[PATCH] mm: batch updating mm_counters
[linux-2.6-block.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!(*tlb)->fullmm)
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265                                 floor, next? next->vm_start: ceiling);
266                 } else {
267                         /*
268                          * Optimization: gather nearby vmas into one call down
269                          */
270                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272                                                         HPAGE_SIZE)) {
273                                 vma = next;
274                                 next = vma->vm_next;
275                         }
276                         free_pgd_range(tlb, addr, vma->vm_end,
277                                 floor, next? next->vm_start: ceiling);
278                 }
279                 vma = next;
280         }
281 }
282
283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284                                 unsigned long address)
285 {
286         if (!pmd_present(*pmd)) {
287                 struct page *new;
288
289                 spin_unlock(&mm->page_table_lock);
290                 new = pte_alloc_one(mm, address);
291                 spin_lock(&mm->page_table_lock);
292                 if (!new)
293                         return NULL;
294                 /*
295                  * Because we dropped the lock, we should re-check the
296                  * entry, as somebody else could have populated it..
297                  */
298                 if (pmd_present(*pmd)) {
299                         pte_free(new);
300                         goto out;
301                 }
302                 mm->nr_ptes++;
303                 inc_page_state(nr_page_table_pages);
304                 pmd_populate(mm, pmd, new);
305         }
306 out:
307         return pte_offset_map(pmd, address);
308 }
309
310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311 {
312         if (!pmd_present(*pmd)) {
313                 pte_t *new;
314
315                 spin_unlock(&mm->page_table_lock);
316                 new = pte_alloc_one_kernel(mm, address);
317                 spin_lock(&mm->page_table_lock);
318                 if (!new)
319                         return NULL;
320
321                 /*
322                  * Because we dropped the lock, we should re-check the
323                  * entry, as somebody else could have populated it..
324                  */
325                 if (pmd_present(*pmd)) {
326                         pte_free_kernel(new);
327                         goto out;
328                 }
329                 pmd_populate_kernel(mm, pmd, new);
330         }
331 out:
332         return pte_offset_kernel(pmd, address);
333 }
334
335 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
336 {
337         if (file_rss)
338                 add_mm_counter(mm, file_rss, file_rss);
339         if (anon_rss)
340                 add_mm_counter(mm, anon_rss, anon_rss);
341 }
342
343 #define NO_RSS 2        /* Increment neither file_rss nor anon_rss */
344
345 /*
346  * copy one vm_area from one task to the other. Assumes the page tables
347  * already present in the new task to be cleared in the whole range
348  * covered by this vma.
349  *
350  * dst->page_table_lock is held on entry and exit,
351  * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
352  */
353
354 static inline int
355 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
356                 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
357                 unsigned long addr)
358 {
359         pte_t pte = *src_pte;
360         struct page *page;
361         unsigned long pfn;
362         int anon = NO_RSS;
363
364         /* pte contains position in swap or file, so copy. */
365         if (unlikely(!pte_present(pte))) {
366                 if (!pte_file(pte)) {
367                         swap_duplicate(pte_to_swp_entry(pte));
368                         /* make sure dst_mm is on swapoff's mmlist. */
369                         if (unlikely(list_empty(&dst_mm->mmlist))) {
370                                 spin_lock(&mmlist_lock);
371                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
372                                 spin_unlock(&mmlist_lock);
373                         }
374                 }
375                 goto out_set_pte;
376         }
377
378         pfn = pte_pfn(pte);
379         /* the pte points outside of valid memory, the
380          * mapping is assumed to be good, meaningful
381          * and not mapped via rmap - duplicate the
382          * mapping as is.
383          */
384         page = NULL;
385         if (pfn_valid(pfn))
386                 page = pfn_to_page(pfn);
387
388         if (!page || PageReserved(page))
389                 goto out_set_pte;
390
391         /*
392          * If it's a COW mapping, write protect it both
393          * in the parent and the child
394          */
395         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
396                 ptep_set_wrprotect(src_mm, addr, src_pte);
397                 pte = *src_pte;
398         }
399
400         /*
401          * If it's a shared mapping, mark it clean in
402          * the child
403          */
404         if (vm_flags & VM_SHARED)
405                 pte = pte_mkclean(pte);
406         pte = pte_mkold(pte);
407         get_page(page);
408         page_dup_rmap(page);
409         anon = !!PageAnon(page);
410
411 out_set_pte:
412         set_pte_at(dst_mm, addr, dst_pte, pte);
413         return anon;
414 }
415
416 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
417                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
418                 unsigned long addr, unsigned long end)
419 {
420         pte_t *src_pte, *dst_pte;
421         unsigned long vm_flags = vma->vm_flags;
422         int progress = 0;
423         int rss[NO_RSS+1], anon;
424
425 again:
426         rss[1] = rss[0] = 0;
427         dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
428         if (!dst_pte)
429                 return -ENOMEM;
430         src_pte = pte_offset_map_nested(src_pmd, addr);
431
432         spin_lock(&src_mm->page_table_lock);
433         do {
434                 /*
435                  * We are holding two locks at this point - either of them
436                  * could generate latencies in another task on another CPU.
437                  */
438                 if (progress >= 32) {
439                         progress = 0;
440                         if (need_resched() ||
441                             need_lockbreak(&src_mm->page_table_lock) ||
442                             need_lockbreak(&dst_mm->page_table_lock))
443                                 break;
444                 }
445                 if (pte_none(*src_pte)) {
446                         progress++;
447                         continue;
448                 }
449                 anon = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
450                                                         vm_flags, addr);
451                 rss[anon]++;
452                 progress += 8;
453         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
454         spin_unlock(&src_mm->page_table_lock);
455
456         pte_unmap_nested(src_pte - 1);
457         pte_unmap(dst_pte - 1);
458         add_mm_rss(dst_mm, rss[0], rss[1]);
459         cond_resched_lock(&dst_mm->page_table_lock);
460         if (addr != end)
461                 goto again;
462         return 0;
463 }
464
465 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
466                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
467                 unsigned long addr, unsigned long end)
468 {
469         pmd_t *src_pmd, *dst_pmd;
470         unsigned long next;
471
472         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
473         if (!dst_pmd)
474                 return -ENOMEM;
475         src_pmd = pmd_offset(src_pud, addr);
476         do {
477                 next = pmd_addr_end(addr, end);
478                 if (pmd_none_or_clear_bad(src_pmd))
479                         continue;
480                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
481                                                 vma, addr, next))
482                         return -ENOMEM;
483         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
484         return 0;
485 }
486
487 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
488                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
489                 unsigned long addr, unsigned long end)
490 {
491         pud_t *src_pud, *dst_pud;
492         unsigned long next;
493
494         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
495         if (!dst_pud)
496                 return -ENOMEM;
497         src_pud = pud_offset(src_pgd, addr);
498         do {
499                 next = pud_addr_end(addr, end);
500                 if (pud_none_or_clear_bad(src_pud))
501                         continue;
502                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
503                                                 vma, addr, next))
504                         return -ENOMEM;
505         } while (dst_pud++, src_pud++, addr = next, addr != end);
506         return 0;
507 }
508
509 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
510                 struct vm_area_struct *vma)
511 {
512         pgd_t *src_pgd, *dst_pgd;
513         unsigned long next;
514         unsigned long addr = vma->vm_start;
515         unsigned long end = vma->vm_end;
516
517         /*
518          * Don't copy ptes where a page fault will fill them correctly.
519          * Fork becomes much lighter when there are big shared or private
520          * readonly mappings. The tradeoff is that copy_page_range is more
521          * efficient than faulting.
522          */
523         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
524                 if (!vma->anon_vma)
525                         return 0;
526         }
527
528         if (is_vm_hugetlb_page(vma))
529                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
530
531         dst_pgd = pgd_offset(dst_mm, addr);
532         src_pgd = pgd_offset(src_mm, addr);
533         do {
534                 next = pgd_addr_end(addr, end);
535                 if (pgd_none_or_clear_bad(src_pgd))
536                         continue;
537                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
538                                                 vma, addr, next))
539                         return -ENOMEM;
540         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
541         return 0;
542 }
543
544 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
545                                 unsigned long addr, unsigned long end,
546                                 struct zap_details *details)
547 {
548         pte_t *pte;
549         int file_rss = 0;
550         int anon_rss = 0;
551
552         pte = pte_offset_map(pmd, addr);
553         do {
554                 pte_t ptent = *pte;
555                 if (pte_none(ptent))
556                         continue;
557                 if (pte_present(ptent)) {
558                         struct page *page = NULL;
559                         unsigned long pfn = pte_pfn(ptent);
560                         if (pfn_valid(pfn)) {
561                                 page = pfn_to_page(pfn);
562                                 if (PageReserved(page))
563                                         page = NULL;
564                         }
565                         if (unlikely(details) && page) {
566                                 /*
567                                  * unmap_shared_mapping_pages() wants to
568                                  * invalidate cache without truncating:
569                                  * unmap shared but keep private pages.
570                                  */
571                                 if (details->check_mapping &&
572                                     details->check_mapping != page->mapping)
573                                         continue;
574                                 /*
575                                  * Each page->index must be checked when
576                                  * invalidating or truncating nonlinear.
577                                  */
578                                 if (details->nonlinear_vma &&
579                                     (page->index < details->first_index ||
580                                      page->index > details->last_index))
581                                         continue;
582                         }
583                         ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
584                                                         tlb->fullmm);
585                         tlb_remove_tlb_entry(tlb, pte, addr);
586                         if (unlikely(!page))
587                                 continue;
588                         if (unlikely(details) && details->nonlinear_vma
589                             && linear_page_index(details->nonlinear_vma,
590                                                 addr) != page->index)
591                                 set_pte_at(tlb->mm, addr, pte,
592                                            pgoff_to_pte(page->index));
593                         if (PageAnon(page))
594                                 anon_rss++;
595                         else {
596                                 if (pte_dirty(ptent))
597                                         set_page_dirty(page);
598                                 if (pte_young(ptent))
599                                         mark_page_accessed(page);
600                                 file_rss++;
601                         }
602                         page_remove_rmap(page);
603                         tlb_remove_page(tlb, page);
604                         continue;
605                 }
606                 /*
607                  * If details->check_mapping, we leave swap entries;
608                  * if details->nonlinear_vma, we leave file entries.
609                  */
610                 if (unlikely(details))
611                         continue;
612                 if (!pte_file(ptent))
613                         free_swap_and_cache(pte_to_swp_entry(ptent));
614                 pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
615         } while (pte++, addr += PAGE_SIZE, addr != end);
616
617         add_mm_rss(tlb->mm, -file_rss, -anon_rss);
618         pte_unmap(pte - 1);
619 }
620
621 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
622                                 unsigned long addr, unsigned long end,
623                                 struct zap_details *details)
624 {
625         pmd_t *pmd;
626         unsigned long next;
627
628         pmd = pmd_offset(pud, addr);
629         do {
630                 next = pmd_addr_end(addr, end);
631                 if (pmd_none_or_clear_bad(pmd))
632                         continue;
633                 zap_pte_range(tlb, pmd, addr, next, details);
634         } while (pmd++, addr = next, addr != end);
635 }
636
637 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
638                                 unsigned long addr, unsigned long end,
639                                 struct zap_details *details)
640 {
641         pud_t *pud;
642         unsigned long next;
643
644         pud = pud_offset(pgd, addr);
645         do {
646                 next = pud_addr_end(addr, end);
647                 if (pud_none_or_clear_bad(pud))
648                         continue;
649                 zap_pmd_range(tlb, pud, addr, next, details);
650         } while (pud++, addr = next, addr != end);
651 }
652
653 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
654                                 unsigned long addr, unsigned long end,
655                                 struct zap_details *details)
656 {
657         pgd_t *pgd;
658         unsigned long next;
659
660         if (details && !details->check_mapping && !details->nonlinear_vma)
661                 details = NULL;
662
663         BUG_ON(addr >= end);
664         tlb_start_vma(tlb, vma);
665         pgd = pgd_offset(vma->vm_mm, addr);
666         do {
667                 next = pgd_addr_end(addr, end);
668                 if (pgd_none_or_clear_bad(pgd))
669                         continue;
670                 zap_pud_range(tlb, pgd, addr, next, details);
671         } while (pgd++, addr = next, addr != end);
672         tlb_end_vma(tlb, vma);
673 }
674
675 #ifdef CONFIG_PREEMPT
676 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
677 #else
678 /* No preempt: go for improved straight-line efficiency */
679 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
680 #endif
681
682 /**
683  * unmap_vmas - unmap a range of memory covered by a list of vma's
684  * @tlbp: address of the caller's struct mmu_gather
685  * @mm: the controlling mm_struct
686  * @vma: the starting vma
687  * @start_addr: virtual address at which to start unmapping
688  * @end_addr: virtual address at which to end unmapping
689  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
690  * @details: details of nonlinear truncation or shared cache invalidation
691  *
692  * Returns the end address of the unmapping (restart addr if interrupted).
693  *
694  * Unmap all pages in the vma list.  Called under page_table_lock.
695  *
696  * We aim to not hold page_table_lock for too long (for scheduling latency
697  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
698  * return the ending mmu_gather to the caller.
699  *
700  * Only addresses between `start' and `end' will be unmapped.
701  *
702  * The VMA list must be sorted in ascending virtual address order.
703  *
704  * unmap_vmas() assumes that the caller will flush the whole unmapped address
705  * range after unmap_vmas() returns.  So the only responsibility here is to
706  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
707  * drops the lock and schedules.
708  */
709 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
710                 struct vm_area_struct *vma, unsigned long start_addr,
711                 unsigned long end_addr, unsigned long *nr_accounted,
712                 struct zap_details *details)
713 {
714         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
715         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
716         int tlb_start_valid = 0;
717         unsigned long start = start_addr;
718         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
719         int fullmm = (*tlbp)->fullmm;
720
721         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
722                 unsigned long end;
723
724                 start = max(vma->vm_start, start_addr);
725                 if (start >= vma->vm_end)
726                         continue;
727                 end = min(vma->vm_end, end_addr);
728                 if (end <= vma->vm_start)
729                         continue;
730
731                 if (vma->vm_flags & VM_ACCOUNT)
732                         *nr_accounted += (end - start) >> PAGE_SHIFT;
733
734                 while (start != end) {
735                         unsigned long block;
736
737                         if (!tlb_start_valid) {
738                                 tlb_start = start;
739                                 tlb_start_valid = 1;
740                         }
741
742                         if (is_vm_hugetlb_page(vma)) {
743                                 block = end - start;
744                                 unmap_hugepage_range(vma, start, end);
745                         } else {
746                                 block = min(zap_bytes, end - start);
747                                 unmap_page_range(*tlbp, vma, start,
748                                                 start + block, details);
749                         }
750
751                         start += block;
752                         zap_bytes -= block;
753                         if ((long)zap_bytes > 0)
754                                 continue;
755
756                         tlb_finish_mmu(*tlbp, tlb_start, start);
757
758                         if (need_resched() ||
759                                 need_lockbreak(&mm->page_table_lock) ||
760                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
761                                 if (i_mmap_lock) {
762                                         /* must reset count of rss freed */
763                                         *tlbp = tlb_gather_mmu(mm, fullmm);
764                                         goto out;
765                                 }
766                                 spin_unlock(&mm->page_table_lock);
767                                 cond_resched();
768                                 spin_lock(&mm->page_table_lock);
769                         }
770
771                         *tlbp = tlb_gather_mmu(mm, fullmm);
772                         tlb_start_valid = 0;
773                         zap_bytes = ZAP_BLOCK_SIZE;
774                 }
775         }
776 out:
777         return start;   /* which is now the end (or restart) address */
778 }
779
780 /**
781  * zap_page_range - remove user pages in a given range
782  * @vma: vm_area_struct holding the applicable pages
783  * @address: starting address of pages to zap
784  * @size: number of bytes to zap
785  * @details: details of nonlinear truncation or shared cache invalidation
786  */
787 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
788                 unsigned long size, struct zap_details *details)
789 {
790         struct mm_struct *mm = vma->vm_mm;
791         struct mmu_gather *tlb;
792         unsigned long end = address + size;
793         unsigned long nr_accounted = 0;
794
795         if (is_vm_hugetlb_page(vma)) {
796                 zap_hugepage_range(vma, address, size);
797                 return end;
798         }
799
800         lru_add_drain();
801         spin_lock(&mm->page_table_lock);
802         tlb = tlb_gather_mmu(mm, 0);
803         end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
804         tlb_finish_mmu(tlb, address, end);
805         spin_unlock(&mm->page_table_lock);
806         return end;
807 }
808
809 /*
810  * Do a quick page-table lookup for a single page.
811  * mm->page_table_lock must be held.
812  */
813 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
814                         int read, int write, int accessed)
815 {
816         pgd_t *pgd;
817         pud_t *pud;
818         pmd_t *pmd;
819         pte_t *ptep, pte;
820         unsigned long pfn;
821         struct page *page;
822
823         page = follow_huge_addr(mm, address, write);
824         if (! IS_ERR(page))
825                 return page;
826
827         pgd = pgd_offset(mm, address);
828         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
829                 goto out;
830
831         pud = pud_offset(pgd, address);
832         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
833                 goto out;
834         
835         pmd = pmd_offset(pud, address);
836         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
837                 goto out;
838         if (pmd_huge(*pmd))
839                 return follow_huge_pmd(mm, address, pmd, write);
840
841         ptep = pte_offset_map(pmd, address);
842         if (!ptep)
843                 goto out;
844
845         pte = *ptep;
846         pte_unmap(ptep);
847         if (pte_present(pte)) {
848                 if (write && !pte_write(pte))
849                         goto out;
850                 if (read && !pte_read(pte))
851                         goto out;
852                 pfn = pte_pfn(pte);
853                 if (pfn_valid(pfn)) {
854                         page = pfn_to_page(pfn);
855                         if (accessed) {
856                                 if (write && !pte_dirty(pte) &&!PageDirty(page))
857                                         set_page_dirty(page);
858                                 mark_page_accessed(page);
859                         }
860                         return page;
861                 }
862         }
863
864 out:
865         return NULL;
866 }
867
868 inline struct page *
869 follow_page(struct mm_struct *mm, unsigned long address, int write)
870 {
871         return __follow_page(mm, address, 0, write, 1);
872 }
873
874 /*
875  * check_user_page_readable() can be called frm niterrupt context by oprofile,
876  * so we need to avoid taking any non-irq-safe locks
877  */
878 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
879 {
880         return __follow_page(mm, address, 1, 0, 0) != NULL;
881 }
882 EXPORT_SYMBOL(check_user_page_readable);
883
884 static inline int
885 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
886                          unsigned long address)
887 {
888         pgd_t *pgd;
889         pud_t *pud;
890         pmd_t *pmd;
891
892         /* Check if the vma is for an anonymous mapping. */
893         if (vma->vm_ops && vma->vm_ops->nopage)
894                 return 0;
895
896         /* Check if page directory entry exists. */
897         pgd = pgd_offset(mm, address);
898         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
899                 return 1;
900
901         pud = pud_offset(pgd, address);
902         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
903                 return 1;
904
905         /* Check if page middle directory entry exists. */
906         pmd = pmd_offset(pud, address);
907         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
908                 return 1;
909
910         /* There is a pte slot for 'address' in 'mm'. */
911         return 0;
912 }
913
914 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
915                 unsigned long start, int len, int write, int force,
916                 struct page **pages, struct vm_area_struct **vmas)
917 {
918         int i;
919         unsigned int flags;
920
921         /* 
922          * Require read or write permissions.
923          * If 'force' is set, we only require the "MAY" flags.
924          */
925         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
926         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
927         i = 0;
928
929         do {
930                 struct vm_area_struct * vma;
931
932                 vma = find_extend_vma(mm, start);
933                 if (!vma && in_gate_area(tsk, start)) {
934                         unsigned long pg = start & PAGE_MASK;
935                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
936                         pgd_t *pgd;
937                         pud_t *pud;
938                         pmd_t *pmd;
939                         pte_t *pte;
940                         if (write) /* user gate pages are read-only */
941                                 return i ? : -EFAULT;
942                         if (pg > TASK_SIZE)
943                                 pgd = pgd_offset_k(pg);
944                         else
945                                 pgd = pgd_offset_gate(mm, pg);
946                         BUG_ON(pgd_none(*pgd));
947                         pud = pud_offset(pgd, pg);
948                         BUG_ON(pud_none(*pud));
949                         pmd = pmd_offset(pud, pg);
950                         if (pmd_none(*pmd))
951                                 return i ? : -EFAULT;
952                         pte = pte_offset_map(pmd, pg);
953                         if (pte_none(*pte)) {
954                                 pte_unmap(pte);
955                                 return i ? : -EFAULT;
956                         }
957                         if (pages) {
958                                 pages[i] = pte_page(*pte);
959                                 get_page(pages[i]);
960                         }
961                         pte_unmap(pte);
962                         if (vmas)
963                                 vmas[i] = gate_vma;
964                         i++;
965                         start += PAGE_SIZE;
966                         len--;
967                         continue;
968                 }
969
970                 if (!vma || (vma->vm_flags & VM_IO)
971                                 || !(flags & vma->vm_flags))
972                         return i ? : -EFAULT;
973
974                 if (is_vm_hugetlb_page(vma)) {
975                         i = follow_hugetlb_page(mm, vma, pages, vmas,
976                                                 &start, &len, i);
977                         continue;
978                 }
979                 spin_lock(&mm->page_table_lock);
980                 do {
981                         int write_access = write;
982                         struct page *page;
983
984                         cond_resched_lock(&mm->page_table_lock);
985                         while (!(page = follow_page(mm, start, write_access))) {
986                                 int ret;
987
988                                 /*
989                                  * Shortcut for anonymous pages. We don't want
990                                  * to force the creation of pages tables for
991                                  * insanely big anonymously mapped areas that
992                                  * nobody touched so far. This is important
993                                  * for doing a core dump for these mappings.
994                                  */
995                                 if (!write && untouched_anonymous_page(mm,vma,start)) {
996                                         page = ZERO_PAGE(start);
997                                         break;
998                                 }
999                                 spin_unlock(&mm->page_table_lock);
1000                                 ret = __handle_mm_fault(mm, vma, start, write_access);
1001
1002                                 /*
1003                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1004                                  * broken COW when necessary, even if maybe_mkwrite
1005                                  * decided not to set pte_write. We can thus safely do
1006                                  * subsequent page lookups as if they were reads.
1007                                  */
1008                                 if (ret & VM_FAULT_WRITE)
1009                                         write_access = 0;
1010                                 
1011                                 switch (ret & ~VM_FAULT_WRITE) {
1012                                 case VM_FAULT_MINOR:
1013                                         tsk->min_flt++;
1014                                         break;
1015                                 case VM_FAULT_MAJOR:
1016                                         tsk->maj_flt++;
1017                                         break;
1018                                 case VM_FAULT_SIGBUS:
1019                                         return i ? i : -EFAULT;
1020                                 case VM_FAULT_OOM:
1021                                         return i ? i : -ENOMEM;
1022                                 default:
1023                                         BUG();
1024                                 }
1025                                 spin_lock(&mm->page_table_lock);
1026                         }
1027                         if (pages) {
1028                                 pages[i] = page;
1029                                 flush_dcache_page(page);
1030                                 if (!PageReserved(page))
1031                                         page_cache_get(page);
1032                         }
1033                         if (vmas)
1034                                 vmas[i] = vma;
1035                         i++;
1036                         start += PAGE_SIZE;
1037                         len--;
1038                 } while (len && start < vma->vm_end);
1039                 spin_unlock(&mm->page_table_lock);
1040         } while (len);
1041         return i;
1042 }
1043 EXPORT_SYMBOL(get_user_pages);
1044
1045 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1046                         unsigned long addr, unsigned long end, pgprot_t prot)
1047 {
1048         pte_t *pte;
1049
1050         pte = pte_alloc_map(mm, pmd, addr);
1051         if (!pte)
1052                 return -ENOMEM;
1053         do {
1054                 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1055                 BUG_ON(!pte_none(*pte));
1056                 set_pte_at(mm, addr, pte, zero_pte);
1057         } while (pte++, addr += PAGE_SIZE, addr != end);
1058         pte_unmap(pte - 1);
1059         return 0;
1060 }
1061
1062 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1063                         unsigned long addr, unsigned long end, pgprot_t prot)
1064 {
1065         pmd_t *pmd;
1066         unsigned long next;
1067
1068         pmd = pmd_alloc(mm, pud, addr);
1069         if (!pmd)
1070                 return -ENOMEM;
1071         do {
1072                 next = pmd_addr_end(addr, end);
1073                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1074                         return -ENOMEM;
1075         } while (pmd++, addr = next, addr != end);
1076         return 0;
1077 }
1078
1079 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1080                         unsigned long addr, unsigned long end, pgprot_t prot)
1081 {
1082         pud_t *pud;
1083         unsigned long next;
1084
1085         pud = pud_alloc(mm, pgd, addr);
1086         if (!pud)
1087                 return -ENOMEM;
1088         do {
1089                 next = pud_addr_end(addr, end);
1090                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1091                         return -ENOMEM;
1092         } while (pud++, addr = next, addr != end);
1093         return 0;
1094 }
1095
1096 int zeromap_page_range(struct vm_area_struct *vma,
1097                         unsigned long addr, unsigned long size, pgprot_t prot)
1098 {
1099         pgd_t *pgd;
1100         unsigned long next;
1101         unsigned long end = addr + size;
1102         struct mm_struct *mm = vma->vm_mm;
1103         int err;
1104
1105         BUG_ON(addr >= end);
1106         pgd = pgd_offset(mm, addr);
1107         flush_cache_range(vma, addr, end);
1108         spin_lock(&mm->page_table_lock);
1109         do {
1110                 next = pgd_addr_end(addr, end);
1111                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1112                 if (err)
1113                         break;
1114         } while (pgd++, addr = next, addr != end);
1115         spin_unlock(&mm->page_table_lock);
1116         return err;
1117 }
1118
1119 /*
1120  * maps a range of physical memory into the requested pages. the old
1121  * mappings are removed. any references to nonexistent pages results
1122  * in null mappings (currently treated as "copy-on-access")
1123  */
1124 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1125                         unsigned long addr, unsigned long end,
1126                         unsigned long pfn, pgprot_t prot)
1127 {
1128         pte_t *pte;
1129
1130         pte = pte_alloc_map(mm, pmd, addr);
1131         if (!pte)
1132                 return -ENOMEM;
1133         do {
1134                 BUG_ON(!pte_none(*pte));
1135                 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1136                         set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1137                 pfn++;
1138         } while (pte++, addr += PAGE_SIZE, addr != end);
1139         pte_unmap(pte - 1);
1140         return 0;
1141 }
1142
1143 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1144                         unsigned long addr, unsigned long end,
1145                         unsigned long pfn, pgprot_t prot)
1146 {
1147         pmd_t *pmd;
1148         unsigned long next;
1149
1150         pfn -= addr >> PAGE_SHIFT;
1151         pmd = pmd_alloc(mm, pud, addr);
1152         if (!pmd)
1153                 return -ENOMEM;
1154         do {
1155                 next = pmd_addr_end(addr, end);
1156                 if (remap_pte_range(mm, pmd, addr, next,
1157                                 pfn + (addr >> PAGE_SHIFT), prot))
1158                         return -ENOMEM;
1159         } while (pmd++, addr = next, addr != end);
1160         return 0;
1161 }
1162
1163 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1164                         unsigned long addr, unsigned long end,
1165                         unsigned long pfn, pgprot_t prot)
1166 {
1167         pud_t *pud;
1168         unsigned long next;
1169
1170         pfn -= addr >> PAGE_SHIFT;
1171         pud = pud_alloc(mm, pgd, addr);
1172         if (!pud)
1173                 return -ENOMEM;
1174         do {
1175                 next = pud_addr_end(addr, end);
1176                 if (remap_pmd_range(mm, pud, addr, next,
1177                                 pfn + (addr >> PAGE_SHIFT), prot))
1178                         return -ENOMEM;
1179         } while (pud++, addr = next, addr != end);
1180         return 0;
1181 }
1182
1183 /*  Note: this is only safe if the mm semaphore is held when called. */
1184 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1185                     unsigned long pfn, unsigned long size, pgprot_t prot)
1186 {
1187         pgd_t *pgd;
1188         unsigned long next;
1189         unsigned long end = addr + PAGE_ALIGN(size);
1190         struct mm_struct *mm = vma->vm_mm;
1191         int err;
1192
1193         /*
1194          * Physically remapped pages are special. Tell the
1195          * rest of the world about it:
1196          *   VM_IO tells people not to look at these pages
1197          *      (accesses can have side effects).
1198          *   VM_RESERVED tells swapout not to try to touch
1199          *      this region.
1200          */
1201         vma->vm_flags |= VM_IO | VM_RESERVED;
1202
1203         BUG_ON(addr >= end);
1204         pfn -= addr >> PAGE_SHIFT;
1205         pgd = pgd_offset(mm, addr);
1206         flush_cache_range(vma, addr, end);
1207         spin_lock(&mm->page_table_lock);
1208         do {
1209                 next = pgd_addr_end(addr, end);
1210                 err = remap_pud_range(mm, pgd, addr, next,
1211                                 pfn + (addr >> PAGE_SHIFT), prot);
1212                 if (err)
1213                         break;
1214         } while (pgd++, addr = next, addr != end);
1215         spin_unlock(&mm->page_table_lock);
1216         return err;
1217 }
1218 EXPORT_SYMBOL(remap_pfn_range);
1219
1220 /*
1221  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1222  * servicing faults for write access.  In the normal case, do always want
1223  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1224  * that do not have writing enabled, when used by access_process_vm.
1225  */
1226 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1227 {
1228         if (likely(vma->vm_flags & VM_WRITE))
1229                 pte = pte_mkwrite(pte);
1230         return pte;
1231 }
1232
1233 /*
1234  * This routine handles present pages, when users try to write
1235  * to a shared page. It is done by copying the page to a new address
1236  * and decrementing the shared-page counter for the old page.
1237  *
1238  * Note that this routine assumes that the protection checks have been
1239  * done by the caller (the low-level page fault routine in most cases).
1240  * Thus we can safely just mark it writable once we've done any necessary
1241  * COW.
1242  *
1243  * We also mark the page dirty at this point even though the page will
1244  * change only once the write actually happens. This avoids a few races,
1245  * and potentially makes it more efficient.
1246  *
1247  * We hold the mm semaphore and the page_table_lock on entry and exit
1248  * with the page_table_lock released.
1249  */
1250 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1251                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1252                 pte_t orig_pte)
1253 {
1254         struct page *old_page, *new_page;
1255         unsigned long pfn = pte_pfn(orig_pte);
1256         pte_t entry;
1257         int ret = VM_FAULT_MINOR;
1258
1259         if (unlikely(!pfn_valid(pfn))) {
1260                 /*
1261                  * Page table corrupted: show pte and kill process.
1262                  */
1263                 pte_ERROR(orig_pte);
1264                 ret = VM_FAULT_OOM;
1265                 goto unlock;
1266         }
1267         old_page = pfn_to_page(pfn);
1268
1269         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1270                 int reuse = can_share_swap_page(old_page);
1271                 unlock_page(old_page);
1272                 if (reuse) {
1273                         flush_cache_page(vma, address, pfn);
1274                         entry = pte_mkyoung(orig_pte);
1275                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1276                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1277                         update_mmu_cache(vma, address, entry);
1278                         lazy_mmu_prot_update(entry);
1279                         ret |= VM_FAULT_WRITE;
1280                         goto unlock;
1281                 }
1282         }
1283
1284         /*
1285          * Ok, we need to copy. Oh, well..
1286          */
1287         if (!PageReserved(old_page))
1288                 page_cache_get(old_page);
1289         pte_unmap(page_table);
1290         spin_unlock(&mm->page_table_lock);
1291
1292         if (unlikely(anon_vma_prepare(vma)))
1293                 goto oom;
1294         if (old_page == ZERO_PAGE(address)) {
1295                 new_page = alloc_zeroed_user_highpage(vma, address);
1296                 if (!new_page)
1297                         goto oom;
1298         } else {
1299                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1300                 if (!new_page)
1301                         goto oom;
1302                 copy_user_highpage(new_page, old_page, address);
1303         }
1304
1305         /*
1306          * Re-check the pte - we dropped the lock
1307          */
1308         spin_lock(&mm->page_table_lock);
1309         page_table = pte_offset_map(pmd, address);
1310         if (likely(pte_same(*page_table, orig_pte))) {
1311                 if (PageReserved(old_page))
1312                         inc_mm_counter(mm, anon_rss);
1313                 else {
1314                         page_remove_rmap(old_page);
1315                         if (!PageAnon(old_page)) {
1316                                 inc_mm_counter(mm, anon_rss);
1317                                 dec_mm_counter(mm, file_rss);
1318                         }
1319                 }
1320                 flush_cache_page(vma, address, pfn);
1321                 entry = mk_pte(new_page, vma->vm_page_prot);
1322                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1323                 ptep_establish(vma, address, page_table, entry);
1324                 update_mmu_cache(vma, address, entry);
1325                 lazy_mmu_prot_update(entry);
1326
1327                 lru_cache_add_active(new_page);
1328                 page_add_anon_rmap(new_page, vma, address);
1329
1330                 /* Free the old page.. */
1331                 new_page = old_page;
1332                 ret |= VM_FAULT_WRITE;
1333         }
1334         page_cache_release(new_page);
1335         page_cache_release(old_page);
1336 unlock:
1337         pte_unmap(page_table);
1338         spin_unlock(&mm->page_table_lock);
1339         return ret;
1340 oom:
1341         page_cache_release(old_page);
1342         return VM_FAULT_OOM;
1343 }
1344
1345 /*
1346  * Helper functions for unmap_mapping_range().
1347  *
1348  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1349  *
1350  * We have to restart searching the prio_tree whenever we drop the lock,
1351  * since the iterator is only valid while the lock is held, and anyway
1352  * a later vma might be split and reinserted earlier while lock dropped.
1353  *
1354  * The list of nonlinear vmas could be handled more efficiently, using
1355  * a placeholder, but handle it in the same way until a need is shown.
1356  * It is important to search the prio_tree before nonlinear list: a vma
1357  * may become nonlinear and be shifted from prio_tree to nonlinear list
1358  * while the lock is dropped; but never shifted from list to prio_tree.
1359  *
1360  * In order to make forward progress despite restarting the search,
1361  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1362  * quickly skip it next time around.  Since the prio_tree search only
1363  * shows us those vmas affected by unmapping the range in question, we
1364  * can't efficiently keep all vmas in step with mapping->truncate_count:
1365  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1366  * mapping->truncate_count and vma->vm_truncate_count are protected by
1367  * i_mmap_lock.
1368  *
1369  * In order to make forward progress despite repeatedly restarting some
1370  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1371  * and restart from that address when we reach that vma again.  It might
1372  * have been split or merged, shrunk or extended, but never shifted: so
1373  * restart_addr remains valid so long as it remains in the vma's range.
1374  * unmap_mapping_range forces truncate_count to leap over page-aligned
1375  * values so we can save vma's restart_addr in its truncate_count field.
1376  */
1377 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1378
1379 static void reset_vma_truncate_counts(struct address_space *mapping)
1380 {
1381         struct vm_area_struct *vma;
1382         struct prio_tree_iter iter;
1383
1384         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1385                 vma->vm_truncate_count = 0;
1386         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1387                 vma->vm_truncate_count = 0;
1388 }
1389
1390 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1391                 unsigned long start_addr, unsigned long end_addr,
1392                 struct zap_details *details)
1393 {
1394         unsigned long restart_addr;
1395         int need_break;
1396
1397 again:
1398         restart_addr = vma->vm_truncate_count;
1399         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1400                 start_addr = restart_addr;
1401                 if (start_addr >= end_addr) {
1402                         /* Top of vma has been split off since last time */
1403                         vma->vm_truncate_count = details->truncate_count;
1404                         return 0;
1405                 }
1406         }
1407
1408         restart_addr = zap_page_range(vma, start_addr,
1409                                         end_addr - start_addr, details);
1410
1411         /*
1412          * We cannot rely on the break test in unmap_vmas:
1413          * on the one hand, we don't want to restart our loop
1414          * just because that broke out for the page_table_lock;
1415          * on the other hand, it does no test when vma is small.
1416          */
1417         need_break = need_resched() ||
1418                         need_lockbreak(details->i_mmap_lock);
1419
1420         if (restart_addr >= end_addr) {
1421                 /* We have now completed this vma: mark it so */
1422                 vma->vm_truncate_count = details->truncate_count;
1423                 if (!need_break)
1424                         return 0;
1425         } else {
1426                 /* Note restart_addr in vma's truncate_count field */
1427                 vma->vm_truncate_count = restart_addr;
1428                 if (!need_break)
1429                         goto again;
1430         }
1431
1432         spin_unlock(details->i_mmap_lock);
1433         cond_resched();
1434         spin_lock(details->i_mmap_lock);
1435         return -EINTR;
1436 }
1437
1438 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1439                                             struct zap_details *details)
1440 {
1441         struct vm_area_struct *vma;
1442         struct prio_tree_iter iter;
1443         pgoff_t vba, vea, zba, zea;
1444
1445 restart:
1446         vma_prio_tree_foreach(vma, &iter, root,
1447                         details->first_index, details->last_index) {
1448                 /* Skip quickly over those we have already dealt with */
1449                 if (vma->vm_truncate_count == details->truncate_count)
1450                         continue;
1451
1452                 vba = vma->vm_pgoff;
1453                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1454                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1455                 zba = details->first_index;
1456                 if (zba < vba)
1457                         zba = vba;
1458                 zea = details->last_index;
1459                 if (zea > vea)
1460                         zea = vea;
1461
1462                 if (unmap_mapping_range_vma(vma,
1463                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1464                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1465                                 details) < 0)
1466                         goto restart;
1467         }
1468 }
1469
1470 static inline void unmap_mapping_range_list(struct list_head *head,
1471                                             struct zap_details *details)
1472 {
1473         struct vm_area_struct *vma;
1474
1475         /*
1476          * In nonlinear VMAs there is no correspondence between virtual address
1477          * offset and file offset.  So we must perform an exhaustive search
1478          * across *all* the pages in each nonlinear VMA, not just the pages
1479          * whose virtual address lies outside the file truncation point.
1480          */
1481 restart:
1482         list_for_each_entry(vma, head, shared.vm_set.list) {
1483                 /* Skip quickly over those we have already dealt with */
1484                 if (vma->vm_truncate_count == details->truncate_count)
1485                         continue;
1486                 details->nonlinear_vma = vma;
1487                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1488                                         vma->vm_end, details) < 0)
1489                         goto restart;
1490         }
1491 }
1492
1493 /**
1494  * unmap_mapping_range - unmap the portion of all mmaps
1495  * in the specified address_space corresponding to the specified
1496  * page range in the underlying file.
1497  * @mapping: the address space containing mmaps to be unmapped.
1498  * @holebegin: byte in first page to unmap, relative to the start of
1499  * the underlying file.  This will be rounded down to a PAGE_SIZE
1500  * boundary.  Note that this is different from vmtruncate(), which
1501  * must keep the partial page.  In contrast, we must get rid of
1502  * partial pages.
1503  * @holelen: size of prospective hole in bytes.  This will be rounded
1504  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1505  * end of the file.
1506  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1507  * but 0 when invalidating pagecache, don't throw away private data.
1508  */
1509 void unmap_mapping_range(struct address_space *mapping,
1510                 loff_t const holebegin, loff_t const holelen, int even_cows)
1511 {
1512         struct zap_details details;
1513         pgoff_t hba = holebegin >> PAGE_SHIFT;
1514         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1515
1516         /* Check for overflow. */
1517         if (sizeof(holelen) > sizeof(hlen)) {
1518                 long long holeend =
1519                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1520                 if (holeend & ~(long long)ULONG_MAX)
1521                         hlen = ULONG_MAX - hba + 1;
1522         }
1523
1524         details.check_mapping = even_cows? NULL: mapping;
1525         details.nonlinear_vma = NULL;
1526         details.first_index = hba;
1527         details.last_index = hba + hlen - 1;
1528         if (details.last_index < details.first_index)
1529                 details.last_index = ULONG_MAX;
1530         details.i_mmap_lock = &mapping->i_mmap_lock;
1531
1532         spin_lock(&mapping->i_mmap_lock);
1533
1534         /* serialize i_size write against truncate_count write */
1535         smp_wmb();
1536         /* Protect against page faults, and endless unmapping loops */
1537         mapping->truncate_count++;
1538         /*
1539          * For archs where spin_lock has inclusive semantics like ia64
1540          * this smp_mb() will prevent to read pagetable contents
1541          * before the truncate_count increment is visible to
1542          * other cpus.
1543          */
1544         smp_mb();
1545         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1546                 if (mapping->truncate_count == 0)
1547                         reset_vma_truncate_counts(mapping);
1548                 mapping->truncate_count++;
1549         }
1550         details.truncate_count = mapping->truncate_count;
1551
1552         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1553                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1554         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1555                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1556         spin_unlock(&mapping->i_mmap_lock);
1557 }
1558 EXPORT_SYMBOL(unmap_mapping_range);
1559
1560 /*
1561  * Handle all mappings that got truncated by a "truncate()"
1562  * system call.
1563  *
1564  * NOTE! We have to be ready to update the memory sharing
1565  * between the file and the memory map for a potential last
1566  * incomplete page.  Ugly, but necessary.
1567  */
1568 int vmtruncate(struct inode * inode, loff_t offset)
1569 {
1570         struct address_space *mapping = inode->i_mapping;
1571         unsigned long limit;
1572
1573         if (inode->i_size < offset)
1574                 goto do_expand;
1575         /*
1576          * truncation of in-use swapfiles is disallowed - it would cause
1577          * subsequent swapout to scribble on the now-freed blocks.
1578          */
1579         if (IS_SWAPFILE(inode))
1580                 goto out_busy;
1581         i_size_write(inode, offset);
1582         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1583         truncate_inode_pages(mapping, offset);
1584         goto out_truncate;
1585
1586 do_expand:
1587         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1588         if (limit != RLIM_INFINITY && offset > limit)
1589                 goto out_sig;
1590         if (offset > inode->i_sb->s_maxbytes)
1591                 goto out_big;
1592         i_size_write(inode, offset);
1593
1594 out_truncate:
1595         if (inode->i_op && inode->i_op->truncate)
1596                 inode->i_op->truncate(inode);
1597         return 0;
1598 out_sig:
1599         send_sig(SIGXFSZ, current, 0);
1600 out_big:
1601         return -EFBIG;
1602 out_busy:
1603         return -ETXTBSY;
1604 }
1605
1606 EXPORT_SYMBOL(vmtruncate);
1607
1608 /* 
1609  * Primitive swap readahead code. We simply read an aligned block of
1610  * (1 << page_cluster) entries in the swap area. This method is chosen
1611  * because it doesn't cost us any seek time.  We also make sure to queue
1612  * the 'original' request together with the readahead ones...  
1613  *
1614  * This has been extended to use the NUMA policies from the mm triggering
1615  * the readahead.
1616  *
1617  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1618  */
1619 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1620 {
1621 #ifdef CONFIG_NUMA
1622         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1623 #endif
1624         int i, num;
1625         struct page *new_page;
1626         unsigned long offset;
1627
1628         /*
1629          * Get the number of handles we should do readahead io to.
1630          */
1631         num = valid_swaphandles(entry, &offset);
1632         for (i = 0; i < num; offset++, i++) {
1633                 /* Ok, do the async read-ahead now */
1634                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1635                                                            offset), vma, addr);
1636                 if (!new_page)
1637                         break;
1638                 page_cache_release(new_page);
1639 #ifdef CONFIG_NUMA
1640                 /*
1641                  * Find the next applicable VMA for the NUMA policy.
1642                  */
1643                 addr += PAGE_SIZE;
1644                 if (addr == 0)
1645                         vma = NULL;
1646                 if (vma) {
1647                         if (addr >= vma->vm_end) {
1648                                 vma = next_vma;
1649                                 next_vma = vma ? vma->vm_next : NULL;
1650                         }
1651                         if (vma && addr < vma->vm_start)
1652                                 vma = NULL;
1653                 } else {
1654                         if (next_vma && addr >= next_vma->vm_start) {
1655                                 vma = next_vma;
1656                                 next_vma = vma->vm_next;
1657                         }
1658                 }
1659 #endif
1660         }
1661         lru_add_drain();        /* Push any new pages onto the LRU now */
1662 }
1663
1664 /*
1665  * We hold the mm semaphore and the page_table_lock on entry and
1666  * should release the pagetable lock on exit..
1667  */
1668 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1669                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1670                 int write_access, pte_t orig_pte)
1671 {
1672         struct page *page;
1673         swp_entry_t entry;
1674         pte_t pte;
1675         int ret = VM_FAULT_MINOR;
1676
1677         pte_unmap(page_table);
1678         spin_unlock(&mm->page_table_lock);
1679
1680         entry = pte_to_swp_entry(orig_pte);
1681         page = lookup_swap_cache(entry);
1682         if (!page) {
1683                 swapin_readahead(entry, address, vma);
1684                 page = read_swap_cache_async(entry, vma, address);
1685                 if (!page) {
1686                         /*
1687                          * Back out if somebody else faulted in this pte while
1688                          * we released the page table lock.
1689                          */
1690                         spin_lock(&mm->page_table_lock);
1691                         page_table = pte_offset_map(pmd, address);
1692                         if (likely(pte_same(*page_table, orig_pte)))
1693                                 ret = VM_FAULT_OOM;
1694                         goto unlock;
1695                 }
1696
1697                 /* Had to read the page from swap area: Major fault */
1698                 ret = VM_FAULT_MAJOR;
1699                 inc_page_state(pgmajfault);
1700                 grab_swap_token();
1701         }
1702
1703         mark_page_accessed(page);
1704         lock_page(page);
1705
1706         /*
1707          * Back out if somebody else faulted in this pte while we
1708          * released the page table lock.
1709          */
1710         spin_lock(&mm->page_table_lock);
1711         page_table = pte_offset_map(pmd, address);
1712         if (unlikely(!pte_same(*page_table, orig_pte))) {
1713                 ret = VM_FAULT_MINOR;
1714                 goto out_nomap;
1715         }
1716
1717         if (unlikely(!PageUptodate(page))) {
1718                 ret = VM_FAULT_SIGBUS;
1719                 goto out_nomap;
1720         }
1721
1722         /* The page isn't present yet, go ahead with the fault. */
1723
1724         inc_mm_counter(mm, anon_rss);
1725         pte = mk_pte(page, vma->vm_page_prot);
1726         if (write_access && can_share_swap_page(page)) {
1727                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1728                 write_access = 0;
1729         }
1730
1731         flush_icache_page(vma, page);
1732         set_pte_at(mm, address, page_table, pte);
1733         page_add_anon_rmap(page, vma, address);
1734
1735         swap_free(entry);
1736         if (vm_swap_full())
1737                 remove_exclusive_swap_page(page);
1738         unlock_page(page);
1739
1740         if (write_access) {
1741                 if (do_wp_page(mm, vma, address,
1742                                 page_table, pmd, pte) == VM_FAULT_OOM)
1743                         ret = VM_FAULT_OOM;
1744                 goto out;
1745         }
1746
1747         /* No need to invalidate - it was non-present before */
1748         update_mmu_cache(vma, address, pte);
1749         lazy_mmu_prot_update(pte);
1750 unlock:
1751         pte_unmap(page_table);
1752         spin_unlock(&mm->page_table_lock);
1753 out:
1754         return ret;
1755 out_nomap:
1756         pte_unmap(page_table);
1757         spin_unlock(&mm->page_table_lock);
1758         unlock_page(page);
1759         page_cache_release(page);
1760         return ret;
1761 }
1762
1763 /*
1764  * We are called with the MM semaphore and page_table_lock
1765  * spinlock held to protect against concurrent faults in
1766  * multithreaded programs. 
1767  */
1768 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1769                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1770                 int write_access)
1771 {
1772         pte_t entry;
1773
1774         /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1775         entry = mk_pte(ZERO_PAGE(addr), vma->vm_page_prot);
1776
1777         if (write_access) {
1778                 struct page *page;
1779
1780                 /* Allocate our own private page. */
1781                 pte_unmap(page_table);
1782                 spin_unlock(&mm->page_table_lock);
1783
1784                 if (unlikely(anon_vma_prepare(vma)))
1785                         goto oom;
1786                 page = alloc_zeroed_user_highpage(vma, address);
1787                 if (!page)
1788                         goto oom;
1789
1790                 spin_lock(&mm->page_table_lock);
1791                 page_table = pte_offset_map(pmd, address);
1792
1793                 if (!pte_none(*page_table)) {
1794                         page_cache_release(page);
1795                         goto unlock;
1796                 }
1797                 inc_mm_counter(mm, anon_rss);
1798                 entry = mk_pte(page, vma->vm_page_prot);
1799                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1800                 lru_cache_add_active(page);
1801                 SetPageReferenced(page);
1802                 page_add_anon_rmap(page, vma, address);
1803         }
1804
1805         set_pte_at(mm, address, page_table, entry);
1806
1807         /* No need to invalidate - it was non-present before */
1808         update_mmu_cache(vma, address, entry);
1809         lazy_mmu_prot_update(entry);
1810 unlock:
1811         pte_unmap(page_table);
1812         spin_unlock(&mm->page_table_lock);
1813         return VM_FAULT_MINOR;
1814 oom:
1815         return VM_FAULT_OOM;
1816 }
1817
1818 /*
1819  * do_no_page() tries to create a new page mapping. It aggressively
1820  * tries to share with existing pages, but makes a separate copy if
1821  * the "write_access" parameter is true in order to avoid the next
1822  * page fault.
1823  *
1824  * As this is called only for pages that do not currently exist, we
1825  * do not need to flush old virtual caches or the TLB.
1826  *
1827  * This is called with the MM semaphore held and the page table
1828  * spinlock held. Exit with the spinlock released.
1829  */
1830 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1831                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1832                 int write_access)
1833 {
1834         struct page *new_page;
1835         struct address_space *mapping = NULL;
1836         pte_t entry;
1837         unsigned int sequence = 0;
1838         int ret = VM_FAULT_MINOR;
1839         int anon = 0;
1840
1841         pte_unmap(page_table);
1842         spin_unlock(&mm->page_table_lock);
1843
1844         if (vma->vm_file) {
1845                 mapping = vma->vm_file->f_mapping;
1846                 sequence = mapping->truncate_count;
1847                 smp_rmb(); /* serializes i_size against truncate_count */
1848         }
1849 retry:
1850         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1851         /*
1852          * No smp_rmb is needed here as long as there's a full
1853          * spin_lock/unlock sequence inside the ->nopage callback
1854          * (for the pagecache lookup) that acts as an implicit
1855          * smp_mb() and prevents the i_size read to happen
1856          * after the next truncate_count read.
1857          */
1858
1859         /* no page was available -- either SIGBUS or OOM */
1860         if (new_page == NOPAGE_SIGBUS)
1861                 return VM_FAULT_SIGBUS;
1862         if (new_page == NOPAGE_OOM)
1863                 return VM_FAULT_OOM;
1864
1865         /*
1866          * Should we do an early C-O-W break?
1867          */
1868         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1869                 struct page *page;
1870
1871                 if (unlikely(anon_vma_prepare(vma)))
1872                         goto oom;
1873                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1874                 if (!page)
1875                         goto oom;
1876                 copy_user_highpage(page, new_page, address);
1877                 page_cache_release(new_page);
1878                 new_page = page;
1879                 anon = 1;
1880         }
1881
1882         spin_lock(&mm->page_table_lock);
1883         /*
1884          * For a file-backed vma, someone could have truncated or otherwise
1885          * invalidated this page.  If unmap_mapping_range got called,
1886          * retry getting the page.
1887          */
1888         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1889                 spin_unlock(&mm->page_table_lock);
1890                 page_cache_release(new_page);
1891                 cond_resched();
1892                 sequence = mapping->truncate_count;
1893                 smp_rmb();
1894                 goto retry;
1895         }
1896         page_table = pte_offset_map(pmd, address);
1897
1898         /*
1899          * This silly early PAGE_DIRTY setting removes a race
1900          * due to the bad i386 page protection. But it's valid
1901          * for other architectures too.
1902          *
1903          * Note that if write_access is true, we either now have
1904          * an exclusive copy of the page, or this is a shared mapping,
1905          * so we can make it writable and dirty to avoid having to
1906          * handle that later.
1907          */
1908         /* Only go through if we didn't race with anybody else... */
1909         if (pte_none(*page_table)) {
1910                 flush_icache_page(vma, new_page);
1911                 entry = mk_pte(new_page, vma->vm_page_prot);
1912                 if (write_access)
1913                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1914                 set_pte_at(mm, address, page_table, entry);
1915                 if (anon) {
1916                         inc_mm_counter(mm, anon_rss);
1917                         lru_cache_add_active(new_page);
1918                         page_add_anon_rmap(new_page, vma, address);
1919                 } else if (!PageReserved(new_page)) {
1920                         inc_mm_counter(mm, file_rss);
1921                         page_add_file_rmap(new_page);
1922                 }
1923         } else {
1924                 /* One of our sibling threads was faster, back out. */
1925                 page_cache_release(new_page);
1926                 goto unlock;
1927         }
1928
1929         /* no need to invalidate: a not-present page shouldn't be cached */
1930         update_mmu_cache(vma, address, entry);
1931         lazy_mmu_prot_update(entry);
1932 unlock:
1933         pte_unmap(page_table);
1934         spin_unlock(&mm->page_table_lock);
1935         return ret;
1936 oom:
1937         page_cache_release(new_page);
1938         return VM_FAULT_OOM;
1939 }
1940
1941 /*
1942  * Fault of a previously existing named mapping. Repopulate the pte
1943  * from the encoded file_pte if possible. This enables swappable
1944  * nonlinear vmas.
1945  */
1946 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1947                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1948                 int write_access, pte_t orig_pte)
1949 {
1950         pgoff_t pgoff;
1951         int err;
1952
1953         pte_unmap(page_table);
1954         spin_unlock(&mm->page_table_lock);
1955
1956         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1957                 /*
1958                  * Page table corrupted: show pte and kill process.
1959                  */
1960                 pte_ERROR(orig_pte);
1961                 return VM_FAULT_OOM;
1962         }
1963         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1964
1965         pgoff = pte_to_pgoff(orig_pte);
1966         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1967                                         vma->vm_page_prot, pgoff, 0);
1968         if (err == -ENOMEM)
1969                 return VM_FAULT_OOM;
1970         if (err)
1971                 return VM_FAULT_SIGBUS;
1972         return VM_FAULT_MAJOR;
1973 }
1974
1975 /*
1976  * These routines also need to handle stuff like marking pages dirty
1977  * and/or accessed for architectures that don't do it in hardware (most
1978  * RISC architectures).  The early dirtying is also good on the i386.
1979  *
1980  * There is also a hook called "update_mmu_cache()" that architectures
1981  * with external mmu caches can use to update those (ie the Sparc or
1982  * PowerPC hashed page tables that act as extended TLBs).
1983  *
1984  * Note the "page_table_lock". It is to protect against kswapd removing
1985  * pages from under us. Note that kswapd only ever _removes_ pages, never
1986  * adds them. As such, once we have noticed that the page is not present,
1987  * we can drop the lock early.
1988  *
1989  * The adding of pages is protected by the MM semaphore (which we hold),
1990  * so we don't need to worry about a page being suddenly been added into
1991  * our VM.
1992  *
1993  * We enter with the pagetable spinlock held, we are supposed to
1994  * release it when done.
1995  */
1996 static inline int handle_pte_fault(struct mm_struct *mm,
1997                 struct vm_area_struct *vma, unsigned long address,
1998                 pte_t *pte, pmd_t *pmd, int write_access)
1999 {
2000         pte_t entry;
2001
2002         entry = *pte;
2003         if (!pte_present(entry)) {
2004                 if (pte_none(entry)) {
2005                         if (!vma->vm_ops || !vma->vm_ops->nopage)
2006                                 return do_anonymous_page(mm, vma, address,
2007                                         pte, pmd, write_access);
2008                         return do_no_page(mm, vma, address,
2009                                         pte, pmd, write_access);
2010                 }
2011                 if (pte_file(entry))
2012                         return do_file_page(mm, vma, address,
2013                                         pte, pmd, write_access, entry);
2014                 return do_swap_page(mm, vma, address,
2015                                         pte, pmd, write_access, entry);
2016         }
2017
2018         if (write_access) {
2019                 if (!pte_write(entry))
2020                         return do_wp_page(mm, vma, address, pte, pmd, entry);
2021                 entry = pte_mkdirty(entry);
2022         }
2023         entry = pte_mkyoung(entry);
2024         ptep_set_access_flags(vma, address, pte, entry, write_access);
2025         update_mmu_cache(vma, address, entry);
2026         lazy_mmu_prot_update(entry);
2027         pte_unmap(pte);
2028         spin_unlock(&mm->page_table_lock);
2029         return VM_FAULT_MINOR;
2030 }
2031
2032 /*
2033  * By the time we get here, we already hold the mm semaphore
2034  */
2035 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2036                 unsigned long address, int write_access)
2037 {
2038         pgd_t *pgd;
2039         pud_t *pud;
2040         pmd_t *pmd;
2041         pte_t *pte;
2042
2043         __set_current_state(TASK_RUNNING);
2044
2045         inc_page_state(pgfault);
2046
2047         if (unlikely(is_vm_hugetlb_page(vma)))
2048                 return hugetlb_fault(mm, vma, address, write_access);
2049
2050         /*
2051          * We need the page table lock to synchronize with kswapd
2052          * and the SMP-safe atomic PTE updates.
2053          */
2054         pgd = pgd_offset(mm, address);
2055         spin_lock(&mm->page_table_lock);
2056
2057         pud = pud_alloc(mm, pgd, address);
2058         if (!pud)
2059                 goto oom;
2060
2061         pmd = pmd_alloc(mm, pud, address);
2062         if (!pmd)
2063                 goto oom;
2064
2065         pte = pte_alloc_map(mm, pmd, address);
2066         if (!pte)
2067                 goto oom;
2068         
2069         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2070
2071  oom:
2072         spin_unlock(&mm->page_table_lock);
2073         return VM_FAULT_OOM;
2074 }
2075
2076 #ifndef __PAGETABLE_PUD_FOLDED
2077 /*
2078  * Allocate page upper directory.
2079  *
2080  * We've already handled the fast-path in-line, and we own the
2081  * page table lock.
2082  */
2083 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2084 {
2085         pud_t *new;
2086
2087         spin_unlock(&mm->page_table_lock);
2088         new = pud_alloc_one(mm, address);
2089         spin_lock(&mm->page_table_lock);
2090         if (!new)
2091                 return NULL;
2092
2093         /*
2094          * Because we dropped the lock, we should re-check the
2095          * entry, as somebody else could have populated it..
2096          */
2097         if (pgd_present(*pgd)) {
2098                 pud_free(new);
2099                 goto out;
2100         }
2101         pgd_populate(mm, pgd, new);
2102  out:
2103         return pud_offset(pgd, address);
2104 }
2105 #endif /* __PAGETABLE_PUD_FOLDED */
2106
2107 #ifndef __PAGETABLE_PMD_FOLDED
2108 /*
2109  * Allocate page middle directory.
2110  *
2111  * We've already handled the fast-path in-line, and we own the
2112  * page table lock.
2113  */
2114 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2115 {
2116         pmd_t *new;
2117
2118         spin_unlock(&mm->page_table_lock);
2119         new = pmd_alloc_one(mm, address);
2120         spin_lock(&mm->page_table_lock);
2121         if (!new)
2122                 return NULL;
2123
2124         /*
2125          * Because we dropped the lock, we should re-check the
2126          * entry, as somebody else could have populated it..
2127          */
2128 #ifndef __ARCH_HAS_4LEVEL_HACK
2129         if (pud_present(*pud)) {
2130                 pmd_free(new);
2131                 goto out;
2132         }
2133         pud_populate(mm, pud, new);
2134 #else
2135         if (pgd_present(*pud)) {
2136                 pmd_free(new);
2137                 goto out;
2138         }
2139         pgd_populate(mm, pud, new);
2140 #endif /* __ARCH_HAS_4LEVEL_HACK */
2141
2142  out:
2143         return pmd_offset(pud, address);
2144 }
2145 #endif /* __PAGETABLE_PMD_FOLDED */
2146
2147 int make_pages_present(unsigned long addr, unsigned long end)
2148 {
2149         int ret, len, write;
2150         struct vm_area_struct * vma;
2151
2152         vma = find_vma(current->mm, addr);
2153         if (!vma)
2154                 return -1;
2155         write = (vma->vm_flags & VM_WRITE) != 0;
2156         if (addr >= end)
2157                 BUG();
2158         if (end > vma->vm_end)
2159                 BUG();
2160         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2161         ret = get_user_pages(current, current->mm, addr,
2162                         len, write, 0, NULL, NULL);
2163         if (ret < 0)
2164                 return ret;
2165         return ret == len ? 0 : -1;
2166 }
2167
2168 /* 
2169  * Map a vmalloc()-space virtual address to the physical page.
2170  */
2171 struct page * vmalloc_to_page(void * vmalloc_addr)
2172 {
2173         unsigned long addr = (unsigned long) vmalloc_addr;
2174         struct page *page = NULL;
2175         pgd_t *pgd = pgd_offset_k(addr);
2176         pud_t *pud;
2177         pmd_t *pmd;
2178         pte_t *ptep, pte;
2179   
2180         if (!pgd_none(*pgd)) {
2181                 pud = pud_offset(pgd, addr);
2182                 if (!pud_none(*pud)) {
2183                         pmd = pmd_offset(pud, addr);
2184                         if (!pmd_none(*pmd)) {
2185                                 ptep = pte_offset_map(pmd, addr);
2186                                 pte = *ptep;
2187                                 if (pte_present(pte))
2188                                         page = pte_page(pte);
2189                                 pte_unmap(ptep);
2190                         }
2191                 }
2192         }
2193         return page;
2194 }
2195
2196 EXPORT_SYMBOL(vmalloc_to_page);
2197
2198 /*
2199  * Map a vmalloc()-space virtual address to the physical page frame number.
2200  */
2201 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2202 {
2203         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2204 }
2205
2206 EXPORT_SYMBOL(vmalloc_to_pfn);
2207
2208 /*
2209  * update_mem_hiwater
2210  *      - update per process rss and vm high water data
2211  */
2212 void update_mem_hiwater(struct task_struct *tsk)
2213 {
2214         if (tsk->mm) {
2215                 unsigned long rss = get_mm_rss(tsk->mm);
2216
2217                 if (tsk->mm->hiwater_rss < rss)
2218                         tsk->mm->hiwater_rss = rss;
2219                 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2220                         tsk->mm->hiwater_vm = tsk->mm->total_vm;
2221         }
2222 }
2223
2224 #if !defined(__HAVE_ARCH_GATE_AREA)
2225
2226 #if defined(AT_SYSINFO_EHDR)
2227 static struct vm_area_struct gate_vma;
2228
2229 static int __init gate_vma_init(void)
2230 {
2231         gate_vma.vm_mm = NULL;
2232         gate_vma.vm_start = FIXADDR_USER_START;
2233         gate_vma.vm_end = FIXADDR_USER_END;
2234         gate_vma.vm_page_prot = PAGE_READONLY;
2235         gate_vma.vm_flags = 0;
2236         return 0;
2237 }
2238 __initcall(gate_vma_init);
2239 #endif
2240
2241 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2242 {
2243 #ifdef AT_SYSINFO_EHDR
2244         return &gate_vma;
2245 #else
2246         return NULL;
2247 #endif
2248 }
2249
2250 int in_gate_area_no_task(unsigned long addr)
2251 {
2252 #ifdef AT_SYSINFO_EHDR
2253         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2254                 return 1;
2255 #endif
2256         return 0;
2257 }
2258
2259 #endif  /* __HAVE_ARCH_GATE_AREA */