Merge tag 'for-4.20/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 /*
190  * Note: this doesn't free the actual pages themselves. That
191  * has been handled earlier when unmapping all the memory regions.
192  */
193 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
194                            unsigned long addr)
195 {
196         pgtable_t token = pmd_pgtable(*pmd);
197         pmd_clear(pmd);
198         pte_free_tlb(tlb, token, addr);
199         mm_dec_nr_ptes(tlb->mm);
200 }
201
202 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
203                                 unsigned long addr, unsigned long end,
204                                 unsigned long floor, unsigned long ceiling)
205 {
206         pmd_t *pmd;
207         unsigned long next;
208         unsigned long start;
209
210         start = addr;
211         pmd = pmd_offset(pud, addr);
212         do {
213                 next = pmd_addr_end(addr, end);
214                 if (pmd_none_or_clear_bad(pmd))
215                         continue;
216                 free_pte_range(tlb, pmd, addr);
217         } while (pmd++, addr = next, addr != end);
218
219         start &= PUD_MASK;
220         if (start < floor)
221                 return;
222         if (ceiling) {
223                 ceiling &= PUD_MASK;
224                 if (!ceiling)
225                         return;
226         }
227         if (end - 1 > ceiling - 1)
228                 return;
229
230         pmd = pmd_offset(pud, start);
231         pud_clear(pud);
232         pmd_free_tlb(tlb, pmd, start);
233         mm_dec_nr_pmds(tlb->mm);
234 }
235
236 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pud_t *pud;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pud = pud_offset(p4d, addr);
246         do {
247                 next = pud_addr_end(addr, end);
248                 if (pud_none_or_clear_bad(pud))
249                         continue;
250                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
251         } while (pud++, addr = next, addr != end);
252
253         start &= P4D_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= P4D_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pud = pud_offset(p4d, start);
265         p4d_clear(p4d);
266         pud_free_tlb(tlb, pud, start);
267         mm_dec_nr_puds(tlb->mm);
268 }
269
270 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         p4d_t *p4d;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         p4d = p4d_offset(pgd, addr);
280         do {
281                 next = p4d_addr_end(addr, end);
282                 if (p4d_none_or_clear_bad(p4d))
283                         continue;
284                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
285         } while (p4d++, addr = next, addr != end);
286
287         start &= PGDIR_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= PGDIR_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         p4d = p4d_offset(pgd, start);
299         pgd_clear(pgd);
300         p4d_free_tlb(tlb, p4d, start);
301 }
302
303 /*
304  * This function frees user-level page tables of a process.
305  */
306 void free_pgd_range(struct mmu_gather *tlb,
307                         unsigned long addr, unsigned long end,
308                         unsigned long floor, unsigned long ceiling)
309 {
310         pgd_t *pgd;
311         unsigned long next;
312
313         /*
314          * The next few lines have given us lots of grief...
315          *
316          * Why are we testing PMD* at this top level?  Because often
317          * there will be no work to do at all, and we'd prefer not to
318          * go all the way down to the bottom just to discover that.
319          *
320          * Why all these "- 1"s?  Because 0 represents both the bottom
321          * of the address space and the top of it (using -1 for the
322          * top wouldn't help much: the masks would do the wrong thing).
323          * The rule is that addr 0 and floor 0 refer to the bottom of
324          * the address space, but end 0 and ceiling 0 refer to the top
325          * Comparisons need to use "end - 1" and "ceiling - 1" (though
326          * that end 0 case should be mythical).
327          *
328          * Wherever addr is brought up or ceiling brought down, we must
329          * be careful to reject "the opposite 0" before it confuses the
330          * subsequent tests.  But what about where end is brought down
331          * by PMD_SIZE below? no, end can't go down to 0 there.
332          *
333          * Whereas we round start (addr) and ceiling down, by different
334          * masks at different levels, in order to test whether a table
335          * now has no other vmas using it, so can be freed, we don't
336          * bother to round floor or end up - the tests don't need that.
337          */
338
339         addr &= PMD_MASK;
340         if (addr < floor) {
341                 addr += PMD_SIZE;
342                 if (!addr)
343                         return;
344         }
345         if (ceiling) {
346                 ceiling &= PMD_MASK;
347                 if (!ceiling)
348                         return;
349         }
350         if (end - 1 > ceiling - 1)
351                 end -= PMD_SIZE;
352         if (addr > end - 1)
353                 return;
354         /*
355          * We add page table cache pages with PAGE_SIZE,
356          * (see pte_free_tlb()), flush the tlb if we need
357          */
358         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
359         pgd = pgd_offset(tlb->mm, addr);
360         do {
361                 next = pgd_addr_end(addr, end);
362                 if (pgd_none_or_clear_bad(pgd))
363                         continue;
364                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
365         } while (pgd++, addr = next, addr != end);
366 }
367
368 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
369                 unsigned long floor, unsigned long ceiling)
370 {
371         while (vma) {
372                 struct vm_area_struct *next = vma->vm_next;
373                 unsigned long addr = vma->vm_start;
374
375                 /*
376                  * Hide vma from rmap and truncate_pagecache before freeing
377                  * pgtables
378                  */
379                 unlink_anon_vmas(vma);
380                 unlink_file_vma(vma);
381
382                 if (is_vm_hugetlb_page(vma)) {
383                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
384                                 floor, next ? next->vm_start : ceiling);
385                 } else {
386                         /*
387                          * Optimization: gather nearby vmas into one call down
388                          */
389                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
390                                && !is_vm_hugetlb_page(next)) {
391                                 vma = next;
392                                 next = vma->vm_next;
393                                 unlink_anon_vmas(vma);
394                                 unlink_file_vma(vma);
395                         }
396                         free_pgd_range(tlb, addr, vma->vm_end,
397                                 floor, next ? next->vm_start : ceiling);
398                 }
399                 vma = next;
400         }
401 }
402
403 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
404 {
405         spinlock_t *ptl;
406         pgtable_t new = pte_alloc_one(mm, address);
407         if (!new)
408                 return -ENOMEM;
409
410         /*
411          * Ensure all pte setup (eg. pte page lock and page clearing) are
412          * visible before the pte is made visible to other CPUs by being
413          * put into page tables.
414          *
415          * The other side of the story is the pointer chasing in the page
416          * table walking code (when walking the page table without locking;
417          * ie. most of the time). Fortunately, these data accesses consist
418          * of a chain of data-dependent loads, meaning most CPUs (alpha
419          * being the notable exception) will already guarantee loads are
420          * seen in-order. See the alpha page table accessors for the
421          * smp_read_barrier_depends() barriers in page table walking code.
422          */
423         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
424
425         ptl = pmd_lock(mm, pmd);
426         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
427                 mm_inc_nr_ptes(mm);
428                 pmd_populate(mm, pmd, new);
429                 new = NULL;
430         }
431         spin_unlock(ptl);
432         if (new)
433                 pte_free(mm, new);
434         return 0;
435 }
436
437 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
438 {
439         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
440         if (!new)
441                 return -ENOMEM;
442
443         smp_wmb(); /* See comment in __pte_alloc */
444
445         spin_lock(&init_mm.page_table_lock);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 pmd_populate_kernel(&init_mm, pmd, new);
448                 new = NULL;
449         }
450         spin_unlock(&init_mm.page_table_lock);
451         if (new)
452                 pte_free_kernel(&init_mm, new);
453         return 0;
454 }
455
456 static inline void init_rss_vec(int *rss)
457 {
458         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459 }
460
461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
462 {
463         int i;
464
465         if (current->mm == mm)
466                 sync_mm_rss(mm);
467         for (i = 0; i < NR_MM_COUNTERS; i++)
468                 if (rss[i])
469                         add_mm_counter(mm, i, rss[i]);
470 }
471
472 /*
473  * This function is called to print an error when a bad pte
474  * is found. For example, we might have a PFN-mapped pte in
475  * a region that doesn't allow it.
476  *
477  * The calling function must still handle the error.
478  */
479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480                           pte_t pte, struct page *page)
481 {
482         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483         p4d_t *p4d = p4d_offset(pgd, addr);
484         pud_t *pud = pud_offset(p4d, addr);
485         pmd_t *pmd = pmd_offset(pud, addr);
486         struct address_space *mapping;
487         pgoff_t index;
488         static unsigned long resume;
489         static unsigned long nr_shown;
490         static unsigned long nr_unshown;
491
492         /*
493          * Allow a burst of 60 reports, then keep quiet for that minute;
494          * or allow a steady drip of one report per second.
495          */
496         if (nr_shown == 60) {
497                 if (time_before(jiffies, resume)) {
498                         nr_unshown++;
499                         return;
500                 }
501                 if (nr_unshown) {
502                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
503                                  nr_unshown);
504                         nr_unshown = 0;
505                 }
506                 nr_shown = 0;
507         }
508         if (nr_shown++ == 0)
509                 resume = jiffies + 60 * HZ;
510
511         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512         index = linear_page_index(vma, addr);
513
514         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
515                  current->comm,
516                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
517         if (page)
518                 dump_page(page, "bad pte");
519         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
521         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
522                  vma->vm_file,
523                  vma->vm_ops ? vma->vm_ops->fault : NULL,
524                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
525                  mapping ? mapping->a_ops->readpage : NULL);
526         dump_stack();
527         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
528 }
529
530 /*
531  * vm_normal_page -- This function gets the "struct page" associated with a pte.
532  *
533  * "Special" mappings do not wish to be associated with a "struct page" (either
534  * it doesn't exist, or it exists but they don't want to touch it). In this
535  * case, NULL is returned here. "Normal" mappings do have a struct page.
536  *
537  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538  * pte bit, in which case this function is trivial. Secondly, an architecture
539  * may not have a spare pte bit, which requires a more complicated scheme,
540  * described below.
541  *
542  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543  * special mapping (even if there are underlying and valid "struct pages").
544  * COWed pages of a VM_PFNMAP are always normal.
545  *
546  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
548  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549  * mapping will always honor the rule
550  *
551  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
552  *
553  * And for normal mappings this is false.
554  *
555  * This restricts such mappings to be a linear translation from virtual address
556  * to pfn. To get around this restriction, we allow arbitrary mappings so long
557  * as the vma is not a COW mapping; in that case, we know that all ptes are
558  * special (because none can have been COWed).
559  *
560  *
561  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
562  *
563  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564  * page" backing, however the difference is that _all_ pages with a struct
565  * page (that is, those where pfn_valid is true) are refcounted and considered
566  * normal pages by the VM. The disadvantage is that pages are refcounted
567  * (which can be slower and simply not an option for some PFNMAP users). The
568  * advantage is that we don't have to follow the strict linearity rule of
569  * PFNMAP mappings in order to support COWable mappings.
570  *
571  */
572 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
573                              pte_t pte, bool with_public_device)
574 {
575         unsigned long pfn = pte_pfn(pte);
576
577         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
578                 if (likely(!pte_special(pte)))
579                         goto check_pfn;
580                 if (vma->vm_ops && vma->vm_ops->find_special_page)
581                         return vma->vm_ops->find_special_page(vma, addr);
582                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
583                         return NULL;
584                 if (is_zero_pfn(pfn))
585                         return NULL;
586
587                 /*
588                  * Device public pages are special pages (they are ZONE_DEVICE
589                  * pages but different from persistent memory). They behave
590                  * allmost like normal pages. The difference is that they are
591                  * not on the lru and thus should never be involve with any-
592                  * thing that involve lru manipulation (mlock, numa balancing,
593                  * ...).
594                  *
595                  * This is why we still want to return NULL for such page from
596                  * vm_normal_page() so that we do not have to special case all
597                  * call site of vm_normal_page().
598                  */
599                 if (likely(pfn <= highest_memmap_pfn)) {
600                         struct page *page = pfn_to_page(pfn);
601
602                         if (is_device_public_page(page)) {
603                                 if (with_public_device)
604                                         return page;
605                                 return NULL;
606                         }
607                 }
608
609                 if (pte_devmap(pte))
610                         return NULL;
611
612                 print_bad_pte(vma, addr, pte, NULL);
613                 return NULL;
614         }
615
616         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619                 if (vma->vm_flags & VM_MIXEDMAP) {
620                         if (!pfn_valid(pfn))
621                                 return NULL;
622                         goto out;
623                 } else {
624                         unsigned long off;
625                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
626                         if (pfn == vma->vm_pgoff + off)
627                                 return NULL;
628                         if (!is_cow_mapping(vma->vm_flags))
629                                 return NULL;
630                 }
631         }
632
633         if (is_zero_pfn(pfn))
634                 return NULL;
635
636 check_pfn:
637         if (unlikely(pfn > highest_memmap_pfn)) {
638                 print_bad_pte(vma, addr, pte, NULL);
639                 return NULL;
640         }
641
642         /*
643          * NOTE! We still have PageReserved() pages in the page tables.
644          * eg. VDSO mappings can cause them to exist.
645          */
646 out:
647         return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652                                 pmd_t pmd)
653 {
654         unsigned long pfn = pmd_pfn(pmd);
655
656         /*
657          * There is no pmd_special() but there may be special pmds, e.g.
658          * in a direct-access (dax) mapping, so let's just replicate the
659          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660          */
661         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662                 if (vma->vm_flags & VM_MIXEDMAP) {
663                         if (!pfn_valid(pfn))
664                                 return NULL;
665                         goto out;
666                 } else {
667                         unsigned long off;
668                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
669                         if (pfn == vma->vm_pgoff + off)
670                                 return NULL;
671                         if (!is_cow_mapping(vma->vm_flags))
672                                 return NULL;
673                 }
674         }
675
676         if (pmd_devmap(pmd))
677                 return NULL;
678         if (is_zero_pfn(pfn))
679                 return NULL;
680         if (unlikely(pfn > highest_memmap_pfn))
681                 return NULL;
682
683         /*
684          * NOTE! We still have PageReserved() pages in the page tables.
685          * eg. VDSO mappings can cause them to exist.
686          */
687 out:
688         return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697
698 static inline unsigned long
699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701                 unsigned long addr, int *rss)
702 {
703         unsigned long vm_flags = vma->vm_flags;
704         pte_t pte = *src_pte;
705         struct page *page;
706
707         /* pte contains position in swap or file, so copy. */
708         if (unlikely(!pte_present(pte))) {
709                 swp_entry_t entry = pte_to_swp_entry(pte);
710
711                 if (likely(!non_swap_entry(entry))) {
712                         if (swap_duplicate(entry) < 0)
713                                 return entry.val;
714
715                         /* make sure dst_mm is on swapoff's mmlist. */
716                         if (unlikely(list_empty(&dst_mm->mmlist))) {
717                                 spin_lock(&mmlist_lock);
718                                 if (list_empty(&dst_mm->mmlist))
719                                         list_add(&dst_mm->mmlist,
720                                                         &src_mm->mmlist);
721                                 spin_unlock(&mmlist_lock);
722                         }
723                         rss[MM_SWAPENTS]++;
724                 } else if (is_migration_entry(entry)) {
725                         page = migration_entry_to_page(entry);
726
727                         rss[mm_counter(page)]++;
728
729                         if (is_write_migration_entry(entry) &&
730                                         is_cow_mapping(vm_flags)) {
731                                 /*
732                                  * COW mappings require pages in both
733                                  * parent and child to be set to read.
734                                  */
735                                 make_migration_entry_read(&entry);
736                                 pte = swp_entry_to_pte(entry);
737                                 if (pte_swp_soft_dirty(*src_pte))
738                                         pte = pte_swp_mksoft_dirty(pte);
739                                 set_pte_at(src_mm, addr, src_pte, pte);
740                         }
741                 } else if (is_device_private_entry(entry)) {
742                         page = device_private_entry_to_page(entry);
743
744                         /*
745                          * Update rss count even for unaddressable pages, as
746                          * they should treated just like normal pages in this
747                          * respect.
748                          *
749                          * We will likely want to have some new rss counters
750                          * for unaddressable pages, at some point. But for now
751                          * keep things as they are.
752                          */
753                         get_page(page);
754                         rss[mm_counter(page)]++;
755                         page_dup_rmap(page, false);
756
757                         /*
758                          * We do not preserve soft-dirty information, because so
759                          * far, checkpoint/restore is the only feature that
760                          * requires that. And checkpoint/restore does not work
761                          * when a device driver is involved (you cannot easily
762                          * save and restore device driver state).
763                          */
764                         if (is_write_device_private_entry(entry) &&
765                             is_cow_mapping(vm_flags)) {
766                                 make_device_private_entry_read(&entry);
767                                 pte = swp_entry_to_pte(entry);
768                                 set_pte_at(src_mm, addr, src_pte, pte);
769                         }
770                 }
771                 goto out_set_pte;
772         }
773
774         /*
775          * If it's a COW mapping, write protect it both
776          * in the parent and the child
777          */
778         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779                 ptep_set_wrprotect(src_mm, addr, src_pte);
780                 pte = pte_wrprotect(pte);
781         }
782
783         /*
784          * If it's a shared mapping, mark it clean in
785          * the child
786          */
787         if (vm_flags & VM_SHARED)
788                 pte = pte_mkclean(pte);
789         pte = pte_mkold(pte);
790
791         page = vm_normal_page(vma, addr, pte);
792         if (page) {
793                 get_page(page);
794                 page_dup_rmap(page, false);
795                 rss[mm_counter(page)]++;
796         } else if (pte_devmap(pte)) {
797                 page = pte_page(pte);
798
799                 /*
800                  * Cache coherent device memory behave like regular page and
801                  * not like persistent memory page. For more informations see
802                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
803                  */
804                 if (is_device_public_page(page)) {
805                         get_page(page);
806                         page_dup_rmap(page, false);
807                         rss[mm_counter(page)]++;
808                 }
809         }
810
811 out_set_pte:
812         set_pte_at(dst_mm, addr, dst_pte, pte);
813         return 0;
814 }
815
816 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
817                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
818                    unsigned long addr, unsigned long end)
819 {
820         pte_t *orig_src_pte, *orig_dst_pte;
821         pte_t *src_pte, *dst_pte;
822         spinlock_t *src_ptl, *dst_ptl;
823         int progress = 0;
824         int rss[NR_MM_COUNTERS];
825         swp_entry_t entry = (swp_entry_t){0};
826
827 again:
828         init_rss_vec(rss);
829
830         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
831         if (!dst_pte)
832                 return -ENOMEM;
833         src_pte = pte_offset_map(src_pmd, addr);
834         src_ptl = pte_lockptr(src_mm, src_pmd);
835         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
836         orig_src_pte = src_pte;
837         orig_dst_pte = dst_pte;
838         arch_enter_lazy_mmu_mode();
839
840         do {
841                 /*
842                  * We are holding two locks at this point - either of them
843                  * could generate latencies in another task on another CPU.
844                  */
845                 if (progress >= 32) {
846                         progress = 0;
847                         if (need_resched() ||
848                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
849                                 break;
850                 }
851                 if (pte_none(*src_pte)) {
852                         progress++;
853                         continue;
854                 }
855                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
856                                                         vma, addr, rss);
857                 if (entry.val)
858                         break;
859                 progress += 8;
860         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
861
862         arch_leave_lazy_mmu_mode();
863         spin_unlock(src_ptl);
864         pte_unmap(orig_src_pte);
865         add_mm_rss_vec(dst_mm, rss);
866         pte_unmap_unlock(orig_dst_pte, dst_ptl);
867         cond_resched();
868
869         if (entry.val) {
870                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
871                         return -ENOMEM;
872                 progress = 0;
873         }
874         if (addr != end)
875                 goto again;
876         return 0;
877 }
878
879 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
881                 unsigned long addr, unsigned long end)
882 {
883         pmd_t *src_pmd, *dst_pmd;
884         unsigned long next;
885
886         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
887         if (!dst_pmd)
888                 return -ENOMEM;
889         src_pmd = pmd_offset(src_pud, addr);
890         do {
891                 next = pmd_addr_end(addr, end);
892                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
893                         || pmd_devmap(*src_pmd)) {
894                         int err;
895                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
896                         err = copy_huge_pmd(dst_mm, src_mm,
897                                             dst_pmd, src_pmd, addr, vma);
898                         if (err == -ENOMEM)
899                                 return -ENOMEM;
900                         if (!err)
901                                 continue;
902                         /* fall through */
903                 }
904                 if (pmd_none_or_clear_bad(src_pmd))
905                         continue;
906                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
907                                                 vma, addr, next))
908                         return -ENOMEM;
909         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
910         return 0;
911 }
912
913 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
915                 unsigned long addr, unsigned long end)
916 {
917         pud_t *src_pud, *dst_pud;
918         unsigned long next;
919
920         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
921         if (!dst_pud)
922                 return -ENOMEM;
923         src_pud = pud_offset(src_p4d, addr);
924         do {
925                 next = pud_addr_end(addr, end);
926                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
927                         int err;
928
929                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
930                         err = copy_huge_pud(dst_mm, src_mm,
931                                             dst_pud, src_pud, addr, vma);
932                         if (err == -ENOMEM)
933                                 return -ENOMEM;
934                         if (!err)
935                                 continue;
936                         /* fall through */
937                 }
938                 if (pud_none_or_clear_bad(src_pud))
939                         continue;
940                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
941                                                 vma, addr, next))
942                         return -ENOMEM;
943         } while (dst_pud++, src_pud++, addr = next, addr != end);
944         return 0;
945 }
946
947 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
949                 unsigned long addr, unsigned long end)
950 {
951         p4d_t *src_p4d, *dst_p4d;
952         unsigned long next;
953
954         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
955         if (!dst_p4d)
956                 return -ENOMEM;
957         src_p4d = p4d_offset(src_pgd, addr);
958         do {
959                 next = p4d_addr_end(addr, end);
960                 if (p4d_none_or_clear_bad(src_p4d))
961                         continue;
962                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
963                                                 vma, addr, next))
964                         return -ENOMEM;
965         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
966         return 0;
967 }
968
969 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970                 struct vm_area_struct *vma)
971 {
972         pgd_t *src_pgd, *dst_pgd;
973         unsigned long next;
974         unsigned long addr = vma->vm_start;
975         unsigned long end = vma->vm_end;
976         unsigned long mmun_start;       /* For mmu_notifiers */
977         unsigned long mmun_end;         /* For mmu_notifiers */
978         bool is_cow;
979         int ret;
980
981         /*
982          * Don't copy ptes where a page fault will fill them correctly.
983          * Fork becomes much lighter when there are big shared or private
984          * readonly mappings. The tradeoff is that copy_page_range is more
985          * efficient than faulting.
986          */
987         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988                         !vma->anon_vma)
989                 return 0;
990
991         if (is_vm_hugetlb_page(vma))
992                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
994         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995                 /*
996                  * We do not free on error cases below as remove_vma
997                  * gets called on error from higher level routine
998                  */
999                 ret = track_pfn_copy(vma);
1000                 if (ret)
1001                         return ret;
1002         }
1003
1004         /*
1005          * We need to invalidate the secondary MMU mappings only when
1006          * there could be a permission downgrade on the ptes of the
1007          * parent mm. And a permission downgrade will only happen if
1008          * is_cow_mapping() returns true.
1009          */
1010         is_cow = is_cow_mapping(vma->vm_flags);
1011         mmun_start = addr;
1012         mmun_end   = end;
1013         if (is_cow)
1014                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1015                                                     mmun_end);
1016
1017         ret = 0;
1018         dst_pgd = pgd_offset(dst_mm, addr);
1019         src_pgd = pgd_offset(src_mm, addr);
1020         do {
1021                 next = pgd_addr_end(addr, end);
1022                 if (pgd_none_or_clear_bad(src_pgd))
1023                         continue;
1024                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1025                                             vma, addr, next))) {
1026                         ret = -ENOMEM;
1027                         break;
1028                 }
1029         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1030
1031         if (is_cow)
1032                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1033         return ret;
1034 }
1035
1036 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1037                                 struct vm_area_struct *vma, pmd_t *pmd,
1038                                 unsigned long addr, unsigned long end,
1039                                 struct zap_details *details)
1040 {
1041         struct mm_struct *mm = tlb->mm;
1042         int force_flush = 0;
1043         int rss[NR_MM_COUNTERS];
1044         spinlock_t *ptl;
1045         pte_t *start_pte;
1046         pte_t *pte;
1047         swp_entry_t entry;
1048
1049         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1050 again:
1051         init_rss_vec(rss);
1052         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053         pte = start_pte;
1054         flush_tlb_batched_pending(mm);
1055         arch_enter_lazy_mmu_mode();
1056         do {
1057                 pte_t ptent = *pte;
1058                 if (pte_none(ptent))
1059                         continue;
1060
1061                 if (pte_present(ptent)) {
1062                         struct page *page;
1063
1064                         page = _vm_normal_page(vma, addr, ptent, true);
1065                         if (unlikely(details) && page) {
1066                                 /*
1067                                  * unmap_shared_mapping_pages() wants to
1068                                  * invalidate cache without truncating:
1069                                  * unmap shared but keep private pages.
1070                                  */
1071                                 if (details->check_mapping &&
1072                                     details->check_mapping != page_rmapping(page))
1073                                         continue;
1074                         }
1075                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1076                                                         tlb->fullmm);
1077                         tlb_remove_tlb_entry(tlb, pte, addr);
1078                         if (unlikely(!page))
1079                                 continue;
1080
1081                         if (!PageAnon(page)) {
1082                                 if (pte_dirty(ptent)) {
1083                                         force_flush = 1;
1084                                         set_page_dirty(page);
1085                                 }
1086                                 if (pte_young(ptent) &&
1087                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1088                                         mark_page_accessed(page);
1089                         }
1090                         rss[mm_counter(page)]--;
1091                         page_remove_rmap(page, false);
1092                         if (unlikely(page_mapcount(page) < 0))
1093                                 print_bad_pte(vma, addr, ptent, page);
1094                         if (unlikely(__tlb_remove_page(tlb, page))) {
1095                                 force_flush = 1;
1096                                 addr += PAGE_SIZE;
1097                                 break;
1098                         }
1099                         continue;
1100                 }
1101
1102                 entry = pte_to_swp_entry(ptent);
1103                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104                         struct page *page = device_private_entry_to_page(entry);
1105
1106                         if (unlikely(details && details->check_mapping)) {
1107                                 /*
1108                                  * unmap_shared_mapping_pages() wants to
1109                                  * invalidate cache without truncating:
1110                                  * unmap shared but keep private pages.
1111                                  */
1112                                 if (details->check_mapping !=
1113                                     page_rmapping(page))
1114                                         continue;
1115                         }
1116
1117                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118                         rss[mm_counter(page)]--;
1119                         page_remove_rmap(page, false);
1120                         put_page(page);
1121                         continue;
1122                 }
1123
1124                 /* If details->check_mapping, we leave swap entries. */
1125                 if (unlikely(details))
1126                         continue;
1127
1128                 entry = pte_to_swp_entry(ptent);
1129                 if (!non_swap_entry(entry))
1130                         rss[MM_SWAPENTS]--;
1131                 else if (is_migration_entry(entry)) {
1132                         struct page *page;
1133
1134                         page = migration_entry_to_page(entry);
1135                         rss[mm_counter(page)]--;
1136                 }
1137                 if (unlikely(!free_swap_and_cache(entry)))
1138                         print_bad_pte(vma, addr, ptent, NULL);
1139                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140         } while (pte++, addr += PAGE_SIZE, addr != end);
1141
1142         add_mm_rss_vec(mm, rss);
1143         arch_leave_lazy_mmu_mode();
1144
1145         /* Do the actual TLB flush before dropping ptl */
1146         if (force_flush)
1147                 tlb_flush_mmu_tlbonly(tlb);
1148         pte_unmap_unlock(start_pte, ptl);
1149
1150         /*
1151          * If we forced a TLB flush (either due to running out of
1152          * batch buffers or because we needed to flush dirty TLB
1153          * entries before releasing the ptl), free the batched
1154          * memory too. Restart if we didn't do everything.
1155          */
1156         if (force_flush) {
1157                 force_flush = 0;
1158                 tlb_flush_mmu_free(tlb);
1159                 if (addr != end)
1160                         goto again;
1161         }
1162
1163         return addr;
1164 }
1165
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167                                 struct vm_area_struct *vma, pud_t *pud,
1168                                 unsigned long addr, unsigned long end,
1169                                 struct zap_details *details)
1170 {
1171         pmd_t *pmd;
1172         unsigned long next;
1173
1174         pmd = pmd_offset(pud, addr);
1175         do {
1176                 next = pmd_addr_end(addr, end);
1177                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178                         if (next - addr != HPAGE_PMD_SIZE)
1179                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1180                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181                                 goto next;
1182                         /* fall through */
1183                 }
1184                 /*
1185                  * Here there can be other concurrent MADV_DONTNEED or
1186                  * trans huge page faults running, and if the pmd is
1187                  * none or trans huge it can change under us. This is
1188                  * because MADV_DONTNEED holds the mmap_sem in read
1189                  * mode.
1190                  */
1191                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192                         goto next;
1193                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195                 cond_resched();
1196         } while (pmd++, addr = next, addr != end);
1197
1198         return addr;
1199 }
1200
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202                                 struct vm_area_struct *vma, p4d_t *p4d,
1203                                 unsigned long addr, unsigned long end,
1204                                 struct zap_details *details)
1205 {
1206         pud_t *pud;
1207         unsigned long next;
1208
1209         pud = pud_offset(p4d, addr);
1210         do {
1211                 next = pud_addr_end(addr, end);
1212                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213                         if (next - addr != HPAGE_PUD_SIZE) {
1214                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215                                 split_huge_pud(vma, pud, addr);
1216                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1217                                 goto next;
1218                         /* fall through */
1219                 }
1220                 if (pud_none_or_clear_bad(pud))
1221                         continue;
1222                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224                 cond_resched();
1225         } while (pud++, addr = next, addr != end);
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pgd_t *pgd,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         p4d_t *p4d;
1236         unsigned long next;
1237
1238         p4d = p4d_offset(pgd, addr);
1239         do {
1240                 next = p4d_addr_end(addr, end);
1241                 if (p4d_none_or_clear_bad(p4d))
1242                         continue;
1243                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244         } while (p4d++, addr = next, addr != end);
1245
1246         return addr;
1247 }
1248
1249 void unmap_page_range(struct mmu_gather *tlb,
1250                              struct vm_area_struct *vma,
1251                              unsigned long addr, unsigned long end,
1252                              struct zap_details *details)
1253 {
1254         pgd_t *pgd;
1255         unsigned long next;
1256
1257         BUG_ON(addr >= end);
1258         tlb_start_vma(tlb, vma);
1259         pgd = pgd_offset(vma->vm_mm, addr);
1260         do {
1261                 next = pgd_addr_end(addr, end);
1262                 if (pgd_none_or_clear_bad(pgd))
1263                         continue;
1264                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265         } while (pgd++, addr = next, addr != end);
1266         tlb_end_vma(tlb, vma);
1267 }
1268
1269
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271                 struct vm_area_struct *vma, unsigned long start_addr,
1272                 unsigned long end_addr,
1273                 struct zap_details *details)
1274 {
1275         unsigned long start = max(vma->vm_start, start_addr);
1276         unsigned long end;
1277
1278         if (start >= vma->vm_end)
1279                 return;
1280         end = min(vma->vm_end, end_addr);
1281         if (end <= vma->vm_start)
1282                 return;
1283
1284         if (vma->vm_file)
1285                 uprobe_munmap(vma, start, end);
1286
1287         if (unlikely(vma->vm_flags & VM_PFNMAP))
1288                 untrack_pfn(vma, 0, 0);
1289
1290         if (start != end) {
1291                 if (unlikely(is_vm_hugetlb_page(vma))) {
1292                         /*
1293                          * It is undesirable to test vma->vm_file as it
1294                          * should be non-null for valid hugetlb area.
1295                          * However, vm_file will be NULL in the error
1296                          * cleanup path of mmap_region. When
1297                          * hugetlbfs ->mmap method fails,
1298                          * mmap_region() nullifies vma->vm_file
1299                          * before calling this function to clean up.
1300                          * Since no pte has actually been setup, it is
1301                          * safe to do nothing in this case.
1302                          */
1303                         if (vma->vm_file) {
1304                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1305                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1307                         }
1308                 } else
1309                         unmap_page_range(tlb, vma, start, end, details);
1310         }
1311 }
1312
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332                 struct vm_area_struct *vma, unsigned long start_addr,
1333                 unsigned long end_addr)
1334 {
1335         struct mm_struct *mm = vma->vm_mm;
1336
1337         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1338         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1339                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1340         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1341 }
1342
1343 /**
1344  * zap_page_range - remove user pages in a given range
1345  * @vma: vm_area_struct holding the applicable pages
1346  * @start: starting address of pages to zap
1347  * @size: number of bytes to zap
1348  *
1349  * Caller must protect the VMA list
1350  */
1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1352                 unsigned long size)
1353 {
1354         struct mm_struct *mm = vma->vm_mm;
1355         struct mmu_gather tlb;
1356         unsigned long end = start + size;
1357
1358         lru_add_drain();
1359         tlb_gather_mmu(&tlb, mm, start, end);
1360         update_hiwater_rss(mm);
1361         mmu_notifier_invalidate_range_start(mm, start, end);
1362         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1363                 unmap_single_vma(&tlb, vma, start, end, NULL);
1364         mmu_notifier_invalidate_range_end(mm, start, end);
1365         tlb_finish_mmu(&tlb, start, end);
1366 }
1367
1368 /**
1369  * zap_page_range_single - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @address: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of shared cache invalidation
1374  *
1375  * The range must fit into one VMA.
1376  */
1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1378                 unsigned long size, struct zap_details *details)
1379 {
1380         struct mm_struct *mm = vma->vm_mm;
1381         struct mmu_gather tlb;
1382         unsigned long end = address + size;
1383
1384         lru_add_drain();
1385         tlb_gather_mmu(&tlb, mm, address, end);
1386         update_hiwater_rss(mm);
1387         mmu_notifier_invalidate_range_start(mm, address, end);
1388         unmap_single_vma(&tlb, vma, address, end, details);
1389         mmu_notifier_invalidate_range_end(mm, address, end);
1390         tlb_finish_mmu(&tlb, address, end);
1391 }
1392
1393 /**
1394  * zap_vma_ptes - remove ptes mapping the vma
1395  * @vma: vm_area_struct holding ptes to be zapped
1396  * @address: starting address of pages to zap
1397  * @size: number of bytes to zap
1398  *
1399  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400  *
1401  * The entire address range must be fully contained within the vma.
1402  *
1403  */
1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405                 unsigned long size)
1406 {
1407         if (address < vma->vm_start || address + size > vma->vm_end ||
1408                         !(vma->vm_flags & VM_PFNMAP))
1409                 return;
1410
1411         zap_page_range_single(vma, address, size, NULL);
1412 }
1413 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1414
1415 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416                         spinlock_t **ptl)
1417 {
1418         pgd_t *pgd;
1419         p4d_t *p4d;
1420         pud_t *pud;
1421         pmd_t *pmd;
1422
1423         pgd = pgd_offset(mm, addr);
1424         p4d = p4d_alloc(mm, pgd, addr);
1425         if (!p4d)
1426                 return NULL;
1427         pud = pud_alloc(mm, p4d, addr);
1428         if (!pud)
1429                 return NULL;
1430         pmd = pmd_alloc(mm, pud, addr);
1431         if (!pmd)
1432                 return NULL;
1433
1434         VM_BUG_ON(pmd_trans_huge(*pmd));
1435         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1436 }
1437
1438 /*
1439  * This is the old fallback for page remapping.
1440  *
1441  * For historical reasons, it only allows reserved pages. Only
1442  * old drivers should use this, and they needed to mark their
1443  * pages reserved for the old functions anyway.
1444  */
1445 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446                         struct page *page, pgprot_t prot)
1447 {
1448         struct mm_struct *mm = vma->vm_mm;
1449         int retval;
1450         pte_t *pte;
1451         spinlock_t *ptl;
1452
1453         retval = -EINVAL;
1454         if (PageAnon(page))
1455                 goto out;
1456         retval = -ENOMEM;
1457         flush_dcache_page(page);
1458         pte = get_locked_pte(mm, addr, &ptl);
1459         if (!pte)
1460                 goto out;
1461         retval = -EBUSY;
1462         if (!pte_none(*pte))
1463                 goto out_unlock;
1464
1465         /* Ok, finally just insert the thing.. */
1466         get_page(page);
1467         inc_mm_counter_fast(mm, mm_counter_file(page));
1468         page_add_file_rmap(page, false);
1469         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470
1471         retval = 0;
1472         pte_unmap_unlock(pte, ptl);
1473         return retval;
1474 out_unlock:
1475         pte_unmap_unlock(pte, ptl);
1476 out:
1477         return retval;
1478 }
1479
1480 /**
1481  * vm_insert_page - insert single page into user vma
1482  * @vma: user vma to map to
1483  * @addr: target user address of this page
1484  * @page: source kernel page
1485  *
1486  * This allows drivers to insert individual pages they've allocated
1487  * into a user vma.
1488  *
1489  * The page has to be a nice clean _individual_ kernel allocation.
1490  * If you allocate a compound page, you need to have marked it as
1491  * such (__GFP_COMP), or manually just split the page up yourself
1492  * (see split_page()).
1493  *
1494  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495  * took an arbitrary page protection parameter. This doesn't allow
1496  * that. Your vma protection will have to be set up correctly, which
1497  * means that if you want a shared writable mapping, you'd better
1498  * ask for a shared writable mapping!
1499  *
1500  * The page does not need to be reserved.
1501  *
1502  * Usually this function is called from f_op->mmap() handler
1503  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505  * function from other places, for example from page-fault handler.
1506  */
1507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508                         struct page *page)
1509 {
1510         if (addr < vma->vm_start || addr >= vma->vm_end)
1511                 return -EFAULT;
1512         if (!page_count(page))
1513                 return -EINVAL;
1514         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1517                 vma->vm_flags |= VM_MIXEDMAP;
1518         }
1519         return insert_page(vma, addr, page, vma->vm_page_prot);
1520 }
1521 EXPORT_SYMBOL(vm_insert_page);
1522
1523 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1525 {
1526         struct mm_struct *mm = vma->vm_mm;
1527         int retval;
1528         pte_t *pte, entry;
1529         spinlock_t *ptl;
1530
1531         retval = -ENOMEM;
1532         pte = get_locked_pte(mm, addr, &ptl);
1533         if (!pte)
1534                 goto out;
1535         retval = -EBUSY;
1536         if (!pte_none(*pte)) {
1537                 if (mkwrite) {
1538                         /*
1539                          * For read faults on private mappings the PFN passed
1540                          * in may not match the PFN we have mapped if the
1541                          * mapped PFN is a writeable COW page.  In the mkwrite
1542                          * case we are creating a writable PTE for a shared
1543                          * mapping and we expect the PFNs to match.
1544                          */
1545                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1546                                 goto out_unlock;
1547                         entry = *pte;
1548                         goto out_mkwrite;
1549                 } else
1550                         goto out_unlock;
1551         }
1552
1553         /* Ok, finally just insert the thing.. */
1554         if (pfn_t_devmap(pfn))
1555                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1556         else
1557                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1558
1559 out_mkwrite:
1560         if (mkwrite) {
1561                 entry = pte_mkyoung(entry);
1562                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1563         }
1564
1565         set_pte_at(mm, addr, pte, entry);
1566         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1567
1568         retval = 0;
1569 out_unlock:
1570         pte_unmap_unlock(pte, ptl);
1571 out:
1572         return retval;
1573 }
1574
1575 /**
1576  * vm_insert_pfn - insert single pfn into user vma
1577  * @vma: user vma to map to
1578  * @addr: target user address of this page
1579  * @pfn: source kernel pfn
1580  *
1581  * Similar to vm_insert_page, this allows drivers to insert individual pages
1582  * they've allocated into a user vma. Same comments apply.
1583  *
1584  * This function should only be called from a vm_ops->fault handler, and
1585  * in that case the handler should return NULL.
1586  *
1587  * vma cannot be a COW mapping.
1588  *
1589  * As this is called only for pages that do not currently exist, we
1590  * do not need to flush old virtual caches or the TLB.
1591  */
1592 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1593                         unsigned long pfn)
1594 {
1595         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1596 }
1597 EXPORT_SYMBOL(vm_insert_pfn);
1598
1599 /**
1600  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1601  * @vma: user vma to map to
1602  * @addr: target user address of this page
1603  * @pfn: source kernel pfn
1604  * @pgprot: pgprot flags for the inserted page
1605  *
1606  * This is exactly like vm_insert_pfn, except that it allows drivers to
1607  * to override pgprot on a per-page basis.
1608  *
1609  * This only makes sense for IO mappings, and it makes no sense for
1610  * cow mappings.  In general, using multiple vmas is preferable;
1611  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1612  * impractical.
1613  */
1614 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1615                         unsigned long pfn, pgprot_t pgprot)
1616 {
1617         int ret;
1618         /*
1619          * Technically, architectures with pte_special can avoid all these
1620          * restrictions (same for remap_pfn_range).  However we would like
1621          * consistency in testing and feature parity among all, so we should
1622          * try to keep these invariants in place for everybody.
1623          */
1624         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1625         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1626                                                 (VM_PFNMAP|VM_MIXEDMAP));
1627         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1628         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1629
1630         if (addr < vma->vm_start || addr >= vma->vm_end)
1631                 return -EFAULT;
1632
1633         if (!pfn_modify_allowed(pfn, pgprot))
1634                 return -EACCES;
1635
1636         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1637
1638         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1639                         false);
1640
1641         return ret;
1642 }
1643 EXPORT_SYMBOL(vm_insert_pfn_prot);
1644
1645 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1646 {
1647         /* these checks mirror the abort conditions in vm_normal_page */
1648         if (vma->vm_flags & VM_MIXEDMAP)
1649                 return true;
1650         if (pfn_t_devmap(pfn))
1651                 return true;
1652         if (pfn_t_special(pfn))
1653                 return true;
1654         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1655                 return true;
1656         return false;
1657 }
1658
1659 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1660                         pfn_t pfn, bool mkwrite)
1661 {
1662         pgprot_t pgprot = vma->vm_page_prot;
1663
1664         BUG_ON(!vm_mixed_ok(vma, pfn));
1665
1666         if (addr < vma->vm_start || addr >= vma->vm_end)
1667                 return -EFAULT;
1668
1669         track_pfn_insert(vma, &pgprot, pfn);
1670
1671         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1672                 return -EACCES;
1673
1674         /*
1675          * If we don't have pte special, then we have to use the pfn_valid()
1676          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1677          * refcount the page if pfn_valid is true (hence insert_page rather
1678          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1679          * without pte special, it would there be refcounted as a normal page.
1680          */
1681         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1682             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1683                 struct page *page;
1684
1685                 /*
1686                  * At this point we are committed to insert_page()
1687                  * regardless of whether the caller specified flags that
1688                  * result in pfn_t_has_page() == false.
1689                  */
1690                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1691                 return insert_page(vma, addr, page, pgprot);
1692         }
1693         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1694 }
1695
1696 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1697                         pfn_t pfn)
1698 {
1699         return __vm_insert_mixed(vma, addr, pfn, false);
1700
1701 }
1702 EXPORT_SYMBOL(vm_insert_mixed);
1703
1704 /*
1705  *  If the insertion of PTE failed because someone else already added a
1706  *  different entry in the mean time, we treat that as success as we assume
1707  *  the same entry was actually inserted.
1708  */
1709
1710 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1711                 unsigned long addr, pfn_t pfn)
1712 {
1713         int err;
1714
1715         err =  __vm_insert_mixed(vma, addr, pfn, true);
1716         if (err == -ENOMEM)
1717                 return VM_FAULT_OOM;
1718         if (err < 0 && err != -EBUSY)
1719                 return VM_FAULT_SIGBUS;
1720         return VM_FAULT_NOPAGE;
1721 }
1722 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1723
1724 /*
1725  * maps a range of physical memory into the requested pages. the old
1726  * mappings are removed. any references to nonexistent pages results
1727  * in null mappings (currently treated as "copy-on-access")
1728  */
1729 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1730                         unsigned long addr, unsigned long end,
1731                         unsigned long pfn, pgprot_t prot)
1732 {
1733         pte_t *pte;
1734         spinlock_t *ptl;
1735         int err = 0;
1736
1737         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1738         if (!pte)
1739                 return -ENOMEM;
1740         arch_enter_lazy_mmu_mode();
1741         do {
1742                 BUG_ON(!pte_none(*pte));
1743                 if (!pfn_modify_allowed(pfn, prot)) {
1744                         err = -EACCES;
1745                         break;
1746                 }
1747                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1748                 pfn++;
1749         } while (pte++, addr += PAGE_SIZE, addr != end);
1750         arch_leave_lazy_mmu_mode();
1751         pte_unmap_unlock(pte - 1, ptl);
1752         return err;
1753 }
1754
1755 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1756                         unsigned long addr, unsigned long end,
1757                         unsigned long pfn, pgprot_t prot)
1758 {
1759         pmd_t *pmd;
1760         unsigned long next;
1761         int err;
1762
1763         pfn -= addr >> PAGE_SHIFT;
1764         pmd = pmd_alloc(mm, pud, addr);
1765         if (!pmd)
1766                 return -ENOMEM;
1767         VM_BUG_ON(pmd_trans_huge(*pmd));
1768         do {
1769                 next = pmd_addr_end(addr, end);
1770                 err = remap_pte_range(mm, pmd, addr, next,
1771                                 pfn + (addr >> PAGE_SHIFT), prot);
1772                 if (err)
1773                         return err;
1774         } while (pmd++, addr = next, addr != end);
1775         return 0;
1776 }
1777
1778 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1779                         unsigned long addr, unsigned long end,
1780                         unsigned long pfn, pgprot_t prot)
1781 {
1782         pud_t *pud;
1783         unsigned long next;
1784         int err;
1785
1786         pfn -= addr >> PAGE_SHIFT;
1787         pud = pud_alloc(mm, p4d, addr);
1788         if (!pud)
1789                 return -ENOMEM;
1790         do {
1791                 next = pud_addr_end(addr, end);
1792                 err = remap_pmd_range(mm, pud, addr, next,
1793                                 pfn + (addr >> PAGE_SHIFT), prot);
1794                 if (err)
1795                         return err;
1796         } while (pud++, addr = next, addr != end);
1797         return 0;
1798 }
1799
1800 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1801                         unsigned long addr, unsigned long end,
1802                         unsigned long pfn, pgprot_t prot)
1803 {
1804         p4d_t *p4d;
1805         unsigned long next;
1806         int err;
1807
1808         pfn -= addr >> PAGE_SHIFT;
1809         p4d = p4d_alloc(mm, pgd, addr);
1810         if (!p4d)
1811                 return -ENOMEM;
1812         do {
1813                 next = p4d_addr_end(addr, end);
1814                 err = remap_pud_range(mm, p4d, addr, next,
1815                                 pfn + (addr >> PAGE_SHIFT), prot);
1816                 if (err)
1817                         return err;
1818         } while (p4d++, addr = next, addr != end);
1819         return 0;
1820 }
1821
1822 /**
1823  * remap_pfn_range - remap kernel memory to userspace
1824  * @vma: user vma to map to
1825  * @addr: target user address to start at
1826  * @pfn: physical address of kernel memory
1827  * @size: size of map area
1828  * @prot: page protection flags for this mapping
1829  *
1830  *  Note: this is only safe if the mm semaphore is held when called.
1831  */
1832 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1833                     unsigned long pfn, unsigned long size, pgprot_t prot)
1834 {
1835         pgd_t *pgd;
1836         unsigned long next;
1837         unsigned long end = addr + PAGE_ALIGN(size);
1838         struct mm_struct *mm = vma->vm_mm;
1839         unsigned long remap_pfn = pfn;
1840         int err;
1841
1842         /*
1843          * Physically remapped pages are special. Tell the
1844          * rest of the world about it:
1845          *   VM_IO tells people not to look at these pages
1846          *      (accesses can have side effects).
1847          *   VM_PFNMAP tells the core MM that the base pages are just
1848          *      raw PFN mappings, and do not have a "struct page" associated
1849          *      with them.
1850          *   VM_DONTEXPAND
1851          *      Disable vma merging and expanding with mremap().
1852          *   VM_DONTDUMP
1853          *      Omit vma from core dump, even when VM_IO turned off.
1854          *
1855          * There's a horrible special case to handle copy-on-write
1856          * behaviour that some programs depend on. We mark the "original"
1857          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1858          * See vm_normal_page() for details.
1859          */
1860         if (is_cow_mapping(vma->vm_flags)) {
1861                 if (addr != vma->vm_start || end != vma->vm_end)
1862                         return -EINVAL;
1863                 vma->vm_pgoff = pfn;
1864         }
1865
1866         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1867         if (err)
1868                 return -EINVAL;
1869
1870         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1871
1872         BUG_ON(addr >= end);
1873         pfn -= addr >> PAGE_SHIFT;
1874         pgd = pgd_offset(mm, addr);
1875         flush_cache_range(vma, addr, end);
1876         do {
1877                 next = pgd_addr_end(addr, end);
1878                 err = remap_p4d_range(mm, pgd, addr, next,
1879                                 pfn + (addr >> PAGE_SHIFT), prot);
1880                 if (err)
1881                         break;
1882         } while (pgd++, addr = next, addr != end);
1883
1884         if (err)
1885                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1886
1887         return err;
1888 }
1889 EXPORT_SYMBOL(remap_pfn_range);
1890
1891 /**
1892  * vm_iomap_memory - remap memory to userspace
1893  * @vma: user vma to map to
1894  * @start: start of area
1895  * @len: size of area
1896  *
1897  * This is a simplified io_remap_pfn_range() for common driver use. The
1898  * driver just needs to give us the physical memory range to be mapped,
1899  * we'll figure out the rest from the vma information.
1900  *
1901  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1902  * whatever write-combining details or similar.
1903  */
1904 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1905 {
1906         unsigned long vm_len, pfn, pages;
1907
1908         /* Check that the physical memory area passed in looks valid */
1909         if (start + len < start)
1910                 return -EINVAL;
1911         /*
1912          * You *really* shouldn't map things that aren't page-aligned,
1913          * but we've historically allowed it because IO memory might
1914          * just have smaller alignment.
1915          */
1916         len += start & ~PAGE_MASK;
1917         pfn = start >> PAGE_SHIFT;
1918         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1919         if (pfn + pages < pfn)
1920                 return -EINVAL;
1921
1922         /* We start the mapping 'vm_pgoff' pages into the area */
1923         if (vma->vm_pgoff > pages)
1924                 return -EINVAL;
1925         pfn += vma->vm_pgoff;
1926         pages -= vma->vm_pgoff;
1927
1928         /* Can we fit all of the mapping? */
1929         vm_len = vma->vm_end - vma->vm_start;
1930         if (vm_len >> PAGE_SHIFT > pages)
1931                 return -EINVAL;
1932
1933         /* Ok, let it rip */
1934         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1935 }
1936 EXPORT_SYMBOL(vm_iomap_memory);
1937
1938 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1939                                      unsigned long addr, unsigned long end,
1940                                      pte_fn_t fn, void *data)
1941 {
1942         pte_t *pte;
1943         int err;
1944         pgtable_t token;
1945         spinlock_t *uninitialized_var(ptl);
1946
1947         pte = (mm == &init_mm) ?
1948                 pte_alloc_kernel(pmd, addr) :
1949                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1950         if (!pte)
1951                 return -ENOMEM;
1952
1953         BUG_ON(pmd_huge(*pmd));
1954
1955         arch_enter_lazy_mmu_mode();
1956
1957         token = pmd_pgtable(*pmd);
1958
1959         do {
1960                 err = fn(pte++, token, addr, data);
1961                 if (err)
1962                         break;
1963         } while (addr += PAGE_SIZE, addr != end);
1964
1965         arch_leave_lazy_mmu_mode();
1966
1967         if (mm != &init_mm)
1968                 pte_unmap_unlock(pte-1, ptl);
1969         return err;
1970 }
1971
1972 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1973                                      unsigned long addr, unsigned long end,
1974                                      pte_fn_t fn, void *data)
1975 {
1976         pmd_t *pmd;
1977         unsigned long next;
1978         int err;
1979
1980         BUG_ON(pud_huge(*pud));
1981
1982         pmd = pmd_alloc(mm, pud, addr);
1983         if (!pmd)
1984                 return -ENOMEM;
1985         do {
1986                 next = pmd_addr_end(addr, end);
1987                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1988                 if (err)
1989                         break;
1990         } while (pmd++, addr = next, addr != end);
1991         return err;
1992 }
1993
1994 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
1995                                      unsigned long addr, unsigned long end,
1996                                      pte_fn_t fn, void *data)
1997 {
1998         pud_t *pud;
1999         unsigned long next;
2000         int err;
2001
2002         pud = pud_alloc(mm, p4d, addr);
2003         if (!pud)
2004                 return -ENOMEM;
2005         do {
2006                 next = pud_addr_end(addr, end);
2007                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2008                 if (err)
2009                         break;
2010         } while (pud++, addr = next, addr != end);
2011         return err;
2012 }
2013
2014 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2015                                      unsigned long addr, unsigned long end,
2016                                      pte_fn_t fn, void *data)
2017 {
2018         p4d_t *p4d;
2019         unsigned long next;
2020         int err;
2021
2022         p4d = p4d_alloc(mm, pgd, addr);
2023         if (!p4d)
2024                 return -ENOMEM;
2025         do {
2026                 next = p4d_addr_end(addr, end);
2027                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2028                 if (err)
2029                         break;
2030         } while (p4d++, addr = next, addr != end);
2031         return err;
2032 }
2033
2034 /*
2035  * Scan a region of virtual memory, filling in page tables as necessary
2036  * and calling a provided function on each leaf page table.
2037  */
2038 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2039                         unsigned long size, pte_fn_t fn, void *data)
2040 {
2041         pgd_t *pgd;
2042         unsigned long next;
2043         unsigned long end = addr + size;
2044         int err;
2045
2046         if (WARN_ON(addr >= end))
2047                 return -EINVAL;
2048
2049         pgd = pgd_offset(mm, addr);
2050         do {
2051                 next = pgd_addr_end(addr, end);
2052                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2053                 if (err)
2054                         break;
2055         } while (pgd++, addr = next, addr != end);
2056
2057         return err;
2058 }
2059 EXPORT_SYMBOL_GPL(apply_to_page_range);
2060
2061 /*
2062  * handle_pte_fault chooses page fault handler according to an entry which was
2063  * read non-atomically.  Before making any commitment, on those architectures
2064  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2065  * parts, do_swap_page must check under lock before unmapping the pte and
2066  * proceeding (but do_wp_page is only called after already making such a check;
2067  * and do_anonymous_page can safely check later on).
2068  */
2069 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2070                                 pte_t *page_table, pte_t orig_pte)
2071 {
2072         int same = 1;
2073 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2074         if (sizeof(pte_t) > sizeof(unsigned long)) {
2075                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2076                 spin_lock(ptl);
2077                 same = pte_same(*page_table, orig_pte);
2078                 spin_unlock(ptl);
2079         }
2080 #endif
2081         pte_unmap(page_table);
2082         return same;
2083 }
2084
2085 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2086 {
2087         debug_dma_assert_idle(src);
2088
2089         /*
2090          * If the source page was a PFN mapping, we don't have
2091          * a "struct page" for it. We do a best-effort copy by
2092          * just copying from the original user address. If that
2093          * fails, we just zero-fill it. Live with it.
2094          */
2095         if (unlikely(!src)) {
2096                 void *kaddr = kmap_atomic(dst);
2097                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2098
2099                 /*
2100                  * This really shouldn't fail, because the page is there
2101                  * in the page tables. But it might just be unreadable,
2102                  * in which case we just give up and fill the result with
2103                  * zeroes.
2104                  */
2105                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2106                         clear_page(kaddr);
2107                 kunmap_atomic(kaddr);
2108                 flush_dcache_page(dst);
2109         } else
2110                 copy_user_highpage(dst, src, va, vma);
2111 }
2112
2113 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2114 {
2115         struct file *vm_file = vma->vm_file;
2116
2117         if (vm_file)
2118                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2119
2120         /*
2121          * Special mappings (e.g. VDSO) do not have any file so fake
2122          * a default GFP_KERNEL for them.
2123          */
2124         return GFP_KERNEL;
2125 }
2126
2127 /*
2128  * Notify the address space that the page is about to become writable so that
2129  * it can prohibit this or wait for the page to get into an appropriate state.
2130  *
2131  * We do this without the lock held, so that it can sleep if it needs to.
2132  */
2133 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2134 {
2135         vm_fault_t ret;
2136         struct page *page = vmf->page;
2137         unsigned int old_flags = vmf->flags;
2138
2139         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2140
2141         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2142         /* Restore original flags so that caller is not surprised */
2143         vmf->flags = old_flags;
2144         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2145                 return ret;
2146         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2147                 lock_page(page);
2148                 if (!page->mapping) {
2149                         unlock_page(page);
2150                         return 0; /* retry */
2151                 }
2152                 ret |= VM_FAULT_LOCKED;
2153         } else
2154                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2155         return ret;
2156 }
2157
2158 /*
2159  * Handle dirtying of a page in shared file mapping on a write fault.
2160  *
2161  * The function expects the page to be locked and unlocks it.
2162  */
2163 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2164                                     struct page *page)
2165 {
2166         struct address_space *mapping;
2167         bool dirtied;
2168         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2169
2170         dirtied = set_page_dirty(page);
2171         VM_BUG_ON_PAGE(PageAnon(page), page);
2172         /*
2173          * Take a local copy of the address_space - page.mapping may be zeroed
2174          * by truncate after unlock_page().   The address_space itself remains
2175          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2176          * release semantics to prevent the compiler from undoing this copying.
2177          */
2178         mapping = page_rmapping(page);
2179         unlock_page(page);
2180
2181         if ((dirtied || page_mkwrite) && mapping) {
2182                 /*
2183                  * Some device drivers do not set page.mapping
2184                  * but still dirty their pages
2185                  */
2186                 balance_dirty_pages_ratelimited(mapping);
2187         }
2188
2189         if (!page_mkwrite)
2190                 file_update_time(vma->vm_file);
2191 }
2192
2193 /*
2194  * Handle write page faults for pages that can be reused in the current vma
2195  *
2196  * This can happen either due to the mapping being with the VM_SHARED flag,
2197  * or due to us being the last reference standing to the page. In either
2198  * case, all we need to do here is to mark the page as writable and update
2199  * any related book-keeping.
2200  */
2201 static inline void wp_page_reuse(struct vm_fault *vmf)
2202         __releases(vmf->ptl)
2203 {
2204         struct vm_area_struct *vma = vmf->vma;
2205         struct page *page = vmf->page;
2206         pte_t entry;
2207         /*
2208          * Clear the pages cpupid information as the existing
2209          * information potentially belongs to a now completely
2210          * unrelated process.
2211          */
2212         if (page)
2213                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2214
2215         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2216         entry = pte_mkyoung(vmf->orig_pte);
2217         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2218         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2219                 update_mmu_cache(vma, vmf->address, vmf->pte);
2220         pte_unmap_unlock(vmf->pte, vmf->ptl);
2221 }
2222
2223 /*
2224  * Handle the case of a page which we actually need to copy to a new page.
2225  *
2226  * Called with mmap_sem locked and the old page referenced, but
2227  * without the ptl held.
2228  *
2229  * High level logic flow:
2230  *
2231  * - Allocate a page, copy the content of the old page to the new one.
2232  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2233  * - Take the PTL. If the pte changed, bail out and release the allocated page
2234  * - If the pte is still the way we remember it, update the page table and all
2235  *   relevant references. This includes dropping the reference the page-table
2236  *   held to the old page, as well as updating the rmap.
2237  * - In any case, unlock the PTL and drop the reference we took to the old page.
2238  */
2239 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2240 {
2241         struct vm_area_struct *vma = vmf->vma;
2242         struct mm_struct *mm = vma->vm_mm;
2243         struct page *old_page = vmf->page;
2244         struct page *new_page = NULL;
2245         pte_t entry;
2246         int page_copied = 0;
2247         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2248         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2249         struct mem_cgroup *memcg;
2250
2251         if (unlikely(anon_vma_prepare(vma)))
2252                 goto oom;
2253
2254         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2255                 new_page = alloc_zeroed_user_highpage_movable(vma,
2256                                                               vmf->address);
2257                 if (!new_page)
2258                         goto oom;
2259         } else {
2260                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2261                                 vmf->address);
2262                 if (!new_page)
2263                         goto oom;
2264                 cow_user_page(new_page, old_page, vmf->address, vma);
2265         }
2266
2267         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2268                 goto oom_free_new;
2269
2270         __SetPageUptodate(new_page);
2271
2272         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2273
2274         /*
2275          * Re-check the pte - we dropped the lock
2276          */
2277         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2278         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2279                 if (old_page) {
2280                         if (!PageAnon(old_page)) {
2281                                 dec_mm_counter_fast(mm,
2282                                                 mm_counter_file(old_page));
2283                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2284                         }
2285                 } else {
2286                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2287                 }
2288                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2289                 entry = mk_pte(new_page, vma->vm_page_prot);
2290                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2291                 /*
2292                  * Clear the pte entry and flush it first, before updating the
2293                  * pte with the new entry. This will avoid a race condition
2294                  * seen in the presence of one thread doing SMC and another
2295                  * thread doing COW.
2296                  */
2297                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2298                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2299                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2300                 lru_cache_add_active_or_unevictable(new_page, vma);
2301                 /*
2302                  * We call the notify macro here because, when using secondary
2303                  * mmu page tables (such as kvm shadow page tables), we want the
2304                  * new page to be mapped directly into the secondary page table.
2305                  */
2306                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2307                 update_mmu_cache(vma, vmf->address, vmf->pte);
2308                 if (old_page) {
2309                         /*
2310                          * Only after switching the pte to the new page may
2311                          * we remove the mapcount here. Otherwise another
2312                          * process may come and find the rmap count decremented
2313                          * before the pte is switched to the new page, and
2314                          * "reuse" the old page writing into it while our pte
2315                          * here still points into it and can be read by other
2316                          * threads.
2317                          *
2318                          * The critical issue is to order this
2319                          * page_remove_rmap with the ptp_clear_flush above.
2320                          * Those stores are ordered by (if nothing else,)
2321                          * the barrier present in the atomic_add_negative
2322                          * in page_remove_rmap.
2323                          *
2324                          * Then the TLB flush in ptep_clear_flush ensures that
2325                          * no process can access the old page before the
2326                          * decremented mapcount is visible. And the old page
2327                          * cannot be reused until after the decremented
2328                          * mapcount is visible. So transitively, TLBs to
2329                          * old page will be flushed before it can be reused.
2330                          */
2331                         page_remove_rmap(old_page, false);
2332                 }
2333
2334                 /* Free the old page.. */
2335                 new_page = old_page;
2336                 page_copied = 1;
2337         } else {
2338                 mem_cgroup_cancel_charge(new_page, memcg, false);
2339         }
2340
2341         if (new_page)
2342                 put_page(new_page);
2343
2344         pte_unmap_unlock(vmf->pte, vmf->ptl);
2345         /*
2346          * No need to double call mmu_notifier->invalidate_range() callback as
2347          * the above ptep_clear_flush_notify() did already call it.
2348          */
2349         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2350         if (old_page) {
2351                 /*
2352                  * Don't let another task, with possibly unlocked vma,
2353                  * keep the mlocked page.
2354                  */
2355                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2356                         lock_page(old_page);    /* LRU manipulation */
2357                         if (PageMlocked(old_page))
2358                                 munlock_vma_page(old_page);
2359                         unlock_page(old_page);
2360                 }
2361                 put_page(old_page);
2362         }
2363         return page_copied ? VM_FAULT_WRITE : 0;
2364 oom_free_new:
2365         put_page(new_page);
2366 oom:
2367         if (old_page)
2368                 put_page(old_page);
2369         return VM_FAULT_OOM;
2370 }
2371
2372 /**
2373  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2374  *                        writeable once the page is prepared
2375  *
2376  * @vmf: structure describing the fault
2377  *
2378  * This function handles all that is needed to finish a write page fault in a
2379  * shared mapping due to PTE being read-only once the mapped page is prepared.
2380  * It handles locking of PTE and modifying it. The function returns
2381  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2382  * lock.
2383  *
2384  * The function expects the page to be locked or other protection against
2385  * concurrent faults / writeback (such as DAX radix tree locks).
2386  */
2387 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2388 {
2389         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2390         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2391                                        &vmf->ptl);
2392         /*
2393          * We might have raced with another page fault while we released the
2394          * pte_offset_map_lock.
2395          */
2396         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2397                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2398                 return VM_FAULT_NOPAGE;
2399         }
2400         wp_page_reuse(vmf);
2401         return 0;
2402 }
2403
2404 /*
2405  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2406  * mapping
2407  */
2408 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2409 {
2410         struct vm_area_struct *vma = vmf->vma;
2411
2412         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2413                 vm_fault_t ret;
2414
2415                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2416                 vmf->flags |= FAULT_FLAG_MKWRITE;
2417                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2418                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2419                         return ret;
2420                 return finish_mkwrite_fault(vmf);
2421         }
2422         wp_page_reuse(vmf);
2423         return VM_FAULT_WRITE;
2424 }
2425
2426 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2427         __releases(vmf->ptl)
2428 {
2429         struct vm_area_struct *vma = vmf->vma;
2430
2431         get_page(vmf->page);
2432
2433         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2434                 vm_fault_t tmp;
2435
2436                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2437                 tmp = do_page_mkwrite(vmf);
2438                 if (unlikely(!tmp || (tmp &
2439                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2440                         put_page(vmf->page);
2441                         return tmp;
2442                 }
2443                 tmp = finish_mkwrite_fault(vmf);
2444                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2445                         unlock_page(vmf->page);
2446                         put_page(vmf->page);
2447                         return tmp;
2448                 }
2449         } else {
2450                 wp_page_reuse(vmf);
2451                 lock_page(vmf->page);
2452         }
2453         fault_dirty_shared_page(vma, vmf->page);
2454         put_page(vmf->page);
2455
2456         return VM_FAULT_WRITE;
2457 }
2458
2459 /*
2460  * This routine handles present pages, when users try to write
2461  * to a shared page. It is done by copying the page to a new address
2462  * and decrementing the shared-page counter for the old page.
2463  *
2464  * Note that this routine assumes that the protection checks have been
2465  * done by the caller (the low-level page fault routine in most cases).
2466  * Thus we can safely just mark it writable once we've done any necessary
2467  * COW.
2468  *
2469  * We also mark the page dirty at this point even though the page will
2470  * change only once the write actually happens. This avoids a few races,
2471  * and potentially makes it more efficient.
2472  *
2473  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2474  * but allow concurrent faults), with pte both mapped and locked.
2475  * We return with mmap_sem still held, but pte unmapped and unlocked.
2476  */
2477 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2478         __releases(vmf->ptl)
2479 {
2480         struct vm_area_struct *vma = vmf->vma;
2481
2482         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2483         if (!vmf->page) {
2484                 /*
2485                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2486                  * VM_PFNMAP VMA.
2487                  *
2488                  * We should not cow pages in a shared writeable mapping.
2489                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2490                  */
2491                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2492                                      (VM_WRITE|VM_SHARED))
2493                         return wp_pfn_shared(vmf);
2494
2495                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2496                 return wp_page_copy(vmf);
2497         }
2498
2499         /*
2500          * Take out anonymous pages first, anonymous shared vmas are
2501          * not dirty accountable.
2502          */
2503         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2504                 int total_map_swapcount;
2505                 if (!trylock_page(vmf->page)) {
2506                         get_page(vmf->page);
2507                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2508                         lock_page(vmf->page);
2509                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2510                                         vmf->address, &vmf->ptl);
2511                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2512                                 unlock_page(vmf->page);
2513                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2514                                 put_page(vmf->page);
2515                                 return 0;
2516                         }
2517                         put_page(vmf->page);
2518                 }
2519                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2520                         if (total_map_swapcount == 1) {
2521                                 /*
2522                                  * The page is all ours. Move it to
2523                                  * our anon_vma so the rmap code will
2524                                  * not search our parent or siblings.
2525                                  * Protected against the rmap code by
2526                                  * the page lock.
2527                                  */
2528                                 page_move_anon_rmap(vmf->page, vma);
2529                         }
2530                         unlock_page(vmf->page);
2531                         wp_page_reuse(vmf);
2532                         return VM_FAULT_WRITE;
2533                 }
2534                 unlock_page(vmf->page);
2535         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2536                                         (VM_WRITE|VM_SHARED))) {
2537                 return wp_page_shared(vmf);
2538         }
2539
2540         /*
2541          * Ok, we need to copy. Oh, well..
2542          */
2543         get_page(vmf->page);
2544
2545         pte_unmap_unlock(vmf->pte, vmf->ptl);
2546         return wp_page_copy(vmf);
2547 }
2548
2549 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2550                 unsigned long start_addr, unsigned long end_addr,
2551                 struct zap_details *details)
2552 {
2553         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2554 }
2555
2556 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2557                                             struct zap_details *details)
2558 {
2559         struct vm_area_struct *vma;
2560         pgoff_t vba, vea, zba, zea;
2561
2562         vma_interval_tree_foreach(vma, root,
2563                         details->first_index, details->last_index) {
2564
2565                 vba = vma->vm_pgoff;
2566                 vea = vba + vma_pages(vma) - 1;
2567                 zba = details->first_index;
2568                 if (zba < vba)
2569                         zba = vba;
2570                 zea = details->last_index;
2571                 if (zea > vea)
2572                         zea = vea;
2573
2574                 unmap_mapping_range_vma(vma,
2575                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2576                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2577                                 details);
2578         }
2579 }
2580
2581 /**
2582  * unmap_mapping_pages() - Unmap pages from processes.
2583  * @mapping: The address space containing pages to be unmapped.
2584  * @start: Index of first page to be unmapped.
2585  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2586  * @even_cows: Whether to unmap even private COWed pages.
2587  *
2588  * Unmap the pages in this address space from any userspace process which
2589  * has them mmaped.  Generally, you want to remove COWed pages as well when
2590  * a file is being truncated, but not when invalidating pages from the page
2591  * cache.
2592  */
2593 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2594                 pgoff_t nr, bool even_cows)
2595 {
2596         struct zap_details details = { };
2597
2598         details.check_mapping = even_cows ? NULL : mapping;
2599         details.first_index = start;
2600         details.last_index = start + nr - 1;
2601         if (details.last_index < details.first_index)
2602                 details.last_index = ULONG_MAX;
2603
2604         i_mmap_lock_write(mapping);
2605         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2606                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2607         i_mmap_unlock_write(mapping);
2608 }
2609
2610 /**
2611  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2612  * address_space corresponding to the specified byte range in the underlying
2613  * file.
2614  *
2615  * @mapping: the address space containing mmaps to be unmapped.
2616  * @holebegin: byte in first page to unmap, relative to the start of
2617  * the underlying file.  This will be rounded down to a PAGE_SIZE
2618  * boundary.  Note that this is different from truncate_pagecache(), which
2619  * must keep the partial page.  In contrast, we must get rid of
2620  * partial pages.
2621  * @holelen: size of prospective hole in bytes.  This will be rounded
2622  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2623  * end of the file.
2624  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2625  * but 0 when invalidating pagecache, don't throw away private data.
2626  */
2627 void unmap_mapping_range(struct address_space *mapping,
2628                 loff_t const holebegin, loff_t const holelen, int even_cows)
2629 {
2630         pgoff_t hba = holebegin >> PAGE_SHIFT;
2631         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2632
2633         /* Check for overflow. */
2634         if (sizeof(holelen) > sizeof(hlen)) {
2635                 long long holeend =
2636                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2637                 if (holeend & ~(long long)ULONG_MAX)
2638                         hlen = ULONG_MAX - hba + 1;
2639         }
2640
2641         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2642 }
2643 EXPORT_SYMBOL(unmap_mapping_range);
2644
2645 /*
2646  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2647  * but allow concurrent faults), and pte mapped but not yet locked.
2648  * We return with pte unmapped and unlocked.
2649  *
2650  * We return with the mmap_sem locked or unlocked in the same cases
2651  * as does filemap_fault().
2652  */
2653 vm_fault_t do_swap_page(struct vm_fault *vmf)
2654 {
2655         struct vm_area_struct *vma = vmf->vma;
2656         struct page *page = NULL, *swapcache;
2657         struct mem_cgroup *memcg;
2658         swp_entry_t entry;
2659         pte_t pte;
2660         int locked;
2661         int exclusive = 0;
2662         vm_fault_t ret = 0;
2663
2664         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2665                 goto out;
2666
2667         entry = pte_to_swp_entry(vmf->orig_pte);
2668         if (unlikely(non_swap_entry(entry))) {
2669                 if (is_migration_entry(entry)) {
2670                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2671                                              vmf->address);
2672                 } else if (is_device_private_entry(entry)) {
2673                         /*
2674                          * For un-addressable device memory we call the pgmap
2675                          * fault handler callback. The callback must migrate
2676                          * the page back to some CPU accessible page.
2677                          */
2678                         ret = device_private_entry_fault(vma, vmf->address, entry,
2679                                                  vmf->flags, vmf->pmd);
2680                 } else if (is_hwpoison_entry(entry)) {
2681                         ret = VM_FAULT_HWPOISON;
2682                 } else {
2683                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2684                         ret = VM_FAULT_SIGBUS;
2685                 }
2686                 goto out;
2687         }
2688
2689
2690         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2691         page = lookup_swap_cache(entry, vma, vmf->address);
2692         swapcache = page;
2693
2694         if (!page) {
2695                 struct swap_info_struct *si = swp_swap_info(entry);
2696
2697                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2698                                 __swap_count(si, entry) == 1) {
2699                         /* skip swapcache */
2700                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2701                                                         vmf->address);
2702                         if (page) {
2703                                 __SetPageLocked(page);
2704                                 __SetPageSwapBacked(page);
2705                                 set_page_private(page, entry.val);
2706                                 lru_cache_add_anon(page);
2707                                 swap_readpage(page, true);
2708                         }
2709                 } else {
2710                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2711                                                 vmf);
2712                         swapcache = page;
2713                 }
2714
2715                 if (!page) {
2716                         /*
2717                          * Back out if somebody else faulted in this pte
2718                          * while we released the pte lock.
2719                          */
2720                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2721                                         vmf->address, &vmf->ptl);
2722                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2723                                 ret = VM_FAULT_OOM;
2724                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2725                         goto unlock;
2726                 }
2727
2728                 /* Had to read the page from swap area: Major fault */
2729                 ret = VM_FAULT_MAJOR;
2730                 count_vm_event(PGMAJFAULT);
2731                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2732         } else if (PageHWPoison(page)) {
2733                 /*
2734                  * hwpoisoned dirty swapcache pages are kept for killing
2735                  * owner processes (which may be unknown at hwpoison time)
2736                  */
2737                 ret = VM_FAULT_HWPOISON;
2738                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2739                 goto out_release;
2740         }
2741
2742         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2743
2744         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2745         if (!locked) {
2746                 ret |= VM_FAULT_RETRY;
2747                 goto out_release;
2748         }
2749
2750         /*
2751          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2752          * release the swapcache from under us.  The page pin, and pte_same
2753          * test below, are not enough to exclude that.  Even if it is still
2754          * swapcache, we need to check that the page's swap has not changed.
2755          */
2756         if (unlikely((!PageSwapCache(page) ||
2757                         page_private(page) != entry.val)) && swapcache)
2758                 goto out_page;
2759
2760         page = ksm_might_need_to_copy(page, vma, vmf->address);
2761         if (unlikely(!page)) {
2762                 ret = VM_FAULT_OOM;
2763                 page = swapcache;
2764                 goto out_page;
2765         }
2766
2767         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2768                                         &memcg, false)) {
2769                 ret = VM_FAULT_OOM;
2770                 goto out_page;
2771         }
2772
2773         /*
2774          * Back out if somebody else already faulted in this pte.
2775          */
2776         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2777                         &vmf->ptl);
2778         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2779                 goto out_nomap;
2780
2781         if (unlikely(!PageUptodate(page))) {
2782                 ret = VM_FAULT_SIGBUS;
2783                 goto out_nomap;
2784         }
2785
2786         /*
2787          * The page isn't present yet, go ahead with the fault.
2788          *
2789          * Be careful about the sequence of operations here.
2790          * To get its accounting right, reuse_swap_page() must be called
2791          * while the page is counted on swap but not yet in mapcount i.e.
2792          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2793          * must be called after the swap_free(), or it will never succeed.
2794          */
2795
2796         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2797         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2798         pte = mk_pte(page, vma->vm_page_prot);
2799         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2800                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2801                 vmf->flags &= ~FAULT_FLAG_WRITE;
2802                 ret |= VM_FAULT_WRITE;
2803                 exclusive = RMAP_EXCLUSIVE;
2804         }
2805         flush_icache_page(vma, page);
2806         if (pte_swp_soft_dirty(vmf->orig_pte))
2807                 pte = pte_mksoft_dirty(pte);
2808         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2809         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2810         vmf->orig_pte = pte;
2811
2812         /* ksm created a completely new copy */
2813         if (unlikely(page != swapcache && swapcache)) {
2814                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2815                 mem_cgroup_commit_charge(page, memcg, false, false);
2816                 lru_cache_add_active_or_unevictable(page, vma);
2817         } else {
2818                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2819                 mem_cgroup_commit_charge(page, memcg, true, false);
2820                 activate_page(page);
2821         }
2822
2823         swap_free(entry);
2824         if (mem_cgroup_swap_full(page) ||
2825             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2826                 try_to_free_swap(page);
2827         unlock_page(page);
2828         if (page != swapcache && swapcache) {
2829                 /*
2830                  * Hold the lock to avoid the swap entry to be reused
2831                  * until we take the PT lock for the pte_same() check
2832                  * (to avoid false positives from pte_same). For
2833                  * further safety release the lock after the swap_free
2834                  * so that the swap count won't change under a
2835                  * parallel locked swapcache.
2836                  */
2837                 unlock_page(swapcache);
2838                 put_page(swapcache);
2839         }
2840
2841         if (vmf->flags & FAULT_FLAG_WRITE) {
2842                 ret |= do_wp_page(vmf);
2843                 if (ret & VM_FAULT_ERROR)
2844                         ret &= VM_FAULT_ERROR;
2845                 goto out;
2846         }
2847
2848         /* No need to invalidate - it was non-present before */
2849         update_mmu_cache(vma, vmf->address, vmf->pte);
2850 unlock:
2851         pte_unmap_unlock(vmf->pte, vmf->ptl);
2852 out:
2853         return ret;
2854 out_nomap:
2855         mem_cgroup_cancel_charge(page, memcg, false);
2856         pte_unmap_unlock(vmf->pte, vmf->ptl);
2857 out_page:
2858         unlock_page(page);
2859 out_release:
2860         put_page(page);
2861         if (page != swapcache && swapcache) {
2862                 unlock_page(swapcache);
2863                 put_page(swapcache);
2864         }
2865         return ret;
2866 }
2867
2868 /*
2869  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2870  * but allow concurrent faults), and pte mapped but not yet locked.
2871  * We return with mmap_sem still held, but pte unmapped and unlocked.
2872  */
2873 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2874 {
2875         struct vm_area_struct *vma = vmf->vma;
2876         struct mem_cgroup *memcg;
2877         struct page *page;
2878         vm_fault_t ret = 0;
2879         pte_t entry;
2880
2881         /* File mapping without ->vm_ops ? */
2882         if (vma->vm_flags & VM_SHARED)
2883                 return VM_FAULT_SIGBUS;
2884
2885         /*
2886          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2887          * pte_offset_map() on pmds where a huge pmd might be created
2888          * from a different thread.
2889          *
2890          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2891          * parallel threads are excluded by other means.
2892          *
2893          * Here we only have down_read(mmap_sem).
2894          */
2895         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2896                 return VM_FAULT_OOM;
2897
2898         /* See the comment in pte_alloc_one_map() */
2899         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2900                 return 0;
2901
2902         /* Use the zero-page for reads */
2903         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2904                         !mm_forbids_zeropage(vma->vm_mm)) {
2905                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2906                                                 vma->vm_page_prot));
2907                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2908                                 vmf->address, &vmf->ptl);
2909                 if (!pte_none(*vmf->pte))
2910                         goto unlock;
2911                 ret = check_stable_address_space(vma->vm_mm);
2912                 if (ret)
2913                         goto unlock;
2914                 /* Deliver the page fault to userland, check inside PT lock */
2915                 if (userfaultfd_missing(vma)) {
2916                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2917                         return handle_userfault(vmf, VM_UFFD_MISSING);
2918                 }
2919                 goto setpte;
2920         }
2921
2922         /* Allocate our own private page. */
2923         if (unlikely(anon_vma_prepare(vma)))
2924                 goto oom;
2925         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2926         if (!page)
2927                 goto oom;
2928
2929         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2930                                         false))
2931                 goto oom_free_page;
2932
2933         /*
2934          * The memory barrier inside __SetPageUptodate makes sure that
2935          * preceeding stores to the page contents become visible before
2936          * the set_pte_at() write.
2937          */
2938         __SetPageUptodate(page);
2939
2940         entry = mk_pte(page, vma->vm_page_prot);
2941         if (vma->vm_flags & VM_WRITE)
2942                 entry = pte_mkwrite(pte_mkdirty(entry));
2943
2944         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2945                         &vmf->ptl);
2946         if (!pte_none(*vmf->pte))
2947                 goto release;
2948
2949         ret = check_stable_address_space(vma->vm_mm);
2950         if (ret)
2951                 goto release;
2952
2953         /* Deliver the page fault to userland, check inside PT lock */
2954         if (userfaultfd_missing(vma)) {
2955                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2956                 mem_cgroup_cancel_charge(page, memcg, false);
2957                 put_page(page);
2958                 return handle_userfault(vmf, VM_UFFD_MISSING);
2959         }
2960
2961         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2962         page_add_new_anon_rmap(page, vma, vmf->address, false);
2963         mem_cgroup_commit_charge(page, memcg, false, false);
2964         lru_cache_add_active_or_unevictable(page, vma);
2965 setpte:
2966         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2967
2968         /* No need to invalidate - it was non-present before */
2969         update_mmu_cache(vma, vmf->address, vmf->pte);
2970 unlock:
2971         pte_unmap_unlock(vmf->pte, vmf->ptl);
2972         return ret;
2973 release:
2974         mem_cgroup_cancel_charge(page, memcg, false);
2975         put_page(page);
2976         goto unlock;
2977 oom_free_page:
2978         put_page(page);
2979 oom:
2980         return VM_FAULT_OOM;
2981 }
2982
2983 /*
2984  * The mmap_sem must have been held on entry, and may have been
2985  * released depending on flags and vma->vm_ops->fault() return value.
2986  * See filemap_fault() and __lock_page_retry().
2987  */
2988 static vm_fault_t __do_fault(struct vm_fault *vmf)
2989 {
2990         struct vm_area_struct *vma = vmf->vma;
2991         vm_fault_t ret;
2992
2993         ret = vma->vm_ops->fault(vmf);
2994         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2995                             VM_FAULT_DONE_COW)))
2996                 return ret;
2997
2998         if (unlikely(PageHWPoison(vmf->page))) {
2999                 if (ret & VM_FAULT_LOCKED)
3000                         unlock_page(vmf->page);
3001                 put_page(vmf->page);
3002                 vmf->page = NULL;
3003                 return VM_FAULT_HWPOISON;
3004         }
3005
3006         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3007                 lock_page(vmf->page);
3008         else
3009                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3010
3011         return ret;
3012 }
3013
3014 /*
3015  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3016  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3017  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3018  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3019  */
3020 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3021 {
3022         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3023 }
3024
3025 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3026 {
3027         struct vm_area_struct *vma = vmf->vma;
3028
3029         if (!pmd_none(*vmf->pmd))
3030                 goto map_pte;
3031         if (vmf->prealloc_pte) {
3032                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3033                 if (unlikely(!pmd_none(*vmf->pmd))) {
3034                         spin_unlock(vmf->ptl);
3035                         goto map_pte;
3036                 }
3037
3038                 mm_inc_nr_ptes(vma->vm_mm);
3039                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3040                 spin_unlock(vmf->ptl);
3041                 vmf->prealloc_pte = NULL;
3042         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3043                 return VM_FAULT_OOM;
3044         }
3045 map_pte:
3046         /*
3047          * If a huge pmd materialized under us just retry later.  Use
3048          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3049          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3050          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3051          * running immediately after a huge pmd fault in a different thread of
3052          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3053          * All we have to ensure is that it is a regular pmd that we can walk
3054          * with pte_offset_map() and we can do that through an atomic read in
3055          * C, which is what pmd_trans_unstable() provides.
3056          */
3057         if (pmd_devmap_trans_unstable(vmf->pmd))
3058                 return VM_FAULT_NOPAGE;
3059
3060         /*
3061          * At this point we know that our vmf->pmd points to a page of ptes
3062          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3063          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3064          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3065          * be valid and we will re-check to make sure the vmf->pte isn't
3066          * pte_none() under vmf->ptl protection when we return to
3067          * alloc_set_pte().
3068          */
3069         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3070                         &vmf->ptl);
3071         return 0;
3072 }
3073
3074 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3075
3076 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3077 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3078                 unsigned long haddr)
3079 {
3080         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3081                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3082                 return false;
3083         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3084                 return false;
3085         return true;
3086 }
3087
3088 static void deposit_prealloc_pte(struct vm_fault *vmf)
3089 {
3090         struct vm_area_struct *vma = vmf->vma;
3091
3092         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3093         /*
3094          * We are going to consume the prealloc table,
3095          * count that as nr_ptes.
3096          */
3097         mm_inc_nr_ptes(vma->vm_mm);
3098         vmf->prealloc_pte = NULL;
3099 }
3100
3101 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3102 {
3103         struct vm_area_struct *vma = vmf->vma;
3104         bool write = vmf->flags & FAULT_FLAG_WRITE;
3105         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3106         pmd_t entry;
3107         int i;
3108         vm_fault_t ret;
3109
3110         if (!transhuge_vma_suitable(vma, haddr))
3111                 return VM_FAULT_FALLBACK;
3112
3113         ret = VM_FAULT_FALLBACK;
3114         page = compound_head(page);
3115
3116         /*
3117          * Archs like ppc64 need additonal space to store information
3118          * related to pte entry. Use the preallocated table for that.
3119          */
3120         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3121                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3122                 if (!vmf->prealloc_pte)
3123                         return VM_FAULT_OOM;
3124                 smp_wmb(); /* See comment in __pte_alloc() */
3125         }
3126
3127         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3128         if (unlikely(!pmd_none(*vmf->pmd)))
3129                 goto out;
3130
3131         for (i = 0; i < HPAGE_PMD_NR; i++)
3132                 flush_icache_page(vma, page + i);
3133
3134         entry = mk_huge_pmd(page, vma->vm_page_prot);
3135         if (write)
3136                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3137
3138         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3139         page_add_file_rmap(page, true);
3140         /*
3141          * deposit and withdraw with pmd lock held
3142          */
3143         if (arch_needs_pgtable_deposit())
3144                 deposit_prealloc_pte(vmf);
3145
3146         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3147
3148         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3149
3150         /* fault is handled */
3151         ret = 0;
3152         count_vm_event(THP_FILE_MAPPED);
3153 out:
3154         spin_unlock(vmf->ptl);
3155         return ret;
3156 }
3157 #else
3158 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3159 {
3160         BUILD_BUG();
3161         return 0;
3162 }
3163 #endif
3164
3165 /**
3166  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3167  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3168  *
3169  * @vmf: fault environment
3170  * @memcg: memcg to charge page (only for private mappings)
3171  * @page: page to map
3172  *
3173  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3174  * return.
3175  *
3176  * Target users are page handler itself and implementations of
3177  * vm_ops->map_pages.
3178  */
3179 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3180                 struct page *page)
3181 {
3182         struct vm_area_struct *vma = vmf->vma;
3183         bool write = vmf->flags & FAULT_FLAG_WRITE;
3184         pte_t entry;
3185         vm_fault_t ret;
3186
3187         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3188                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3189                 /* THP on COW? */
3190                 VM_BUG_ON_PAGE(memcg, page);
3191
3192                 ret = do_set_pmd(vmf, page);
3193                 if (ret != VM_FAULT_FALLBACK)
3194                         return ret;
3195         }
3196
3197         if (!vmf->pte) {
3198                 ret = pte_alloc_one_map(vmf);
3199                 if (ret)
3200                         return ret;
3201         }
3202
3203         /* Re-check under ptl */
3204         if (unlikely(!pte_none(*vmf->pte)))
3205                 return VM_FAULT_NOPAGE;
3206
3207         flush_icache_page(vma, page);
3208         entry = mk_pte(page, vma->vm_page_prot);
3209         if (write)
3210                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3211         /* copy-on-write page */
3212         if (write && !(vma->vm_flags & VM_SHARED)) {
3213                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3214                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3215                 mem_cgroup_commit_charge(page, memcg, false, false);
3216                 lru_cache_add_active_or_unevictable(page, vma);
3217         } else {
3218                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3219                 page_add_file_rmap(page, false);
3220         }
3221         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3222
3223         /* no need to invalidate: a not-present page won't be cached */
3224         update_mmu_cache(vma, vmf->address, vmf->pte);
3225
3226         return 0;
3227 }
3228
3229
3230 /**
3231  * finish_fault - finish page fault once we have prepared the page to fault
3232  *
3233  * @vmf: structure describing the fault
3234  *
3235  * This function handles all that is needed to finish a page fault once the
3236  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3237  * given page, adds reverse page mapping, handles memcg charges and LRU
3238  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3239  * error.
3240  *
3241  * The function expects the page to be locked and on success it consumes a
3242  * reference of a page being mapped (for the PTE which maps it).
3243  */
3244 vm_fault_t finish_fault(struct vm_fault *vmf)
3245 {
3246         struct page *page;
3247         vm_fault_t ret = 0;
3248
3249         /* Did we COW the page? */
3250         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3251             !(vmf->vma->vm_flags & VM_SHARED))
3252                 page = vmf->cow_page;
3253         else
3254                 page = vmf->page;
3255
3256         /*
3257          * check even for read faults because we might have lost our CoWed
3258          * page
3259          */
3260         if (!(vmf->vma->vm_flags & VM_SHARED))
3261                 ret = check_stable_address_space(vmf->vma->vm_mm);
3262         if (!ret)
3263                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3264         if (vmf->pte)
3265                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3266         return ret;
3267 }
3268
3269 static unsigned long fault_around_bytes __read_mostly =
3270         rounddown_pow_of_two(65536);
3271
3272 #ifdef CONFIG_DEBUG_FS
3273 static int fault_around_bytes_get(void *data, u64 *val)
3274 {
3275         *val = fault_around_bytes;
3276         return 0;
3277 }
3278
3279 /*
3280  * fault_around_bytes must be rounded down to the nearest page order as it's
3281  * what do_fault_around() expects to see.
3282  */
3283 static int fault_around_bytes_set(void *data, u64 val)
3284 {
3285         if (val / PAGE_SIZE > PTRS_PER_PTE)
3286                 return -EINVAL;
3287         if (val > PAGE_SIZE)
3288                 fault_around_bytes = rounddown_pow_of_two(val);
3289         else
3290                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3291         return 0;
3292 }
3293 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3294                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3295
3296 static int __init fault_around_debugfs(void)
3297 {
3298         void *ret;
3299
3300         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3301                         &fault_around_bytes_fops);
3302         if (!ret)
3303                 pr_warn("Failed to create fault_around_bytes in debugfs");
3304         return 0;
3305 }
3306 late_initcall(fault_around_debugfs);
3307 #endif
3308
3309 /*
3310  * do_fault_around() tries to map few pages around the fault address. The hope
3311  * is that the pages will be needed soon and this will lower the number of
3312  * faults to handle.
3313  *
3314  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3315  * not ready to be mapped: not up-to-date, locked, etc.
3316  *
3317  * This function is called with the page table lock taken. In the split ptlock
3318  * case the page table lock only protects only those entries which belong to
3319  * the page table corresponding to the fault address.
3320  *
3321  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3322  * only once.
3323  *
3324  * fault_around_bytes defines how many bytes we'll try to map.
3325  * do_fault_around() expects it to be set to a power of two less than or equal
3326  * to PTRS_PER_PTE.
3327  *
3328  * The virtual address of the area that we map is naturally aligned to
3329  * fault_around_bytes rounded down to the machine page size
3330  * (and therefore to page order).  This way it's easier to guarantee
3331  * that we don't cross page table boundaries.
3332  */
3333 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3334 {
3335         unsigned long address = vmf->address, nr_pages, mask;
3336         pgoff_t start_pgoff = vmf->pgoff;
3337         pgoff_t end_pgoff;
3338         int off;
3339         vm_fault_t ret = 0;
3340
3341         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3342         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3343
3344         vmf->address = max(address & mask, vmf->vma->vm_start);
3345         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3346         start_pgoff -= off;
3347
3348         /*
3349          *  end_pgoff is either the end of the page table, the end of
3350          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3351          */
3352         end_pgoff = start_pgoff -
3353                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3354                 PTRS_PER_PTE - 1;
3355         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3356                         start_pgoff + nr_pages - 1);
3357
3358         if (pmd_none(*vmf->pmd)) {
3359                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3360                                                   vmf->address);
3361                 if (!vmf->prealloc_pte)
3362                         goto out;
3363                 smp_wmb(); /* See comment in __pte_alloc() */
3364         }
3365
3366         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3367
3368         /* Huge page is mapped? Page fault is solved */
3369         if (pmd_trans_huge(*vmf->pmd)) {
3370                 ret = VM_FAULT_NOPAGE;
3371                 goto out;
3372         }
3373
3374         /* ->map_pages() haven't done anything useful. Cold page cache? */
3375         if (!vmf->pte)
3376                 goto out;
3377
3378         /* check if the page fault is solved */
3379         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3380         if (!pte_none(*vmf->pte))
3381                 ret = VM_FAULT_NOPAGE;
3382         pte_unmap_unlock(vmf->pte, vmf->ptl);
3383 out:
3384         vmf->address = address;
3385         vmf->pte = NULL;
3386         return ret;
3387 }
3388
3389 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3390 {
3391         struct vm_area_struct *vma = vmf->vma;
3392         vm_fault_t ret = 0;
3393
3394         /*
3395          * Let's call ->map_pages() first and use ->fault() as fallback
3396          * if page by the offset is not ready to be mapped (cold cache or
3397          * something).
3398          */
3399         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3400                 ret = do_fault_around(vmf);
3401                 if (ret)
3402                         return ret;
3403         }
3404
3405         ret = __do_fault(vmf);
3406         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3407                 return ret;
3408
3409         ret |= finish_fault(vmf);
3410         unlock_page(vmf->page);
3411         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3412                 put_page(vmf->page);
3413         return ret;
3414 }
3415
3416 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3417 {
3418         struct vm_area_struct *vma = vmf->vma;
3419         vm_fault_t ret;
3420
3421         if (unlikely(anon_vma_prepare(vma)))
3422                 return VM_FAULT_OOM;
3423
3424         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3425         if (!vmf->cow_page)
3426                 return VM_FAULT_OOM;
3427
3428         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3429                                 &vmf->memcg, false)) {
3430                 put_page(vmf->cow_page);
3431                 return VM_FAULT_OOM;
3432         }
3433
3434         ret = __do_fault(vmf);
3435         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3436                 goto uncharge_out;
3437         if (ret & VM_FAULT_DONE_COW)
3438                 return ret;
3439
3440         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3441         __SetPageUptodate(vmf->cow_page);
3442
3443         ret |= finish_fault(vmf);
3444         unlock_page(vmf->page);
3445         put_page(vmf->page);
3446         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3447                 goto uncharge_out;
3448         return ret;
3449 uncharge_out:
3450         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3451         put_page(vmf->cow_page);
3452         return ret;
3453 }
3454
3455 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3456 {
3457         struct vm_area_struct *vma = vmf->vma;
3458         vm_fault_t ret, tmp;
3459
3460         ret = __do_fault(vmf);
3461         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3462                 return ret;
3463
3464         /*
3465          * Check if the backing address space wants to know that the page is
3466          * about to become writable
3467          */
3468         if (vma->vm_ops->page_mkwrite) {
3469                 unlock_page(vmf->page);
3470                 tmp = do_page_mkwrite(vmf);
3471                 if (unlikely(!tmp ||
3472                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3473                         put_page(vmf->page);
3474                         return tmp;
3475                 }
3476         }
3477
3478         ret |= finish_fault(vmf);
3479         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3480                                         VM_FAULT_RETRY))) {
3481                 unlock_page(vmf->page);
3482                 put_page(vmf->page);
3483                 return ret;
3484         }
3485
3486         fault_dirty_shared_page(vma, vmf->page);
3487         return ret;
3488 }
3489
3490 /*
3491  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3492  * but allow concurrent faults).
3493  * The mmap_sem may have been released depending on flags and our
3494  * return value.  See filemap_fault() and __lock_page_or_retry().
3495  */
3496 static vm_fault_t do_fault(struct vm_fault *vmf)
3497 {
3498         struct vm_area_struct *vma = vmf->vma;
3499         vm_fault_t ret;
3500
3501         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3502         if (!vma->vm_ops->fault)
3503                 ret = VM_FAULT_SIGBUS;
3504         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3505                 ret = do_read_fault(vmf);
3506         else if (!(vma->vm_flags & VM_SHARED))
3507                 ret = do_cow_fault(vmf);
3508         else
3509                 ret = do_shared_fault(vmf);
3510
3511         /* preallocated pagetable is unused: free it */
3512         if (vmf->prealloc_pte) {
3513                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3514                 vmf->prealloc_pte = NULL;
3515         }
3516         return ret;
3517 }
3518
3519 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3520                                 unsigned long addr, int page_nid,
3521                                 int *flags)
3522 {
3523         get_page(page);
3524
3525         count_vm_numa_event(NUMA_HINT_FAULTS);
3526         if (page_nid == numa_node_id()) {
3527                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3528                 *flags |= TNF_FAULT_LOCAL;
3529         }
3530
3531         return mpol_misplaced(page, vma, addr);
3532 }
3533
3534 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3535 {
3536         struct vm_area_struct *vma = vmf->vma;
3537         struct page *page = NULL;
3538         int page_nid = -1;
3539         int last_cpupid;
3540         int target_nid;
3541         bool migrated = false;
3542         pte_t pte;
3543         bool was_writable = pte_savedwrite(vmf->orig_pte);
3544         int flags = 0;
3545
3546         /*
3547          * The "pte" at this point cannot be used safely without
3548          * validation through pte_unmap_same(). It's of NUMA type but
3549          * the pfn may be screwed if the read is non atomic.
3550          */
3551         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3552         spin_lock(vmf->ptl);
3553         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3554                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3555                 goto out;
3556         }
3557
3558         /*
3559          * Make it present again, Depending on how arch implementes non
3560          * accessible ptes, some can allow access by kernel mode.
3561          */
3562         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3563         pte = pte_modify(pte, vma->vm_page_prot);
3564         pte = pte_mkyoung(pte);
3565         if (was_writable)
3566                 pte = pte_mkwrite(pte);
3567         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3568         update_mmu_cache(vma, vmf->address, vmf->pte);
3569
3570         page = vm_normal_page(vma, vmf->address, pte);
3571         if (!page) {
3572                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3573                 return 0;
3574         }
3575
3576         /* TODO: handle PTE-mapped THP */
3577         if (PageCompound(page)) {
3578                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3579                 return 0;
3580         }
3581
3582         /*
3583          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3584          * much anyway since they can be in shared cache state. This misses
3585          * the case where a mapping is writable but the process never writes
3586          * to it but pte_write gets cleared during protection updates and
3587          * pte_dirty has unpredictable behaviour between PTE scan updates,
3588          * background writeback, dirty balancing and application behaviour.
3589          */
3590         if (!pte_write(pte))
3591                 flags |= TNF_NO_GROUP;
3592
3593         /*
3594          * Flag if the page is shared between multiple address spaces. This
3595          * is later used when determining whether to group tasks together
3596          */
3597         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3598                 flags |= TNF_SHARED;
3599
3600         last_cpupid = page_cpupid_last(page);
3601         page_nid = page_to_nid(page);
3602         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3603                         &flags);
3604         pte_unmap_unlock(vmf->pte, vmf->ptl);
3605         if (target_nid == -1) {
3606                 put_page(page);
3607                 goto out;
3608         }
3609
3610         /* Migrate to the requested node */
3611         migrated = migrate_misplaced_page(page, vma, target_nid);
3612         if (migrated) {
3613                 page_nid = target_nid;
3614                 flags |= TNF_MIGRATED;
3615         } else
3616                 flags |= TNF_MIGRATE_FAIL;
3617
3618 out:
3619         if (page_nid != -1)
3620                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3621         return 0;
3622 }
3623
3624 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3625 {
3626         if (vma_is_anonymous(vmf->vma))
3627                 return do_huge_pmd_anonymous_page(vmf);
3628         if (vmf->vma->vm_ops->huge_fault)
3629                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3630         return VM_FAULT_FALLBACK;
3631 }
3632
3633 /* `inline' is required to avoid gcc 4.1.2 build error */
3634 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3635 {
3636         if (vma_is_anonymous(vmf->vma))
3637                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3638         if (vmf->vma->vm_ops->huge_fault)
3639                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3640
3641         /* COW handled on pte level: split pmd */
3642         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3643         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3644
3645         return VM_FAULT_FALLBACK;
3646 }
3647
3648 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3649 {
3650         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3651 }
3652
3653 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3654 {
3655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3656         /* No support for anonymous transparent PUD pages yet */
3657         if (vma_is_anonymous(vmf->vma))
3658                 return VM_FAULT_FALLBACK;
3659         if (vmf->vma->vm_ops->huge_fault)
3660                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3661 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3662         return VM_FAULT_FALLBACK;
3663 }
3664
3665 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3666 {
3667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3668         /* No support for anonymous transparent PUD pages yet */
3669         if (vma_is_anonymous(vmf->vma))
3670                 return VM_FAULT_FALLBACK;
3671         if (vmf->vma->vm_ops->huge_fault)
3672                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3673 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3674         return VM_FAULT_FALLBACK;
3675 }
3676
3677 /*
3678  * These routines also need to handle stuff like marking pages dirty
3679  * and/or accessed for architectures that don't do it in hardware (most
3680  * RISC architectures).  The early dirtying is also good on the i386.
3681  *
3682  * There is also a hook called "update_mmu_cache()" that architectures
3683  * with external mmu caches can use to update those (ie the Sparc or
3684  * PowerPC hashed page tables that act as extended TLBs).
3685  *
3686  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3687  * concurrent faults).
3688  *
3689  * The mmap_sem may have been released depending on flags and our return value.
3690  * See filemap_fault() and __lock_page_or_retry().
3691  */
3692 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3693 {
3694         pte_t entry;
3695
3696         if (unlikely(pmd_none(*vmf->pmd))) {
3697                 /*
3698                  * Leave __pte_alloc() until later: because vm_ops->fault may
3699                  * want to allocate huge page, and if we expose page table
3700                  * for an instant, it will be difficult to retract from
3701                  * concurrent faults and from rmap lookups.
3702                  */
3703                 vmf->pte = NULL;
3704         } else {
3705                 /* See comment in pte_alloc_one_map() */
3706                 if (pmd_devmap_trans_unstable(vmf->pmd))
3707                         return 0;
3708                 /*
3709                  * A regular pmd is established and it can't morph into a huge
3710                  * pmd from under us anymore at this point because we hold the
3711                  * mmap_sem read mode and khugepaged takes it in write mode.
3712                  * So now it's safe to run pte_offset_map().
3713                  */
3714                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3715                 vmf->orig_pte = *vmf->pte;
3716
3717                 /*
3718                  * some architectures can have larger ptes than wordsize,
3719                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3720                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3721                  * accesses.  The code below just needs a consistent view
3722                  * for the ifs and we later double check anyway with the
3723                  * ptl lock held. So here a barrier will do.
3724                  */
3725                 barrier();
3726                 if (pte_none(vmf->orig_pte)) {
3727                         pte_unmap(vmf->pte);
3728                         vmf->pte = NULL;
3729                 }
3730         }
3731
3732         if (!vmf->pte) {
3733                 if (vma_is_anonymous(vmf->vma))
3734                         return do_anonymous_page(vmf);
3735                 else
3736                         return do_fault(vmf);
3737         }
3738
3739         if (!pte_present(vmf->orig_pte))
3740                 return do_swap_page(vmf);
3741
3742         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3743                 return do_numa_page(vmf);
3744
3745         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3746         spin_lock(vmf->ptl);
3747         entry = vmf->orig_pte;
3748         if (unlikely(!pte_same(*vmf->pte, entry)))
3749                 goto unlock;
3750         if (vmf->flags & FAULT_FLAG_WRITE) {
3751                 if (!pte_write(entry))
3752                         return do_wp_page(vmf);
3753                 entry = pte_mkdirty(entry);
3754         }
3755         entry = pte_mkyoung(entry);
3756         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3757                                 vmf->flags & FAULT_FLAG_WRITE)) {
3758                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3759         } else {
3760                 /*
3761                  * This is needed only for protection faults but the arch code
3762                  * is not yet telling us if this is a protection fault or not.
3763                  * This still avoids useless tlb flushes for .text page faults
3764                  * with threads.
3765                  */
3766                 if (vmf->flags & FAULT_FLAG_WRITE)
3767                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3768         }
3769 unlock:
3770         pte_unmap_unlock(vmf->pte, vmf->ptl);
3771         return 0;
3772 }
3773
3774 /*
3775  * By the time we get here, we already hold the mm semaphore
3776  *
3777  * The mmap_sem may have been released depending on flags and our
3778  * return value.  See filemap_fault() and __lock_page_or_retry().
3779  */
3780 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3781                 unsigned long address, unsigned int flags)
3782 {
3783         struct vm_fault vmf = {
3784                 .vma = vma,
3785                 .address = address & PAGE_MASK,
3786                 .flags = flags,
3787                 .pgoff = linear_page_index(vma, address),
3788                 .gfp_mask = __get_fault_gfp_mask(vma),
3789         };
3790         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3791         struct mm_struct *mm = vma->vm_mm;
3792         pgd_t *pgd;
3793         p4d_t *p4d;
3794         vm_fault_t ret;
3795
3796         pgd = pgd_offset(mm, address);
3797         p4d = p4d_alloc(mm, pgd, address);
3798         if (!p4d)
3799                 return VM_FAULT_OOM;
3800
3801         vmf.pud = pud_alloc(mm, p4d, address);
3802         if (!vmf.pud)
3803                 return VM_FAULT_OOM;
3804         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3805                 ret = create_huge_pud(&vmf);
3806                 if (!(ret & VM_FAULT_FALLBACK))
3807                         return ret;
3808         } else {
3809                 pud_t orig_pud = *vmf.pud;
3810
3811                 barrier();
3812                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3813
3814                         /* NUMA case for anonymous PUDs would go here */
3815
3816                         if (dirty && !pud_write(orig_pud)) {
3817                                 ret = wp_huge_pud(&vmf, orig_pud);
3818                                 if (!(ret & VM_FAULT_FALLBACK))
3819                                         return ret;
3820                         } else {
3821                                 huge_pud_set_accessed(&vmf, orig_pud);
3822                                 return 0;
3823                         }
3824                 }
3825         }
3826
3827         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3828         if (!vmf.pmd)
3829                 return VM_FAULT_OOM;
3830         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3831                 ret = create_huge_pmd(&vmf);
3832                 if (!(ret & VM_FAULT_FALLBACK))
3833                         return ret;
3834         } else {
3835                 pmd_t orig_pmd = *vmf.pmd;
3836
3837                 barrier();
3838                 if (unlikely(is_swap_pmd(orig_pmd))) {
3839                         VM_BUG_ON(thp_migration_supported() &&
3840                                           !is_pmd_migration_entry(orig_pmd));
3841                         if (is_pmd_migration_entry(orig_pmd))
3842                                 pmd_migration_entry_wait(mm, vmf.pmd);
3843                         return 0;
3844                 }
3845                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3846                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3847                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3848
3849                         if (dirty && !pmd_write(orig_pmd)) {
3850                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3851                                 if (!(ret & VM_FAULT_FALLBACK))
3852                                         return ret;
3853                         } else {
3854                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3855                                 return 0;
3856                         }
3857                 }
3858         }
3859
3860         return handle_pte_fault(&vmf);
3861 }
3862
3863 /*
3864  * By the time we get here, we already hold the mm semaphore
3865  *
3866  * The mmap_sem may have been released depending on flags and our
3867  * return value.  See filemap_fault() and __lock_page_or_retry().
3868  */
3869 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3870                 unsigned int flags)
3871 {
3872         vm_fault_t ret;
3873
3874         __set_current_state(TASK_RUNNING);
3875
3876         count_vm_event(PGFAULT);
3877         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3878
3879         /* do counter updates before entering really critical section. */
3880         check_sync_rss_stat(current);
3881
3882         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3883                                             flags & FAULT_FLAG_INSTRUCTION,
3884                                             flags & FAULT_FLAG_REMOTE))
3885                 return VM_FAULT_SIGSEGV;
3886
3887         /*
3888          * Enable the memcg OOM handling for faults triggered in user
3889          * space.  Kernel faults are handled more gracefully.
3890          */
3891         if (flags & FAULT_FLAG_USER)
3892                 mem_cgroup_enter_user_fault();
3893
3894         if (unlikely(is_vm_hugetlb_page(vma)))
3895                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3896         else
3897                 ret = __handle_mm_fault(vma, address, flags);
3898
3899         if (flags & FAULT_FLAG_USER) {
3900                 mem_cgroup_exit_user_fault();
3901                 /*
3902                  * The task may have entered a memcg OOM situation but
3903                  * if the allocation error was handled gracefully (no
3904                  * VM_FAULT_OOM), there is no need to kill anything.
3905                  * Just clean up the OOM state peacefully.
3906                  */
3907                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3908                         mem_cgroup_oom_synchronize(false);
3909         }
3910
3911         return ret;
3912 }
3913 EXPORT_SYMBOL_GPL(handle_mm_fault);
3914
3915 #ifndef __PAGETABLE_P4D_FOLDED
3916 /*
3917  * Allocate p4d page table.
3918  * We've already handled the fast-path in-line.
3919  */
3920 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3921 {
3922         p4d_t *new = p4d_alloc_one(mm, address);
3923         if (!new)
3924                 return -ENOMEM;
3925
3926         smp_wmb(); /* See comment in __pte_alloc */
3927
3928         spin_lock(&mm->page_table_lock);
3929         if (pgd_present(*pgd))          /* Another has populated it */
3930                 p4d_free(mm, new);
3931         else
3932                 pgd_populate(mm, pgd, new);
3933         spin_unlock(&mm->page_table_lock);
3934         return 0;
3935 }
3936 #endif /* __PAGETABLE_P4D_FOLDED */
3937
3938 #ifndef __PAGETABLE_PUD_FOLDED
3939 /*
3940  * Allocate page upper directory.
3941  * We've already handled the fast-path in-line.
3942  */
3943 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3944 {
3945         pud_t *new = pud_alloc_one(mm, address);
3946         if (!new)
3947                 return -ENOMEM;
3948
3949         smp_wmb(); /* See comment in __pte_alloc */
3950
3951         spin_lock(&mm->page_table_lock);
3952 #ifndef __ARCH_HAS_5LEVEL_HACK
3953         if (!p4d_present(*p4d)) {
3954                 mm_inc_nr_puds(mm);
3955                 p4d_populate(mm, p4d, new);
3956         } else  /* Another has populated it */
3957                 pud_free(mm, new);
3958 #else
3959         if (!pgd_present(*p4d)) {
3960                 mm_inc_nr_puds(mm);
3961                 pgd_populate(mm, p4d, new);
3962         } else  /* Another has populated it */
3963                 pud_free(mm, new);
3964 #endif /* __ARCH_HAS_5LEVEL_HACK */
3965         spin_unlock(&mm->page_table_lock);
3966         return 0;
3967 }
3968 #endif /* __PAGETABLE_PUD_FOLDED */
3969
3970 #ifndef __PAGETABLE_PMD_FOLDED
3971 /*
3972  * Allocate page middle directory.
3973  * We've already handled the fast-path in-line.
3974  */
3975 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3976 {
3977         spinlock_t *ptl;
3978         pmd_t *new = pmd_alloc_one(mm, address);
3979         if (!new)
3980                 return -ENOMEM;
3981
3982         smp_wmb(); /* See comment in __pte_alloc */
3983
3984         ptl = pud_lock(mm, pud);
3985 #ifndef __ARCH_HAS_4LEVEL_HACK
3986         if (!pud_present(*pud)) {
3987                 mm_inc_nr_pmds(mm);
3988                 pud_populate(mm, pud, new);
3989         } else  /* Another has populated it */
3990                 pmd_free(mm, new);
3991 #else
3992         if (!pgd_present(*pud)) {
3993                 mm_inc_nr_pmds(mm);
3994                 pgd_populate(mm, pud, new);
3995         } else /* Another has populated it */
3996                 pmd_free(mm, new);
3997 #endif /* __ARCH_HAS_4LEVEL_HACK */
3998         spin_unlock(ptl);
3999         return 0;
4000 }
4001 #endif /* __PAGETABLE_PMD_FOLDED */
4002
4003 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4004                             unsigned long *start, unsigned long *end,
4005                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4006 {
4007         pgd_t *pgd;
4008         p4d_t *p4d;
4009         pud_t *pud;
4010         pmd_t *pmd;
4011         pte_t *ptep;
4012
4013         pgd = pgd_offset(mm, address);
4014         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4015                 goto out;
4016
4017         p4d = p4d_offset(pgd, address);
4018         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4019                 goto out;
4020
4021         pud = pud_offset(p4d, address);
4022         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4023                 goto out;
4024
4025         pmd = pmd_offset(pud, address);
4026         VM_BUG_ON(pmd_trans_huge(*pmd));
4027
4028         if (pmd_huge(*pmd)) {
4029                 if (!pmdpp)
4030                         goto out;
4031
4032                 if (start && end) {
4033                         *start = address & PMD_MASK;
4034                         *end = *start + PMD_SIZE;
4035                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4036                 }
4037                 *ptlp = pmd_lock(mm, pmd);
4038                 if (pmd_huge(*pmd)) {
4039                         *pmdpp = pmd;
4040                         return 0;
4041                 }
4042                 spin_unlock(*ptlp);
4043                 if (start && end)
4044                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4045         }
4046
4047         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4048                 goto out;
4049
4050         if (start && end) {
4051                 *start = address & PAGE_MASK;
4052                 *end = *start + PAGE_SIZE;
4053                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4054         }
4055         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4056         if (!pte_present(*ptep))
4057                 goto unlock;
4058         *ptepp = ptep;
4059         return 0;
4060 unlock:
4061         pte_unmap_unlock(ptep, *ptlp);
4062         if (start && end)
4063                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4064 out:
4065         return -EINVAL;
4066 }
4067
4068 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4069                              pte_t **ptepp, spinlock_t **ptlp)
4070 {
4071         int res;
4072
4073         /* (void) is needed to make gcc happy */
4074         (void) __cond_lock(*ptlp,
4075                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4076                                                     ptepp, NULL, ptlp)));
4077         return res;
4078 }
4079
4080 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4081                              unsigned long *start, unsigned long *end,
4082                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4083 {
4084         int res;
4085
4086         /* (void) is needed to make gcc happy */
4087         (void) __cond_lock(*ptlp,
4088                            !(res = __follow_pte_pmd(mm, address, start, end,
4089                                                     ptepp, pmdpp, ptlp)));
4090         return res;
4091 }
4092 EXPORT_SYMBOL(follow_pte_pmd);
4093
4094 /**
4095  * follow_pfn - look up PFN at a user virtual address
4096  * @vma: memory mapping
4097  * @address: user virtual address
4098  * @pfn: location to store found PFN
4099  *
4100  * Only IO mappings and raw PFN mappings are allowed.
4101  *
4102  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4103  */
4104 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4105         unsigned long *pfn)
4106 {
4107         int ret = -EINVAL;
4108         spinlock_t *ptl;
4109         pte_t *ptep;
4110
4111         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4112                 return ret;
4113
4114         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4115         if (ret)
4116                 return ret;
4117         *pfn = pte_pfn(*ptep);
4118         pte_unmap_unlock(ptep, ptl);
4119         return 0;
4120 }
4121 EXPORT_SYMBOL(follow_pfn);
4122
4123 #ifdef CONFIG_HAVE_IOREMAP_PROT
4124 int follow_phys(struct vm_area_struct *vma,
4125                 unsigned long address, unsigned int flags,
4126                 unsigned long *prot, resource_size_t *phys)
4127 {
4128         int ret = -EINVAL;
4129         pte_t *ptep, pte;
4130         spinlock_t *ptl;
4131
4132         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4133                 goto out;
4134
4135         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4136                 goto out;
4137         pte = *ptep;
4138
4139         if ((flags & FOLL_WRITE) && !pte_write(pte))
4140                 goto unlock;
4141
4142         *prot = pgprot_val(pte_pgprot(pte));
4143         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4144
4145         ret = 0;
4146 unlock:
4147         pte_unmap_unlock(ptep, ptl);
4148 out:
4149         return ret;
4150 }
4151
4152 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4153                         void *buf, int len, int write)
4154 {
4155         resource_size_t phys_addr;
4156         unsigned long prot = 0;
4157         void __iomem *maddr;
4158         int offset = addr & (PAGE_SIZE-1);
4159
4160         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4161                 return -EINVAL;
4162
4163         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4164         if (!maddr)
4165                 return -ENOMEM;
4166
4167         if (write)
4168                 memcpy_toio(maddr + offset, buf, len);
4169         else
4170                 memcpy_fromio(buf, maddr + offset, len);
4171         iounmap(maddr);
4172
4173         return len;
4174 }
4175 EXPORT_SYMBOL_GPL(generic_access_phys);
4176 #endif
4177
4178 /*
4179  * Access another process' address space as given in mm.  If non-NULL, use the
4180  * given task for page fault accounting.
4181  */
4182 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4183                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4184 {
4185         struct vm_area_struct *vma;
4186         void *old_buf = buf;
4187         int write = gup_flags & FOLL_WRITE;
4188
4189         down_read(&mm->mmap_sem);
4190         /* ignore errors, just check how much was successfully transferred */
4191         while (len) {
4192                 int bytes, ret, offset;
4193                 void *maddr;
4194                 struct page *page = NULL;
4195
4196                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4197                                 gup_flags, &page, &vma, NULL);
4198                 if (ret <= 0) {
4199 #ifndef CONFIG_HAVE_IOREMAP_PROT
4200                         break;
4201 #else
4202                         /*
4203                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4204                          * we can access using slightly different code.
4205                          */
4206                         vma = find_vma(mm, addr);
4207                         if (!vma || vma->vm_start > addr)
4208                                 break;
4209                         if (vma->vm_ops && vma->vm_ops->access)
4210                                 ret = vma->vm_ops->access(vma, addr, buf,
4211                                                           len, write);
4212                         if (ret <= 0)
4213                                 break;
4214                         bytes = ret;
4215 #endif
4216                 } else {
4217                         bytes = len;
4218                         offset = addr & (PAGE_SIZE-1);
4219                         if (bytes > PAGE_SIZE-offset)
4220                                 bytes = PAGE_SIZE-offset;
4221
4222                         maddr = kmap(page);
4223                         if (write) {
4224                                 copy_to_user_page(vma, page, addr,
4225                                                   maddr + offset, buf, bytes);
4226                                 set_page_dirty_lock(page);
4227                         } else {
4228                                 copy_from_user_page(vma, page, addr,
4229                                                     buf, maddr + offset, bytes);
4230                         }
4231                         kunmap(page);
4232                         put_page(page);
4233                 }
4234                 len -= bytes;
4235                 buf += bytes;
4236                 addr += bytes;
4237         }
4238         up_read(&mm->mmap_sem);
4239
4240         return buf - old_buf;
4241 }
4242
4243 /**
4244  * access_remote_vm - access another process' address space
4245  * @mm:         the mm_struct of the target address space
4246  * @addr:       start address to access
4247  * @buf:        source or destination buffer
4248  * @len:        number of bytes to transfer
4249  * @gup_flags:  flags modifying lookup behaviour
4250  *
4251  * The caller must hold a reference on @mm.
4252  */
4253 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4254                 void *buf, int len, unsigned int gup_flags)
4255 {
4256         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4257 }
4258
4259 /*
4260  * Access another process' address space.
4261  * Source/target buffer must be kernel space,
4262  * Do not walk the page table directly, use get_user_pages
4263  */
4264 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4265                 void *buf, int len, unsigned int gup_flags)
4266 {
4267         struct mm_struct *mm;
4268         int ret;
4269
4270         mm = get_task_mm(tsk);
4271         if (!mm)
4272                 return 0;
4273
4274         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4275
4276         mmput(mm);
4277
4278         return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(access_process_vm);
4281
4282 /*
4283  * Print the name of a VMA.
4284  */
4285 void print_vma_addr(char *prefix, unsigned long ip)
4286 {
4287         struct mm_struct *mm = current->mm;
4288         struct vm_area_struct *vma;
4289
4290         /*
4291          * we might be running from an atomic context so we cannot sleep
4292          */
4293         if (!down_read_trylock(&mm->mmap_sem))
4294                 return;
4295
4296         vma = find_vma(mm, ip);
4297         if (vma && vma->vm_file) {
4298                 struct file *f = vma->vm_file;
4299                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4300                 if (buf) {
4301                         char *p;
4302
4303                         p = file_path(f, buf, PAGE_SIZE);
4304                         if (IS_ERR(p))
4305                                 p = "?";
4306                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4307                                         vma->vm_start,
4308                                         vma->vm_end - vma->vm_start);
4309                         free_page((unsigned long)buf);
4310                 }
4311         }
4312         up_read(&mm->mmap_sem);
4313 }
4314
4315 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4316 void __might_fault(const char *file, int line)
4317 {
4318         /*
4319          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4320          * holding the mmap_sem, this is safe because kernel memory doesn't
4321          * get paged out, therefore we'll never actually fault, and the
4322          * below annotations will generate false positives.
4323          */
4324         if (uaccess_kernel())
4325                 return;
4326         if (pagefault_disabled())
4327                 return;
4328         __might_sleep(file, line, 0);
4329 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4330         if (current->mm)
4331                 might_lock_read(&current->mm->mmap_sem);
4332 #endif
4333 }
4334 EXPORT_SYMBOL(__might_fault);
4335 #endif
4336
4337 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4338 /*
4339  * Process all subpages of the specified huge page with the specified
4340  * operation.  The target subpage will be processed last to keep its
4341  * cache lines hot.
4342  */
4343 static inline void process_huge_page(
4344         unsigned long addr_hint, unsigned int pages_per_huge_page,
4345         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4346         void *arg)
4347 {
4348         int i, n, base, l;
4349         unsigned long addr = addr_hint &
4350                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4351
4352         /* Process target subpage last to keep its cache lines hot */
4353         might_sleep();
4354         n = (addr_hint - addr) / PAGE_SIZE;
4355         if (2 * n <= pages_per_huge_page) {
4356                 /* If target subpage in first half of huge page */
4357                 base = 0;
4358                 l = n;
4359                 /* Process subpages at the end of huge page */
4360                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4361                         cond_resched();
4362                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4363                 }
4364         } else {
4365                 /* If target subpage in second half of huge page */
4366                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4367                 l = pages_per_huge_page - n;
4368                 /* Process subpages at the begin of huge page */
4369                 for (i = 0; i < base; i++) {
4370                         cond_resched();
4371                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4372                 }
4373         }
4374         /*
4375          * Process remaining subpages in left-right-left-right pattern
4376          * towards the target subpage
4377          */
4378         for (i = 0; i < l; i++) {
4379                 int left_idx = base + i;
4380                 int right_idx = base + 2 * l - 1 - i;
4381
4382                 cond_resched();
4383                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4384                 cond_resched();
4385                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4386         }
4387 }
4388
4389 static void clear_gigantic_page(struct page *page,
4390                                 unsigned long addr,
4391                                 unsigned int pages_per_huge_page)
4392 {
4393         int i;
4394         struct page *p = page;
4395
4396         might_sleep();
4397         for (i = 0; i < pages_per_huge_page;
4398              i++, p = mem_map_next(p, page, i)) {
4399                 cond_resched();
4400                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4401         }
4402 }
4403
4404 static void clear_subpage(unsigned long addr, int idx, void *arg)
4405 {
4406         struct page *page = arg;
4407
4408         clear_user_highpage(page + idx, addr);
4409 }
4410
4411 void clear_huge_page(struct page *page,
4412                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4413 {
4414         unsigned long addr = addr_hint &
4415                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4416
4417         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4418                 clear_gigantic_page(page, addr, pages_per_huge_page);
4419                 return;
4420         }
4421
4422         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4423 }
4424
4425 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4426                                     unsigned long addr,
4427                                     struct vm_area_struct *vma,
4428                                     unsigned int pages_per_huge_page)
4429 {
4430         int i;
4431         struct page *dst_base = dst;
4432         struct page *src_base = src;
4433
4434         for (i = 0; i < pages_per_huge_page; ) {
4435                 cond_resched();
4436                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4437
4438                 i++;
4439                 dst = mem_map_next(dst, dst_base, i);
4440                 src = mem_map_next(src, src_base, i);
4441         }
4442 }
4443
4444 struct copy_subpage_arg {
4445         struct page *dst;
4446         struct page *src;
4447         struct vm_area_struct *vma;
4448 };
4449
4450 static void copy_subpage(unsigned long addr, int idx, void *arg)
4451 {
4452         struct copy_subpage_arg *copy_arg = arg;
4453
4454         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4455                            addr, copy_arg->vma);
4456 }
4457
4458 void copy_user_huge_page(struct page *dst, struct page *src,
4459                          unsigned long addr_hint, struct vm_area_struct *vma,
4460                          unsigned int pages_per_huge_page)
4461 {
4462         unsigned long addr = addr_hint &
4463                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4464         struct copy_subpage_arg arg = {
4465                 .dst = dst,
4466                 .src = src,
4467                 .vma = vma,
4468         };
4469
4470         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4471                 copy_user_gigantic_page(dst, src, addr, vma,
4472                                         pages_per_huge_page);
4473                 return;
4474         }
4475
4476         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4477 }
4478
4479 long copy_huge_page_from_user(struct page *dst_page,
4480                                 const void __user *usr_src,
4481                                 unsigned int pages_per_huge_page,
4482                                 bool allow_pagefault)
4483 {
4484         void *src = (void *)usr_src;
4485         void *page_kaddr;
4486         unsigned long i, rc = 0;
4487         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4488
4489         for (i = 0; i < pages_per_huge_page; i++) {
4490                 if (allow_pagefault)
4491                         page_kaddr = kmap(dst_page + i);
4492                 else
4493                         page_kaddr = kmap_atomic(dst_page + i);
4494                 rc = copy_from_user(page_kaddr,
4495                                 (const void __user *)(src + i * PAGE_SIZE),
4496                                 PAGE_SIZE);
4497                 if (allow_pagefault)
4498                         kunmap(dst_page + i);
4499                 else
4500                         kunmap_atomic(page_kaddr);
4501
4502                 ret_val -= (PAGE_SIZE - rc);
4503                 if (rc)
4504                         break;
4505
4506                 cond_resched();
4507         }
4508         return ret_val;
4509 }
4510 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4511
4512 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4513
4514 static struct kmem_cache *page_ptl_cachep;
4515
4516 void __init ptlock_cache_init(void)
4517 {
4518         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4519                         SLAB_PANIC, NULL);
4520 }
4521
4522 bool ptlock_alloc(struct page *page)
4523 {
4524         spinlock_t *ptl;
4525
4526         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4527         if (!ptl)
4528                 return false;
4529         page->ptl = ptl;
4530         return true;
4531 }
4532
4533 void ptlock_free(struct page *page)
4534 {
4535         kmem_cache_free(page_ptl_cachep, page->ptl);
4536 }
4537 #endif