mm/pgtable: drop pgtable_t variable from pte_fn_t functions
[linux-block.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116                                         1;
117 #else
118                                         2;
119 #endif
120
121 static int __init disable_randmaps(char *s)
122 {
123         randomize_va_space = 0;
124         return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130
131 unsigned long highest_memmap_pfn __read_mostly;
132
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138         zero_pfn = page_to_pfn(ZERO_PAGE(0));
139         return 0;
140 }
141 core_initcall(init_zero_pfn);
142
143
144 #if defined(SPLIT_RSS_COUNTING)
145
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148         int i;
149
150         for (i = 0; i < NR_MM_COUNTERS; i++) {
151                 if (current->rss_stat.count[i]) {
152                         add_mm_counter(mm, i, current->rss_stat.count[i]);
153                         current->rss_stat.count[i] = 0;
154                 }
155         }
156         current->rss_stat.events = 0;
157 }
158
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161         struct task_struct *task = current;
162
163         if (likely(task->mm == mm))
164                 task->rss_stat.count[member] += val;
165         else
166                 add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH  (64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175         if (unlikely(task != current))
176                 return;
177         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178                 sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188
189 #endif /* SPLIT_RSS_COUNTING */
190
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196                            unsigned long addr)
197 {
198         pgtable_t token = pmd_pgtable(*pmd);
199         pmd_clear(pmd);
200         pte_free_tlb(tlb, token, addr);
201         mm_dec_nr_ptes(tlb->mm);
202 }
203
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205                                 unsigned long addr, unsigned long end,
206                                 unsigned long floor, unsigned long ceiling)
207 {
208         pmd_t *pmd;
209         unsigned long next;
210         unsigned long start;
211
212         start = addr;
213         pmd = pmd_offset(pud, addr);
214         do {
215                 next = pmd_addr_end(addr, end);
216                 if (pmd_none_or_clear_bad(pmd))
217                         continue;
218                 free_pte_range(tlb, pmd, addr);
219         } while (pmd++, addr = next, addr != end);
220
221         start &= PUD_MASK;
222         if (start < floor)
223                 return;
224         if (ceiling) {
225                 ceiling &= PUD_MASK;
226                 if (!ceiling)
227                         return;
228         }
229         if (end - 1 > ceiling - 1)
230                 return;
231
232         pmd = pmd_offset(pud, start);
233         pud_clear(pud);
234         pmd_free_tlb(tlb, pmd, start);
235         mm_dec_nr_pmds(tlb->mm);
236 }
237
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239                                 unsigned long addr, unsigned long end,
240                                 unsigned long floor, unsigned long ceiling)
241 {
242         pud_t *pud;
243         unsigned long next;
244         unsigned long start;
245
246         start = addr;
247         pud = pud_offset(p4d, addr);
248         do {
249                 next = pud_addr_end(addr, end);
250                 if (pud_none_or_clear_bad(pud))
251                         continue;
252                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253         } while (pud++, addr = next, addr != end);
254
255         start &= P4D_MASK;
256         if (start < floor)
257                 return;
258         if (ceiling) {
259                 ceiling &= P4D_MASK;
260                 if (!ceiling)
261                         return;
262         }
263         if (end - 1 > ceiling - 1)
264                 return;
265
266         pud = pud_offset(p4d, start);
267         p4d_clear(p4d);
268         pud_free_tlb(tlb, pud, start);
269         mm_dec_nr_puds(tlb->mm);
270 }
271
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273                                 unsigned long addr, unsigned long end,
274                                 unsigned long floor, unsigned long ceiling)
275 {
276         p4d_t *p4d;
277         unsigned long next;
278         unsigned long start;
279
280         start = addr;
281         p4d = p4d_offset(pgd, addr);
282         do {
283                 next = p4d_addr_end(addr, end);
284                 if (p4d_none_or_clear_bad(p4d))
285                         continue;
286                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287         } while (p4d++, addr = next, addr != end);
288
289         start &= PGDIR_MASK;
290         if (start < floor)
291                 return;
292         if (ceiling) {
293                 ceiling &= PGDIR_MASK;
294                 if (!ceiling)
295                         return;
296         }
297         if (end - 1 > ceiling - 1)
298                 return;
299
300         p4d = p4d_offset(pgd, start);
301         pgd_clear(pgd);
302         p4d_free_tlb(tlb, p4d, start);
303 }
304
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309                         unsigned long addr, unsigned long end,
310                         unsigned long floor, unsigned long ceiling)
311 {
312         pgd_t *pgd;
313         unsigned long next;
314
315         /*
316          * The next few lines have given us lots of grief...
317          *
318          * Why are we testing PMD* at this top level?  Because often
319          * there will be no work to do at all, and we'd prefer not to
320          * go all the way down to the bottom just to discover that.
321          *
322          * Why all these "- 1"s?  Because 0 represents both the bottom
323          * of the address space and the top of it (using -1 for the
324          * top wouldn't help much: the masks would do the wrong thing).
325          * The rule is that addr 0 and floor 0 refer to the bottom of
326          * the address space, but end 0 and ceiling 0 refer to the top
327          * Comparisons need to use "end - 1" and "ceiling - 1" (though
328          * that end 0 case should be mythical).
329          *
330          * Wherever addr is brought up or ceiling brought down, we must
331          * be careful to reject "the opposite 0" before it confuses the
332          * subsequent tests.  But what about where end is brought down
333          * by PMD_SIZE below? no, end can't go down to 0 there.
334          *
335          * Whereas we round start (addr) and ceiling down, by different
336          * masks at different levels, in order to test whether a table
337          * now has no other vmas using it, so can be freed, we don't
338          * bother to round floor or end up - the tests don't need that.
339          */
340
341         addr &= PMD_MASK;
342         if (addr < floor) {
343                 addr += PMD_SIZE;
344                 if (!addr)
345                         return;
346         }
347         if (ceiling) {
348                 ceiling &= PMD_MASK;
349                 if (!ceiling)
350                         return;
351         }
352         if (end - 1 > ceiling - 1)
353                 end -= PMD_SIZE;
354         if (addr > end - 1)
355                 return;
356         /*
357          * We add page table cache pages with PAGE_SIZE,
358          * (see pte_free_tlb()), flush the tlb if we need
359          */
360         tlb_change_page_size(tlb, PAGE_SIZE);
361         pgd = pgd_offset(tlb->mm, addr);
362         do {
363                 next = pgd_addr_end(addr, end);
364                 if (pgd_none_or_clear_bad(pgd))
365                         continue;
366                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367         } while (pgd++, addr = next, addr != end);
368 }
369
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371                 unsigned long floor, unsigned long ceiling)
372 {
373         while (vma) {
374                 struct vm_area_struct *next = vma->vm_next;
375                 unsigned long addr = vma->vm_start;
376
377                 /*
378                  * Hide vma from rmap and truncate_pagecache before freeing
379                  * pgtables
380                  */
381                 unlink_anon_vmas(vma);
382                 unlink_file_vma(vma);
383
384                 if (is_vm_hugetlb_page(vma)) {
385                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386                                 floor, next ? next->vm_start : ceiling);
387                 } else {
388                         /*
389                          * Optimization: gather nearby vmas into one call down
390                          */
391                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392                                && !is_vm_hugetlb_page(next)) {
393                                 vma = next;
394                                 next = vma->vm_next;
395                                 unlink_anon_vmas(vma);
396                                 unlink_file_vma(vma);
397                         }
398                         free_pgd_range(tlb, addr, vma->vm_end,
399                                 floor, next ? next->vm_start : ceiling);
400                 }
401                 vma = next;
402         }
403 }
404
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407         spinlock_t *ptl;
408         pgtable_t new = pte_alloc_one(mm);
409         if (!new)
410                 return -ENOMEM;
411
412         /*
413          * Ensure all pte setup (eg. pte page lock and page clearing) are
414          * visible before the pte is made visible to other CPUs by being
415          * put into page tables.
416          *
417          * The other side of the story is the pointer chasing in the page
418          * table walking code (when walking the page table without locking;
419          * ie. most of the time). Fortunately, these data accesses consist
420          * of a chain of data-dependent loads, meaning most CPUs (alpha
421          * being the notable exception) will already guarantee loads are
422          * seen in-order. See the alpha page table accessors for the
423          * smp_read_barrier_depends() barriers in page table walking code.
424          */
425         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
427         ptl = pmd_lock(mm, pmd);
428         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
429                 mm_inc_nr_ptes(mm);
430                 pmd_populate(mm, pmd, new);
431                 new = NULL;
432         }
433         spin_unlock(ptl);
434         if (new)
435                 pte_free(mm, new);
436         return 0;
437 }
438
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441         pte_t *new = pte_alloc_one_kernel(&init_mm);
442         if (!new)
443                 return -ENOMEM;
444
445         smp_wmb(); /* See comment in __pte_alloc */
446
447         spin_lock(&init_mm.page_table_lock);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 pmd_populate_kernel(&init_mm, pmd, new);
450                 new = NULL;
451         }
452         spin_unlock(&init_mm.page_table_lock);
453         if (new)
454                 pte_free_kernel(&init_mm, new);
455         return 0;
456 }
457
458 static inline void init_rss_vec(int *rss)
459 {
460         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465         int i;
466
467         if (current->mm == mm)
468                 sync_mm_rss(mm);
469         for (i = 0; i < NR_MM_COUNTERS; i++)
470                 if (rss[i])
471                         add_mm_counter(mm, i, rss[i]);
472 }
473
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482                           pte_t pte, struct page *page)
483 {
484         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485         p4d_t *p4d = p4d_offset(pgd, addr);
486         pud_t *pud = pud_offset(p4d, addr);
487         pmd_t *pmd = pmd_offset(pud, addr);
488         struct address_space *mapping;
489         pgoff_t index;
490         static unsigned long resume;
491         static unsigned long nr_shown;
492         static unsigned long nr_unshown;
493
494         /*
495          * Allow a burst of 60 reports, then keep quiet for that minute;
496          * or allow a steady drip of one report per second.
497          */
498         if (nr_shown == 60) {
499                 if (time_before(jiffies, resume)) {
500                         nr_unshown++;
501                         return;
502                 }
503                 if (nr_unshown) {
504                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505                                  nr_unshown);
506                         nr_unshown = 0;
507                 }
508                 nr_shown = 0;
509         }
510         if (nr_shown++ == 0)
511                 resume = jiffies + 60 * HZ;
512
513         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514         index = linear_page_index(vma, addr);
515
516         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517                  current->comm,
518                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
519         if (page)
520                 dump_page(page, "bad pte");
521         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524                  vma->vm_file,
525                  vma->vm_ops ? vma->vm_ops->fault : NULL,
526                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527                  mapping ? mapping->a_ops->readpage : NULL);
528         dump_stack();
529         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575                              pte_t pte, bool with_public_device)
576 {
577         unsigned long pfn = pte_pfn(pte);
578
579         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580                 if (likely(!pte_special(pte)))
581                         goto check_pfn;
582                 if (vma->vm_ops && vma->vm_ops->find_special_page)
583                         return vma->vm_ops->find_special_page(vma, addr);
584                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585                         return NULL;
586                 if (is_zero_pfn(pfn))
587                         return NULL;
588
589                 /*
590                  * Device public pages are special pages (they are ZONE_DEVICE
591                  * pages but different from persistent memory). They behave
592                  * allmost like normal pages. The difference is that they are
593                  * not on the lru and thus should never be involve with any-
594                  * thing that involve lru manipulation (mlock, numa balancing,
595                  * ...).
596                  *
597                  * This is why we still want to return NULL for such page from
598                  * vm_normal_page() so that we do not have to special case all
599                  * call site of vm_normal_page().
600                  */
601                 if (likely(pfn <= highest_memmap_pfn)) {
602                         struct page *page = pfn_to_page(pfn);
603
604                         if (is_device_public_page(page)) {
605                                 if (with_public_device)
606                                         return page;
607                                 return NULL;
608                         }
609                 }
610
611                 if (pte_devmap(pte))
612                         return NULL;
613
614                 print_bad_pte(vma, addr, pte, NULL);
615                 return NULL;
616         }
617
618         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
619
620         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
621                 if (vma->vm_flags & VM_MIXEDMAP) {
622                         if (!pfn_valid(pfn))
623                                 return NULL;
624                         goto out;
625                 } else {
626                         unsigned long off;
627                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
628                         if (pfn == vma->vm_pgoff + off)
629                                 return NULL;
630                         if (!is_cow_mapping(vma->vm_flags))
631                                 return NULL;
632                 }
633         }
634
635         if (is_zero_pfn(pfn))
636                 return NULL;
637
638 check_pfn:
639         if (unlikely(pfn > highest_memmap_pfn)) {
640                 print_bad_pte(vma, addr, pte, NULL);
641                 return NULL;
642         }
643
644         /*
645          * NOTE! We still have PageReserved() pages in the page tables.
646          * eg. VDSO mappings can cause them to exist.
647          */
648 out:
649         return pfn_to_page(pfn);
650 }
651
652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
654                                 pmd_t pmd)
655 {
656         unsigned long pfn = pmd_pfn(pmd);
657
658         /*
659          * There is no pmd_special() but there may be special pmds, e.g.
660          * in a direct-access (dax) mapping, so let's just replicate the
661          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
662          */
663         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
664                 if (vma->vm_flags & VM_MIXEDMAP) {
665                         if (!pfn_valid(pfn))
666                                 return NULL;
667                         goto out;
668                 } else {
669                         unsigned long off;
670                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
671                         if (pfn == vma->vm_pgoff + off)
672                                 return NULL;
673                         if (!is_cow_mapping(vma->vm_flags))
674                                 return NULL;
675                 }
676         }
677
678         if (pmd_devmap(pmd))
679                 return NULL;
680         if (is_zero_pfn(pfn))
681                 return NULL;
682         if (unlikely(pfn > highest_memmap_pfn))
683                 return NULL;
684
685         /*
686          * NOTE! We still have PageReserved() pages in the page tables.
687          * eg. VDSO mappings can cause them to exist.
688          */
689 out:
690         return pfn_to_page(pfn);
691 }
692 #endif
693
694 /*
695  * copy one vm_area from one task to the other. Assumes the page tables
696  * already present in the new task to be cleared in the whole range
697  * covered by this vma.
698  */
699
700 static inline unsigned long
701 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
703                 unsigned long addr, int *rss)
704 {
705         unsigned long vm_flags = vma->vm_flags;
706         pte_t pte = *src_pte;
707         struct page *page;
708
709         /* pte contains position in swap or file, so copy. */
710         if (unlikely(!pte_present(pte))) {
711                 swp_entry_t entry = pte_to_swp_entry(pte);
712
713                 if (likely(!non_swap_entry(entry))) {
714                         if (swap_duplicate(entry) < 0)
715                                 return entry.val;
716
717                         /* make sure dst_mm is on swapoff's mmlist. */
718                         if (unlikely(list_empty(&dst_mm->mmlist))) {
719                                 spin_lock(&mmlist_lock);
720                                 if (list_empty(&dst_mm->mmlist))
721                                         list_add(&dst_mm->mmlist,
722                                                         &src_mm->mmlist);
723                                 spin_unlock(&mmlist_lock);
724                         }
725                         rss[MM_SWAPENTS]++;
726                 } else if (is_migration_entry(entry)) {
727                         page = migration_entry_to_page(entry);
728
729                         rss[mm_counter(page)]++;
730
731                         if (is_write_migration_entry(entry) &&
732                                         is_cow_mapping(vm_flags)) {
733                                 /*
734                                  * COW mappings require pages in both
735                                  * parent and child to be set to read.
736                                  */
737                                 make_migration_entry_read(&entry);
738                                 pte = swp_entry_to_pte(entry);
739                                 if (pte_swp_soft_dirty(*src_pte))
740                                         pte = pte_swp_mksoft_dirty(pte);
741                                 set_pte_at(src_mm, addr, src_pte, pte);
742                         }
743                 } else if (is_device_private_entry(entry)) {
744                         page = device_private_entry_to_page(entry);
745
746                         /*
747                          * Update rss count even for unaddressable pages, as
748                          * they should treated just like normal pages in this
749                          * respect.
750                          *
751                          * We will likely want to have some new rss counters
752                          * for unaddressable pages, at some point. But for now
753                          * keep things as they are.
754                          */
755                         get_page(page);
756                         rss[mm_counter(page)]++;
757                         page_dup_rmap(page, false);
758
759                         /*
760                          * We do not preserve soft-dirty information, because so
761                          * far, checkpoint/restore is the only feature that
762                          * requires that. And checkpoint/restore does not work
763                          * when a device driver is involved (you cannot easily
764                          * save and restore device driver state).
765                          */
766                         if (is_write_device_private_entry(entry) &&
767                             is_cow_mapping(vm_flags)) {
768                                 make_device_private_entry_read(&entry);
769                                 pte = swp_entry_to_pte(entry);
770                                 set_pte_at(src_mm, addr, src_pte, pte);
771                         }
772                 }
773                 goto out_set_pte;
774         }
775
776         /*
777          * If it's a COW mapping, write protect it both
778          * in the parent and the child
779          */
780         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781                 ptep_set_wrprotect(src_mm, addr, src_pte);
782                 pte = pte_wrprotect(pte);
783         }
784
785         /*
786          * If it's a shared mapping, mark it clean in
787          * the child
788          */
789         if (vm_flags & VM_SHARED)
790                 pte = pte_mkclean(pte);
791         pte = pte_mkold(pte);
792
793         page = vm_normal_page(vma, addr, pte);
794         if (page) {
795                 get_page(page);
796                 page_dup_rmap(page, false);
797                 rss[mm_counter(page)]++;
798         } else if (pte_devmap(pte)) {
799                 page = pte_page(pte);
800
801                 /*
802                  * Cache coherent device memory behave like regular page and
803                  * not like persistent memory page. For more informations see
804                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
805                  */
806                 if (is_device_public_page(page)) {
807                         get_page(page);
808                         page_dup_rmap(page, false);
809                         rss[mm_counter(page)]++;
810                 }
811         }
812
813 out_set_pte:
814         set_pte_at(dst_mm, addr, dst_pte, pte);
815         return 0;
816 }
817
818 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
819                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
820                    unsigned long addr, unsigned long end)
821 {
822         pte_t *orig_src_pte, *orig_dst_pte;
823         pte_t *src_pte, *dst_pte;
824         spinlock_t *src_ptl, *dst_ptl;
825         int progress = 0;
826         int rss[NR_MM_COUNTERS];
827         swp_entry_t entry = (swp_entry_t){0};
828
829 again:
830         init_rss_vec(rss);
831
832         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
833         if (!dst_pte)
834                 return -ENOMEM;
835         src_pte = pte_offset_map(src_pmd, addr);
836         src_ptl = pte_lockptr(src_mm, src_pmd);
837         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
838         orig_src_pte = src_pte;
839         orig_dst_pte = dst_pte;
840         arch_enter_lazy_mmu_mode();
841
842         do {
843                 /*
844                  * We are holding two locks at this point - either of them
845                  * could generate latencies in another task on another CPU.
846                  */
847                 if (progress >= 32) {
848                         progress = 0;
849                         if (need_resched() ||
850                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
851                                 break;
852                 }
853                 if (pte_none(*src_pte)) {
854                         progress++;
855                         continue;
856                 }
857                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
858                                                         vma, addr, rss);
859                 if (entry.val)
860                         break;
861                 progress += 8;
862         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
863
864         arch_leave_lazy_mmu_mode();
865         spin_unlock(src_ptl);
866         pte_unmap(orig_src_pte);
867         add_mm_rss_vec(dst_mm, rss);
868         pte_unmap_unlock(orig_dst_pte, dst_ptl);
869         cond_resched();
870
871         if (entry.val) {
872                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
873                         return -ENOMEM;
874                 progress = 0;
875         }
876         if (addr != end)
877                 goto again;
878         return 0;
879 }
880
881 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
883                 unsigned long addr, unsigned long end)
884 {
885         pmd_t *src_pmd, *dst_pmd;
886         unsigned long next;
887
888         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
889         if (!dst_pmd)
890                 return -ENOMEM;
891         src_pmd = pmd_offset(src_pud, addr);
892         do {
893                 next = pmd_addr_end(addr, end);
894                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
895                         || pmd_devmap(*src_pmd)) {
896                         int err;
897                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
898                         err = copy_huge_pmd(dst_mm, src_mm,
899                                             dst_pmd, src_pmd, addr, vma);
900                         if (err == -ENOMEM)
901                                 return -ENOMEM;
902                         if (!err)
903                                 continue;
904                         /* fall through */
905                 }
906                 if (pmd_none_or_clear_bad(src_pmd))
907                         continue;
908                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
909                                                 vma, addr, next))
910                         return -ENOMEM;
911         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
912         return 0;
913 }
914
915 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
917                 unsigned long addr, unsigned long end)
918 {
919         pud_t *src_pud, *dst_pud;
920         unsigned long next;
921
922         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
923         if (!dst_pud)
924                 return -ENOMEM;
925         src_pud = pud_offset(src_p4d, addr);
926         do {
927                 next = pud_addr_end(addr, end);
928                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
929                         int err;
930
931                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
932                         err = copy_huge_pud(dst_mm, src_mm,
933                                             dst_pud, src_pud, addr, vma);
934                         if (err == -ENOMEM)
935                                 return -ENOMEM;
936                         if (!err)
937                                 continue;
938                         /* fall through */
939                 }
940                 if (pud_none_or_clear_bad(src_pud))
941                         continue;
942                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
943                                                 vma, addr, next))
944                         return -ENOMEM;
945         } while (dst_pud++, src_pud++, addr = next, addr != end);
946         return 0;
947 }
948
949 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
951                 unsigned long addr, unsigned long end)
952 {
953         p4d_t *src_p4d, *dst_p4d;
954         unsigned long next;
955
956         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
957         if (!dst_p4d)
958                 return -ENOMEM;
959         src_p4d = p4d_offset(src_pgd, addr);
960         do {
961                 next = p4d_addr_end(addr, end);
962                 if (p4d_none_or_clear_bad(src_p4d))
963                         continue;
964                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
965                                                 vma, addr, next))
966                         return -ENOMEM;
967         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
968         return 0;
969 }
970
971 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
972                 struct vm_area_struct *vma)
973 {
974         pgd_t *src_pgd, *dst_pgd;
975         unsigned long next;
976         unsigned long addr = vma->vm_start;
977         unsigned long end = vma->vm_end;
978         struct mmu_notifier_range range;
979         bool is_cow;
980         int ret;
981
982         /*
983          * Don't copy ptes where a page fault will fill them correctly.
984          * Fork becomes much lighter when there are big shared or private
985          * readonly mappings. The tradeoff is that copy_page_range is more
986          * efficient than faulting.
987          */
988         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
989                         !vma->anon_vma)
990                 return 0;
991
992         if (is_vm_hugetlb_page(vma))
993                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
994
995         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
996                 /*
997                  * We do not free on error cases below as remove_vma
998                  * gets called on error from higher level routine
999                  */
1000                 ret = track_pfn_copy(vma);
1001                 if (ret)
1002                         return ret;
1003         }
1004
1005         /*
1006          * We need to invalidate the secondary MMU mappings only when
1007          * there could be a permission downgrade on the ptes of the
1008          * parent mm. And a permission downgrade will only happen if
1009          * is_cow_mapping() returns true.
1010          */
1011         is_cow = is_cow_mapping(vma->vm_flags);
1012
1013         if (is_cow) {
1014                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1015                                         0, vma, src_mm, addr, end);
1016                 mmu_notifier_invalidate_range_start(&range);
1017         }
1018
1019         ret = 0;
1020         dst_pgd = pgd_offset(dst_mm, addr);
1021         src_pgd = pgd_offset(src_mm, addr);
1022         do {
1023                 next = pgd_addr_end(addr, end);
1024                 if (pgd_none_or_clear_bad(src_pgd))
1025                         continue;
1026                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1027                                             vma, addr, next))) {
1028                         ret = -ENOMEM;
1029                         break;
1030                 }
1031         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1032
1033         if (is_cow)
1034                 mmu_notifier_invalidate_range_end(&range);
1035         return ret;
1036 }
1037
1038 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1039                                 struct vm_area_struct *vma, pmd_t *pmd,
1040                                 unsigned long addr, unsigned long end,
1041                                 struct zap_details *details)
1042 {
1043         struct mm_struct *mm = tlb->mm;
1044         int force_flush = 0;
1045         int rss[NR_MM_COUNTERS];
1046         spinlock_t *ptl;
1047         pte_t *start_pte;
1048         pte_t *pte;
1049         swp_entry_t entry;
1050
1051         tlb_change_page_size(tlb, PAGE_SIZE);
1052 again:
1053         init_rss_vec(rss);
1054         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1055         pte = start_pte;
1056         flush_tlb_batched_pending(mm);
1057         arch_enter_lazy_mmu_mode();
1058         do {
1059                 pte_t ptent = *pte;
1060                 if (pte_none(ptent))
1061                         continue;
1062
1063                 if (pte_present(ptent)) {
1064                         struct page *page;
1065
1066                         page = _vm_normal_page(vma, addr, ptent, true);
1067                         if (unlikely(details) && page) {
1068                                 /*
1069                                  * unmap_shared_mapping_pages() wants to
1070                                  * invalidate cache without truncating:
1071                                  * unmap shared but keep private pages.
1072                                  */
1073                                 if (details->check_mapping &&
1074                                     details->check_mapping != page_rmapping(page))
1075                                         continue;
1076                         }
1077                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1078                                                         tlb->fullmm);
1079                         tlb_remove_tlb_entry(tlb, pte, addr);
1080                         if (unlikely(!page))
1081                                 continue;
1082
1083                         if (!PageAnon(page)) {
1084                                 if (pte_dirty(ptent)) {
1085                                         force_flush = 1;
1086                                         set_page_dirty(page);
1087                                 }
1088                                 if (pte_young(ptent) &&
1089                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1090                                         mark_page_accessed(page);
1091                         }
1092                         rss[mm_counter(page)]--;
1093                         page_remove_rmap(page, false);
1094                         if (unlikely(page_mapcount(page) < 0))
1095                                 print_bad_pte(vma, addr, ptent, page);
1096                         if (unlikely(__tlb_remove_page(tlb, page))) {
1097                                 force_flush = 1;
1098                                 addr += PAGE_SIZE;
1099                                 break;
1100                         }
1101                         continue;
1102                 }
1103
1104                 entry = pte_to_swp_entry(ptent);
1105                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1106                         struct page *page = device_private_entry_to_page(entry);
1107
1108                         if (unlikely(details && details->check_mapping)) {
1109                                 /*
1110                                  * unmap_shared_mapping_pages() wants to
1111                                  * invalidate cache without truncating:
1112                                  * unmap shared but keep private pages.
1113                                  */
1114                                 if (details->check_mapping !=
1115                                     page_rmapping(page))
1116                                         continue;
1117                         }
1118
1119                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120                         rss[mm_counter(page)]--;
1121                         page_remove_rmap(page, false);
1122                         put_page(page);
1123                         continue;
1124                 }
1125
1126                 /* If details->check_mapping, we leave swap entries. */
1127                 if (unlikely(details))
1128                         continue;
1129
1130                 entry = pte_to_swp_entry(ptent);
1131                 if (!non_swap_entry(entry))
1132                         rss[MM_SWAPENTS]--;
1133                 else if (is_migration_entry(entry)) {
1134                         struct page *page;
1135
1136                         page = migration_entry_to_page(entry);
1137                         rss[mm_counter(page)]--;
1138                 }
1139                 if (unlikely(!free_swap_and_cache(entry)))
1140                         print_bad_pte(vma, addr, ptent, NULL);
1141                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142         } while (pte++, addr += PAGE_SIZE, addr != end);
1143
1144         add_mm_rss_vec(mm, rss);
1145         arch_leave_lazy_mmu_mode();
1146
1147         /* Do the actual TLB flush before dropping ptl */
1148         if (force_flush)
1149                 tlb_flush_mmu_tlbonly(tlb);
1150         pte_unmap_unlock(start_pte, ptl);
1151
1152         /*
1153          * If we forced a TLB flush (either due to running out of
1154          * batch buffers or because we needed to flush dirty TLB
1155          * entries before releasing the ptl), free the batched
1156          * memory too. Restart if we didn't do everything.
1157          */
1158         if (force_flush) {
1159                 force_flush = 0;
1160                 tlb_flush_mmu(tlb);
1161                 if (addr != end)
1162                         goto again;
1163         }
1164
1165         return addr;
1166 }
1167
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169                                 struct vm_area_struct *vma, pud_t *pud,
1170                                 unsigned long addr, unsigned long end,
1171                                 struct zap_details *details)
1172 {
1173         pmd_t *pmd;
1174         unsigned long next;
1175
1176         pmd = pmd_offset(pud, addr);
1177         do {
1178                 next = pmd_addr_end(addr, end);
1179                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180                         if (next - addr != HPAGE_PMD_SIZE)
1181                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1182                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183                                 goto next;
1184                         /* fall through */
1185                 }
1186                 /*
1187                  * Here there can be other concurrent MADV_DONTNEED or
1188                  * trans huge page faults running, and if the pmd is
1189                  * none or trans huge it can change under us. This is
1190                  * because MADV_DONTNEED holds the mmap_sem in read
1191                  * mode.
1192                  */
1193                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194                         goto next;
1195                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197                 cond_resched();
1198         } while (pmd++, addr = next, addr != end);
1199
1200         return addr;
1201 }
1202
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204                                 struct vm_area_struct *vma, p4d_t *p4d,
1205                                 unsigned long addr, unsigned long end,
1206                                 struct zap_details *details)
1207 {
1208         pud_t *pud;
1209         unsigned long next;
1210
1211         pud = pud_offset(p4d, addr);
1212         do {
1213                 next = pud_addr_end(addr, end);
1214                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215                         if (next - addr != HPAGE_PUD_SIZE) {
1216                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1217                                 split_huge_pud(vma, pud, addr);
1218                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1219                                 goto next;
1220                         /* fall through */
1221                 }
1222                 if (pud_none_or_clear_bad(pud))
1223                         continue;
1224                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226                 cond_resched();
1227         } while (pud++, addr = next, addr != end);
1228
1229         return addr;
1230 }
1231
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233                                 struct vm_area_struct *vma, pgd_t *pgd,
1234                                 unsigned long addr, unsigned long end,
1235                                 struct zap_details *details)
1236 {
1237         p4d_t *p4d;
1238         unsigned long next;
1239
1240         p4d = p4d_offset(pgd, addr);
1241         do {
1242                 next = p4d_addr_end(addr, end);
1243                 if (p4d_none_or_clear_bad(p4d))
1244                         continue;
1245                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246         } while (p4d++, addr = next, addr != end);
1247
1248         return addr;
1249 }
1250
1251 void unmap_page_range(struct mmu_gather *tlb,
1252                              struct vm_area_struct *vma,
1253                              unsigned long addr, unsigned long end,
1254                              struct zap_details *details)
1255 {
1256         pgd_t *pgd;
1257         unsigned long next;
1258
1259         BUG_ON(addr >= end);
1260         tlb_start_vma(tlb, vma);
1261         pgd = pgd_offset(vma->vm_mm, addr);
1262         do {
1263                 next = pgd_addr_end(addr, end);
1264                 if (pgd_none_or_clear_bad(pgd))
1265                         continue;
1266                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267         } while (pgd++, addr = next, addr != end);
1268         tlb_end_vma(tlb, vma);
1269 }
1270
1271
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273                 struct vm_area_struct *vma, unsigned long start_addr,
1274                 unsigned long end_addr,
1275                 struct zap_details *details)
1276 {
1277         unsigned long start = max(vma->vm_start, start_addr);
1278         unsigned long end;
1279
1280         if (start >= vma->vm_end)
1281                 return;
1282         end = min(vma->vm_end, end_addr);
1283         if (end <= vma->vm_start)
1284                 return;
1285
1286         if (vma->vm_file)
1287                 uprobe_munmap(vma, start, end);
1288
1289         if (unlikely(vma->vm_flags & VM_PFNMAP))
1290                 untrack_pfn(vma, 0, 0);
1291
1292         if (start != end) {
1293                 if (unlikely(is_vm_hugetlb_page(vma))) {
1294                         /*
1295                          * It is undesirable to test vma->vm_file as it
1296                          * should be non-null for valid hugetlb area.
1297                          * However, vm_file will be NULL in the error
1298                          * cleanup path of mmap_region. When
1299                          * hugetlbfs ->mmap method fails,
1300                          * mmap_region() nullifies vma->vm_file
1301                          * before calling this function to clean up.
1302                          * Since no pte has actually been setup, it is
1303                          * safe to do nothing in this case.
1304                          */
1305                         if (vma->vm_file) {
1306                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1307                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1309                         }
1310                 } else
1311                         unmap_page_range(tlb, vma, start, end, details);
1312         }
1313 }
1314
1315 /**
1316  * unmap_vmas - unmap a range of memory covered by a list of vma's
1317  * @tlb: address of the caller's struct mmu_gather
1318  * @vma: the starting vma
1319  * @start_addr: virtual address at which to start unmapping
1320  * @end_addr: virtual address at which to end unmapping
1321  *
1322  * Unmap all pages in the vma list.
1323  *
1324  * Only addresses between `start' and `end' will be unmapped.
1325  *
1326  * The VMA list must be sorted in ascending virtual address order.
1327  *
1328  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329  * range after unmap_vmas() returns.  So the only responsibility here is to
1330  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331  * drops the lock and schedules.
1332  */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334                 struct vm_area_struct *vma, unsigned long start_addr,
1335                 unsigned long end_addr)
1336 {
1337         struct mmu_notifier_range range;
1338
1339         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340                                 start_addr, end_addr);
1341         mmu_notifier_invalidate_range_start(&range);
1342         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344         mmu_notifier_invalidate_range_end(&range);
1345 }
1346
1347 /**
1348  * zap_page_range - remove user pages in a given range
1349  * @vma: vm_area_struct holding the applicable pages
1350  * @start: starting address of pages to zap
1351  * @size: number of bytes to zap
1352  *
1353  * Caller must protect the VMA list
1354  */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356                 unsigned long size)
1357 {
1358         struct mmu_notifier_range range;
1359         struct mmu_gather tlb;
1360
1361         lru_add_drain();
1362         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363                                 start, start + size);
1364         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365         update_hiwater_rss(vma->vm_mm);
1366         mmu_notifier_invalidate_range_start(&range);
1367         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369         mmu_notifier_invalidate_range_end(&range);
1370         tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372
1373 /**
1374  * zap_page_range_single - remove user pages in a given range
1375  * @vma: vm_area_struct holding the applicable pages
1376  * @address: starting address of pages to zap
1377  * @size: number of bytes to zap
1378  * @details: details of shared cache invalidation
1379  *
1380  * The range must fit into one VMA.
1381  */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383                 unsigned long size, struct zap_details *details)
1384 {
1385         struct mmu_notifier_range range;
1386         struct mmu_gather tlb;
1387
1388         lru_add_drain();
1389         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390                                 address, address + size);
1391         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392         update_hiwater_rss(vma->vm_mm);
1393         mmu_notifier_invalidate_range_start(&range);
1394         unmap_single_vma(&tlb, vma, address, range.end, details);
1395         mmu_notifier_invalidate_range_end(&range);
1396         tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398
1399 /**
1400  * zap_vma_ptes - remove ptes mapping the vma
1401  * @vma: vm_area_struct holding ptes to be zapped
1402  * @address: starting address of pages to zap
1403  * @size: number of bytes to zap
1404  *
1405  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406  *
1407  * The entire address range must be fully contained within the vma.
1408  *
1409  */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411                 unsigned long size)
1412 {
1413         if (address < vma->vm_start || address + size > vma->vm_end ||
1414                         !(vma->vm_flags & VM_PFNMAP))
1415                 return;
1416
1417         zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
1421 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1422                         spinlock_t **ptl)
1423 {
1424         pgd_t *pgd;
1425         p4d_t *p4d;
1426         pud_t *pud;
1427         pmd_t *pmd;
1428
1429         pgd = pgd_offset(mm, addr);
1430         p4d = p4d_alloc(mm, pgd, addr);
1431         if (!p4d)
1432                 return NULL;
1433         pud = pud_alloc(mm, p4d, addr);
1434         if (!pud)
1435                 return NULL;
1436         pmd = pmd_alloc(mm, pud, addr);
1437         if (!pmd)
1438                 return NULL;
1439
1440         VM_BUG_ON(pmd_trans_huge(*pmd));
1441         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1442 }
1443
1444 /*
1445  * This is the old fallback for page remapping.
1446  *
1447  * For historical reasons, it only allows reserved pages. Only
1448  * old drivers should use this, and they needed to mark their
1449  * pages reserved for the old functions anyway.
1450  */
1451 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1452                         struct page *page, pgprot_t prot)
1453 {
1454         struct mm_struct *mm = vma->vm_mm;
1455         int retval;
1456         pte_t *pte;
1457         spinlock_t *ptl;
1458
1459         retval = -EINVAL;
1460         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1461                 goto out;
1462         retval = -ENOMEM;
1463         flush_dcache_page(page);
1464         pte = get_locked_pte(mm, addr, &ptl);
1465         if (!pte)
1466                 goto out;
1467         retval = -EBUSY;
1468         if (!pte_none(*pte))
1469                 goto out_unlock;
1470
1471         /* Ok, finally just insert the thing.. */
1472         get_page(page);
1473         inc_mm_counter_fast(mm, mm_counter_file(page));
1474         page_add_file_rmap(page, false);
1475         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1476
1477         retval = 0;
1478 out_unlock:
1479         pte_unmap_unlock(pte, ptl);
1480 out:
1481         return retval;
1482 }
1483
1484 /**
1485  * vm_insert_page - insert single page into user vma
1486  * @vma: user vma to map to
1487  * @addr: target user address of this page
1488  * @page: source kernel page
1489  *
1490  * This allows drivers to insert individual pages they've allocated
1491  * into a user vma.
1492  *
1493  * The page has to be a nice clean _individual_ kernel allocation.
1494  * If you allocate a compound page, you need to have marked it as
1495  * such (__GFP_COMP), or manually just split the page up yourself
1496  * (see split_page()).
1497  *
1498  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1499  * took an arbitrary page protection parameter. This doesn't allow
1500  * that. Your vma protection will have to be set up correctly, which
1501  * means that if you want a shared writable mapping, you'd better
1502  * ask for a shared writable mapping!
1503  *
1504  * The page does not need to be reserved.
1505  *
1506  * Usually this function is called from f_op->mmap() handler
1507  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1508  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1509  * function from other places, for example from page-fault handler.
1510  *
1511  * Return: %0 on success, negative error code otherwise.
1512  */
1513 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1514                         struct page *page)
1515 {
1516         if (addr < vma->vm_start || addr >= vma->vm_end)
1517                 return -EFAULT;
1518         if (!page_count(page))
1519                 return -EINVAL;
1520         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1521                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1522                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1523                 vma->vm_flags |= VM_MIXEDMAP;
1524         }
1525         return insert_page(vma, addr, page, vma->vm_page_prot);
1526 }
1527 EXPORT_SYMBOL(vm_insert_page);
1528
1529 /*
1530  * __vm_map_pages - maps range of kernel pages into user vma
1531  * @vma: user vma to map to
1532  * @pages: pointer to array of source kernel pages
1533  * @num: number of pages in page array
1534  * @offset: user's requested vm_pgoff
1535  *
1536  * This allows drivers to map range of kernel pages into a user vma.
1537  *
1538  * Return: 0 on success and error code otherwise.
1539  */
1540 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1541                                 unsigned long num, unsigned long offset)
1542 {
1543         unsigned long count = vma_pages(vma);
1544         unsigned long uaddr = vma->vm_start;
1545         int ret, i;
1546
1547         /* Fail if the user requested offset is beyond the end of the object */
1548         if (offset > num)
1549                 return -ENXIO;
1550
1551         /* Fail if the user requested size exceeds available object size */
1552         if (count > num - offset)
1553                 return -ENXIO;
1554
1555         for (i = 0; i < count; i++) {
1556                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1557                 if (ret < 0)
1558                         return ret;
1559                 uaddr += PAGE_SIZE;
1560         }
1561
1562         return 0;
1563 }
1564
1565 /**
1566  * vm_map_pages - maps range of kernel pages starts with non zero offset
1567  * @vma: user vma to map to
1568  * @pages: pointer to array of source kernel pages
1569  * @num: number of pages in page array
1570  *
1571  * Maps an object consisting of @num pages, catering for the user's
1572  * requested vm_pgoff
1573  *
1574  * If we fail to insert any page into the vma, the function will return
1575  * immediately leaving any previously inserted pages present.  Callers
1576  * from the mmap handler may immediately return the error as their caller
1577  * will destroy the vma, removing any successfully inserted pages. Other
1578  * callers should make their own arrangements for calling unmap_region().
1579  *
1580  * Context: Process context. Called by mmap handlers.
1581  * Return: 0 on success and error code otherwise.
1582  */
1583 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1584                                 unsigned long num)
1585 {
1586         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1587 }
1588 EXPORT_SYMBOL(vm_map_pages);
1589
1590 /**
1591  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1592  * @vma: user vma to map to
1593  * @pages: pointer to array of source kernel pages
1594  * @num: number of pages in page array
1595  *
1596  * Similar to vm_map_pages(), except that it explicitly sets the offset
1597  * to 0. This function is intended for the drivers that did not consider
1598  * vm_pgoff.
1599  *
1600  * Context: Process context. Called by mmap handlers.
1601  * Return: 0 on success and error code otherwise.
1602  */
1603 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1604                                 unsigned long num)
1605 {
1606         return __vm_map_pages(vma, pages, num, 0);
1607 }
1608 EXPORT_SYMBOL(vm_map_pages_zero);
1609
1610 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1611                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1612 {
1613         struct mm_struct *mm = vma->vm_mm;
1614         pte_t *pte, entry;
1615         spinlock_t *ptl;
1616
1617         pte = get_locked_pte(mm, addr, &ptl);
1618         if (!pte)
1619                 return VM_FAULT_OOM;
1620         if (!pte_none(*pte)) {
1621                 if (mkwrite) {
1622                         /*
1623                          * For read faults on private mappings the PFN passed
1624                          * in may not match the PFN we have mapped if the
1625                          * mapped PFN is a writeable COW page.  In the mkwrite
1626                          * case we are creating a writable PTE for a shared
1627                          * mapping and we expect the PFNs to match. If they
1628                          * don't match, we are likely racing with block
1629                          * allocation and mapping invalidation so just skip the
1630                          * update.
1631                          */
1632                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1633                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1634                                 goto out_unlock;
1635                         }
1636                         entry = pte_mkyoung(*pte);
1637                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1638                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1639                                 update_mmu_cache(vma, addr, pte);
1640                 }
1641                 goto out_unlock;
1642         }
1643
1644         /* Ok, finally just insert the thing.. */
1645         if (pfn_t_devmap(pfn))
1646                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1647         else
1648                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1649
1650         if (mkwrite) {
1651                 entry = pte_mkyoung(entry);
1652                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1653         }
1654
1655         set_pte_at(mm, addr, pte, entry);
1656         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1657
1658 out_unlock:
1659         pte_unmap_unlock(pte, ptl);
1660         return VM_FAULT_NOPAGE;
1661 }
1662
1663 /**
1664  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1665  * @vma: user vma to map to
1666  * @addr: target user address of this page
1667  * @pfn: source kernel pfn
1668  * @pgprot: pgprot flags for the inserted page
1669  *
1670  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1671  * to override pgprot on a per-page basis.
1672  *
1673  * This only makes sense for IO mappings, and it makes no sense for
1674  * COW mappings.  In general, using multiple vmas is preferable;
1675  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1676  * impractical.
1677  *
1678  * Context: Process context.  May allocate using %GFP_KERNEL.
1679  * Return: vm_fault_t value.
1680  */
1681 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1682                         unsigned long pfn, pgprot_t pgprot)
1683 {
1684         /*
1685          * Technically, architectures with pte_special can avoid all these
1686          * restrictions (same for remap_pfn_range).  However we would like
1687          * consistency in testing and feature parity among all, so we should
1688          * try to keep these invariants in place for everybody.
1689          */
1690         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1691         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1692                                                 (VM_PFNMAP|VM_MIXEDMAP));
1693         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1694         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1695
1696         if (addr < vma->vm_start || addr >= vma->vm_end)
1697                 return VM_FAULT_SIGBUS;
1698
1699         if (!pfn_modify_allowed(pfn, pgprot))
1700                 return VM_FAULT_SIGBUS;
1701
1702         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1703
1704         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1705                         false);
1706 }
1707 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1708
1709 /**
1710  * vmf_insert_pfn - insert single pfn into user vma
1711  * @vma: user vma to map to
1712  * @addr: target user address of this page
1713  * @pfn: source kernel pfn
1714  *
1715  * Similar to vm_insert_page, this allows drivers to insert individual pages
1716  * they've allocated into a user vma. Same comments apply.
1717  *
1718  * This function should only be called from a vm_ops->fault handler, and
1719  * in that case the handler should return the result of this function.
1720  *
1721  * vma cannot be a COW mapping.
1722  *
1723  * As this is called only for pages that do not currently exist, we
1724  * do not need to flush old virtual caches or the TLB.
1725  *
1726  * Context: Process context.  May allocate using %GFP_KERNEL.
1727  * Return: vm_fault_t value.
1728  */
1729 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1730                         unsigned long pfn)
1731 {
1732         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1733 }
1734 EXPORT_SYMBOL(vmf_insert_pfn);
1735
1736 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1737 {
1738         /* these checks mirror the abort conditions in vm_normal_page */
1739         if (vma->vm_flags & VM_MIXEDMAP)
1740                 return true;
1741         if (pfn_t_devmap(pfn))
1742                 return true;
1743         if (pfn_t_special(pfn))
1744                 return true;
1745         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1746                 return true;
1747         return false;
1748 }
1749
1750 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1751                 unsigned long addr, pfn_t pfn, bool mkwrite)
1752 {
1753         pgprot_t pgprot = vma->vm_page_prot;
1754         int err;
1755
1756         BUG_ON(!vm_mixed_ok(vma, pfn));
1757
1758         if (addr < vma->vm_start || addr >= vma->vm_end)
1759                 return VM_FAULT_SIGBUS;
1760
1761         track_pfn_insert(vma, &pgprot, pfn);
1762
1763         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1764                 return VM_FAULT_SIGBUS;
1765
1766         /*
1767          * If we don't have pte special, then we have to use the pfn_valid()
1768          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1769          * refcount the page if pfn_valid is true (hence insert_page rather
1770          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1771          * without pte special, it would there be refcounted as a normal page.
1772          */
1773         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1774             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1775                 struct page *page;
1776
1777                 /*
1778                  * At this point we are committed to insert_page()
1779                  * regardless of whether the caller specified flags that
1780                  * result in pfn_t_has_page() == false.
1781                  */
1782                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1783                 err = insert_page(vma, addr, page, pgprot);
1784         } else {
1785                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1786         }
1787
1788         if (err == -ENOMEM)
1789                 return VM_FAULT_OOM;
1790         if (err < 0 && err != -EBUSY)
1791                 return VM_FAULT_SIGBUS;
1792
1793         return VM_FAULT_NOPAGE;
1794 }
1795
1796 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1797                 pfn_t pfn)
1798 {
1799         return __vm_insert_mixed(vma, addr, pfn, false);
1800 }
1801 EXPORT_SYMBOL(vmf_insert_mixed);
1802
1803 /*
1804  *  If the insertion of PTE failed because someone else already added a
1805  *  different entry in the mean time, we treat that as success as we assume
1806  *  the same entry was actually inserted.
1807  */
1808 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1809                 unsigned long addr, pfn_t pfn)
1810 {
1811         return __vm_insert_mixed(vma, addr, pfn, true);
1812 }
1813 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1814
1815 /*
1816  * maps a range of physical memory into the requested pages. the old
1817  * mappings are removed. any references to nonexistent pages results
1818  * in null mappings (currently treated as "copy-on-access")
1819  */
1820 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1821                         unsigned long addr, unsigned long end,
1822                         unsigned long pfn, pgprot_t prot)
1823 {
1824         pte_t *pte;
1825         spinlock_t *ptl;
1826         int err = 0;
1827
1828         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1829         if (!pte)
1830                 return -ENOMEM;
1831         arch_enter_lazy_mmu_mode();
1832         do {
1833                 BUG_ON(!pte_none(*pte));
1834                 if (!pfn_modify_allowed(pfn, prot)) {
1835                         err = -EACCES;
1836                         break;
1837                 }
1838                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1839                 pfn++;
1840         } while (pte++, addr += PAGE_SIZE, addr != end);
1841         arch_leave_lazy_mmu_mode();
1842         pte_unmap_unlock(pte - 1, ptl);
1843         return err;
1844 }
1845
1846 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1847                         unsigned long addr, unsigned long end,
1848                         unsigned long pfn, pgprot_t prot)
1849 {
1850         pmd_t *pmd;
1851         unsigned long next;
1852         int err;
1853
1854         pfn -= addr >> PAGE_SHIFT;
1855         pmd = pmd_alloc(mm, pud, addr);
1856         if (!pmd)
1857                 return -ENOMEM;
1858         VM_BUG_ON(pmd_trans_huge(*pmd));
1859         do {
1860                 next = pmd_addr_end(addr, end);
1861                 err = remap_pte_range(mm, pmd, addr, next,
1862                                 pfn + (addr >> PAGE_SHIFT), prot);
1863                 if (err)
1864                         return err;
1865         } while (pmd++, addr = next, addr != end);
1866         return 0;
1867 }
1868
1869 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1870                         unsigned long addr, unsigned long end,
1871                         unsigned long pfn, pgprot_t prot)
1872 {
1873         pud_t *pud;
1874         unsigned long next;
1875         int err;
1876
1877         pfn -= addr >> PAGE_SHIFT;
1878         pud = pud_alloc(mm, p4d, addr);
1879         if (!pud)
1880                 return -ENOMEM;
1881         do {
1882                 next = pud_addr_end(addr, end);
1883                 err = remap_pmd_range(mm, pud, addr, next,
1884                                 pfn + (addr >> PAGE_SHIFT), prot);
1885                 if (err)
1886                         return err;
1887         } while (pud++, addr = next, addr != end);
1888         return 0;
1889 }
1890
1891 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1892                         unsigned long addr, unsigned long end,
1893                         unsigned long pfn, pgprot_t prot)
1894 {
1895         p4d_t *p4d;
1896         unsigned long next;
1897         int err;
1898
1899         pfn -= addr >> PAGE_SHIFT;
1900         p4d = p4d_alloc(mm, pgd, addr);
1901         if (!p4d)
1902                 return -ENOMEM;
1903         do {
1904                 next = p4d_addr_end(addr, end);
1905                 err = remap_pud_range(mm, p4d, addr, next,
1906                                 pfn + (addr >> PAGE_SHIFT), prot);
1907                 if (err)
1908                         return err;
1909         } while (p4d++, addr = next, addr != end);
1910         return 0;
1911 }
1912
1913 /**
1914  * remap_pfn_range - remap kernel memory to userspace
1915  * @vma: user vma to map to
1916  * @addr: target user address to start at
1917  * @pfn: physical address of kernel memory
1918  * @size: size of map area
1919  * @prot: page protection flags for this mapping
1920  *
1921  * Note: this is only safe if the mm semaphore is held when called.
1922  *
1923  * Return: %0 on success, negative error code otherwise.
1924  */
1925 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1926                     unsigned long pfn, unsigned long size, pgprot_t prot)
1927 {
1928         pgd_t *pgd;
1929         unsigned long next;
1930         unsigned long end = addr + PAGE_ALIGN(size);
1931         struct mm_struct *mm = vma->vm_mm;
1932         unsigned long remap_pfn = pfn;
1933         int err;
1934
1935         /*
1936          * Physically remapped pages are special. Tell the
1937          * rest of the world about it:
1938          *   VM_IO tells people not to look at these pages
1939          *      (accesses can have side effects).
1940          *   VM_PFNMAP tells the core MM that the base pages are just
1941          *      raw PFN mappings, and do not have a "struct page" associated
1942          *      with them.
1943          *   VM_DONTEXPAND
1944          *      Disable vma merging and expanding with mremap().
1945          *   VM_DONTDUMP
1946          *      Omit vma from core dump, even when VM_IO turned off.
1947          *
1948          * There's a horrible special case to handle copy-on-write
1949          * behaviour that some programs depend on. We mark the "original"
1950          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1951          * See vm_normal_page() for details.
1952          */
1953         if (is_cow_mapping(vma->vm_flags)) {
1954                 if (addr != vma->vm_start || end != vma->vm_end)
1955                         return -EINVAL;
1956                 vma->vm_pgoff = pfn;
1957         }
1958
1959         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1960         if (err)
1961                 return -EINVAL;
1962
1963         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1964
1965         BUG_ON(addr >= end);
1966         pfn -= addr >> PAGE_SHIFT;
1967         pgd = pgd_offset(mm, addr);
1968         flush_cache_range(vma, addr, end);
1969         do {
1970                 next = pgd_addr_end(addr, end);
1971                 err = remap_p4d_range(mm, pgd, addr, next,
1972                                 pfn + (addr >> PAGE_SHIFT), prot);
1973                 if (err)
1974                         break;
1975         } while (pgd++, addr = next, addr != end);
1976
1977         if (err)
1978                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1979
1980         return err;
1981 }
1982 EXPORT_SYMBOL(remap_pfn_range);
1983
1984 /**
1985  * vm_iomap_memory - remap memory to userspace
1986  * @vma: user vma to map to
1987  * @start: start of area
1988  * @len: size of area
1989  *
1990  * This is a simplified io_remap_pfn_range() for common driver use. The
1991  * driver just needs to give us the physical memory range to be mapped,
1992  * we'll figure out the rest from the vma information.
1993  *
1994  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1995  * whatever write-combining details or similar.
1996  *
1997  * Return: %0 on success, negative error code otherwise.
1998  */
1999 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2000 {
2001         unsigned long vm_len, pfn, pages;
2002
2003         /* Check that the physical memory area passed in looks valid */
2004         if (start + len < start)
2005                 return -EINVAL;
2006         /*
2007          * You *really* shouldn't map things that aren't page-aligned,
2008          * but we've historically allowed it because IO memory might
2009          * just have smaller alignment.
2010          */
2011         len += start & ~PAGE_MASK;
2012         pfn = start >> PAGE_SHIFT;
2013         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2014         if (pfn + pages < pfn)
2015                 return -EINVAL;
2016
2017         /* We start the mapping 'vm_pgoff' pages into the area */
2018         if (vma->vm_pgoff > pages)
2019                 return -EINVAL;
2020         pfn += vma->vm_pgoff;
2021         pages -= vma->vm_pgoff;
2022
2023         /* Can we fit all of the mapping? */
2024         vm_len = vma->vm_end - vma->vm_start;
2025         if (vm_len >> PAGE_SHIFT > pages)
2026                 return -EINVAL;
2027
2028         /* Ok, let it rip */
2029         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2030 }
2031 EXPORT_SYMBOL(vm_iomap_memory);
2032
2033 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2034                                      unsigned long addr, unsigned long end,
2035                                      pte_fn_t fn, void *data)
2036 {
2037         pte_t *pte;
2038         int err;
2039         spinlock_t *uninitialized_var(ptl);
2040
2041         pte = (mm == &init_mm) ?
2042                 pte_alloc_kernel(pmd, addr) :
2043                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2044         if (!pte)
2045                 return -ENOMEM;
2046
2047         BUG_ON(pmd_huge(*pmd));
2048
2049         arch_enter_lazy_mmu_mode();
2050
2051         do {
2052                 err = fn(pte++, addr, data);
2053                 if (err)
2054                         break;
2055         } while (addr += PAGE_SIZE, addr != end);
2056
2057         arch_leave_lazy_mmu_mode();
2058
2059         if (mm != &init_mm)
2060                 pte_unmap_unlock(pte-1, ptl);
2061         return err;
2062 }
2063
2064 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2065                                      unsigned long addr, unsigned long end,
2066                                      pte_fn_t fn, void *data)
2067 {
2068         pmd_t *pmd;
2069         unsigned long next;
2070         int err;
2071
2072         BUG_ON(pud_huge(*pud));
2073
2074         pmd = pmd_alloc(mm, pud, addr);
2075         if (!pmd)
2076                 return -ENOMEM;
2077         do {
2078                 next = pmd_addr_end(addr, end);
2079                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2080                 if (err)
2081                         break;
2082         } while (pmd++, addr = next, addr != end);
2083         return err;
2084 }
2085
2086 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2087                                      unsigned long addr, unsigned long end,
2088                                      pte_fn_t fn, void *data)
2089 {
2090         pud_t *pud;
2091         unsigned long next;
2092         int err;
2093
2094         pud = pud_alloc(mm, p4d, addr);
2095         if (!pud)
2096                 return -ENOMEM;
2097         do {
2098                 next = pud_addr_end(addr, end);
2099                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2100                 if (err)
2101                         break;
2102         } while (pud++, addr = next, addr != end);
2103         return err;
2104 }
2105
2106 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2107                                      unsigned long addr, unsigned long end,
2108                                      pte_fn_t fn, void *data)
2109 {
2110         p4d_t *p4d;
2111         unsigned long next;
2112         int err;
2113
2114         p4d = p4d_alloc(mm, pgd, addr);
2115         if (!p4d)
2116                 return -ENOMEM;
2117         do {
2118                 next = p4d_addr_end(addr, end);
2119                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2120                 if (err)
2121                         break;
2122         } while (p4d++, addr = next, addr != end);
2123         return err;
2124 }
2125
2126 /*
2127  * Scan a region of virtual memory, filling in page tables as necessary
2128  * and calling a provided function on each leaf page table.
2129  */
2130 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2131                         unsigned long size, pte_fn_t fn, void *data)
2132 {
2133         pgd_t *pgd;
2134         unsigned long next;
2135         unsigned long end = addr + size;
2136         int err;
2137
2138         if (WARN_ON(addr >= end))
2139                 return -EINVAL;
2140
2141         pgd = pgd_offset(mm, addr);
2142         do {
2143                 next = pgd_addr_end(addr, end);
2144                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2145                 if (err)
2146                         break;
2147         } while (pgd++, addr = next, addr != end);
2148
2149         return err;
2150 }
2151 EXPORT_SYMBOL_GPL(apply_to_page_range);
2152
2153 /*
2154  * handle_pte_fault chooses page fault handler according to an entry which was
2155  * read non-atomically.  Before making any commitment, on those architectures
2156  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2157  * parts, do_swap_page must check under lock before unmapping the pte and
2158  * proceeding (but do_wp_page is only called after already making such a check;
2159  * and do_anonymous_page can safely check later on).
2160  */
2161 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2162                                 pte_t *page_table, pte_t orig_pte)
2163 {
2164         int same = 1;
2165 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2166         if (sizeof(pte_t) > sizeof(unsigned long)) {
2167                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2168                 spin_lock(ptl);
2169                 same = pte_same(*page_table, orig_pte);
2170                 spin_unlock(ptl);
2171         }
2172 #endif
2173         pte_unmap(page_table);
2174         return same;
2175 }
2176
2177 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2178 {
2179         debug_dma_assert_idle(src);
2180
2181         /*
2182          * If the source page was a PFN mapping, we don't have
2183          * a "struct page" for it. We do a best-effort copy by
2184          * just copying from the original user address. If that
2185          * fails, we just zero-fill it. Live with it.
2186          */
2187         if (unlikely(!src)) {
2188                 void *kaddr = kmap_atomic(dst);
2189                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2190
2191                 /*
2192                  * This really shouldn't fail, because the page is there
2193                  * in the page tables. But it might just be unreadable,
2194                  * in which case we just give up and fill the result with
2195                  * zeroes.
2196                  */
2197                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2198                         clear_page(kaddr);
2199                 kunmap_atomic(kaddr);
2200                 flush_dcache_page(dst);
2201         } else
2202                 copy_user_highpage(dst, src, va, vma);
2203 }
2204
2205 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2206 {
2207         struct file *vm_file = vma->vm_file;
2208
2209         if (vm_file)
2210                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2211
2212         /*
2213          * Special mappings (e.g. VDSO) do not have any file so fake
2214          * a default GFP_KERNEL for them.
2215          */
2216         return GFP_KERNEL;
2217 }
2218
2219 /*
2220  * Notify the address space that the page is about to become writable so that
2221  * it can prohibit this or wait for the page to get into an appropriate state.
2222  *
2223  * We do this without the lock held, so that it can sleep if it needs to.
2224  */
2225 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2226 {
2227         vm_fault_t ret;
2228         struct page *page = vmf->page;
2229         unsigned int old_flags = vmf->flags;
2230
2231         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2232
2233         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2234         /* Restore original flags so that caller is not surprised */
2235         vmf->flags = old_flags;
2236         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2237                 return ret;
2238         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2239                 lock_page(page);
2240                 if (!page->mapping) {
2241                         unlock_page(page);
2242                         return 0; /* retry */
2243                 }
2244                 ret |= VM_FAULT_LOCKED;
2245         } else
2246                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2247         return ret;
2248 }
2249
2250 /*
2251  * Handle dirtying of a page in shared file mapping on a write fault.
2252  *
2253  * The function expects the page to be locked and unlocks it.
2254  */
2255 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2256                                     struct page *page)
2257 {
2258         struct address_space *mapping;
2259         bool dirtied;
2260         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2261
2262         dirtied = set_page_dirty(page);
2263         VM_BUG_ON_PAGE(PageAnon(page), page);
2264         /*
2265          * Take a local copy of the address_space - page.mapping may be zeroed
2266          * by truncate after unlock_page().   The address_space itself remains
2267          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2268          * release semantics to prevent the compiler from undoing this copying.
2269          */
2270         mapping = page_rmapping(page);
2271         unlock_page(page);
2272
2273         if ((dirtied || page_mkwrite) && mapping) {
2274                 /*
2275                  * Some device drivers do not set page.mapping
2276                  * but still dirty their pages
2277                  */
2278                 balance_dirty_pages_ratelimited(mapping);
2279         }
2280
2281         if (!page_mkwrite)
2282                 file_update_time(vma->vm_file);
2283 }
2284
2285 /*
2286  * Handle write page faults for pages that can be reused in the current vma
2287  *
2288  * This can happen either due to the mapping being with the VM_SHARED flag,
2289  * or due to us being the last reference standing to the page. In either
2290  * case, all we need to do here is to mark the page as writable and update
2291  * any related book-keeping.
2292  */
2293 static inline void wp_page_reuse(struct vm_fault *vmf)
2294         __releases(vmf->ptl)
2295 {
2296         struct vm_area_struct *vma = vmf->vma;
2297         struct page *page = vmf->page;
2298         pte_t entry;
2299         /*
2300          * Clear the pages cpupid information as the existing
2301          * information potentially belongs to a now completely
2302          * unrelated process.
2303          */
2304         if (page)
2305                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2306
2307         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2308         entry = pte_mkyoung(vmf->orig_pte);
2309         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2310         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2311                 update_mmu_cache(vma, vmf->address, vmf->pte);
2312         pte_unmap_unlock(vmf->pte, vmf->ptl);
2313 }
2314
2315 /*
2316  * Handle the case of a page which we actually need to copy to a new page.
2317  *
2318  * Called with mmap_sem locked and the old page referenced, but
2319  * without the ptl held.
2320  *
2321  * High level logic flow:
2322  *
2323  * - Allocate a page, copy the content of the old page to the new one.
2324  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2325  * - Take the PTL. If the pte changed, bail out and release the allocated page
2326  * - If the pte is still the way we remember it, update the page table and all
2327  *   relevant references. This includes dropping the reference the page-table
2328  *   held to the old page, as well as updating the rmap.
2329  * - In any case, unlock the PTL and drop the reference we took to the old page.
2330  */
2331 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2332 {
2333         struct vm_area_struct *vma = vmf->vma;
2334         struct mm_struct *mm = vma->vm_mm;
2335         struct page *old_page = vmf->page;
2336         struct page *new_page = NULL;
2337         pte_t entry;
2338         int page_copied = 0;
2339         struct mem_cgroup *memcg;
2340         struct mmu_notifier_range range;
2341
2342         if (unlikely(anon_vma_prepare(vma)))
2343                 goto oom;
2344
2345         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2346                 new_page = alloc_zeroed_user_highpage_movable(vma,
2347                                                               vmf->address);
2348                 if (!new_page)
2349                         goto oom;
2350         } else {
2351                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2352                                 vmf->address);
2353                 if (!new_page)
2354                         goto oom;
2355                 cow_user_page(new_page, old_page, vmf->address, vma);
2356         }
2357
2358         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2359                 goto oom_free_new;
2360
2361         __SetPageUptodate(new_page);
2362
2363         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2364                                 vmf->address & PAGE_MASK,
2365                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2366         mmu_notifier_invalidate_range_start(&range);
2367
2368         /*
2369          * Re-check the pte - we dropped the lock
2370          */
2371         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2372         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2373                 if (old_page) {
2374                         if (!PageAnon(old_page)) {
2375                                 dec_mm_counter_fast(mm,
2376                                                 mm_counter_file(old_page));
2377                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2378                         }
2379                 } else {
2380                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2381                 }
2382                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2383                 entry = mk_pte(new_page, vma->vm_page_prot);
2384                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2385                 /*
2386                  * Clear the pte entry and flush it first, before updating the
2387                  * pte with the new entry. This will avoid a race condition
2388                  * seen in the presence of one thread doing SMC and another
2389                  * thread doing COW.
2390                  */
2391                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2392                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2393                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2394                 lru_cache_add_active_or_unevictable(new_page, vma);
2395                 /*
2396                  * We call the notify macro here because, when using secondary
2397                  * mmu page tables (such as kvm shadow page tables), we want the
2398                  * new page to be mapped directly into the secondary page table.
2399                  */
2400                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2401                 update_mmu_cache(vma, vmf->address, vmf->pte);
2402                 if (old_page) {
2403                         /*
2404                          * Only after switching the pte to the new page may
2405                          * we remove the mapcount here. Otherwise another
2406                          * process may come and find the rmap count decremented
2407                          * before the pte is switched to the new page, and
2408                          * "reuse" the old page writing into it while our pte
2409                          * here still points into it and can be read by other
2410                          * threads.
2411                          *
2412                          * The critical issue is to order this
2413                          * page_remove_rmap with the ptp_clear_flush above.
2414                          * Those stores are ordered by (if nothing else,)
2415                          * the barrier present in the atomic_add_negative
2416                          * in page_remove_rmap.
2417                          *
2418                          * Then the TLB flush in ptep_clear_flush ensures that
2419                          * no process can access the old page before the
2420                          * decremented mapcount is visible. And the old page
2421                          * cannot be reused until after the decremented
2422                          * mapcount is visible. So transitively, TLBs to
2423                          * old page will be flushed before it can be reused.
2424                          */
2425                         page_remove_rmap(old_page, false);
2426                 }
2427
2428                 /* Free the old page.. */
2429                 new_page = old_page;
2430                 page_copied = 1;
2431         } else {
2432                 mem_cgroup_cancel_charge(new_page, memcg, false);
2433         }
2434
2435         if (new_page)
2436                 put_page(new_page);
2437
2438         pte_unmap_unlock(vmf->pte, vmf->ptl);
2439         /*
2440          * No need to double call mmu_notifier->invalidate_range() callback as
2441          * the above ptep_clear_flush_notify() did already call it.
2442          */
2443         mmu_notifier_invalidate_range_only_end(&range);
2444         if (old_page) {
2445                 /*
2446                  * Don't let another task, with possibly unlocked vma,
2447                  * keep the mlocked page.
2448                  */
2449                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2450                         lock_page(old_page);    /* LRU manipulation */
2451                         if (PageMlocked(old_page))
2452                                 munlock_vma_page(old_page);
2453                         unlock_page(old_page);
2454                 }
2455                 put_page(old_page);
2456         }
2457         return page_copied ? VM_FAULT_WRITE : 0;
2458 oom_free_new:
2459         put_page(new_page);
2460 oom:
2461         if (old_page)
2462                 put_page(old_page);
2463         return VM_FAULT_OOM;
2464 }
2465
2466 /**
2467  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2468  *                        writeable once the page is prepared
2469  *
2470  * @vmf: structure describing the fault
2471  *
2472  * This function handles all that is needed to finish a write page fault in a
2473  * shared mapping due to PTE being read-only once the mapped page is prepared.
2474  * It handles locking of PTE and modifying it.
2475  *
2476  * The function expects the page to be locked or other protection against
2477  * concurrent faults / writeback (such as DAX radix tree locks).
2478  *
2479  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2480  * we acquired PTE lock.
2481  */
2482 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2483 {
2484         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2485         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2486                                        &vmf->ptl);
2487         /*
2488          * We might have raced with another page fault while we released the
2489          * pte_offset_map_lock.
2490          */
2491         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2492                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2493                 return VM_FAULT_NOPAGE;
2494         }
2495         wp_page_reuse(vmf);
2496         return 0;
2497 }
2498
2499 /*
2500  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2501  * mapping
2502  */
2503 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2504 {
2505         struct vm_area_struct *vma = vmf->vma;
2506
2507         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2508                 vm_fault_t ret;
2509
2510                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2511                 vmf->flags |= FAULT_FLAG_MKWRITE;
2512                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2513                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2514                         return ret;
2515                 return finish_mkwrite_fault(vmf);
2516         }
2517         wp_page_reuse(vmf);
2518         return VM_FAULT_WRITE;
2519 }
2520
2521 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2522         __releases(vmf->ptl)
2523 {
2524         struct vm_area_struct *vma = vmf->vma;
2525
2526         get_page(vmf->page);
2527
2528         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2529                 vm_fault_t tmp;
2530
2531                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2532                 tmp = do_page_mkwrite(vmf);
2533                 if (unlikely(!tmp || (tmp &
2534                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2535                         put_page(vmf->page);
2536                         return tmp;
2537                 }
2538                 tmp = finish_mkwrite_fault(vmf);
2539                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2540                         unlock_page(vmf->page);
2541                         put_page(vmf->page);
2542                         return tmp;
2543                 }
2544         } else {
2545                 wp_page_reuse(vmf);
2546                 lock_page(vmf->page);
2547         }
2548         fault_dirty_shared_page(vma, vmf->page);
2549         put_page(vmf->page);
2550
2551         return VM_FAULT_WRITE;
2552 }
2553
2554 /*
2555  * This routine handles present pages, when users try to write
2556  * to a shared page. It is done by copying the page to a new address
2557  * and decrementing the shared-page counter for the old page.
2558  *
2559  * Note that this routine assumes that the protection checks have been
2560  * done by the caller (the low-level page fault routine in most cases).
2561  * Thus we can safely just mark it writable once we've done any necessary
2562  * COW.
2563  *
2564  * We also mark the page dirty at this point even though the page will
2565  * change only once the write actually happens. This avoids a few races,
2566  * and potentially makes it more efficient.
2567  *
2568  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2569  * but allow concurrent faults), with pte both mapped and locked.
2570  * We return with mmap_sem still held, but pte unmapped and unlocked.
2571  */
2572 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2573         __releases(vmf->ptl)
2574 {
2575         struct vm_area_struct *vma = vmf->vma;
2576
2577         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2578         if (!vmf->page) {
2579                 /*
2580                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2581                  * VM_PFNMAP VMA.
2582                  *
2583                  * We should not cow pages in a shared writeable mapping.
2584                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2585                  */
2586                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2587                                      (VM_WRITE|VM_SHARED))
2588                         return wp_pfn_shared(vmf);
2589
2590                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2591                 return wp_page_copy(vmf);
2592         }
2593
2594         /*
2595          * Take out anonymous pages first, anonymous shared vmas are
2596          * not dirty accountable.
2597          */
2598         if (PageAnon(vmf->page)) {
2599                 int total_map_swapcount;
2600                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2601                                            page_count(vmf->page) != 1))
2602                         goto copy;
2603                 if (!trylock_page(vmf->page)) {
2604                         get_page(vmf->page);
2605                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2606                         lock_page(vmf->page);
2607                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2608                                         vmf->address, &vmf->ptl);
2609                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2610                                 unlock_page(vmf->page);
2611                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2612                                 put_page(vmf->page);
2613                                 return 0;
2614                         }
2615                         put_page(vmf->page);
2616                 }
2617                 if (PageKsm(vmf->page)) {
2618                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2619                                                      vmf->address);
2620                         unlock_page(vmf->page);
2621                         if (!reused)
2622                                 goto copy;
2623                         wp_page_reuse(vmf);
2624                         return VM_FAULT_WRITE;
2625                 }
2626                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2627                         if (total_map_swapcount == 1) {
2628                                 /*
2629                                  * The page is all ours. Move it to
2630                                  * our anon_vma so the rmap code will
2631                                  * not search our parent or siblings.
2632                                  * Protected against the rmap code by
2633                                  * the page lock.
2634                                  */
2635                                 page_move_anon_rmap(vmf->page, vma);
2636                         }
2637                         unlock_page(vmf->page);
2638                         wp_page_reuse(vmf);
2639                         return VM_FAULT_WRITE;
2640                 }
2641                 unlock_page(vmf->page);
2642         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2643                                         (VM_WRITE|VM_SHARED))) {
2644                 return wp_page_shared(vmf);
2645         }
2646 copy:
2647         /*
2648          * Ok, we need to copy. Oh, well..
2649          */
2650         get_page(vmf->page);
2651
2652         pte_unmap_unlock(vmf->pte, vmf->ptl);
2653         return wp_page_copy(vmf);
2654 }
2655
2656 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2657                 unsigned long start_addr, unsigned long end_addr,
2658                 struct zap_details *details)
2659 {
2660         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2661 }
2662
2663 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2664                                             struct zap_details *details)
2665 {
2666         struct vm_area_struct *vma;
2667         pgoff_t vba, vea, zba, zea;
2668
2669         vma_interval_tree_foreach(vma, root,
2670                         details->first_index, details->last_index) {
2671
2672                 vba = vma->vm_pgoff;
2673                 vea = vba + vma_pages(vma) - 1;
2674                 zba = details->first_index;
2675                 if (zba < vba)
2676                         zba = vba;
2677                 zea = details->last_index;
2678                 if (zea > vea)
2679                         zea = vea;
2680
2681                 unmap_mapping_range_vma(vma,
2682                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2683                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2684                                 details);
2685         }
2686 }
2687
2688 /**
2689  * unmap_mapping_pages() - Unmap pages from processes.
2690  * @mapping: The address space containing pages to be unmapped.
2691  * @start: Index of first page to be unmapped.
2692  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2693  * @even_cows: Whether to unmap even private COWed pages.
2694  *
2695  * Unmap the pages in this address space from any userspace process which
2696  * has them mmaped.  Generally, you want to remove COWed pages as well when
2697  * a file is being truncated, but not when invalidating pages from the page
2698  * cache.
2699  */
2700 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2701                 pgoff_t nr, bool even_cows)
2702 {
2703         struct zap_details details = { };
2704
2705         details.check_mapping = even_cows ? NULL : mapping;
2706         details.first_index = start;
2707         details.last_index = start + nr - 1;
2708         if (details.last_index < details.first_index)
2709                 details.last_index = ULONG_MAX;
2710
2711         i_mmap_lock_write(mapping);
2712         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2713                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2714         i_mmap_unlock_write(mapping);
2715 }
2716
2717 /**
2718  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2719  * address_space corresponding to the specified byte range in the underlying
2720  * file.
2721  *
2722  * @mapping: the address space containing mmaps to be unmapped.
2723  * @holebegin: byte in first page to unmap, relative to the start of
2724  * the underlying file.  This will be rounded down to a PAGE_SIZE
2725  * boundary.  Note that this is different from truncate_pagecache(), which
2726  * must keep the partial page.  In contrast, we must get rid of
2727  * partial pages.
2728  * @holelen: size of prospective hole in bytes.  This will be rounded
2729  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2730  * end of the file.
2731  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2732  * but 0 when invalidating pagecache, don't throw away private data.
2733  */
2734 void unmap_mapping_range(struct address_space *mapping,
2735                 loff_t const holebegin, loff_t const holelen, int even_cows)
2736 {
2737         pgoff_t hba = holebegin >> PAGE_SHIFT;
2738         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2739
2740         /* Check for overflow. */
2741         if (sizeof(holelen) > sizeof(hlen)) {
2742                 long long holeend =
2743                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2744                 if (holeend & ~(long long)ULONG_MAX)
2745                         hlen = ULONG_MAX - hba + 1;
2746         }
2747
2748         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2749 }
2750 EXPORT_SYMBOL(unmap_mapping_range);
2751
2752 /*
2753  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2754  * but allow concurrent faults), and pte mapped but not yet locked.
2755  * We return with pte unmapped and unlocked.
2756  *
2757  * We return with the mmap_sem locked or unlocked in the same cases
2758  * as does filemap_fault().
2759  */
2760 vm_fault_t do_swap_page(struct vm_fault *vmf)
2761 {
2762         struct vm_area_struct *vma = vmf->vma;
2763         struct page *page = NULL, *swapcache;
2764         struct mem_cgroup *memcg;
2765         swp_entry_t entry;
2766         pte_t pte;
2767         int locked;
2768         int exclusive = 0;
2769         vm_fault_t ret = 0;
2770
2771         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2772                 goto out;
2773
2774         entry = pte_to_swp_entry(vmf->orig_pte);
2775         if (unlikely(non_swap_entry(entry))) {
2776                 if (is_migration_entry(entry)) {
2777                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2778                                              vmf->address);
2779                 } else if (is_device_private_entry(entry)) {
2780                         /*
2781                          * For un-addressable device memory we call the pgmap
2782                          * fault handler callback. The callback must migrate
2783                          * the page back to some CPU accessible page.
2784                          */
2785                         ret = device_private_entry_fault(vma, vmf->address, entry,
2786                                                  vmf->flags, vmf->pmd);
2787                 } else if (is_hwpoison_entry(entry)) {
2788                         ret = VM_FAULT_HWPOISON;
2789                 } else {
2790                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2791                         ret = VM_FAULT_SIGBUS;
2792                 }
2793                 goto out;
2794         }
2795
2796
2797         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2798         page = lookup_swap_cache(entry, vma, vmf->address);
2799         swapcache = page;
2800
2801         if (!page) {
2802                 struct swap_info_struct *si = swp_swap_info(entry);
2803
2804                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2805                                 __swap_count(entry) == 1) {
2806                         /* skip swapcache */
2807                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2808                                                         vmf->address);
2809                         if (page) {
2810                                 __SetPageLocked(page);
2811                                 __SetPageSwapBacked(page);
2812                                 set_page_private(page, entry.val);
2813                                 lru_cache_add_anon(page);
2814                                 swap_readpage(page, true);
2815                         }
2816                 } else {
2817                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2818                                                 vmf);
2819                         swapcache = page;
2820                 }
2821
2822                 if (!page) {
2823                         /*
2824                          * Back out if somebody else faulted in this pte
2825                          * while we released the pte lock.
2826                          */
2827                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2828                                         vmf->address, &vmf->ptl);
2829                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2830                                 ret = VM_FAULT_OOM;
2831                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2832                         goto unlock;
2833                 }
2834
2835                 /* Had to read the page from swap area: Major fault */
2836                 ret = VM_FAULT_MAJOR;
2837                 count_vm_event(PGMAJFAULT);
2838                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2839         } else if (PageHWPoison(page)) {
2840                 /*
2841                  * hwpoisoned dirty swapcache pages are kept for killing
2842                  * owner processes (which may be unknown at hwpoison time)
2843                  */
2844                 ret = VM_FAULT_HWPOISON;
2845                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2846                 goto out_release;
2847         }
2848
2849         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2850
2851         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2852         if (!locked) {
2853                 ret |= VM_FAULT_RETRY;
2854                 goto out_release;
2855         }
2856
2857         /*
2858          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2859          * release the swapcache from under us.  The page pin, and pte_same
2860          * test below, are not enough to exclude that.  Even if it is still
2861          * swapcache, we need to check that the page's swap has not changed.
2862          */
2863         if (unlikely((!PageSwapCache(page) ||
2864                         page_private(page) != entry.val)) && swapcache)
2865                 goto out_page;
2866
2867         page = ksm_might_need_to_copy(page, vma, vmf->address);
2868         if (unlikely(!page)) {
2869                 ret = VM_FAULT_OOM;
2870                 page = swapcache;
2871                 goto out_page;
2872         }
2873
2874         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2875                                         &memcg, false)) {
2876                 ret = VM_FAULT_OOM;
2877                 goto out_page;
2878         }
2879
2880         /*
2881          * Back out if somebody else already faulted in this pte.
2882          */
2883         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2884                         &vmf->ptl);
2885         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2886                 goto out_nomap;
2887
2888         if (unlikely(!PageUptodate(page))) {
2889                 ret = VM_FAULT_SIGBUS;
2890                 goto out_nomap;
2891         }
2892
2893         /*
2894          * The page isn't present yet, go ahead with the fault.
2895          *
2896          * Be careful about the sequence of operations here.
2897          * To get its accounting right, reuse_swap_page() must be called
2898          * while the page is counted on swap but not yet in mapcount i.e.
2899          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2900          * must be called after the swap_free(), or it will never succeed.
2901          */
2902
2903         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2904         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2905         pte = mk_pte(page, vma->vm_page_prot);
2906         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2907                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2908                 vmf->flags &= ~FAULT_FLAG_WRITE;
2909                 ret |= VM_FAULT_WRITE;
2910                 exclusive = RMAP_EXCLUSIVE;
2911         }
2912         flush_icache_page(vma, page);
2913         if (pte_swp_soft_dirty(vmf->orig_pte))
2914                 pte = pte_mksoft_dirty(pte);
2915         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2916         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2917         vmf->orig_pte = pte;
2918
2919         /* ksm created a completely new copy */
2920         if (unlikely(page != swapcache && swapcache)) {
2921                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2922                 mem_cgroup_commit_charge(page, memcg, false, false);
2923                 lru_cache_add_active_or_unevictable(page, vma);
2924         } else {
2925                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2926                 mem_cgroup_commit_charge(page, memcg, true, false);
2927                 activate_page(page);
2928         }
2929
2930         swap_free(entry);
2931         if (mem_cgroup_swap_full(page) ||
2932             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2933                 try_to_free_swap(page);
2934         unlock_page(page);
2935         if (page != swapcache && swapcache) {
2936                 /*
2937                  * Hold the lock to avoid the swap entry to be reused
2938                  * until we take the PT lock for the pte_same() check
2939                  * (to avoid false positives from pte_same). For
2940                  * further safety release the lock after the swap_free
2941                  * so that the swap count won't change under a
2942                  * parallel locked swapcache.
2943                  */
2944                 unlock_page(swapcache);
2945                 put_page(swapcache);
2946         }
2947
2948         if (vmf->flags & FAULT_FLAG_WRITE) {
2949                 ret |= do_wp_page(vmf);
2950                 if (ret & VM_FAULT_ERROR)
2951                         ret &= VM_FAULT_ERROR;
2952                 goto out;
2953         }
2954
2955         /* No need to invalidate - it was non-present before */
2956         update_mmu_cache(vma, vmf->address, vmf->pte);
2957 unlock:
2958         pte_unmap_unlock(vmf->pte, vmf->ptl);
2959 out:
2960         return ret;
2961 out_nomap:
2962         mem_cgroup_cancel_charge(page, memcg, false);
2963         pte_unmap_unlock(vmf->pte, vmf->ptl);
2964 out_page:
2965         unlock_page(page);
2966 out_release:
2967         put_page(page);
2968         if (page != swapcache && swapcache) {
2969                 unlock_page(swapcache);
2970                 put_page(swapcache);
2971         }
2972         return ret;
2973 }
2974
2975 /*
2976  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2977  * but allow concurrent faults), and pte mapped but not yet locked.
2978  * We return with mmap_sem still held, but pte unmapped and unlocked.
2979  */
2980 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2981 {
2982         struct vm_area_struct *vma = vmf->vma;
2983         struct mem_cgroup *memcg;
2984         struct page *page;
2985         vm_fault_t ret = 0;
2986         pte_t entry;
2987
2988         /* File mapping without ->vm_ops ? */
2989         if (vma->vm_flags & VM_SHARED)
2990                 return VM_FAULT_SIGBUS;
2991
2992         /*
2993          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2994          * pte_offset_map() on pmds where a huge pmd might be created
2995          * from a different thread.
2996          *
2997          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2998          * parallel threads are excluded by other means.
2999          *
3000          * Here we only have down_read(mmap_sem).
3001          */
3002         if (pte_alloc(vma->vm_mm, vmf->pmd))
3003                 return VM_FAULT_OOM;
3004
3005         /* See the comment in pte_alloc_one_map() */
3006         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3007                 return 0;
3008
3009         /* Use the zero-page for reads */
3010         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3011                         !mm_forbids_zeropage(vma->vm_mm)) {
3012                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3013                                                 vma->vm_page_prot));
3014                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3015                                 vmf->address, &vmf->ptl);
3016                 if (!pte_none(*vmf->pte))
3017                         goto unlock;
3018                 ret = check_stable_address_space(vma->vm_mm);
3019                 if (ret)
3020                         goto unlock;
3021                 /* Deliver the page fault to userland, check inside PT lock */
3022                 if (userfaultfd_missing(vma)) {
3023                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3024                         return handle_userfault(vmf, VM_UFFD_MISSING);
3025                 }
3026                 goto setpte;
3027         }
3028
3029         /* Allocate our own private page. */
3030         if (unlikely(anon_vma_prepare(vma)))
3031                 goto oom;
3032         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3033         if (!page)
3034                 goto oom;
3035
3036         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3037                                         false))
3038                 goto oom_free_page;
3039
3040         /*
3041          * The memory barrier inside __SetPageUptodate makes sure that
3042          * preceeding stores to the page contents become visible before
3043          * the set_pte_at() write.
3044          */
3045         __SetPageUptodate(page);
3046
3047         entry = mk_pte(page, vma->vm_page_prot);
3048         if (vma->vm_flags & VM_WRITE)
3049                 entry = pte_mkwrite(pte_mkdirty(entry));
3050
3051         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3052                         &vmf->ptl);
3053         if (!pte_none(*vmf->pte))
3054                 goto release;
3055
3056         ret = check_stable_address_space(vma->vm_mm);
3057         if (ret)
3058                 goto release;
3059
3060         /* Deliver the page fault to userland, check inside PT lock */
3061         if (userfaultfd_missing(vma)) {
3062                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3063                 mem_cgroup_cancel_charge(page, memcg, false);
3064                 put_page(page);
3065                 return handle_userfault(vmf, VM_UFFD_MISSING);
3066         }
3067
3068         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3069         page_add_new_anon_rmap(page, vma, vmf->address, false);
3070         mem_cgroup_commit_charge(page, memcg, false, false);
3071         lru_cache_add_active_or_unevictable(page, vma);
3072 setpte:
3073         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3074
3075         /* No need to invalidate - it was non-present before */
3076         update_mmu_cache(vma, vmf->address, vmf->pte);
3077 unlock:
3078         pte_unmap_unlock(vmf->pte, vmf->ptl);
3079         return ret;
3080 release:
3081         mem_cgroup_cancel_charge(page, memcg, false);
3082         put_page(page);
3083         goto unlock;
3084 oom_free_page:
3085         put_page(page);
3086 oom:
3087         return VM_FAULT_OOM;
3088 }
3089
3090 /*
3091  * The mmap_sem must have been held on entry, and may have been
3092  * released depending on flags and vma->vm_ops->fault() return value.
3093  * See filemap_fault() and __lock_page_retry().
3094  */
3095 static vm_fault_t __do_fault(struct vm_fault *vmf)
3096 {
3097         struct vm_area_struct *vma = vmf->vma;
3098         vm_fault_t ret;
3099
3100         /*
3101          * Preallocate pte before we take page_lock because this might lead to
3102          * deadlocks for memcg reclaim which waits for pages under writeback:
3103          *                              lock_page(A)
3104          *                              SetPageWriteback(A)
3105          *                              unlock_page(A)
3106          * lock_page(B)
3107          *                              lock_page(B)
3108          * pte_alloc_pne
3109          *   shrink_page_list
3110          *     wait_on_page_writeback(A)
3111          *                              SetPageWriteback(B)
3112          *                              unlock_page(B)
3113          *                              # flush A, B to clear the writeback
3114          */
3115         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3116                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3117                 if (!vmf->prealloc_pte)
3118                         return VM_FAULT_OOM;
3119                 smp_wmb(); /* See comment in __pte_alloc() */
3120         }
3121
3122         ret = vma->vm_ops->fault(vmf);
3123         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3124                             VM_FAULT_DONE_COW)))
3125                 return ret;
3126
3127         if (unlikely(PageHWPoison(vmf->page))) {
3128                 if (ret & VM_FAULT_LOCKED)
3129                         unlock_page(vmf->page);
3130                 put_page(vmf->page);
3131                 vmf->page = NULL;
3132                 return VM_FAULT_HWPOISON;
3133         }
3134
3135         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3136                 lock_page(vmf->page);
3137         else
3138                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3139
3140         return ret;
3141 }
3142
3143 /*
3144  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3145  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3146  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3147  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3148  */
3149 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3150 {
3151         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3152 }
3153
3154 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3155 {
3156         struct vm_area_struct *vma = vmf->vma;
3157
3158         if (!pmd_none(*vmf->pmd))
3159                 goto map_pte;
3160         if (vmf->prealloc_pte) {
3161                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3162                 if (unlikely(!pmd_none(*vmf->pmd))) {
3163                         spin_unlock(vmf->ptl);
3164                         goto map_pte;
3165                 }
3166
3167                 mm_inc_nr_ptes(vma->vm_mm);
3168                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3169                 spin_unlock(vmf->ptl);
3170                 vmf->prealloc_pte = NULL;
3171         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3172                 return VM_FAULT_OOM;
3173         }
3174 map_pte:
3175         /*
3176          * If a huge pmd materialized under us just retry later.  Use
3177          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3178          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3179          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3180          * running immediately after a huge pmd fault in a different thread of
3181          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3182          * All we have to ensure is that it is a regular pmd that we can walk
3183          * with pte_offset_map() and we can do that through an atomic read in
3184          * C, which is what pmd_trans_unstable() provides.
3185          */
3186         if (pmd_devmap_trans_unstable(vmf->pmd))
3187                 return VM_FAULT_NOPAGE;
3188
3189         /*
3190          * At this point we know that our vmf->pmd points to a page of ptes
3191          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3192          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3193          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3194          * be valid and we will re-check to make sure the vmf->pte isn't
3195          * pte_none() under vmf->ptl protection when we return to
3196          * alloc_set_pte().
3197          */
3198         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3199                         &vmf->ptl);
3200         return 0;
3201 }
3202
3203 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3204
3205 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3206 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3207                 unsigned long haddr)
3208 {
3209         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3210                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3211                 return false;
3212         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3213                 return false;
3214         return true;
3215 }
3216
3217 static void deposit_prealloc_pte(struct vm_fault *vmf)
3218 {
3219         struct vm_area_struct *vma = vmf->vma;
3220
3221         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3222         /*
3223          * We are going to consume the prealloc table,
3224          * count that as nr_ptes.
3225          */
3226         mm_inc_nr_ptes(vma->vm_mm);
3227         vmf->prealloc_pte = NULL;
3228 }
3229
3230 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3231 {
3232         struct vm_area_struct *vma = vmf->vma;
3233         bool write = vmf->flags & FAULT_FLAG_WRITE;
3234         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3235         pmd_t entry;
3236         int i;
3237         vm_fault_t ret;
3238
3239         if (!transhuge_vma_suitable(vma, haddr))
3240                 return VM_FAULT_FALLBACK;
3241
3242         ret = VM_FAULT_FALLBACK;
3243         page = compound_head(page);
3244
3245         /*
3246          * Archs like ppc64 need additonal space to store information
3247          * related to pte entry. Use the preallocated table for that.
3248          */
3249         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3250                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3251                 if (!vmf->prealloc_pte)
3252                         return VM_FAULT_OOM;
3253                 smp_wmb(); /* See comment in __pte_alloc() */
3254         }
3255
3256         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3257         if (unlikely(!pmd_none(*vmf->pmd)))
3258                 goto out;
3259
3260         for (i = 0; i < HPAGE_PMD_NR; i++)
3261                 flush_icache_page(vma, page + i);
3262
3263         entry = mk_huge_pmd(page, vma->vm_page_prot);
3264         if (write)
3265                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3266
3267         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3268         page_add_file_rmap(page, true);
3269         /*
3270          * deposit and withdraw with pmd lock held
3271          */
3272         if (arch_needs_pgtable_deposit())
3273                 deposit_prealloc_pte(vmf);
3274
3275         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3276
3277         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3278
3279         /* fault is handled */
3280         ret = 0;
3281         count_vm_event(THP_FILE_MAPPED);
3282 out:
3283         spin_unlock(vmf->ptl);
3284         return ret;
3285 }
3286 #else
3287 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3288 {
3289         BUILD_BUG();
3290         return 0;
3291 }
3292 #endif
3293
3294 /**
3295  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3296  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3297  *
3298  * @vmf: fault environment
3299  * @memcg: memcg to charge page (only for private mappings)
3300  * @page: page to map
3301  *
3302  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3303  * return.
3304  *
3305  * Target users are page handler itself and implementations of
3306  * vm_ops->map_pages.
3307  *
3308  * Return: %0 on success, %VM_FAULT_ code in case of error.
3309  */
3310 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3311                 struct page *page)
3312 {
3313         struct vm_area_struct *vma = vmf->vma;
3314         bool write = vmf->flags & FAULT_FLAG_WRITE;
3315         pte_t entry;
3316         vm_fault_t ret;
3317
3318         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3319                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3320                 /* THP on COW? */
3321                 VM_BUG_ON_PAGE(memcg, page);
3322
3323                 ret = do_set_pmd(vmf, page);
3324                 if (ret != VM_FAULT_FALLBACK)
3325                         return ret;
3326         }
3327
3328         if (!vmf->pte) {
3329                 ret = pte_alloc_one_map(vmf);
3330                 if (ret)
3331                         return ret;
3332         }
3333
3334         /* Re-check under ptl */
3335         if (unlikely(!pte_none(*vmf->pte)))
3336                 return VM_FAULT_NOPAGE;
3337
3338         flush_icache_page(vma, page);
3339         entry = mk_pte(page, vma->vm_page_prot);
3340         if (write)
3341                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3342         /* copy-on-write page */
3343         if (write && !(vma->vm_flags & VM_SHARED)) {
3344                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3345                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3346                 mem_cgroup_commit_charge(page, memcg, false, false);
3347                 lru_cache_add_active_or_unevictable(page, vma);
3348         } else {
3349                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3350                 page_add_file_rmap(page, false);
3351         }
3352         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3353
3354         /* no need to invalidate: a not-present page won't be cached */
3355         update_mmu_cache(vma, vmf->address, vmf->pte);
3356
3357         return 0;
3358 }
3359
3360
3361 /**
3362  * finish_fault - finish page fault once we have prepared the page to fault
3363  *
3364  * @vmf: structure describing the fault
3365  *
3366  * This function handles all that is needed to finish a page fault once the
3367  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3368  * given page, adds reverse page mapping, handles memcg charges and LRU
3369  * addition.
3370  *
3371  * The function expects the page to be locked and on success it consumes a
3372  * reference of a page being mapped (for the PTE which maps it).
3373  *
3374  * Return: %0 on success, %VM_FAULT_ code in case of error.
3375  */
3376 vm_fault_t finish_fault(struct vm_fault *vmf)
3377 {
3378         struct page *page;
3379         vm_fault_t ret = 0;
3380
3381         /* Did we COW the page? */
3382         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3383             !(vmf->vma->vm_flags & VM_SHARED))
3384                 page = vmf->cow_page;
3385         else
3386                 page = vmf->page;
3387
3388         /*
3389          * check even for read faults because we might have lost our CoWed
3390          * page
3391          */
3392         if (!(vmf->vma->vm_flags & VM_SHARED))
3393                 ret = check_stable_address_space(vmf->vma->vm_mm);
3394         if (!ret)
3395                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3396         if (vmf->pte)
3397                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3398         return ret;
3399 }
3400
3401 static unsigned long fault_around_bytes __read_mostly =
3402         rounddown_pow_of_two(65536);
3403
3404 #ifdef CONFIG_DEBUG_FS
3405 static int fault_around_bytes_get(void *data, u64 *val)
3406 {
3407         *val = fault_around_bytes;
3408         return 0;
3409 }
3410
3411 /*
3412  * fault_around_bytes must be rounded down to the nearest page order as it's
3413  * what do_fault_around() expects to see.
3414  */
3415 static int fault_around_bytes_set(void *data, u64 val)
3416 {
3417         if (val / PAGE_SIZE > PTRS_PER_PTE)
3418                 return -EINVAL;
3419         if (val > PAGE_SIZE)
3420                 fault_around_bytes = rounddown_pow_of_two(val);
3421         else
3422                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3423         return 0;
3424 }
3425 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3426                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3427
3428 static int __init fault_around_debugfs(void)
3429 {
3430         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3431                                    &fault_around_bytes_fops);
3432         return 0;
3433 }
3434 late_initcall(fault_around_debugfs);
3435 #endif
3436
3437 /*
3438  * do_fault_around() tries to map few pages around the fault address. The hope
3439  * is that the pages will be needed soon and this will lower the number of
3440  * faults to handle.
3441  *
3442  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3443  * not ready to be mapped: not up-to-date, locked, etc.
3444  *
3445  * This function is called with the page table lock taken. In the split ptlock
3446  * case the page table lock only protects only those entries which belong to
3447  * the page table corresponding to the fault address.
3448  *
3449  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3450  * only once.
3451  *
3452  * fault_around_bytes defines how many bytes we'll try to map.
3453  * do_fault_around() expects it to be set to a power of two less than or equal
3454  * to PTRS_PER_PTE.
3455  *
3456  * The virtual address of the area that we map is naturally aligned to
3457  * fault_around_bytes rounded down to the machine page size
3458  * (and therefore to page order).  This way it's easier to guarantee
3459  * that we don't cross page table boundaries.
3460  */
3461 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3462 {
3463         unsigned long address = vmf->address, nr_pages, mask;
3464         pgoff_t start_pgoff = vmf->pgoff;
3465         pgoff_t end_pgoff;
3466         int off;
3467         vm_fault_t ret = 0;
3468
3469         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3470         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3471
3472         vmf->address = max(address & mask, vmf->vma->vm_start);
3473         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3474         start_pgoff -= off;
3475
3476         /*
3477          *  end_pgoff is either the end of the page table, the end of
3478          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3479          */
3480         end_pgoff = start_pgoff -
3481                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3482                 PTRS_PER_PTE - 1;
3483         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3484                         start_pgoff + nr_pages - 1);
3485
3486         if (pmd_none(*vmf->pmd)) {
3487                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3488                 if (!vmf->prealloc_pte)
3489                         goto out;
3490                 smp_wmb(); /* See comment in __pte_alloc() */
3491         }
3492
3493         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3494
3495         /* Huge page is mapped? Page fault is solved */
3496         if (pmd_trans_huge(*vmf->pmd)) {
3497                 ret = VM_FAULT_NOPAGE;
3498                 goto out;
3499         }
3500
3501         /* ->map_pages() haven't done anything useful. Cold page cache? */
3502         if (!vmf->pte)
3503                 goto out;
3504
3505         /* check if the page fault is solved */
3506         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3507         if (!pte_none(*vmf->pte))
3508                 ret = VM_FAULT_NOPAGE;
3509         pte_unmap_unlock(vmf->pte, vmf->ptl);
3510 out:
3511         vmf->address = address;
3512         vmf->pte = NULL;
3513         return ret;
3514 }
3515
3516 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3517 {
3518         struct vm_area_struct *vma = vmf->vma;
3519         vm_fault_t ret = 0;
3520
3521         /*
3522          * Let's call ->map_pages() first and use ->fault() as fallback
3523          * if page by the offset is not ready to be mapped (cold cache or
3524          * something).
3525          */
3526         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3527                 ret = do_fault_around(vmf);
3528                 if (ret)
3529                         return ret;
3530         }
3531
3532         ret = __do_fault(vmf);
3533         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3534                 return ret;
3535
3536         ret |= finish_fault(vmf);
3537         unlock_page(vmf->page);
3538         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3539                 put_page(vmf->page);
3540         return ret;
3541 }
3542
3543 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3544 {
3545         struct vm_area_struct *vma = vmf->vma;
3546         vm_fault_t ret;
3547
3548         if (unlikely(anon_vma_prepare(vma)))
3549                 return VM_FAULT_OOM;
3550
3551         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3552         if (!vmf->cow_page)
3553                 return VM_FAULT_OOM;
3554
3555         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3556                                 &vmf->memcg, false)) {
3557                 put_page(vmf->cow_page);
3558                 return VM_FAULT_OOM;
3559         }
3560
3561         ret = __do_fault(vmf);
3562         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3563                 goto uncharge_out;
3564         if (ret & VM_FAULT_DONE_COW)
3565                 return ret;
3566
3567         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3568         __SetPageUptodate(vmf->cow_page);
3569
3570         ret |= finish_fault(vmf);
3571         unlock_page(vmf->page);
3572         put_page(vmf->page);
3573         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3574                 goto uncharge_out;
3575         return ret;
3576 uncharge_out:
3577         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3578         put_page(vmf->cow_page);
3579         return ret;
3580 }
3581
3582 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3583 {
3584         struct vm_area_struct *vma = vmf->vma;
3585         vm_fault_t ret, tmp;
3586
3587         ret = __do_fault(vmf);
3588         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3589                 return ret;
3590
3591         /*
3592          * Check if the backing address space wants to know that the page is
3593          * about to become writable
3594          */
3595         if (vma->vm_ops->page_mkwrite) {
3596                 unlock_page(vmf->page);
3597                 tmp = do_page_mkwrite(vmf);
3598                 if (unlikely(!tmp ||
3599                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3600                         put_page(vmf->page);
3601                         return tmp;
3602                 }
3603         }
3604
3605         ret |= finish_fault(vmf);
3606         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3607                                         VM_FAULT_RETRY))) {
3608                 unlock_page(vmf->page);
3609                 put_page(vmf->page);
3610                 return ret;
3611         }
3612
3613         fault_dirty_shared_page(vma, vmf->page);
3614         return ret;
3615 }
3616
3617 /*
3618  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3619  * but allow concurrent faults).
3620  * The mmap_sem may have been released depending on flags and our
3621  * return value.  See filemap_fault() and __lock_page_or_retry().
3622  * If mmap_sem is released, vma may become invalid (for example
3623  * by other thread calling munmap()).
3624  */
3625 static vm_fault_t do_fault(struct vm_fault *vmf)
3626 {
3627         struct vm_area_struct *vma = vmf->vma;
3628         struct mm_struct *vm_mm = vma->vm_mm;
3629         vm_fault_t ret;
3630
3631         /*
3632          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3633          */
3634         if (!vma->vm_ops->fault) {
3635                 /*
3636                  * If we find a migration pmd entry or a none pmd entry, which
3637                  * should never happen, return SIGBUS
3638                  */
3639                 if (unlikely(!pmd_present(*vmf->pmd)))
3640                         ret = VM_FAULT_SIGBUS;
3641                 else {
3642                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3643                                                        vmf->pmd,
3644                                                        vmf->address,
3645                                                        &vmf->ptl);
3646                         /*
3647                          * Make sure this is not a temporary clearing of pte
3648                          * by holding ptl and checking again. A R/M/W update
3649                          * of pte involves: take ptl, clearing the pte so that
3650                          * we don't have concurrent modification by hardware
3651                          * followed by an update.
3652                          */
3653                         if (unlikely(pte_none(*vmf->pte)))
3654                                 ret = VM_FAULT_SIGBUS;
3655                         else
3656                                 ret = VM_FAULT_NOPAGE;
3657
3658                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3659                 }
3660         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3661                 ret = do_read_fault(vmf);
3662         else if (!(vma->vm_flags & VM_SHARED))
3663                 ret = do_cow_fault(vmf);
3664         else
3665                 ret = do_shared_fault(vmf);
3666
3667         /* preallocated pagetable is unused: free it */
3668         if (vmf->prealloc_pte) {
3669                 pte_free(vm_mm, vmf->prealloc_pte);
3670                 vmf->prealloc_pte = NULL;
3671         }
3672         return ret;
3673 }
3674
3675 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3676                                 unsigned long addr, int page_nid,
3677                                 int *flags)
3678 {
3679         get_page(page);
3680
3681         count_vm_numa_event(NUMA_HINT_FAULTS);
3682         if (page_nid == numa_node_id()) {
3683                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3684                 *flags |= TNF_FAULT_LOCAL;
3685         }
3686
3687         return mpol_misplaced(page, vma, addr);
3688 }
3689
3690 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3691 {
3692         struct vm_area_struct *vma = vmf->vma;
3693         struct page *page = NULL;
3694         int page_nid = NUMA_NO_NODE;
3695         int last_cpupid;
3696         int target_nid;
3697         bool migrated = false;
3698         pte_t pte, old_pte;
3699         bool was_writable = pte_savedwrite(vmf->orig_pte);
3700         int flags = 0;
3701
3702         /*
3703          * The "pte" at this point cannot be used safely without
3704          * validation through pte_unmap_same(). It's of NUMA type but
3705          * the pfn may be screwed if the read is non atomic.
3706          */
3707         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3708         spin_lock(vmf->ptl);
3709         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3710                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3711                 goto out;
3712         }
3713
3714         /*
3715          * Make it present again, Depending on how arch implementes non
3716          * accessible ptes, some can allow access by kernel mode.
3717          */
3718         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3719         pte = pte_modify(old_pte, vma->vm_page_prot);
3720         pte = pte_mkyoung(pte);
3721         if (was_writable)
3722                 pte = pte_mkwrite(pte);
3723         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3724         update_mmu_cache(vma, vmf->address, vmf->pte);
3725
3726         page = vm_normal_page(vma, vmf->address, pte);
3727         if (!page) {
3728                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3729                 return 0;
3730         }
3731
3732         /* TODO: handle PTE-mapped THP */
3733         if (PageCompound(page)) {
3734                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3735                 return 0;
3736         }
3737
3738         /*
3739          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3740          * much anyway since they can be in shared cache state. This misses
3741          * the case where a mapping is writable but the process never writes
3742          * to it but pte_write gets cleared during protection updates and
3743          * pte_dirty has unpredictable behaviour between PTE scan updates,
3744          * background writeback, dirty balancing and application behaviour.
3745          */
3746         if (!pte_write(pte))
3747                 flags |= TNF_NO_GROUP;
3748
3749         /*
3750          * Flag if the page is shared between multiple address spaces. This
3751          * is later used when determining whether to group tasks together
3752          */
3753         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3754                 flags |= TNF_SHARED;
3755
3756         last_cpupid = page_cpupid_last(page);
3757         page_nid = page_to_nid(page);
3758         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3759                         &flags);
3760         pte_unmap_unlock(vmf->pte, vmf->ptl);
3761         if (target_nid == NUMA_NO_NODE) {
3762                 put_page(page);
3763                 goto out;
3764         }
3765
3766         /* Migrate to the requested node */
3767         migrated = migrate_misplaced_page(page, vma, target_nid);
3768         if (migrated) {
3769                 page_nid = target_nid;
3770                 flags |= TNF_MIGRATED;
3771         } else
3772                 flags |= TNF_MIGRATE_FAIL;
3773
3774 out:
3775         if (page_nid != NUMA_NO_NODE)
3776                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3777         return 0;
3778 }
3779
3780 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3781 {
3782         if (vma_is_anonymous(vmf->vma))
3783                 return do_huge_pmd_anonymous_page(vmf);
3784         if (vmf->vma->vm_ops->huge_fault)
3785                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3786         return VM_FAULT_FALLBACK;
3787 }
3788
3789 /* `inline' is required to avoid gcc 4.1.2 build error */
3790 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3791 {
3792         if (vma_is_anonymous(vmf->vma))
3793                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3794         if (vmf->vma->vm_ops->huge_fault)
3795                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3796
3797         /* COW handled on pte level: split pmd */
3798         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3799         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3800
3801         return VM_FAULT_FALLBACK;
3802 }
3803
3804 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3805 {
3806         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3807 }
3808
3809 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3810 {
3811 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3812         /* No support for anonymous transparent PUD pages yet */
3813         if (vma_is_anonymous(vmf->vma))
3814                 return VM_FAULT_FALLBACK;
3815         if (vmf->vma->vm_ops->huge_fault)
3816                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3817 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3818         return VM_FAULT_FALLBACK;
3819 }
3820
3821 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3822 {
3823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3824         /* No support for anonymous transparent PUD pages yet */
3825         if (vma_is_anonymous(vmf->vma))
3826                 return VM_FAULT_FALLBACK;
3827         if (vmf->vma->vm_ops->huge_fault)
3828                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3830         return VM_FAULT_FALLBACK;
3831 }
3832
3833 /*
3834  * These routines also need to handle stuff like marking pages dirty
3835  * and/or accessed for architectures that don't do it in hardware (most
3836  * RISC architectures).  The early dirtying is also good on the i386.
3837  *
3838  * There is also a hook called "update_mmu_cache()" that architectures
3839  * with external mmu caches can use to update those (ie the Sparc or
3840  * PowerPC hashed page tables that act as extended TLBs).
3841  *
3842  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3843  * concurrent faults).
3844  *
3845  * The mmap_sem may have been released depending on flags and our return value.
3846  * See filemap_fault() and __lock_page_or_retry().
3847  */
3848 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3849 {
3850         pte_t entry;
3851
3852         if (unlikely(pmd_none(*vmf->pmd))) {
3853                 /*
3854                  * Leave __pte_alloc() until later: because vm_ops->fault may
3855                  * want to allocate huge page, and if we expose page table
3856                  * for an instant, it will be difficult to retract from
3857                  * concurrent faults and from rmap lookups.
3858                  */
3859                 vmf->pte = NULL;
3860         } else {
3861                 /* See comment in pte_alloc_one_map() */
3862                 if (pmd_devmap_trans_unstable(vmf->pmd))
3863                         return 0;
3864                 /*
3865                  * A regular pmd is established and it can't morph into a huge
3866                  * pmd from under us anymore at this point because we hold the
3867                  * mmap_sem read mode and khugepaged takes it in write mode.
3868                  * So now it's safe to run pte_offset_map().
3869                  */
3870                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3871                 vmf->orig_pte = *vmf->pte;
3872
3873                 /*
3874                  * some architectures can have larger ptes than wordsize,
3875                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3876                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3877                  * accesses.  The code below just needs a consistent view
3878                  * for the ifs and we later double check anyway with the
3879                  * ptl lock held. So here a barrier will do.
3880                  */
3881                 barrier();
3882                 if (pte_none(vmf->orig_pte)) {
3883                         pte_unmap(vmf->pte);
3884                         vmf->pte = NULL;
3885                 }
3886         }
3887
3888         if (!vmf->pte) {
3889                 if (vma_is_anonymous(vmf->vma))
3890                         return do_anonymous_page(vmf);
3891                 else
3892                         return do_fault(vmf);
3893         }
3894
3895         if (!pte_present(vmf->orig_pte))
3896                 return do_swap_page(vmf);
3897
3898         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3899                 return do_numa_page(vmf);
3900
3901         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3902         spin_lock(vmf->ptl);
3903         entry = vmf->orig_pte;
3904         if (unlikely(!pte_same(*vmf->pte, entry)))
3905                 goto unlock;
3906         if (vmf->flags & FAULT_FLAG_WRITE) {
3907                 if (!pte_write(entry))
3908                         return do_wp_page(vmf);
3909                 entry = pte_mkdirty(entry);
3910         }
3911         entry = pte_mkyoung(entry);
3912         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3913                                 vmf->flags & FAULT_FLAG_WRITE)) {
3914                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3915         } else {
3916                 /*
3917                  * This is needed only for protection faults but the arch code
3918                  * is not yet telling us if this is a protection fault or not.
3919                  * This still avoids useless tlb flushes for .text page faults
3920                  * with threads.
3921                  */
3922                 if (vmf->flags & FAULT_FLAG_WRITE)
3923                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3924         }
3925 unlock:
3926         pte_unmap_unlock(vmf->pte, vmf->ptl);
3927         return 0;
3928 }
3929
3930 /*
3931  * By the time we get here, we already hold the mm semaphore
3932  *
3933  * The mmap_sem may have been released depending on flags and our
3934  * return value.  See filemap_fault() and __lock_page_or_retry().
3935  */
3936 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3937                 unsigned long address, unsigned int flags)
3938 {
3939         struct vm_fault vmf = {
3940                 .vma = vma,
3941                 .address = address & PAGE_MASK,
3942                 .flags = flags,
3943                 .pgoff = linear_page_index(vma, address),
3944                 .gfp_mask = __get_fault_gfp_mask(vma),
3945         };
3946         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3947         struct mm_struct *mm = vma->vm_mm;
3948         pgd_t *pgd;
3949         p4d_t *p4d;
3950         vm_fault_t ret;
3951
3952         pgd = pgd_offset(mm, address);
3953         p4d = p4d_alloc(mm, pgd, address);
3954         if (!p4d)
3955                 return VM_FAULT_OOM;
3956
3957         vmf.pud = pud_alloc(mm, p4d, address);
3958         if (!vmf.pud)
3959                 return VM_FAULT_OOM;
3960         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3961                 ret = create_huge_pud(&vmf);
3962                 if (!(ret & VM_FAULT_FALLBACK))
3963                         return ret;
3964         } else {
3965                 pud_t orig_pud = *vmf.pud;
3966
3967                 barrier();
3968                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3969
3970                         /* NUMA case for anonymous PUDs would go here */
3971
3972                         if (dirty && !pud_write(orig_pud)) {
3973                                 ret = wp_huge_pud(&vmf, orig_pud);
3974                                 if (!(ret & VM_FAULT_FALLBACK))
3975                                         return ret;
3976                         } else {
3977                                 huge_pud_set_accessed(&vmf, orig_pud);
3978                                 return 0;
3979                         }
3980                 }
3981         }
3982
3983         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3984         if (!vmf.pmd)
3985                 return VM_FAULT_OOM;
3986         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3987                 ret = create_huge_pmd(&vmf);
3988                 if (!(ret & VM_FAULT_FALLBACK))
3989                         return ret;
3990         } else {
3991                 pmd_t orig_pmd = *vmf.pmd;
3992
3993                 barrier();
3994                 if (unlikely(is_swap_pmd(orig_pmd))) {
3995                         VM_BUG_ON(thp_migration_supported() &&
3996                                           !is_pmd_migration_entry(orig_pmd));
3997                         if (is_pmd_migration_entry(orig_pmd))
3998                                 pmd_migration_entry_wait(mm, vmf.pmd);
3999                         return 0;
4000                 }
4001                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4002                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4003                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4004
4005                         if (dirty && !pmd_write(orig_pmd)) {
4006                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4007                                 if (!(ret & VM_FAULT_FALLBACK))
4008                                         return ret;
4009                         } else {
4010                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4011                                 return 0;
4012                         }
4013                 }
4014         }
4015
4016         return handle_pte_fault(&vmf);
4017 }
4018
4019 /*
4020  * By the time we get here, we already hold the mm semaphore
4021  *
4022  * The mmap_sem may have been released depending on flags and our
4023  * return value.  See filemap_fault() and __lock_page_or_retry().
4024  */
4025 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4026                 unsigned int flags)
4027 {
4028         vm_fault_t ret;
4029
4030         __set_current_state(TASK_RUNNING);
4031
4032         count_vm_event(PGFAULT);
4033         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4034
4035         /* do counter updates before entering really critical section. */
4036         check_sync_rss_stat(current);
4037
4038         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4039                                             flags & FAULT_FLAG_INSTRUCTION,
4040                                             flags & FAULT_FLAG_REMOTE))
4041                 return VM_FAULT_SIGSEGV;
4042
4043         /*
4044          * Enable the memcg OOM handling for faults triggered in user
4045          * space.  Kernel faults are handled more gracefully.
4046          */
4047         if (flags & FAULT_FLAG_USER)
4048                 mem_cgroup_enter_user_fault();
4049
4050         if (unlikely(is_vm_hugetlb_page(vma)))
4051                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4052         else
4053                 ret = __handle_mm_fault(vma, address, flags);
4054
4055         if (flags & FAULT_FLAG_USER) {
4056                 mem_cgroup_exit_user_fault();
4057                 /*
4058                  * The task may have entered a memcg OOM situation but
4059                  * if the allocation error was handled gracefully (no
4060                  * VM_FAULT_OOM), there is no need to kill anything.
4061                  * Just clean up the OOM state peacefully.
4062                  */
4063                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4064                         mem_cgroup_oom_synchronize(false);
4065         }
4066
4067         return ret;
4068 }
4069 EXPORT_SYMBOL_GPL(handle_mm_fault);
4070
4071 #ifndef __PAGETABLE_P4D_FOLDED
4072 /*
4073  * Allocate p4d page table.
4074  * We've already handled the fast-path in-line.
4075  */
4076 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4077 {
4078         p4d_t *new = p4d_alloc_one(mm, address);
4079         if (!new)
4080                 return -ENOMEM;
4081
4082         smp_wmb(); /* See comment in __pte_alloc */
4083
4084         spin_lock(&mm->page_table_lock);
4085         if (pgd_present(*pgd))          /* Another has populated it */
4086                 p4d_free(mm, new);
4087         else
4088                 pgd_populate(mm, pgd, new);
4089         spin_unlock(&mm->page_table_lock);
4090         return 0;
4091 }
4092 #endif /* __PAGETABLE_P4D_FOLDED */
4093
4094 #ifndef __PAGETABLE_PUD_FOLDED
4095 /*
4096  * Allocate page upper directory.
4097  * We've already handled the fast-path in-line.
4098  */
4099 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4100 {
4101         pud_t *new = pud_alloc_one(mm, address);
4102         if (!new)
4103                 return -ENOMEM;
4104
4105         smp_wmb(); /* See comment in __pte_alloc */
4106
4107         spin_lock(&mm->page_table_lock);
4108 #ifndef __ARCH_HAS_5LEVEL_HACK
4109         if (!p4d_present(*p4d)) {
4110                 mm_inc_nr_puds(mm);
4111                 p4d_populate(mm, p4d, new);
4112         } else  /* Another has populated it */
4113                 pud_free(mm, new);
4114 #else
4115         if (!pgd_present(*p4d)) {
4116                 mm_inc_nr_puds(mm);
4117                 pgd_populate(mm, p4d, new);
4118         } else  /* Another has populated it */
4119                 pud_free(mm, new);
4120 #endif /* __ARCH_HAS_5LEVEL_HACK */
4121         spin_unlock(&mm->page_table_lock);
4122         return 0;
4123 }
4124 #endif /* __PAGETABLE_PUD_FOLDED */
4125
4126 #ifndef __PAGETABLE_PMD_FOLDED
4127 /*
4128  * Allocate page middle directory.
4129  * We've already handled the fast-path in-line.
4130  */
4131 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4132 {
4133         spinlock_t *ptl;
4134         pmd_t *new = pmd_alloc_one(mm, address);
4135         if (!new)
4136                 return -ENOMEM;
4137
4138         smp_wmb(); /* See comment in __pte_alloc */
4139
4140         ptl = pud_lock(mm, pud);
4141 #ifndef __ARCH_HAS_4LEVEL_HACK
4142         if (!pud_present(*pud)) {
4143                 mm_inc_nr_pmds(mm);
4144                 pud_populate(mm, pud, new);
4145         } else  /* Another has populated it */
4146                 pmd_free(mm, new);
4147 #else
4148         if (!pgd_present(*pud)) {
4149                 mm_inc_nr_pmds(mm);
4150                 pgd_populate(mm, pud, new);
4151         } else /* Another has populated it */
4152                 pmd_free(mm, new);
4153 #endif /* __ARCH_HAS_4LEVEL_HACK */
4154         spin_unlock(ptl);
4155         return 0;
4156 }
4157 #endif /* __PAGETABLE_PMD_FOLDED */
4158
4159 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4160                             struct mmu_notifier_range *range,
4161                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4162 {
4163         pgd_t *pgd;
4164         p4d_t *p4d;
4165         pud_t *pud;
4166         pmd_t *pmd;
4167         pte_t *ptep;
4168
4169         pgd = pgd_offset(mm, address);
4170         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4171                 goto out;
4172
4173         p4d = p4d_offset(pgd, address);
4174         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4175                 goto out;
4176
4177         pud = pud_offset(p4d, address);
4178         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4179                 goto out;
4180
4181         pmd = pmd_offset(pud, address);
4182         VM_BUG_ON(pmd_trans_huge(*pmd));
4183
4184         if (pmd_huge(*pmd)) {
4185                 if (!pmdpp)
4186                         goto out;
4187
4188                 if (range) {
4189                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4190                                                 NULL, mm, address & PMD_MASK,
4191                                                 (address & PMD_MASK) + PMD_SIZE);
4192                         mmu_notifier_invalidate_range_start(range);
4193                 }
4194                 *ptlp = pmd_lock(mm, pmd);
4195                 if (pmd_huge(*pmd)) {
4196                         *pmdpp = pmd;
4197                         return 0;
4198                 }
4199                 spin_unlock(*ptlp);
4200                 if (range)
4201                         mmu_notifier_invalidate_range_end(range);
4202         }
4203
4204         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4205                 goto out;
4206
4207         if (range) {
4208                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4209                                         address & PAGE_MASK,
4210                                         (address & PAGE_MASK) + PAGE_SIZE);
4211                 mmu_notifier_invalidate_range_start(range);
4212         }
4213         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4214         if (!pte_present(*ptep))
4215                 goto unlock;
4216         *ptepp = ptep;
4217         return 0;
4218 unlock:
4219         pte_unmap_unlock(ptep, *ptlp);
4220         if (range)
4221                 mmu_notifier_invalidate_range_end(range);
4222 out:
4223         return -EINVAL;
4224 }
4225
4226 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4227                              pte_t **ptepp, spinlock_t **ptlp)
4228 {
4229         int res;
4230
4231         /* (void) is needed to make gcc happy */
4232         (void) __cond_lock(*ptlp,
4233                            !(res = __follow_pte_pmd(mm, address, NULL,
4234                                                     ptepp, NULL, ptlp)));
4235         return res;
4236 }
4237
4238 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4239                    struct mmu_notifier_range *range,
4240                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4241 {
4242         int res;
4243
4244         /* (void) is needed to make gcc happy */
4245         (void) __cond_lock(*ptlp,
4246                            !(res = __follow_pte_pmd(mm, address, range,
4247                                                     ptepp, pmdpp, ptlp)));
4248         return res;
4249 }
4250 EXPORT_SYMBOL(follow_pte_pmd);
4251
4252 /**
4253  * follow_pfn - look up PFN at a user virtual address
4254  * @vma: memory mapping
4255  * @address: user virtual address
4256  * @pfn: location to store found PFN
4257  *
4258  * Only IO mappings and raw PFN mappings are allowed.
4259  *
4260  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4261  */
4262 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4263         unsigned long *pfn)
4264 {
4265         int ret = -EINVAL;
4266         spinlock_t *ptl;
4267         pte_t *ptep;
4268
4269         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4270                 return ret;
4271
4272         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4273         if (ret)
4274                 return ret;
4275         *pfn = pte_pfn(*ptep);
4276         pte_unmap_unlock(ptep, ptl);
4277         return 0;
4278 }
4279 EXPORT_SYMBOL(follow_pfn);
4280
4281 #ifdef CONFIG_HAVE_IOREMAP_PROT
4282 int follow_phys(struct vm_area_struct *vma,
4283                 unsigned long address, unsigned int flags,
4284                 unsigned long *prot, resource_size_t *phys)
4285 {
4286         int ret = -EINVAL;
4287         pte_t *ptep, pte;
4288         spinlock_t *ptl;
4289
4290         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4291                 goto out;
4292
4293         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4294                 goto out;
4295         pte = *ptep;
4296
4297         if ((flags & FOLL_WRITE) && !pte_write(pte))
4298                 goto unlock;
4299
4300         *prot = pgprot_val(pte_pgprot(pte));
4301         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4302
4303         ret = 0;
4304 unlock:
4305         pte_unmap_unlock(ptep, ptl);
4306 out:
4307         return ret;
4308 }
4309
4310 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4311                         void *buf, int len, int write)
4312 {
4313         resource_size_t phys_addr;
4314         unsigned long prot = 0;
4315         void __iomem *maddr;
4316         int offset = addr & (PAGE_SIZE-1);
4317
4318         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4319                 return -EINVAL;
4320
4321         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4322         if (!maddr)
4323                 return -ENOMEM;
4324
4325         if (write)
4326                 memcpy_toio(maddr + offset, buf, len);
4327         else
4328                 memcpy_fromio(buf, maddr + offset, len);
4329         iounmap(maddr);
4330
4331         return len;
4332 }
4333 EXPORT_SYMBOL_GPL(generic_access_phys);
4334 #endif
4335
4336 /*
4337  * Access another process' address space as given in mm.  If non-NULL, use the
4338  * given task for page fault accounting.
4339  */
4340 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4341                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4342 {
4343         struct vm_area_struct *vma;
4344         void *old_buf = buf;
4345         int write = gup_flags & FOLL_WRITE;
4346
4347         down_read(&mm->mmap_sem);
4348         /* ignore errors, just check how much was successfully transferred */
4349         while (len) {
4350                 int bytes, ret, offset;
4351                 void *maddr;
4352                 struct page *page = NULL;
4353
4354                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4355                                 gup_flags, &page, &vma, NULL);
4356                 if (ret <= 0) {
4357 #ifndef CONFIG_HAVE_IOREMAP_PROT
4358                         break;
4359 #else
4360                         /*
4361                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4362                          * we can access using slightly different code.
4363                          */
4364                         vma = find_vma(mm, addr);
4365                         if (!vma || vma->vm_start > addr)
4366                                 break;
4367                         if (vma->vm_ops && vma->vm_ops->access)
4368                                 ret = vma->vm_ops->access(vma, addr, buf,
4369                                                           len, write);
4370                         if (ret <= 0)
4371                                 break;
4372                         bytes = ret;
4373 #endif
4374                 } else {
4375                         bytes = len;
4376                         offset = addr & (PAGE_SIZE-1);
4377                         if (bytes > PAGE_SIZE-offset)
4378                                 bytes = PAGE_SIZE-offset;
4379
4380                         maddr = kmap(page);
4381                         if (write) {
4382                                 copy_to_user_page(vma, page, addr,
4383                                                   maddr + offset, buf, bytes);
4384                                 set_page_dirty_lock(page);
4385                         } else {
4386                                 copy_from_user_page(vma, page, addr,
4387                                                     buf, maddr + offset, bytes);
4388                         }
4389                         kunmap(page);
4390                         put_page(page);
4391                 }
4392                 len -= bytes;
4393                 buf += bytes;
4394                 addr += bytes;
4395         }
4396         up_read(&mm->mmap_sem);
4397
4398         return buf - old_buf;
4399 }
4400
4401 /**
4402  * access_remote_vm - access another process' address space
4403  * @mm:         the mm_struct of the target address space
4404  * @addr:       start address to access
4405  * @buf:        source or destination buffer
4406  * @len:        number of bytes to transfer
4407  * @gup_flags:  flags modifying lookup behaviour
4408  *
4409  * The caller must hold a reference on @mm.
4410  *
4411  * Return: number of bytes copied from source to destination.
4412  */
4413 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4414                 void *buf, int len, unsigned int gup_flags)
4415 {
4416         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4417 }
4418
4419 /*
4420  * Access another process' address space.
4421  * Source/target buffer must be kernel space,
4422  * Do not walk the page table directly, use get_user_pages
4423  */
4424 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4425                 void *buf, int len, unsigned int gup_flags)
4426 {
4427         struct mm_struct *mm;
4428         int ret;
4429
4430         mm = get_task_mm(tsk);
4431         if (!mm)
4432                 return 0;
4433
4434         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4435
4436         mmput(mm);
4437
4438         return ret;
4439 }
4440 EXPORT_SYMBOL_GPL(access_process_vm);
4441
4442 /*
4443  * Print the name of a VMA.
4444  */
4445 void print_vma_addr(char *prefix, unsigned long ip)
4446 {
4447         struct mm_struct *mm = current->mm;
4448         struct vm_area_struct *vma;
4449
4450         /*
4451          * we might be running from an atomic context so we cannot sleep
4452          */
4453         if (!down_read_trylock(&mm->mmap_sem))
4454                 return;
4455
4456         vma = find_vma(mm, ip);
4457         if (vma && vma->vm_file) {
4458                 struct file *f = vma->vm_file;
4459                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4460                 if (buf) {
4461                         char *p;
4462
4463                         p = file_path(f, buf, PAGE_SIZE);
4464                         if (IS_ERR(p))
4465                                 p = "?";
4466                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4467                                         vma->vm_start,
4468                                         vma->vm_end - vma->vm_start);
4469                         free_page((unsigned long)buf);
4470                 }
4471         }
4472         up_read(&mm->mmap_sem);
4473 }
4474
4475 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4476 void __might_fault(const char *file, int line)
4477 {
4478         /*
4479          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4480          * holding the mmap_sem, this is safe because kernel memory doesn't
4481          * get paged out, therefore we'll never actually fault, and the
4482          * below annotations will generate false positives.
4483          */
4484         if (uaccess_kernel())
4485                 return;
4486         if (pagefault_disabled())
4487                 return;
4488         __might_sleep(file, line, 0);
4489 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4490         if (current->mm)
4491                 might_lock_read(&current->mm->mmap_sem);
4492 #endif
4493 }
4494 EXPORT_SYMBOL(__might_fault);
4495 #endif
4496
4497 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4498 /*
4499  * Process all subpages of the specified huge page with the specified
4500  * operation.  The target subpage will be processed last to keep its
4501  * cache lines hot.
4502  */
4503 static inline void process_huge_page(
4504         unsigned long addr_hint, unsigned int pages_per_huge_page,
4505         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4506         void *arg)
4507 {
4508         int i, n, base, l;
4509         unsigned long addr = addr_hint &
4510                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4511
4512         /* Process target subpage last to keep its cache lines hot */
4513         might_sleep();
4514         n = (addr_hint - addr) / PAGE_SIZE;
4515         if (2 * n <= pages_per_huge_page) {
4516                 /* If target subpage in first half of huge page */
4517                 base = 0;
4518                 l = n;
4519                 /* Process subpages at the end of huge page */
4520                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4521                         cond_resched();
4522                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4523                 }
4524         } else {
4525                 /* If target subpage in second half of huge page */
4526                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4527                 l = pages_per_huge_page - n;
4528                 /* Process subpages at the begin of huge page */
4529                 for (i = 0; i < base; i++) {
4530                         cond_resched();
4531                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4532                 }
4533         }
4534         /*
4535          * Process remaining subpages in left-right-left-right pattern
4536          * towards the target subpage
4537          */
4538         for (i = 0; i < l; i++) {
4539                 int left_idx = base + i;
4540                 int right_idx = base + 2 * l - 1 - i;
4541
4542                 cond_resched();
4543                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4544                 cond_resched();
4545                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4546         }
4547 }
4548
4549 static void clear_gigantic_page(struct page *page,
4550                                 unsigned long addr,
4551                                 unsigned int pages_per_huge_page)
4552 {
4553         int i;
4554         struct page *p = page;
4555
4556         might_sleep();
4557         for (i = 0; i < pages_per_huge_page;
4558              i++, p = mem_map_next(p, page, i)) {
4559                 cond_resched();
4560                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4561         }
4562 }
4563
4564 static void clear_subpage(unsigned long addr, int idx, void *arg)
4565 {
4566         struct page *page = arg;
4567
4568         clear_user_highpage(page + idx, addr);
4569 }
4570
4571 void clear_huge_page(struct page *page,
4572                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4573 {
4574         unsigned long addr = addr_hint &
4575                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4576
4577         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4578                 clear_gigantic_page(page, addr, pages_per_huge_page);
4579                 return;
4580         }
4581
4582         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4583 }
4584
4585 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4586                                     unsigned long addr,
4587                                     struct vm_area_struct *vma,
4588                                     unsigned int pages_per_huge_page)
4589 {
4590         int i;
4591         struct page *dst_base = dst;
4592         struct page *src_base = src;
4593
4594         for (i = 0; i < pages_per_huge_page; ) {
4595                 cond_resched();
4596                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4597
4598                 i++;
4599                 dst = mem_map_next(dst, dst_base, i);
4600                 src = mem_map_next(src, src_base, i);
4601         }
4602 }
4603
4604 struct copy_subpage_arg {
4605         struct page *dst;
4606         struct page *src;
4607         struct vm_area_struct *vma;
4608 };
4609
4610 static void copy_subpage(unsigned long addr, int idx, void *arg)
4611 {
4612         struct copy_subpage_arg *copy_arg = arg;
4613
4614         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4615                            addr, copy_arg->vma);
4616 }
4617
4618 void copy_user_huge_page(struct page *dst, struct page *src,
4619                          unsigned long addr_hint, struct vm_area_struct *vma,
4620                          unsigned int pages_per_huge_page)
4621 {
4622         unsigned long addr = addr_hint &
4623                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4624         struct copy_subpage_arg arg = {
4625                 .dst = dst,
4626                 .src = src,
4627                 .vma = vma,
4628         };
4629
4630         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4631                 copy_user_gigantic_page(dst, src, addr, vma,
4632                                         pages_per_huge_page);
4633                 return;
4634         }
4635
4636         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4637 }
4638
4639 long copy_huge_page_from_user(struct page *dst_page,
4640                                 const void __user *usr_src,
4641                                 unsigned int pages_per_huge_page,
4642                                 bool allow_pagefault)
4643 {
4644         void *src = (void *)usr_src;
4645         void *page_kaddr;
4646         unsigned long i, rc = 0;
4647         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4648
4649         for (i = 0; i < pages_per_huge_page; i++) {
4650                 if (allow_pagefault)
4651                         page_kaddr = kmap(dst_page + i);
4652                 else
4653                         page_kaddr = kmap_atomic(dst_page + i);
4654                 rc = copy_from_user(page_kaddr,
4655                                 (const void __user *)(src + i * PAGE_SIZE),
4656                                 PAGE_SIZE);
4657                 if (allow_pagefault)
4658                         kunmap(dst_page + i);
4659                 else
4660                         kunmap_atomic(page_kaddr);
4661
4662                 ret_val -= (PAGE_SIZE - rc);
4663                 if (rc)
4664                         break;
4665
4666                 cond_resched();
4667         }
4668         return ret_val;
4669 }
4670 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4671
4672 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4673
4674 static struct kmem_cache *page_ptl_cachep;
4675
4676 void __init ptlock_cache_init(void)
4677 {
4678         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4679                         SLAB_PANIC, NULL);
4680 }
4681
4682 bool ptlock_alloc(struct page *page)
4683 {
4684         spinlock_t *ptl;
4685
4686         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4687         if (!ptl)
4688                 return false;
4689         page->ptl = ptl;
4690         return true;
4691 }
4692
4693 void ptlock_free(struct page *page)
4694 {
4695         kmem_cache_free(page_ptl_cachep, page->ptl);
4696 }
4697 #endif