mm: memory: add orig_pmd to struct vm_fault
[linux-block.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119                                         1;
120 #else
121                                         2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127         /*
128          * Those arches which don't have hw access flag feature need to
129          * implement their own helper. By default, "true" means pagefault
130          * will be hit on old pte.
131          */
132         return true;
133 }
134 #endif
135
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139         /*
140          * Transitioning a PTE from 'old' to 'young' can be expensive on
141          * some architectures, even if it's performed in hardware. By
142          * default, "false" means prefaulted entries will be 'young'.
143          */
144         return false;
145 }
146 #endif
147
148 static int __init disable_randmaps(char *s)
149 {
150         randomize_va_space = 0;
151         return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157
158 unsigned long highest_memmap_pfn __read_mostly;
159
160 /*
161  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162  */
163 static int __init init_zero_pfn(void)
164 {
165         zero_pfn = page_to_pfn(ZERO_PAGE(0));
166         return 0;
167 }
168 early_initcall(init_zero_pfn);
169
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172         trace_rss_stat(mm, member, count);
173 }
174
175 #if defined(SPLIT_RSS_COUNTING)
176
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179         int i;
180
181         for (i = 0; i < NR_MM_COUNTERS; i++) {
182                 if (current->rss_stat.count[i]) {
183                         add_mm_counter(mm, i, current->rss_stat.count[i]);
184                         current->rss_stat.count[i] = 0;
185                 }
186         }
187         current->rss_stat.events = 0;
188 }
189
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192         struct task_struct *task = current;
193
194         if (likely(task->mm == mm))
195                 task->rss_stat.count[member] += val;
196         else
197                 add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH  (64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206         if (unlikely(task != current))
207                 return;
208         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209                 sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219
220 #endif /* SPLIT_RSS_COUNTING */
221
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227                            unsigned long addr)
228 {
229         pgtable_t token = pmd_pgtable(*pmd);
230         pmd_clear(pmd);
231         pte_free_tlb(tlb, token, addr);
232         mm_dec_nr_ptes(tlb->mm);
233 }
234
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236                                 unsigned long addr, unsigned long end,
237                                 unsigned long floor, unsigned long ceiling)
238 {
239         pmd_t *pmd;
240         unsigned long next;
241         unsigned long start;
242
243         start = addr;
244         pmd = pmd_offset(pud, addr);
245         do {
246                 next = pmd_addr_end(addr, end);
247                 if (pmd_none_or_clear_bad(pmd))
248                         continue;
249                 free_pte_range(tlb, pmd, addr);
250         } while (pmd++, addr = next, addr != end);
251
252         start &= PUD_MASK;
253         if (start < floor)
254                 return;
255         if (ceiling) {
256                 ceiling &= PUD_MASK;
257                 if (!ceiling)
258                         return;
259         }
260         if (end - 1 > ceiling - 1)
261                 return;
262
263         pmd = pmd_offset(pud, start);
264         pud_clear(pud);
265         pmd_free_tlb(tlb, pmd, start);
266         mm_dec_nr_pmds(tlb->mm);
267 }
268
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270                                 unsigned long addr, unsigned long end,
271                                 unsigned long floor, unsigned long ceiling)
272 {
273         pud_t *pud;
274         unsigned long next;
275         unsigned long start;
276
277         start = addr;
278         pud = pud_offset(p4d, addr);
279         do {
280                 next = pud_addr_end(addr, end);
281                 if (pud_none_or_clear_bad(pud))
282                         continue;
283                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284         } while (pud++, addr = next, addr != end);
285
286         start &= P4D_MASK;
287         if (start < floor)
288                 return;
289         if (ceiling) {
290                 ceiling &= P4D_MASK;
291                 if (!ceiling)
292                         return;
293         }
294         if (end - 1 > ceiling - 1)
295                 return;
296
297         pud = pud_offset(p4d, start);
298         p4d_clear(p4d);
299         pud_free_tlb(tlb, pud, start);
300         mm_dec_nr_puds(tlb->mm);
301 }
302
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304                                 unsigned long addr, unsigned long end,
305                                 unsigned long floor, unsigned long ceiling)
306 {
307         p4d_t *p4d;
308         unsigned long next;
309         unsigned long start;
310
311         start = addr;
312         p4d = p4d_offset(pgd, addr);
313         do {
314                 next = p4d_addr_end(addr, end);
315                 if (p4d_none_or_clear_bad(p4d))
316                         continue;
317                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318         } while (p4d++, addr = next, addr != end);
319
320         start &= PGDIR_MASK;
321         if (start < floor)
322                 return;
323         if (ceiling) {
324                 ceiling &= PGDIR_MASK;
325                 if (!ceiling)
326                         return;
327         }
328         if (end - 1 > ceiling - 1)
329                 return;
330
331         p4d = p4d_offset(pgd, start);
332         pgd_clear(pgd);
333         p4d_free_tlb(tlb, p4d, start);
334 }
335
336 /*
337  * This function frees user-level page tables of a process.
338  */
339 void free_pgd_range(struct mmu_gather *tlb,
340                         unsigned long addr, unsigned long end,
341                         unsigned long floor, unsigned long ceiling)
342 {
343         pgd_t *pgd;
344         unsigned long next;
345
346         /*
347          * The next few lines have given us lots of grief...
348          *
349          * Why are we testing PMD* at this top level?  Because often
350          * there will be no work to do at all, and we'd prefer not to
351          * go all the way down to the bottom just to discover that.
352          *
353          * Why all these "- 1"s?  Because 0 represents both the bottom
354          * of the address space and the top of it (using -1 for the
355          * top wouldn't help much: the masks would do the wrong thing).
356          * The rule is that addr 0 and floor 0 refer to the bottom of
357          * the address space, but end 0 and ceiling 0 refer to the top
358          * Comparisons need to use "end - 1" and "ceiling - 1" (though
359          * that end 0 case should be mythical).
360          *
361          * Wherever addr is brought up or ceiling brought down, we must
362          * be careful to reject "the opposite 0" before it confuses the
363          * subsequent tests.  But what about where end is brought down
364          * by PMD_SIZE below? no, end can't go down to 0 there.
365          *
366          * Whereas we round start (addr) and ceiling down, by different
367          * masks at different levels, in order to test whether a table
368          * now has no other vmas using it, so can be freed, we don't
369          * bother to round floor or end up - the tests don't need that.
370          */
371
372         addr &= PMD_MASK;
373         if (addr < floor) {
374                 addr += PMD_SIZE;
375                 if (!addr)
376                         return;
377         }
378         if (ceiling) {
379                 ceiling &= PMD_MASK;
380                 if (!ceiling)
381                         return;
382         }
383         if (end - 1 > ceiling - 1)
384                 end -= PMD_SIZE;
385         if (addr > end - 1)
386                 return;
387         /*
388          * We add page table cache pages with PAGE_SIZE,
389          * (see pte_free_tlb()), flush the tlb if we need
390          */
391         tlb_change_page_size(tlb, PAGE_SIZE);
392         pgd = pgd_offset(tlb->mm, addr);
393         do {
394                 next = pgd_addr_end(addr, end);
395                 if (pgd_none_or_clear_bad(pgd))
396                         continue;
397                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398         } while (pgd++, addr = next, addr != end);
399 }
400
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402                 unsigned long floor, unsigned long ceiling)
403 {
404         while (vma) {
405                 struct vm_area_struct *next = vma->vm_next;
406                 unsigned long addr = vma->vm_start;
407
408                 /*
409                  * Hide vma from rmap and truncate_pagecache before freeing
410                  * pgtables
411                  */
412                 unlink_anon_vmas(vma);
413                 unlink_file_vma(vma);
414
415                 if (is_vm_hugetlb_page(vma)) {
416                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 } else {
419                         /*
420                          * Optimization: gather nearby vmas into one call down
421                          */
422                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423                                && !is_vm_hugetlb_page(next)) {
424                                 vma = next;
425                                 next = vma->vm_next;
426                                 unlink_anon_vmas(vma);
427                                 unlink_file_vma(vma);
428                         }
429                         free_pgd_range(tlb, addr, vma->vm_end,
430                                 floor, next ? next->vm_start : ceiling);
431                 }
432                 vma = next;
433         }
434 }
435
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438         spinlock_t *ptl;
439         pgtable_t new = pte_alloc_one(mm);
440         if (!new)
441                 return -ENOMEM;
442
443         /*
444          * Ensure all pte setup (eg. pte page lock and page clearing) are
445          * visible before the pte is made visible to other CPUs by being
446          * put into page tables.
447          *
448          * The other side of the story is the pointer chasing in the page
449          * table walking code (when walking the page table without locking;
450          * ie. most of the time). Fortunately, these data accesses consist
451          * of a chain of data-dependent loads, meaning most CPUs (alpha
452          * being the notable exception) will already guarantee loads are
453          * seen in-order. See the alpha page table accessors for the
454          * smp_rmb() barriers in page table walking code.
455          */
456         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
458         ptl = pmd_lock(mm, pmd);
459         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
460                 mm_inc_nr_ptes(mm);
461                 pmd_populate(mm, pmd, new);
462                 new = NULL;
463         }
464         spin_unlock(ptl);
465         if (new)
466                 pte_free(mm, new);
467         return 0;
468 }
469
470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472         pte_t *new = pte_alloc_one_kernel(&init_mm);
473         if (!new)
474                 return -ENOMEM;
475
476         smp_wmb(); /* See comment in __pte_alloc */
477
478         spin_lock(&init_mm.page_table_lock);
479         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
480                 pmd_populate_kernel(&init_mm, pmd, new);
481                 new = NULL;
482         }
483         spin_unlock(&init_mm.page_table_lock);
484         if (new)
485                 pte_free_kernel(&init_mm, new);
486         return 0;
487 }
488
489 static inline void init_rss_vec(int *rss)
490 {
491         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493
494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496         int i;
497
498         if (current->mm == mm)
499                 sync_mm_rss(mm);
500         for (i = 0; i < NR_MM_COUNTERS; i++)
501                 if (rss[i])
502                         add_mm_counter(mm, i, rss[i]);
503 }
504
505 /*
506  * This function is called to print an error when a bad pte
507  * is found. For example, we might have a PFN-mapped pte in
508  * a region that doesn't allow it.
509  *
510  * The calling function must still handle the error.
511  */
512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513                           pte_t pte, struct page *page)
514 {
515         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516         p4d_t *p4d = p4d_offset(pgd, addr);
517         pud_t *pud = pud_offset(p4d, addr);
518         pmd_t *pmd = pmd_offset(pud, addr);
519         struct address_space *mapping;
520         pgoff_t index;
521         static unsigned long resume;
522         static unsigned long nr_shown;
523         static unsigned long nr_unshown;
524
525         /*
526          * Allow a burst of 60 reports, then keep quiet for that minute;
527          * or allow a steady drip of one report per second.
528          */
529         if (nr_shown == 60) {
530                 if (time_before(jiffies, resume)) {
531                         nr_unshown++;
532                         return;
533                 }
534                 if (nr_unshown) {
535                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536                                  nr_unshown);
537                         nr_unshown = 0;
538                 }
539                 nr_shown = 0;
540         }
541         if (nr_shown++ == 0)
542                 resume = jiffies + 60 * HZ;
543
544         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545         index = linear_page_index(vma, addr);
546
547         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
548                  current->comm,
549                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
550         if (page)
551                 dump_page(page, "bad pte");
552         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555                  vma->vm_file,
556                  vma->vm_ops ? vma->vm_ops->fault : NULL,
557                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558                  mapping ? mapping->a_ops->readpage : NULL);
559         dump_stack();
560         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564  * vm_normal_page -- This function gets the "struct page" associated with a pte.
565  *
566  * "Special" mappings do not wish to be associated with a "struct page" (either
567  * it doesn't exist, or it exists but they don't want to touch it). In this
568  * case, NULL is returned here. "Normal" mappings do have a struct page.
569  *
570  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571  * pte bit, in which case this function is trivial. Secondly, an architecture
572  * may not have a spare pte bit, which requires a more complicated scheme,
573  * described below.
574  *
575  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576  * special mapping (even if there are underlying and valid "struct pages").
577  * COWed pages of a VM_PFNMAP are always normal.
578  *
579  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582  * mapping will always honor the rule
583  *
584  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585  *
586  * And for normal mappings this is false.
587  *
588  * This restricts such mappings to be a linear translation from virtual address
589  * to pfn. To get around this restriction, we allow arbitrary mappings so long
590  * as the vma is not a COW mapping; in that case, we know that all ptes are
591  * special (because none can have been COWed).
592  *
593  *
594  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595  *
596  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597  * page" backing, however the difference is that _all_ pages with a struct
598  * page (that is, those where pfn_valid is true) are refcounted and considered
599  * normal pages by the VM. The disadvantage is that pages are refcounted
600  * (which can be slower and simply not an option for some PFNMAP users). The
601  * advantage is that we don't have to follow the strict linearity rule of
602  * PFNMAP mappings in order to support COWable mappings.
603  *
604  */
605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606                             pte_t pte)
607 {
608         unsigned long pfn = pte_pfn(pte);
609
610         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611                 if (likely(!pte_special(pte)))
612                         goto check_pfn;
613                 if (vma->vm_ops && vma->vm_ops->find_special_page)
614                         return vma->vm_ops->find_special_page(vma, addr);
615                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616                         return NULL;
617                 if (is_zero_pfn(pfn))
618                         return NULL;
619                 if (pte_devmap(pte))
620                         return NULL;
621
622                 print_bad_pte(vma, addr, pte, NULL);
623                 return NULL;
624         }
625
626         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627
628         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629                 if (vma->vm_flags & VM_MIXEDMAP) {
630                         if (!pfn_valid(pfn))
631                                 return NULL;
632                         goto out;
633                 } else {
634                         unsigned long off;
635                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
636                         if (pfn == vma->vm_pgoff + off)
637                                 return NULL;
638                         if (!is_cow_mapping(vma->vm_flags))
639                                 return NULL;
640                 }
641         }
642
643         if (is_zero_pfn(pfn))
644                 return NULL;
645
646 check_pfn:
647         if (unlikely(pfn > highest_memmap_pfn)) {
648                 print_bad_pte(vma, addr, pte, NULL);
649                 return NULL;
650         }
651
652         /*
653          * NOTE! We still have PageReserved() pages in the page tables.
654          * eg. VDSO mappings can cause them to exist.
655          */
656 out:
657         return pfn_to_page(pfn);
658 }
659
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662                                 pmd_t pmd)
663 {
664         unsigned long pfn = pmd_pfn(pmd);
665
666         /*
667          * There is no pmd_special() but there may be special pmds, e.g.
668          * in a direct-access (dax) mapping, so let's just replicate the
669          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670          */
671         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672                 if (vma->vm_flags & VM_MIXEDMAP) {
673                         if (!pfn_valid(pfn))
674                                 return NULL;
675                         goto out;
676                 } else {
677                         unsigned long off;
678                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
679                         if (pfn == vma->vm_pgoff + off)
680                                 return NULL;
681                         if (!is_cow_mapping(vma->vm_flags))
682                                 return NULL;
683                 }
684         }
685
686         if (pmd_devmap(pmd))
687                 return NULL;
688         if (is_huge_zero_pmd(pmd))
689                 return NULL;
690         if (unlikely(pfn > highest_memmap_pfn))
691                 return NULL;
692
693         /*
694          * NOTE! We still have PageReserved() pages in the page tables.
695          * eg. VDSO mappings can cause them to exist.
696          */
697 out:
698         return pfn_to_page(pfn);
699 }
700 #endif
701
702 /*
703  * copy one vm_area from one task to the other. Assumes the page tables
704  * already present in the new task to be cleared in the whole range
705  * covered by this vma.
706  */
707
708 static unsigned long
709 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
710                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
711                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
712 {
713         unsigned long vm_flags = dst_vma->vm_flags;
714         pte_t pte = *src_pte;
715         struct page *page;
716         swp_entry_t entry = pte_to_swp_entry(pte);
717
718         if (likely(!non_swap_entry(entry))) {
719                 if (swap_duplicate(entry) < 0)
720                         return entry.val;
721
722                 /* make sure dst_mm is on swapoff's mmlist. */
723                 if (unlikely(list_empty(&dst_mm->mmlist))) {
724                         spin_lock(&mmlist_lock);
725                         if (list_empty(&dst_mm->mmlist))
726                                 list_add(&dst_mm->mmlist,
727                                                 &src_mm->mmlist);
728                         spin_unlock(&mmlist_lock);
729                 }
730                 rss[MM_SWAPENTS]++;
731         } else if (is_migration_entry(entry)) {
732                 page = migration_entry_to_page(entry);
733
734                 rss[mm_counter(page)]++;
735
736                 if (is_write_migration_entry(entry) &&
737                                 is_cow_mapping(vm_flags)) {
738                         /*
739                          * COW mappings require pages in both
740                          * parent and child to be set to read.
741                          */
742                         make_migration_entry_read(&entry);
743                         pte = swp_entry_to_pte(entry);
744                         if (pte_swp_soft_dirty(*src_pte))
745                                 pte = pte_swp_mksoft_dirty(pte);
746                         if (pte_swp_uffd_wp(*src_pte))
747                                 pte = pte_swp_mkuffd_wp(pte);
748                         set_pte_at(src_mm, addr, src_pte, pte);
749                 }
750         } else if (is_device_private_entry(entry)) {
751                 page = device_private_entry_to_page(entry);
752
753                 /*
754                  * Update rss count even for unaddressable pages, as
755                  * they should treated just like normal pages in this
756                  * respect.
757                  *
758                  * We will likely want to have some new rss counters
759                  * for unaddressable pages, at some point. But for now
760                  * keep things as they are.
761                  */
762                 get_page(page);
763                 rss[mm_counter(page)]++;
764                 page_dup_rmap(page, false);
765
766                 /*
767                  * We do not preserve soft-dirty information, because so
768                  * far, checkpoint/restore is the only feature that
769                  * requires that. And checkpoint/restore does not work
770                  * when a device driver is involved (you cannot easily
771                  * save and restore device driver state).
772                  */
773                 if (is_write_device_private_entry(entry) &&
774                     is_cow_mapping(vm_flags)) {
775                         make_device_private_entry_read(&entry);
776                         pte = swp_entry_to_pte(entry);
777                         if (pte_swp_uffd_wp(*src_pte))
778                                 pte = pte_swp_mkuffd_wp(pte);
779                         set_pte_at(src_mm, addr, src_pte, pte);
780                 }
781         }
782         if (!userfaultfd_wp(dst_vma))
783                 pte = pte_swp_clear_uffd_wp(pte);
784         set_pte_at(dst_mm, addr, dst_pte, pte);
785         return 0;
786 }
787
788 /*
789  * Copy a present and normal page if necessary.
790  *
791  * NOTE! The usual case is that this doesn't need to do
792  * anything, and can just return a positive value. That
793  * will let the caller know that it can just increase
794  * the page refcount and re-use the pte the traditional
795  * way.
796  *
797  * But _if_ we need to copy it because it needs to be
798  * pinned in the parent (and the child should get its own
799  * copy rather than just a reference to the same page),
800  * we'll do that here and return zero to let the caller
801  * know we're done.
802  *
803  * And if we need a pre-allocated page but don't yet have
804  * one, return a negative error to let the preallocation
805  * code know so that it can do so outside the page table
806  * lock.
807  */
808 static inline int
809 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
810                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
811                   struct page **prealloc, pte_t pte, struct page *page)
812 {
813         struct page *new_page;
814
815         /*
816          * What we want to do is to check whether this page may
817          * have been pinned by the parent process.  If so,
818          * instead of wrprotect the pte on both sides, we copy
819          * the page immediately so that we'll always guarantee
820          * the pinned page won't be randomly replaced in the
821          * future.
822          *
823          * The page pinning checks are just "has this mm ever
824          * seen pinning", along with the (inexact) check of
825          * the page count. That might give false positives for
826          * for pinning, but it will work correctly.
827          */
828         if (likely(!page_needs_cow_for_dma(src_vma, page)))
829                 return 1;
830
831         new_page = *prealloc;
832         if (!new_page)
833                 return -EAGAIN;
834
835         /*
836          * We have a prealloc page, all good!  Take it
837          * over and copy the page & arm it.
838          */
839         *prealloc = NULL;
840         copy_user_highpage(new_page, page, addr, src_vma);
841         __SetPageUptodate(new_page);
842         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
843         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
844         rss[mm_counter(new_page)]++;
845
846         /* All done, just insert the new page copy in the child */
847         pte = mk_pte(new_page, dst_vma->vm_page_prot);
848         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
849         if (userfaultfd_pte_wp(dst_vma, *src_pte))
850                 /* Uffd-wp needs to be delivered to dest pte as well */
851                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
852         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
853         return 0;
854 }
855
856 /*
857  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
858  * is required to copy this pte.
859  */
860 static inline int
861 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
862                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
863                  struct page **prealloc)
864 {
865         struct mm_struct *src_mm = src_vma->vm_mm;
866         unsigned long vm_flags = src_vma->vm_flags;
867         pte_t pte = *src_pte;
868         struct page *page;
869
870         page = vm_normal_page(src_vma, addr, pte);
871         if (page) {
872                 int retval;
873
874                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
875                                            addr, rss, prealloc, pte, page);
876                 if (retval <= 0)
877                         return retval;
878
879                 get_page(page);
880                 page_dup_rmap(page, false);
881                 rss[mm_counter(page)]++;
882         }
883
884         /*
885          * If it's a COW mapping, write protect it both
886          * in the parent and the child
887          */
888         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
889                 ptep_set_wrprotect(src_mm, addr, src_pte);
890                 pte = pte_wrprotect(pte);
891         }
892
893         /*
894          * If it's a shared mapping, mark it clean in
895          * the child
896          */
897         if (vm_flags & VM_SHARED)
898                 pte = pte_mkclean(pte);
899         pte = pte_mkold(pte);
900
901         if (!userfaultfd_wp(dst_vma))
902                 pte = pte_clear_uffd_wp(pte);
903
904         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
905         return 0;
906 }
907
908 static inline struct page *
909 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
910                    unsigned long addr)
911 {
912         struct page *new_page;
913
914         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
915         if (!new_page)
916                 return NULL;
917
918         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
919                 put_page(new_page);
920                 return NULL;
921         }
922         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
923
924         return new_page;
925 }
926
927 static int
928 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
929                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
930                unsigned long end)
931 {
932         struct mm_struct *dst_mm = dst_vma->vm_mm;
933         struct mm_struct *src_mm = src_vma->vm_mm;
934         pte_t *orig_src_pte, *orig_dst_pte;
935         pte_t *src_pte, *dst_pte;
936         spinlock_t *src_ptl, *dst_ptl;
937         int progress, ret = 0;
938         int rss[NR_MM_COUNTERS];
939         swp_entry_t entry = (swp_entry_t){0};
940         struct page *prealloc = NULL;
941
942 again:
943         progress = 0;
944         init_rss_vec(rss);
945
946         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
947         if (!dst_pte) {
948                 ret = -ENOMEM;
949                 goto out;
950         }
951         src_pte = pte_offset_map(src_pmd, addr);
952         src_ptl = pte_lockptr(src_mm, src_pmd);
953         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
954         orig_src_pte = src_pte;
955         orig_dst_pte = dst_pte;
956         arch_enter_lazy_mmu_mode();
957
958         do {
959                 /*
960                  * We are holding two locks at this point - either of them
961                  * could generate latencies in another task on another CPU.
962                  */
963                 if (progress >= 32) {
964                         progress = 0;
965                         if (need_resched() ||
966                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
967                                 break;
968                 }
969                 if (pte_none(*src_pte)) {
970                         progress++;
971                         continue;
972                 }
973                 if (unlikely(!pte_present(*src_pte))) {
974                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
975                                                         dst_pte, src_pte,
976                                                         dst_vma, src_vma,
977                                                         addr, rss);
978                         if (entry.val)
979                                 break;
980                         progress += 8;
981                         continue;
982                 }
983                 /* copy_present_pte() will clear `*prealloc' if consumed */
984                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
985                                        addr, rss, &prealloc);
986                 /*
987                  * If we need a pre-allocated page for this pte, drop the
988                  * locks, allocate, and try again.
989                  */
990                 if (unlikely(ret == -EAGAIN))
991                         break;
992                 if (unlikely(prealloc)) {
993                         /*
994                          * pre-alloc page cannot be reused by next time so as
995                          * to strictly follow mempolicy (e.g., alloc_page_vma()
996                          * will allocate page according to address).  This
997                          * could only happen if one pinned pte changed.
998                          */
999                         put_page(prealloc);
1000                         prealloc = NULL;
1001                 }
1002                 progress += 8;
1003         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1004
1005         arch_leave_lazy_mmu_mode();
1006         spin_unlock(src_ptl);
1007         pte_unmap(orig_src_pte);
1008         add_mm_rss_vec(dst_mm, rss);
1009         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1010         cond_resched();
1011
1012         if (entry.val) {
1013                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1014                         ret = -ENOMEM;
1015                         goto out;
1016                 }
1017                 entry.val = 0;
1018         } else if (ret) {
1019                 WARN_ON_ONCE(ret != -EAGAIN);
1020                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1021                 if (!prealloc)
1022                         return -ENOMEM;
1023                 /* We've captured and resolved the error. Reset, try again. */
1024                 ret = 0;
1025         }
1026         if (addr != end)
1027                 goto again;
1028 out:
1029         if (unlikely(prealloc))
1030                 put_page(prealloc);
1031         return ret;
1032 }
1033
1034 static inline int
1035 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1036                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1037                unsigned long end)
1038 {
1039         struct mm_struct *dst_mm = dst_vma->vm_mm;
1040         struct mm_struct *src_mm = src_vma->vm_mm;
1041         pmd_t *src_pmd, *dst_pmd;
1042         unsigned long next;
1043
1044         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1045         if (!dst_pmd)
1046                 return -ENOMEM;
1047         src_pmd = pmd_offset(src_pud, addr);
1048         do {
1049                 next = pmd_addr_end(addr, end);
1050                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1051                         || pmd_devmap(*src_pmd)) {
1052                         int err;
1053                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1054                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1055                                             addr, dst_vma, src_vma);
1056                         if (err == -ENOMEM)
1057                                 return -ENOMEM;
1058                         if (!err)
1059                                 continue;
1060                         /* fall through */
1061                 }
1062                 if (pmd_none_or_clear_bad(src_pmd))
1063                         continue;
1064                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1065                                    addr, next))
1066                         return -ENOMEM;
1067         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1068         return 0;
1069 }
1070
1071 static inline int
1072 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1073                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1074                unsigned long end)
1075 {
1076         struct mm_struct *dst_mm = dst_vma->vm_mm;
1077         struct mm_struct *src_mm = src_vma->vm_mm;
1078         pud_t *src_pud, *dst_pud;
1079         unsigned long next;
1080
1081         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1082         if (!dst_pud)
1083                 return -ENOMEM;
1084         src_pud = pud_offset(src_p4d, addr);
1085         do {
1086                 next = pud_addr_end(addr, end);
1087                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1088                         int err;
1089
1090                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1091                         err = copy_huge_pud(dst_mm, src_mm,
1092                                             dst_pud, src_pud, addr, src_vma);
1093                         if (err == -ENOMEM)
1094                                 return -ENOMEM;
1095                         if (!err)
1096                                 continue;
1097                         /* fall through */
1098                 }
1099                 if (pud_none_or_clear_bad(src_pud))
1100                         continue;
1101                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1102                                    addr, next))
1103                         return -ENOMEM;
1104         } while (dst_pud++, src_pud++, addr = next, addr != end);
1105         return 0;
1106 }
1107
1108 static inline int
1109 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1110                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1111                unsigned long end)
1112 {
1113         struct mm_struct *dst_mm = dst_vma->vm_mm;
1114         p4d_t *src_p4d, *dst_p4d;
1115         unsigned long next;
1116
1117         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1118         if (!dst_p4d)
1119                 return -ENOMEM;
1120         src_p4d = p4d_offset(src_pgd, addr);
1121         do {
1122                 next = p4d_addr_end(addr, end);
1123                 if (p4d_none_or_clear_bad(src_p4d))
1124                         continue;
1125                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1126                                    addr, next))
1127                         return -ENOMEM;
1128         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1129         return 0;
1130 }
1131
1132 int
1133 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1134 {
1135         pgd_t *src_pgd, *dst_pgd;
1136         unsigned long next;
1137         unsigned long addr = src_vma->vm_start;
1138         unsigned long end = src_vma->vm_end;
1139         struct mm_struct *dst_mm = dst_vma->vm_mm;
1140         struct mm_struct *src_mm = src_vma->vm_mm;
1141         struct mmu_notifier_range range;
1142         bool is_cow;
1143         int ret;
1144
1145         /*
1146          * Don't copy ptes where a page fault will fill them correctly.
1147          * Fork becomes much lighter when there are big shared or private
1148          * readonly mappings. The tradeoff is that copy_page_range is more
1149          * efficient than faulting.
1150          */
1151         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1152             !src_vma->anon_vma)
1153                 return 0;
1154
1155         if (is_vm_hugetlb_page(src_vma))
1156                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1157
1158         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1159                 /*
1160                  * We do not free on error cases below as remove_vma
1161                  * gets called on error from higher level routine
1162                  */
1163                 ret = track_pfn_copy(src_vma);
1164                 if (ret)
1165                         return ret;
1166         }
1167
1168         /*
1169          * We need to invalidate the secondary MMU mappings only when
1170          * there could be a permission downgrade on the ptes of the
1171          * parent mm. And a permission downgrade will only happen if
1172          * is_cow_mapping() returns true.
1173          */
1174         is_cow = is_cow_mapping(src_vma->vm_flags);
1175
1176         if (is_cow) {
1177                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1178                                         0, src_vma, src_mm, addr, end);
1179                 mmu_notifier_invalidate_range_start(&range);
1180                 /*
1181                  * Disabling preemption is not needed for the write side, as
1182                  * the read side doesn't spin, but goes to the mmap_lock.
1183                  *
1184                  * Use the raw variant of the seqcount_t write API to avoid
1185                  * lockdep complaining about preemptibility.
1186                  */
1187                 mmap_assert_write_locked(src_mm);
1188                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1189         }
1190
1191         ret = 0;
1192         dst_pgd = pgd_offset(dst_mm, addr);
1193         src_pgd = pgd_offset(src_mm, addr);
1194         do {
1195                 next = pgd_addr_end(addr, end);
1196                 if (pgd_none_or_clear_bad(src_pgd))
1197                         continue;
1198                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1199                                             addr, next))) {
1200                         ret = -ENOMEM;
1201                         break;
1202                 }
1203         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1204
1205         if (is_cow) {
1206                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1207                 mmu_notifier_invalidate_range_end(&range);
1208         }
1209         return ret;
1210 }
1211
1212 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1213                                 struct vm_area_struct *vma, pmd_t *pmd,
1214                                 unsigned long addr, unsigned long end,
1215                                 struct zap_details *details)
1216 {
1217         struct mm_struct *mm = tlb->mm;
1218         int force_flush = 0;
1219         int rss[NR_MM_COUNTERS];
1220         spinlock_t *ptl;
1221         pte_t *start_pte;
1222         pte_t *pte;
1223         swp_entry_t entry;
1224
1225         tlb_change_page_size(tlb, PAGE_SIZE);
1226 again:
1227         init_rss_vec(rss);
1228         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1229         pte = start_pte;
1230         flush_tlb_batched_pending(mm);
1231         arch_enter_lazy_mmu_mode();
1232         do {
1233                 pte_t ptent = *pte;
1234                 if (pte_none(ptent))
1235                         continue;
1236
1237                 if (need_resched())
1238                         break;
1239
1240                 if (pte_present(ptent)) {
1241                         struct page *page;
1242
1243                         page = vm_normal_page(vma, addr, ptent);
1244                         if (unlikely(details) && page) {
1245                                 /*
1246                                  * unmap_shared_mapping_pages() wants to
1247                                  * invalidate cache without truncating:
1248                                  * unmap shared but keep private pages.
1249                                  */
1250                                 if (details->check_mapping &&
1251                                     details->check_mapping != page_rmapping(page))
1252                                         continue;
1253                         }
1254                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1255                                                         tlb->fullmm);
1256                         tlb_remove_tlb_entry(tlb, pte, addr);
1257                         if (unlikely(!page))
1258                                 continue;
1259
1260                         if (!PageAnon(page)) {
1261                                 if (pte_dirty(ptent)) {
1262                                         force_flush = 1;
1263                                         set_page_dirty(page);
1264                                 }
1265                                 if (pte_young(ptent) &&
1266                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1267                                         mark_page_accessed(page);
1268                         }
1269                         rss[mm_counter(page)]--;
1270                         page_remove_rmap(page, false);
1271                         if (unlikely(page_mapcount(page) < 0))
1272                                 print_bad_pte(vma, addr, ptent, page);
1273                         if (unlikely(__tlb_remove_page(tlb, page))) {
1274                                 force_flush = 1;
1275                                 addr += PAGE_SIZE;
1276                                 break;
1277                         }
1278                         continue;
1279                 }
1280
1281                 entry = pte_to_swp_entry(ptent);
1282                 if (is_device_private_entry(entry)) {
1283                         struct page *page = device_private_entry_to_page(entry);
1284
1285                         if (unlikely(details && details->check_mapping)) {
1286                                 /*
1287                                  * unmap_shared_mapping_pages() wants to
1288                                  * invalidate cache without truncating:
1289                                  * unmap shared but keep private pages.
1290                                  */
1291                                 if (details->check_mapping !=
1292                                     page_rmapping(page))
1293                                         continue;
1294                         }
1295
1296                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297                         rss[mm_counter(page)]--;
1298                         page_remove_rmap(page, false);
1299                         put_page(page);
1300                         continue;
1301                 }
1302
1303                 /* If details->check_mapping, we leave swap entries. */
1304                 if (unlikely(details))
1305                         continue;
1306
1307                 if (!non_swap_entry(entry))
1308                         rss[MM_SWAPENTS]--;
1309                 else if (is_migration_entry(entry)) {
1310                         struct page *page;
1311
1312                         page = migration_entry_to_page(entry);
1313                         rss[mm_counter(page)]--;
1314                 }
1315                 if (unlikely(!free_swap_and_cache(entry)))
1316                         print_bad_pte(vma, addr, ptent, NULL);
1317                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1318         } while (pte++, addr += PAGE_SIZE, addr != end);
1319
1320         add_mm_rss_vec(mm, rss);
1321         arch_leave_lazy_mmu_mode();
1322
1323         /* Do the actual TLB flush before dropping ptl */
1324         if (force_flush)
1325                 tlb_flush_mmu_tlbonly(tlb);
1326         pte_unmap_unlock(start_pte, ptl);
1327
1328         /*
1329          * If we forced a TLB flush (either due to running out of
1330          * batch buffers or because we needed to flush dirty TLB
1331          * entries before releasing the ptl), free the batched
1332          * memory too. Restart if we didn't do everything.
1333          */
1334         if (force_flush) {
1335                 force_flush = 0;
1336                 tlb_flush_mmu(tlb);
1337         }
1338
1339         if (addr != end) {
1340                 cond_resched();
1341                 goto again;
1342         }
1343
1344         return addr;
1345 }
1346
1347 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1348                                 struct vm_area_struct *vma, pud_t *pud,
1349                                 unsigned long addr, unsigned long end,
1350                                 struct zap_details *details)
1351 {
1352         pmd_t *pmd;
1353         unsigned long next;
1354
1355         pmd = pmd_offset(pud, addr);
1356         do {
1357                 next = pmd_addr_end(addr, end);
1358                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1359                         if (next - addr != HPAGE_PMD_SIZE)
1360                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1361                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1362                                 goto next;
1363                         /* fall through */
1364                 } else if (details && details->single_page &&
1365                            PageTransCompound(details->single_page) &&
1366                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1367                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1368                         /*
1369                          * Take and drop THP pmd lock so that we cannot return
1370                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1371                          * but not yet decremented compound_mapcount().
1372                          */
1373                         spin_unlock(ptl);
1374                 }
1375
1376                 /*
1377                  * Here there can be other concurrent MADV_DONTNEED or
1378                  * trans huge page faults running, and if the pmd is
1379                  * none or trans huge it can change under us. This is
1380                  * because MADV_DONTNEED holds the mmap_lock in read
1381                  * mode.
1382                  */
1383                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1384                         goto next;
1385                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1386 next:
1387                 cond_resched();
1388         } while (pmd++, addr = next, addr != end);
1389
1390         return addr;
1391 }
1392
1393 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1394                                 struct vm_area_struct *vma, p4d_t *p4d,
1395                                 unsigned long addr, unsigned long end,
1396                                 struct zap_details *details)
1397 {
1398         pud_t *pud;
1399         unsigned long next;
1400
1401         pud = pud_offset(p4d, addr);
1402         do {
1403                 next = pud_addr_end(addr, end);
1404                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1405                         if (next - addr != HPAGE_PUD_SIZE) {
1406                                 mmap_assert_locked(tlb->mm);
1407                                 split_huge_pud(vma, pud, addr);
1408                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1409                                 goto next;
1410                         /* fall through */
1411                 }
1412                 if (pud_none_or_clear_bad(pud))
1413                         continue;
1414                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1415 next:
1416                 cond_resched();
1417         } while (pud++, addr = next, addr != end);
1418
1419         return addr;
1420 }
1421
1422 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1423                                 struct vm_area_struct *vma, pgd_t *pgd,
1424                                 unsigned long addr, unsigned long end,
1425                                 struct zap_details *details)
1426 {
1427         p4d_t *p4d;
1428         unsigned long next;
1429
1430         p4d = p4d_offset(pgd, addr);
1431         do {
1432                 next = p4d_addr_end(addr, end);
1433                 if (p4d_none_or_clear_bad(p4d))
1434                         continue;
1435                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1436         } while (p4d++, addr = next, addr != end);
1437
1438         return addr;
1439 }
1440
1441 void unmap_page_range(struct mmu_gather *tlb,
1442                              struct vm_area_struct *vma,
1443                              unsigned long addr, unsigned long end,
1444                              struct zap_details *details)
1445 {
1446         pgd_t *pgd;
1447         unsigned long next;
1448
1449         BUG_ON(addr >= end);
1450         tlb_start_vma(tlb, vma);
1451         pgd = pgd_offset(vma->vm_mm, addr);
1452         do {
1453                 next = pgd_addr_end(addr, end);
1454                 if (pgd_none_or_clear_bad(pgd))
1455                         continue;
1456                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1457         } while (pgd++, addr = next, addr != end);
1458         tlb_end_vma(tlb, vma);
1459 }
1460
1461
1462 static void unmap_single_vma(struct mmu_gather *tlb,
1463                 struct vm_area_struct *vma, unsigned long start_addr,
1464                 unsigned long end_addr,
1465                 struct zap_details *details)
1466 {
1467         unsigned long start = max(vma->vm_start, start_addr);
1468         unsigned long end;
1469
1470         if (start >= vma->vm_end)
1471                 return;
1472         end = min(vma->vm_end, end_addr);
1473         if (end <= vma->vm_start)
1474                 return;
1475
1476         if (vma->vm_file)
1477                 uprobe_munmap(vma, start, end);
1478
1479         if (unlikely(vma->vm_flags & VM_PFNMAP))
1480                 untrack_pfn(vma, 0, 0);
1481
1482         if (start != end) {
1483                 if (unlikely(is_vm_hugetlb_page(vma))) {
1484                         /*
1485                          * It is undesirable to test vma->vm_file as it
1486                          * should be non-null for valid hugetlb area.
1487                          * However, vm_file will be NULL in the error
1488                          * cleanup path of mmap_region. When
1489                          * hugetlbfs ->mmap method fails,
1490                          * mmap_region() nullifies vma->vm_file
1491                          * before calling this function to clean up.
1492                          * Since no pte has actually been setup, it is
1493                          * safe to do nothing in this case.
1494                          */
1495                         if (vma->vm_file) {
1496                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1497                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1498                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1499                         }
1500                 } else
1501                         unmap_page_range(tlb, vma, start, end, details);
1502         }
1503 }
1504
1505 /**
1506  * unmap_vmas - unmap a range of memory covered by a list of vma's
1507  * @tlb: address of the caller's struct mmu_gather
1508  * @vma: the starting vma
1509  * @start_addr: virtual address at which to start unmapping
1510  * @end_addr: virtual address at which to end unmapping
1511  *
1512  * Unmap all pages in the vma list.
1513  *
1514  * Only addresses between `start' and `end' will be unmapped.
1515  *
1516  * The VMA list must be sorted in ascending virtual address order.
1517  *
1518  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1519  * range after unmap_vmas() returns.  So the only responsibility here is to
1520  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1521  * drops the lock and schedules.
1522  */
1523 void unmap_vmas(struct mmu_gather *tlb,
1524                 struct vm_area_struct *vma, unsigned long start_addr,
1525                 unsigned long end_addr)
1526 {
1527         struct mmu_notifier_range range;
1528
1529         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1530                                 start_addr, end_addr);
1531         mmu_notifier_invalidate_range_start(&range);
1532         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1533                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1534         mmu_notifier_invalidate_range_end(&range);
1535 }
1536
1537 /**
1538  * zap_page_range - remove user pages in a given range
1539  * @vma: vm_area_struct holding the applicable pages
1540  * @start: starting address of pages to zap
1541  * @size: number of bytes to zap
1542  *
1543  * Caller must protect the VMA list
1544  */
1545 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1546                 unsigned long size)
1547 {
1548         struct mmu_notifier_range range;
1549         struct mmu_gather tlb;
1550
1551         lru_add_drain();
1552         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1553                                 start, start + size);
1554         tlb_gather_mmu(&tlb, vma->vm_mm);
1555         update_hiwater_rss(vma->vm_mm);
1556         mmu_notifier_invalidate_range_start(&range);
1557         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1558                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1559         mmu_notifier_invalidate_range_end(&range);
1560         tlb_finish_mmu(&tlb);
1561 }
1562
1563 /**
1564  * zap_page_range_single - remove user pages in a given range
1565  * @vma: vm_area_struct holding the applicable pages
1566  * @address: starting address of pages to zap
1567  * @size: number of bytes to zap
1568  * @details: details of shared cache invalidation
1569  *
1570  * The range must fit into one VMA.
1571  */
1572 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1573                 unsigned long size, struct zap_details *details)
1574 {
1575         struct mmu_notifier_range range;
1576         struct mmu_gather tlb;
1577
1578         lru_add_drain();
1579         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1580                                 address, address + size);
1581         tlb_gather_mmu(&tlb, vma->vm_mm);
1582         update_hiwater_rss(vma->vm_mm);
1583         mmu_notifier_invalidate_range_start(&range);
1584         unmap_single_vma(&tlb, vma, address, range.end, details);
1585         mmu_notifier_invalidate_range_end(&range);
1586         tlb_finish_mmu(&tlb);
1587 }
1588
1589 /**
1590  * zap_vma_ptes - remove ptes mapping the vma
1591  * @vma: vm_area_struct holding ptes to be zapped
1592  * @address: starting address of pages to zap
1593  * @size: number of bytes to zap
1594  *
1595  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1596  *
1597  * The entire address range must be fully contained within the vma.
1598  *
1599  */
1600 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1601                 unsigned long size)
1602 {
1603         if (address < vma->vm_start || address + size > vma->vm_end ||
1604                         !(vma->vm_flags & VM_PFNMAP))
1605                 return;
1606
1607         zap_page_range_single(vma, address, size, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1610
1611 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1612 {
1613         pgd_t *pgd;
1614         p4d_t *p4d;
1615         pud_t *pud;
1616         pmd_t *pmd;
1617
1618         pgd = pgd_offset(mm, addr);
1619         p4d = p4d_alloc(mm, pgd, addr);
1620         if (!p4d)
1621                 return NULL;
1622         pud = pud_alloc(mm, p4d, addr);
1623         if (!pud)
1624                 return NULL;
1625         pmd = pmd_alloc(mm, pud, addr);
1626         if (!pmd)
1627                 return NULL;
1628
1629         VM_BUG_ON(pmd_trans_huge(*pmd));
1630         return pmd;
1631 }
1632
1633 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1634                         spinlock_t **ptl)
1635 {
1636         pmd_t *pmd = walk_to_pmd(mm, addr);
1637
1638         if (!pmd)
1639                 return NULL;
1640         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1641 }
1642
1643 static int validate_page_before_insert(struct page *page)
1644 {
1645         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1646                 return -EINVAL;
1647         flush_dcache_page(page);
1648         return 0;
1649 }
1650
1651 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1652                         unsigned long addr, struct page *page, pgprot_t prot)
1653 {
1654         if (!pte_none(*pte))
1655                 return -EBUSY;
1656         /* Ok, finally just insert the thing.. */
1657         get_page(page);
1658         inc_mm_counter_fast(mm, mm_counter_file(page));
1659         page_add_file_rmap(page, false);
1660         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1661         return 0;
1662 }
1663
1664 /*
1665  * This is the old fallback for page remapping.
1666  *
1667  * For historical reasons, it only allows reserved pages. Only
1668  * old drivers should use this, and they needed to mark their
1669  * pages reserved for the old functions anyway.
1670  */
1671 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1672                         struct page *page, pgprot_t prot)
1673 {
1674         struct mm_struct *mm = vma->vm_mm;
1675         int retval;
1676         pte_t *pte;
1677         spinlock_t *ptl;
1678
1679         retval = validate_page_before_insert(page);
1680         if (retval)
1681                 goto out;
1682         retval = -ENOMEM;
1683         pte = get_locked_pte(mm, addr, &ptl);
1684         if (!pte)
1685                 goto out;
1686         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1687         pte_unmap_unlock(pte, ptl);
1688 out:
1689         return retval;
1690 }
1691
1692 #ifdef pte_index
1693 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1694                         unsigned long addr, struct page *page, pgprot_t prot)
1695 {
1696         int err;
1697
1698         if (!page_count(page))
1699                 return -EINVAL;
1700         err = validate_page_before_insert(page);
1701         if (err)
1702                 return err;
1703         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1704 }
1705
1706 /* insert_pages() amortizes the cost of spinlock operations
1707  * when inserting pages in a loop. Arch *must* define pte_index.
1708  */
1709 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1710                         struct page **pages, unsigned long *num, pgprot_t prot)
1711 {
1712         pmd_t *pmd = NULL;
1713         pte_t *start_pte, *pte;
1714         spinlock_t *pte_lock;
1715         struct mm_struct *const mm = vma->vm_mm;
1716         unsigned long curr_page_idx = 0;
1717         unsigned long remaining_pages_total = *num;
1718         unsigned long pages_to_write_in_pmd;
1719         int ret;
1720 more:
1721         ret = -EFAULT;
1722         pmd = walk_to_pmd(mm, addr);
1723         if (!pmd)
1724                 goto out;
1725
1726         pages_to_write_in_pmd = min_t(unsigned long,
1727                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1728
1729         /* Allocate the PTE if necessary; takes PMD lock once only. */
1730         ret = -ENOMEM;
1731         if (pte_alloc(mm, pmd))
1732                 goto out;
1733
1734         while (pages_to_write_in_pmd) {
1735                 int pte_idx = 0;
1736                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1737
1738                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1739                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1740                         int err = insert_page_in_batch_locked(mm, pte,
1741                                 addr, pages[curr_page_idx], prot);
1742                         if (unlikely(err)) {
1743                                 pte_unmap_unlock(start_pte, pte_lock);
1744                                 ret = err;
1745                                 remaining_pages_total -= pte_idx;
1746                                 goto out;
1747                         }
1748                         addr += PAGE_SIZE;
1749                         ++curr_page_idx;
1750                 }
1751                 pte_unmap_unlock(start_pte, pte_lock);
1752                 pages_to_write_in_pmd -= batch_size;
1753                 remaining_pages_total -= batch_size;
1754         }
1755         if (remaining_pages_total)
1756                 goto more;
1757         ret = 0;
1758 out:
1759         *num = remaining_pages_total;
1760         return ret;
1761 }
1762 #endif  /* ifdef pte_index */
1763
1764 /**
1765  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1766  * @vma: user vma to map to
1767  * @addr: target start user address of these pages
1768  * @pages: source kernel pages
1769  * @num: in: number of pages to map. out: number of pages that were *not*
1770  * mapped. (0 means all pages were successfully mapped).
1771  *
1772  * Preferred over vm_insert_page() when inserting multiple pages.
1773  *
1774  * In case of error, we may have mapped a subset of the provided
1775  * pages. It is the caller's responsibility to account for this case.
1776  *
1777  * The same restrictions apply as in vm_insert_page().
1778  */
1779 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1780                         struct page **pages, unsigned long *num)
1781 {
1782 #ifdef pte_index
1783         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1784
1785         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1786                 return -EFAULT;
1787         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1788                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1789                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1790                 vma->vm_flags |= VM_MIXEDMAP;
1791         }
1792         /* Defer page refcount checking till we're about to map that page. */
1793         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1794 #else
1795         unsigned long idx = 0, pgcount = *num;
1796         int err = -EINVAL;
1797
1798         for (; idx < pgcount; ++idx) {
1799                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1800                 if (err)
1801                         break;
1802         }
1803         *num = pgcount - idx;
1804         return err;
1805 #endif  /* ifdef pte_index */
1806 }
1807 EXPORT_SYMBOL(vm_insert_pages);
1808
1809 /**
1810  * vm_insert_page - insert single page into user vma
1811  * @vma: user vma to map to
1812  * @addr: target user address of this page
1813  * @page: source kernel page
1814  *
1815  * This allows drivers to insert individual pages they've allocated
1816  * into a user vma.
1817  *
1818  * The page has to be a nice clean _individual_ kernel allocation.
1819  * If you allocate a compound page, you need to have marked it as
1820  * such (__GFP_COMP), or manually just split the page up yourself
1821  * (see split_page()).
1822  *
1823  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1824  * took an arbitrary page protection parameter. This doesn't allow
1825  * that. Your vma protection will have to be set up correctly, which
1826  * means that if you want a shared writable mapping, you'd better
1827  * ask for a shared writable mapping!
1828  *
1829  * The page does not need to be reserved.
1830  *
1831  * Usually this function is called from f_op->mmap() handler
1832  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1833  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1834  * function from other places, for example from page-fault handler.
1835  *
1836  * Return: %0 on success, negative error code otherwise.
1837  */
1838 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1839                         struct page *page)
1840 {
1841         if (addr < vma->vm_start || addr >= vma->vm_end)
1842                 return -EFAULT;
1843         if (!page_count(page))
1844                 return -EINVAL;
1845         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1846                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1847                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1848                 vma->vm_flags |= VM_MIXEDMAP;
1849         }
1850         return insert_page(vma, addr, page, vma->vm_page_prot);
1851 }
1852 EXPORT_SYMBOL(vm_insert_page);
1853
1854 /*
1855  * __vm_map_pages - maps range of kernel pages into user vma
1856  * @vma: user vma to map to
1857  * @pages: pointer to array of source kernel pages
1858  * @num: number of pages in page array
1859  * @offset: user's requested vm_pgoff
1860  *
1861  * This allows drivers to map range of kernel pages into a user vma.
1862  *
1863  * Return: 0 on success and error code otherwise.
1864  */
1865 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1866                                 unsigned long num, unsigned long offset)
1867 {
1868         unsigned long count = vma_pages(vma);
1869         unsigned long uaddr = vma->vm_start;
1870         int ret, i;
1871
1872         /* Fail if the user requested offset is beyond the end of the object */
1873         if (offset >= num)
1874                 return -ENXIO;
1875
1876         /* Fail if the user requested size exceeds available object size */
1877         if (count > num - offset)
1878                 return -ENXIO;
1879
1880         for (i = 0; i < count; i++) {
1881                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1882                 if (ret < 0)
1883                         return ret;
1884                 uaddr += PAGE_SIZE;
1885         }
1886
1887         return 0;
1888 }
1889
1890 /**
1891  * vm_map_pages - maps range of kernel pages starts with non zero offset
1892  * @vma: user vma to map to
1893  * @pages: pointer to array of source kernel pages
1894  * @num: number of pages in page array
1895  *
1896  * Maps an object consisting of @num pages, catering for the user's
1897  * requested vm_pgoff
1898  *
1899  * If we fail to insert any page into the vma, the function will return
1900  * immediately leaving any previously inserted pages present.  Callers
1901  * from the mmap handler may immediately return the error as their caller
1902  * will destroy the vma, removing any successfully inserted pages. Other
1903  * callers should make their own arrangements for calling unmap_region().
1904  *
1905  * Context: Process context. Called by mmap handlers.
1906  * Return: 0 on success and error code otherwise.
1907  */
1908 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1909                                 unsigned long num)
1910 {
1911         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1912 }
1913 EXPORT_SYMBOL(vm_map_pages);
1914
1915 /**
1916  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1917  * @vma: user vma to map to
1918  * @pages: pointer to array of source kernel pages
1919  * @num: number of pages in page array
1920  *
1921  * Similar to vm_map_pages(), except that it explicitly sets the offset
1922  * to 0. This function is intended for the drivers that did not consider
1923  * vm_pgoff.
1924  *
1925  * Context: Process context. Called by mmap handlers.
1926  * Return: 0 on success and error code otherwise.
1927  */
1928 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1929                                 unsigned long num)
1930 {
1931         return __vm_map_pages(vma, pages, num, 0);
1932 }
1933 EXPORT_SYMBOL(vm_map_pages_zero);
1934
1935 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1936                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1937 {
1938         struct mm_struct *mm = vma->vm_mm;
1939         pte_t *pte, entry;
1940         spinlock_t *ptl;
1941
1942         pte = get_locked_pte(mm, addr, &ptl);
1943         if (!pte)
1944                 return VM_FAULT_OOM;
1945         if (!pte_none(*pte)) {
1946                 if (mkwrite) {
1947                         /*
1948                          * For read faults on private mappings the PFN passed
1949                          * in may not match the PFN we have mapped if the
1950                          * mapped PFN is a writeable COW page.  In the mkwrite
1951                          * case we are creating a writable PTE for a shared
1952                          * mapping and we expect the PFNs to match. If they
1953                          * don't match, we are likely racing with block
1954                          * allocation and mapping invalidation so just skip the
1955                          * update.
1956                          */
1957                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1958                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1959                                 goto out_unlock;
1960                         }
1961                         entry = pte_mkyoung(*pte);
1962                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1963                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1964                                 update_mmu_cache(vma, addr, pte);
1965                 }
1966                 goto out_unlock;
1967         }
1968
1969         /* Ok, finally just insert the thing.. */
1970         if (pfn_t_devmap(pfn))
1971                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1972         else
1973                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1974
1975         if (mkwrite) {
1976                 entry = pte_mkyoung(entry);
1977                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1978         }
1979
1980         set_pte_at(mm, addr, pte, entry);
1981         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1982
1983 out_unlock:
1984         pte_unmap_unlock(pte, ptl);
1985         return VM_FAULT_NOPAGE;
1986 }
1987
1988 /**
1989  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1990  * @vma: user vma to map to
1991  * @addr: target user address of this page
1992  * @pfn: source kernel pfn
1993  * @pgprot: pgprot flags for the inserted page
1994  *
1995  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1996  * to override pgprot on a per-page basis.
1997  *
1998  * This only makes sense for IO mappings, and it makes no sense for
1999  * COW mappings.  In general, using multiple vmas is preferable;
2000  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2001  * impractical.
2002  *
2003  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2004  * a value of @pgprot different from that of @vma->vm_page_prot.
2005  *
2006  * Context: Process context.  May allocate using %GFP_KERNEL.
2007  * Return: vm_fault_t value.
2008  */
2009 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2010                         unsigned long pfn, pgprot_t pgprot)
2011 {
2012         /*
2013          * Technically, architectures with pte_special can avoid all these
2014          * restrictions (same for remap_pfn_range).  However we would like
2015          * consistency in testing and feature parity among all, so we should
2016          * try to keep these invariants in place for everybody.
2017          */
2018         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2019         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2020                                                 (VM_PFNMAP|VM_MIXEDMAP));
2021         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2022         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2023
2024         if (addr < vma->vm_start || addr >= vma->vm_end)
2025                 return VM_FAULT_SIGBUS;
2026
2027         if (!pfn_modify_allowed(pfn, pgprot))
2028                 return VM_FAULT_SIGBUS;
2029
2030         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2031
2032         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2033                         false);
2034 }
2035 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2036
2037 /**
2038  * vmf_insert_pfn - insert single pfn into user vma
2039  * @vma: user vma to map to
2040  * @addr: target user address of this page
2041  * @pfn: source kernel pfn
2042  *
2043  * Similar to vm_insert_page, this allows drivers to insert individual pages
2044  * they've allocated into a user vma. Same comments apply.
2045  *
2046  * This function should only be called from a vm_ops->fault handler, and
2047  * in that case the handler should return the result of this function.
2048  *
2049  * vma cannot be a COW mapping.
2050  *
2051  * As this is called only for pages that do not currently exist, we
2052  * do not need to flush old virtual caches or the TLB.
2053  *
2054  * Context: Process context.  May allocate using %GFP_KERNEL.
2055  * Return: vm_fault_t value.
2056  */
2057 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2058                         unsigned long pfn)
2059 {
2060         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2061 }
2062 EXPORT_SYMBOL(vmf_insert_pfn);
2063
2064 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2065 {
2066         /* these checks mirror the abort conditions in vm_normal_page */
2067         if (vma->vm_flags & VM_MIXEDMAP)
2068                 return true;
2069         if (pfn_t_devmap(pfn))
2070                 return true;
2071         if (pfn_t_special(pfn))
2072                 return true;
2073         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2074                 return true;
2075         return false;
2076 }
2077
2078 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2079                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2080                 bool mkwrite)
2081 {
2082         int err;
2083
2084         BUG_ON(!vm_mixed_ok(vma, pfn));
2085
2086         if (addr < vma->vm_start || addr >= vma->vm_end)
2087                 return VM_FAULT_SIGBUS;
2088
2089         track_pfn_insert(vma, &pgprot, pfn);
2090
2091         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2092                 return VM_FAULT_SIGBUS;
2093
2094         /*
2095          * If we don't have pte special, then we have to use the pfn_valid()
2096          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2097          * refcount the page if pfn_valid is true (hence insert_page rather
2098          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2099          * without pte special, it would there be refcounted as a normal page.
2100          */
2101         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2102             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2103                 struct page *page;
2104
2105                 /*
2106                  * At this point we are committed to insert_page()
2107                  * regardless of whether the caller specified flags that
2108                  * result in pfn_t_has_page() == false.
2109                  */
2110                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2111                 err = insert_page(vma, addr, page, pgprot);
2112         } else {
2113                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2114         }
2115
2116         if (err == -ENOMEM)
2117                 return VM_FAULT_OOM;
2118         if (err < 0 && err != -EBUSY)
2119                 return VM_FAULT_SIGBUS;
2120
2121         return VM_FAULT_NOPAGE;
2122 }
2123
2124 /**
2125  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2126  * @vma: user vma to map to
2127  * @addr: target user address of this page
2128  * @pfn: source kernel pfn
2129  * @pgprot: pgprot flags for the inserted page
2130  *
2131  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2132  * to override pgprot on a per-page basis.
2133  *
2134  * Typically this function should be used by drivers to set caching- and
2135  * encryption bits different than those of @vma->vm_page_prot, because
2136  * the caching- or encryption mode may not be known at mmap() time.
2137  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2138  * to set caching and encryption bits for those vmas (except for COW pages).
2139  * This is ensured by core vm only modifying these page table entries using
2140  * functions that don't touch caching- or encryption bits, using pte_modify()
2141  * if needed. (See for example mprotect()).
2142  * Also when new page-table entries are created, this is only done using the
2143  * fault() callback, and never using the value of vma->vm_page_prot,
2144  * except for page-table entries that point to anonymous pages as the result
2145  * of COW.
2146  *
2147  * Context: Process context.  May allocate using %GFP_KERNEL.
2148  * Return: vm_fault_t value.
2149  */
2150 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2151                                  pfn_t pfn, pgprot_t pgprot)
2152 {
2153         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2154 }
2155 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2156
2157 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2158                 pfn_t pfn)
2159 {
2160         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2161 }
2162 EXPORT_SYMBOL(vmf_insert_mixed);
2163
2164 /*
2165  *  If the insertion of PTE failed because someone else already added a
2166  *  different entry in the mean time, we treat that as success as we assume
2167  *  the same entry was actually inserted.
2168  */
2169 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2170                 unsigned long addr, pfn_t pfn)
2171 {
2172         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2173 }
2174 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2175
2176 /*
2177  * maps a range of physical memory into the requested pages. the old
2178  * mappings are removed. any references to nonexistent pages results
2179  * in null mappings (currently treated as "copy-on-access")
2180  */
2181 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2182                         unsigned long addr, unsigned long end,
2183                         unsigned long pfn, pgprot_t prot)
2184 {
2185         pte_t *pte, *mapped_pte;
2186         spinlock_t *ptl;
2187         int err = 0;
2188
2189         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2190         if (!pte)
2191                 return -ENOMEM;
2192         arch_enter_lazy_mmu_mode();
2193         do {
2194                 BUG_ON(!pte_none(*pte));
2195                 if (!pfn_modify_allowed(pfn, prot)) {
2196                         err = -EACCES;
2197                         break;
2198                 }
2199                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2200                 pfn++;
2201         } while (pte++, addr += PAGE_SIZE, addr != end);
2202         arch_leave_lazy_mmu_mode();
2203         pte_unmap_unlock(mapped_pte, ptl);
2204         return err;
2205 }
2206
2207 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2208                         unsigned long addr, unsigned long end,
2209                         unsigned long pfn, pgprot_t prot)
2210 {
2211         pmd_t *pmd;
2212         unsigned long next;
2213         int err;
2214
2215         pfn -= addr >> PAGE_SHIFT;
2216         pmd = pmd_alloc(mm, pud, addr);
2217         if (!pmd)
2218                 return -ENOMEM;
2219         VM_BUG_ON(pmd_trans_huge(*pmd));
2220         do {
2221                 next = pmd_addr_end(addr, end);
2222                 err = remap_pte_range(mm, pmd, addr, next,
2223                                 pfn + (addr >> PAGE_SHIFT), prot);
2224                 if (err)
2225                         return err;
2226         } while (pmd++, addr = next, addr != end);
2227         return 0;
2228 }
2229
2230 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2231                         unsigned long addr, unsigned long end,
2232                         unsigned long pfn, pgprot_t prot)
2233 {
2234         pud_t *pud;
2235         unsigned long next;
2236         int err;
2237
2238         pfn -= addr >> PAGE_SHIFT;
2239         pud = pud_alloc(mm, p4d, addr);
2240         if (!pud)
2241                 return -ENOMEM;
2242         do {
2243                 next = pud_addr_end(addr, end);
2244                 err = remap_pmd_range(mm, pud, addr, next,
2245                                 pfn + (addr >> PAGE_SHIFT), prot);
2246                 if (err)
2247                         return err;
2248         } while (pud++, addr = next, addr != end);
2249         return 0;
2250 }
2251
2252 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2253                         unsigned long addr, unsigned long end,
2254                         unsigned long pfn, pgprot_t prot)
2255 {
2256         p4d_t *p4d;
2257         unsigned long next;
2258         int err;
2259
2260         pfn -= addr >> PAGE_SHIFT;
2261         p4d = p4d_alloc(mm, pgd, addr);
2262         if (!p4d)
2263                 return -ENOMEM;
2264         do {
2265                 next = p4d_addr_end(addr, end);
2266                 err = remap_pud_range(mm, p4d, addr, next,
2267                                 pfn + (addr >> PAGE_SHIFT), prot);
2268                 if (err)
2269                         return err;
2270         } while (p4d++, addr = next, addr != end);
2271         return 0;
2272 }
2273
2274 /*
2275  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2276  * must have pre-validated the caching bits of the pgprot_t.
2277  */
2278 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2279                 unsigned long pfn, unsigned long size, pgprot_t prot)
2280 {
2281         pgd_t *pgd;
2282         unsigned long next;
2283         unsigned long end = addr + PAGE_ALIGN(size);
2284         struct mm_struct *mm = vma->vm_mm;
2285         int err;
2286
2287         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2288                 return -EINVAL;
2289
2290         /*
2291          * Physically remapped pages are special. Tell the
2292          * rest of the world about it:
2293          *   VM_IO tells people not to look at these pages
2294          *      (accesses can have side effects).
2295          *   VM_PFNMAP tells the core MM that the base pages are just
2296          *      raw PFN mappings, and do not have a "struct page" associated
2297          *      with them.
2298          *   VM_DONTEXPAND
2299          *      Disable vma merging and expanding with mremap().
2300          *   VM_DONTDUMP
2301          *      Omit vma from core dump, even when VM_IO turned off.
2302          *
2303          * There's a horrible special case to handle copy-on-write
2304          * behaviour that some programs depend on. We mark the "original"
2305          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2306          * See vm_normal_page() for details.
2307          */
2308         if (is_cow_mapping(vma->vm_flags)) {
2309                 if (addr != vma->vm_start || end != vma->vm_end)
2310                         return -EINVAL;
2311                 vma->vm_pgoff = pfn;
2312         }
2313
2314         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2315
2316         BUG_ON(addr >= end);
2317         pfn -= addr >> PAGE_SHIFT;
2318         pgd = pgd_offset(mm, addr);
2319         flush_cache_range(vma, addr, end);
2320         do {
2321                 next = pgd_addr_end(addr, end);
2322                 err = remap_p4d_range(mm, pgd, addr, next,
2323                                 pfn + (addr >> PAGE_SHIFT), prot);
2324                 if (err)
2325                         return err;
2326         } while (pgd++, addr = next, addr != end);
2327
2328         return 0;
2329 }
2330
2331 /**
2332  * remap_pfn_range - remap kernel memory to userspace
2333  * @vma: user vma to map to
2334  * @addr: target page aligned user address to start at
2335  * @pfn: page frame number of kernel physical memory address
2336  * @size: size of mapping area
2337  * @prot: page protection flags for this mapping
2338  *
2339  * Note: this is only safe if the mm semaphore is held when called.
2340  *
2341  * Return: %0 on success, negative error code otherwise.
2342  */
2343 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2344                     unsigned long pfn, unsigned long size, pgprot_t prot)
2345 {
2346         int err;
2347
2348         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2349         if (err)
2350                 return -EINVAL;
2351
2352         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2353         if (err)
2354                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2355         return err;
2356 }
2357 EXPORT_SYMBOL(remap_pfn_range);
2358
2359 /**
2360  * vm_iomap_memory - remap memory to userspace
2361  * @vma: user vma to map to
2362  * @start: start of the physical memory to be mapped
2363  * @len: size of area
2364  *
2365  * This is a simplified io_remap_pfn_range() for common driver use. The
2366  * driver just needs to give us the physical memory range to be mapped,
2367  * we'll figure out the rest from the vma information.
2368  *
2369  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2370  * whatever write-combining details or similar.
2371  *
2372  * Return: %0 on success, negative error code otherwise.
2373  */
2374 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2375 {
2376         unsigned long vm_len, pfn, pages;
2377
2378         /* Check that the physical memory area passed in looks valid */
2379         if (start + len < start)
2380                 return -EINVAL;
2381         /*
2382          * You *really* shouldn't map things that aren't page-aligned,
2383          * but we've historically allowed it because IO memory might
2384          * just have smaller alignment.
2385          */
2386         len += start & ~PAGE_MASK;
2387         pfn = start >> PAGE_SHIFT;
2388         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2389         if (pfn + pages < pfn)
2390                 return -EINVAL;
2391
2392         /* We start the mapping 'vm_pgoff' pages into the area */
2393         if (vma->vm_pgoff > pages)
2394                 return -EINVAL;
2395         pfn += vma->vm_pgoff;
2396         pages -= vma->vm_pgoff;
2397
2398         /* Can we fit all of the mapping? */
2399         vm_len = vma->vm_end - vma->vm_start;
2400         if (vm_len >> PAGE_SHIFT > pages)
2401                 return -EINVAL;
2402
2403         /* Ok, let it rip */
2404         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2405 }
2406 EXPORT_SYMBOL(vm_iomap_memory);
2407
2408 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2409                                      unsigned long addr, unsigned long end,
2410                                      pte_fn_t fn, void *data, bool create,
2411                                      pgtbl_mod_mask *mask)
2412 {
2413         pte_t *pte, *mapped_pte;
2414         int err = 0;
2415         spinlock_t *ptl;
2416
2417         if (create) {
2418                 mapped_pte = pte = (mm == &init_mm) ?
2419                         pte_alloc_kernel_track(pmd, addr, mask) :
2420                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2421                 if (!pte)
2422                         return -ENOMEM;
2423         } else {
2424                 mapped_pte = pte = (mm == &init_mm) ?
2425                         pte_offset_kernel(pmd, addr) :
2426                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2427         }
2428
2429         BUG_ON(pmd_huge(*pmd));
2430
2431         arch_enter_lazy_mmu_mode();
2432
2433         if (fn) {
2434                 do {
2435                         if (create || !pte_none(*pte)) {
2436                                 err = fn(pte++, addr, data);
2437                                 if (err)
2438                                         break;
2439                         }
2440                 } while (addr += PAGE_SIZE, addr != end);
2441         }
2442         *mask |= PGTBL_PTE_MODIFIED;
2443
2444         arch_leave_lazy_mmu_mode();
2445
2446         if (mm != &init_mm)
2447                 pte_unmap_unlock(mapped_pte, ptl);
2448         return err;
2449 }
2450
2451 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2452                                      unsigned long addr, unsigned long end,
2453                                      pte_fn_t fn, void *data, bool create,
2454                                      pgtbl_mod_mask *mask)
2455 {
2456         pmd_t *pmd;
2457         unsigned long next;
2458         int err = 0;
2459
2460         BUG_ON(pud_huge(*pud));
2461
2462         if (create) {
2463                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2464                 if (!pmd)
2465                         return -ENOMEM;
2466         } else {
2467                 pmd = pmd_offset(pud, addr);
2468         }
2469         do {
2470                 next = pmd_addr_end(addr, end);
2471                 if (pmd_none(*pmd) && !create)
2472                         continue;
2473                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2474                         return -EINVAL;
2475                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2476                         if (!create)
2477                                 continue;
2478                         pmd_clear_bad(pmd);
2479                 }
2480                 err = apply_to_pte_range(mm, pmd, addr, next,
2481                                          fn, data, create, mask);
2482                 if (err)
2483                         break;
2484         } while (pmd++, addr = next, addr != end);
2485
2486         return err;
2487 }
2488
2489 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2490                                      unsigned long addr, unsigned long end,
2491                                      pte_fn_t fn, void *data, bool create,
2492                                      pgtbl_mod_mask *mask)
2493 {
2494         pud_t *pud;
2495         unsigned long next;
2496         int err = 0;
2497
2498         if (create) {
2499                 pud = pud_alloc_track(mm, p4d, addr, mask);
2500                 if (!pud)
2501                         return -ENOMEM;
2502         } else {
2503                 pud = pud_offset(p4d, addr);
2504         }
2505         do {
2506                 next = pud_addr_end(addr, end);
2507                 if (pud_none(*pud) && !create)
2508                         continue;
2509                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2510                         return -EINVAL;
2511                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2512                         if (!create)
2513                                 continue;
2514                         pud_clear_bad(pud);
2515                 }
2516                 err = apply_to_pmd_range(mm, pud, addr, next,
2517                                          fn, data, create, mask);
2518                 if (err)
2519                         break;
2520         } while (pud++, addr = next, addr != end);
2521
2522         return err;
2523 }
2524
2525 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2526                                      unsigned long addr, unsigned long end,
2527                                      pte_fn_t fn, void *data, bool create,
2528                                      pgtbl_mod_mask *mask)
2529 {
2530         p4d_t *p4d;
2531         unsigned long next;
2532         int err = 0;
2533
2534         if (create) {
2535                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2536                 if (!p4d)
2537                         return -ENOMEM;
2538         } else {
2539                 p4d = p4d_offset(pgd, addr);
2540         }
2541         do {
2542                 next = p4d_addr_end(addr, end);
2543                 if (p4d_none(*p4d) && !create)
2544                         continue;
2545                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2546                         return -EINVAL;
2547                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2548                         if (!create)
2549                                 continue;
2550                         p4d_clear_bad(p4d);
2551                 }
2552                 err = apply_to_pud_range(mm, p4d, addr, next,
2553                                          fn, data, create, mask);
2554                 if (err)
2555                         break;
2556         } while (p4d++, addr = next, addr != end);
2557
2558         return err;
2559 }
2560
2561 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2562                                  unsigned long size, pte_fn_t fn,
2563                                  void *data, bool create)
2564 {
2565         pgd_t *pgd;
2566         unsigned long start = addr, next;
2567         unsigned long end = addr + size;
2568         pgtbl_mod_mask mask = 0;
2569         int err = 0;
2570
2571         if (WARN_ON(addr >= end))
2572                 return -EINVAL;
2573
2574         pgd = pgd_offset(mm, addr);
2575         do {
2576                 next = pgd_addr_end(addr, end);
2577                 if (pgd_none(*pgd) && !create)
2578                         continue;
2579                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2580                         return -EINVAL;
2581                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2582                         if (!create)
2583                                 continue;
2584                         pgd_clear_bad(pgd);
2585                 }
2586                 err = apply_to_p4d_range(mm, pgd, addr, next,
2587                                          fn, data, create, &mask);
2588                 if (err)
2589                         break;
2590         } while (pgd++, addr = next, addr != end);
2591
2592         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2593                 arch_sync_kernel_mappings(start, start + size);
2594
2595         return err;
2596 }
2597
2598 /*
2599  * Scan a region of virtual memory, filling in page tables as necessary
2600  * and calling a provided function on each leaf page table.
2601  */
2602 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2603                         unsigned long size, pte_fn_t fn, void *data)
2604 {
2605         return __apply_to_page_range(mm, addr, size, fn, data, true);
2606 }
2607 EXPORT_SYMBOL_GPL(apply_to_page_range);
2608
2609 /*
2610  * Scan a region of virtual memory, calling a provided function on
2611  * each leaf page table where it exists.
2612  *
2613  * Unlike apply_to_page_range, this does _not_ fill in page tables
2614  * where they are absent.
2615  */
2616 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2617                                  unsigned long size, pte_fn_t fn, void *data)
2618 {
2619         return __apply_to_page_range(mm, addr, size, fn, data, false);
2620 }
2621 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2622
2623 /*
2624  * handle_pte_fault chooses page fault handler according to an entry which was
2625  * read non-atomically.  Before making any commitment, on those architectures
2626  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2627  * parts, do_swap_page must check under lock before unmapping the pte and
2628  * proceeding (but do_wp_page is only called after already making such a check;
2629  * and do_anonymous_page can safely check later on).
2630  */
2631 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2632                                 pte_t *page_table, pte_t orig_pte)
2633 {
2634         int same = 1;
2635 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2636         if (sizeof(pte_t) > sizeof(unsigned long)) {
2637                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2638                 spin_lock(ptl);
2639                 same = pte_same(*page_table, orig_pte);
2640                 spin_unlock(ptl);
2641         }
2642 #endif
2643         pte_unmap(page_table);
2644         return same;
2645 }
2646
2647 static inline bool cow_user_page(struct page *dst, struct page *src,
2648                                  struct vm_fault *vmf)
2649 {
2650         bool ret;
2651         void *kaddr;
2652         void __user *uaddr;
2653         bool locked = false;
2654         struct vm_area_struct *vma = vmf->vma;
2655         struct mm_struct *mm = vma->vm_mm;
2656         unsigned long addr = vmf->address;
2657
2658         if (likely(src)) {
2659                 copy_user_highpage(dst, src, addr, vma);
2660                 return true;
2661         }
2662
2663         /*
2664          * If the source page was a PFN mapping, we don't have
2665          * a "struct page" for it. We do a best-effort copy by
2666          * just copying from the original user address. If that
2667          * fails, we just zero-fill it. Live with it.
2668          */
2669         kaddr = kmap_atomic(dst);
2670         uaddr = (void __user *)(addr & PAGE_MASK);
2671
2672         /*
2673          * On architectures with software "accessed" bits, we would
2674          * take a double page fault, so mark it accessed here.
2675          */
2676         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2677                 pte_t entry;
2678
2679                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2680                 locked = true;
2681                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2682                         /*
2683                          * Other thread has already handled the fault
2684                          * and update local tlb only
2685                          */
2686                         update_mmu_tlb(vma, addr, vmf->pte);
2687                         ret = false;
2688                         goto pte_unlock;
2689                 }
2690
2691                 entry = pte_mkyoung(vmf->orig_pte);
2692                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2693                         update_mmu_cache(vma, addr, vmf->pte);
2694         }
2695
2696         /*
2697          * This really shouldn't fail, because the page is there
2698          * in the page tables. But it might just be unreadable,
2699          * in which case we just give up and fill the result with
2700          * zeroes.
2701          */
2702         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2703                 if (locked)
2704                         goto warn;
2705
2706                 /* Re-validate under PTL if the page is still mapped */
2707                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2708                 locked = true;
2709                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2710                         /* The PTE changed under us, update local tlb */
2711                         update_mmu_tlb(vma, addr, vmf->pte);
2712                         ret = false;
2713                         goto pte_unlock;
2714                 }
2715
2716                 /*
2717                  * The same page can be mapped back since last copy attempt.
2718                  * Try to copy again under PTL.
2719                  */
2720                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2721                         /*
2722                          * Give a warn in case there can be some obscure
2723                          * use-case
2724                          */
2725 warn:
2726                         WARN_ON_ONCE(1);
2727                         clear_page(kaddr);
2728                 }
2729         }
2730
2731         ret = true;
2732
2733 pte_unlock:
2734         if (locked)
2735                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2736         kunmap_atomic(kaddr);
2737         flush_dcache_page(dst);
2738
2739         return ret;
2740 }
2741
2742 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2743 {
2744         struct file *vm_file = vma->vm_file;
2745
2746         if (vm_file)
2747                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2748
2749         /*
2750          * Special mappings (e.g. VDSO) do not have any file so fake
2751          * a default GFP_KERNEL for them.
2752          */
2753         return GFP_KERNEL;
2754 }
2755
2756 /*
2757  * Notify the address space that the page is about to become writable so that
2758  * it can prohibit this or wait for the page to get into an appropriate state.
2759  *
2760  * We do this without the lock held, so that it can sleep if it needs to.
2761  */
2762 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2763 {
2764         vm_fault_t ret;
2765         struct page *page = vmf->page;
2766         unsigned int old_flags = vmf->flags;
2767
2768         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2769
2770         if (vmf->vma->vm_file &&
2771             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2772                 return VM_FAULT_SIGBUS;
2773
2774         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2775         /* Restore original flags so that caller is not surprised */
2776         vmf->flags = old_flags;
2777         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2778                 return ret;
2779         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2780                 lock_page(page);
2781                 if (!page->mapping) {
2782                         unlock_page(page);
2783                         return 0; /* retry */
2784                 }
2785                 ret |= VM_FAULT_LOCKED;
2786         } else
2787                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2788         return ret;
2789 }
2790
2791 /*
2792  * Handle dirtying of a page in shared file mapping on a write fault.
2793  *
2794  * The function expects the page to be locked and unlocks it.
2795  */
2796 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2797 {
2798         struct vm_area_struct *vma = vmf->vma;
2799         struct address_space *mapping;
2800         struct page *page = vmf->page;
2801         bool dirtied;
2802         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2803
2804         dirtied = set_page_dirty(page);
2805         VM_BUG_ON_PAGE(PageAnon(page), page);
2806         /*
2807          * Take a local copy of the address_space - page.mapping may be zeroed
2808          * by truncate after unlock_page().   The address_space itself remains
2809          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2810          * release semantics to prevent the compiler from undoing this copying.
2811          */
2812         mapping = page_rmapping(page);
2813         unlock_page(page);
2814
2815         if (!page_mkwrite)
2816                 file_update_time(vma->vm_file);
2817
2818         /*
2819          * Throttle page dirtying rate down to writeback speed.
2820          *
2821          * mapping may be NULL here because some device drivers do not
2822          * set page.mapping but still dirty their pages
2823          *
2824          * Drop the mmap_lock before waiting on IO, if we can. The file
2825          * is pinning the mapping, as per above.
2826          */
2827         if ((dirtied || page_mkwrite) && mapping) {
2828                 struct file *fpin;
2829
2830                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2831                 balance_dirty_pages_ratelimited(mapping);
2832                 if (fpin) {
2833                         fput(fpin);
2834                         return VM_FAULT_RETRY;
2835                 }
2836         }
2837
2838         return 0;
2839 }
2840
2841 /*
2842  * Handle write page faults for pages that can be reused in the current vma
2843  *
2844  * This can happen either due to the mapping being with the VM_SHARED flag,
2845  * or due to us being the last reference standing to the page. In either
2846  * case, all we need to do here is to mark the page as writable and update
2847  * any related book-keeping.
2848  */
2849 static inline void wp_page_reuse(struct vm_fault *vmf)
2850         __releases(vmf->ptl)
2851 {
2852         struct vm_area_struct *vma = vmf->vma;
2853         struct page *page = vmf->page;
2854         pte_t entry;
2855         /*
2856          * Clear the pages cpupid information as the existing
2857          * information potentially belongs to a now completely
2858          * unrelated process.
2859          */
2860         if (page)
2861                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2862
2863         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2864         entry = pte_mkyoung(vmf->orig_pte);
2865         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2866         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2867                 update_mmu_cache(vma, vmf->address, vmf->pte);
2868         pte_unmap_unlock(vmf->pte, vmf->ptl);
2869         count_vm_event(PGREUSE);
2870 }
2871
2872 /*
2873  * Handle the case of a page which we actually need to copy to a new page.
2874  *
2875  * Called with mmap_lock locked and the old page referenced, but
2876  * without the ptl held.
2877  *
2878  * High level logic flow:
2879  *
2880  * - Allocate a page, copy the content of the old page to the new one.
2881  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2882  * - Take the PTL. If the pte changed, bail out and release the allocated page
2883  * - If the pte is still the way we remember it, update the page table and all
2884  *   relevant references. This includes dropping the reference the page-table
2885  *   held to the old page, as well as updating the rmap.
2886  * - In any case, unlock the PTL and drop the reference we took to the old page.
2887  */
2888 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2889 {
2890         struct vm_area_struct *vma = vmf->vma;
2891         struct mm_struct *mm = vma->vm_mm;
2892         struct page *old_page = vmf->page;
2893         struct page *new_page = NULL;
2894         pte_t entry;
2895         int page_copied = 0;
2896         struct mmu_notifier_range range;
2897
2898         if (unlikely(anon_vma_prepare(vma)))
2899                 goto oom;
2900
2901         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2902                 new_page = alloc_zeroed_user_highpage_movable(vma,
2903                                                               vmf->address);
2904                 if (!new_page)
2905                         goto oom;
2906         } else {
2907                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2908                                 vmf->address);
2909                 if (!new_page)
2910                         goto oom;
2911
2912                 if (!cow_user_page(new_page, old_page, vmf)) {
2913                         /*
2914                          * COW failed, if the fault was solved by other,
2915                          * it's fine. If not, userspace would re-fault on
2916                          * the same address and we will handle the fault
2917                          * from the second attempt.
2918                          */
2919                         put_page(new_page);
2920                         if (old_page)
2921                                 put_page(old_page);
2922                         return 0;
2923                 }
2924         }
2925
2926         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2927                 goto oom_free_new;
2928         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2929
2930         __SetPageUptodate(new_page);
2931
2932         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2933                                 vmf->address & PAGE_MASK,
2934                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2935         mmu_notifier_invalidate_range_start(&range);
2936
2937         /*
2938          * Re-check the pte - we dropped the lock
2939          */
2940         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2941         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2942                 if (old_page) {
2943                         if (!PageAnon(old_page)) {
2944                                 dec_mm_counter_fast(mm,
2945                                                 mm_counter_file(old_page));
2946                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2947                         }
2948                 } else {
2949                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2950                 }
2951                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2952                 entry = mk_pte(new_page, vma->vm_page_prot);
2953                 entry = pte_sw_mkyoung(entry);
2954                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2955
2956                 /*
2957                  * Clear the pte entry and flush it first, before updating the
2958                  * pte with the new entry, to keep TLBs on different CPUs in
2959                  * sync. This code used to set the new PTE then flush TLBs, but
2960                  * that left a window where the new PTE could be loaded into
2961                  * some TLBs while the old PTE remains in others.
2962                  */
2963                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2964                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2965                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2966                 /*
2967                  * We call the notify macro here because, when using secondary
2968                  * mmu page tables (such as kvm shadow page tables), we want the
2969                  * new page to be mapped directly into the secondary page table.
2970                  */
2971                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2972                 update_mmu_cache(vma, vmf->address, vmf->pte);
2973                 if (old_page) {
2974                         /*
2975                          * Only after switching the pte to the new page may
2976                          * we remove the mapcount here. Otherwise another
2977                          * process may come and find the rmap count decremented
2978                          * before the pte is switched to the new page, and
2979                          * "reuse" the old page writing into it while our pte
2980                          * here still points into it and can be read by other
2981                          * threads.
2982                          *
2983                          * The critical issue is to order this
2984                          * page_remove_rmap with the ptp_clear_flush above.
2985                          * Those stores are ordered by (if nothing else,)
2986                          * the barrier present in the atomic_add_negative
2987                          * in page_remove_rmap.
2988                          *
2989                          * Then the TLB flush in ptep_clear_flush ensures that
2990                          * no process can access the old page before the
2991                          * decremented mapcount is visible. And the old page
2992                          * cannot be reused until after the decremented
2993                          * mapcount is visible. So transitively, TLBs to
2994                          * old page will be flushed before it can be reused.
2995                          */
2996                         page_remove_rmap(old_page, false);
2997                 }
2998
2999                 /* Free the old page.. */
3000                 new_page = old_page;
3001                 page_copied = 1;
3002         } else {
3003                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3004         }
3005
3006         if (new_page)
3007                 put_page(new_page);
3008
3009         pte_unmap_unlock(vmf->pte, vmf->ptl);
3010         /*
3011          * No need to double call mmu_notifier->invalidate_range() callback as
3012          * the above ptep_clear_flush_notify() did already call it.
3013          */
3014         mmu_notifier_invalidate_range_only_end(&range);
3015         if (old_page) {
3016                 /*
3017                  * Don't let another task, with possibly unlocked vma,
3018                  * keep the mlocked page.
3019                  */
3020                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3021                         lock_page(old_page);    /* LRU manipulation */
3022                         if (PageMlocked(old_page))
3023                                 munlock_vma_page(old_page);
3024                         unlock_page(old_page);
3025                 }
3026                 if (page_copied)
3027                         free_swap_cache(old_page);
3028                 put_page(old_page);
3029         }
3030         return page_copied ? VM_FAULT_WRITE : 0;
3031 oom_free_new:
3032         put_page(new_page);
3033 oom:
3034         if (old_page)
3035                 put_page(old_page);
3036         return VM_FAULT_OOM;
3037 }
3038
3039 /**
3040  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3041  *                        writeable once the page is prepared
3042  *
3043  * @vmf: structure describing the fault
3044  *
3045  * This function handles all that is needed to finish a write page fault in a
3046  * shared mapping due to PTE being read-only once the mapped page is prepared.
3047  * It handles locking of PTE and modifying it.
3048  *
3049  * The function expects the page to be locked or other protection against
3050  * concurrent faults / writeback (such as DAX radix tree locks).
3051  *
3052  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3053  * we acquired PTE lock.
3054  */
3055 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3056 {
3057         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3058         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3059                                        &vmf->ptl);
3060         /*
3061          * We might have raced with another page fault while we released the
3062          * pte_offset_map_lock.
3063          */
3064         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3065                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3066                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3067                 return VM_FAULT_NOPAGE;
3068         }
3069         wp_page_reuse(vmf);
3070         return 0;
3071 }
3072
3073 /*
3074  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3075  * mapping
3076  */
3077 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3078 {
3079         struct vm_area_struct *vma = vmf->vma;
3080
3081         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3082                 vm_fault_t ret;
3083
3084                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3085                 vmf->flags |= FAULT_FLAG_MKWRITE;
3086                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3087                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3088                         return ret;
3089                 return finish_mkwrite_fault(vmf);
3090         }
3091         wp_page_reuse(vmf);
3092         return VM_FAULT_WRITE;
3093 }
3094
3095 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3096         __releases(vmf->ptl)
3097 {
3098         struct vm_area_struct *vma = vmf->vma;
3099         vm_fault_t ret = VM_FAULT_WRITE;
3100
3101         get_page(vmf->page);
3102
3103         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3104                 vm_fault_t tmp;
3105
3106                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3107                 tmp = do_page_mkwrite(vmf);
3108                 if (unlikely(!tmp || (tmp &
3109                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3110                         put_page(vmf->page);
3111                         return tmp;
3112                 }
3113                 tmp = finish_mkwrite_fault(vmf);
3114                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3115                         unlock_page(vmf->page);
3116                         put_page(vmf->page);
3117                         return tmp;
3118                 }
3119         } else {
3120                 wp_page_reuse(vmf);
3121                 lock_page(vmf->page);
3122         }
3123         ret |= fault_dirty_shared_page(vmf);
3124         put_page(vmf->page);
3125
3126         return ret;
3127 }
3128
3129 /*
3130  * This routine handles present pages, when users try to write
3131  * to a shared page. It is done by copying the page to a new address
3132  * and decrementing the shared-page counter for the old page.
3133  *
3134  * Note that this routine assumes that the protection checks have been
3135  * done by the caller (the low-level page fault routine in most cases).
3136  * Thus we can safely just mark it writable once we've done any necessary
3137  * COW.
3138  *
3139  * We also mark the page dirty at this point even though the page will
3140  * change only once the write actually happens. This avoids a few races,
3141  * and potentially makes it more efficient.
3142  *
3143  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3144  * but allow concurrent faults), with pte both mapped and locked.
3145  * We return with mmap_lock still held, but pte unmapped and unlocked.
3146  */
3147 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3148         __releases(vmf->ptl)
3149 {
3150         struct vm_area_struct *vma = vmf->vma;
3151
3152         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3153                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3154                 return handle_userfault(vmf, VM_UFFD_WP);
3155         }
3156
3157         /*
3158          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3159          * is flushed in this case before copying.
3160          */
3161         if (unlikely(userfaultfd_wp(vmf->vma) &&
3162                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3163                 flush_tlb_page(vmf->vma, vmf->address);
3164
3165         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3166         if (!vmf->page) {
3167                 /*
3168                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3169                  * VM_PFNMAP VMA.
3170                  *
3171                  * We should not cow pages in a shared writeable mapping.
3172                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3173                  */
3174                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3175                                      (VM_WRITE|VM_SHARED))
3176                         return wp_pfn_shared(vmf);
3177
3178                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3179                 return wp_page_copy(vmf);
3180         }
3181
3182         /*
3183          * Take out anonymous pages first, anonymous shared vmas are
3184          * not dirty accountable.
3185          */
3186         if (PageAnon(vmf->page)) {
3187                 struct page *page = vmf->page;
3188
3189                 /* PageKsm() doesn't necessarily raise the page refcount */
3190                 if (PageKsm(page) || page_count(page) != 1)
3191                         goto copy;
3192                 if (!trylock_page(page))
3193                         goto copy;
3194                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3195                         unlock_page(page);
3196                         goto copy;
3197                 }
3198                 /*
3199                  * Ok, we've got the only map reference, and the only
3200                  * page count reference, and the page is locked,
3201                  * it's dark out, and we're wearing sunglasses. Hit it.
3202                  */
3203                 unlock_page(page);
3204                 wp_page_reuse(vmf);
3205                 return VM_FAULT_WRITE;
3206         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3207                                         (VM_WRITE|VM_SHARED))) {
3208                 return wp_page_shared(vmf);
3209         }
3210 copy:
3211         /*
3212          * Ok, we need to copy. Oh, well..
3213          */
3214         get_page(vmf->page);
3215
3216         pte_unmap_unlock(vmf->pte, vmf->ptl);
3217         return wp_page_copy(vmf);
3218 }
3219
3220 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3221                 unsigned long start_addr, unsigned long end_addr,
3222                 struct zap_details *details)
3223 {
3224         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3225 }
3226
3227 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3228                                             struct zap_details *details)
3229 {
3230         struct vm_area_struct *vma;
3231         pgoff_t vba, vea, zba, zea;
3232
3233         vma_interval_tree_foreach(vma, root,
3234                         details->first_index, details->last_index) {
3235
3236                 vba = vma->vm_pgoff;
3237                 vea = vba + vma_pages(vma) - 1;
3238                 zba = details->first_index;
3239                 if (zba < vba)
3240                         zba = vba;
3241                 zea = details->last_index;
3242                 if (zea > vea)
3243                         zea = vea;
3244
3245                 unmap_mapping_range_vma(vma,
3246                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3247                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3248                                 details);
3249         }
3250 }
3251
3252 /**
3253  * unmap_mapping_page() - Unmap single page from processes.
3254  * @page: The locked page to be unmapped.
3255  *
3256  * Unmap this page from any userspace process which still has it mmaped.
3257  * Typically, for efficiency, the range of nearby pages has already been
3258  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3259  * truncation or invalidation holds the lock on a page, it may find that
3260  * the page has been remapped again: and then uses unmap_mapping_page()
3261  * to unmap it finally.
3262  */
3263 void unmap_mapping_page(struct page *page)
3264 {
3265         struct address_space *mapping = page->mapping;
3266         struct zap_details details = { };
3267
3268         VM_BUG_ON(!PageLocked(page));
3269         VM_BUG_ON(PageTail(page));
3270
3271         details.check_mapping = mapping;
3272         details.first_index = page->index;
3273         details.last_index = page->index + thp_nr_pages(page) - 1;
3274         details.single_page = page;
3275
3276         i_mmap_lock_write(mapping);
3277         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3278                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3279         i_mmap_unlock_write(mapping);
3280 }
3281
3282 /**
3283  * unmap_mapping_pages() - Unmap pages from processes.
3284  * @mapping: The address space containing pages to be unmapped.
3285  * @start: Index of first page to be unmapped.
3286  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3287  * @even_cows: Whether to unmap even private COWed pages.
3288  *
3289  * Unmap the pages in this address space from any userspace process which
3290  * has them mmaped.  Generally, you want to remove COWed pages as well when
3291  * a file is being truncated, but not when invalidating pages from the page
3292  * cache.
3293  */
3294 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3295                 pgoff_t nr, bool even_cows)
3296 {
3297         struct zap_details details = { };
3298
3299         details.check_mapping = even_cows ? NULL : mapping;
3300         details.first_index = start;
3301         details.last_index = start + nr - 1;
3302         if (details.last_index < details.first_index)
3303                 details.last_index = ULONG_MAX;
3304
3305         i_mmap_lock_write(mapping);
3306         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3307                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3308         i_mmap_unlock_write(mapping);
3309 }
3310
3311 /**
3312  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3313  * address_space corresponding to the specified byte range in the underlying
3314  * file.
3315  *
3316  * @mapping: the address space containing mmaps to be unmapped.
3317  * @holebegin: byte in first page to unmap, relative to the start of
3318  * the underlying file.  This will be rounded down to a PAGE_SIZE
3319  * boundary.  Note that this is different from truncate_pagecache(), which
3320  * must keep the partial page.  In contrast, we must get rid of
3321  * partial pages.
3322  * @holelen: size of prospective hole in bytes.  This will be rounded
3323  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3324  * end of the file.
3325  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3326  * but 0 when invalidating pagecache, don't throw away private data.
3327  */
3328 void unmap_mapping_range(struct address_space *mapping,
3329                 loff_t const holebegin, loff_t const holelen, int even_cows)
3330 {
3331         pgoff_t hba = holebegin >> PAGE_SHIFT;
3332         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3333
3334         /* Check for overflow. */
3335         if (sizeof(holelen) > sizeof(hlen)) {
3336                 long long holeend =
3337                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3338                 if (holeend & ~(long long)ULONG_MAX)
3339                         hlen = ULONG_MAX - hba + 1;
3340         }
3341
3342         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3343 }
3344 EXPORT_SYMBOL(unmap_mapping_range);
3345
3346 /*
3347  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3348  * but allow concurrent faults), and pte mapped but not yet locked.
3349  * We return with pte unmapped and unlocked.
3350  *
3351  * We return with the mmap_lock locked or unlocked in the same cases
3352  * as does filemap_fault().
3353  */
3354 vm_fault_t do_swap_page(struct vm_fault *vmf)
3355 {
3356         struct vm_area_struct *vma = vmf->vma;
3357         struct page *page = NULL, *swapcache;
3358         struct swap_info_struct *si = NULL;
3359         swp_entry_t entry;
3360         pte_t pte;
3361         int locked;
3362         int exclusive = 0;
3363         vm_fault_t ret = 0;
3364         void *shadow = NULL;
3365
3366         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3367                 goto out;
3368
3369         entry = pte_to_swp_entry(vmf->orig_pte);
3370         if (unlikely(non_swap_entry(entry))) {
3371                 if (is_migration_entry(entry)) {
3372                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3373                                              vmf->address);
3374                 } else if (is_device_private_entry(entry)) {
3375                         vmf->page = device_private_entry_to_page(entry);
3376                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3377                 } else if (is_hwpoison_entry(entry)) {
3378                         ret = VM_FAULT_HWPOISON;
3379                 } else {
3380                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3381                         ret = VM_FAULT_SIGBUS;
3382                 }
3383                 goto out;
3384         }
3385
3386         /* Prevent swapoff from happening to us. */
3387         si = get_swap_device(entry);
3388         if (unlikely(!si))
3389                 goto out;
3390
3391         delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3392         page = lookup_swap_cache(entry, vma, vmf->address);
3393         swapcache = page;
3394
3395         if (!page) {
3396                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3397                     __swap_count(entry) == 1) {
3398                         /* skip swapcache */
3399                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3400                                                         vmf->address);
3401                         if (page) {
3402                                 __SetPageLocked(page);
3403                                 __SetPageSwapBacked(page);
3404
3405                                 if (mem_cgroup_swapin_charge_page(page,
3406                                         vma->vm_mm, GFP_KERNEL, entry)) {
3407                                         ret = VM_FAULT_OOM;
3408                                         goto out_page;
3409                                 }
3410                                 mem_cgroup_swapin_uncharge_swap(entry);
3411
3412                                 shadow = get_shadow_from_swap_cache(entry);
3413                                 if (shadow)
3414                                         workingset_refault(page, shadow);
3415
3416                                 lru_cache_add(page);
3417
3418                                 /* To provide entry to swap_readpage() */
3419                                 set_page_private(page, entry.val);
3420                                 swap_readpage(page, true);
3421                                 set_page_private(page, 0);
3422                         }
3423                 } else {
3424                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3425                                                 vmf);
3426                         swapcache = page;
3427                 }
3428
3429                 if (!page) {
3430                         /*
3431                          * Back out if somebody else faulted in this pte
3432                          * while we released the pte lock.
3433                          */
3434                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3435                                         vmf->address, &vmf->ptl);
3436                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3437                                 ret = VM_FAULT_OOM;
3438                         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3439                         goto unlock;
3440                 }
3441
3442                 /* Had to read the page from swap area: Major fault */
3443                 ret = VM_FAULT_MAJOR;
3444                 count_vm_event(PGMAJFAULT);
3445                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3446         } else if (PageHWPoison(page)) {
3447                 /*
3448                  * hwpoisoned dirty swapcache pages are kept for killing
3449                  * owner processes (which may be unknown at hwpoison time)
3450                  */
3451                 ret = VM_FAULT_HWPOISON;
3452                 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3453                 goto out_release;
3454         }
3455
3456         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3457
3458         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3459         if (!locked) {
3460                 ret |= VM_FAULT_RETRY;
3461                 goto out_release;
3462         }
3463
3464         /*
3465          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3466          * release the swapcache from under us.  The page pin, and pte_same
3467          * test below, are not enough to exclude that.  Even if it is still
3468          * swapcache, we need to check that the page's swap has not changed.
3469          */
3470         if (unlikely((!PageSwapCache(page) ||
3471                         page_private(page) != entry.val)) && swapcache)
3472                 goto out_page;
3473
3474         page = ksm_might_need_to_copy(page, vma, vmf->address);
3475         if (unlikely(!page)) {
3476                 ret = VM_FAULT_OOM;
3477                 page = swapcache;
3478                 goto out_page;
3479         }
3480
3481         cgroup_throttle_swaprate(page, GFP_KERNEL);
3482
3483         /*
3484          * Back out if somebody else already faulted in this pte.
3485          */
3486         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3487                         &vmf->ptl);
3488         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3489                 goto out_nomap;
3490
3491         if (unlikely(!PageUptodate(page))) {
3492                 ret = VM_FAULT_SIGBUS;
3493                 goto out_nomap;
3494         }
3495
3496         /*
3497          * The page isn't present yet, go ahead with the fault.
3498          *
3499          * Be careful about the sequence of operations here.
3500          * To get its accounting right, reuse_swap_page() must be called
3501          * while the page is counted on swap but not yet in mapcount i.e.
3502          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3503          * must be called after the swap_free(), or it will never succeed.
3504          */
3505
3506         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3507         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3508         pte = mk_pte(page, vma->vm_page_prot);
3509         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3510                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3511                 vmf->flags &= ~FAULT_FLAG_WRITE;
3512                 ret |= VM_FAULT_WRITE;
3513                 exclusive = RMAP_EXCLUSIVE;
3514         }
3515         flush_icache_page(vma, page);
3516         if (pte_swp_soft_dirty(vmf->orig_pte))
3517                 pte = pte_mksoft_dirty(pte);
3518         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3519                 pte = pte_mkuffd_wp(pte);
3520                 pte = pte_wrprotect(pte);
3521         }
3522         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3523         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3524         vmf->orig_pte = pte;
3525
3526         /* ksm created a completely new copy */
3527         if (unlikely(page != swapcache && swapcache)) {
3528                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3529                 lru_cache_add_inactive_or_unevictable(page, vma);
3530         } else {
3531                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3532         }
3533
3534         swap_free(entry);
3535         if (mem_cgroup_swap_full(page) ||
3536             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3537                 try_to_free_swap(page);
3538         unlock_page(page);
3539         if (page != swapcache && swapcache) {
3540                 /*
3541                  * Hold the lock to avoid the swap entry to be reused
3542                  * until we take the PT lock for the pte_same() check
3543                  * (to avoid false positives from pte_same). For
3544                  * further safety release the lock after the swap_free
3545                  * so that the swap count won't change under a
3546                  * parallel locked swapcache.
3547                  */
3548                 unlock_page(swapcache);
3549                 put_page(swapcache);
3550         }
3551
3552         if (vmf->flags & FAULT_FLAG_WRITE) {
3553                 ret |= do_wp_page(vmf);
3554                 if (ret & VM_FAULT_ERROR)
3555                         ret &= VM_FAULT_ERROR;
3556                 goto out;
3557         }
3558
3559         /* No need to invalidate - it was non-present before */
3560         update_mmu_cache(vma, vmf->address, vmf->pte);
3561 unlock:
3562         pte_unmap_unlock(vmf->pte, vmf->ptl);
3563 out:
3564         if (si)
3565                 put_swap_device(si);
3566         return ret;
3567 out_nomap:
3568         pte_unmap_unlock(vmf->pte, vmf->ptl);
3569 out_page:
3570         unlock_page(page);
3571 out_release:
3572         put_page(page);
3573         if (page != swapcache && swapcache) {
3574                 unlock_page(swapcache);
3575                 put_page(swapcache);
3576         }
3577         if (si)
3578                 put_swap_device(si);
3579         return ret;
3580 }
3581
3582 /*
3583  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3584  * but allow concurrent faults), and pte mapped but not yet locked.
3585  * We return with mmap_lock still held, but pte unmapped and unlocked.
3586  */
3587 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3588 {
3589         struct vm_area_struct *vma = vmf->vma;
3590         struct page *page;
3591         vm_fault_t ret = 0;
3592         pte_t entry;
3593
3594         /* File mapping without ->vm_ops ? */
3595         if (vma->vm_flags & VM_SHARED)
3596                 return VM_FAULT_SIGBUS;
3597
3598         /*
3599          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3600          * pte_offset_map() on pmds where a huge pmd might be created
3601          * from a different thread.
3602          *
3603          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3604          * parallel threads are excluded by other means.
3605          *
3606          * Here we only have mmap_read_lock(mm).
3607          */
3608         if (pte_alloc(vma->vm_mm, vmf->pmd))
3609                 return VM_FAULT_OOM;
3610
3611         /* See comment in handle_pte_fault() */
3612         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3613                 return 0;
3614
3615         /* Use the zero-page for reads */
3616         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3617                         !mm_forbids_zeropage(vma->vm_mm)) {
3618                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3619                                                 vma->vm_page_prot));
3620                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3621                                 vmf->address, &vmf->ptl);
3622                 if (!pte_none(*vmf->pte)) {
3623                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3624                         goto unlock;
3625                 }
3626                 ret = check_stable_address_space(vma->vm_mm);
3627                 if (ret)
3628                         goto unlock;
3629                 /* Deliver the page fault to userland, check inside PT lock */
3630                 if (userfaultfd_missing(vma)) {
3631                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3632                         return handle_userfault(vmf, VM_UFFD_MISSING);
3633                 }
3634                 goto setpte;
3635         }
3636
3637         /* Allocate our own private page. */
3638         if (unlikely(anon_vma_prepare(vma)))
3639                 goto oom;
3640         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3641         if (!page)
3642                 goto oom;
3643
3644         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3645                 goto oom_free_page;
3646         cgroup_throttle_swaprate(page, GFP_KERNEL);
3647
3648         /*
3649          * The memory barrier inside __SetPageUptodate makes sure that
3650          * preceding stores to the page contents become visible before
3651          * the set_pte_at() write.
3652          */
3653         __SetPageUptodate(page);
3654
3655         entry = mk_pte(page, vma->vm_page_prot);
3656         entry = pte_sw_mkyoung(entry);
3657         if (vma->vm_flags & VM_WRITE)
3658                 entry = pte_mkwrite(pte_mkdirty(entry));
3659
3660         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3661                         &vmf->ptl);
3662         if (!pte_none(*vmf->pte)) {
3663                 update_mmu_cache(vma, vmf->address, vmf->pte);
3664                 goto release;
3665         }
3666
3667         ret = check_stable_address_space(vma->vm_mm);
3668         if (ret)
3669                 goto release;
3670
3671         /* Deliver the page fault to userland, check inside PT lock */
3672         if (userfaultfd_missing(vma)) {
3673                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3674                 put_page(page);
3675                 return handle_userfault(vmf, VM_UFFD_MISSING);
3676         }
3677
3678         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3679         page_add_new_anon_rmap(page, vma, vmf->address, false);
3680         lru_cache_add_inactive_or_unevictable(page, vma);
3681 setpte:
3682         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3683
3684         /* No need to invalidate - it was non-present before */
3685         update_mmu_cache(vma, vmf->address, vmf->pte);
3686 unlock:
3687         pte_unmap_unlock(vmf->pte, vmf->ptl);
3688         return ret;
3689 release:
3690         put_page(page);
3691         goto unlock;
3692 oom_free_page:
3693         put_page(page);
3694 oom:
3695         return VM_FAULT_OOM;
3696 }
3697
3698 /*
3699  * The mmap_lock must have been held on entry, and may have been
3700  * released depending on flags and vma->vm_ops->fault() return value.
3701  * See filemap_fault() and __lock_page_retry().
3702  */
3703 static vm_fault_t __do_fault(struct vm_fault *vmf)
3704 {
3705         struct vm_area_struct *vma = vmf->vma;
3706         vm_fault_t ret;
3707
3708         /*
3709          * Preallocate pte before we take page_lock because this might lead to
3710          * deadlocks for memcg reclaim which waits for pages under writeback:
3711          *                              lock_page(A)
3712          *                              SetPageWriteback(A)
3713          *                              unlock_page(A)
3714          * lock_page(B)
3715          *                              lock_page(B)
3716          * pte_alloc_one
3717          *   shrink_page_list
3718          *     wait_on_page_writeback(A)
3719          *                              SetPageWriteback(B)
3720          *                              unlock_page(B)
3721          *                              # flush A, B to clear the writeback
3722          */
3723         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3724                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3725                 if (!vmf->prealloc_pte)
3726                         return VM_FAULT_OOM;
3727                 smp_wmb(); /* See comment in __pte_alloc() */
3728         }
3729
3730         ret = vma->vm_ops->fault(vmf);
3731         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3732                             VM_FAULT_DONE_COW)))
3733                 return ret;
3734
3735         if (unlikely(PageHWPoison(vmf->page))) {
3736                 if (ret & VM_FAULT_LOCKED)
3737                         unlock_page(vmf->page);
3738                 put_page(vmf->page);
3739                 vmf->page = NULL;
3740                 return VM_FAULT_HWPOISON;
3741         }
3742
3743         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3744                 lock_page(vmf->page);
3745         else
3746                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3747
3748         return ret;
3749 }
3750
3751 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3752 static void deposit_prealloc_pte(struct vm_fault *vmf)
3753 {
3754         struct vm_area_struct *vma = vmf->vma;
3755
3756         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3757         /*
3758          * We are going to consume the prealloc table,
3759          * count that as nr_ptes.
3760          */
3761         mm_inc_nr_ptes(vma->vm_mm);
3762         vmf->prealloc_pte = NULL;
3763 }
3764
3765 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3766 {
3767         struct vm_area_struct *vma = vmf->vma;
3768         bool write = vmf->flags & FAULT_FLAG_WRITE;
3769         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3770         pmd_t entry;
3771         int i;
3772         vm_fault_t ret = VM_FAULT_FALLBACK;
3773
3774         if (!transhuge_vma_suitable(vma, haddr))
3775                 return ret;
3776
3777         page = compound_head(page);
3778         if (compound_order(page) != HPAGE_PMD_ORDER)
3779                 return ret;
3780
3781         /*
3782          * Archs like ppc64 need additional space to store information
3783          * related to pte entry. Use the preallocated table for that.
3784          */
3785         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3786                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3787                 if (!vmf->prealloc_pte)
3788                         return VM_FAULT_OOM;
3789                 smp_wmb(); /* See comment in __pte_alloc() */
3790         }
3791
3792         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3793         if (unlikely(!pmd_none(*vmf->pmd)))
3794                 goto out;
3795
3796         for (i = 0; i < HPAGE_PMD_NR; i++)
3797                 flush_icache_page(vma, page + i);
3798
3799         entry = mk_huge_pmd(page, vma->vm_page_prot);
3800         if (write)
3801                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3802
3803         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3804         page_add_file_rmap(page, true);
3805         /*
3806          * deposit and withdraw with pmd lock held
3807          */
3808         if (arch_needs_pgtable_deposit())
3809                 deposit_prealloc_pte(vmf);
3810
3811         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3812
3813         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3814
3815         /* fault is handled */
3816         ret = 0;
3817         count_vm_event(THP_FILE_MAPPED);
3818 out:
3819         spin_unlock(vmf->ptl);
3820         return ret;
3821 }
3822 #else
3823 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3824 {
3825         return VM_FAULT_FALLBACK;
3826 }
3827 #endif
3828
3829 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3830 {
3831         struct vm_area_struct *vma = vmf->vma;
3832         bool write = vmf->flags & FAULT_FLAG_WRITE;
3833         bool prefault = vmf->address != addr;
3834         pte_t entry;
3835
3836         flush_icache_page(vma, page);
3837         entry = mk_pte(page, vma->vm_page_prot);
3838
3839         if (prefault && arch_wants_old_prefaulted_pte())
3840                 entry = pte_mkold(entry);
3841         else
3842                 entry = pte_sw_mkyoung(entry);
3843
3844         if (write)
3845                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3846         /* copy-on-write page */
3847         if (write && !(vma->vm_flags & VM_SHARED)) {
3848                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3849                 page_add_new_anon_rmap(page, vma, addr, false);
3850                 lru_cache_add_inactive_or_unevictable(page, vma);
3851         } else {
3852                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3853                 page_add_file_rmap(page, false);
3854         }
3855         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3856 }
3857
3858 /**
3859  * finish_fault - finish page fault once we have prepared the page to fault
3860  *
3861  * @vmf: structure describing the fault
3862  *
3863  * This function handles all that is needed to finish a page fault once the
3864  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3865  * given page, adds reverse page mapping, handles memcg charges and LRU
3866  * addition.
3867  *
3868  * The function expects the page to be locked and on success it consumes a
3869  * reference of a page being mapped (for the PTE which maps it).
3870  *
3871  * Return: %0 on success, %VM_FAULT_ code in case of error.
3872  */
3873 vm_fault_t finish_fault(struct vm_fault *vmf)
3874 {
3875         struct vm_area_struct *vma = vmf->vma;
3876         struct page *page;
3877         vm_fault_t ret;
3878
3879         /* Did we COW the page? */
3880         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3881                 page = vmf->cow_page;
3882         else
3883                 page = vmf->page;
3884
3885         /*
3886          * check even for read faults because we might have lost our CoWed
3887          * page
3888          */
3889         if (!(vma->vm_flags & VM_SHARED)) {
3890                 ret = check_stable_address_space(vma->vm_mm);
3891                 if (ret)
3892                         return ret;
3893         }
3894
3895         if (pmd_none(*vmf->pmd)) {
3896                 if (PageTransCompound(page)) {
3897                         ret = do_set_pmd(vmf, page);
3898                         if (ret != VM_FAULT_FALLBACK)
3899                                 return ret;
3900                 }
3901
3902                 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3903                         return VM_FAULT_OOM;
3904         }
3905
3906         /* See comment in handle_pte_fault() */
3907         if (pmd_devmap_trans_unstable(vmf->pmd))
3908                 return 0;
3909
3910         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3911                                       vmf->address, &vmf->ptl);
3912         ret = 0;
3913         /* Re-check under ptl */
3914         if (likely(pte_none(*vmf->pte)))
3915                 do_set_pte(vmf, page, vmf->address);
3916         else
3917                 ret = VM_FAULT_NOPAGE;
3918
3919         update_mmu_tlb(vma, vmf->address, vmf->pte);
3920         pte_unmap_unlock(vmf->pte, vmf->ptl);
3921         return ret;
3922 }
3923
3924 static unsigned long fault_around_bytes __read_mostly =
3925         rounddown_pow_of_two(65536);
3926
3927 #ifdef CONFIG_DEBUG_FS
3928 static int fault_around_bytes_get(void *data, u64 *val)
3929 {
3930         *val = fault_around_bytes;
3931         return 0;
3932 }
3933
3934 /*
3935  * fault_around_bytes must be rounded down to the nearest page order as it's
3936  * what do_fault_around() expects to see.
3937  */
3938 static int fault_around_bytes_set(void *data, u64 val)
3939 {
3940         if (val / PAGE_SIZE > PTRS_PER_PTE)
3941                 return -EINVAL;
3942         if (val > PAGE_SIZE)
3943                 fault_around_bytes = rounddown_pow_of_two(val);
3944         else
3945                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3946         return 0;
3947 }
3948 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3949                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3950
3951 static int __init fault_around_debugfs(void)
3952 {
3953         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3954                                    &fault_around_bytes_fops);
3955         return 0;
3956 }
3957 late_initcall(fault_around_debugfs);
3958 #endif
3959
3960 /*
3961  * do_fault_around() tries to map few pages around the fault address. The hope
3962  * is that the pages will be needed soon and this will lower the number of
3963  * faults to handle.
3964  *
3965  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3966  * not ready to be mapped: not up-to-date, locked, etc.
3967  *
3968  * This function is called with the page table lock taken. In the split ptlock
3969  * case the page table lock only protects only those entries which belong to
3970  * the page table corresponding to the fault address.
3971  *
3972  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3973  * only once.
3974  *
3975  * fault_around_bytes defines how many bytes we'll try to map.
3976  * do_fault_around() expects it to be set to a power of two less than or equal
3977  * to PTRS_PER_PTE.
3978  *
3979  * The virtual address of the area that we map is naturally aligned to
3980  * fault_around_bytes rounded down to the machine page size
3981  * (and therefore to page order).  This way it's easier to guarantee
3982  * that we don't cross page table boundaries.
3983  */
3984 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3985 {
3986         unsigned long address = vmf->address, nr_pages, mask;
3987         pgoff_t start_pgoff = vmf->pgoff;
3988         pgoff_t end_pgoff;
3989         int off;
3990
3991         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3992         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3993
3994         address = max(address & mask, vmf->vma->vm_start);
3995         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3996         start_pgoff -= off;
3997
3998         /*
3999          *  end_pgoff is either the end of the page table, the end of
4000          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4001          */
4002         end_pgoff = start_pgoff -
4003                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4004                 PTRS_PER_PTE - 1;
4005         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4006                         start_pgoff + nr_pages - 1);
4007
4008         if (pmd_none(*vmf->pmd)) {
4009                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4010                 if (!vmf->prealloc_pte)
4011                         return VM_FAULT_OOM;
4012                 smp_wmb(); /* See comment in __pte_alloc() */
4013         }
4014
4015         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4016 }
4017
4018 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4019 {
4020         struct vm_area_struct *vma = vmf->vma;
4021         vm_fault_t ret = 0;
4022
4023         /*
4024          * Let's call ->map_pages() first and use ->fault() as fallback
4025          * if page by the offset is not ready to be mapped (cold cache or
4026          * something).
4027          */
4028         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4029                 if (likely(!userfaultfd_minor(vmf->vma))) {
4030                         ret = do_fault_around(vmf);
4031                         if (ret)
4032                                 return ret;
4033                 }
4034         }
4035
4036         ret = __do_fault(vmf);
4037         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4038                 return ret;
4039
4040         ret |= finish_fault(vmf);
4041         unlock_page(vmf->page);
4042         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4043                 put_page(vmf->page);
4044         return ret;
4045 }
4046
4047 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4048 {
4049         struct vm_area_struct *vma = vmf->vma;
4050         vm_fault_t ret;
4051
4052         if (unlikely(anon_vma_prepare(vma)))
4053                 return VM_FAULT_OOM;
4054
4055         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4056         if (!vmf->cow_page)
4057                 return VM_FAULT_OOM;
4058
4059         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4060                 put_page(vmf->cow_page);
4061                 return VM_FAULT_OOM;
4062         }
4063         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4064
4065         ret = __do_fault(vmf);
4066         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4067                 goto uncharge_out;
4068         if (ret & VM_FAULT_DONE_COW)
4069                 return ret;
4070
4071         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4072         __SetPageUptodate(vmf->cow_page);
4073
4074         ret |= finish_fault(vmf);
4075         unlock_page(vmf->page);
4076         put_page(vmf->page);
4077         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4078                 goto uncharge_out;
4079         return ret;
4080 uncharge_out:
4081         put_page(vmf->cow_page);
4082         return ret;
4083 }
4084
4085 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4086 {
4087         struct vm_area_struct *vma = vmf->vma;
4088         vm_fault_t ret, tmp;
4089
4090         ret = __do_fault(vmf);
4091         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4092                 return ret;
4093
4094         /*
4095          * Check if the backing address space wants to know that the page is
4096          * about to become writable
4097          */
4098         if (vma->vm_ops->page_mkwrite) {
4099                 unlock_page(vmf->page);
4100                 tmp = do_page_mkwrite(vmf);
4101                 if (unlikely(!tmp ||
4102                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4103                         put_page(vmf->page);
4104                         return tmp;
4105                 }
4106         }
4107
4108         ret |= finish_fault(vmf);
4109         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4110                                         VM_FAULT_RETRY))) {
4111                 unlock_page(vmf->page);
4112                 put_page(vmf->page);
4113                 return ret;
4114         }
4115
4116         ret |= fault_dirty_shared_page(vmf);
4117         return ret;
4118 }
4119
4120 /*
4121  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4122  * but allow concurrent faults).
4123  * The mmap_lock may have been released depending on flags and our
4124  * return value.  See filemap_fault() and __lock_page_or_retry().
4125  * If mmap_lock is released, vma may become invalid (for example
4126  * by other thread calling munmap()).
4127  */
4128 static vm_fault_t do_fault(struct vm_fault *vmf)
4129 {
4130         struct vm_area_struct *vma = vmf->vma;
4131         struct mm_struct *vm_mm = vma->vm_mm;
4132         vm_fault_t ret;
4133
4134         /*
4135          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4136          */
4137         if (!vma->vm_ops->fault) {
4138                 /*
4139                  * If we find a migration pmd entry or a none pmd entry, which
4140                  * should never happen, return SIGBUS
4141                  */
4142                 if (unlikely(!pmd_present(*vmf->pmd)))
4143                         ret = VM_FAULT_SIGBUS;
4144                 else {
4145                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4146                                                        vmf->pmd,
4147                                                        vmf->address,
4148                                                        &vmf->ptl);
4149                         /*
4150                          * Make sure this is not a temporary clearing of pte
4151                          * by holding ptl and checking again. A R/M/W update
4152                          * of pte involves: take ptl, clearing the pte so that
4153                          * we don't have concurrent modification by hardware
4154                          * followed by an update.
4155                          */
4156                         if (unlikely(pte_none(*vmf->pte)))
4157                                 ret = VM_FAULT_SIGBUS;
4158                         else
4159                                 ret = VM_FAULT_NOPAGE;
4160
4161                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4162                 }
4163         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4164                 ret = do_read_fault(vmf);
4165         else if (!(vma->vm_flags & VM_SHARED))
4166                 ret = do_cow_fault(vmf);
4167         else
4168                 ret = do_shared_fault(vmf);
4169
4170         /* preallocated pagetable is unused: free it */
4171         if (vmf->prealloc_pte) {
4172                 pte_free(vm_mm, vmf->prealloc_pte);
4173                 vmf->prealloc_pte = NULL;
4174         }
4175         return ret;
4176 }
4177
4178 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4179                                 unsigned long addr, int page_nid,
4180                                 int *flags)
4181 {
4182         get_page(page);
4183
4184         count_vm_numa_event(NUMA_HINT_FAULTS);
4185         if (page_nid == numa_node_id()) {
4186                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4187                 *flags |= TNF_FAULT_LOCAL;
4188         }
4189
4190         return mpol_misplaced(page, vma, addr);
4191 }
4192
4193 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4194 {
4195         struct vm_area_struct *vma = vmf->vma;
4196         struct page *page = NULL;
4197         int page_nid = NUMA_NO_NODE;
4198         int last_cpupid;
4199         int target_nid;
4200         pte_t pte, old_pte;
4201         bool was_writable = pte_savedwrite(vmf->orig_pte);
4202         int flags = 0;
4203
4204         /*
4205          * The "pte" at this point cannot be used safely without
4206          * validation through pte_unmap_same(). It's of NUMA type but
4207          * the pfn may be screwed if the read is non atomic.
4208          */
4209         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4210         spin_lock(vmf->ptl);
4211         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4212                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4213                 goto out;
4214         }
4215
4216         /* Get the normal PTE  */
4217         old_pte = ptep_get(vmf->pte);
4218         pte = pte_modify(old_pte, vma->vm_page_prot);
4219
4220         page = vm_normal_page(vma, vmf->address, pte);
4221         if (!page)
4222                 goto out_map;
4223
4224         /* TODO: handle PTE-mapped THP */
4225         if (PageCompound(page))
4226                 goto out_map;
4227
4228         /*
4229          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4230          * much anyway since they can be in shared cache state. This misses
4231          * the case where a mapping is writable but the process never writes
4232          * to it but pte_write gets cleared during protection updates and
4233          * pte_dirty has unpredictable behaviour between PTE scan updates,
4234          * background writeback, dirty balancing and application behaviour.
4235          */
4236         if (!was_writable)
4237                 flags |= TNF_NO_GROUP;
4238
4239         /*
4240          * Flag if the page is shared between multiple address spaces. This
4241          * is later used when determining whether to group tasks together
4242          */
4243         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4244                 flags |= TNF_SHARED;
4245
4246         last_cpupid = page_cpupid_last(page);
4247         page_nid = page_to_nid(page);
4248         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4249                         &flags);
4250         if (target_nid == NUMA_NO_NODE) {
4251                 put_page(page);
4252                 goto out_map;
4253         }
4254         pte_unmap_unlock(vmf->pte, vmf->ptl);
4255
4256         /* Migrate to the requested node */
4257         if (migrate_misplaced_page(page, vma, target_nid)) {
4258                 page_nid = target_nid;
4259                 flags |= TNF_MIGRATED;
4260         } else {
4261                 flags |= TNF_MIGRATE_FAIL;
4262                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4263                 spin_lock(vmf->ptl);
4264                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4265                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4266                         goto out;
4267                 }
4268                 goto out_map;
4269         }
4270
4271 out:
4272         if (page_nid != NUMA_NO_NODE)
4273                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4274         return 0;
4275 out_map:
4276         /*
4277          * Make it present again, depending on how arch implements
4278          * non-accessible ptes, some can allow access by kernel mode.
4279          */
4280         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4281         pte = pte_modify(old_pte, vma->vm_page_prot);
4282         pte = pte_mkyoung(pte);
4283         if (was_writable)
4284                 pte = pte_mkwrite(pte);
4285         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4286         update_mmu_cache(vma, vmf->address, vmf->pte);
4287         pte_unmap_unlock(vmf->pte, vmf->ptl);
4288         goto out;
4289 }
4290
4291 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4292 {
4293         if (vma_is_anonymous(vmf->vma))
4294                 return do_huge_pmd_anonymous_page(vmf);
4295         if (vmf->vma->vm_ops->huge_fault)
4296                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4297         return VM_FAULT_FALLBACK;
4298 }
4299
4300 /* `inline' is required to avoid gcc 4.1.2 build error */
4301 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4302 {
4303         if (vma_is_anonymous(vmf->vma)) {
4304                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4305                         return handle_userfault(vmf, VM_UFFD_WP);
4306                 return do_huge_pmd_wp_page(vmf);
4307         }
4308         if (vmf->vma->vm_ops->huge_fault) {
4309                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4310
4311                 if (!(ret & VM_FAULT_FALLBACK))
4312                         return ret;
4313         }
4314
4315         /* COW or write-notify handled on pte level: split pmd. */
4316         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4317
4318         return VM_FAULT_FALLBACK;
4319 }
4320
4321 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4322 {
4323 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4324         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4325         /* No support for anonymous transparent PUD pages yet */
4326         if (vma_is_anonymous(vmf->vma))
4327                 goto split;
4328         if (vmf->vma->vm_ops->huge_fault) {
4329                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4330
4331                 if (!(ret & VM_FAULT_FALLBACK))
4332                         return ret;
4333         }
4334 split:
4335         /* COW or write-notify not handled on PUD level: split pud.*/
4336         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4337 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4338         return VM_FAULT_FALLBACK;
4339 }
4340
4341 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4342 {
4343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4344         /* No support for anonymous transparent PUD pages yet */
4345         if (vma_is_anonymous(vmf->vma))
4346                 return VM_FAULT_FALLBACK;
4347         if (vmf->vma->vm_ops->huge_fault)
4348                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4349 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4350         return VM_FAULT_FALLBACK;
4351 }
4352
4353 /*
4354  * These routines also need to handle stuff like marking pages dirty
4355  * and/or accessed for architectures that don't do it in hardware (most
4356  * RISC architectures).  The early dirtying is also good on the i386.
4357  *
4358  * There is also a hook called "update_mmu_cache()" that architectures
4359  * with external mmu caches can use to update those (ie the Sparc or
4360  * PowerPC hashed page tables that act as extended TLBs).
4361  *
4362  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4363  * concurrent faults).
4364  *
4365  * The mmap_lock may have been released depending on flags and our return value.
4366  * See filemap_fault() and __lock_page_or_retry().
4367  */
4368 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4369 {
4370         pte_t entry;
4371
4372         if (unlikely(pmd_none(*vmf->pmd))) {
4373                 /*
4374                  * Leave __pte_alloc() until later: because vm_ops->fault may
4375                  * want to allocate huge page, and if we expose page table
4376                  * for an instant, it will be difficult to retract from
4377                  * concurrent faults and from rmap lookups.
4378                  */
4379                 vmf->pte = NULL;
4380         } else {
4381                 /*
4382                  * If a huge pmd materialized under us just retry later.  Use
4383                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4384                  * of pmd_trans_huge() to ensure the pmd didn't become
4385                  * pmd_trans_huge under us and then back to pmd_none, as a
4386                  * result of MADV_DONTNEED running immediately after a huge pmd
4387                  * fault in a different thread of this mm, in turn leading to a
4388                  * misleading pmd_trans_huge() retval. All we have to ensure is
4389                  * that it is a regular pmd that we can walk with
4390                  * pte_offset_map() and we can do that through an atomic read
4391                  * in C, which is what pmd_trans_unstable() provides.
4392                  */
4393                 if (pmd_devmap_trans_unstable(vmf->pmd))
4394                         return 0;
4395                 /*
4396                  * A regular pmd is established and it can't morph into a huge
4397                  * pmd from under us anymore at this point because we hold the
4398                  * mmap_lock read mode and khugepaged takes it in write mode.
4399                  * So now it's safe to run pte_offset_map().
4400                  */
4401                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4402                 vmf->orig_pte = *vmf->pte;
4403
4404                 /*
4405                  * some architectures can have larger ptes than wordsize,
4406                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4407                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4408                  * accesses.  The code below just needs a consistent view
4409                  * for the ifs and we later double check anyway with the
4410                  * ptl lock held. So here a barrier will do.
4411                  */
4412                 barrier();
4413                 if (pte_none(vmf->orig_pte)) {
4414                         pte_unmap(vmf->pte);
4415                         vmf->pte = NULL;
4416                 }
4417         }
4418
4419         if (!vmf->pte) {
4420                 if (vma_is_anonymous(vmf->vma))
4421                         return do_anonymous_page(vmf);
4422                 else
4423                         return do_fault(vmf);
4424         }
4425
4426         if (!pte_present(vmf->orig_pte))
4427                 return do_swap_page(vmf);
4428
4429         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4430                 return do_numa_page(vmf);
4431
4432         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4433         spin_lock(vmf->ptl);
4434         entry = vmf->orig_pte;
4435         if (unlikely(!pte_same(*vmf->pte, entry))) {
4436                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4437                 goto unlock;
4438         }
4439         if (vmf->flags & FAULT_FLAG_WRITE) {
4440                 if (!pte_write(entry))
4441                         return do_wp_page(vmf);
4442                 entry = pte_mkdirty(entry);
4443         }
4444         entry = pte_mkyoung(entry);
4445         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4446                                 vmf->flags & FAULT_FLAG_WRITE)) {
4447                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4448         } else {
4449                 /* Skip spurious TLB flush for retried page fault */
4450                 if (vmf->flags & FAULT_FLAG_TRIED)
4451                         goto unlock;
4452                 /*
4453                  * This is needed only for protection faults but the arch code
4454                  * is not yet telling us if this is a protection fault or not.
4455                  * This still avoids useless tlb flushes for .text page faults
4456                  * with threads.
4457                  */
4458                 if (vmf->flags & FAULT_FLAG_WRITE)
4459                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4460         }
4461 unlock:
4462         pte_unmap_unlock(vmf->pte, vmf->ptl);
4463         return 0;
4464 }
4465
4466 /*
4467  * By the time we get here, we already hold the mm semaphore
4468  *
4469  * The mmap_lock may have been released depending on flags and our
4470  * return value.  See filemap_fault() and __lock_page_or_retry().
4471  */
4472 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4473                 unsigned long address, unsigned int flags)
4474 {
4475         struct vm_fault vmf = {
4476                 .vma = vma,
4477                 .address = address & PAGE_MASK,
4478                 .flags = flags,
4479                 .pgoff = linear_page_index(vma, address),
4480                 .gfp_mask = __get_fault_gfp_mask(vma),
4481         };
4482         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4483         struct mm_struct *mm = vma->vm_mm;
4484         pgd_t *pgd;
4485         p4d_t *p4d;
4486         vm_fault_t ret;
4487
4488         pgd = pgd_offset(mm, address);
4489         p4d = p4d_alloc(mm, pgd, address);
4490         if (!p4d)
4491                 return VM_FAULT_OOM;
4492
4493         vmf.pud = pud_alloc(mm, p4d, address);
4494         if (!vmf.pud)
4495                 return VM_FAULT_OOM;
4496 retry_pud:
4497         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4498                 ret = create_huge_pud(&vmf);
4499                 if (!(ret & VM_FAULT_FALLBACK))
4500                         return ret;
4501         } else {
4502                 pud_t orig_pud = *vmf.pud;
4503
4504                 barrier();
4505                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4506
4507                         /* NUMA case for anonymous PUDs would go here */
4508
4509                         if (dirty && !pud_write(orig_pud)) {
4510                                 ret = wp_huge_pud(&vmf, orig_pud);
4511                                 if (!(ret & VM_FAULT_FALLBACK))
4512                                         return ret;
4513                         } else {
4514                                 huge_pud_set_accessed(&vmf, orig_pud);
4515                                 return 0;
4516                         }
4517                 }
4518         }
4519
4520         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4521         if (!vmf.pmd)
4522                 return VM_FAULT_OOM;
4523
4524         /* Huge pud page fault raced with pmd_alloc? */
4525         if (pud_trans_unstable(vmf.pud))
4526                 goto retry_pud;
4527
4528         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4529                 ret = create_huge_pmd(&vmf);
4530                 if (!(ret & VM_FAULT_FALLBACK))
4531                         return ret;
4532         } else {
4533                 vmf.orig_pmd = *vmf.pmd;
4534
4535                 barrier();
4536                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4537                         VM_BUG_ON(thp_migration_supported() &&
4538                                           !is_pmd_migration_entry(vmf.orig_pmd));
4539                         if (is_pmd_migration_entry(vmf.orig_pmd))
4540                                 pmd_migration_entry_wait(mm, vmf.pmd);
4541                         return 0;
4542                 }
4543                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4544                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4545                                 return do_huge_pmd_numa_page(&vmf);
4546
4547                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4548                                 ret = wp_huge_pmd(&vmf);
4549                                 if (!(ret & VM_FAULT_FALLBACK))
4550                                         return ret;
4551                         } else {
4552                                 huge_pmd_set_accessed(&vmf);
4553                                 return 0;
4554                         }
4555                 }
4556         }
4557
4558         return handle_pte_fault(&vmf);
4559 }
4560
4561 /**
4562  * mm_account_fault - Do page fault accounting
4563  *
4564  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4565  *        of perf event counters, but we'll still do the per-task accounting to
4566  *        the task who triggered this page fault.
4567  * @address: the faulted address.
4568  * @flags: the fault flags.
4569  * @ret: the fault retcode.
4570  *
4571  * This will take care of most of the page fault accounting.  Meanwhile, it
4572  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4573  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4574  * still be in per-arch page fault handlers at the entry of page fault.
4575  */
4576 static inline void mm_account_fault(struct pt_regs *regs,
4577                                     unsigned long address, unsigned int flags,
4578                                     vm_fault_t ret)
4579 {
4580         bool major;
4581
4582         /*
4583          * We don't do accounting for some specific faults:
4584          *
4585          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4586          *   includes arch_vma_access_permitted() failing before reaching here.
4587          *   So this is not a "this many hardware page faults" counter.  We
4588          *   should use the hw profiling for that.
4589          *
4590          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4591          *   once they're completed.
4592          */
4593         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4594                 return;
4595
4596         /*
4597          * We define the fault as a major fault when the final successful fault
4598          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4599          * handle it immediately previously).
4600          */
4601         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4602
4603         if (major)
4604                 current->maj_flt++;
4605         else
4606                 current->min_flt++;
4607
4608         /*
4609          * If the fault is done for GUP, regs will be NULL.  We only do the
4610          * accounting for the per thread fault counters who triggered the
4611          * fault, and we skip the perf event updates.
4612          */
4613         if (!regs)
4614                 return;
4615
4616         if (major)
4617                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4618         else
4619                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4620 }
4621
4622 /*
4623  * By the time we get here, we already hold the mm semaphore
4624  *
4625  * The mmap_lock may have been released depending on flags and our
4626  * return value.  See filemap_fault() and __lock_page_or_retry().
4627  */
4628 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4629                            unsigned int flags, struct pt_regs *regs)
4630 {
4631         vm_fault_t ret;
4632
4633         __set_current_state(TASK_RUNNING);
4634
4635         count_vm_event(PGFAULT);
4636         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4637
4638         /* do counter updates before entering really critical section. */
4639         check_sync_rss_stat(current);
4640
4641         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4642                                             flags & FAULT_FLAG_INSTRUCTION,
4643                                             flags & FAULT_FLAG_REMOTE))
4644                 return VM_FAULT_SIGSEGV;
4645
4646         /*
4647          * Enable the memcg OOM handling for faults triggered in user
4648          * space.  Kernel faults are handled more gracefully.
4649          */
4650         if (flags & FAULT_FLAG_USER)
4651                 mem_cgroup_enter_user_fault();
4652
4653         if (unlikely(is_vm_hugetlb_page(vma)))
4654                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4655         else
4656                 ret = __handle_mm_fault(vma, address, flags);
4657
4658         if (flags & FAULT_FLAG_USER) {
4659                 mem_cgroup_exit_user_fault();
4660                 /*
4661                  * The task may have entered a memcg OOM situation but
4662                  * if the allocation error was handled gracefully (no
4663                  * VM_FAULT_OOM), there is no need to kill anything.
4664                  * Just clean up the OOM state peacefully.
4665                  */
4666                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4667                         mem_cgroup_oom_synchronize(false);
4668         }
4669
4670         mm_account_fault(regs, address, flags, ret);
4671
4672         return ret;
4673 }
4674 EXPORT_SYMBOL_GPL(handle_mm_fault);
4675
4676 #ifndef __PAGETABLE_P4D_FOLDED
4677 /*
4678  * Allocate p4d page table.
4679  * We've already handled the fast-path in-line.
4680  */
4681 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4682 {
4683         p4d_t *new = p4d_alloc_one(mm, address);
4684         if (!new)
4685                 return -ENOMEM;
4686
4687         smp_wmb(); /* See comment in __pte_alloc */
4688
4689         spin_lock(&mm->page_table_lock);
4690         if (pgd_present(*pgd))          /* Another has populated it */
4691                 p4d_free(mm, new);
4692         else
4693                 pgd_populate(mm, pgd, new);
4694         spin_unlock(&mm->page_table_lock);
4695         return 0;
4696 }
4697 #endif /* __PAGETABLE_P4D_FOLDED */
4698
4699 #ifndef __PAGETABLE_PUD_FOLDED
4700 /*
4701  * Allocate page upper directory.
4702  * We've already handled the fast-path in-line.
4703  */
4704 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4705 {
4706         pud_t *new = pud_alloc_one(mm, address);
4707         if (!new)
4708                 return -ENOMEM;
4709
4710         smp_wmb(); /* See comment in __pte_alloc */
4711
4712         spin_lock(&mm->page_table_lock);
4713         if (!p4d_present(*p4d)) {
4714                 mm_inc_nr_puds(mm);
4715                 p4d_populate(mm, p4d, new);
4716         } else  /* Another has populated it */
4717                 pud_free(mm, new);
4718         spin_unlock(&mm->page_table_lock);
4719         return 0;
4720 }
4721 #endif /* __PAGETABLE_PUD_FOLDED */
4722
4723 #ifndef __PAGETABLE_PMD_FOLDED
4724 /*
4725  * Allocate page middle directory.
4726  * We've already handled the fast-path in-line.
4727  */
4728 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4729 {
4730         spinlock_t *ptl;
4731         pmd_t *new = pmd_alloc_one(mm, address);
4732         if (!new)
4733                 return -ENOMEM;
4734
4735         smp_wmb(); /* See comment in __pte_alloc */
4736
4737         ptl = pud_lock(mm, pud);
4738         if (!pud_present(*pud)) {
4739                 mm_inc_nr_pmds(mm);
4740                 pud_populate(mm, pud, new);
4741         } else  /* Another has populated it */
4742                 pmd_free(mm, new);
4743         spin_unlock(ptl);
4744         return 0;
4745 }
4746 #endif /* __PAGETABLE_PMD_FOLDED */
4747
4748 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4749                           struct mmu_notifier_range *range, pte_t **ptepp,
4750                           pmd_t **pmdpp, spinlock_t **ptlp)
4751 {
4752         pgd_t *pgd;
4753         p4d_t *p4d;
4754         pud_t *pud;
4755         pmd_t *pmd;
4756         pte_t *ptep;
4757
4758         pgd = pgd_offset(mm, address);
4759         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4760                 goto out;
4761
4762         p4d = p4d_offset(pgd, address);
4763         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4764                 goto out;
4765
4766         pud = pud_offset(p4d, address);
4767         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4768                 goto out;
4769
4770         pmd = pmd_offset(pud, address);
4771         VM_BUG_ON(pmd_trans_huge(*pmd));
4772
4773         if (pmd_huge(*pmd)) {
4774                 if (!pmdpp)
4775                         goto out;
4776
4777                 if (range) {
4778                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4779                                                 NULL, mm, address & PMD_MASK,
4780                                                 (address & PMD_MASK) + PMD_SIZE);
4781                         mmu_notifier_invalidate_range_start(range);
4782                 }
4783                 *ptlp = pmd_lock(mm, pmd);
4784                 if (pmd_huge(*pmd)) {
4785                         *pmdpp = pmd;
4786                         return 0;
4787                 }
4788                 spin_unlock(*ptlp);
4789                 if (range)
4790                         mmu_notifier_invalidate_range_end(range);
4791         }
4792
4793         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4794                 goto out;
4795
4796         if (range) {
4797                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4798                                         address & PAGE_MASK,
4799                                         (address & PAGE_MASK) + PAGE_SIZE);
4800                 mmu_notifier_invalidate_range_start(range);
4801         }
4802         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4803         if (!pte_present(*ptep))
4804                 goto unlock;
4805         *ptepp = ptep;
4806         return 0;
4807 unlock:
4808         pte_unmap_unlock(ptep, *ptlp);
4809         if (range)
4810                 mmu_notifier_invalidate_range_end(range);
4811 out:
4812         return -EINVAL;
4813 }
4814
4815 /**
4816  * follow_pte - look up PTE at a user virtual address
4817  * @mm: the mm_struct of the target address space
4818  * @address: user virtual address
4819  * @ptepp: location to store found PTE
4820  * @ptlp: location to store the lock for the PTE
4821  *
4822  * On a successful return, the pointer to the PTE is stored in @ptepp;
4823  * the corresponding lock is taken and its location is stored in @ptlp.
4824  * The contents of the PTE are only stable until @ptlp is released;
4825  * any further use, if any, must be protected against invalidation
4826  * with MMU notifiers.
4827  *
4828  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4829  * should be taken for read.
4830  *
4831  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4832  * it is not a good general-purpose API.
4833  *
4834  * Return: zero on success, -ve otherwise.
4835  */
4836 int follow_pte(struct mm_struct *mm, unsigned long address,
4837                pte_t **ptepp, spinlock_t **ptlp)
4838 {
4839         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4840 }
4841 EXPORT_SYMBOL_GPL(follow_pte);
4842
4843 /**
4844  * follow_pfn - look up PFN at a user virtual address
4845  * @vma: memory mapping
4846  * @address: user virtual address
4847  * @pfn: location to store found PFN
4848  *
4849  * Only IO mappings and raw PFN mappings are allowed.
4850  *
4851  * This function does not allow the caller to read the permissions
4852  * of the PTE.  Do not use it.
4853  *
4854  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4855  */
4856 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4857         unsigned long *pfn)
4858 {
4859         int ret = -EINVAL;
4860         spinlock_t *ptl;
4861         pte_t *ptep;
4862
4863         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4864                 return ret;
4865
4866         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4867         if (ret)
4868                 return ret;
4869         *pfn = pte_pfn(*ptep);
4870         pte_unmap_unlock(ptep, ptl);
4871         return 0;
4872 }
4873 EXPORT_SYMBOL(follow_pfn);
4874
4875 #ifdef CONFIG_HAVE_IOREMAP_PROT
4876 int follow_phys(struct vm_area_struct *vma,
4877                 unsigned long address, unsigned int flags,
4878                 unsigned long *prot, resource_size_t *phys)
4879 {
4880         int ret = -EINVAL;
4881         pte_t *ptep, pte;
4882         spinlock_t *ptl;
4883
4884         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4885                 goto out;
4886
4887         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4888                 goto out;
4889         pte = *ptep;
4890
4891         if ((flags & FOLL_WRITE) && !pte_write(pte))
4892                 goto unlock;
4893
4894         *prot = pgprot_val(pte_pgprot(pte));
4895         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4896
4897         ret = 0;
4898 unlock:
4899         pte_unmap_unlock(ptep, ptl);
4900 out:
4901         return ret;
4902 }
4903
4904 /**
4905  * generic_access_phys - generic implementation for iomem mmap access
4906  * @vma: the vma to access
4907  * @addr: userspace address, not relative offset within @vma
4908  * @buf: buffer to read/write
4909  * @len: length of transfer
4910  * @write: set to FOLL_WRITE when writing, otherwise reading
4911  *
4912  * This is a generic implementation for &vm_operations_struct.access for an
4913  * iomem mapping. This callback is used by access_process_vm() when the @vma is
4914  * not page based.
4915  */
4916 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4917                         void *buf, int len, int write)
4918 {
4919         resource_size_t phys_addr;
4920         unsigned long prot = 0;
4921         void __iomem *maddr;
4922         pte_t *ptep, pte;
4923         spinlock_t *ptl;
4924         int offset = offset_in_page(addr);
4925         int ret = -EINVAL;
4926
4927         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4928                 return -EINVAL;
4929
4930 retry:
4931         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4932                 return -EINVAL;
4933         pte = *ptep;
4934         pte_unmap_unlock(ptep, ptl);
4935
4936         prot = pgprot_val(pte_pgprot(pte));
4937         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4938
4939         if ((write & FOLL_WRITE) && !pte_write(pte))
4940                 return -EINVAL;
4941
4942         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4943         if (!maddr)
4944                 return -ENOMEM;
4945
4946         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4947                 goto out_unmap;
4948
4949         if (!pte_same(pte, *ptep)) {
4950                 pte_unmap_unlock(ptep, ptl);
4951                 iounmap(maddr);
4952
4953                 goto retry;
4954         }
4955
4956         if (write)
4957                 memcpy_toio(maddr + offset, buf, len);
4958         else
4959                 memcpy_fromio(buf, maddr + offset, len);
4960         ret = len;
4961         pte_unmap_unlock(ptep, ptl);
4962 out_unmap:
4963         iounmap(maddr);
4964
4965         return ret;
4966 }
4967 EXPORT_SYMBOL_GPL(generic_access_phys);
4968 #endif
4969
4970 /*
4971  * Access another process' address space as given in mm.
4972  */
4973 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4974                        int len, unsigned int gup_flags)
4975 {
4976         struct vm_area_struct *vma;
4977         void *old_buf = buf;
4978         int write = gup_flags & FOLL_WRITE;
4979
4980         if (mmap_read_lock_killable(mm))
4981                 return 0;
4982
4983         /* ignore errors, just check how much was successfully transferred */
4984         while (len) {
4985                 int bytes, ret, offset;
4986                 void *maddr;
4987                 struct page *page = NULL;
4988
4989                 ret = get_user_pages_remote(mm, addr, 1,
4990                                 gup_flags, &page, &vma, NULL);
4991                 if (ret <= 0) {
4992 #ifndef CONFIG_HAVE_IOREMAP_PROT
4993                         break;
4994 #else
4995                         /*
4996                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4997                          * we can access using slightly different code.
4998                          */
4999                         vma = vma_lookup(mm, addr);
5000                         if (!vma)
5001                                 break;
5002                         if (vma->vm_ops && vma->vm_ops->access)
5003                                 ret = vma->vm_ops->access(vma, addr, buf,
5004                                                           len, write);
5005                         if (ret <= 0)
5006                                 break;
5007                         bytes = ret;
5008 #endif
5009                 } else {
5010                         bytes = len;
5011                         offset = addr & (PAGE_SIZE-1);
5012                         if (bytes > PAGE_SIZE-offset)
5013                                 bytes = PAGE_SIZE-offset;
5014
5015                         maddr = kmap(page);
5016                         if (write) {
5017                                 copy_to_user_page(vma, page, addr,
5018                                                   maddr + offset, buf, bytes);
5019                                 set_page_dirty_lock(page);
5020                         } else {
5021                                 copy_from_user_page(vma, page, addr,
5022                                                     buf, maddr + offset, bytes);
5023                         }
5024                         kunmap(page);
5025                         put_page(page);
5026                 }
5027                 len -= bytes;
5028                 buf += bytes;
5029                 addr += bytes;
5030         }
5031         mmap_read_unlock(mm);
5032
5033         return buf - old_buf;
5034 }
5035
5036 /**
5037  * access_remote_vm - access another process' address space
5038  * @mm:         the mm_struct of the target address space
5039  * @addr:       start address to access
5040  * @buf:        source or destination buffer
5041  * @len:        number of bytes to transfer
5042  * @gup_flags:  flags modifying lookup behaviour
5043  *
5044  * The caller must hold a reference on @mm.
5045  *
5046  * Return: number of bytes copied from source to destination.
5047  */
5048 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5049                 void *buf, int len, unsigned int gup_flags)
5050 {
5051         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5052 }
5053
5054 /*
5055  * Access another process' address space.
5056  * Source/target buffer must be kernel space,
5057  * Do not walk the page table directly, use get_user_pages
5058  */
5059 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5060                 void *buf, int len, unsigned int gup_flags)
5061 {
5062         struct mm_struct *mm;
5063         int ret;
5064
5065         mm = get_task_mm(tsk);
5066         if (!mm)
5067                 return 0;
5068
5069         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5070
5071         mmput(mm);
5072
5073         return ret;
5074 }
5075 EXPORT_SYMBOL_GPL(access_process_vm);
5076
5077 /*
5078  * Print the name of a VMA.
5079  */
5080 void print_vma_addr(char *prefix, unsigned long ip)
5081 {
5082         struct mm_struct *mm = current->mm;
5083         struct vm_area_struct *vma;
5084
5085         /*
5086          * we might be running from an atomic context so we cannot sleep
5087          */
5088         if (!mmap_read_trylock(mm))
5089                 return;
5090
5091         vma = find_vma(mm, ip);
5092         if (vma && vma->vm_file) {
5093                 struct file *f = vma->vm_file;
5094                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5095                 if (buf) {
5096                         char *p;
5097
5098                         p = file_path(f, buf, PAGE_SIZE);
5099                         if (IS_ERR(p))
5100                                 p = "?";
5101                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5102                                         vma->vm_start,
5103                                         vma->vm_end - vma->vm_start);
5104                         free_page((unsigned long)buf);
5105                 }
5106         }
5107         mmap_read_unlock(mm);
5108 }
5109
5110 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5111 void __might_fault(const char *file, int line)
5112 {
5113         /*
5114          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5115          * holding the mmap_lock, this is safe because kernel memory doesn't
5116          * get paged out, therefore we'll never actually fault, and the
5117          * below annotations will generate false positives.
5118          */
5119         if (uaccess_kernel())
5120                 return;
5121         if (pagefault_disabled())
5122                 return;
5123         __might_sleep(file, line, 0);
5124 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5125         if (current->mm)
5126                 might_lock_read(&current->mm->mmap_lock);
5127 #endif
5128 }
5129 EXPORT_SYMBOL(__might_fault);
5130 #endif
5131
5132 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5133 /*
5134  * Process all subpages of the specified huge page with the specified
5135  * operation.  The target subpage will be processed last to keep its
5136  * cache lines hot.
5137  */
5138 static inline void process_huge_page(
5139         unsigned long addr_hint, unsigned int pages_per_huge_page,
5140         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5141         void *arg)
5142 {
5143         int i, n, base, l;
5144         unsigned long addr = addr_hint &
5145                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5146
5147         /* Process target subpage last to keep its cache lines hot */
5148         might_sleep();
5149         n = (addr_hint - addr) / PAGE_SIZE;
5150         if (2 * n <= pages_per_huge_page) {
5151                 /* If target subpage in first half of huge page */
5152                 base = 0;
5153                 l = n;
5154                 /* Process subpages at the end of huge page */
5155                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5156                         cond_resched();
5157                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5158                 }
5159         } else {
5160                 /* If target subpage in second half of huge page */
5161                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5162                 l = pages_per_huge_page - n;
5163                 /* Process subpages at the begin of huge page */
5164                 for (i = 0; i < base; i++) {
5165                         cond_resched();
5166                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5167                 }
5168         }
5169         /*
5170          * Process remaining subpages in left-right-left-right pattern
5171          * towards the target subpage
5172          */
5173         for (i = 0; i < l; i++) {
5174                 int left_idx = base + i;
5175                 int right_idx = base + 2 * l - 1 - i;
5176
5177                 cond_resched();
5178                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5179                 cond_resched();
5180                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5181         }
5182 }
5183
5184 static void clear_gigantic_page(struct page *page,
5185                                 unsigned long addr,
5186                                 unsigned int pages_per_huge_page)
5187 {
5188         int i;
5189         struct page *p = page;
5190
5191         might_sleep();
5192         for (i = 0; i < pages_per_huge_page;
5193              i++, p = mem_map_next(p, page, i)) {
5194                 cond_resched();
5195                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5196         }
5197 }
5198
5199 static void clear_subpage(unsigned long addr, int idx, void *arg)
5200 {
5201         struct page *page = arg;
5202
5203         clear_user_highpage(page + idx, addr);
5204 }
5205
5206 void clear_huge_page(struct page *page,
5207                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5208 {
5209         unsigned long addr = addr_hint &
5210                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5211
5212         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5213                 clear_gigantic_page(page, addr, pages_per_huge_page);
5214                 return;
5215         }
5216
5217         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5218 }
5219
5220 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5221                                     unsigned long addr,
5222                                     struct vm_area_struct *vma,
5223                                     unsigned int pages_per_huge_page)
5224 {
5225         int i;
5226         struct page *dst_base = dst;
5227         struct page *src_base = src;
5228
5229         for (i = 0; i < pages_per_huge_page; ) {
5230                 cond_resched();
5231                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5232
5233                 i++;
5234                 dst = mem_map_next(dst, dst_base, i);
5235                 src = mem_map_next(src, src_base, i);
5236         }
5237 }
5238
5239 struct copy_subpage_arg {
5240         struct page *dst;
5241         struct page *src;
5242         struct vm_area_struct *vma;
5243 };
5244
5245 static void copy_subpage(unsigned long addr, int idx, void *arg)
5246 {
5247         struct copy_subpage_arg *copy_arg = arg;
5248
5249         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5250                            addr, copy_arg->vma);
5251 }
5252
5253 void copy_user_huge_page(struct page *dst, struct page *src,
5254                          unsigned long addr_hint, struct vm_area_struct *vma,
5255                          unsigned int pages_per_huge_page)
5256 {
5257         unsigned long addr = addr_hint &
5258                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5259         struct copy_subpage_arg arg = {
5260                 .dst = dst,
5261                 .src = src,
5262                 .vma = vma,
5263         };
5264
5265         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5266                 copy_user_gigantic_page(dst, src, addr, vma,
5267                                         pages_per_huge_page);
5268                 return;
5269         }
5270
5271         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5272 }
5273
5274 long copy_huge_page_from_user(struct page *dst_page,
5275                                 const void __user *usr_src,
5276                                 unsigned int pages_per_huge_page,
5277                                 bool allow_pagefault)
5278 {
5279         void *src = (void *)usr_src;
5280         void *page_kaddr;
5281         unsigned long i, rc = 0;
5282         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5283         struct page *subpage = dst_page;
5284
5285         for (i = 0; i < pages_per_huge_page;
5286              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5287                 if (allow_pagefault)
5288                         page_kaddr = kmap(subpage);
5289                 else
5290                         page_kaddr = kmap_atomic(subpage);
5291                 rc = copy_from_user(page_kaddr,
5292                                 (const void __user *)(src + i * PAGE_SIZE),
5293                                 PAGE_SIZE);
5294                 if (allow_pagefault)
5295                         kunmap(subpage);
5296                 else
5297                         kunmap_atomic(page_kaddr);
5298
5299                 ret_val -= (PAGE_SIZE - rc);
5300                 if (rc)
5301                         break;
5302
5303                 cond_resched();
5304         }
5305         return ret_val;
5306 }
5307 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5308
5309 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5310
5311 static struct kmem_cache *page_ptl_cachep;
5312
5313 void __init ptlock_cache_init(void)
5314 {
5315         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5316                         SLAB_PANIC, NULL);
5317 }
5318
5319 bool ptlock_alloc(struct page *page)
5320 {
5321         spinlock_t *ptl;
5322
5323         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5324         if (!ptl)
5325                 return false;
5326         page->ptl = ptl;
5327         return true;
5328 }
5329
5330 void ptlock_free(struct page *page)
5331 {
5332         kmem_cache_free(page_ptl_cachep, page->ptl);
5333 }
5334 #endif