vmf->vma;
3423         bool write = vmf->flags & FAULT_FLAG_WRITE;
3424         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3425         pmd_t entry;
3426         int i;
3427         vm_fault_t ret;
3428
3429         if (!transhuge_vma_suitable(vma, haddr))
3430                 return VM_FAULT_FALLBACK;
3431
3432         ret = VM_FAULT_FALLBACK;
3433         page = compound_head(page);
3434
3435         /*
3436          * Archs like ppc64 need additonal space to store information
3437          * related to pte entry. Use the preallocated table for that.
3438          */
3439         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3440                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3441                 if (!vmf->prealloc_pte)
3442                         return VM_FAULT_OOM;
3443                 smp_wmb(); /* See comment in __pte_alloc() */
3444         }
3445
3446         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3447         if (unlikely(!pmd_none(*vmf->pmd)))
3448                 goto out;
3449
3450         for (i = 0; i < HPAGE_PMD_NR; i++)
3451                 flush_icache_page(vma, page + i);
3452
3453         entry = mk_huge_pmd(page, vma->vm_page_prot);
3454         if (write)
3455                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3456
3457         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3458         page_add_file_rmap(page, true);
3459         /*
3460          * deposit and withdraw with pmd lock held
3461          */
3462         if (arch_needs_pgtable_deposit())
3463                 deposit_prealloc_pte(vmf);
3464
3465         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3466
3467         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3468
3469         /* fault is handled */
3470         ret = 0;
3471         count_vm_event(THP_FILE_MAPPED);
3472 out:
3473         spin_unlock(vmf->ptl);
3474         return ret;
3475 }
3476 #else
3477 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3478 {
3479         BUILD_BUG();
3480         return 0;
3481 }
3482 #endif
3483
3484 /**
3485  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3486  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3487  *
3488  * @vmf: fault environment
3489  * @memcg: memcg to charge page (only for private mappings)
3490  * @page: page to map
3491  *
3492  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3493  * return.
3494  *
3495  * Target users are page handler itself and implementations of
3496  * vm_ops->map_pages.
3497  *
3498  * Return: %0 on success, %VM_FAULT_ code in case of error.
3499  */
3500 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3501                 struct page *page)
3502 {
3503         struct vm_area_struct *vma = vmf->vma;
3504         bool write = vmf->flags & FAULT_FLAG_WRITE;
3505         pte_t entry;
3506         vm_fault_t ret;
3507
3508         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3509                 /* THP on COW? */
3510                 VM_BUG_ON_PAGE(memcg, page);
3511
3512                 ret = do_set_pmd(vmf, page);
3513                 if (ret != VM_FAULT_FALLBACK)
3514                         return ret;
3515         }
3516
3517         if (!vmf->pte) {
3518                 ret = pte_alloc_one_map(vmf);
3519                 if (ret)
3520                         return ret;
3521         }
3522
3523         /* Re-check under ptl */
3524         if (unlikely(!pte_none(*vmf->pte)))
3525                 return VM_FAULT_NOPAGE;
3526
3527         flush_icache_page(vma, page);
3528         entry = mk_pte(page, vma->vm_page_prot);
3529         if (write)
3530                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3531         /* copy-on-write page */
3532         if (write && !(vma->vm_flags & VM_SHARED)) {
3533                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3534                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3535                 mem_cgroup_commit_charge(page, memcg, false, false);
3536                 lru_cache_add_active_or_unevictable(page, vma);
3537         } else {
3538                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3539                 page_add_file_rmap(page, false);
3540         }
3541         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3542
3543         /* no need to invalidate: a not-present page won't be cached */
3544         update_mmu_cache(vma, vmf->address, vmf->pte);
3545
3546         return 0;
3547 }
3548
3549
3550 /**
3551  * finish_fault - finish page fault once we have prepared the page to fault
3552  *
3553  * @vmf: structure describing the fault
3554  *
3555  * This function handles all that is needed to finish a page fault once the
3556  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3557  * given page, adds reverse page mapping, handles memcg charges and LRU
3558  * addition.
3559  *
3560  * The function expects the page to be locked and on success it consumes a
3561  * reference of a page being mapped (for the PTE which maps it).
3562  *
3563  * Return: %0 on success, %VM_FAULT_ code in case of error.
3564  */
3565 vm_fault_t finish_fault(struct vm_fault *vmf)
3566 {
3567         struct page *page;
3568         vm_fault_t ret = 0;
3569
3570         /* Did we COW the page? */
3571         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3572             !(vmf->vma->vm_flags & VM_SHARED))
3573                 page = vmf->cow_page;
3574         else
3575                 page = vmf->page;
3576
3577         /*
3578          * check even for read faults because we might have lost our CoWed
3579          * page
3580          */
3581         if (!(vmf->vma->vm_flags & VM_SHARED))
3582                 ret = check_stable_address_space(vmf->vma->vm_mm);
3583         if (!ret)
3584                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3585         if (vmf->pte)
3586                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3587         return ret;
3588 }
3589
3590 static unsigned long fault_around_bytes __read_mostly =
3591         rounddown_pow_of_two(65536);
3592
3593 #ifdef CONFIG_DEBUG_FS
3594 static int fault_around_bytes_get(void *data, u64 *val)
3595 {
3596         *val = fault_around_bytes;
3597         return 0;
3598 }
3599
3600 /*
3601  * fault_around_bytes must be rounded down to the nearest page order as it's
3602  * what do_fault_around() expects to see.
3603  */
3604 static int fault_around_bytes_set(void *data, u64 val)
3605 {
3606         if (val / PAGE_SIZE > PTRS_PER_PTE)
3607                 return -EINVAL;
3608         if (val > PAGE_SIZE)
3609                 fault_around_bytes = rounddown_pow_of_two(val);
3610         else
3611                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3612         return 0;
3613 }
3614 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3615                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3616
3617 static int __init fault_around_debugfs(void)
3618 {
3619         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3620                                    &fault_around_bytes_fops);
3621         return 0;
3622 }
3623 late_initcall(fault_around_debugfs);
3624 #endif
3625
3626 /*
3627  * do_fault_around() tries to map few pages around the fault address. The hope
3628  * is that the pages will be needed soon and this will lower the number of
3629  * faults to handle.
3630  *
3631  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3632  * not ready to be mapped: not up-to-date, locked, etc.
3633  *
3634  * This function is called with the page table lock taken. In the split ptlock
3635  * case the page table lock only protects only those entries which belong to
3636  * the page table corresponding to the fault address.
3637  *
3638  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3639  * only once.
3640  *
3641  * fault_around_bytes defines how many bytes we'll try to map.
3642  * do_fault_around() expects it to be set to a power of two less than or equal
3643  * to PTRS_PER_PTE.
3644  *
3645  * The virtual address of the area that we map is naturally aligned to
3646  * fault_around_bytes rounded down to the machine page size
3647  * (and therefore to page order).  This way it's easier to guarantee
3648  * that we don't cross page table boundaries.
3649  */
3650 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3651 {
3652         unsigned long address = vmf->address, nr_pages, mask;
3653         pgoff_t start_pgoff = vmf->pgoff;
3654         pgoff_t end_pgoff;
3655         int off;
3656         vm_fault_t ret = 0;
3657
3658         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3659         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3660
3661         vmf->address = max(address & mask, vmf->vma->vm_start);
3662         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3663         start_pgoff -= off;
3664
3665         /*
3666          *  end_pgoff is either the end of the page table, the end of
3667          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3668          */
3669         end_pgoff = start_pgoff -
3670                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3671                 PTRS_PER_PTE - 1;
3672         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3673                         start_pgoff + nr_pages - 1);
3674
3675         if (pmd_none(*vmf->pmd)) {
3676                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3677                 if (!vmf->prealloc_pte)
3678                         goto out;
3679                 smp_wmb(); /* See comment in __pte_alloc() */
3680         }
3681
3682         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3683
3684         /* Huge page is mapped? Page fault is solved */
3685         if (pmd_trans_huge(*vmf->pmd)) {
3686                 ret = VM_FAULT_NOPAGE;
3687                 goto out;
3688         }
3689
3690         /* ->map_pages() haven't done anything useful. Cold page cache? */
3691         if (!vmf->pte)
3692                 goto out;
3693
3694         /* check if the page fault is solved */
3695         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3696         if (!pte_none(*vmf->pte))
3697                 ret = VM_FAULT_NOPAGE;
3698         pte_unmap_unlock(vmf->pte, vmf->ptl);
3699 out:
3700         vmf->address = address;
3701         vmf->pte = NULL;
3702         return ret;
3703 }
3704
3705 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3706 {
3707         struct vm_area_struct *vma = vmf->vma;
3708         vm_fault_t ret = 0;
3709
3710         /*
3711          * Let's call ->map_pages() first and use ->fault() as fallback
3712          * if page by the offset is not ready to be mapped (cold cache or
3713          * something).
3714          */
3715         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3716                 ret = do_fault_around(vmf);
3717                 if (ret)
3718                         return ret;
3719         }
3720
3721         ret = __do_fault(vmf);
3722         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3723                 return ret;
3724
3725         ret |= finish_fault(vmf);
3726         unlock_page(vmf->page);
3727         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3728                 put_page(vmf->page);
3729         return ret;
3730 }
3731
3732 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3733 {
3734         struct vm_area_struct *vma = vmf->vma;
3735         vm_fault_t ret;
3736
3737         if (unlikely(anon_vma_prepare(vma)))
3738                 return VM_FAULT_OOM;
3739
3740         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3741         if (!vmf->cow_page)
3742                 return VM_FAULT_OOM;
3743
3744         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3745                                 &vmf->memcg, false)) {
3746                 put_page(vmf->cow_page);
3747                 return VM_FAULT_OOM;
3748         }
3749
3750         ret = __do_fault(vmf);
3751         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3752                 goto uncharge_out;
3753         if (ret & VM_FAULT_DONE_COW)
3754                 return ret;
3755
3756         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3757         __SetPageUptodate(vmf->cow_page);
3758
3759         ret |= finish_fault(vmf);
3760         unlock_page(vmf->page);
3761         put_page(vmf->page);
3762         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3763                 goto uncharge_out;
3764         return ret;
3765 uncharge_out:
3766         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3767         put_page(vmf->cow_page);
3768         return ret;
3769 }
3770
3771 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3772 {
3773         struct vm_area_struct *vma = vmf->vma;
3774         vm_fault_t ret, tmp;
3775
3776         ret = __do_fault(vmf);
3777         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3778                 return ret;
3779
3780         /*
3781          * Check if the backing address space wants to know that the page is
3782          * about to become writable
3783          */
3784         if (vma->vm_ops->page_mkwrite) {
3785                 unlock_page(vmf->page);
3786                 tmp = do_page_mkwrite(vmf);
3787                 if (unlikely(!tmp ||
3788                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3789                         put_page(vmf->page);
3790                         return tmp;
3791                 }
3792         }
3793
3794         ret |= finish_fault(vmf);
3795         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3796                                         VM_FAULT_RETRY))) {
3797                 unlock_page(vmf->page);
3798                 put_page(vmf->page);
3799                 return ret;
3800         }
3801
3802         ret |= fault_dirty_shared_page(vmf);
3803         return ret;
3804 }
3805
3806 /*
3807  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3808  * but allow concurrent faults).
3809  * The mmap_sem may have been released depending on flags and our
3810  * return value.  See filemap_fault() and __lock_page_or_retry().
3811  * If mmap_sem is released, vma may become invalid (for example
3812  * by other thread calling munmap()).
3813  */
3814 static vm_fault_t do_fault(struct vm_fault *vmf)
3815 {
3816         struct vm_area_struct *vma = vmf->vma;
3817         struct mm_struct *vm_mm = vma->vm_mm;
3818         vm_fault_t ret;
3819
3820         /*
3821          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3822          */
3823         if (!vma->vm_ops->fault) {
3824                 /*
3825                  * If we find a migration pmd entry or a none pmd entry, which
3826                  * should never happen, return SIGBUS
3827                  */
3828                 if (unlikely(!pmd_present(*vmf->pmd)))
3829                         ret = VM_FAULT_SIGBUS;
3830                 else {
3831                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3832                                                        vmf->pmd,
3833                                                        vmf->address,
3834                                                        &vmf->ptl);
3835                         /*
3836                          * Make sure this is not a temporary clearing of pte
3837                          * by holding ptl and checking again. A R/M/W update
3838                          * of pte involves: take ptl, clearing the pte so that
3839                          * we don't have concurrent modification by hardware
3840                          * followed by an update.
3841                          */
3842                         if (unlikely(pte_none(*vmf->pte)))
3843                                 ret = VM_FAULT_SIGBUS;
3844                         else
3845                                 ret = VM_FAULT_NOPAGE;
3846
3847                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3848                 }
3849         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3850                 ret = do_read_fault(vmf);
3851         else if (!(vma->vm_flags & VM_SHARED))
3852                 ret = do_cow_fault(vmf);
3853         else
3854                 ret = do_shared_fault(vmf);
3855
3856         /* preallocated pagetable is unused: free it */
3857         if (vmf->prealloc_pte) {
3858                 pte_free(vm_mm, vmf->prealloc_pte);
3859                 vmf->prealloc_pte = NULL;
3860         }
3861         return ret;
3862 }
3863
3864 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3865                                 unsigned long addr, int page_nid,
3866                                 int *flags)
3867 {
3868         get_page(page);
3869
3870         count_vm_numa_event(NUMA_HINT_FAULTS);
3871         if (page_nid == numa_node_id()) {
3872                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3873                 *flags |= TNF_FAULT_LOCAL;
3874         }
3875
3876         return mpol_misplaced(page, vma, addr);
3877 }
3878
3879 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3880 {
3881         struct vm_area_struct *vma = vmf->vma;
3882         struct page *page = NULL;
3883         int page_nid = NUMA_NO_NODE;
3884         int last_cpupid;
3885         int target_nid;
3886         bool migrated = false;
3887         pte_t pte, old_pte;
3888         bool was_writable = pte_savedwrite(vmf->orig_pte);
3889         int flags = 0;
3890
3891         /*
3892          * The "pte" at this point cannot be used safely without
3893          * validation through pte_unmap_same(). It's of NUMA type but
3894          * the pfn may be screwed if the read is non atomic.
3895          */
3896         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3897         spin_lock(vmf->ptl);
3898         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3899                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3900                 goto out;
3901         }
3902
3903         /*
3904          * Make it present again, Depending on how arch implementes non
3905          * accessible ptes, some can allow access by kernel mode.
3906          */
3907         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3908         pte = pte_modify(old_pte, vma->vm_page_prot);
3909         pte = pte_mkyoung(pte);
3910         if (was_writable)
3911                 pte = pte_mkwrite(pte);
3912         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3913         update_mmu_cache(vma, vmf->address, vmf->pte);
3914
3915         page = vm_normal_page(vma, vmf->address, pte);
3916         if (!page) {
3917                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3918                 return 0;
3919         }
3920
3921         /* TODO: handle PTE-mapped THP */
3922         if (PageCompound(page)) {
3923                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3924                 return 0;
3925         }
3926
3927         /*
3928          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3929          * much anyway since they can be in shared cache state. This misses
3930          * the case where a mapping is writable but the process never writes
3931          * to it but pte_write gets cleared during protection updates and
3932          * pte_dirty has unpredictable behaviour between PTE scan updates,
3933          * background writeback, dirty balancing and application behaviour.
3934          */
3935         if (!pte_write(pte))
3936                 flags |= TNF_NO_GROUP;
3937
3938         /*
3939          * Flag if the page is shared between multiple address spaces. This
3940          * is later used when determining whether to group tasks together
3941          */
3942         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3943                 flags |= TNF_SHARED;
3944
3945         last_cpupid = page_cpupid_last(page);
3946         page_nid = page_to_nid(page);
3947         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3948                         &flags);
3949         pte_unmap_unlock(vmf->pte, vmf->ptl);
3950         if (target_nid == NUMA_NO_NODE) {
3951                 put_page(page);
3952                 goto out;
3953         }
3954
3955         /* Migrate to the requested node */
3956         migrated = migrate_misplaced_page(page, vma, target_nid);
3957         if (migrated) {
3958                 page_nid = target_nid;
3959                 flags |= TNF_MIGRATED;
3960         } else
3961                 flags |= TNF_MIGRATE_FAIL;
3962
3963 out:
3964         if (page_nid != NUMA_NO_NODE)
3965                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3966         return 0;
3967 }
3968
3969 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3970 {
3971         if (vma_is_anonymous(vmf->vma))
3972                 return do_huge_pmd_anonymous_page(vmf);
3973         if (vmf->vma->vm_ops->huge_fault)
3974                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3975         return VM_FAULT_FALLBACK;
3976 }
3977
3978 /* `inline' is required to avoid gcc 4.1.2 build error */
3979 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3980 {
3981         if (vma_is_anonymous(vmf->vma)) {
3982                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
3983                         return handle_userfault(vmf, VM_UFFD_WP);
3984                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3985         }
3986         if (vmf->vma->vm_ops->huge_fault) {
3987                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3988
3989                 if (!(ret & VM_FAULT_FALLBACK))
3990                         return ret;
3991         }
3992
3993         /* COW or write-notify handled on pte level: split pmd. */
3994         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3995
3996         return VM_FAULT_FALLBACK;
3997 }
3998
3999 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4000 {
4001 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4002         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4003         /* No support for anonymous transparent PUD pages yet */
4004         if (vma_is_anonymous(vmf->vma))
4005                 goto split;
4006         if (vmf->vma->vm_ops->huge_fault) {
4007                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4008
4009                 if (!(ret & VM_FAULT_FALLBACK))
4010                         return ret;
4011         }
4012 split:
4013         /* COW or write-notify not handled on PUD level: split pud.*/
4014         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4015 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4016         return VM_FAULT_FALLBACK;
4017 }
4018
4019 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4020 {
4021 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4022         /* No support for anonymous transparent PUD pages yet */
4023         if (vma_is_anonymous(vmf->vma))
4024                 return VM_FAULT_FALLBACK;
4025         if (vmf->vma->vm_ops->huge_fault)
4026                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4027 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4028         return VM_FAULT_FALLBACK;
4029 }
4030
4031 /*
4032  * These routines also need to handle stuff like marking pages dirty
4033  * and/or accessed for architectures that don't do it in hardware (most
4034  * RISC architectures).  The early dirtying is also good on the i386.
4035  *
4036  * There is also a hook called "update_mmu_cache()" that architectures
4037  * with external mmu caches can use to update those (ie the Sparc or
4038  * PowerPC hashed page tables that act as extended TLBs).
4039  *
4040  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4041  * concurrent faults).
4042  *
4043  * The mmap_sem may have been released depending on flags and our return value.
4044  * See filemap_fault() and __lock_page_or_retry().
4045  */
4046 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4047 {
4048         pte_t entry;
4049
4050         if (unlikely(pmd_none(*vmf->pmd))) {
4051                 /*
4052                  * Leave __pte_alloc() until later: because vm_ops->fault may
4053                  * want to allocate huge page, and if we expose page table
4054                  * for an instant, it will be difficult to retract from
4055                  * concurrent faults and from rmap lookups.
4056                  */
4057                 vmf->pte = NULL;
4058         } else {
4059                 /* See comment in pte_alloc_one_map() */
4060                 if (pmd_devmap_trans_unstable(vmf->pmd))
4061                         return 0;
4062                 /*
4063                  * A regular pmd is established and it can't morph into a huge
4064                  * pmd from under us anymore at this point because we hold the
4065                  * mmap_sem read mode and khugepaged takes it in write mode.
4066                  * So now it's safe to run pte_offset_map().
4067                  */
4068                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4069                 vmf->orig_pte = *vmf->pte;
4070
4071                 /*
4072                  * some architectures can have larger ptes than wordsize,
4073                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4074                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4075                  * accesses.  The code below just needs a consistent view
4076                  * for the ifs and we later double check anyway with the
4077                  * ptl lock held. So here a barrier will do.
4078                  */
4079                 barrier();
4080                 if (pte_none(vmf->orig_pte)) {
4081                         pte_unmap(vmf->pte);
4082                         vmf->pte = NULL;
4083                 }
4084         }
4085
4086         if (!vmf->pte) {
4087                 if (vma_is_anonymous(vmf->vma))
4088                         return do_anonymous_page(vmf);
4089                 else
4090                         return do_fault(vmf);
4091         }
4092
4093         if (!pte_present(vmf->orig_pte))
4094                 return do_swap_page(vmf);
4095
4096         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4097                 return do_numa_page(vmf);
4098
4099         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4100         spin_lock(vmf->ptl);
4101         entry = vmf->orig_pte;
4102         if (unlikely(!pte_same(*vmf->pte, entry)))
4103                 goto unlock;
4104         if (vmf->flags & FAULT_FLAG_WRITE) {
4105                 if (!pte_write(entry))
4106                         return do_wp_page(vmf);
4107                 entry = pte_mkdirty(entry);
4108         }
4109         entry = pte_mkyoung(entry);
4110         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4111                                 vmf->flags & FAULT_FLAG_WRITE)) {
4112                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4113         } else {
4114                 /*
4115                  * This is needed only for protection faults but the arch code
4116                  * is not yet telling us if this is a protection fault or not.
4117                  * This still avoids useless tlb flushes for .text page faults
4118                  * with threads.
4119                  */
4120                 if (vmf->flags & FAULT_FLAG_WRITE)
4121                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4122         }
4123 unlock:
4124         pte_unmap_unlock(vmf->pte, vmf->ptl);
4125         return 0;
4126 }
4127
4128 /*
4129  * By the time we get here, we already hold the mm semaphore
4130  *
4131  * The mmap_sem may have been released depending on flags and our
4132  * return value.  See filemap_fault() and __lock_page_or_retry().
4133  */
4134 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4135                 unsigned long address, unsigned int flags)
4136 {
4137         struct vm_fault vmf = {
4138                 .vma = vma,
4139                 .address = address & PAGE_MASK,
4140                 .flags = flags,
4141                 .pgoff = linear_page_index(vma, address),
4142                 .gfp_mask = __get_fault_gfp_mask(vma),
4143         };
4144         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4145         struct mm_struct *mm = vma->vm_mm;
4146         pgd_t *pgd;
4147         p4d_t *p4d;
4148         vm_fault_t ret;
4149
4150         pgd = pgd_offset(mm, address);
4151         p4d = p4d_alloc(mm, pgd, address);
4152         if (!p4d)
4153                 return VM_FAULT_OOM;
4154
4155         vmf.pud = pud_alloc(mm, p4d, address);
4156         if (!vmf.pud)
4157                 return VM_FAULT_OOM;
4158 retry_pud:
4159         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4160                 ret = create_huge_pud(&vmf);
4161                 if (!(ret & VM_FAULT_FALLBACK))
4162                         return ret;
4163         } else {
4164                 pud_t orig_pud = *vmf.pud;
4165
4166                 barrier();
4167                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4168
4169                         /* NUMA case for anonymous PUDs would go here */
4170
4171                         if (dirty && !pud_write(orig_pud)) {
4172                                 ret = wp_huge_pud(&vmf, orig_pud);
4173                                 if (!(ret & VM_FAULT_FALLBACK))
4174                                         return ret;
4175                         } else {
4176                                 huge_pud_set_accessed(&vmf, orig_pud);
4177                                 return 0;
4178                         }
4179                 }
4180         }
4181
4182         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4183         if (!vmf.pmd)
4184                 return VM_FAULT_OOM;
4185
4186         /* Huge pud page fault raced with pmd_alloc? */
4187         if (pud_trans_unstable(vmf.pud))
4188                 goto retry_pud;
4189
4190         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4191                 ret = create_huge_pmd(&vmf);
4192                 if (!(ret & VM_FAULT_FALLBACK))
4193                         return ret;
4194         } else {
4195                 pmd_t orig_pmd = *vmf.pmd;
4196
4197                 barrier();
4198                 if (unlikely(is_swap_pmd(orig_pmd))) {
4199                         VM_BUG_ON(thp_migration_supported() &&
4200                                           !is_pmd_migration_entry(orig_pmd));
4201                         if (is_pmd_migration_entry(orig_pmd))
4202                                 pmd_migration_entry_wait(mm, vmf.pmd);
4203                         return 0;
4204                 }
4205                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4206                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4207                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4208
4209                         if (dirty && !pmd_write(orig_pmd)) {
4210                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4211                                 if (!(ret & VM_FAULT_FALLBACK))
4212                                         return ret;
4213                         } else {
4214                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4215                                 return 0;
4216                         }
4217                 }
4218         }
4219
4220         return handle_pte_fault(&vmf);
4221 }
4222
4223 /*
4224  * By the time we get here, we already hold the mm semaphore
4225  *
4226  * The mmap_sem may have been released depending on flags and our
4227  * return value.  See filemap_fault() and __lock_page_or_retry().
4228  */
4229 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4230                 unsigned int flags)
4231 {
4232         vm_fault_t ret;
4233
4234         __set_current_state(TASK_RUNNING);
4235
4236         count_vm_event(PGFAULT);
4237         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4238
4239         /* do counter updates before entering really critical section. */
4240         check_sync_rss_stat(current);
4241
4242         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4243                                             flags & FAULT_FLAG_INSTRUCTION,
4244                                             flags & FAULT_FLAG_REMOTE))
4245                 return VM_FAULT_SIGSEGV;
4246
4247         /*
4248          * Enable the memcg OOM handling for faults triggered in user
4249          * space.  Kernel faults are handled more gracefully.
4250          */
4251         if (flags & FAULT_FLAG_USER)
4252                 mem_cgroup_enter_user_fault();
4253
4254         if (unlikely(is_vm_hugetlb_page(vma)))
4255                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4256         else
4257                 ret = __handle_mm_fault(vma, address, flags);
4258
4259         if (flags & FAULT_FLAG_USER) {
4260                 mem_cgroup_exit_user_fault();
4261                 /*
4262                  * The task may have entered a memcg OOM situation but
4263                  * if the allocation error was handled gracefully (no
4264                  * VM_FAULT_OOM), there is no need to kill anything.
4265                  * Just clean up the OOM state peacefully.
4266                  */
4267                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4268                         mem_cgroup_oom_synchronize(false);
4269         }
4270
4271         return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(handle_mm_fault);
4274
4275 #ifndef __PAGETABLE_P4D_FOLDED
4276 /*
4277  * Allocate p4d page table.
4278  * We've already handled the fast-path in-line.
4279  */
4280 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4281 {
4282         p4d_t *new = p4d_alloc_one(mm, address);
4283         if (!new)
4284                 return -ENOMEM;
4285
4286         smp_wmb(); /* See comment in __pte_alloc */
4287
4288         spin_lock(&mm->page_table_lock);
4289         if (pgd_present(*pgd))          /* Another has populated it */
4290                 p4d_free(mm, new);
4291         else
4292                 pgd_populate(mm, pgd, new);
4293         spin_unlock(&mm->page_table_lock);
4294         return 0;
4295 }
4296 #endif /* __PAGETABLE_P4D_FOLDED */
4297
4298 #ifndef __PAGETABLE_PUD_FOLDED
4299 /*
4300  * Allocate page upper directory.
4301  * We've already handled the fast-path in-line.
4302  */
4303 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4304 {
4305         pud_t *new = pud_alloc_one(mm, address);
4306         if (!new)
4307                 return -ENOMEM;
4308
4309         smp_wmb(); /* See comment in __pte_alloc */
4310
4311         spin_lock(&mm->page_table_lock);
4312 #ifndef __ARCH_HAS_5LEVEL_HACK
4313         if (!p4d_present(*p4d)) {
4314                 mm_inc_nr_puds(mm);
4315                 p4d_populate(mm, p4d, new);
4316         } else  /* Another has populated it */
4317                 pud_free(mm, new);
4318 #else
4319         if (!pgd_present(*p4d)) {
4320                 mm_inc_nr_puds(mm);
4321                 pgd_populate(mm, p4d, new);
4322         } else  /* Another has populated it */
4323                 pud_free(mm, new);
4324 #endif /* __ARCH_HAS_5LEVEL_HACK */
4325         spin_unlock(&mm->page_table_lock);
4326         return 0;
4327 }
4328 #endif /* __PAGETABLE_PUD_FOLDED */
4329
4330 #ifndef __PAGETABLE_PMD_FOLDED
4331 /*
4332  * Allocate page middle directory.
4333  * We've already handled the fast-path in-line.
4334  */
4335 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4336 {
4337         spinlock_t *ptl;
4338         pmd_t *new = pmd_alloc_one(mm, address);
4339         if (!new)
4340                 return -ENOMEM;
4341
4342         smp_wmb(); /* See comment in __pte_alloc */
4343
4344         ptl = pud_lock(mm, pud);
4345         if (!pud_present(*pud)) {
4346                 mm_inc_nr_pmds(mm);
4347                 pud_populate(mm, pud, new);
4348         } else  /* Another has populated it */
4349                 pmd_free(mm, new);
4350         spin_unlock(ptl);
4351         return 0;
4352 }
4353 #endif /* __PAGETABLE_PMD_FOLDED */
4354
4355 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4356                             struct mmu_notifier_range *range,
4357                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4358 {
4359         pgd_t *pgd;
4360         p4d_t *p4d;
4361         pud_t *pud;
4362         pmd_t *pmd;
4363         pte_t *ptep;
4364
4365         pgd = pgd_offset(mm, address);
4366         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4367                 goto out;
4368
4369         p4d = p4d_offset(pgd, address);
4370         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4371                 goto out;
4372
4373         pud = pud_offset(p4d, address);
4374         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4375                 goto out;
4376
4377         pmd = pmd_offset(pud, address);
4378         VM_BUG_ON(pmd_trans_huge(*pmd));
4379
4380         if (pmd_huge(*pmd)) {
4381                 if (!pmdpp)
4382                         goto out;
4383
4384                 if (range) {
4385                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4386                                                 NULL, mm, address & PMD_MASK,
4387                                                 (address & PMD_MASK) + PMD_SIZE);
4388                         mmu_notifier_invalidate_range_start(range);
4389                 }
4390                 *ptlp = pmd_lock(mm, pmd);
4391                 if (pmd_huge(*pmd)) {
4392                         *pmdpp = pmd;
4393                         return 0;
4394                 }
4395                 spin_unlock(*ptlp);
4396                 if (range)
4397                         mmu_notifier_invalidate_range_end(range);
4398         }
4399
4400         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4401                 goto out;
4402
4403         if (range) {
4404                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4405                                         address & PAGE_MASK,
4406                                         (address & PAGE_MASK) + PAGE_SIZE);
4407                 mmu_notifier_invalidate_range_start(range);
4408         }
4409         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4410         if (!pte_present(*ptep))
4411                 goto unlock;
4412         *ptepp = ptep;
4413         return 0;
4414 unlock:
4415         pte_unmap_unlock(ptep, *ptlp);
4416         if (range)
4417                 mmu_notifier_invalidate_range_end(range);
4418 out:
4419         return -EINVAL;
4420 }
4421
4422 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4423                              pte_t **ptepp, spinlock_t **ptlp)
4424 {
4425         int res;
4426
4427         /* (void) is needed to make gcc happy */
4428         (void) __cond_lock(*ptlp,
4429                            !(res = __follow_pte_pmd(mm, address, NULL,
4430                                                     ptepp, NULL, ptlp)));
4431         return res;
4432 }
4433
4434 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4435                    struct mmu_notifier_range *range,
4436                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4437 {
4438         int res;
4439
4440         /* (void) is needed to make gcc happy */
4441         (void) __cond_lock(*ptlp,
4442                            !(res = __follow_pte_pmd(mm, address, range,
4443                                                     ptepp, pmdpp, ptlp)));
4444         return res;
4445 }
4446 EXPORT_SYMBOL(follow_pte_pmd);
4447
4448 /**
4449  * follow_pfn - look up PFN at a user virtual address
4450  * @vma: memory mapping
4451  * @address: user virtual address
4452  * @pfn: location to store found PFN
4453  *
4454  * Only IO mappings and raw PFN mappings are allowed.
4455  *
4456  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4457  */
4458 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4459         unsigned long *pfn)
4460 {
4461         int ret = -EINVAL;
4462         spinlock_t *ptl;
4463         pte_t *ptep;
4464
4465         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4466                 return ret;
4467
4468         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4469         if (ret)
4470                 return ret;
4471         *pfn = pte_pfn(*ptep);
4472         pte_unmap_unlock(ptep, ptl);
4473         return 0;
4474 }
4475 EXPORT_SYMBOL(follow_pfn);
4476
4477 #ifdef CONFIG_HAVE_IOREMAP_PROT
4478 int follow_phys(struct vm_area_struct *vma,
4479                 unsigned long address, unsigned int flags,
4480                 unsigned long *prot, resource_size_t *phys)
4481 {
4482         int ret = -EINVAL;
4483         pte_t *ptep, pte;
4484         spinlock_t *ptl;
4485
4486         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4487                 goto out;
4488
4489         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4490                 goto out;
4491         pte = *ptep;
4492
4493         if ((flags & FOLL_WRITE) && !pte_write(pte))
4494                 goto unlock;
4495
4496         *prot = pgprot_val(pte_pgprot(pte));
4497         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4498
4499         ret = 0;
4500 unlock:
4501         pte_unmap_unlock(ptep, ptl);
4502 out:
4503         return ret;
4504 }
4505
4506 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4507                         void *buf, int len, int write)
4508 {
4509         resource_size_t phys_addr;
4510         unsigned long prot = 0;
4511         void __iomem *maddr;
4512         int offset = addr & (PAGE_SIZE-1);
4513
4514         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4515                 return -EINVAL;
4516
4517         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4518         if (!maddr)
4519                 return -ENOMEM;
4520
4521         if (write)
4522                 memcpy_toio(maddr + offset, buf, len);
4523         else
4524                 memcpy_fromio(buf, maddr + offset, len);
4525         iounmap(maddr);
4526
4527         return len;
4528 }
4529 EXPORT_SYMBOL_GPL(generic_access_phys);
4530 #endif
4531
4532 /*
4533  * Access another process' address space as given in mm.  If non-NULL, use the
4534  * given task for page fault accounting.
4535  */
4536 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4537                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4538 {
4539         struct vm_area_struct *vma;
4540         void *old_buf = buf;
4541         int write = gup_flags & FOLL_WRITE;
4542
4543         if (down_read_killable(&mm->mmap_sem))
4544                 return 0;
4545
4546         /* ignore errors, just check how much was successfully transferred */
4547         while (len) {
4548                 int bytes, ret, offset;
4549                 void *maddr;
4550                 struct page *page = NULL;
4551
4552                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4553                                 gup_flags, &page, &vma, NULL);
4554                 if (ret <= 0) {
4555 #ifndef CONFIG_HAVE_IOREMAP_PROT
4556                         break;
4557 #else
4558                         /*
4559                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4560                          * we can access using slightly different code.
4561                          */
4562                         vma = find_vma(mm, addr);
4563                         if (!vma || vma->vm_start > addr)
4564                                 break;
4565                         if (vma->vm_ops && vma->vm_ops->access)
4566                                 ret = vma->vm_ops->access(vma, addr, buf,
4567                                                           len, write);
4568                         if (ret <= 0)
4569                                 break;
4570                         bytes = ret;
4571 #endif
4572                 } else {
4573                         bytes = len;
4574                         offset = addr & (PAGE_SIZE-1);
4575                         if (bytes > PAGE_SIZE-offset)
4576                                 bytes = PAGE_SIZE-offset;
4577
4578                         maddr = kmap(page);
4579                         if (write) {
4580                                 copy_to_user_page(vma, page, addr,
4581                                                   maddr + offset, buf, bytes);
4582                                 set_page_dirty_lock(page);
4583                         } else {
4584                                 copy_from_user_page(vma, page, addr,
4585                                                     buf, maddr + offset, bytes);
4586                         }
4587                         kunmap(page);
4588                         put_page(page);
4589                 }
4590                 len -= bytes;
4591                 buf += bytes;
4592                 addr += bytes;
4593         }
4594         up_read(&mm->mmap_sem);
4595
4596         return buf - old_buf;
4597 }
4598
4599 /**
4600  * access_remote_vm - access another process' address space
4601  * @mm:         the mm_struct of the target address space
4602  * @addr:       start address to access
4603  * @buf:        source or destination buffer
4604  * @len:        number of bytes to transfer
4605  * @gup_flags:  flags modifying lookup behaviour
4606  *
4607  * The caller must hold a reference on @mm.
4608  *
4609  * Return: number of bytes copied from source to destination.
4610  */
4611 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4612                 void *buf, int len, unsigned int gup_flags)
4613 {
4614         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4615 }
4616
4617 /*
4618  * Access another process' address space.
4619  * Source/target buffer must be kernel space,
4620  * Do not walk the page table directly, use get_user_pages
4621  */
4622 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4623                 void *buf, int len, unsigned int gup_flags)
4624 {
4625         struct mm_struct *mm;
4626         int ret;
4627
4628         mm = get_task_mm(tsk);
4629         if (!mm)
4630                 return 0;
4631
4632         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4633
4634         mmput(mm);
4635
4636         return ret;
4637 }
4638 EXPORT_SYMBOL_GPL(access_process_vm);
4639
4640 /*
4641  * Print the name of a VMA.
4642  */
4643 void print_vma_addr(char *prefix, unsigned long ip)
4644 {
4645         struct mm_struct *mm = current->mm;
4646         struct vm_area_struct *vma;
4647
4648         /*
4649          * we might be running from an atomic context so we cannot sleep
4650          */
4651         if (!down_read_trylock(&mm->mmap_sem))
4652                 return;
4653
4654         vma = find_vma(mm, ip);
4655         if (vma && vma->vm_file) {
4656                 struct file *f = vma->vm_file;
4657                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4658                 if (buf) {
4659                         char *p;
4660
4661                         p = file_path(f, buf, PAGE_SIZE);
4662                         if (IS_ERR(p))
4663                                 p = "?";
4664                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4665                                         vma->vm_start,
4666                                         vma->vm_end - vma->vm_start);
4667                         free_page((unsigned long)buf);
4668                 }
4669         }
4670         up_read(&mm->mmap_sem);
4671 }
4672
4673 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4674 void __might_fault(const char *file, int line)
4675 {
4676         /*
4677          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4678          * holding the mmap_sem, this is safe because kernel memory doesn't
4679          * get paged out, therefore we'll never actually fault, and the
4680          * below annotations will generate false positives.
4681          */
4682         if (uaccess_kernel())
4683                 return;
4684         if (pagefault_disabled())
4685                 return;
4686         __might_sleep(file, line, 0);
4687 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4688         if (current->mm)
4689                 might_lock_read(&current->mm->mmap_sem);
4690 #endif
4691 }
4692 EXPORT_SYMBOL(__might_fault);
4693 #endif
4694
4695 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4696 /*
4697  * Process all subpages of the specified huge page with the specified
4698  * operation.  The target subpage will be processed last to keep its
4699  * cache lines hot.
4700  */
4701 static inline void process_huge_page(
4702         unsigned long addr_hint, unsigned int pages_per_huge_page,
4703         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4704         void *arg)
4705 {
4706         int i, n, base, l;
4707         unsigned long addr = addr_hint &
4708                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4709
4710         /* Process target subpage last to keep its cache lines hot */
4711         might_sleep();
4712         n = (addr_hint - addr) / PAGE_SIZE;
4713         if (2 * n <= pages_per_huge_page) {
4714                 /* If target subpage in first half of huge page */
4715                 base = 0;
4716                 l = n;
4717                 /* Process subpages at the end of huge page */
4718                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4719                         cond_resched();
4720                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4721                 }
4722         } else {
4723                 /* If target subpage in second half of huge page */
4724                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4725                 l = pages_per_huge_page - n;
4726                 /* Process subpages at the begin of huge page */
4727                 for (i = 0; i < base; i++) {
4728                         cond_resched();
4729                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4730                 }
4731         }
4732         /*
4733          * Process remaining subpages in left-right-left-right pattern
4734          * towards the target subpage
4735          */
4736         for (i = 0; i < l; i++) {
4737                 int left_idx = base + i;
4738                 int right_idx = base + 2 * l - 1 - i;
4739
4740                 cond_resched();
4741                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4742                 cond_resched();
4743                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4744         }
4745 }
4746
4747 static void clear_gigantic_page(struct page *page,
4748                                 unsigned long addr,
4749                                 unsigned int pages_per_huge_page)
4750 {
4751         int i;
4752         struct page *p = page;
4753
4754         might_sleep();
4755         for (i = 0; i < pages_per_huge_page;
4756              i++, p = mem_map_next(p, page, i)) {
4757                 cond_resched();
4758                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4759         }
4760 }
4761
4762 static void clear_subpage(unsigned long addr, int idx, void *arg)
4763 {
4764         struct page *page = arg;
4765
4766         clear_user_highpage(page + idx, addr);
4767 }
4768
4769 void clear_huge_page(struct page *page,
4770                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4771 {
4772         unsigned long addr = addr_hint &
4773                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4774
4775         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4776                 clear_gigantic_page(page, addr, pages_per_huge_page);
4777                 return;
4778         }
4779
4780         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4781 }
4782
4783 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4784                                     unsigned long addr,
4785                                     struct vm_area_struct *vma,
4786                                     unsigned int pages_per_huge_page)
4787 {
4788         int i;
4789         struct page *dst_base = dst;
4790         struct page *src_base = src;
4791
4792         for (i = 0; i < pages_per_huge_page; ) {
4793                 cond_resched();
4794                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4795
4796                 i++;
4797                 dst = mem_map_next(dst, dst_base, i);
4798                 src = mem_map_next(src, src_base, i);
4799         }
4800 }
4801
4802 struct copy_subpage_arg {
4803         struct page *dst;
4804         struct page *src;
4805         struct vm_area_struct *vma;
4806 };
4807
4808 static void copy_subpage(unsigned long addr, int idx, void *arg)
4809 {
4810         struct copy_subpage_arg *copy_arg = arg;
4811
4812         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4813                            addr, copy_arg->vma);
4814 }
4815
4816 void copy_user_huge_page(struct page *dst, struct page *src,
4817                          unsigned long addr_hint, struct vm_area_struct *vma,
4818                          unsigned int pages_per_huge_page)
4819 {
4820         unsigned long addr = addr_hint &
4821                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4822         struct copy_subpage_arg arg = {
4823                 .dst = dst,
4824                 .src = src,
4825                 .vma = vma,
4826         };
4827
4828         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4829                 copy_user_gigantic_page(dst, src, addr, vma,
4830                                         pages_per_huge_page);
4831                 return;
4832         }
4833
4834         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4835 }
4836
4837 long copy_huge_page_from_user(struct page *dst_page,
4838                                 const void __user *usr_src,
4839                                 unsigned int pages_per_huge_page,
4840                                 bool allow_pagefault)
4841 {
4842         void *src = (void *)usr_src;
4843         void *page_kaddr;
4844         unsigned long i, rc = 0;
4845         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4846
4847         for (i = 0; i < pages_per_huge_page; i++) {
4848                 if (allow_pagefault)
4849                         page_kaddr = kmap(dst_page + i);
4850                 else
4851                         page_kaddr = kmap_atomic(dst_page + i);
4852                 rc = copy_from_user(page_kaddr,
4853                                 (const void __user *)(src + i * PAGE_SIZE),
4854                                 PAGE_SIZE);
4855                 if (allow_pagefault)
4856                         kunmap(dst_page + i);
4857                 else
4858                         kunmap_atomic(page_kaddr);
4859
4860                 ret_val -= (PAGE_SIZE - rc);
4861                 if (rc)
4862                         break;
4863
4864                 cond_resched();
4865         }
4866         return ret_val;
4867 }
4868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4869
4870 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4871
4872 static struct kmem_cache *page_ptl_cachep;
4873
4874 void __init ptlock_cache_init(void)
4875 {
4876         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4877                         SLAB_PANIC, NULL);
4878 }
4879
4880 bool ptlock_alloc(struct page *page)
4881 {
4882         spinlock_t *ptl;
4883
4884         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4885         if (!ptl)
4886                 return false;
4887         page->ptl = ptl;
4888         return true;
4889 }
4890
4891 void ptlock_free(struct page *page)
4892 {
4893         kmem_cache_free(page_ptl_cachep, page->ptl);
4894 }
4895 #endif