selftests/mm: fix WARNING comparing pointer to 0
[linux-2.6-block.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117                 return false;
118
119         return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121
122 /*
123  * A number of key systems in x86 including ioremap() rely on the assumption
124  * that high_memory defines the upper bound on direct map memory, then end
125  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
126  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127  * and ZONE_HIGHMEM.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140                                         1;
141 #else
142                                         2;
143 #endif
144
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148         /*
149          * Transitioning a PTE from 'old' to 'young' can be expensive on
150          * some architectures, even if it's performed in hardware. By
151          * default, "false" means prefaulted entries will be 'young'.
152          */
153         return false;
154 }
155 #endif
156
157 static int __init disable_randmaps(char *s)
158 {
159         randomize_va_space = 0;
160         return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166
167 unsigned long highest_memmap_pfn __read_mostly;
168
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174         zero_pfn = page_to_pfn(ZERO_PAGE(0));
175         return 0;
176 }
177 early_initcall(init_zero_pfn);
178
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181         trace_rss_stat(mm, member);
182 }
183
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189                            unsigned long addr)
190 {
191         pgtable_t token = pmd_pgtable(*pmd);
192         pmd_clear(pmd);
193         pte_free_tlb(tlb, token, addr);
194         mm_dec_nr_ptes(tlb->mm);
195 }
196
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198                                 unsigned long addr, unsigned long end,
199                                 unsigned long floor, unsigned long ceiling)
200 {
201         pmd_t *pmd;
202         unsigned long next;
203         unsigned long start;
204
205         start = addr;
206         pmd = pmd_offset(pud, addr);
207         do {
208                 next = pmd_addr_end(addr, end);
209                 if (pmd_none_or_clear_bad(pmd))
210                         continue;
211                 free_pte_range(tlb, pmd, addr);
212         } while (pmd++, addr = next, addr != end);
213
214         start &= PUD_MASK;
215         if (start < floor)
216                 return;
217         if (ceiling) {
218                 ceiling &= PUD_MASK;
219                 if (!ceiling)
220                         return;
221         }
222         if (end - 1 > ceiling - 1)
223                 return;
224
225         pmd = pmd_offset(pud, start);
226         pud_clear(pud);
227         pmd_free_tlb(tlb, pmd, start);
228         mm_dec_nr_pmds(tlb->mm);
229 }
230
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232                                 unsigned long addr, unsigned long end,
233                                 unsigned long floor, unsigned long ceiling)
234 {
235         pud_t *pud;
236         unsigned long next;
237         unsigned long start;
238
239         start = addr;
240         pud = pud_offset(p4d, addr);
241         do {
242                 next = pud_addr_end(addr, end);
243                 if (pud_none_or_clear_bad(pud))
244                         continue;
245                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246         } while (pud++, addr = next, addr != end);
247
248         start &= P4D_MASK;
249         if (start < floor)
250                 return;
251         if (ceiling) {
252                 ceiling &= P4D_MASK;
253                 if (!ceiling)
254                         return;
255         }
256         if (end - 1 > ceiling - 1)
257                 return;
258
259         pud = pud_offset(p4d, start);
260         p4d_clear(p4d);
261         pud_free_tlb(tlb, pud, start);
262         mm_dec_nr_puds(tlb->mm);
263 }
264
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266                                 unsigned long addr, unsigned long end,
267                                 unsigned long floor, unsigned long ceiling)
268 {
269         p4d_t *p4d;
270         unsigned long next;
271         unsigned long start;
272
273         start = addr;
274         p4d = p4d_offset(pgd, addr);
275         do {
276                 next = p4d_addr_end(addr, end);
277                 if (p4d_none_or_clear_bad(p4d))
278                         continue;
279                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280         } while (p4d++, addr = next, addr != end);
281
282         start &= PGDIR_MASK;
283         if (start < floor)
284                 return;
285         if (ceiling) {
286                 ceiling &= PGDIR_MASK;
287                 if (!ceiling)
288                         return;
289         }
290         if (end - 1 > ceiling - 1)
291                 return;
292
293         p4d = p4d_offset(pgd, start);
294         pgd_clear(pgd);
295         p4d_free_tlb(tlb, p4d, start);
296 }
297
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302                         unsigned long addr, unsigned long end,
303                         unsigned long floor, unsigned long ceiling)
304 {
305         pgd_t *pgd;
306         unsigned long next;
307
308         /*
309          * The next few lines have given us lots of grief...
310          *
311          * Why are we testing PMD* at this top level?  Because often
312          * there will be no work to do at all, and we'd prefer not to
313          * go all the way down to the bottom just to discover that.
314          *
315          * Why all these "- 1"s?  Because 0 represents both the bottom
316          * of the address space and the top of it (using -1 for the
317          * top wouldn't help much: the masks would do the wrong thing).
318          * The rule is that addr 0 and floor 0 refer to the bottom of
319          * the address space, but end 0 and ceiling 0 refer to the top
320          * Comparisons need to use "end - 1" and "ceiling - 1" (though
321          * that end 0 case should be mythical).
322          *
323          * Wherever addr is brought up or ceiling brought down, we must
324          * be careful to reject "the opposite 0" before it confuses the
325          * subsequent tests.  But what about where end is brought down
326          * by PMD_SIZE below? no, end can't go down to 0 there.
327          *
328          * Whereas we round start (addr) and ceiling down, by different
329          * masks at different levels, in order to test whether a table
330          * now has no other vmas using it, so can be freed, we don't
331          * bother to round floor or end up - the tests don't need that.
332          */
333
334         addr &= PMD_MASK;
335         if (addr < floor) {
336                 addr += PMD_SIZE;
337                 if (!addr)
338                         return;
339         }
340         if (ceiling) {
341                 ceiling &= PMD_MASK;
342                 if (!ceiling)
343                         return;
344         }
345         if (end - 1 > ceiling - 1)
346                 end -= PMD_SIZE;
347         if (addr > end - 1)
348                 return;
349         /*
350          * We add page table cache pages with PAGE_SIZE,
351          * (see pte_free_tlb()), flush the tlb if we need
352          */
353         tlb_change_page_size(tlb, PAGE_SIZE);
354         pgd = pgd_offset(tlb->mm, addr);
355         do {
356                 next = pgd_addr_end(addr, end);
357                 if (pgd_none_or_clear_bad(pgd))
358                         continue;
359                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360         } while (pgd++, addr = next, addr != end);
361 }
362
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364                    struct vm_area_struct *vma, unsigned long floor,
365                    unsigned long ceiling, bool mm_wr_locked)
366 {
367         do {
368                 unsigned long addr = vma->vm_start;
369                 struct vm_area_struct *next;
370
371                 /*
372                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373                  * be 0.  This will underflow and is okay.
374                  */
375                 next = mas_find(mas, ceiling - 1);
376
377                 /*
378                  * Hide vma from rmap and truncate_pagecache before freeing
379                  * pgtables
380                  */
381                 if (mm_wr_locked)
382                         vma_start_write(vma);
383                 unlink_anon_vmas(vma);
384                 unlink_file_vma(vma);
385
386                 if (is_vm_hugetlb_page(vma)) {
387                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388                                 floor, next ? next->vm_start : ceiling);
389                 } else {
390                         /*
391                          * Optimization: gather nearby vmas into one call down
392                          */
393                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394                                && !is_vm_hugetlb_page(next)) {
395                                 vma = next;
396                                 next = mas_find(mas, ceiling - 1);
397                                 if (mm_wr_locked)
398                                         vma_start_write(vma);
399                                 unlink_anon_vmas(vma);
400                                 unlink_file_vma(vma);
401                         }
402                         free_pgd_range(tlb, addr, vma->vm_end,
403                                 floor, next ? next->vm_start : ceiling);
404                 }
405                 vma = next;
406         } while (vma);
407 }
408
409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
410 {
411         spinlock_t *ptl = pmd_lock(mm, pmd);
412
413         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
414                 mm_inc_nr_ptes(mm);
415                 /*
416                  * Ensure all pte setup (eg. pte page lock and page clearing) are
417                  * visible before the pte is made visible to other CPUs by being
418                  * put into page tables.
419                  *
420                  * The other side of the story is the pointer chasing in the page
421                  * table walking code (when walking the page table without locking;
422                  * ie. most of the time). Fortunately, these data accesses consist
423                  * of a chain of data-dependent loads, meaning most CPUs (alpha
424                  * being the notable exception) will already guarantee loads are
425                  * seen in-order. See the alpha page table accessors for the
426                  * smp_rmb() barriers in page table walking code.
427                  */
428                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429                 pmd_populate(mm, pmd, *pte);
430                 *pte = NULL;
431         }
432         spin_unlock(ptl);
433 }
434
435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
436 {
437         pgtable_t new = pte_alloc_one(mm);
438         if (!new)
439                 return -ENOMEM;
440
441         pmd_install(mm, pmd, &new);
442         if (new)
443                 pte_free(mm, new);
444         return 0;
445 }
446
447 int __pte_alloc_kernel(pmd_t *pmd)
448 {
449         pte_t *new = pte_alloc_one_kernel(&init_mm);
450         if (!new)
451                 return -ENOMEM;
452
453         spin_lock(&init_mm.page_table_lock);
454         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
455                 smp_wmb(); /* See comment in pmd_install() */
456                 pmd_populate_kernel(&init_mm, pmd, new);
457                 new = NULL;
458         }
459         spin_unlock(&init_mm.page_table_lock);
460         if (new)
461                 pte_free_kernel(&init_mm, new);
462         return 0;
463 }
464
465 static inline void init_rss_vec(int *rss)
466 {
467         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468 }
469
470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
471 {
472         int i;
473
474         if (current->mm == mm)
475                 sync_mm_rss(mm);
476         for (i = 0; i < NR_MM_COUNTERS; i++)
477                 if (rss[i])
478                         add_mm_counter(mm, i, rss[i]);
479 }
480
481 /*
482  * This function is called to print an error when a bad pte
483  * is found. For example, we might have a PFN-mapped pte in
484  * a region that doesn't allow it.
485  *
486  * The calling function must still handle the error.
487  */
488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489                           pte_t pte, struct page *page)
490 {
491         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492         p4d_t *p4d = p4d_offset(pgd, addr);
493         pud_t *pud = pud_offset(p4d, addr);
494         pmd_t *pmd = pmd_offset(pud, addr);
495         struct address_space *mapping;
496         pgoff_t index;
497         static unsigned long resume;
498         static unsigned long nr_shown;
499         static unsigned long nr_unshown;
500
501         /*
502          * Allow a burst of 60 reports, then keep quiet for that minute;
503          * or allow a steady drip of one report per second.
504          */
505         if (nr_shown == 60) {
506                 if (time_before(jiffies, resume)) {
507                         nr_unshown++;
508                         return;
509                 }
510                 if (nr_unshown) {
511                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512                                  nr_unshown);
513                         nr_unshown = 0;
514                 }
515                 nr_shown = 0;
516         }
517         if (nr_shown++ == 0)
518                 resume = jiffies + 60 * HZ;
519
520         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521         index = linear_page_index(vma, addr);
522
523         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
524                  current->comm,
525                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
526         if (page)
527                 dump_page(page, "bad pte");
528         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
531                  vma->vm_file,
532                  vma->vm_ops ? vma->vm_ops->fault : NULL,
533                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534                  mapping ? mapping->a_ops->read_folio : NULL);
535         dump_stack();
536         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538
539 /*
540  * vm_normal_page -- This function gets the "struct page" associated with a pte.
541  *
542  * "Special" mappings do not wish to be associated with a "struct page" (either
543  * it doesn't exist, or it exists but they don't want to touch it). In this
544  * case, NULL is returned here. "Normal" mappings do have a struct page.
545  *
546  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547  * pte bit, in which case this function is trivial. Secondly, an architecture
548  * may not have a spare pte bit, which requires a more complicated scheme,
549  * described below.
550  *
551  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552  * special mapping (even if there are underlying and valid "struct pages").
553  * COWed pages of a VM_PFNMAP are always normal.
554  *
555  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558  * mapping will always honor the rule
559  *
560  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561  *
562  * And for normal mappings this is false.
563  *
564  * This restricts such mappings to be a linear translation from virtual address
565  * to pfn. To get around this restriction, we allow arbitrary mappings so long
566  * as the vma is not a COW mapping; in that case, we know that all ptes are
567  * special (because none can have been COWed).
568  *
569  *
570  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
571  *
572  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573  * page" backing, however the difference is that _all_ pages with a struct
574  * page (that is, those where pfn_valid is true) are refcounted and considered
575  * normal pages by the VM. The disadvantage is that pages are refcounted
576  * (which can be slower and simply not an option for some PFNMAP users). The
577  * advantage is that we don't have to follow the strict linearity rule of
578  * PFNMAP mappings in order to support COWable mappings.
579  *
580  */
581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582                             pte_t pte)
583 {
584         unsigned long pfn = pte_pfn(pte);
585
586         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587                 if (likely(!pte_special(pte)))
588                         goto check_pfn;
589                 if (vma->vm_ops && vma->vm_ops->find_special_page)
590                         return vma->vm_ops->find_special_page(vma, addr);
591                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592                         return NULL;
593                 if (is_zero_pfn(pfn))
594                         return NULL;
595                 if (pte_devmap(pte))
596                 /*
597                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598                  * and will have refcounts incremented on their struct pages
599                  * when they are inserted into PTEs, thus they are safe to
600                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601                  * do not have refcounts. Example of legacy ZONE_DEVICE is
602                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603                  */
604                         return NULL;
605
606                 print_bad_pte(vma, addr, pte, NULL);
607                 return NULL;
608         }
609
610         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
611
612         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613                 if (vma->vm_flags & VM_MIXEDMAP) {
614                         if (!pfn_valid(pfn))
615                                 return NULL;
616                         goto out;
617                 } else {
618                         unsigned long off;
619                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
620                         if (pfn == vma->vm_pgoff + off)
621                                 return NULL;
622                         if (!is_cow_mapping(vma->vm_flags))
623                                 return NULL;
624                 }
625         }
626
627         if (is_zero_pfn(pfn))
628                 return NULL;
629
630 check_pfn:
631         if (unlikely(pfn > highest_memmap_pfn)) {
632                 print_bad_pte(vma, addr, pte, NULL);
633                 return NULL;
634         }
635
636         /*
637          * NOTE! We still have PageReserved() pages in the page tables.
638          * eg. VDSO mappings can cause them to exist.
639          */
640 out:
641         return pfn_to_page(pfn);
642 }
643
644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645                             pte_t pte)
646 {
647         struct page *page = vm_normal_page(vma, addr, pte);
648
649         if (page)
650                 return page_folio(page);
651         return NULL;
652 }
653
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656                                 pmd_t pmd)
657 {
658         unsigned long pfn = pmd_pfn(pmd);
659
660         /*
661          * There is no pmd_special() but there may be special pmds, e.g.
662          * in a direct-access (dax) mapping, so let's just replicate the
663          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
664          */
665         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666                 if (vma->vm_flags & VM_MIXEDMAP) {
667                         if (!pfn_valid(pfn))
668                                 return NULL;
669                         goto out;
670                 } else {
671                         unsigned long off;
672                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
673                         if (pfn == vma->vm_pgoff + off)
674                                 return NULL;
675                         if (!is_cow_mapping(vma->vm_flags))
676                                 return NULL;
677                 }
678         }
679
680         if (pmd_devmap(pmd))
681                 return NULL;
682         if (is_huge_zero_pmd(pmd))
683                 return NULL;
684         if (unlikely(pfn > highest_memmap_pfn))
685                 return NULL;
686
687         /*
688          * NOTE! We still have PageReserved() pages in the page tables.
689          * eg. VDSO mappings can cause them to exist.
690          */
691 out:
692         return pfn_to_page(pfn);
693 }
694 #endif
695
696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697                                   struct page *page, unsigned long address,
698                                   pte_t *ptep)
699 {
700         pte_t orig_pte;
701         pte_t pte;
702         swp_entry_t entry;
703
704         orig_pte = ptep_get(ptep);
705         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706         if (pte_swp_soft_dirty(orig_pte))
707                 pte = pte_mksoft_dirty(pte);
708
709         entry = pte_to_swp_entry(orig_pte);
710         if (pte_swp_uffd_wp(orig_pte))
711                 pte = pte_mkuffd_wp(pte);
712         else if (is_writable_device_exclusive_entry(entry))
713                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
715         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
717         /*
718          * No need to take a page reference as one was already
719          * created when the swap entry was made.
720          */
721         if (PageAnon(page))
722                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
723         else
724                 /*
725                  * Currently device exclusive access only supports anonymous
726                  * memory so the entry shouldn't point to a filebacked page.
727                  */
728                 WARN_ON_ONCE(1);
729
730         set_pte_at(vma->vm_mm, address, ptep, pte);
731
732         /*
733          * No need to invalidate - it was non-present before. However
734          * secondary CPUs may have mappings that need invalidating.
735          */
736         update_mmu_cache(vma, address, ptep);
737 }
738
739 /*
740  * Tries to restore an exclusive pte if the page lock can be acquired without
741  * sleeping.
742  */
743 static int
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745                         unsigned long addr)
746 {
747         swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748         struct page *page = pfn_swap_entry_to_page(entry);
749
750         if (trylock_page(page)) {
751                 restore_exclusive_pte(vma, page, addr, src_pte);
752                 unlock_page(page);
753                 return 0;
754         }
755
756         return -EBUSY;
757 }
758
759 /*
760  * copy one vm_area from one task to the other. Assumes the page tables
761  * already present in the new task to be cleared in the whole range
762  * covered by this vma.
763  */
764
765 static unsigned long
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770         unsigned long vm_flags = dst_vma->vm_flags;
771         pte_t orig_pte = ptep_get(src_pte);
772         pte_t pte = orig_pte;
773         struct page *page;
774         swp_entry_t entry = pte_to_swp_entry(orig_pte);
775
776         if (likely(!non_swap_entry(entry))) {
777                 if (swap_duplicate(entry) < 0)
778                         return -EIO;
779
780                 /* make sure dst_mm is on swapoff's mmlist. */
781                 if (unlikely(list_empty(&dst_mm->mmlist))) {
782                         spin_lock(&mmlist_lock);
783                         if (list_empty(&dst_mm->mmlist))
784                                 list_add(&dst_mm->mmlist,
785                                                 &src_mm->mmlist);
786                         spin_unlock(&mmlist_lock);
787                 }
788                 /* Mark the swap entry as shared. */
789                 if (pte_swp_exclusive(orig_pte)) {
790                         pte = pte_swp_clear_exclusive(orig_pte);
791                         set_pte_at(src_mm, addr, src_pte, pte);
792                 }
793                 rss[MM_SWAPENTS]++;
794         } else if (is_migration_entry(entry)) {
795                 page = pfn_swap_entry_to_page(entry);
796
797                 rss[mm_counter(page)]++;
798
799                 if (!is_readable_migration_entry(entry) &&
800                                 is_cow_mapping(vm_flags)) {
801                         /*
802                          * COW mappings require pages in both parent and child
803                          * to be set to read. A previously exclusive entry is
804                          * now shared.
805                          */
806                         entry = make_readable_migration_entry(
807                                                         swp_offset(entry));
808                         pte = swp_entry_to_pte(entry);
809                         if (pte_swp_soft_dirty(orig_pte))
810                                 pte = pte_swp_mksoft_dirty(pte);
811                         if (pte_swp_uffd_wp(orig_pte))
812                                 pte = pte_swp_mkuffd_wp(pte);
813                         set_pte_at(src_mm, addr, src_pte, pte);
814                 }
815         } else if (is_device_private_entry(entry)) {
816                 page = pfn_swap_entry_to_page(entry);
817
818                 /*
819                  * Update rss count even for unaddressable pages, as
820                  * they should treated just like normal pages in this
821                  * respect.
822                  *
823                  * We will likely want to have some new rss counters
824                  * for unaddressable pages, at some point. But for now
825                  * keep things as they are.
826                  */
827                 get_page(page);
828                 rss[mm_counter(page)]++;
829                 /* Cannot fail as these pages cannot get pinned. */
830                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
831
832                 /*
833                  * We do not preserve soft-dirty information, because so
834                  * far, checkpoint/restore is the only feature that
835                  * requires that. And checkpoint/restore does not work
836                  * when a device driver is involved (you cannot easily
837                  * save and restore device driver state).
838                  */
839                 if (is_writable_device_private_entry(entry) &&
840                     is_cow_mapping(vm_flags)) {
841                         entry = make_readable_device_private_entry(
842                                                         swp_offset(entry));
843                         pte = swp_entry_to_pte(entry);
844                         if (pte_swp_uffd_wp(orig_pte))
845                                 pte = pte_swp_mkuffd_wp(pte);
846                         set_pte_at(src_mm, addr, src_pte, pte);
847                 }
848         } else if (is_device_exclusive_entry(entry)) {
849                 /*
850                  * Make device exclusive entries present by restoring the
851                  * original entry then copying as for a present pte. Device
852                  * exclusive entries currently only support private writable
853                  * (ie. COW) mappings.
854                  */
855                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857                         return -EBUSY;
858                 return -ENOENT;
859         } else if (is_pte_marker_entry(entry)) {
860                 pte_marker marker = copy_pte_marker(entry, dst_vma);
861
862                 if (marker)
863                         set_pte_at(dst_mm, addr, dst_pte,
864                                    make_pte_marker(marker));
865                 return 0;
866         }
867         if (!userfaultfd_wp(dst_vma))
868                 pte = pte_swp_clear_uffd_wp(pte);
869         set_pte_at(dst_mm, addr, dst_pte, pte);
870         return 0;
871 }
872
873 /*
874  * Copy a present and normal page.
875  *
876  * NOTE! The usual case is that this isn't required;
877  * instead, the caller can just increase the page refcount
878  * and re-use the pte the traditional way.
879  *
880  * And if we need a pre-allocated page but don't yet have
881  * one, return a negative error to let the preallocation
882  * code know so that it can do so outside the page table
883  * lock.
884  */
885 static inline int
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888                   struct folio **prealloc, struct page *page)
889 {
890         struct folio *new_folio;
891         pte_t pte;
892
893         new_folio = *prealloc;
894         if (!new_folio)
895                 return -EAGAIN;
896
897         /*
898          * We have a prealloc page, all good!  Take it
899          * over and copy the page & arm it.
900          */
901         *prealloc = NULL;
902         copy_user_highpage(&new_folio->page, page, addr, src_vma);
903         __folio_mark_uptodate(new_folio);
904         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905         folio_add_lru_vma(new_folio, dst_vma);
906         rss[MM_ANONPAGES]++;
907
908         /* All done, just insert the new page copy in the child */
909         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911         if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912                 /* Uffd-wp needs to be delivered to dest pte as well */
913                 pte = pte_mkuffd_wp(pte);
914         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915         return 0;
916 }
917
918 /*
919  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
920  * is required to copy this pte.
921  */
922 static inline int
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925                  struct folio **prealloc)
926 {
927         struct mm_struct *src_mm = src_vma->vm_mm;
928         unsigned long vm_flags = src_vma->vm_flags;
929         pte_t pte = ptep_get(src_pte);
930         struct page *page;
931         struct folio *folio;
932
933         page = vm_normal_page(src_vma, addr, pte);
934         if (page)
935                 folio = page_folio(page);
936         if (page && folio_test_anon(folio)) {
937                 /*
938                  * If this page may have been pinned by the parent process,
939                  * copy the page immediately for the child so that we'll always
940                  * guarantee the pinned page won't be randomly replaced in the
941                  * future.
942                  */
943                 folio_get(folio);
944                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945                         /* Page may be pinned, we have to copy. */
946                         folio_put(folio);
947                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948                                                  addr, rss, prealloc, page);
949                 }
950                 rss[MM_ANONPAGES]++;
951         } else if (page) {
952                 folio_get(folio);
953                 page_dup_file_rmap(page, false);
954                 rss[mm_counter_file(page)]++;
955         }
956
957         /*
958          * If it's a COW mapping, write protect it both
959          * in the parent and the child
960          */
961         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962                 ptep_set_wrprotect(src_mm, addr, src_pte);
963                 pte = pte_wrprotect(pte);
964         }
965         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966
967         /*
968          * If it's a shared mapping, mark it clean in
969          * the child
970          */
971         if (vm_flags & VM_SHARED)
972                 pte = pte_mkclean(pte);
973         pte = pte_mkold(pte);
974
975         if (!userfaultfd_wp(dst_vma))
976                 pte = pte_clear_uffd_wp(pte);
977
978         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979         return 0;
980 }
981
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983                 struct vm_area_struct *vma, unsigned long addr)
984 {
985         struct folio *new_folio;
986
987         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988         if (!new_folio)
989                 return NULL;
990
991         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992                 folio_put(new_folio);
993                 return NULL;
994         }
995         folio_throttle_swaprate(new_folio, GFP_KERNEL);
996
997         return new_folio;
998 }
999
1000 static int
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003                unsigned long end)
1004 {
1005         struct mm_struct *dst_mm = dst_vma->vm_mm;
1006         struct mm_struct *src_mm = src_vma->vm_mm;
1007         pte_t *orig_src_pte, *orig_dst_pte;
1008         pte_t *src_pte, *dst_pte;
1009         pte_t ptent;
1010         spinlock_t *src_ptl, *dst_ptl;
1011         int progress, ret = 0;
1012         int rss[NR_MM_COUNTERS];
1013         swp_entry_t entry = (swp_entry_t){0};
1014         struct folio *prealloc = NULL;
1015
1016 again:
1017         progress = 0;
1018         init_rss_vec(rss);
1019
1020         /*
1021          * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022          * error handling here, assume that exclusive mmap_lock on dst and src
1023          * protects anon from unexpected THP transitions; with shmem and file
1024          * protected by mmap_lock-less collapse skipping areas with anon_vma
1025          * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1026          * can remove such assumptions later, but this is good enough for now.
1027          */
1028         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029         if (!dst_pte) {
1030                 ret = -ENOMEM;
1031                 goto out;
1032         }
1033         src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034         if (!src_pte) {
1035                 pte_unmap_unlock(dst_pte, dst_ptl);
1036                 /* ret == 0 */
1037                 goto out;
1038         }
1039         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040         orig_src_pte = src_pte;
1041         orig_dst_pte = dst_pte;
1042         arch_enter_lazy_mmu_mode();
1043
1044         do {
1045                 /*
1046                  * We are holding two locks at this point - either of them
1047                  * could generate latencies in another task on another CPU.
1048                  */
1049                 if (progress >= 32) {
1050                         progress = 0;
1051                         if (need_resched() ||
1052                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053                                 break;
1054                 }
1055                 ptent = ptep_get(src_pte);
1056                 if (pte_none(ptent)) {
1057                         progress++;
1058                         continue;
1059                 }
1060                 if (unlikely(!pte_present(ptent))) {
1061                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1062                                                   dst_pte, src_pte,
1063                                                   dst_vma, src_vma,
1064                                                   addr, rss);
1065                         if (ret == -EIO) {
1066                                 entry = pte_to_swp_entry(ptep_get(src_pte));
1067                                 break;
1068                         } else if (ret == -EBUSY) {
1069                                 break;
1070                         } else if (!ret) {
1071                                 progress += 8;
1072                                 continue;
1073                         }
1074
1075                         /*
1076                          * Device exclusive entry restored, continue by copying
1077                          * the now present pte.
1078                          */
1079                         WARN_ON_ONCE(ret != -ENOENT);
1080                 }
1081                 /* copy_present_pte() will clear `*prealloc' if consumed */
1082                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083                                        addr, rss, &prealloc);
1084                 /*
1085                  * If we need a pre-allocated page for this pte, drop the
1086                  * locks, allocate, and try again.
1087                  */
1088                 if (unlikely(ret == -EAGAIN))
1089                         break;
1090                 if (unlikely(prealloc)) {
1091                         /*
1092                          * pre-alloc page cannot be reused by next time so as
1093                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1094                          * will allocate page according to address).  This
1095                          * could only happen if one pinned pte changed.
1096                          */
1097                         folio_put(prealloc);
1098                         prealloc = NULL;
1099                 }
1100                 progress += 8;
1101         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102
1103         arch_leave_lazy_mmu_mode();
1104         pte_unmap_unlock(orig_src_pte, src_ptl);
1105         add_mm_rss_vec(dst_mm, rss);
1106         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107         cond_resched();
1108
1109         if (ret == -EIO) {
1110                 VM_WARN_ON_ONCE(!entry.val);
1111                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112                         ret = -ENOMEM;
1113                         goto out;
1114                 }
1115                 entry.val = 0;
1116         } else if (ret == -EBUSY) {
1117                 goto out;
1118         } else if (ret ==  -EAGAIN) {
1119                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120                 if (!prealloc)
1121                         return -ENOMEM;
1122         } else if (ret) {
1123                 VM_WARN_ON_ONCE(1);
1124         }
1125
1126         /* We've captured and resolved the error. Reset, try again. */
1127         ret = 0;
1128
1129         if (addr != end)
1130                 goto again;
1131 out:
1132         if (unlikely(prealloc))
1133                 folio_put(prealloc);
1134         return ret;
1135 }
1136
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140                unsigned long end)
1141 {
1142         struct mm_struct *dst_mm = dst_vma->vm_mm;
1143         struct mm_struct *src_mm = src_vma->vm_mm;
1144         pmd_t *src_pmd, *dst_pmd;
1145         unsigned long next;
1146
1147         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148         if (!dst_pmd)
1149                 return -ENOMEM;
1150         src_pmd = pmd_offset(src_pud, addr);
1151         do {
1152                 next = pmd_addr_end(addr, end);
1153                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154                         || pmd_devmap(*src_pmd)) {
1155                         int err;
1156                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158                                             addr, dst_vma, src_vma);
1159                         if (err == -ENOMEM)
1160                                 return -ENOMEM;
1161                         if (!err)
1162                                 continue;
1163                         /* fall through */
1164                 }
1165                 if (pmd_none_or_clear_bad(src_pmd))
1166                         continue;
1167                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168                                    addr, next))
1169                         return -ENOMEM;
1170         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171         return 0;
1172 }
1173
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177                unsigned long end)
1178 {
1179         struct mm_struct *dst_mm = dst_vma->vm_mm;
1180         struct mm_struct *src_mm = src_vma->vm_mm;
1181         pud_t *src_pud, *dst_pud;
1182         unsigned long next;
1183
1184         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185         if (!dst_pud)
1186                 return -ENOMEM;
1187         src_pud = pud_offset(src_p4d, addr);
1188         do {
1189                 next = pud_addr_end(addr, end);
1190                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191                         int err;
1192
1193                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194                         err = copy_huge_pud(dst_mm, src_mm,
1195                                             dst_pud, src_pud, addr, src_vma);
1196                         if (err == -ENOMEM)
1197                                 return -ENOMEM;
1198                         if (!err)
1199                                 continue;
1200                         /* fall through */
1201                 }
1202                 if (pud_none_or_clear_bad(src_pud))
1203                         continue;
1204                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205                                    addr, next))
1206                         return -ENOMEM;
1207         } while (dst_pud++, src_pud++, addr = next, addr != end);
1208         return 0;
1209 }
1210
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214                unsigned long end)
1215 {
1216         struct mm_struct *dst_mm = dst_vma->vm_mm;
1217         p4d_t *src_p4d, *dst_p4d;
1218         unsigned long next;
1219
1220         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221         if (!dst_p4d)
1222                 return -ENOMEM;
1223         src_p4d = p4d_offset(src_pgd, addr);
1224         do {
1225                 next = p4d_addr_end(addr, end);
1226                 if (p4d_none_or_clear_bad(src_p4d))
1227                         continue;
1228                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229                                    addr, next))
1230                         return -ENOMEM;
1231         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232         return 0;
1233 }
1234
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243         /*
1244          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246          * contains uffd-wp protection information, that's something we can't
1247          * retrieve from page cache, and skip copying will lose those info.
1248          */
1249         if (userfaultfd_wp(dst_vma))
1250                 return true;
1251
1252         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253                 return true;
1254
1255         if (src_vma->anon_vma)
1256                 return true;
1257
1258         /*
1259          * Don't copy ptes where a page fault will fill them correctly.  Fork
1260          * becomes much lighter when there are big shared or private readonly
1261          * mappings. The tradeoff is that copy_page_range is more efficient
1262          * than faulting.
1263          */
1264         return false;
1265 }
1266
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270         pgd_t *src_pgd, *dst_pgd;
1271         unsigned long next;
1272         unsigned long addr = src_vma->vm_start;
1273         unsigned long end = src_vma->vm_end;
1274         struct mm_struct *dst_mm = dst_vma->vm_mm;
1275         struct mm_struct *src_mm = src_vma->vm_mm;
1276         struct mmu_notifier_range range;
1277         bool is_cow;
1278         int ret;
1279
1280         if (!vma_needs_copy(dst_vma, src_vma))
1281                 return 0;
1282
1283         if (is_vm_hugetlb_page(src_vma))
1284                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287                 /*
1288                  * We do not free on error cases below as remove_vma
1289                  * gets called on error from higher level routine
1290                  */
1291                 ret = track_pfn_copy(src_vma);
1292                 if (ret)
1293                         return ret;
1294         }
1295
1296         /*
1297          * We need to invalidate the secondary MMU mappings only when
1298          * there could be a permission downgrade on the ptes of the
1299          * parent mm. And a permission downgrade will only happen if
1300          * is_cow_mapping() returns true.
1301          */
1302         is_cow = is_cow_mapping(src_vma->vm_flags);
1303
1304         if (is_cow) {
1305                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306                                         0, src_mm, addr, end);
1307                 mmu_notifier_invalidate_range_start(&range);
1308                 /*
1309                  * Disabling preemption is not needed for the write side, as
1310                  * the read side doesn't spin, but goes to the mmap_lock.
1311                  *
1312                  * Use the raw variant of the seqcount_t write API to avoid
1313                  * lockdep complaining about preemptibility.
1314                  */
1315                 vma_assert_write_locked(src_vma);
1316                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317         }
1318
1319         ret = 0;
1320         dst_pgd = pgd_offset(dst_mm, addr);
1321         src_pgd = pgd_offset(src_mm, addr);
1322         do {
1323                 next = pgd_addr_end(addr, end);
1324                 if (pgd_none_or_clear_bad(src_pgd))
1325                         continue;
1326                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327                                             addr, next))) {
1328                         untrack_pfn_clear(dst_vma);
1329                         ret = -ENOMEM;
1330                         break;
1331                 }
1332         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333
1334         if (is_cow) {
1335                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336                 mmu_notifier_invalidate_range_end(&range);
1337         }
1338         return ret;
1339 }
1340
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1343 {
1344         /* By default, zap all pages */
1345         if (!details)
1346                 return true;
1347
1348         /* Or, we zap COWed pages only if the caller wants to */
1349         return details->even_cows;
1350 }
1351
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 {
1355         /* If we can make a decision without *page.. */
1356         if (should_zap_cows(details))
1357                 return true;
1358
1359         /* E.g. the caller passes NULL for the case of a zero page */
1360         if (!page)
1361                 return true;
1362
1363         /* Otherwise we should only zap non-anon pages */
1364         return !PageAnon(page);
1365 }
1366
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 {
1369         if (!details)
1370                 return false;
1371
1372         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 }
1374
1375 /*
1376  * This function makes sure that we'll replace the none pte with an uffd-wp
1377  * swap special pte marker when necessary. Must be with the pgtable lock held.
1378  */
1379 static inline void
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381                               unsigned long addr, pte_t *pte,
1382                               struct zap_details *details, pte_t pteval)
1383 {
1384         /* Zap on anonymous always means dropping everything */
1385         if (vma_is_anonymous(vma))
1386                 return;
1387
1388         if (zap_drop_file_uffd_wp(details))
1389                 return;
1390
1391         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395                                 struct vm_area_struct *vma, pmd_t *pmd,
1396                                 unsigned long addr, unsigned long end,
1397                                 struct zap_details *details)
1398 {
1399         struct mm_struct *mm = tlb->mm;
1400         int force_flush = 0;
1401         int rss[NR_MM_COUNTERS];
1402         spinlock_t *ptl;
1403         pte_t *start_pte;
1404         pte_t *pte;
1405         swp_entry_t entry;
1406
1407         tlb_change_page_size(tlb, PAGE_SIZE);
1408         init_rss_vec(rss);
1409         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410         if (!pte)
1411                 return addr;
1412
1413         flush_tlb_batched_pending(mm);
1414         arch_enter_lazy_mmu_mode();
1415         do {
1416                 pte_t ptent = ptep_get(pte);
1417                 struct page *page;
1418
1419                 if (pte_none(ptent))
1420                         continue;
1421
1422                 if (need_resched())
1423                         break;
1424
1425                 if (pte_present(ptent)) {
1426                         unsigned int delay_rmap;
1427
1428                         page = vm_normal_page(vma, addr, ptent);
1429                         if (unlikely(!should_zap_page(details, page)))
1430                                 continue;
1431                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1432                                                         tlb->fullmm);
1433                         tlb_remove_tlb_entry(tlb, pte, addr);
1434                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435                                                       ptent);
1436                         if (unlikely(!page)) {
1437                                 ksm_might_unmap_zero_page(mm, ptent);
1438                                 continue;
1439                         }
1440
1441                         delay_rmap = 0;
1442                         if (!PageAnon(page)) {
1443                                 if (pte_dirty(ptent)) {
1444                                         set_page_dirty(page);
1445                                         if (tlb_delay_rmap(tlb)) {
1446                                                 delay_rmap = 1;
1447                                                 force_flush = 1;
1448                                         }
1449                                 }
1450                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1451                                         mark_page_accessed(page);
1452                         }
1453                         rss[mm_counter(page)]--;
1454                         if (!delay_rmap) {
1455                                 page_remove_rmap(page, vma, false);
1456                                 if (unlikely(page_mapcount(page) < 0))
1457                                         print_bad_pte(vma, addr, ptent, page);
1458                         }
1459                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1460                                 force_flush = 1;
1461                                 addr += PAGE_SIZE;
1462                                 break;
1463                         }
1464                         continue;
1465                 }
1466
1467                 entry = pte_to_swp_entry(ptent);
1468                 if (is_device_private_entry(entry) ||
1469                     is_device_exclusive_entry(entry)) {
1470                         page = pfn_swap_entry_to_page(entry);
1471                         if (unlikely(!should_zap_page(details, page)))
1472                                 continue;
1473                         /*
1474                          * Both device private/exclusive mappings should only
1475                          * work with anonymous page so far, so we don't need to
1476                          * consider uffd-wp bit when zap. For more information,
1477                          * see zap_install_uffd_wp_if_needed().
1478                          */
1479                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1480                         rss[mm_counter(page)]--;
1481                         if (is_device_private_entry(entry))
1482                                 page_remove_rmap(page, vma, false);
1483                         put_page(page);
1484                 } else if (!non_swap_entry(entry)) {
1485                         /* Genuine swap entry, hence a private anon page */
1486                         if (!should_zap_cows(details))
1487                                 continue;
1488                         rss[MM_SWAPENTS]--;
1489                         if (unlikely(!free_swap_and_cache(entry)))
1490                                 print_bad_pte(vma, addr, ptent, NULL);
1491                 } else if (is_migration_entry(entry)) {
1492                         page = pfn_swap_entry_to_page(entry);
1493                         if (!should_zap_page(details, page))
1494                                 continue;
1495                         rss[mm_counter(page)]--;
1496                 } else if (pte_marker_entry_uffd_wp(entry)) {
1497                         /*
1498                          * For anon: always drop the marker; for file: only
1499                          * drop the marker if explicitly requested.
1500                          */
1501                         if (!vma_is_anonymous(vma) &&
1502                             !zap_drop_file_uffd_wp(details))
1503                                 continue;
1504                 } else if (is_hwpoison_entry(entry) ||
1505                            is_poisoned_swp_entry(entry)) {
1506                         if (!should_zap_cows(details))
1507                                 continue;
1508                 } else {
1509                         /* We should have covered all the swap entry types */
1510                         WARN_ON_ONCE(1);
1511                 }
1512                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1513                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1514         } while (pte++, addr += PAGE_SIZE, addr != end);
1515
1516         add_mm_rss_vec(mm, rss);
1517         arch_leave_lazy_mmu_mode();
1518
1519         /* Do the actual TLB flush before dropping ptl */
1520         if (force_flush) {
1521                 tlb_flush_mmu_tlbonly(tlb);
1522                 tlb_flush_rmaps(tlb, vma);
1523         }
1524         pte_unmap_unlock(start_pte, ptl);
1525
1526         /*
1527          * If we forced a TLB flush (either due to running out of
1528          * batch buffers or because we needed to flush dirty TLB
1529          * entries before releasing the ptl), free the batched
1530          * memory too. Come back again if we didn't do everything.
1531          */
1532         if (force_flush)
1533                 tlb_flush_mmu(tlb);
1534
1535         return addr;
1536 }
1537
1538 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1539                                 struct vm_area_struct *vma, pud_t *pud,
1540                                 unsigned long addr, unsigned long end,
1541                                 struct zap_details *details)
1542 {
1543         pmd_t *pmd;
1544         unsigned long next;
1545
1546         pmd = pmd_offset(pud, addr);
1547         do {
1548                 next = pmd_addr_end(addr, end);
1549                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1550                         if (next - addr != HPAGE_PMD_SIZE)
1551                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1552                         else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1553                                 addr = next;
1554                                 continue;
1555                         }
1556                         /* fall through */
1557                 } else if (details && details->single_folio &&
1558                            folio_test_pmd_mappable(details->single_folio) &&
1559                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1560                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1561                         /*
1562                          * Take and drop THP pmd lock so that we cannot return
1563                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1564                          * but not yet decremented compound_mapcount().
1565                          */
1566                         spin_unlock(ptl);
1567                 }
1568                 if (pmd_none(*pmd)) {
1569                         addr = next;
1570                         continue;
1571                 }
1572                 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1573                 if (addr != next)
1574                         pmd--;
1575         } while (pmd++, cond_resched(), addr != end);
1576
1577         return addr;
1578 }
1579
1580 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1581                                 struct vm_area_struct *vma, p4d_t *p4d,
1582                                 unsigned long addr, unsigned long end,
1583                                 struct zap_details *details)
1584 {
1585         pud_t *pud;
1586         unsigned long next;
1587
1588         pud = pud_offset(p4d, addr);
1589         do {
1590                 next = pud_addr_end(addr, end);
1591                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1592                         if (next - addr != HPAGE_PUD_SIZE) {
1593                                 mmap_assert_locked(tlb->mm);
1594                                 split_huge_pud(vma, pud, addr);
1595                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1596                                 goto next;
1597                         /* fall through */
1598                 }
1599                 if (pud_none_or_clear_bad(pud))
1600                         continue;
1601                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1602 next:
1603                 cond_resched();
1604         } while (pud++, addr = next, addr != end);
1605
1606         return addr;
1607 }
1608
1609 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1610                                 struct vm_area_struct *vma, pgd_t *pgd,
1611                                 unsigned long addr, unsigned long end,
1612                                 struct zap_details *details)
1613 {
1614         p4d_t *p4d;
1615         unsigned long next;
1616
1617         p4d = p4d_offset(pgd, addr);
1618         do {
1619                 next = p4d_addr_end(addr, end);
1620                 if (p4d_none_or_clear_bad(p4d))
1621                         continue;
1622                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1623         } while (p4d++, addr = next, addr != end);
1624
1625         return addr;
1626 }
1627
1628 void unmap_page_range(struct mmu_gather *tlb,
1629                              struct vm_area_struct *vma,
1630                              unsigned long addr, unsigned long end,
1631                              struct zap_details *details)
1632 {
1633         pgd_t *pgd;
1634         unsigned long next;
1635
1636         BUG_ON(addr >= end);
1637         tlb_start_vma(tlb, vma);
1638         pgd = pgd_offset(vma->vm_mm, addr);
1639         do {
1640                 next = pgd_addr_end(addr, end);
1641                 if (pgd_none_or_clear_bad(pgd))
1642                         continue;
1643                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1644         } while (pgd++, addr = next, addr != end);
1645         tlb_end_vma(tlb, vma);
1646 }
1647
1648
1649 static void unmap_single_vma(struct mmu_gather *tlb,
1650                 struct vm_area_struct *vma, unsigned long start_addr,
1651                 unsigned long end_addr,
1652                 struct zap_details *details, bool mm_wr_locked)
1653 {
1654         unsigned long start = max(vma->vm_start, start_addr);
1655         unsigned long end;
1656
1657         if (start >= vma->vm_end)
1658                 return;
1659         end = min(vma->vm_end, end_addr);
1660         if (end <= vma->vm_start)
1661                 return;
1662
1663         if (vma->vm_file)
1664                 uprobe_munmap(vma, start, end);
1665
1666         if (unlikely(vma->vm_flags & VM_PFNMAP))
1667                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1668
1669         if (start != end) {
1670                 if (unlikely(is_vm_hugetlb_page(vma))) {
1671                         /*
1672                          * It is undesirable to test vma->vm_file as it
1673                          * should be non-null for valid hugetlb area.
1674                          * However, vm_file will be NULL in the error
1675                          * cleanup path of mmap_region. When
1676                          * hugetlbfs ->mmap method fails,
1677                          * mmap_region() nullifies vma->vm_file
1678                          * before calling this function to clean up.
1679                          * Since no pte has actually been setup, it is
1680                          * safe to do nothing in this case.
1681                          */
1682                         if (vma->vm_file) {
1683                                 zap_flags_t zap_flags = details ?
1684                                     details->zap_flags : 0;
1685                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1686                                                              NULL, zap_flags);
1687                         }
1688                 } else
1689                         unmap_page_range(tlb, vma, start, end, details);
1690         }
1691 }
1692
1693 /**
1694  * unmap_vmas - unmap a range of memory covered by a list of vma's
1695  * @tlb: address of the caller's struct mmu_gather
1696  * @mas: the maple state
1697  * @vma: the starting vma
1698  * @start_addr: virtual address at which to start unmapping
1699  * @end_addr: virtual address at which to end unmapping
1700  * @tree_end: The maximum index to check
1701  * @mm_wr_locked: lock flag
1702  *
1703  * Unmap all pages in the vma list.
1704  *
1705  * Only addresses between `start' and `end' will be unmapped.
1706  *
1707  * The VMA list must be sorted in ascending virtual address order.
1708  *
1709  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1710  * range after unmap_vmas() returns.  So the only responsibility here is to
1711  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1712  * drops the lock and schedules.
1713  */
1714 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1715                 struct vm_area_struct *vma, unsigned long start_addr,
1716                 unsigned long end_addr, unsigned long tree_end,
1717                 bool mm_wr_locked)
1718 {
1719         struct mmu_notifier_range range;
1720         struct zap_details details = {
1721                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1722                 /* Careful - we need to zap private pages too! */
1723                 .even_cows = true,
1724         };
1725
1726         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1727                                 start_addr, end_addr);
1728         mmu_notifier_invalidate_range_start(&range);
1729         do {
1730                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1731                                  mm_wr_locked);
1732         } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1733         mmu_notifier_invalidate_range_end(&range);
1734 }
1735
1736 /**
1737  * zap_page_range_single - remove user pages in a given range
1738  * @vma: vm_area_struct holding the applicable pages
1739  * @address: starting address of pages to zap
1740  * @size: number of bytes to zap
1741  * @details: details of shared cache invalidation
1742  *
1743  * The range must fit into one VMA.
1744  */
1745 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1746                 unsigned long size, struct zap_details *details)
1747 {
1748         const unsigned long end = address + size;
1749         struct mmu_notifier_range range;
1750         struct mmu_gather tlb;
1751
1752         lru_add_drain();
1753         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1754                                 address, end);
1755         if (is_vm_hugetlb_page(vma))
1756                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1757                                                      &range.end);
1758         tlb_gather_mmu(&tlb, vma->vm_mm);
1759         update_hiwater_rss(vma->vm_mm);
1760         mmu_notifier_invalidate_range_start(&range);
1761         /*
1762          * unmap 'address-end' not 'range.start-range.end' as range
1763          * could have been expanded for hugetlb pmd sharing.
1764          */
1765         unmap_single_vma(&tlb, vma, address, end, details, false);
1766         mmu_notifier_invalidate_range_end(&range);
1767         tlb_finish_mmu(&tlb);
1768 }
1769
1770 /**
1771  * zap_vma_ptes - remove ptes mapping the vma
1772  * @vma: vm_area_struct holding ptes to be zapped
1773  * @address: starting address of pages to zap
1774  * @size: number of bytes to zap
1775  *
1776  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1777  *
1778  * The entire address range must be fully contained within the vma.
1779  *
1780  */
1781 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1782                 unsigned long size)
1783 {
1784         if (!range_in_vma(vma, address, address + size) ||
1785                         !(vma->vm_flags & VM_PFNMAP))
1786                 return;
1787
1788         zap_page_range_single(vma, address, size, NULL);
1789 }
1790 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1791
1792 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1793 {
1794         pgd_t *pgd;
1795         p4d_t *p4d;
1796         pud_t *pud;
1797         pmd_t *pmd;
1798
1799         pgd = pgd_offset(mm, addr);
1800         p4d = p4d_alloc(mm, pgd, addr);
1801         if (!p4d)
1802                 return NULL;
1803         pud = pud_alloc(mm, p4d, addr);
1804         if (!pud)
1805                 return NULL;
1806         pmd = pmd_alloc(mm, pud, addr);
1807         if (!pmd)
1808                 return NULL;
1809
1810         VM_BUG_ON(pmd_trans_huge(*pmd));
1811         return pmd;
1812 }
1813
1814 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1815                         spinlock_t **ptl)
1816 {
1817         pmd_t *pmd = walk_to_pmd(mm, addr);
1818
1819         if (!pmd)
1820                 return NULL;
1821         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1822 }
1823
1824 static int validate_page_before_insert(struct page *page)
1825 {
1826         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1827                 return -EINVAL;
1828         flush_dcache_page(page);
1829         return 0;
1830 }
1831
1832 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1833                         unsigned long addr, struct page *page, pgprot_t prot)
1834 {
1835         if (!pte_none(ptep_get(pte)))
1836                 return -EBUSY;
1837         /* Ok, finally just insert the thing.. */
1838         get_page(page);
1839         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1840         page_add_file_rmap(page, vma, false);
1841         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1842         return 0;
1843 }
1844
1845 /*
1846  * This is the old fallback for page remapping.
1847  *
1848  * For historical reasons, it only allows reserved pages. Only
1849  * old drivers should use this, and they needed to mark their
1850  * pages reserved for the old functions anyway.
1851  */
1852 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1853                         struct page *page, pgprot_t prot)
1854 {
1855         int retval;
1856         pte_t *pte;
1857         spinlock_t *ptl;
1858
1859         retval = validate_page_before_insert(page);
1860         if (retval)
1861                 goto out;
1862         retval = -ENOMEM;
1863         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1864         if (!pte)
1865                 goto out;
1866         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1867         pte_unmap_unlock(pte, ptl);
1868 out:
1869         return retval;
1870 }
1871
1872 #ifdef pte_index
1873 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1874                         unsigned long addr, struct page *page, pgprot_t prot)
1875 {
1876         int err;
1877
1878         if (!page_count(page))
1879                 return -EINVAL;
1880         err = validate_page_before_insert(page);
1881         if (err)
1882                 return err;
1883         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1884 }
1885
1886 /* insert_pages() amortizes the cost of spinlock operations
1887  * when inserting pages in a loop. Arch *must* define pte_index.
1888  */
1889 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1890                         struct page **pages, unsigned long *num, pgprot_t prot)
1891 {
1892         pmd_t *pmd = NULL;
1893         pte_t *start_pte, *pte;
1894         spinlock_t *pte_lock;
1895         struct mm_struct *const mm = vma->vm_mm;
1896         unsigned long curr_page_idx = 0;
1897         unsigned long remaining_pages_total = *num;
1898         unsigned long pages_to_write_in_pmd;
1899         int ret;
1900 more:
1901         ret = -EFAULT;
1902         pmd = walk_to_pmd(mm, addr);
1903         if (!pmd)
1904                 goto out;
1905
1906         pages_to_write_in_pmd = min_t(unsigned long,
1907                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1908
1909         /* Allocate the PTE if necessary; takes PMD lock once only. */
1910         ret = -ENOMEM;
1911         if (pte_alloc(mm, pmd))
1912                 goto out;
1913
1914         while (pages_to_write_in_pmd) {
1915                 int pte_idx = 0;
1916                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1917
1918                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1919                 if (!start_pte) {
1920                         ret = -EFAULT;
1921                         goto out;
1922                 }
1923                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1924                         int err = insert_page_in_batch_locked(vma, pte,
1925                                 addr, pages[curr_page_idx], prot);
1926                         if (unlikely(err)) {
1927                                 pte_unmap_unlock(start_pte, pte_lock);
1928                                 ret = err;
1929                                 remaining_pages_total -= pte_idx;
1930                                 goto out;
1931                         }
1932                         addr += PAGE_SIZE;
1933                         ++curr_page_idx;
1934                 }
1935                 pte_unmap_unlock(start_pte, pte_lock);
1936                 pages_to_write_in_pmd -= batch_size;
1937                 remaining_pages_total -= batch_size;
1938         }
1939         if (remaining_pages_total)
1940                 goto more;
1941         ret = 0;
1942 out:
1943         *num = remaining_pages_total;
1944         return ret;
1945 }
1946 #endif  /* ifdef pte_index */
1947
1948 /**
1949  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1950  * @vma: user vma to map to
1951  * @addr: target start user address of these pages
1952  * @pages: source kernel pages
1953  * @num: in: number of pages to map. out: number of pages that were *not*
1954  * mapped. (0 means all pages were successfully mapped).
1955  *
1956  * Preferred over vm_insert_page() when inserting multiple pages.
1957  *
1958  * In case of error, we may have mapped a subset of the provided
1959  * pages. It is the caller's responsibility to account for this case.
1960  *
1961  * The same restrictions apply as in vm_insert_page().
1962  */
1963 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1964                         struct page **pages, unsigned long *num)
1965 {
1966 #ifdef pte_index
1967         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1968
1969         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1970                 return -EFAULT;
1971         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1972                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1973                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1974                 vm_flags_set(vma, VM_MIXEDMAP);
1975         }
1976         /* Defer page refcount checking till we're about to map that page. */
1977         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1978 #else
1979         unsigned long idx = 0, pgcount = *num;
1980         int err = -EINVAL;
1981
1982         for (; idx < pgcount; ++idx) {
1983                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1984                 if (err)
1985                         break;
1986         }
1987         *num = pgcount - idx;
1988         return err;
1989 #endif  /* ifdef pte_index */
1990 }
1991 EXPORT_SYMBOL(vm_insert_pages);
1992
1993 /**
1994  * vm_insert_page - insert single page into user vma
1995  * @vma: user vma to map to
1996  * @addr: target user address of this page
1997  * @page: source kernel page
1998  *
1999  * This allows drivers to insert individual pages they've allocated
2000  * into a user vma.
2001  *
2002  * The page has to be a nice clean _individual_ kernel allocation.
2003  * If you allocate a compound page, you need to have marked it as
2004  * such (__GFP_COMP), or manually just split the page up yourself
2005  * (see split_page()).
2006  *
2007  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2008  * took an arbitrary page protection parameter. This doesn't allow
2009  * that. Your vma protection will have to be set up correctly, which
2010  * means that if you want a shared writable mapping, you'd better
2011  * ask for a shared writable mapping!
2012  *
2013  * The page does not need to be reserved.
2014  *
2015  * Usually this function is called from f_op->mmap() handler
2016  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2017  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2018  * function from other places, for example from page-fault handler.
2019  *
2020  * Return: %0 on success, negative error code otherwise.
2021  */
2022 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2023                         struct page *page)
2024 {
2025         if (addr < vma->vm_start || addr >= vma->vm_end)
2026                 return -EFAULT;
2027         if (!page_count(page))
2028                 return -EINVAL;
2029         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2030                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2031                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2032                 vm_flags_set(vma, VM_MIXEDMAP);
2033         }
2034         return insert_page(vma, addr, page, vma->vm_page_prot);
2035 }
2036 EXPORT_SYMBOL(vm_insert_page);
2037
2038 /*
2039  * __vm_map_pages - maps range of kernel pages into user vma
2040  * @vma: user vma to map to
2041  * @pages: pointer to array of source kernel pages
2042  * @num: number of pages in page array
2043  * @offset: user's requested vm_pgoff
2044  *
2045  * This allows drivers to map range of kernel pages into a user vma.
2046  *
2047  * Return: 0 on success and error code otherwise.
2048  */
2049 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2050                                 unsigned long num, unsigned long offset)
2051 {
2052         unsigned long count = vma_pages(vma);
2053         unsigned long uaddr = vma->vm_start;
2054         int ret, i;
2055
2056         /* Fail if the user requested offset is beyond the end of the object */
2057         if (offset >= num)
2058                 return -ENXIO;
2059
2060         /* Fail if the user requested size exceeds available object size */
2061         if (count > num - offset)
2062                 return -ENXIO;
2063
2064         for (i = 0; i < count; i++) {
2065                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2066                 if (ret < 0)
2067                         return ret;
2068                 uaddr += PAGE_SIZE;
2069         }
2070
2071         return 0;
2072 }
2073
2074 /**
2075  * vm_map_pages - maps range of kernel pages starts with non zero offset
2076  * @vma: user vma to map to
2077  * @pages: pointer to array of source kernel pages
2078  * @num: number of pages in page array
2079  *
2080  * Maps an object consisting of @num pages, catering for the user's
2081  * requested vm_pgoff
2082  *
2083  * If we fail to insert any page into the vma, the function will return
2084  * immediately leaving any previously inserted pages present.  Callers
2085  * from the mmap handler may immediately return the error as their caller
2086  * will destroy the vma, removing any successfully inserted pages. Other
2087  * callers should make their own arrangements for calling unmap_region().
2088  *
2089  * Context: Process context. Called by mmap handlers.
2090  * Return: 0 on success and error code otherwise.
2091  */
2092 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2093                                 unsigned long num)
2094 {
2095         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2096 }
2097 EXPORT_SYMBOL(vm_map_pages);
2098
2099 /**
2100  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2101  * @vma: user vma to map to
2102  * @pages: pointer to array of source kernel pages
2103  * @num: number of pages in page array
2104  *
2105  * Similar to vm_map_pages(), except that it explicitly sets the offset
2106  * to 0. This function is intended for the drivers that did not consider
2107  * vm_pgoff.
2108  *
2109  * Context: Process context. Called by mmap handlers.
2110  * Return: 0 on success and error code otherwise.
2111  */
2112 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2113                                 unsigned long num)
2114 {
2115         return __vm_map_pages(vma, pages, num, 0);
2116 }
2117 EXPORT_SYMBOL(vm_map_pages_zero);
2118
2119 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2120                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2121 {
2122         struct mm_struct *mm = vma->vm_mm;
2123         pte_t *pte, entry;
2124         spinlock_t *ptl;
2125
2126         pte = get_locked_pte(mm, addr, &ptl);
2127         if (!pte)
2128                 return VM_FAULT_OOM;
2129         entry = ptep_get(pte);
2130         if (!pte_none(entry)) {
2131                 if (mkwrite) {
2132                         /*
2133                          * For read faults on private mappings the PFN passed
2134                          * in may not match the PFN we have mapped if the
2135                          * mapped PFN is a writeable COW page.  In the mkwrite
2136                          * case we are creating a writable PTE for a shared
2137                          * mapping and we expect the PFNs to match. If they
2138                          * don't match, we are likely racing with block
2139                          * allocation and mapping invalidation so just skip the
2140                          * update.
2141                          */
2142                         if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2143                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2144                                 goto out_unlock;
2145                         }
2146                         entry = pte_mkyoung(entry);
2147                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2148                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2149                                 update_mmu_cache(vma, addr, pte);
2150                 }
2151                 goto out_unlock;
2152         }
2153
2154         /* Ok, finally just insert the thing.. */
2155         if (pfn_t_devmap(pfn))
2156                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2157         else
2158                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2159
2160         if (mkwrite) {
2161                 entry = pte_mkyoung(entry);
2162                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2163         }
2164
2165         set_pte_at(mm, addr, pte, entry);
2166         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2167
2168 out_unlock:
2169         pte_unmap_unlock(pte, ptl);
2170         return VM_FAULT_NOPAGE;
2171 }
2172
2173 /**
2174  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2175  * @vma: user vma to map to
2176  * @addr: target user address of this page
2177  * @pfn: source kernel pfn
2178  * @pgprot: pgprot flags for the inserted page
2179  *
2180  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2181  * to override pgprot on a per-page basis.
2182  *
2183  * This only makes sense for IO mappings, and it makes no sense for
2184  * COW mappings.  In general, using multiple vmas is preferable;
2185  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2186  * impractical.
2187  *
2188  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2189  * caching- and encryption bits different than those of @vma->vm_page_prot,
2190  * because the caching- or encryption mode may not be known at mmap() time.
2191  *
2192  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2193  * to set caching and encryption bits for those vmas (except for COW pages).
2194  * This is ensured by core vm only modifying these page table entries using
2195  * functions that don't touch caching- or encryption bits, using pte_modify()
2196  * if needed. (See for example mprotect()).
2197  *
2198  * Also when new page-table entries are created, this is only done using the
2199  * fault() callback, and never using the value of vma->vm_page_prot,
2200  * except for page-table entries that point to anonymous pages as the result
2201  * of COW.
2202  *
2203  * Context: Process context.  May allocate using %GFP_KERNEL.
2204  * Return: vm_fault_t value.
2205  */
2206 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2207                         unsigned long pfn, pgprot_t pgprot)
2208 {
2209         /*
2210          * Technically, architectures with pte_special can avoid all these
2211          * restrictions (same for remap_pfn_range).  However we would like
2212          * consistency in testing and feature parity among all, so we should
2213          * try to keep these invariants in place for everybody.
2214          */
2215         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2216         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2217                                                 (VM_PFNMAP|VM_MIXEDMAP));
2218         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2219         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2220
2221         if (addr < vma->vm_start || addr >= vma->vm_end)
2222                 return VM_FAULT_SIGBUS;
2223
2224         if (!pfn_modify_allowed(pfn, pgprot))
2225                 return VM_FAULT_SIGBUS;
2226
2227         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2228
2229         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2230                         false);
2231 }
2232 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2233
2234 /**
2235  * vmf_insert_pfn - insert single pfn into user vma
2236  * @vma: user vma to map to
2237  * @addr: target user address of this page
2238  * @pfn: source kernel pfn
2239  *
2240  * Similar to vm_insert_page, this allows drivers to insert individual pages
2241  * they've allocated into a user vma. Same comments apply.
2242  *
2243  * This function should only be called from a vm_ops->fault handler, and
2244  * in that case the handler should return the result of this function.
2245  *
2246  * vma cannot be a COW mapping.
2247  *
2248  * As this is called only for pages that do not currently exist, we
2249  * do not need to flush old virtual caches or the TLB.
2250  *
2251  * Context: Process context.  May allocate using %GFP_KERNEL.
2252  * Return: vm_fault_t value.
2253  */
2254 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2255                         unsigned long pfn)
2256 {
2257         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2258 }
2259 EXPORT_SYMBOL(vmf_insert_pfn);
2260
2261 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2262 {
2263         /* these checks mirror the abort conditions in vm_normal_page */
2264         if (vma->vm_flags & VM_MIXEDMAP)
2265                 return true;
2266         if (pfn_t_devmap(pfn))
2267                 return true;
2268         if (pfn_t_special(pfn))
2269                 return true;
2270         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2271                 return true;
2272         return false;
2273 }
2274
2275 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2276                 unsigned long addr, pfn_t pfn, bool mkwrite)
2277 {
2278         pgprot_t pgprot = vma->vm_page_prot;
2279         int err;
2280
2281         BUG_ON(!vm_mixed_ok(vma, pfn));
2282
2283         if (addr < vma->vm_start || addr >= vma->vm_end)
2284                 return VM_FAULT_SIGBUS;
2285
2286         track_pfn_insert(vma, &pgprot, pfn);
2287
2288         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2289                 return VM_FAULT_SIGBUS;
2290
2291         /*
2292          * If we don't have pte special, then we have to use the pfn_valid()
2293          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2294          * refcount the page if pfn_valid is true (hence insert_page rather
2295          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2296          * without pte special, it would there be refcounted as a normal page.
2297          */
2298         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2299             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2300                 struct page *page;
2301
2302                 /*
2303                  * At this point we are committed to insert_page()
2304                  * regardless of whether the caller specified flags that
2305                  * result in pfn_t_has_page() == false.
2306                  */
2307                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2308                 err = insert_page(vma, addr, page, pgprot);
2309         } else {
2310                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2311         }
2312
2313         if (err == -ENOMEM)
2314                 return VM_FAULT_OOM;
2315         if (err < 0 && err != -EBUSY)
2316                 return VM_FAULT_SIGBUS;
2317
2318         return VM_FAULT_NOPAGE;
2319 }
2320
2321 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2322                 pfn_t pfn)
2323 {
2324         return __vm_insert_mixed(vma, addr, pfn, false);
2325 }
2326 EXPORT_SYMBOL(vmf_insert_mixed);
2327
2328 /*
2329  *  If the insertion of PTE failed because someone else already added a
2330  *  different entry in the mean time, we treat that as success as we assume
2331  *  the same entry was actually inserted.
2332  */
2333 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2334                 unsigned long addr, pfn_t pfn)
2335 {
2336         return __vm_insert_mixed(vma, addr, pfn, true);
2337 }
2338 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2339
2340 /*
2341  * maps a range of physical memory into the requested pages. the old
2342  * mappings are removed. any references to nonexistent pages results
2343  * in null mappings (currently treated as "copy-on-access")
2344  */
2345 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2346                         unsigned long addr, unsigned long end,
2347                         unsigned long pfn, pgprot_t prot)
2348 {
2349         pte_t *pte, *mapped_pte;
2350         spinlock_t *ptl;
2351         int err = 0;
2352
2353         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2354         if (!pte)
2355                 return -ENOMEM;
2356         arch_enter_lazy_mmu_mode();
2357         do {
2358                 BUG_ON(!pte_none(ptep_get(pte)));
2359                 if (!pfn_modify_allowed(pfn, prot)) {
2360                         err = -EACCES;
2361                         break;
2362                 }
2363                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2364                 pfn++;
2365         } while (pte++, addr += PAGE_SIZE, addr != end);
2366         arch_leave_lazy_mmu_mode();
2367         pte_unmap_unlock(mapped_pte, ptl);
2368         return err;
2369 }
2370
2371 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2372                         unsigned long addr, unsigned long end,
2373                         unsigned long pfn, pgprot_t prot)
2374 {
2375         pmd_t *pmd;
2376         unsigned long next;
2377         int err;
2378
2379         pfn -= addr >> PAGE_SHIFT;
2380         pmd = pmd_alloc(mm, pud, addr);
2381         if (!pmd)
2382                 return -ENOMEM;
2383         VM_BUG_ON(pmd_trans_huge(*pmd));
2384         do {
2385                 next = pmd_addr_end(addr, end);
2386                 err = remap_pte_range(mm, pmd, addr, next,
2387                                 pfn + (addr >> PAGE_SHIFT), prot);
2388                 if (err)
2389                         return err;
2390         } while (pmd++, addr = next, addr != end);
2391         return 0;
2392 }
2393
2394 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2395                         unsigned long addr, unsigned long end,
2396                         unsigned long pfn, pgprot_t prot)
2397 {
2398         pud_t *pud;
2399         unsigned long next;
2400         int err;
2401
2402         pfn -= addr >> PAGE_SHIFT;
2403         pud = pud_alloc(mm, p4d, addr);
2404         if (!pud)
2405                 return -ENOMEM;
2406         do {
2407                 next = pud_addr_end(addr, end);
2408                 err = remap_pmd_range(mm, pud, addr, next,
2409                                 pfn + (addr >> PAGE_SHIFT), prot);
2410                 if (err)
2411                         return err;
2412         } while (pud++, addr = next, addr != end);
2413         return 0;
2414 }
2415
2416 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2417                         unsigned long addr, unsigned long end,
2418                         unsigned long pfn, pgprot_t prot)
2419 {
2420         p4d_t *p4d;
2421         unsigned long next;
2422         int err;
2423
2424         pfn -= addr >> PAGE_SHIFT;
2425         p4d = p4d_alloc(mm, pgd, addr);
2426         if (!p4d)
2427                 return -ENOMEM;
2428         do {
2429                 next = p4d_addr_end(addr, end);
2430                 err = remap_pud_range(mm, p4d, addr, next,
2431                                 pfn + (addr >> PAGE_SHIFT), prot);
2432                 if (err)
2433                         return err;
2434         } while (p4d++, addr = next, addr != end);
2435         return 0;
2436 }
2437
2438 /*
2439  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2440  * must have pre-validated the caching bits of the pgprot_t.
2441  */
2442 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2443                 unsigned long pfn, unsigned long size, pgprot_t prot)
2444 {
2445         pgd_t *pgd;
2446         unsigned long next;
2447         unsigned long end = addr + PAGE_ALIGN(size);
2448         struct mm_struct *mm = vma->vm_mm;
2449         int err;
2450
2451         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2452                 return -EINVAL;
2453
2454         /*
2455          * Physically remapped pages are special. Tell the
2456          * rest of the world about it:
2457          *   VM_IO tells people not to look at these pages
2458          *      (accesses can have side effects).
2459          *   VM_PFNMAP tells the core MM that the base pages are just
2460          *      raw PFN mappings, and do not have a "struct page" associated
2461          *      with them.
2462          *   VM_DONTEXPAND
2463          *      Disable vma merging and expanding with mremap().
2464          *   VM_DONTDUMP
2465          *      Omit vma from core dump, even when VM_IO turned off.
2466          *
2467          * There's a horrible special case to handle copy-on-write
2468          * behaviour that some programs depend on. We mark the "original"
2469          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2470          * See vm_normal_page() for details.
2471          */
2472         if (is_cow_mapping(vma->vm_flags)) {
2473                 if (addr != vma->vm_start || end != vma->vm_end)
2474                         return -EINVAL;
2475                 vma->vm_pgoff = pfn;
2476         }
2477
2478         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2479
2480         BUG_ON(addr >= end);
2481         pfn -= addr >> PAGE_SHIFT;
2482         pgd = pgd_offset(mm, addr);
2483         flush_cache_range(vma, addr, end);
2484         do {
2485                 next = pgd_addr_end(addr, end);
2486                 err = remap_p4d_range(mm, pgd, addr, next,
2487                                 pfn + (addr >> PAGE_SHIFT), prot);
2488                 if (err)
2489                         return err;
2490         } while (pgd++, addr = next, addr != end);
2491
2492         return 0;
2493 }
2494
2495 /**
2496  * remap_pfn_range - remap kernel memory to userspace
2497  * @vma: user vma to map to
2498  * @addr: target page aligned user address to start at
2499  * @pfn: page frame number of kernel physical memory address
2500  * @size: size of mapping area
2501  * @prot: page protection flags for this mapping
2502  *
2503  * Note: this is only safe if the mm semaphore is held when called.
2504  *
2505  * Return: %0 on success, negative error code otherwise.
2506  */
2507 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2508                     unsigned long pfn, unsigned long size, pgprot_t prot)
2509 {
2510         int err;
2511
2512         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2513         if (err)
2514                 return -EINVAL;
2515
2516         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2517         if (err)
2518                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2519         return err;
2520 }
2521 EXPORT_SYMBOL(remap_pfn_range);
2522
2523 /**
2524  * vm_iomap_memory - remap memory to userspace
2525  * @vma: user vma to map to
2526  * @start: start of the physical memory to be mapped
2527  * @len: size of area
2528  *
2529  * This is a simplified io_remap_pfn_range() for common driver use. The
2530  * driver just needs to give us the physical memory range to be mapped,
2531  * we'll figure out the rest from the vma information.
2532  *
2533  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2534  * whatever write-combining details or similar.
2535  *
2536  * Return: %0 on success, negative error code otherwise.
2537  */
2538 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2539 {
2540         unsigned long vm_len, pfn, pages;
2541
2542         /* Check that the physical memory area passed in looks valid */
2543         if (start + len < start)
2544                 return -EINVAL;
2545         /*
2546          * You *really* shouldn't map things that aren't page-aligned,
2547          * but we've historically allowed it because IO memory might
2548          * just have smaller alignment.
2549          */
2550         len += start & ~PAGE_MASK;
2551         pfn = start >> PAGE_SHIFT;
2552         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2553         if (pfn + pages < pfn)
2554                 return -EINVAL;
2555
2556         /* We start the mapping 'vm_pgoff' pages into the area */
2557         if (vma->vm_pgoff > pages)
2558                 return -EINVAL;
2559         pfn += vma->vm_pgoff;
2560         pages -= vma->vm_pgoff;
2561
2562         /* Can we fit all of the mapping? */
2563         vm_len = vma->vm_end - vma->vm_start;
2564         if (vm_len >> PAGE_SHIFT > pages)
2565                 return -EINVAL;
2566
2567         /* Ok, let it rip */
2568         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2569 }
2570 EXPORT_SYMBOL(vm_iomap_memory);
2571
2572 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2573                                      unsigned long addr, unsigned long end,
2574                                      pte_fn_t fn, void *data, bool create,
2575                                      pgtbl_mod_mask *mask)
2576 {
2577         pte_t *pte, *mapped_pte;
2578         int err = 0;
2579         spinlock_t *ptl;
2580
2581         if (create) {
2582                 mapped_pte = pte = (mm == &init_mm) ?
2583                         pte_alloc_kernel_track(pmd, addr, mask) :
2584                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2585                 if (!pte)
2586                         return -ENOMEM;
2587         } else {
2588                 mapped_pte = pte = (mm == &init_mm) ?
2589                         pte_offset_kernel(pmd, addr) :
2590                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2591                 if (!pte)
2592                         return -EINVAL;
2593         }
2594
2595         arch_enter_lazy_mmu_mode();
2596
2597         if (fn) {
2598                 do {
2599                         if (create || !pte_none(ptep_get(pte))) {
2600                                 err = fn(pte++, addr, data);
2601                                 if (err)
2602                                         break;
2603                         }
2604                 } while (addr += PAGE_SIZE, addr != end);
2605         }
2606         *mask |= PGTBL_PTE_MODIFIED;
2607
2608         arch_leave_lazy_mmu_mode();
2609
2610         if (mm != &init_mm)
2611                 pte_unmap_unlock(mapped_pte, ptl);
2612         return err;
2613 }
2614
2615 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2616                                      unsigned long addr, unsigned long end,
2617                                      pte_fn_t fn, void *data, bool create,
2618                                      pgtbl_mod_mask *mask)
2619 {
2620         pmd_t *pmd;
2621         unsigned long next;
2622         int err = 0;
2623
2624         BUG_ON(pud_huge(*pud));
2625
2626         if (create) {
2627                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2628                 if (!pmd)
2629                         return -ENOMEM;
2630         } else {
2631                 pmd = pmd_offset(pud, addr);
2632         }
2633         do {
2634                 next = pmd_addr_end(addr, end);
2635                 if (pmd_none(*pmd) && !create)
2636                         continue;
2637                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2638                         return -EINVAL;
2639                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2640                         if (!create)
2641                                 continue;
2642                         pmd_clear_bad(pmd);
2643                 }
2644                 err = apply_to_pte_range(mm, pmd, addr, next,
2645                                          fn, data, create, mask);
2646                 if (err)
2647                         break;
2648         } while (pmd++, addr = next, addr != end);
2649
2650         return err;
2651 }
2652
2653 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2654                                      unsigned long addr, unsigned long end,
2655                                      pte_fn_t fn, void *data, bool create,
2656                                      pgtbl_mod_mask *mask)
2657 {
2658         pud_t *pud;
2659         unsigned long next;
2660         int err = 0;
2661
2662         if (create) {
2663                 pud = pud_alloc_track(mm, p4d, addr, mask);
2664                 if (!pud)
2665                         return -ENOMEM;
2666         } else {
2667                 pud = pud_offset(p4d, addr);
2668         }
2669         do {
2670                 next = pud_addr_end(addr, end);
2671                 if (pud_none(*pud) && !create)
2672                         continue;
2673                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2674                         return -EINVAL;
2675                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2676                         if (!create)
2677                                 continue;
2678                         pud_clear_bad(pud);
2679                 }
2680                 err = apply_to_pmd_range(mm, pud, addr, next,
2681                                          fn, data, create, mask);
2682                 if (err)
2683                         break;
2684         } while (pud++, addr = next, addr != end);
2685
2686         return err;
2687 }
2688
2689 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2690                                      unsigned long addr, unsigned long end,
2691                                      pte_fn_t fn, void *data, bool create,
2692                                      pgtbl_mod_mask *mask)
2693 {
2694         p4d_t *p4d;
2695         unsigned long next;
2696         int err = 0;
2697
2698         if (create) {
2699                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2700                 if (!p4d)
2701                         return -ENOMEM;
2702         } else {
2703                 p4d = p4d_offset(pgd, addr);
2704         }
2705         do {
2706                 next = p4d_addr_end(addr, end);
2707                 if (p4d_none(*p4d) && !create)
2708                         continue;
2709                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2710                         return -EINVAL;
2711                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2712                         if (!create)
2713                                 continue;
2714                         p4d_clear_bad(p4d);
2715                 }
2716                 err = apply_to_pud_range(mm, p4d, addr, next,
2717                                          fn, data, create, mask);
2718                 if (err)
2719                         break;
2720         } while (p4d++, addr = next, addr != end);
2721
2722         return err;
2723 }
2724
2725 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2726                                  unsigned long size, pte_fn_t fn,
2727                                  void *data, bool create)
2728 {
2729         pgd_t *pgd;
2730         unsigned long start = addr, next;
2731         unsigned long end = addr + size;
2732         pgtbl_mod_mask mask = 0;
2733         int err = 0;
2734
2735         if (WARN_ON(addr >= end))
2736                 return -EINVAL;
2737
2738         pgd = pgd_offset(mm, addr);
2739         do {
2740                 next = pgd_addr_end(addr, end);
2741                 if (pgd_none(*pgd) && !create)
2742                         continue;
2743                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2744                         return -EINVAL;
2745                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2746                         if (!create)
2747                                 continue;
2748                         pgd_clear_bad(pgd);
2749                 }
2750                 err = apply_to_p4d_range(mm, pgd, addr, next,
2751                                          fn, data, create, &mask);
2752                 if (err)
2753                         break;
2754         } while (pgd++, addr = next, addr != end);
2755
2756         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2757                 arch_sync_kernel_mappings(start, start + size);
2758
2759         return err;
2760 }
2761
2762 /*
2763  * Scan a region of virtual memory, filling in page tables as necessary
2764  * and calling a provided function on each leaf page table.
2765  */
2766 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2767                         unsigned long size, pte_fn_t fn, void *data)
2768 {
2769         return __apply_to_page_range(mm, addr, size, fn, data, true);
2770 }
2771 EXPORT_SYMBOL_GPL(apply_to_page_range);
2772
2773 /*
2774  * Scan a region of virtual memory, calling a provided function on
2775  * each leaf page table where it exists.
2776  *
2777  * Unlike apply_to_page_range, this does _not_ fill in page tables
2778  * where they are absent.
2779  */
2780 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2781                                  unsigned long size, pte_fn_t fn, void *data)
2782 {
2783         return __apply_to_page_range(mm, addr, size, fn, data, false);
2784 }
2785 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2786
2787 /*
2788  * handle_pte_fault chooses page fault handler according to an entry which was
2789  * read non-atomically.  Before making any commitment, on those architectures
2790  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2791  * parts, do_swap_page must check under lock before unmapping the pte and
2792  * proceeding (but do_wp_page is only called after already making such a check;
2793  * and do_anonymous_page can safely check later on).
2794  */
2795 static inline int pte_unmap_same(struct vm_fault *vmf)
2796 {
2797         int same = 1;
2798 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2799         if (sizeof(pte_t) > sizeof(unsigned long)) {
2800                 spin_lock(vmf->ptl);
2801                 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2802                 spin_unlock(vmf->ptl);
2803         }
2804 #endif
2805         pte_unmap(vmf->pte);
2806         vmf->pte = NULL;
2807         return same;
2808 }
2809
2810 /*
2811  * Return:
2812  *      0:              copied succeeded
2813  *      -EHWPOISON:     copy failed due to hwpoison in source page
2814  *      -EAGAIN:        copied failed (some other reason)
2815  */
2816 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2817                                       struct vm_fault *vmf)
2818 {
2819         int ret;
2820         void *kaddr;
2821         void __user *uaddr;
2822         struct vm_area_struct *vma = vmf->vma;
2823         struct mm_struct *mm = vma->vm_mm;
2824         unsigned long addr = vmf->address;
2825
2826         if (likely(src)) {
2827                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2828                         memory_failure_queue(page_to_pfn(src), 0);
2829                         return -EHWPOISON;
2830                 }
2831                 return 0;
2832         }
2833
2834         /*
2835          * If the source page was a PFN mapping, we don't have
2836          * a "struct page" for it. We do a best-effort copy by
2837          * just copying from the original user address. If that
2838          * fails, we just zero-fill it. Live with it.
2839          */
2840         kaddr = kmap_atomic(dst);
2841         uaddr = (void __user *)(addr & PAGE_MASK);
2842
2843         /*
2844          * On architectures with software "accessed" bits, we would
2845          * take a double page fault, so mark it accessed here.
2846          */
2847         vmf->pte = NULL;
2848         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2849                 pte_t entry;
2850
2851                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2852                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2853                         /*
2854                          * Other thread has already handled the fault
2855                          * and update local tlb only
2856                          */
2857                         if (vmf->pte)
2858                                 update_mmu_tlb(vma, addr, vmf->pte);
2859                         ret = -EAGAIN;
2860                         goto pte_unlock;
2861                 }
2862
2863                 entry = pte_mkyoung(vmf->orig_pte);
2864                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2865                         update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2866         }
2867
2868         /*
2869          * This really shouldn't fail, because the page is there
2870          * in the page tables. But it might just be unreadable,
2871          * in which case we just give up and fill the result with
2872          * zeroes.
2873          */
2874         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2875                 if (vmf->pte)
2876                         goto warn;
2877
2878                 /* Re-validate under PTL if the page is still mapped */
2879                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2880                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2881                         /* The PTE changed under us, update local tlb */
2882                         if (vmf->pte)
2883                                 update_mmu_tlb(vma, addr, vmf->pte);
2884                         ret = -EAGAIN;
2885                         goto pte_unlock;
2886                 }
2887
2888                 /*
2889                  * The same page can be mapped back since last copy attempt.
2890                  * Try to copy again under PTL.
2891                  */
2892                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2893                         /*
2894                          * Give a warn in case there can be some obscure
2895                          * use-case
2896                          */
2897 warn:
2898                         WARN_ON_ONCE(1);
2899                         clear_page(kaddr);
2900                 }
2901         }
2902
2903         ret = 0;
2904
2905 pte_unlock:
2906         if (vmf->pte)
2907                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2908         kunmap_atomic(kaddr);
2909         flush_dcache_page(dst);
2910
2911         return ret;
2912 }
2913
2914 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2915 {
2916         struct file *vm_file = vma->vm_file;
2917
2918         if (vm_file)
2919                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2920
2921         /*
2922          * Special mappings (e.g. VDSO) do not have any file so fake
2923          * a default GFP_KERNEL for them.
2924          */
2925         return GFP_KERNEL;
2926 }
2927
2928 /*
2929  * Notify the address space that the page is about to become writable so that
2930  * it can prohibit this or wait for the page to get into an appropriate state.
2931  *
2932  * We do this without the lock held, so that it can sleep if it needs to.
2933  */
2934 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2935 {
2936         vm_fault_t ret;
2937         unsigned int old_flags = vmf->flags;
2938
2939         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2940
2941         if (vmf->vma->vm_file &&
2942             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2943                 return VM_FAULT_SIGBUS;
2944
2945         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2946         /* Restore original flags so that caller is not surprised */
2947         vmf->flags = old_flags;
2948         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2949                 return ret;
2950         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2951                 folio_lock(folio);
2952                 if (!folio->mapping) {
2953                         folio_unlock(folio);
2954                         return 0; /* retry */
2955                 }
2956                 ret |= VM_FAULT_LOCKED;
2957         } else
2958                 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2959         return ret;
2960 }
2961
2962 /*
2963  * Handle dirtying of a page in shared file mapping on a write fault.
2964  *
2965  * The function expects the page to be locked and unlocks it.
2966  */
2967 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2968 {
2969         struct vm_area_struct *vma = vmf->vma;
2970         struct address_space *mapping;
2971         struct folio *folio = page_folio(vmf->page);
2972         bool dirtied;
2973         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2974
2975         dirtied = folio_mark_dirty(folio);
2976         VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2977         /*
2978          * Take a local copy of the address_space - folio.mapping may be zeroed
2979          * by truncate after folio_unlock().   The address_space itself remains
2980          * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2981          * release semantics to prevent the compiler from undoing this copying.
2982          */
2983         mapping = folio_raw_mapping(folio);
2984         folio_unlock(folio);
2985
2986         if (!page_mkwrite)
2987                 file_update_time(vma->vm_file);
2988
2989         /*
2990          * Throttle page dirtying rate down to writeback speed.
2991          *
2992          * mapping may be NULL here because some device drivers do not
2993          * set page.mapping but still dirty their pages
2994          *
2995          * Drop the mmap_lock before waiting on IO, if we can. The file
2996          * is pinning the mapping, as per above.
2997          */
2998         if ((dirtied || page_mkwrite) && mapping) {
2999                 struct file *fpin;
3000
3001                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3002                 balance_dirty_pages_ratelimited(mapping);
3003                 if (fpin) {
3004                         fput(fpin);
3005                         return VM_FAULT_COMPLETED;
3006                 }
3007         }
3008
3009         return 0;
3010 }
3011
3012 /*
3013  * Handle write page faults for pages that can be reused in the current vma
3014  *
3015  * This can happen either due to the mapping being with the VM_SHARED flag,
3016  * or due to us being the last reference standing to the page. In either
3017  * case, all we need to do here is to mark the page as writable and update
3018  * any related book-keeping.
3019  */
3020 static inline void wp_page_reuse(struct vm_fault *vmf)
3021         __releases(vmf->ptl)
3022 {
3023         struct vm_area_struct *vma = vmf->vma;
3024         struct page *page = vmf->page;
3025         pte_t entry;
3026
3027         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3028         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3029
3030         /*
3031          * Clear the pages cpupid information as the existing
3032          * information potentially belongs to a now completely
3033          * unrelated process.
3034          */
3035         if (page)
3036                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3037
3038         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3039         entry = pte_mkyoung(vmf->orig_pte);
3040         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3041         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3042                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3043         pte_unmap_unlock(vmf->pte, vmf->ptl);
3044         count_vm_event(PGREUSE);
3045 }
3046
3047 /*
3048  * Handle the case of a page which we actually need to copy to a new page,
3049  * either due to COW or unsharing.
3050  *
3051  * Called with mmap_lock locked and the old page referenced, but
3052  * without the ptl held.
3053  *
3054  * High level logic flow:
3055  *
3056  * - Allocate a page, copy the content of the old page to the new one.
3057  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3058  * - Take the PTL. If the pte changed, bail out and release the allocated page
3059  * - If the pte is still the way we remember it, update the page table and all
3060  *   relevant references. This includes dropping the reference the page-table
3061  *   held to the old page, as well as updating the rmap.
3062  * - In any case, unlock the PTL and drop the reference we took to the old page.
3063  */
3064 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3065 {
3066         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3067         struct vm_area_struct *vma = vmf->vma;
3068         struct mm_struct *mm = vma->vm_mm;
3069         struct folio *old_folio = NULL;
3070         struct folio *new_folio = NULL;
3071         pte_t entry;
3072         int page_copied = 0;
3073         struct mmu_notifier_range range;
3074         int ret;
3075
3076         delayacct_wpcopy_start();
3077
3078         if (vmf->page)
3079                 old_folio = page_folio(vmf->page);
3080         if (unlikely(anon_vma_prepare(vma)))
3081                 goto oom;
3082
3083         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3084                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3085                 if (!new_folio)
3086                         goto oom;
3087         } else {
3088                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3089                                 vmf->address, false);
3090                 if (!new_folio)
3091                         goto oom;
3092
3093                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3094                 if (ret) {
3095                         /*
3096                          * COW failed, if the fault was solved by other,
3097                          * it's fine. If not, userspace would re-fault on
3098                          * the same address and we will handle the fault
3099                          * from the second attempt.
3100                          * The -EHWPOISON case will not be retried.
3101                          */
3102                         folio_put(new_folio);
3103                         if (old_folio)
3104                                 folio_put(old_folio);
3105
3106                         delayacct_wpcopy_end();
3107                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3108                 }
3109                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3110         }
3111
3112         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3113                 goto oom_free_new;
3114         folio_throttle_swaprate(new_folio, GFP_KERNEL);
3115
3116         __folio_mark_uptodate(new_folio);
3117
3118         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3119                                 vmf->address & PAGE_MASK,
3120                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3121         mmu_notifier_invalidate_range_start(&range);
3122
3123         /*
3124          * Re-check the pte - we dropped the lock
3125          */
3126         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3127         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3128                 if (old_folio) {
3129                         if (!folio_test_anon(old_folio)) {
3130                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3131                                 inc_mm_counter(mm, MM_ANONPAGES);
3132                         }
3133                 } else {
3134                         ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3135                         inc_mm_counter(mm, MM_ANONPAGES);
3136                 }
3137                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3138                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3139                 entry = pte_sw_mkyoung(entry);
3140                 if (unlikely(unshare)) {
3141                         if (pte_soft_dirty(vmf->orig_pte))
3142                                 entry = pte_mksoft_dirty(entry);
3143                         if (pte_uffd_wp(vmf->orig_pte))
3144                                 entry = pte_mkuffd_wp(entry);
3145                 } else {
3146                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3147                 }
3148
3149                 /*
3150                  * Clear the pte entry and flush it first, before updating the
3151                  * pte with the new entry, to keep TLBs on different CPUs in
3152                  * sync. This code used to set the new PTE then flush TLBs, but
3153                  * that left a window where the new PTE could be loaded into
3154                  * some TLBs while the old PTE remains in others.
3155                  */
3156                 ptep_clear_flush(vma, vmf->address, vmf->pte);
3157                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3158                 folio_add_lru_vma(new_folio, vma);
3159                 /*
3160                  * We call the notify macro here because, when using secondary
3161                  * mmu page tables (such as kvm shadow page tables), we want the
3162                  * new page to be mapped directly into the secondary page table.
3163                  */
3164                 BUG_ON(unshare && pte_write(entry));
3165                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3166                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3167                 if (old_folio) {
3168                         /*
3169                          * Only after switching the pte to the new page may
3170                          * we remove the mapcount here. Otherwise another
3171                          * process may come and find the rmap count decremented
3172                          * before the pte is switched to the new page, and
3173                          * "reuse" the old page writing into it while our pte
3174                          * here still points into it and can be read by other
3175                          * threads.
3176                          *
3177                          * The critical issue is to order this
3178                          * page_remove_rmap with the ptp_clear_flush above.
3179                          * Those stores are ordered by (if nothing else,)
3180                          * the barrier present in the atomic_add_negative
3181                          * in page_remove_rmap.
3182                          *
3183                          * Then the TLB flush in ptep_clear_flush ensures that
3184                          * no process can access the old page before the
3185                          * decremented mapcount is visible. And the old page
3186                          * cannot be reused until after the decremented
3187                          * mapcount is visible. So transitively, TLBs to
3188                          * old page will be flushed before it can be reused.
3189                          */
3190                         page_remove_rmap(vmf->page, vma, false);
3191                 }
3192
3193                 /* Free the old page.. */
3194                 new_folio = old_folio;
3195                 page_copied = 1;
3196                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3197         } else if (vmf->pte) {
3198                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3199                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3200         }
3201
3202         mmu_notifier_invalidate_range_end(&range);
3203
3204         if (new_folio)
3205                 folio_put(new_folio);
3206         if (old_folio) {
3207                 if (page_copied)
3208                         free_swap_cache(&old_folio->page);
3209                 folio_put(old_folio);
3210         }
3211
3212         delayacct_wpcopy_end();
3213         return 0;
3214 oom_free_new:
3215         folio_put(new_folio);
3216 oom:
3217         if (old_folio)
3218                 folio_put(old_folio);
3219
3220         delayacct_wpcopy_end();
3221         return VM_FAULT_OOM;
3222 }
3223
3224 /**
3225  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3226  *                        writeable once the page is prepared
3227  *
3228  * @vmf: structure describing the fault
3229  *
3230  * This function handles all that is needed to finish a write page fault in a
3231  * shared mapping due to PTE being read-only once the mapped page is prepared.
3232  * It handles locking of PTE and modifying it.
3233  *
3234  * The function expects the page to be locked or other protection against
3235  * concurrent faults / writeback (such as DAX radix tree locks).
3236  *
3237  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3238  * we acquired PTE lock.
3239  */
3240 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3241 {
3242         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3243         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3244                                        &vmf->ptl);
3245         if (!vmf->pte)
3246                 return VM_FAULT_NOPAGE;
3247         /*
3248          * We might have raced with another page fault while we released the
3249          * pte_offset_map_lock.
3250          */
3251         if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3252                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3253                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3254                 return VM_FAULT_NOPAGE;
3255         }
3256         wp_page_reuse(vmf);
3257         return 0;
3258 }
3259
3260 /*
3261  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3262  * mapping
3263  */
3264 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3265 {
3266         struct vm_area_struct *vma = vmf->vma;
3267
3268         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3269                 vm_fault_t ret;
3270
3271                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3272                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3273                         vma_end_read(vmf->vma);
3274                         return VM_FAULT_RETRY;
3275                 }
3276
3277                 vmf->flags |= FAULT_FLAG_MKWRITE;
3278                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3279                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3280                         return ret;
3281                 return finish_mkwrite_fault(vmf);
3282         }
3283         wp_page_reuse(vmf);
3284         return 0;
3285 }
3286
3287 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3288         __releases(vmf->ptl)
3289 {
3290         struct vm_area_struct *vma = vmf->vma;
3291         vm_fault_t ret = 0;
3292
3293         folio_get(folio);
3294
3295         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3296                 vm_fault_t tmp;
3297
3298                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3299                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3300                         folio_put(folio);
3301                         vma_end_read(vmf->vma);
3302                         return VM_FAULT_RETRY;
3303                 }
3304
3305                 tmp = do_page_mkwrite(vmf, folio);
3306                 if (unlikely(!tmp || (tmp &
3307                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3308                         folio_put(folio);
3309                         return tmp;
3310                 }
3311                 tmp = finish_mkwrite_fault(vmf);
3312                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3313                         folio_unlock(folio);
3314                         folio_put(folio);
3315                         return tmp;
3316                 }
3317         } else {
3318                 wp_page_reuse(vmf);
3319                 folio_lock(folio);
3320         }
3321         ret |= fault_dirty_shared_page(vmf);
3322         folio_put(folio);
3323
3324         return ret;
3325 }
3326
3327 /*
3328  * This routine handles present pages, when
3329  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3330  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3331  *   (FAULT_FLAG_UNSHARE)
3332  *
3333  * It is done by copying the page to a new address and decrementing the
3334  * shared-page counter for the old page.
3335  *
3336  * Note that this routine assumes that the protection checks have been
3337  * done by the caller (the low-level page fault routine in most cases).
3338  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3339  * done any necessary COW.
3340  *
3341  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3342  * though the page will change only once the write actually happens. This
3343  * avoids a few races, and potentially makes it more efficient.
3344  *
3345  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3346  * but allow concurrent faults), with pte both mapped and locked.
3347  * We return with mmap_lock still held, but pte unmapped and unlocked.
3348  */
3349 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3350         __releases(vmf->ptl)
3351 {
3352         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3353         struct vm_area_struct *vma = vmf->vma;
3354         struct folio *folio = NULL;
3355
3356         if (likely(!unshare)) {
3357                 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3358                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3359                         return handle_userfault(vmf, VM_UFFD_WP);
3360                 }
3361
3362                 /*
3363                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3364                  * is flushed in this case before copying.
3365                  */
3366                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3367                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3368                         flush_tlb_page(vmf->vma, vmf->address);
3369         }
3370
3371         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3372
3373         if (vmf->page)
3374                 folio = page_folio(vmf->page);
3375
3376         /*
3377          * Shared mapping: we are guaranteed to have VM_WRITE and
3378          * FAULT_FLAG_WRITE set at this point.
3379          */
3380         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3381                 /*
3382                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3383                  * VM_PFNMAP VMA.
3384                  *
3385                  * We should not cow pages in a shared writeable mapping.
3386                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3387                  */
3388                 if (!vmf->page)
3389                         return wp_pfn_shared(vmf);
3390                 return wp_page_shared(vmf, folio);
3391         }
3392
3393         /*
3394          * Private mapping: create an exclusive anonymous page copy if reuse
3395          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3396          */
3397         if (folio && folio_test_anon(folio)) {
3398                 /*
3399                  * If the page is exclusive to this process we must reuse the
3400                  * page without further checks.
3401                  */
3402                 if (PageAnonExclusive(vmf->page))
3403                         goto reuse;
3404
3405                 /*
3406                  * We have to verify under folio lock: these early checks are
3407                  * just an optimization to avoid locking the folio and freeing
3408                  * the swapcache if there is little hope that we can reuse.
3409                  *
3410                  * KSM doesn't necessarily raise the folio refcount.
3411                  */
3412                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3413                         goto copy;
3414                 if (!folio_test_lru(folio))
3415                         /*
3416                          * We cannot easily detect+handle references from
3417                          * remote LRU caches or references to LRU folios.
3418                          */
3419                         lru_add_drain();
3420                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3421                         goto copy;
3422                 if (!folio_trylock(folio))
3423                         goto copy;
3424                 if (folio_test_swapcache(folio))
3425                         folio_free_swap(folio);
3426                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3427                         folio_unlock(folio);
3428                         goto copy;
3429                 }
3430                 /*
3431                  * Ok, we've got the only folio reference from our mapping
3432                  * and the folio is locked, it's dark out, and we're wearing
3433                  * sunglasses. Hit it.
3434                  */
3435                 page_move_anon_rmap(vmf->page, vma);
3436                 folio_unlock(folio);
3437 reuse:
3438                 if (unlikely(unshare)) {
3439                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3440                         return 0;
3441                 }
3442                 wp_page_reuse(vmf);
3443                 return 0;
3444         }
3445 copy:
3446         if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3447                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3448                 vma_end_read(vmf->vma);
3449                 return VM_FAULT_RETRY;
3450         }
3451
3452         /*
3453          * Ok, we need to copy. Oh, well..
3454          */
3455         if (folio)
3456                 folio_get(folio);
3457
3458         pte_unmap_unlock(vmf->pte, vmf->ptl);
3459 #ifdef CONFIG_KSM
3460         if (folio && folio_test_ksm(folio))
3461                 count_vm_event(COW_KSM);
3462 #endif
3463         return wp_page_copy(vmf);
3464 }
3465
3466 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3467                 unsigned long start_addr, unsigned long end_addr,
3468                 struct zap_details *details)
3469 {
3470         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3471 }
3472
3473 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3474                                             pgoff_t first_index,
3475                                             pgoff_t last_index,
3476                                             struct zap_details *details)
3477 {
3478         struct vm_area_struct *vma;
3479         pgoff_t vba, vea, zba, zea;
3480
3481         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3482                 vba = vma->vm_pgoff;
3483                 vea = vba + vma_pages(vma) - 1;
3484                 zba = max(first_index, vba);
3485                 zea = min(last_index, vea);
3486
3487                 unmap_mapping_range_vma(vma,
3488                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3489                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3490                                 details);
3491         }
3492 }
3493
3494 /**
3495  * unmap_mapping_folio() - Unmap single folio from processes.
3496  * @folio: The locked folio to be unmapped.
3497  *
3498  * Unmap this folio from any userspace process which still has it mmaped.
3499  * Typically, for efficiency, the range of nearby pages has already been
3500  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3501  * truncation or invalidation holds the lock on a folio, it may find that
3502  * the page has been remapped again: and then uses unmap_mapping_folio()
3503  * to unmap it finally.
3504  */
3505 void unmap_mapping_folio(struct folio *folio)
3506 {
3507         struct address_space *mapping = folio->mapping;
3508         struct zap_details details = { };
3509         pgoff_t first_index;
3510         pgoff_t last_index;
3511
3512         VM_BUG_ON(!folio_test_locked(folio));
3513
3514         first_index = folio->index;
3515         last_index = folio_next_index(folio) - 1;
3516
3517         details.even_cows = false;
3518         details.single_folio = folio;
3519         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3520
3521         i_mmap_lock_read(mapping);
3522         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3523                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3524                                          last_index, &details);
3525         i_mmap_unlock_read(mapping);
3526 }
3527
3528 /**
3529  * unmap_mapping_pages() - Unmap pages from processes.
3530  * @mapping: The address space containing pages to be unmapped.
3531  * @start: Index of first page to be unmapped.
3532  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3533  * @even_cows: Whether to unmap even private COWed pages.
3534  *
3535  * Unmap the pages in this address space from any userspace process which
3536  * has them mmaped.  Generally, you want to remove COWed pages as well when
3537  * a file is being truncated, but not when invalidating pages from the page
3538  * cache.
3539  */
3540 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3541                 pgoff_t nr, bool even_cows)
3542 {
3543         struct zap_details details = { };
3544         pgoff_t first_index = start;
3545         pgoff_t last_index = start + nr - 1;
3546
3547         details.even_cows = even_cows;
3548         if (last_index < first_index)
3549                 last_index = ULONG_MAX;
3550
3551         i_mmap_lock_read(mapping);
3552         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3553                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3554                                          last_index, &details);
3555         i_mmap_unlock_read(mapping);
3556 }
3557 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3558
3559 /**
3560  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3561  * address_space corresponding to the specified byte range in the underlying
3562  * file.
3563  *
3564  * @mapping: the address space containing mmaps to be unmapped.
3565  * @holebegin: byte in first page to unmap, relative to the start of
3566  * the underlying file.  This will be rounded down to a PAGE_SIZE
3567  * boundary.  Note that this is different from truncate_pagecache(), which
3568  * must keep the partial page.  In contrast, we must get rid of
3569  * partial pages.
3570  * @holelen: size of prospective hole in bytes.  This will be rounded
3571  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3572  * end of the file.
3573  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3574  * but 0 when invalidating pagecache, don't throw away private data.
3575  */
3576 void unmap_mapping_range(struct address_space *mapping,
3577                 loff_t const holebegin, loff_t const holelen, int even_cows)
3578 {
3579         pgoff_t hba = holebegin >> PAGE_SHIFT;
3580         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3581
3582         /* Check for overflow. */
3583         if (sizeof(holelen) > sizeof(hlen)) {
3584                 long long holeend =
3585                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586                 if (holeend & ~(long long)ULONG_MAX)
3587                         hlen = ULONG_MAX - hba + 1;
3588         }
3589
3590         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3591 }
3592 EXPORT_SYMBOL(unmap_mapping_range);
3593
3594 /*
3595  * Restore a potential device exclusive pte to a working pte entry
3596  */
3597 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3598 {
3599         struct folio *folio = page_folio(vmf->page);
3600         struct vm_area_struct *vma = vmf->vma;
3601         struct mmu_notifier_range range;
3602         vm_fault_t ret;
3603
3604         /*
3605          * We need a reference to lock the folio because we don't hold
3606          * the PTL so a racing thread can remove the device-exclusive
3607          * entry and unmap it. If the folio is free the entry must
3608          * have been removed already. If it happens to have already
3609          * been re-allocated after being freed all we do is lock and
3610          * unlock it.
3611          */
3612         if (!folio_try_get(folio))
3613                 return 0;
3614
3615         ret = folio_lock_or_retry(folio, vmf);
3616         if (ret) {
3617                 folio_put(folio);
3618                 return ret;
3619         }
3620         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3621                                 vma->vm_mm, vmf->address & PAGE_MASK,
3622                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3623         mmu_notifier_invalidate_range_start(&range);
3624
3625         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3626                                 &vmf->ptl);
3627         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3628                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3629
3630         if (vmf->pte)
3631                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3632         folio_unlock(folio);
3633         folio_put(folio);
3634
3635         mmu_notifier_invalidate_range_end(&range);
3636         return 0;
3637 }
3638
3639 static inline bool should_try_to_free_swap(struct folio *folio,
3640                                            struct vm_area_struct *vma,
3641                                            unsigned int fault_flags)
3642 {
3643         if (!folio_test_swapcache(folio))
3644                 return false;
3645         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3646             folio_test_mlocked(folio))
3647                 return true;
3648         /*
3649          * If we want to map a page that's in the swapcache writable, we
3650          * have to detect via the refcount if we're really the exclusive
3651          * user. Try freeing the swapcache to get rid of the swapcache
3652          * reference only in case it's likely that we'll be the exlusive user.
3653          */
3654         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3655                 folio_ref_count(folio) == 2;
3656 }
3657
3658 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3659 {
3660         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3661                                        vmf->address, &vmf->ptl);
3662         if (!vmf->pte)
3663                 return 0;
3664         /*
3665          * Be careful so that we will only recover a special uffd-wp pte into a
3666          * none pte.  Otherwise it means the pte could have changed, so retry.
3667          *
3668          * This should also cover the case where e.g. the pte changed
3669          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3670          * So is_pte_marker() check is not enough to safely drop the pte.
3671          */
3672         if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3673                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3674         pte_unmap_unlock(vmf->pte, vmf->ptl);
3675         return 0;
3676 }
3677
3678 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3679 {
3680         if (vma_is_anonymous(vmf->vma))
3681                 return do_anonymous_page(vmf);
3682         else
3683                 return do_fault(vmf);
3684 }
3685
3686 /*
3687  * This is actually a page-missing access, but with uffd-wp special pte
3688  * installed.  It means this pte was wr-protected before being unmapped.
3689  */
3690 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3691 {
3692         /*
3693          * Just in case there're leftover special ptes even after the region
3694          * got unregistered - we can simply clear them.
3695          */
3696         if (unlikely(!userfaultfd_wp(vmf->vma)))
3697                 return pte_marker_clear(vmf);
3698
3699         return do_pte_missing(vmf);
3700 }
3701
3702 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3703 {
3704         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3705         unsigned long marker = pte_marker_get(entry);
3706
3707         /*
3708          * PTE markers should never be empty.  If anything weird happened,
3709          * the best thing to do is to kill the process along with its mm.
3710          */
3711         if (WARN_ON_ONCE(!marker))
3712                 return VM_FAULT_SIGBUS;
3713
3714         /* Higher priority than uffd-wp when data corrupted */
3715         if (marker & PTE_MARKER_POISONED)
3716                 return VM_FAULT_HWPOISON;
3717
3718         if (pte_marker_entry_uffd_wp(entry))
3719                 return pte_marker_handle_uffd_wp(vmf);
3720
3721         /* This is an unknown pte marker */
3722         return VM_FAULT_SIGBUS;
3723 }
3724
3725 /*
3726  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3727  * but allow concurrent faults), and pte mapped but not yet locked.
3728  * We return with pte unmapped and unlocked.
3729  *
3730  * We return with the mmap_lock locked or unlocked in the same cases
3731  * as does filemap_fault().
3732  */
3733 vm_fault_t do_swap_page(struct vm_fault *vmf)
3734 {
3735         struct vm_area_struct *vma = vmf->vma;
3736         struct folio *swapcache, *folio = NULL;
3737         struct page *page;
3738         struct swap_info_struct *si = NULL;
3739         rmap_t rmap_flags = RMAP_NONE;
3740         bool exclusive = false;
3741         swp_entry_t entry;
3742         pte_t pte;
3743         vm_fault_t ret = 0;
3744         void *shadow = NULL;
3745
3746         if (!pte_unmap_same(vmf))
3747                 goto out;
3748
3749         entry = pte_to_swp_entry(vmf->orig_pte);
3750         if (unlikely(non_swap_entry(entry))) {
3751                 if (is_migration_entry(entry)) {
3752                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3753                                              vmf->address);
3754                 } else if (is_device_exclusive_entry(entry)) {
3755                         vmf->page = pfn_swap_entry_to_page(entry);
3756                         ret = remove_device_exclusive_entry(vmf);
3757                 } else if (is_device_private_entry(entry)) {
3758                         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3759                                 /*
3760                                  * migrate_to_ram is not yet ready to operate
3761                                  * under VMA lock.
3762                                  */
3763                                 vma_end_read(vma);
3764                                 ret = VM_FAULT_RETRY;
3765                                 goto out;
3766                         }
3767
3768                         vmf->page = pfn_swap_entry_to_page(entry);
3769                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3770                                         vmf->address, &vmf->ptl);
3771                         if (unlikely(!vmf->pte ||
3772                                      !pte_same(ptep_get(vmf->pte),
3773                                                         vmf->orig_pte)))
3774                                 goto unlock;
3775
3776                         /*
3777                          * Get a page reference while we know the page can't be
3778                          * freed.
3779                          */
3780                         get_page(vmf->page);
3781                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3782                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3783                         put_page(vmf->page);
3784                 } else if (is_hwpoison_entry(entry)) {
3785                         ret = VM_FAULT_HWPOISON;
3786                 } else if (is_pte_marker_entry(entry)) {
3787                         ret = handle_pte_marker(vmf);
3788                 } else {
3789                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3790                         ret = VM_FAULT_SIGBUS;
3791                 }
3792                 goto out;
3793         }
3794
3795         /* Prevent swapoff from happening to us. */
3796         si = get_swap_device(entry);
3797         if (unlikely(!si))
3798                 goto out;
3799
3800         folio = swap_cache_get_folio(entry, vma, vmf->address);
3801         if (folio)
3802                 page = folio_file_page(folio, swp_offset(entry));
3803         swapcache = folio;
3804
3805         if (!folio) {
3806                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3807                     __swap_count(entry) == 1) {
3808                         /* skip swapcache */
3809                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3810                                                 vma, vmf->address, false);
3811                         page = &folio->page;
3812                         if (folio) {
3813                                 __folio_set_locked(folio);
3814                                 __folio_set_swapbacked(folio);
3815
3816                                 if (mem_cgroup_swapin_charge_folio(folio,
3817                                                         vma->vm_mm, GFP_KERNEL,
3818                                                         entry)) {
3819                                         ret = VM_FAULT_OOM;
3820                                         goto out_page;
3821                                 }
3822                                 mem_cgroup_swapin_uncharge_swap(entry);
3823
3824                                 shadow = get_shadow_from_swap_cache(entry);
3825                                 if (shadow)
3826                                         workingset_refault(folio, shadow);
3827
3828                                 folio_add_lru(folio);
3829
3830                                 /* To provide entry to swap_readpage() */
3831                                 folio_set_swap_entry(folio, entry);
3832                                 swap_readpage(page, true, NULL);
3833                                 folio->private = NULL;
3834                         }
3835                 } else {
3836                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3837                                                 vmf);
3838                         if (page)
3839                                 folio = page_folio(page);
3840                         swapcache = folio;
3841                 }
3842
3843                 if (!folio) {
3844                         /*
3845                          * Back out if somebody else faulted in this pte
3846                          * while we released the pte lock.
3847                          */
3848                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3849                                         vmf->address, &vmf->ptl);
3850                         if (likely(vmf->pte &&
3851                                    pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3852                                 ret = VM_FAULT_OOM;
3853                         goto unlock;
3854                 }
3855
3856                 /* Had to read the page from swap area: Major fault */
3857                 ret = VM_FAULT_MAJOR;
3858                 count_vm_event(PGMAJFAULT);
3859                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3860         } else if (PageHWPoison(page)) {
3861                 /*
3862                  * hwpoisoned dirty swapcache pages are kept for killing
3863                  * owner processes (which may be unknown at hwpoison time)
3864                  */
3865                 ret = VM_FAULT_HWPOISON;
3866                 goto out_release;
3867         }
3868
3869         ret |= folio_lock_or_retry(folio, vmf);
3870         if (ret & VM_FAULT_RETRY)
3871                 goto out_release;
3872
3873         if (swapcache) {
3874                 /*
3875                  * Make sure folio_free_swap() or swapoff did not release the
3876                  * swapcache from under us.  The page pin, and pte_same test
3877                  * below, are not enough to exclude that.  Even if it is still
3878                  * swapcache, we need to check that the page's swap has not
3879                  * changed.
3880                  */
3881                 if (unlikely(!folio_test_swapcache(folio) ||
3882                              page_private(page) != entry.val))
3883                         goto out_page;
3884
3885                 /*
3886                  * KSM sometimes has to copy on read faults, for example, if
3887                  * page->index of !PageKSM() pages would be nonlinear inside the
3888                  * anon VMA -- PageKSM() is lost on actual swapout.
3889                  */
3890                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3891                 if (unlikely(!page)) {
3892                         ret = VM_FAULT_OOM;
3893                         goto out_page;
3894                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3895                         ret = VM_FAULT_HWPOISON;
3896                         goto out_page;
3897                 }
3898                 folio = page_folio(page);
3899
3900                 /*
3901                  * If we want to map a page that's in the swapcache writable, we
3902                  * have to detect via the refcount if we're really the exclusive
3903                  * owner. Try removing the extra reference from the local LRU
3904                  * caches if required.
3905                  */
3906                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3907                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3908                         lru_add_drain();
3909         }
3910
3911         folio_throttle_swaprate(folio, GFP_KERNEL);
3912
3913         /*
3914          * Back out if somebody else already faulted in this pte.
3915          */
3916         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3917                         &vmf->ptl);
3918         if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3919                 goto out_nomap;
3920
3921         if (unlikely(!folio_test_uptodate(folio))) {
3922                 ret = VM_FAULT_SIGBUS;
3923                 goto out_nomap;
3924         }
3925
3926         /*
3927          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3928          * must never point at an anonymous page in the swapcache that is
3929          * PG_anon_exclusive. Sanity check that this holds and especially, that
3930          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3931          * check after taking the PT lock and making sure that nobody
3932          * concurrently faulted in this page and set PG_anon_exclusive.
3933          */
3934         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3935         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3936
3937         /*
3938          * Check under PT lock (to protect against concurrent fork() sharing
3939          * the swap entry concurrently) for certainly exclusive pages.
3940          */
3941         if (!folio_test_ksm(folio)) {
3942                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3943                 if (folio != swapcache) {
3944                         /*
3945                          * We have a fresh page that is not exposed to the
3946                          * swapcache -> certainly exclusive.
3947                          */
3948                         exclusive = true;
3949                 } else if (exclusive && folio_test_writeback(folio) &&
3950                           data_race(si->flags & SWP_STABLE_WRITES)) {
3951                         /*
3952                          * This is tricky: not all swap backends support
3953                          * concurrent page modifications while under writeback.
3954                          *
3955                          * So if we stumble over such a page in the swapcache
3956                          * we must not set the page exclusive, otherwise we can
3957                          * map it writable without further checks and modify it
3958                          * while still under writeback.
3959                          *
3960                          * For these problematic swap backends, simply drop the
3961                          * exclusive marker: this is perfectly fine as we start
3962                          * writeback only if we fully unmapped the page and
3963                          * there are no unexpected references on the page after
3964                          * unmapping succeeded. After fully unmapped, no
3965                          * further GUP references (FOLL_GET and FOLL_PIN) can
3966                          * appear, so dropping the exclusive marker and mapping
3967                          * it only R/O is fine.
3968                          */
3969                         exclusive = false;
3970                 }
3971         }
3972
3973         /*
3974          * Some architectures may have to restore extra metadata to the page
3975          * when reading from swap. This metadata may be indexed by swap entry
3976          * so this must be called before swap_free().
3977          */
3978         arch_swap_restore(entry, folio);
3979
3980         /*
3981          * Remove the swap entry and conditionally try to free up the swapcache.
3982          * We're already holding a reference on the page but haven't mapped it
3983          * yet.
3984          */
3985         swap_free(entry);
3986         if (should_try_to_free_swap(folio, vma, vmf->flags))
3987                 folio_free_swap(folio);
3988
3989         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3990         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3991         pte = mk_pte(page, vma->vm_page_prot);
3992
3993         /*
3994          * Same logic as in do_wp_page(); however, optimize for pages that are
3995          * certainly not shared either because we just allocated them without
3996          * exposing them to the swapcache or because the swap entry indicates
3997          * exclusivity.
3998          */
3999         if (!folio_test_ksm(folio) &&
4000             (exclusive || folio_ref_count(folio) == 1)) {
4001                 if (vmf->flags & FAULT_FLAG_WRITE) {
4002                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4003                         vmf->flags &= ~FAULT_FLAG_WRITE;
4004                 }
4005                 rmap_flags |= RMAP_EXCLUSIVE;
4006         }
4007         flush_icache_page(vma, page);
4008         if (pte_swp_soft_dirty(vmf->orig_pte))
4009                 pte = pte_mksoft_dirty(pte);
4010         if (pte_swp_uffd_wp(vmf->orig_pte))
4011                 pte = pte_mkuffd_wp(pte);
4012         vmf->orig_pte = pte;
4013
4014         /* ksm created a completely new copy */
4015         if (unlikely(folio != swapcache && swapcache)) {
4016                 page_add_new_anon_rmap(page, vma, vmf->address);
4017                 folio_add_lru_vma(folio, vma);
4018         } else {
4019                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4020         }
4021
4022         VM_BUG_ON(!folio_test_anon(folio) ||
4023                         (pte_write(pte) && !PageAnonExclusive(page)));
4024         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4025         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4026
4027         folio_unlock(folio);
4028         if (folio != swapcache && swapcache) {
4029                 /*
4030                  * Hold the lock to avoid the swap entry to be reused
4031                  * until we take the PT lock for the pte_same() check
4032                  * (to avoid false positives from pte_same). For
4033                  * further safety release the lock after the swap_free
4034                  * so that the swap count won't change under a
4035                  * parallel locked swapcache.
4036                  */
4037                 folio_unlock(swapcache);
4038                 folio_put(swapcache);
4039         }
4040
4041         if (vmf->flags & FAULT_FLAG_WRITE) {
4042                 ret |= do_wp_page(vmf);
4043                 if (ret & VM_FAULT_ERROR)
4044                         ret &= VM_FAULT_ERROR;
4045                 goto out;
4046         }
4047
4048         /* No need to invalidate - it was non-present before */
4049         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4050 unlock:
4051         if (vmf->pte)
4052                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4053 out:
4054         if (si)
4055                 put_swap_device(si);
4056         return ret;
4057 out_nomap:
4058         if (vmf->pte)
4059                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4060 out_page:
4061         folio_unlock(folio);
4062 out_release:
4063         folio_put(folio);
4064         if (folio != swapcache && swapcache) {
4065                 folio_unlock(swapcache);
4066                 folio_put(swapcache);
4067         }
4068         if (si)
4069                 put_swap_device(si);
4070         return ret;
4071 }
4072
4073 /*
4074  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4075  * but allow concurrent faults), and pte mapped but not yet locked.
4076  * We return with mmap_lock still held, but pte unmapped and unlocked.
4077  */
4078 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4079 {
4080         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4081         struct vm_area_struct *vma = vmf->vma;
4082         struct folio *folio;
4083         vm_fault_t ret = 0;
4084         pte_t entry;
4085
4086         /* File mapping without ->vm_ops ? */
4087         if (vma->vm_flags & VM_SHARED)
4088                 return VM_FAULT_SIGBUS;
4089
4090         /*
4091          * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4092          * be distinguished from a transient failure of pte_offset_map().
4093          */
4094         if (pte_alloc(vma->vm_mm, vmf->pmd))
4095                 return VM_FAULT_OOM;
4096
4097         /* Use the zero-page for reads */
4098         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4099                         !mm_forbids_zeropage(vma->vm_mm)) {
4100                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4101                                                 vma->vm_page_prot));
4102                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4103                                 vmf->address, &vmf->ptl);
4104                 if (!vmf->pte)
4105                         goto unlock;
4106                 if (vmf_pte_changed(vmf)) {
4107                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4108                         goto unlock;
4109                 }
4110                 ret = check_stable_address_space(vma->vm_mm);
4111                 if (ret)
4112                         goto unlock;
4113                 /* Deliver the page fault to userland, check inside PT lock */
4114                 if (userfaultfd_missing(vma)) {
4115                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4116                         return handle_userfault(vmf, VM_UFFD_MISSING);
4117                 }
4118                 goto setpte;
4119         }
4120
4121         /* Allocate our own private page. */
4122         if (unlikely(anon_vma_prepare(vma)))
4123                 goto oom;
4124         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4125         if (!folio)
4126                 goto oom;
4127
4128         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4129                 goto oom_free_page;
4130         folio_throttle_swaprate(folio, GFP_KERNEL);
4131
4132         /*
4133          * The memory barrier inside __folio_mark_uptodate makes sure that
4134          * preceding stores to the page contents become visible before
4135          * the set_pte_at() write.
4136          */
4137         __folio_mark_uptodate(folio);
4138
4139         entry = mk_pte(&folio->page, vma->vm_page_prot);
4140         entry = pte_sw_mkyoung(entry);
4141         if (vma->vm_flags & VM_WRITE)
4142                 entry = pte_mkwrite(pte_mkdirty(entry));
4143
4144         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4145                         &vmf->ptl);
4146         if (!vmf->pte)
4147                 goto release;
4148         if (vmf_pte_changed(vmf)) {
4149                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4150                 goto release;
4151         }
4152
4153         ret = check_stable_address_space(vma->vm_mm);
4154         if (ret)
4155                 goto release;
4156
4157         /* Deliver the page fault to userland, check inside PT lock */
4158         if (userfaultfd_missing(vma)) {
4159                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4160                 folio_put(folio);
4161                 return handle_userfault(vmf, VM_UFFD_MISSING);
4162         }
4163
4164         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4165         folio_add_new_anon_rmap(folio, vma, vmf->address);
4166         folio_add_lru_vma(folio, vma);
4167 setpte:
4168         if (uffd_wp)
4169                 entry = pte_mkuffd_wp(entry);
4170         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4171
4172         /* No need to invalidate - it was non-present before */
4173         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4174 unlock:
4175         if (vmf->pte)
4176                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4177         return ret;
4178 release:
4179         folio_put(folio);
4180         goto unlock;
4181 oom_free_page:
4182         folio_put(folio);
4183 oom:
4184         return VM_FAULT_OOM;
4185 }
4186
4187 /*
4188  * The mmap_lock must have been held on entry, and may have been
4189  * released depending on flags and vma->vm_ops->fault() return value.
4190  * See filemap_fault() and __lock_page_retry().
4191  */
4192 static vm_fault_t __do_fault(struct vm_fault *vmf)
4193 {
4194         struct vm_area_struct *vma = vmf->vma;
4195         vm_fault_t ret;
4196
4197         /*
4198          * Preallocate pte before we take page_lock because this might lead to
4199          * deadlocks for memcg reclaim which waits for pages under writeback:
4200          *                              lock_page(A)
4201          *                              SetPageWriteback(A)
4202          *                              unlock_page(A)
4203          * lock_page(B)
4204          *                              lock_page(B)
4205          * pte_alloc_one
4206          *   shrink_page_list
4207          *     wait_on_page_writeback(A)
4208          *                              SetPageWriteback(B)
4209          *                              unlock_page(B)
4210          *                              # flush A, B to clear the writeback
4211          */
4212         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4213                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4214                 if (!vmf->prealloc_pte)
4215                         return VM_FAULT_OOM;
4216         }
4217
4218         ret = vma->vm_ops->fault(vmf);
4219         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4220                             VM_FAULT_DONE_COW)))
4221                 return ret;
4222
4223         if (unlikely(PageHWPoison(vmf->page))) {
4224                 struct page *page = vmf->page;
4225                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4226                 if (ret & VM_FAULT_LOCKED) {
4227                         if (page_mapped(page))
4228                                 unmap_mapping_pages(page_mapping(page),
4229                                                     page->index, 1, false);
4230                         /* Retry if a clean page was removed from the cache. */
4231                         if (invalidate_inode_page(page))
4232                                 poisonret = VM_FAULT_NOPAGE;
4233                         unlock_page(page);
4234                 }
4235                 put_page(page);
4236                 vmf->page = NULL;
4237                 return poisonret;
4238         }
4239
4240         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4241                 lock_page(vmf->page);
4242         else
4243                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4244
4245         return ret;
4246 }
4247
4248 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4249 static void deposit_prealloc_pte(struct vm_fault *vmf)
4250 {
4251         struct vm_area_struct *vma = vmf->vma;
4252
4253         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4254         /*
4255          * We are going to consume the prealloc table,
4256          * count that as nr_ptes.
4257          */
4258         mm_inc_nr_ptes(vma->vm_mm);
4259         vmf->prealloc_pte = NULL;
4260 }
4261
4262 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4263 {
4264         struct vm_area_struct *vma = vmf->vma;
4265         bool write = vmf->flags & FAULT_FLAG_WRITE;
4266         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4267         pmd_t entry;
4268         vm_fault_t ret = VM_FAULT_FALLBACK;
4269
4270         if (!transhuge_vma_suitable(vma, haddr))
4271                 return ret;
4272
4273         page = compound_head(page);
4274         if (compound_order(page) != HPAGE_PMD_ORDER)
4275                 return ret;
4276
4277         /*
4278          * Just backoff if any subpage of a THP is corrupted otherwise
4279          * the corrupted page may mapped by PMD silently to escape the
4280          * check.  This kind of THP just can be PTE mapped.  Access to
4281          * the corrupted subpage should trigger SIGBUS as expected.
4282          */
4283         if (unlikely(PageHasHWPoisoned(page)))
4284                 return ret;
4285
4286         /*
4287          * Archs like ppc64 need additional space to store information
4288          * related to pte entry. Use the preallocated table for that.
4289          */
4290         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4291                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4292                 if (!vmf->prealloc_pte)
4293                         return VM_FAULT_OOM;
4294         }
4295
4296         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4297         if (unlikely(!pmd_none(*vmf->pmd)))
4298                 goto out;
4299
4300         flush_icache_pages(vma, page, HPAGE_PMD_NR);
4301
4302         entry = mk_huge_pmd(page, vma->vm_page_prot);
4303         if (write)
4304                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4305
4306         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4307         page_add_file_rmap(page, vma, true);
4308
4309         /*
4310          * deposit and withdraw with pmd lock held
4311          */
4312         if (arch_needs_pgtable_deposit())
4313                 deposit_prealloc_pte(vmf);
4314
4315         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4316
4317         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4318
4319         /* fault is handled */
4320         ret = 0;
4321         count_vm_event(THP_FILE_MAPPED);
4322 out:
4323         spin_unlock(vmf->ptl);
4324         return ret;
4325 }
4326 #else
4327 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4328 {
4329         return VM_FAULT_FALLBACK;
4330 }
4331 #endif
4332
4333 /**
4334  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4335  * @vmf: Fault decription.
4336  * @folio: The folio that contains @page.
4337  * @page: The first page to create a PTE for.
4338  * @nr: The number of PTEs to create.
4339  * @addr: The first address to create a PTE for.
4340  */
4341 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4342                 struct page *page, unsigned int nr, unsigned long addr)
4343 {
4344         struct vm_area_struct *vma = vmf->vma;
4345         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4346         bool write = vmf->flags & FAULT_FLAG_WRITE;
4347         bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4348         pte_t entry;
4349
4350         flush_icache_pages(vma, page, nr);
4351         entry = mk_pte(page, vma->vm_page_prot);
4352
4353         if (prefault && arch_wants_old_prefaulted_pte())
4354                 entry = pte_mkold(entry);
4355         else
4356                 entry = pte_sw_mkyoung(entry);
4357
4358         if (write)
4359                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4360         if (unlikely(uffd_wp))
4361                 entry = pte_mkuffd_wp(entry);
4362         /* copy-on-write page */
4363         if (write && !(vma->vm_flags & VM_SHARED)) {
4364                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4365                 VM_BUG_ON_FOLIO(nr != 1, folio);
4366                 folio_add_new_anon_rmap(folio, vma, addr);
4367                 folio_add_lru_vma(folio, vma);
4368         } else {
4369                 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4370                 folio_add_file_rmap_range(folio, page, nr, vma, false);
4371         }
4372         set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4373
4374         /* no need to invalidate: a not-present page won't be cached */
4375         update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4376 }
4377
4378 static bool vmf_pte_changed(struct vm_fault *vmf)
4379 {
4380         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4381                 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4382
4383         return !pte_none(ptep_get(vmf->pte));
4384 }
4385
4386 /**
4387  * finish_fault - finish page fault once we have prepared the page to fault
4388  *
4389  * @vmf: structure describing the fault
4390  *
4391  * This function handles all that is needed to finish a page fault once the
4392  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4393  * given page, adds reverse page mapping, handles memcg charges and LRU
4394  * addition.
4395  *
4396  * The function expects the page to be locked and on success it consumes a
4397  * reference of a page being mapped (for the PTE which maps it).
4398  *
4399  * Return: %0 on success, %VM_FAULT_ code in case of error.
4400  */
4401 vm_fault_t finish_fault(struct vm_fault *vmf)
4402 {
4403         struct vm_area_struct *vma = vmf->vma;
4404         struct page *page;
4405         vm_fault_t ret;
4406
4407         /* Did we COW the page? */
4408         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4409                 page = vmf->cow_page;
4410         else
4411                 page = vmf->page;
4412
4413         /*
4414          * check even for read faults because we might have lost our CoWed
4415          * page
4416          */
4417         if (!(vma->vm_flags & VM_SHARED)) {
4418                 ret = check_stable_address_space(vma->vm_mm);
4419                 if (ret)
4420                         return ret;
4421         }
4422
4423         if (pmd_none(*vmf->pmd)) {
4424                 if (PageTransCompound(page)) {
4425                         ret = do_set_pmd(vmf, page);
4426                         if (ret != VM_FAULT_FALLBACK)
4427                                 return ret;
4428                 }
4429
4430                 if (vmf->prealloc_pte)
4431                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4432                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4433                         return VM_FAULT_OOM;
4434         }
4435
4436         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4437                                       vmf->address, &vmf->ptl);
4438         if (!vmf->pte)
4439                 return VM_FAULT_NOPAGE;
4440
4441         /* Re-check under ptl */
4442         if (likely(!vmf_pte_changed(vmf))) {
4443                 struct folio *folio = page_folio(page);
4444
4445                 set_pte_range(vmf, folio, page, 1, vmf->address);
4446                 ret = 0;
4447         } else {
4448                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4449                 ret = VM_FAULT_NOPAGE;
4450         }
4451
4452         pte_unmap_unlock(vmf->pte, vmf->ptl);
4453         return ret;
4454 }
4455
4456 static unsigned long fault_around_pages __read_mostly =
4457         65536 >> PAGE_SHIFT;
4458
4459 #ifdef CONFIG_DEBUG_FS
4460 static int fault_around_bytes_get(void *data, u64 *val)
4461 {
4462         *val = fault_around_pages << PAGE_SHIFT;
4463         return 0;
4464 }
4465
4466 /*
4467  * fault_around_bytes must be rounded down to the nearest page order as it's
4468  * what do_fault_around() expects to see.
4469  */
4470 static int fault_around_bytes_set(void *data, u64 val)
4471 {
4472         if (val / PAGE_SIZE > PTRS_PER_PTE)
4473                 return -EINVAL;
4474
4475         /*
4476          * The minimum value is 1 page, however this results in no fault-around
4477          * at all. See should_fault_around().
4478          */
4479         fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4480
4481         return 0;
4482 }
4483 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4484                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4485
4486 static int __init fault_around_debugfs(void)
4487 {
4488         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4489                                    &fault_around_bytes_fops);
4490         return 0;
4491 }
4492 late_initcall(fault_around_debugfs);
4493 #endif
4494
4495 /*
4496  * do_fault_around() tries to map few pages around the fault address. The hope
4497  * is that the pages will be needed soon and this will lower the number of
4498  * faults to handle.
4499  *
4500  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4501  * not ready to be mapped: not up-to-date, locked, etc.
4502  *
4503  * This function doesn't cross VMA or page table boundaries, in order to call
4504  * map_pages() and acquire a PTE lock only once.
4505  *
4506  * fault_around_pages defines how many pages we'll try to map.
4507  * do_fault_around() expects it to be set to a power of two less than or equal
4508  * to PTRS_PER_PTE.
4509  *
4510  * The virtual address of the area that we map is naturally aligned to
4511  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4512  * (and therefore to page order).  This way it's easier to guarantee
4513  * that we don't cross page table boundaries.
4514  */
4515 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4516 {
4517         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4518         pgoff_t pte_off = pte_index(vmf->address);
4519         /* The page offset of vmf->address within the VMA. */
4520         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4521         pgoff_t from_pte, to_pte;
4522         vm_fault_t ret;
4523
4524         /* The PTE offset of the start address, clamped to the VMA. */
4525         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4526                        pte_off - min(pte_off, vma_off));
4527
4528         /* The PTE offset of the end address, clamped to the VMA and PTE. */
4529         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4530                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4531
4532         if (pmd_none(*vmf->pmd)) {
4533                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4534                 if (!vmf->prealloc_pte)
4535                         return VM_FAULT_OOM;
4536         }
4537
4538         rcu_read_lock();
4539         ret = vmf->vma->vm_ops->map_pages(vmf,
4540                         vmf->pgoff + from_pte - pte_off,
4541                         vmf->pgoff + to_pte - pte_off);
4542         rcu_read_unlock();
4543
4544         return ret;
4545 }
4546
4547 /* Return true if we should do read fault-around, false otherwise */
4548 static inline bool should_fault_around(struct vm_fault *vmf)
4549 {
4550         /* No ->map_pages?  No way to fault around... */
4551         if (!vmf->vma->vm_ops->map_pages)
4552                 return false;
4553
4554         if (uffd_disable_fault_around(vmf->vma))
4555                 return false;
4556
4557         /* A single page implies no faulting 'around' at all. */
4558         return fault_around_pages > 1;
4559 }
4560
4561 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4562 {
4563         vm_fault_t ret = 0;
4564         struct folio *folio;
4565
4566         /*
4567          * Let's call ->map_pages() first and use ->fault() as fallback
4568          * if page by the offset is not ready to be mapped (cold cache or
4569          * something).
4570          */
4571         if (should_fault_around(vmf)) {
4572                 ret = do_fault_around(vmf);
4573                 if (ret)
4574                         return ret;
4575         }
4576
4577         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4578                 vma_end_read(vmf->vma);
4579                 return VM_FAULT_RETRY;
4580         }
4581
4582         ret = __do_fault(vmf);
4583         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4584                 return ret;
4585
4586         ret |= finish_fault(vmf);
4587         folio = page_folio(vmf->page);
4588         folio_unlock(folio);
4589         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4590                 folio_put(folio);
4591         return ret;
4592 }
4593
4594 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4595 {
4596         struct vm_area_struct *vma = vmf->vma;
4597         vm_fault_t ret;
4598
4599         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4600                 vma_end_read(vma);
4601                 return VM_FAULT_RETRY;
4602         }
4603
4604         if (unlikely(anon_vma_prepare(vma)))
4605                 return VM_FAULT_OOM;
4606
4607         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4608         if (!vmf->cow_page)
4609                 return VM_FAULT_OOM;
4610
4611         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4612                                 GFP_KERNEL)) {
4613                 put_page(vmf->cow_page);
4614                 return VM_FAULT_OOM;
4615         }
4616         folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4617
4618         ret = __do_fault(vmf);
4619         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4620                 goto uncharge_out;
4621         if (ret & VM_FAULT_DONE_COW)
4622                 return ret;
4623
4624         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4625         __SetPageUptodate(vmf->cow_page);
4626
4627         ret |= finish_fault(vmf);
4628         unlock_page(vmf->page);
4629         put_page(vmf->page);
4630         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4631                 goto uncharge_out;
4632         return ret;
4633 uncharge_out:
4634         put_page(vmf->cow_page);
4635         return ret;
4636 }
4637
4638 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4639 {
4640         struct vm_area_struct *vma = vmf->vma;
4641         vm_fault_t ret, tmp;
4642         struct folio *folio;
4643
4644         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4645                 vma_end_read(vma);
4646                 return VM_FAULT_RETRY;
4647         }
4648
4649         ret = __do_fault(vmf);
4650         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4651                 return ret;
4652
4653         folio = page_folio(vmf->page);
4654
4655         /*
4656          * Check if the backing address space wants to know that the page is
4657          * about to become writable
4658          */
4659         if (vma->vm_ops->page_mkwrite) {
4660                 folio_unlock(folio);
4661                 tmp = do_page_mkwrite(vmf, folio);
4662                 if (unlikely(!tmp ||
4663                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4664                         folio_put(folio);
4665                         return tmp;
4666                 }
4667         }
4668
4669         ret |= finish_fault(vmf);
4670         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4671                                         VM_FAULT_RETRY))) {
4672                 folio_unlock(folio);
4673                 folio_put(folio);
4674                 return ret;
4675         }
4676
4677         ret |= fault_dirty_shared_page(vmf);
4678         return ret;
4679 }
4680
4681 /*
4682  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4683  * but allow concurrent faults).
4684  * The mmap_lock may have been released depending on flags and our
4685  * return value.  See filemap_fault() and __folio_lock_or_retry().
4686  * If mmap_lock is released, vma may become invalid (for example
4687  * by other thread calling munmap()).
4688  */
4689 static vm_fault_t do_fault(struct vm_fault *vmf)
4690 {
4691         struct vm_area_struct *vma = vmf->vma;
4692         struct mm_struct *vm_mm = vma->vm_mm;
4693         vm_fault_t ret;
4694
4695         /*
4696          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4697          */
4698         if (!vma->vm_ops->fault) {
4699                 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4700                                                vmf->address, &vmf->ptl);
4701                 if (unlikely(!vmf->pte))
4702                         ret = VM_FAULT_SIGBUS;
4703                 else {
4704                         /*
4705                          * Make sure this is not a temporary clearing of pte
4706                          * by holding ptl and checking again. A R/M/W update
4707                          * of pte involves: take ptl, clearing the pte so that
4708                          * we don't have concurrent modification by hardware
4709                          * followed by an update.
4710                          */
4711                         if (unlikely(pte_none(ptep_get(vmf->pte))))
4712                                 ret = VM_FAULT_SIGBUS;
4713                         else
4714                                 ret = VM_FAULT_NOPAGE;
4715
4716                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4717                 }
4718         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4719                 ret = do_read_fault(vmf);
4720         else if (!(vma->vm_flags & VM_SHARED))
4721                 ret = do_cow_fault(vmf);
4722         else
4723                 ret = do_shared_fault(vmf);
4724
4725         /* preallocated pagetable is unused: free it */
4726         if (vmf->prealloc_pte) {
4727                 pte_free(vm_mm, vmf->prealloc_pte);
4728                 vmf->prealloc_pte = NULL;
4729         }
4730         return ret;
4731 }
4732
4733 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4734                       unsigned long addr, int page_nid, int *flags)
4735 {
4736         get_page(page);
4737
4738         /* Record the current PID acceesing VMA */
4739         vma_set_access_pid_bit(vma);
4740
4741         count_vm_numa_event(NUMA_HINT_FAULTS);
4742         if (page_nid == numa_node_id()) {
4743                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4744                 *flags |= TNF_FAULT_LOCAL;
4745         }
4746
4747         return mpol_misplaced(page, vma, addr);
4748 }
4749
4750 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4751 {
4752         struct vm_area_struct *vma = vmf->vma;
4753         struct page *page = NULL;
4754         int page_nid = NUMA_NO_NODE;
4755         bool writable = false;
4756         int last_cpupid;
4757         int target_nid;
4758         pte_t pte, old_pte;
4759         int flags = 0;
4760
4761         /*
4762          * The "pte" at this point cannot be used safely without
4763          * validation through pte_unmap_same(). It's of NUMA type but
4764          * the pfn may be screwed if the read is non atomic.
4765          */
4766         spin_lock(vmf->ptl);
4767         if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4768                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4769                 goto out;
4770         }
4771
4772         /* Get the normal PTE  */
4773         old_pte = ptep_get(vmf->pte);
4774         pte = pte_modify(old_pte, vma->vm_page_prot);
4775
4776         /*
4777          * Detect now whether the PTE could be writable; this information
4778          * is only valid while holding the PT lock.
4779          */
4780         writable = pte_write(pte);
4781         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4782             can_change_pte_writable(vma, vmf->address, pte))
4783                 writable = true;
4784
4785         page = vm_normal_page(vma, vmf->address, pte);
4786         if (!page || is_zone_device_page(page))
4787                 goto out_map;
4788
4789         /* TODO: handle PTE-mapped THP */
4790         if (PageCompound(page))
4791                 goto out_map;
4792
4793         /*
4794          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4795          * much anyway since they can be in shared cache state. This misses
4796          * the case where a mapping is writable but the process never writes
4797          * to it but pte_write gets cleared during protection updates and
4798          * pte_dirty has unpredictable behaviour between PTE scan updates,
4799          * background writeback, dirty balancing and application behaviour.
4800          */
4801         if (!writable)
4802                 flags |= TNF_NO_GROUP;
4803
4804         /*
4805          * Flag if the page is shared between multiple address spaces. This
4806          * is later used when determining whether to group tasks together
4807          */
4808         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4809                 flags |= TNF_SHARED;
4810
4811         page_nid = page_to_nid(page);
4812         /*
4813          * For memory tiering mode, cpupid of slow memory page is used
4814          * to record page access time.  So use default value.
4815          */
4816         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4817             !node_is_toptier(page_nid))
4818                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4819         else
4820                 last_cpupid = page_cpupid_last(page);
4821         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4822                         &flags);
4823         if (target_nid == NUMA_NO_NODE) {
4824                 put_page(page);
4825                 goto out_map;
4826         }
4827         pte_unmap_unlock(vmf->pte, vmf->ptl);
4828         writable = false;
4829
4830         /* Migrate to the requested node */
4831         if (migrate_misplaced_page(page, vma, target_nid)) {
4832                 page_nid = target_nid;
4833                 flags |= TNF_MIGRATED;
4834         } else {
4835                 flags |= TNF_MIGRATE_FAIL;
4836                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4837                                                vmf->address, &vmf->ptl);
4838                 if (unlikely(!vmf->pte))
4839                         goto out;
4840                 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4841                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4842                         goto out;
4843                 }
4844                 goto out_map;
4845         }
4846
4847 out:
4848         if (page_nid != NUMA_NO_NODE)
4849                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4850         return 0;
4851 out_map:
4852         /*
4853          * Make it present again, depending on how arch implements
4854          * non-accessible ptes, some can allow access by kernel mode.
4855          */
4856         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4857         pte = pte_modify(old_pte, vma->vm_page_prot);
4858         pte = pte_mkyoung(pte);
4859         if (writable)
4860                 pte = pte_mkwrite(pte);
4861         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4862         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4863         pte_unmap_unlock(vmf->pte, vmf->ptl);
4864         goto out;
4865 }
4866
4867 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4868 {
4869         struct vm_area_struct *vma = vmf->vma;
4870         if (vma_is_anonymous(vma))
4871                 return do_huge_pmd_anonymous_page(vmf);
4872         if (vma->vm_ops->huge_fault) {
4873                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4874                         vma_end_read(vma);
4875                         return VM_FAULT_RETRY;
4876                 }
4877                 return vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4878         }
4879         return VM_FAULT_FALLBACK;
4880 }
4881
4882 /* `inline' is required to avoid gcc 4.1.2 build error */
4883 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4884 {
4885         struct vm_area_struct *vma = vmf->vma;
4886         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4887         vm_fault_t ret;
4888
4889         if (vma_is_anonymous(vma)) {
4890                 if (likely(!unshare) &&
4891                     userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4892                         return handle_userfault(vmf, VM_UFFD_WP);
4893                 return do_huge_pmd_wp_page(vmf);
4894         }
4895
4896         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4897                 if (vma->vm_ops->huge_fault) {
4898                         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4899                                 vma_end_read(vma);
4900                                 return VM_FAULT_RETRY;
4901                         }
4902                         ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4903                         if (!(ret & VM_FAULT_FALLBACK))
4904                                 return ret;
4905                 }
4906         }
4907
4908         /* COW or write-notify handled on pte level: split pmd. */
4909         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4910
4911         return VM_FAULT_FALLBACK;
4912 }
4913
4914 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4915 {
4916 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4917         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4918         struct vm_area_struct *vma = vmf->vma;
4919         /* No support for anonymous transparent PUD pages yet */
4920         if (vma_is_anonymous(vma))
4921                 return VM_FAULT_FALLBACK;
4922         if (vma->vm_ops->huge_fault) {
4923                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4924                         vma_end_read(vma);
4925                         return VM_FAULT_RETRY;
4926                 }
4927                 return vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4928         }
4929 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4930         return VM_FAULT_FALLBACK;
4931 }
4932
4933 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4934 {
4935 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4936         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4937         struct vm_area_struct *vma = vmf->vma;
4938         vm_fault_t ret;
4939
4940         /* No support for anonymous transparent PUD pages yet */
4941         if (vma_is_anonymous(vma))
4942                 goto split;
4943         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4944                 if (vma->vm_ops->huge_fault) {
4945                         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4946                                 vma_end_read(vma);
4947                                 return VM_FAULT_RETRY;
4948                         }
4949                         ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4950                         if (!(ret & VM_FAULT_FALLBACK))
4951                                 return ret;
4952                 }
4953         }
4954 split:
4955         /* COW or write-notify not handled on PUD level: split pud.*/
4956         __split_huge_pud(vma, vmf->pud, vmf->address);
4957 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4958         return VM_FAULT_FALLBACK;
4959 }
4960
4961 /*
4962  * These routines also need to handle stuff like marking pages dirty
4963  * and/or accessed for architectures that don't do it in hardware (most
4964  * RISC architectures).  The early dirtying is also good on the i386.
4965  *
4966  * There is also a hook called "update_mmu_cache()" that architectures
4967  * with external mmu caches can use to update those (ie the Sparc or
4968  * PowerPC hashed page tables that act as extended TLBs).
4969  *
4970  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4971  * concurrent faults).
4972  *
4973  * The mmap_lock may have been released depending on flags and our return value.
4974  * See filemap_fault() and __folio_lock_or_retry().
4975  */
4976 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4977 {
4978         pte_t entry;
4979
4980         if (unlikely(pmd_none(*vmf->pmd))) {
4981                 /*
4982                  * Leave __pte_alloc() until later: because vm_ops->fault may
4983                  * want to allocate huge page, and if we expose page table
4984                  * for an instant, it will be difficult to retract from
4985                  * concurrent faults and from rmap lookups.
4986                  */
4987                 vmf->pte = NULL;
4988                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4989         } else {
4990                 /*
4991                  * A regular pmd is established and it can't morph into a huge
4992                  * pmd by anon khugepaged, since that takes mmap_lock in write
4993                  * mode; but shmem or file collapse to THP could still morph
4994                  * it into a huge pmd: just retry later if so.
4995                  */
4996                 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4997                                                  vmf->address, &vmf->ptl);
4998                 if (unlikely(!vmf->pte))
4999                         return 0;
5000                 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5001                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5002
5003                 if (pte_none(vmf->orig_pte)) {
5004                         pte_unmap(vmf->pte);
5005                         vmf->pte = NULL;
5006                 }
5007         }
5008
5009         if (!vmf->pte)
5010                 return do_pte_missing(vmf);
5011
5012         if (!pte_present(vmf->orig_pte))
5013                 return do_swap_page(vmf);
5014
5015         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5016                 return do_numa_page(vmf);
5017
5018         spin_lock(vmf->ptl);
5019         entry = vmf->orig_pte;
5020         if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5021                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5022                 goto unlock;
5023         }
5024         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5025                 if (!pte_write(entry))
5026                         return do_wp_page(vmf);
5027                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5028                         entry = pte_mkdirty(entry);
5029         }
5030         entry = pte_mkyoung(entry);
5031         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5032                                 vmf->flags & FAULT_FLAG_WRITE)) {
5033                 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5034                                 vmf->pte, 1);
5035         } else {
5036                 /* Skip spurious TLB flush for retried page fault */
5037                 if (vmf->flags & FAULT_FLAG_TRIED)
5038                         goto unlock;
5039                 /*
5040                  * This is needed only for protection faults but the arch code
5041                  * is not yet telling us if this is a protection fault or not.
5042                  * This still avoids useless tlb flushes for .text page faults
5043                  * with threads.
5044                  */
5045                 if (vmf->flags & FAULT_FLAG_WRITE)
5046                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5047                                                      vmf->pte);
5048         }
5049 unlock:
5050         pte_unmap_unlock(vmf->pte, vmf->ptl);
5051         return 0;
5052 }
5053
5054 /*
5055  * On entry, we hold either the VMA lock or the mmap_lock
5056  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5057  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5058  * and __folio_lock_or_retry().
5059  */
5060 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5061                 unsigned long address, unsigned int flags)
5062 {
5063         struct vm_fault vmf = {
5064                 .vma = vma,
5065                 .address = address & PAGE_MASK,
5066                 .real_address = address,
5067                 .flags = flags,
5068                 .pgoff = linear_page_index(vma, address),
5069                 .gfp_mask = __get_fault_gfp_mask(vma),
5070         };
5071         struct mm_struct *mm = vma->vm_mm;
5072         unsigned long vm_flags = vma->vm_flags;
5073         pgd_t *pgd;
5074         p4d_t *p4d;
5075         vm_fault_t ret;
5076
5077         pgd = pgd_offset(mm, address);
5078         p4d = p4d_alloc(mm, pgd, address);
5079         if (!p4d)
5080                 return VM_FAULT_OOM;
5081
5082         vmf.pud = pud_alloc(mm, p4d, address);
5083         if (!vmf.pud)
5084                 return VM_FAULT_OOM;
5085 retry_pud:
5086         if (pud_none(*vmf.pud) &&
5087             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5088                 ret = create_huge_pud(&vmf);
5089                 if (!(ret & VM_FAULT_FALLBACK))
5090                         return ret;
5091         } else {
5092                 pud_t orig_pud = *vmf.pud;
5093
5094                 barrier();
5095                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5096
5097                         /*
5098                          * TODO once we support anonymous PUDs: NUMA case and
5099                          * FAULT_FLAG_UNSHARE handling.
5100                          */
5101                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5102                                 ret = wp_huge_pud(&vmf, orig_pud);
5103                                 if (!(ret & VM_FAULT_FALLBACK))
5104                                         return ret;
5105                         } else {
5106                                 huge_pud_set_accessed(&vmf, orig_pud);
5107                                 return 0;
5108                         }
5109                 }
5110         }
5111
5112         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5113         if (!vmf.pmd)
5114                 return VM_FAULT_OOM;
5115
5116         /* Huge pud page fault raced with pmd_alloc? */
5117         if (pud_trans_unstable(vmf.pud))
5118                 goto retry_pud;
5119
5120         if (pmd_none(*vmf.pmd) &&
5121             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5122                 ret = create_huge_pmd(&vmf);
5123                 if (!(ret & VM_FAULT_FALLBACK))
5124                         return ret;
5125         } else {
5126                 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5127
5128                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5129                         VM_BUG_ON(thp_migration_supported() &&
5130                                           !is_pmd_migration_entry(vmf.orig_pmd));
5131                         if (is_pmd_migration_entry(vmf.orig_pmd))
5132                                 pmd_migration_entry_wait(mm, vmf.pmd);
5133                         return 0;
5134                 }
5135                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5136                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5137                                 return do_huge_pmd_numa_page(&vmf);
5138
5139                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5140                             !pmd_write(vmf.orig_pmd)) {
5141                                 ret = wp_huge_pmd(&vmf);
5142                                 if (!(ret & VM_FAULT_FALLBACK))
5143                                         return ret;
5144                         } else {
5145                                 huge_pmd_set_accessed(&vmf);
5146                                 return 0;
5147                         }
5148                 }
5149         }
5150
5151         return handle_pte_fault(&vmf);
5152 }
5153
5154 /**
5155  * mm_account_fault - Do page fault accounting
5156  * @mm: mm from which memcg should be extracted. It can be NULL.
5157  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5158  *        of perf event counters, but we'll still do the per-task accounting to
5159  *        the task who triggered this page fault.
5160  * @address: the faulted address.
5161  * @flags: the fault flags.
5162  * @ret: the fault retcode.
5163  *
5164  * This will take care of most of the page fault accounting.  Meanwhile, it
5165  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5166  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5167  * still be in per-arch page fault handlers at the entry of page fault.
5168  */
5169 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5170                                     unsigned long address, unsigned int flags,
5171                                     vm_fault_t ret)
5172 {
5173         bool major;
5174
5175         /* Incomplete faults will be accounted upon completion. */
5176         if (ret & VM_FAULT_RETRY)
5177                 return;
5178
5179         /*
5180          * To preserve the behavior of older kernels, PGFAULT counters record
5181          * both successful and failed faults, as opposed to perf counters,
5182          * which ignore failed cases.
5183          */
5184         count_vm_event(PGFAULT);
5185         count_memcg_event_mm(mm, PGFAULT);
5186
5187         /*
5188          * Do not account for unsuccessful faults (e.g. when the address wasn't
5189          * valid).  That includes arch_vma_access_permitted() failing before
5190          * reaching here. So this is not a "this many hardware page faults"
5191          * counter.  We should use the hw profiling for that.
5192          */
5193         if (ret & VM_FAULT_ERROR)
5194                 return;
5195
5196         /*
5197          * We define the fault as a major fault when the final successful fault
5198          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5199          * handle it immediately previously).
5200          */
5201         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5202
5203         if (major)
5204                 current->maj_flt++;
5205         else
5206                 current->min_flt++;
5207
5208         /*
5209          * If the fault is done for GUP, regs will be NULL.  We only do the
5210          * accounting for the per thread fault counters who triggered the
5211          * fault, and we skip the perf event updates.
5212          */
5213         if (!regs)
5214                 return;
5215
5216         if (major)
5217                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5218         else
5219                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5220 }
5221
5222 #ifdef CONFIG_LRU_GEN
5223 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5224 {
5225         /* the LRU algorithm only applies to accesses with recency */
5226         current->in_lru_fault = vma_has_recency(vma);
5227 }
5228
5229 static void lru_gen_exit_fault(void)
5230 {
5231         current->in_lru_fault = false;
5232 }
5233 #else
5234 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5235 {
5236 }
5237
5238 static void lru_gen_exit_fault(void)
5239 {
5240 }
5241 #endif /* CONFIG_LRU_GEN */
5242
5243 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5244                                        unsigned int *flags)
5245 {
5246         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5247                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5248                         return VM_FAULT_SIGSEGV;
5249                 /*
5250                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5251                  * just treat it like an ordinary read-fault otherwise.
5252                  */
5253                 if (!is_cow_mapping(vma->vm_flags))
5254                         *flags &= ~FAULT_FLAG_UNSHARE;
5255         } else if (*flags & FAULT_FLAG_WRITE) {
5256                 /* Write faults on read-only mappings are impossible ... */
5257                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5258                         return VM_FAULT_SIGSEGV;
5259                 /* ... and FOLL_FORCE only applies to COW mappings. */
5260                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5261                                  !is_cow_mapping(vma->vm_flags)))
5262                         return VM_FAULT_SIGSEGV;
5263         }
5264 #ifdef CONFIG_PER_VMA_LOCK
5265         /*
5266          * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5267          * the assumption that lock is dropped on VM_FAULT_RETRY.
5268          */
5269         if (WARN_ON_ONCE((*flags &
5270                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5271                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5272                 return VM_FAULT_SIGSEGV;
5273 #endif
5274
5275         return 0;
5276 }
5277
5278 /*
5279  * By the time we get here, we already hold the mm semaphore
5280  *
5281  * The mmap_lock may have been released depending on flags and our
5282  * return value.  See filemap_fault() and __folio_lock_or_retry().
5283  */
5284 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5285                            unsigned int flags, struct pt_regs *regs)
5286 {
5287         /* If the fault handler drops the mmap_lock, vma may be freed */
5288         struct mm_struct *mm = vma->vm_mm;
5289         vm_fault_t ret;
5290
5291         __set_current_state(TASK_RUNNING);
5292
5293         ret = sanitize_fault_flags(vma, &flags);
5294         if (ret)
5295                 goto out;
5296
5297         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5298                                             flags & FAULT_FLAG_INSTRUCTION,
5299                                             flags & FAULT_FLAG_REMOTE)) {
5300                 ret = VM_FAULT_SIGSEGV;
5301                 goto out;
5302         }
5303
5304         /*
5305          * Enable the memcg OOM handling for faults triggered in user
5306          * space.  Kernel faults are handled more gracefully.
5307          */
5308         if (flags & FAULT_FLAG_USER)
5309                 mem_cgroup_enter_user_fault();
5310
5311         lru_gen_enter_fault(vma);
5312
5313         if (unlikely(is_vm_hugetlb_page(vma)))
5314                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5315         else
5316                 ret = __handle_mm_fault(vma, address, flags);
5317
5318         lru_gen_exit_fault();
5319
5320         if (flags & FAULT_FLAG_USER) {
5321                 mem_cgroup_exit_user_fault();
5322                 /*
5323                  * The task may have entered a memcg OOM situation but
5324                  * if the allocation error was handled gracefully (no
5325                  * VM_FAULT_OOM), there is no need to kill anything.
5326                  * Just clean up the OOM state peacefully.
5327                  */
5328                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5329                         mem_cgroup_oom_synchronize(false);
5330         }
5331 out:
5332         mm_account_fault(mm, regs, address, flags, ret);
5333
5334         return ret;
5335 }
5336 EXPORT_SYMBOL_GPL(handle_mm_fault);
5337
5338 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5339 #include <linux/extable.h>
5340
5341 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5342 {
5343         /* Even if this succeeds, make it clear we *might* have slept */
5344         if (likely(mmap_read_trylock(mm))) {
5345                 might_sleep();
5346                 return true;
5347         }
5348
5349         if (regs && !user_mode(regs)) {
5350                 unsigned long ip = instruction_pointer(regs);
5351                 if (!search_exception_tables(ip))
5352                         return false;
5353         }
5354
5355         return !mmap_read_lock_killable(mm);
5356 }
5357
5358 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5359 {
5360         /*
5361          * We don't have this operation yet.
5362          *
5363          * It should be easy enough to do: it's basically a
5364          *    atomic_long_try_cmpxchg_acquire()
5365          * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5366          * it also needs the proper lockdep magic etc.
5367          */
5368         return false;
5369 }
5370
5371 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5372 {
5373         mmap_read_unlock(mm);
5374         if (regs && !user_mode(regs)) {
5375                 unsigned long ip = instruction_pointer(regs);
5376                 if (!search_exception_tables(ip))
5377                         return false;
5378         }
5379         return !mmap_write_lock_killable(mm);
5380 }
5381
5382 /*
5383  * Helper for page fault handling.
5384  *
5385  * This is kind of equivalend to "mmap_read_lock()" followed
5386  * by "find_extend_vma()", except it's a lot more careful about
5387  * the locking (and will drop the lock on failure).
5388  *
5389  * For example, if we have a kernel bug that causes a page
5390  * fault, we don't want to just use mmap_read_lock() to get
5391  * the mm lock, because that would deadlock if the bug were
5392  * to happen while we're holding the mm lock for writing.
5393  *
5394  * So this checks the exception tables on kernel faults in
5395  * order to only do this all for instructions that are actually
5396  * expected to fault.
5397  *
5398  * We can also actually take the mm lock for writing if we
5399  * need to extend the vma, which helps the VM layer a lot.
5400  */
5401 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5402                         unsigned long addr, struct pt_regs *regs)
5403 {
5404         struct vm_area_struct *vma;
5405
5406         if (!get_mmap_lock_carefully(mm, regs))
5407                 return NULL;
5408
5409         vma = find_vma(mm, addr);
5410         if (likely(vma && (vma->vm_start <= addr)))
5411                 return vma;
5412
5413         /*
5414          * Well, dang. We might still be successful, but only
5415          * if we can extend a vma to do so.
5416          */
5417         if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5418                 mmap_read_unlock(mm);
5419                 return NULL;
5420         }
5421
5422         /*
5423          * We can try to upgrade the mmap lock atomically,
5424          * in which case we can continue to use the vma
5425          * we already looked up.
5426          *
5427          * Otherwise we'll have to drop the mmap lock and
5428          * re-take it, and also look up the vma again,
5429          * re-checking it.
5430          */
5431         if (!mmap_upgrade_trylock(mm)) {
5432                 if (!upgrade_mmap_lock_carefully(mm, regs))
5433                         return NULL;
5434
5435                 vma = find_vma(mm, addr);
5436                 if (!vma)
5437                         goto fail;
5438                 if (vma->vm_start <= addr)
5439                         goto success;
5440                 if (!(vma->vm_flags & VM_GROWSDOWN))
5441                         goto fail;
5442         }
5443
5444         if (expand_stack_locked(vma, addr))
5445                 goto fail;
5446
5447 success:
5448         mmap_write_downgrade(mm);
5449         return vma;
5450
5451 fail:
5452         mmap_write_unlock(mm);
5453         return NULL;
5454 }
5455 #endif
5456
5457 #ifdef CONFIG_PER_VMA_LOCK
5458 /*
5459  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5460  * stable and not isolated. If the VMA is not found or is being modified the
5461  * function returns NULL.
5462  */
5463 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5464                                           unsigned long address)
5465 {
5466         MA_STATE(mas, &mm->mm_mt, address, address);
5467         struct vm_area_struct *vma;
5468
5469         rcu_read_lock();
5470 retry:
5471         vma = mas_walk(&mas);
5472         if (!vma)
5473                 goto inval;
5474
5475         if (!vma_start_read(vma))
5476                 goto inval;
5477
5478         /*
5479          * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5480          * This check must happen after vma_start_read(); otherwise, a
5481          * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5482          * from its anon_vma.
5483          */
5484         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5485                 goto inval_end_read;
5486
5487         /* Check since vm_start/vm_end might change before we lock the VMA */
5488         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5489                 goto inval_end_read;
5490
5491         /* Check if the VMA got isolated after we found it */
5492         if (vma->detached) {
5493                 vma_end_read(vma);
5494                 count_vm_vma_lock_event(VMA_LOCK_MISS);
5495                 /* The area was replaced with another one */
5496                 goto retry;
5497         }
5498
5499         rcu_read_unlock();
5500         return vma;
5501
5502 inval_end_read:
5503         vma_end_read(vma);
5504 inval:
5505         rcu_read_unlock();
5506         count_vm_vma_lock_event(VMA_LOCK_ABORT);
5507         return NULL;
5508 }
5509 #endif /* CONFIG_PER_VMA_LOCK */
5510
5511 #ifndef __PAGETABLE_P4D_FOLDED
5512 /*
5513  * Allocate p4d page table.
5514  * We've already handled the fast-path in-line.
5515  */
5516 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5517 {
5518         p4d_t *new = p4d_alloc_one(mm, address);
5519         if (!new)
5520                 return -ENOMEM;
5521
5522         spin_lock(&mm->page_table_lock);
5523         if (pgd_present(*pgd)) {        /* Another has populated it */
5524                 p4d_free(mm, new);
5525         } else {
5526                 smp_wmb(); /* See comment in pmd_install() */
5527                 pgd_populate(mm, pgd, new);
5528         }
5529         spin_unlock(&mm->page_table_lock);
5530         return 0;
5531 }
5532 #endif /* __PAGETABLE_P4D_FOLDED */
5533
5534 #ifndef __PAGETABLE_PUD_FOLDED
5535 /*
5536  * Allocate page upper directory.
5537  * We've already handled the fast-path in-line.
5538  */
5539 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5540 {
5541         pud_t *new = pud_alloc_one(mm, address);
5542         if (!new)
5543                 return -ENOMEM;
5544
5545         spin_lock(&mm->page_table_lock);
5546         if (!p4d_present(*p4d)) {
5547                 mm_inc_nr_puds(mm);
5548                 smp_wmb(); /* See comment in pmd_install() */
5549                 p4d_populate(mm, p4d, new);
5550         } else  /* Another has populated it */
5551                 pud_free(mm, new);
5552         spin_unlock(&mm->page_table_lock);
5553         return 0;
5554 }
5555 #endif /* __PAGETABLE_PUD_FOLDED */
5556
5557 #ifndef __PAGETABLE_PMD_FOLDED
5558 /*
5559  * Allocate page middle directory.
5560  * We've already handled the fast-path in-line.
5561  */
5562 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5563 {
5564         spinlock_t *ptl;
5565         pmd_t *new = pmd_alloc_one(mm, address);
5566         if (!new)
5567                 return -ENOMEM;
5568
5569         ptl = pud_lock(mm, pud);
5570         if (!pud_present(*pud)) {
5571                 mm_inc_nr_pmds(mm);
5572                 smp_wmb(); /* See comment in pmd_install() */
5573                 pud_populate(mm, pud, new);
5574         } else {        /* Another has populated it */
5575                 pmd_free(mm, new);
5576         }
5577         spin_unlock(ptl);
5578         return 0;
5579 }
5580 #endif /* __PAGETABLE_PMD_FOLDED */
5581
5582 /**
5583  * follow_pte - look up PTE at a user virtual address
5584  * @mm: the mm_struct of the target address space
5585  * @address: user virtual address
5586  * @ptepp: location to store found PTE
5587  * @ptlp: location to store the lock for the PTE
5588  *
5589  * On a successful return, the pointer to the PTE is stored in @ptepp;
5590  * the corresponding lock is taken and its location is stored in @ptlp.
5591  * The contents of the PTE are only stable until @ptlp is released;
5592  * any further use, if any, must be protected against invalidation
5593  * with MMU notifiers.
5594  *
5595  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5596  * should be taken for read.
5597  *
5598  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5599  * it is not a good general-purpose API.
5600  *
5601  * Return: zero on success, -ve otherwise.
5602  */
5603 int follow_pte(struct mm_struct *mm, unsigned long address,
5604                pte_t **ptepp, spinlock_t **ptlp)
5605 {
5606         pgd_t *pgd;
5607         p4d_t *p4d;
5608         pud_t *pud;
5609         pmd_t *pmd;
5610         pte_t *ptep;
5611
5612         pgd = pgd_offset(mm, address);
5613         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5614                 goto out;
5615
5616         p4d = p4d_offset(pgd, address);
5617         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5618                 goto out;
5619
5620         pud = pud_offset(p4d, address);
5621         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5622                 goto out;
5623
5624         pmd = pmd_offset(pud, address);
5625         VM_BUG_ON(pmd_trans_huge(*pmd));
5626
5627         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5628         if (!ptep)
5629                 goto out;
5630         if (!pte_present(ptep_get(ptep)))
5631                 goto unlock;
5632         *ptepp = ptep;
5633         return 0;
5634 unlock:
5635         pte_unmap_unlock(ptep, *ptlp);
5636 out:
5637         return -EINVAL;
5638 }
5639 EXPORT_SYMBOL_GPL(follow_pte);
5640
5641 /**
5642  * follow_pfn - look up PFN at a user virtual address
5643  * @vma: memory mapping
5644  * @address: user virtual address
5645  * @pfn: location to store found PFN
5646  *
5647  * Only IO mappings and raw PFN mappings are allowed.
5648  *
5649  * This function does not allow the caller to read the permissions
5650  * of the PTE.  Do not use it.
5651  *
5652  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5653  */
5654 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5655         unsigned long *pfn)
5656 {
5657         int ret = -EINVAL;
5658         spinlock_t *ptl;
5659         pte_t *ptep;
5660
5661         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5662                 return ret;
5663
5664         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5665         if (ret)
5666                 return ret;
5667         *pfn = pte_pfn(ptep_get(ptep));
5668         pte_unmap_unlock(ptep, ptl);
5669         return 0;
5670 }
5671 EXPORT_SYMBOL(follow_pfn);
5672
5673 #ifdef CONFIG_HAVE_IOREMAP_PROT
5674 int follow_phys(struct vm_area_struct *vma,
5675                 unsigned long address, unsigned int flags,
5676                 unsigned long *prot, resource_size_t *phys)
5677 {
5678         int ret = -EINVAL;
5679         pte_t *ptep, pte;
5680         spinlock_t *ptl;
5681
5682         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5683                 goto out;
5684
5685         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5686                 goto out;
5687         pte = ptep_get(ptep);
5688
5689         if ((flags & FOLL_WRITE) && !pte_write(pte))
5690                 goto unlock;
5691
5692         *prot = pgprot_val(pte_pgprot(pte));
5693         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5694
5695         ret = 0;
5696 unlock:
5697         pte_unmap_unlock(ptep, ptl);
5698 out:
5699         return ret;
5700 }
5701
5702 /**
5703  * generic_access_phys - generic implementation for iomem mmap access
5704  * @vma: the vma to access
5705  * @addr: userspace address, not relative offset within @vma
5706  * @buf: buffer to read/write
5707  * @len: length of transfer
5708  * @write: set to FOLL_WRITE when writing, otherwise reading
5709  *
5710  * This is a generic implementation for &vm_operations_struct.access for an
5711  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5712  * not page based.
5713  */
5714 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5715                         void *buf, int len, int write)
5716 {
5717         resource_size_t phys_addr;
5718         unsigned long prot = 0;
5719         void __iomem *maddr;
5720         pte_t *ptep, pte;
5721         spinlock_t *ptl;
5722         int offset = offset_in_page(addr);
5723         int ret = -EINVAL;
5724
5725         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5726                 return -EINVAL;
5727
5728 retry:
5729         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5730                 return -EINVAL;
5731         pte = ptep_get(ptep);
5732         pte_unmap_unlock(ptep, ptl);
5733
5734         prot = pgprot_val(pte_pgprot(pte));
5735         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5736
5737         if ((write & FOLL_WRITE) && !pte_write(pte))
5738                 return -EINVAL;
5739
5740         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5741         if (!maddr)
5742                 return -ENOMEM;
5743
5744         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5745                 goto out_unmap;
5746
5747         if (!pte_same(pte, ptep_get(ptep))) {
5748                 pte_unmap_unlock(ptep, ptl);
5749                 iounmap(maddr);
5750
5751                 goto retry;
5752         }
5753
5754         if (write)
5755                 memcpy_toio(maddr + offset, buf, len);
5756         else
5757                 memcpy_fromio(buf, maddr + offset, len);
5758         ret = len;
5759         pte_unmap_unlock(ptep, ptl);
5760 out_unmap:
5761         iounmap(maddr);
5762
5763         return ret;
5764 }
5765 EXPORT_SYMBOL_GPL(generic_access_phys);
5766 #endif
5767
5768 /*
5769  * Access another process' address space as given in mm.
5770  */
5771 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5772                        int len, unsigned int gup_flags)
5773 {
5774         void *old_buf = buf;
5775         int write = gup_flags & FOLL_WRITE;
5776
5777         if (mmap_read_lock_killable(mm))
5778                 return 0;
5779
5780         /* Avoid triggering the temporary warning in __get_user_pages */
5781         if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5782                 return 0;
5783
5784         /* ignore errors, just check how much was successfully transferred */
5785         while (len) {
5786                 int bytes, offset;
5787                 void *maddr;
5788                 struct vm_area_struct *vma = NULL;
5789                 struct page *page = get_user_page_vma_remote(mm, addr,
5790                                                              gup_flags, &vma);
5791
5792                 if (IS_ERR_OR_NULL(page)) {
5793                         /* We might need to expand the stack to access it */
5794                         vma = vma_lookup(mm, addr);
5795                         if (!vma) {
5796                                 vma = expand_stack(mm, addr);
5797
5798                                 /* mmap_lock was dropped on failure */
5799                                 if (!vma)
5800                                         return buf - old_buf;
5801
5802                                 /* Try again if stack expansion worked */
5803                                 continue;
5804                         }
5805
5806
5807                         /*
5808                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5809                          * we can access using slightly different code.
5810                          */
5811                         bytes = 0;
5812 #ifdef CONFIG_HAVE_IOREMAP_PROT
5813                         if (vma->vm_ops && vma->vm_ops->access)
5814                                 bytes = vma->vm_ops->access(vma, addr, buf,
5815                                                             len, write);
5816 #endif
5817                         if (bytes <= 0)
5818                                 break;
5819                 } else {
5820                         bytes = len;
5821                         offset = addr & (PAGE_SIZE-1);
5822                         if (bytes > PAGE_SIZE-offset)
5823                                 bytes = PAGE_SIZE-offset;
5824
5825                         maddr = kmap(page);
5826                         if (write) {
5827                                 copy_to_user_page(vma, page, addr,
5828                                                   maddr + offset, buf, bytes);
5829                                 set_page_dirty_lock(page);
5830                         } else {
5831                                 copy_from_user_page(vma, page, addr,
5832                                                     buf, maddr + offset, bytes);
5833                         }
5834                         kunmap(page);
5835                         put_page(page);
5836                 }
5837                 len -= bytes;
5838                 buf += bytes;
5839                 addr += bytes;
5840         }
5841         mmap_read_unlock(mm);
5842
5843         return buf - old_buf;
5844 }
5845
5846 /**
5847  * access_remote_vm - access another process' address space
5848  * @mm:         the mm_struct of the target address space
5849  * @addr:       start address to access
5850  * @buf:        source or destination buffer
5851  * @len:        number of bytes to transfer
5852  * @gup_flags:  flags modifying lookup behaviour
5853  *
5854  * The caller must hold a reference on @mm.
5855  *
5856  * Return: number of bytes copied from source to destination.
5857  */
5858 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5859                 void *buf, int len, unsigned int gup_flags)
5860 {
5861         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5862 }
5863
5864 /*
5865  * Access another process' address space.
5866  * Source/target buffer must be kernel space,
5867  * Do not walk the page table directly, use get_user_pages
5868  */
5869 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5870                 void *buf, int len, unsigned int gup_flags)
5871 {
5872         struct mm_struct *mm;
5873         int ret;
5874
5875         mm = get_task_mm(tsk);
5876         if (!mm)
5877                 return 0;
5878
5879         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5880
5881         mmput(mm);
5882
5883         return ret;
5884 }
5885 EXPORT_SYMBOL_GPL(access_process_vm);
5886
5887 /*
5888  * Print the name of a VMA.
5889  */
5890 void print_vma_addr(char *prefix, unsigned long ip)
5891 {
5892         struct mm_struct *mm = current->mm;
5893         struct vm_area_struct *vma;
5894
5895         /*
5896          * we might be running from an atomic context so we cannot sleep
5897          */
5898         if (!mmap_read_trylock(mm))
5899                 return;
5900
5901         vma = find_vma(mm, ip);
5902         if (vma && vma->vm_file) {
5903                 struct file *f = vma->vm_file;
5904                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5905                 if (buf) {
5906                         char *p;
5907
5908                         p = file_path(f, buf, PAGE_SIZE);
5909                         if (IS_ERR(p))
5910                                 p = "?";
5911                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5912                                         vma->vm_start,
5913                                         vma->vm_end - vma->vm_start);
5914                         free_page((unsigned long)buf);
5915                 }
5916         }
5917         mmap_read_unlock(mm);
5918 }
5919
5920 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5921 void __might_fault(const char *file, int line)
5922 {
5923         if (pagefault_disabled())
5924                 return;
5925         __might_sleep(file, line);
5926 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5927         if (current->mm)
5928                 might_lock_read(&current->mm->mmap_lock);
5929 #endif
5930 }
5931 EXPORT_SYMBOL(__might_fault);
5932 #endif
5933
5934 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5935 /*
5936  * Process all subpages of the specified huge page with the specified
5937  * operation.  The target subpage will be processed last to keep its
5938  * cache lines hot.
5939  */
5940 static inline int process_huge_page(
5941         unsigned long addr_hint, unsigned int pages_per_huge_page,
5942         int (*process_subpage)(unsigned long addr, int idx, void *arg),
5943         void *arg)
5944 {
5945         int i, n, base, l, ret;
5946         unsigned long addr = addr_hint &
5947                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5948
5949         /* Process target subpage last to keep its cache lines hot */
5950         might_sleep();
5951         n = (addr_hint - addr) / PAGE_SIZE;
5952         if (2 * n <= pages_per_huge_page) {
5953                 /* If target subpage in first half of huge page */
5954                 base = 0;
5955                 l = n;
5956                 /* Process subpages at the end of huge page */
5957                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5958                         cond_resched();
5959                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5960                         if (ret)
5961                                 return ret;
5962                 }
5963         } else {
5964                 /* If target subpage in second half of huge page */
5965                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5966                 l = pages_per_huge_page - n;
5967                 /* Process subpages at the begin of huge page */
5968                 for (i = 0; i < base; i++) {
5969                         cond_resched();
5970                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5971                         if (ret)
5972                                 return ret;
5973                 }
5974         }
5975         /*
5976          * Process remaining subpages in left-right-left-right pattern
5977          * towards the target subpage
5978          */
5979         for (i = 0; i < l; i++) {
5980                 int left_idx = base + i;
5981                 int right_idx = base + 2 * l - 1 - i;
5982
5983                 cond_resched();
5984                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5985                 if (ret)
5986                         return ret;
5987                 cond_resched();
5988                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5989                 if (ret)
5990                         return ret;
5991         }
5992         return 0;
5993 }
5994
5995 static void clear_gigantic_page(struct page *page,
5996                                 unsigned long addr,
5997                                 unsigned int pages_per_huge_page)
5998 {
5999         int i;
6000         struct page *p;
6001
6002         might_sleep();
6003         for (i = 0; i < pages_per_huge_page; i++) {
6004                 p = nth_page(page, i);
6005                 cond_resched();
6006                 clear_user_highpage(p, addr + i * PAGE_SIZE);
6007         }
6008 }
6009
6010 static int clear_subpage(unsigned long addr, int idx, void *arg)
6011 {
6012         struct page *page = arg;
6013
6014         clear_user_highpage(page + idx, addr);
6015         return 0;
6016 }
6017
6018 void clear_huge_page(struct page *page,
6019                      unsigned long addr_hint, unsigned int pages_per_huge_page)
6020 {
6021         unsigned long addr = addr_hint &
6022                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6023
6024         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6025                 clear_gigantic_page(page, addr, pages_per_huge_page);
6026                 return;
6027         }
6028
6029         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6030 }
6031
6032 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6033                                      unsigned long addr,
6034                                      struct vm_area_struct *vma,
6035                                      unsigned int pages_per_huge_page)
6036 {
6037         int i;
6038         struct page *dst_page;
6039         struct page *src_page;
6040
6041         for (i = 0; i < pages_per_huge_page; i++) {
6042                 dst_page = folio_page(dst, i);
6043                 src_page = folio_page(src, i);
6044
6045                 cond_resched();
6046                 if (copy_mc_user_highpage(dst_page, src_page,
6047                                           addr + i*PAGE_SIZE, vma)) {
6048                         memory_failure_queue(page_to_pfn(src_page), 0);
6049                         return -EHWPOISON;
6050                 }
6051         }
6052         return 0;
6053 }
6054
6055 struct copy_subpage_arg {
6056         struct page *dst;
6057         struct page *src;
6058         struct vm_area_struct *vma;
6059 };
6060
6061 static int copy_subpage(unsigned long addr, int idx, void *arg)
6062 {
6063         struct copy_subpage_arg *copy_arg = arg;
6064
6065         if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6066                                   addr, copy_arg->vma)) {
6067                 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6068                 return -EHWPOISON;
6069         }
6070         return 0;
6071 }
6072
6073 int copy_user_large_folio(struct folio *dst, struct folio *src,
6074                           unsigned long addr_hint, struct vm_area_struct *vma)
6075 {
6076         unsigned int pages_per_huge_page = folio_nr_pages(dst);
6077         unsigned long addr = addr_hint &
6078                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6079         struct copy_subpage_arg arg = {
6080                 .dst = &dst->page,
6081                 .src = &src->page,
6082                 .vma = vma,
6083         };
6084
6085         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6086                 return copy_user_gigantic_page(dst, src, addr, vma,
6087                                                pages_per_huge_page);
6088
6089         return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6090 }
6091
6092 long copy_folio_from_user(struct folio *dst_folio,
6093                            const void __user *usr_src,
6094                            bool allow_pagefault)
6095 {
6096         void *kaddr;
6097         unsigned long i, rc = 0;
6098         unsigned int nr_pages = folio_nr_pages(dst_folio);
6099         unsigned long ret_val = nr_pages * PAGE_SIZE;
6100         struct page *subpage;
6101
6102         for (i = 0; i < nr_pages; i++) {
6103                 subpage = folio_page(dst_folio, i);
6104                 kaddr = kmap_local_page(subpage);
6105                 if (!allow_pagefault)
6106                         pagefault_disable();
6107                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6108                 if (!allow_pagefault)
6109                         pagefault_enable();
6110                 kunmap_local(kaddr);
6111
6112                 ret_val -= (PAGE_SIZE - rc);
6113                 if (rc)
6114                         break;
6115
6116                 flush_dcache_page(subpage);
6117
6118                 cond_resched();
6119         }
6120         return ret_val;
6121 }
6122 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6123
6124 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6125
6126 static struct kmem_cache *page_ptl_cachep;
6127
6128 void __init ptlock_cache_init(void)
6129 {
6130         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6131                         SLAB_PANIC, NULL);
6132 }
6133
6134 bool ptlock_alloc(struct ptdesc *ptdesc)
6135 {
6136         spinlock_t *ptl;
6137
6138         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6139         if (!ptl)
6140                 return false;
6141         ptdesc->ptl = ptl;
6142         return true;
6143 }
6144
6145 void ptlock_free(struct ptdesc *ptdesc)
6146 {
6147         kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6148 }
6149 #endif