memcg, oom: remove unnecessary check in mem_cgroup_oom_synchronize()
[linux-block.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112
113 struct mem_cgroup_tree_per_node {
114         struct rb_root rb_root;
115         struct rb_node *rb_rightmost;
116         spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127         struct list_head list;
128         struct eventfd_ctx *eventfd;
129 };
130
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135         /*
136          * memcg which the event belongs to.
137          */
138         struct mem_cgroup *memcg;
139         /*
140          * eventfd to signal userspace about the event.
141          */
142         struct eventfd_ctx *eventfd;
143         /*
144          * Each of these stored in a list by the cgroup.
145          */
146         struct list_head list;
147         /*
148          * register_event() callback will be used to add new userspace
149          * waiter for changes related to this event.  Use eventfd_signal()
150          * on eventfd to send notification to userspace.
151          */
152         int (*register_event)(struct mem_cgroup *memcg,
153                               struct eventfd_ctx *eventfd, const char *args);
154         /*
155          * unregister_event() callback will be called when userspace closes
156          * the eventfd or on cgroup removing.  This callback must be set,
157          * if you want provide notification functionality.
158          */
159         void (*unregister_event)(struct mem_cgroup *memcg,
160                                  struct eventfd_ctx *eventfd);
161         /*
162          * All fields below needed to unregister event when
163          * userspace closes eventfd.
164          */
165         poll_table pt;
166         wait_queue_head_t *wqh;
167         wait_queue_entry_t wait;
168         struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON       0x1U
179 #define MOVE_FILE       0x2U
180 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184         spinlock_t        lock; /* for from, to */
185         struct mm_struct  *mm;
186         struct mem_cgroup *from;
187         struct mem_cgroup *to;
188         unsigned long flags;
189         unsigned long precharge;
190         unsigned long moved_charge;
191         unsigned long moved_swap;
192         struct task_struct *moving_task;        /* a task moving charges */
193         wait_queue_head_t waitq;                /* a waitq for other context */
194 } mc = {
195         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208         _MEM,
209         _MEMSWAP,
210         _KMEM,
211         _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
217
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)            \
224         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
225              iter != NULL;                              \
226              iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter)                       \
229         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool task_is_dying(void)
234 {
235         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236                 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242         if (!memcg)
243                 memcg = root_mem_cgroup;
244         return &memcg->vmpressure;
245 }
246
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249         return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
255 bool mem_cgroup_kmem_disabled(void)
256 {
257         return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261                                       unsigned int nr_pages);
262
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266         unsigned int nr_bytes;
267         unsigned int nr_pages;
268         unsigned long flags;
269
270         /*
271          * At this point all allocated objects are freed, and
272          * objcg->nr_charged_bytes can't have an arbitrary byte value.
273          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274          *
275          * The following sequence can lead to it:
276          * 1) CPU0: objcg == stock->cached_objcg
277          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278          *          PAGE_SIZE bytes are charged
279          * 3) CPU1: a process from another memcg is allocating something,
280          *          the stock if flushed,
281          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282          * 5) CPU0: we do release this object,
283          *          92 bytes are added to stock->nr_bytes
284          * 6) CPU0: stock is flushed,
285          *          92 bytes are added to objcg->nr_charged_bytes
286          *
287          * In the result, nr_charged_bytes == PAGE_SIZE.
288          * This page will be uncharged in obj_cgroup_release().
289          */
290         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292         nr_pages = nr_bytes >> PAGE_SHIFT;
293
294         if (nr_pages)
295                 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297         spin_lock_irqsave(&objcg_lock, flags);
298         list_del(&objcg->list);
299         spin_unlock_irqrestore(&objcg_lock, flags);
300
301         percpu_ref_exit(ref);
302         kfree_rcu(objcg, rcu);
303 }
304
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307         struct obj_cgroup *objcg;
308         int ret;
309
310         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311         if (!objcg)
312                 return NULL;
313
314         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315                               GFP_KERNEL);
316         if (ret) {
317                 kfree(objcg);
318                 return NULL;
319         }
320         INIT_LIST_HEAD(&objcg->list);
321         return objcg;
322 }
323
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325                                   struct mem_cgroup *parent)
326 {
327         struct obj_cgroup *objcg, *iter;
328
329         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331         spin_lock_irq(&objcg_lock);
332
333         /* 1) Ready to reparent active objcg. */
334         list_add(&objcg->list, &memcg->objcg_list);
335         /* 2) Reparent active objcg and already reparented objcgs to parent. */
336         list_for_each_entry(iter, &memcg->objcg_list, list)
337                 WRITE_ONCE(iter->memcg, parent);
338         /* 3) Move already reparented objcgs to the parent's list */
339         list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341         spin_unlock_irq(&objcg_lock);
342
343         percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372         struct mem_cgroup *memcg = folio_memcg(folio);
373
374         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375                 memcg = root_mem_cgroup;
376
377         return &memcg->css;
378 }
379
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395         struct mem_cgroup *memcg;
396         unsigned long ino = 0;
397
398         rcu_read_lock();
399         /* page_folio() is racy here, but the entire function is racy anyway */
400         memcg = folio_memcg_check(page_folio(page));
401
402         while (memcg && !(memcg->css.flags & CSS_ONLINE))
403                 memcg = parent_mem_cgroup(memcg);
404         if (memcg)
405                 ino = cgroup_ino(memcg->css.cgroup);
406         rcu_read_unlock();
407         return ino;
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411                                          struct mem_cgroup_tree_per_node *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_node *mz_node;
417         bool rightmost = true;
418
419         if (mz->on_tree)
420                 return;
421
422         mz->usage_in_excess = new_usage_in_excess;
423         if (!mz->usage_in_excess)
424                 return;
425         while (*p) {
426                 parent = *p;
427                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428                                         tree_node);
429                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430                         p = &(*p)->rb_left;
431                         rightmost = false;
432                 } else {
433                         p = &(*p)->rb_right;
434                 }
435         }
436
437         if (rightmost)
438                 mctz->rb_rightmost = &mz->tree_node;
439
440         rb_link_node(&mz->tree_node, parent, p);
441         rb_insert_color(&mz->tree_node, &mctz->rb_root);
442         mz->on_tree = true;
443 }
444
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446                                          struct mem_cgroup_tree_per_node *mctz)
447 {
448         if (!mz->on_tree)
449                 return;
450
451         if (&mz->tree_node == mctz->rb_rightmost)
452                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454         rb_erase(&mz->tree_node, &mctz->rb_root);
455         mz->on_tree = false;
456 }
457
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459                                        struct mem_cgroup_tree_per_node *mctz)
460 {
461         unsigned long flags;
462
463         spin_lock_irqsave(&mctz->lock, flags);
464         __mem_cgroup_remove_exceeded(mz, mctz);
465         spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470         unsigned long nr_pages = page_counter_read(&memcg->memory);
471         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472         unsigned long excess = 0;
473
474         if (nr_pages > soft_limit)
475                 excess = nr_pages - soft_limit;
476
477         return excess;
478 }
479
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482         unsigned long excess;
483         struct mem_cgroup_per_node *mz;
484         struct mem_cgroup_tree_per_node *mctz;
485
486         if (lru_gen_enabled()) {
487                 if (soft_limit_excess(memcg))
488                         lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
489                 return;
490         }
491
492         mctz = soft_limit_tree.rb_tree_per_node[nid];
493         if (!mctz)
494                 return;
495         /*
496          * Necessary to update all ancestors when hierarchy is used.
497          * because their event counter is not touched.
498          */
499         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500                 mz = memcg->nodeinfo[nid];
501                 excess = soft_limit_excess(memcg);
502                 /*
503                  * We have to update the tree if mz is on RB-tree or
504                  * mem is over its softlimit.
505                  */
506                 if (excess || mz->on_tree) {
507                         unsigned long flags;
508
509                         spin_lock_irqsave(&mctz->lock, flags);
510                         /* if on-tree, remove it */
511                         if (mz->on_tree)
512                                 __mem_cgroup_remove_exceeded(mz, mctz);
513                         /*
514                          * Insert again. mz->usage_in_excess will be updated.
515                          * If excess is 0, no tree ops.
516                          */
517                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
518                         spin_unlock_irqrestore(&mctz->lock, flags);
519                 }
520         }
521 }
522
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525         struct mem_cgroup_tree_per_node *mctz;
526         struct mem_cgroup_per_node *mz;
527         int nid;
528
529         for_each_node(nid) {
530                 mz = memcg->nodeinfo[nid];
531                 mctz = soft_limit_tree.rb_tree_per_node[nid];
532                 if (mctz)
533                         mem_cgroup_remove_exceeded(mz, mctz);
534         }
535 }
536
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540         struct mem_cgroup_per_node *mz;
541
542 retry:
543         mz = NULL;
544         if (!mctz->rb_rightmost)
545                 goto done;              /* Nothing to reclaim from */
546
547         mz = rb_entry(mctz->rb_rightmost,
548                       struct mem_cgroup_per_node, tree_node);
549         /*
550          * Remove the node now but someone else can add it back,
551          * we will to add it back at the end of reclaim to its correct
552          * position in the tree.
553          */
554         __mem_cgroup_remove_exceeded(mz, mctz);
555         if (!soft_limit_excess(mz->memcg) ||
556             !css_tryget(&mz->memcg->css))
557                 goto retry;
558 done:
559         return mz;
560 }
561
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565         struct mem_cgroup_per_node *mz;
566
567         spin_lock_irq(&mctz->lock);
568         mz = __mem_cgroup_largest_soft_limit_node(mctz);
569         spin_unlock_irq(&mctz->lock);
570         return mz;
571 }
572
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605         preempt_disable_nested();
606         VM_WARN_ON_IRQS_ENABLED();
607 }
608
609 static void __memcg_stats_lock(void)
610 {
611         preempt_disable_nested();
612 }
613
614 static void memcg_stats_unlock(void)
615 {
616         preempt_enable_nested();
617 }
618
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621         unsigned int x;
622
623         if (!val)
624                 return;
625
626         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628         x = __this_cpu_add_return(stats_updates, abs(val));
629         if (x > MEMCG_CHARGE_BATCH) {
630                 /*
631                  * If stats_flush_threshold exceeds the threshold
632                  * (>num_online_cpus()), cgroup stats update will be triggered
633                  * in __mem_cgroup_flush_stats(). Increasing this var further
634                  * is redundant and simply adds overhead in atomic update.
635                  */
636                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638                 __this_cpu_write(stats_updates, 0);
639         }
640 }
641
642 static void do_flush_stats(void)
643 {
644         /*
645          * We always flush the entire tree, so concurrent flushers can just
646          * skip. This avoids a thundering herd problem on the rstat global lock
647          * from memcg flushers (e.g. reclaim, refault, etc).
648          */
649         if (atomic_read(&stats_flush_ongoing) ||
650             atomic_xchg(&stats_flush_ongoing, 1))
651                 return;
652
653         WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655         cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657         atomic_set(&stats_flush_threshold, 0);
658         atomic_set(&stats_flush_ongoing, 0);
659 }
660
661 void mem_cgroup_flush_stats(void)
662 {
663         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664                 do_flush_stats();
665 }
666
667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669         if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670                 mem_cgroup_flush_stats();
671 }
672
673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675         /*
676          * Always flush here so that flushing in latency-sensitive paths is
677          * as cheap as possible.
678          */
679         do_flush_stats();
680         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685         PGPGIN,
686         PGPGOUT,
687         PGSCAN_KSWAPD,
688         PGSCAN_DIRECT,
689         PGSCAN_KHUGEPAGED,
690         PGSTEAL_KSWAPD,
691         PGSTEAL_DIRECT,
692         PGSTEAL_KHUGEPAGED,
693         PGFAULT,
694         PGMAJFAULT,
695         PGREFILL,
696         PGACTIVATE,
697         PGDEACTIVATE,
698         PGLAZYFREE,
699         PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701         ZSWPIN,
702         ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705         THP_FAULT_ALLOC,
706         THP_COLLAPSE_ALLOC,
707 #endif
708 };
709
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713 static void init_memcg_events(void)
714 {
715         int i;
716
717         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720
721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723         return mem_cgroup_events_index[idx] - 1;
724 }
725
726 struct memcg_vmstats_percpu {
727         /* Local (CPU and cgroup) page state & events */
728         long                    state[MEMCG_NR_STAT];
729         unsigned long           events[NR_MEMCG_EVENTS];
730
731         /* Delta calculation for lockless upward propagation */
732         long                    state_prev[MEMCG_NR_STAT];
733         unsigned long           events_prev[NR_MEMCG_EVENTS];
734
735         /* Cgroup1: threshold notifications & softlimit tree updates */
736         unsigned long           nr_page_events;
737         unsigned long           targets[MEM_CGROUP_NTARGETS];
738 };
739
740 struct memcg_vmstats {
741         /* Aggregated (CPU and subtree) page state & events */
742         long                    state[MEMCG_NR_STAT];
743         unsigned long           events[NR_MEMCG_EVENTS];
744
745         /* Pending child counts during tree propagation */
746         long                    state_pending[MEMCG_NR_STAT];
747         unsigned long           events_pending[NR_MEMCG_EVENTS];
748 };
749
750 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
751 {
752         long x = READ_ONCE(memcg->vmstats->state[idx]);
753 #ifdef CONFIG_SMP
754         if (x < 0)
755                 x = 0;
756 #endif
757         return x;
758 }
759
760 /**
761  * __mod_memcg_state - update cgroup memory statistics
762  * @memcg: the memory cgroup
763  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764  * @val: delta to add to the counter, can be negative
765  */
766 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767 {
768         if (mem_cgroup_disabled())
769                 return;
770
771         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
772         memcg_rstat_updated(memcg, val);
773 }
774
775 /* idx can be of type enum memcg_stat_item or node_stat_item. */
776 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
777 {
778         long x = 0;
779         int cpu;
780
781         for_each_possible_cpu(cpu)
782                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
783 #ifdef CONFIG_SMP
784         if (x < 0)
785                 x = 0;
786 #endif
787         return x;
788 }
789
790 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
791                               int val)
792 {
793         struct mem_cgroup_per_node *pn;
794         struct mem_cgroup *memcg;
795
796         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
797         memcg = pn->memcg;
798
799         /*
800          * The caller from rmap relay on disabled preemption becase they never
801          * update their counter from in-interrupt context. For these two
802          * counters we check that the update is never performed from an
803          * interrupt context while other caller need to have disabled interrupt.
804          */
805         __memcg_stats_lock();
806         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
807                 switch (idx) {
808                 case NR_ANON_MAPPED:
809                 case NR_FILE_MAPPED:
810                 case NR_ANON_THPS:
811                 case NR_SHMEM_PMDMAPPED:
812                 case NR_FILE_PMDMAPPED:
813                         WARN_ON_ONCE(!in_task());
814                         break;
815                 default:
816                         VM_WARN_ON_IRQS_ENABLED();
817                 }
818         }
819
820         /* Update memcg */
821         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
822
823         /* Update lruvec */
824         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
825
826         memcg_rstat_updated(memcg, val);
827         memcg_stats_unlock();
828 }
829
830 /**
831  * __mod_lruvec_state - update lruvec memory statistics
832  * @lruvec: the lruvec
833  * @idx: the stat item
834  * @val: delta to add to the counter, can be negative
835  *
836  * The lruvec is the intersection of the NUMA node and a cgroup. This
837  * function updates the all three counters that are affected by a
838  * change of state at this level: per-node, per-cgroup, per-lruvec.
839  */
840 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
841                         int val)
842 {
843         /* Update node */
844         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
845
846         /* Update memcg and lruvec */
847         if (!mem_cgroup_disabled())
848                 __mod_memcg_lruvec_state(lruvec, idx, val);
849 }
850
851 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
852                              int val)
853 {
854         struct page *head = compound_head(page); /* rmap on tail pages */
855         struct mem_cgroup *memcg;
856         pg_data_t *pgdat = page_pgdat(page);
857         struct lruvec *lruvec;
858
859         rcu_read_lock();
860         memcg = page_memcg(head);
861         /* Untracked pages have no memcg, no lruvec. Update only the node */
862         if (!memcg) {
863                 rcu_read_unlock();
864                 __mod_node_page_state(pgdat, idx, val);
865                 return;
866         }
867
868         lruvec = mem_cgroup_lruvec(memcg, pgdat);
869         __mod_lruvec_state(lruvec, idx, val);
870         rcu_read_unlock();
871 }
872 EXPORT_SYMBOL(__mod_lruvec_page_state);
873
874 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
875 {
876         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
877         struct mem_cgroup *memcg;
878         struct lruvec *lruvec;
879
880         rcu_read_lock();
881         memcg = mem_cgroup_from_slab_obj(p);
882
883         /*
884          * Untracked pages have no memcg, no lruvec. Update only the
885          * node. If we reparent the slab objects to the root memcg,
886          * when we free the slab object, we need to update the per-memcg
887          * vmstats to keep it correct for the root memcg.
888          */
889         if (!memcg) {
890                 __mod_node_page_state(pgdat, idx, val);
891         } else {
892                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
893                 __mod_lruvec_state(lruvec, idx, val);
894         }
895         rcu_read_unlock();
896 }
897
898 /**
899  * __count_memcg_events - account VM events in a cgroup
900  * @memcg: the memory cgroup
901  * @idx: the event item
902  * @count: the number of events that occurred
903  */
904 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905                           unsigned long count)
906 {
907         int index = memcg_events_index(idx);
908
909         if (mem_cgroup_disabled() || index < 0)
910                 return;
911
912         memcg_stats_lock();
913         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
914         memcg_rstat_updated(memcg, count);
915         memcg_stats_unlock();
916 }
917
918 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
919 {
920         int index = memcg_events_index(event);
921
922         if (index < 0)
923                 return 0;
924         return READ_ONCE(memcg->vmstats->events[index]);
925 }
926
927 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
928 {
929         long x = 0;
930         int cpu;
931         int index = memcg_events_index(event);
932
933         if (index < 0)
934                 return 0;
935
936         for_each_possible_cpu(cpu)
937                 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
938         return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942                                          int nr_pages)
943 {
944         /* pagein of a big page is an event. So, ignore page size */
945         if (nr_pages > 0)
946                 __count_memcg_events(memcg, PGPGIN, 1);
947         else {
948                 __count_memcg_events(memcg, PGPGOUT, 1);
949                 nr_pages = -nr_pages; /* for event */
950         }
951
952         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
953 }
954
955 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
956                                        enum mem_cgroup_events_target target)
957 {
958         unsigned long val, next;
959
960         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
961         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
962         /* from time_after() in jiffies.h */
963         if ((long)(next - val) < 0) {
964                 switch (target) {
965                 case MEM_CGROUP_TARGET_THRESH:
966                         next = val + THRESHOLDS_EVENTS_TARGET;
967                         break;
968                 case MEM_CGROUP_TARGET_SOFTLIMIT:
969                         next = val + SOFTLIMIT_EVENTS_TARGET;
970                         break;
971                 default:
972                         break;
973                 }
974                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
975                 return true;
976         }
977         return false;
978 }
979
980 /*
981  * Check events in order.
982  *
983  */
984 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
985 {
986         if (IS_ENABLED(CONFIG_PREEMPT_RT))
987                 return;
988
989         /* threshold event is triggered in finer grain than soft limit */
990         if (unlikely(mem_cgroup_event_ratelimit(memcg,
991                                                 MEM_CGROUP_TARGET_THRESH))) {
992                 bool do_softlimit;
993
994                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
996                 mem_cgroup_threshold(memcg);
997                 if (unlikely(do_softlimit))
998                         mem_cgroup_update_tree(memcg, nid);
999         }
1000 }
1001
1002 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1003 {
1004         /*
1005          * mm_update_next_owner() may clear mm->owner to NULL
1006          * if it races with swapoff, page migration, etc.
1007          * So this can be called with p == NULL.
1008          */
1009         if (unlikely(!p))
1010                 return NULL;
1011
1012         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1013 }
1014 EXPORT_SYMBOL(mem_cgroup_from_task);
1015
1016 static __always_inline struct mem_cgroup *active_memcg(void)
1017 {
1018         if (!in_task())
1019                 return this_cpu_read(int_active_memcg);
1020         else
1021                 return current->active_memcg;
1022 }
1023
1024 /**
1025  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1026  * @mm: mm from which memcg should be extracted. It can be NULL.
1027  *
1028  * Obtain a reference on mm->memcg and returns it if successful. If mm
1029  * is NULL, then the memcg is chosen as follows:
1030  * 1) The active memcg, if set.
1031  * 2) current->mm->memcg, if available
1032  * 3) root memcg
1033  * If mem_cgroup is disabled, NULL is returned.
1034  */
1035 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1036 {
1037         struct mem_cgroup *memcg;
1038
1039         if (mem_cgroup_disabled())
1040                 return NULL;
1041
1042         /*
1043          * Page cache insertions can happen without an
1044          * actual mm context, e.g. during disk probing
1045          * on boot, loopback IO, acct() writes etc.
1046          *
1047          * No need to css_get on root memcg as the reference
1048          * counting is disabled on the root level in the
1049          * cgroup core. See CSS_NO_REF.
1050          */
1051         if (unlikely(!mm)) {
1052                 memcg = active_memcg();
1053                 if (unlikely(memcg)) {
1054                         /* remote memcg must hold a ref */
1055                         css_get(&memcg->css);
1056                         return memcg;
1057                 }
1058                 mm = current->mm;
1059                 if (unlikely(!mm))
1060                         return root_mem_cgroup;
1061         }
1062
1063         rcu_read_lock();
1064         do {
1065                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1066                 if (unlikely(!memcg))
1067                         memcg = root_mem_cgroup;
1068         } while (!css_tryget(&memcg->css));
1069         rcu_read_unlock();
1070         return memcg;
1071 }
1072 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1073
1074 static __always_inline bool memcg_kmem_bypass(void)
1075 {
1076         /* Allow remote memcg charging from any context. */
1077         if (unlikely(active_memcg()))
1078                 return false;
1079
1080         /* Memcg to charge can't be determined. */
1081         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1082                 return true;
1083
1084         return false;
1085 }
1086
1087 /**
1088  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1089  * @root: hierarchy root
1090  * @prev: previously returned memcg, NULL on first invocation
1091  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1092  *
1093  * Returns references to children of the hierarchy below @root, or
1094  * @root itself, or %NULL after a full round-trip.
1095  *
1096  * Caller must pass the return value in @prev on subsequent
1097  * invocations for reference counting, or use mem_cgroup_iter_break()
1098  * to cancel a hierarchy walk before the round-trip is complete.
1099  *
1100  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1101  * in the hierarchy among all concurrent reclaimers operating on the
1102  * same node.
1103  */
1104 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1105                                    struct mem_cgroup *prev,
1106                                    struct mem_cgroup_reclaim_cookie *reclaim)
1107 {
1108         struct mem_cgroup_reclaim_iter *iter;
1109         struct cgroup_subsys_state *css = NULL;
1110         struct mem_cgroup *memcg = NULL;
1111         struct mem_cgroup *pos = NULL;
1112
1113         if (mem_cgroup_disabled())
1114                 return NULL;
1115
1116         if (!root)
1117                 root = root_mem_cgroup;
1118
1119         rcu_read_lock();
1120
1121         if (reclaim) {
1122                 struct mem_cgroup_per_node *mz;
1123
1124                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1125                 iter = &mz->iter;
1126
1127                 /*
1128                  * On start, join the current reclaim iteration cycle.
1129                  * Exit when a concurrent walker completes it.
1130                  */
1131                 if (!prev)
1132                         reclaim->generation = iter->generation;
1133                 else if (reclaim->generation != iter->generation)
1134                         goto out_unlock;
1135
1136                 while (1) {
1137                         pos = READ_ONCE(iter->position);
1138                         if (!pos || css_tryget(&pos->css))
1139                                 break;
1140                         /*
1141                          * css reference reached zero, so iter->position will
1142                          * be cleared by ->css_released. However, we should not
1143                          * rely on this happening soon, because ->css_released
1144                          * is called from a work queue, and by busy-waiting we
1145                          * might block it. So we clear iter->position right
1146                          * away.
1147                          */
1148                         (void)cmpxchg(&iter->position, pos, NULL);
1149                 }
1150         } else if (prev) {
1151                 pos = prev;
1152         }
1153
1154         if (pos)
1155                 css = &pos->css;
1156
1157         for (;;) {
1158                 css = css_next_descendant_pre(css, &root->css);
1159                 if (!css) {
1160                         /*
1161                          * Reclaimers share the hierarchy walk, and a
1162                          * new one might jump in right at the end of
1163                          * the hierarchy - make sure they see at least
1164                          * one group and restart from the beginning.
1165                          */
1166                         if (!prev)
1167                                 continue;
1168                         break;
1169                 }
1170
1171                 /*
1172                  * Verify the css and acquire a reference.  The root
1173                  * is provided by the caller, so we know it's alive
1174                  * and kicking, and don't take an extra reference.
1175                  */
1176                 if (css == &root->css || css_tryget(css)) {
1177                         memcg = mem_cgroup_from_css(css);
1178                         break;
1179                 }
1180         }
1181
1182         if (reclaim) {
1183                 /*
1184                  * The position could have already been updated by a competing
1185                  * thread, so check that the value hasn't changed since we read
1186                  * it to avoid reclaiming from the same cgroup twice.
1187                  */
1188                 (void)cmpxchg(&iter->position, pos, memcg);
1189
1190                 if (pos)
1191                         css_put(&pos->css);
1192
1193                 if (!memcg)
1194                         iter->generation++;
1195         }
1196
1197 out_unlock:
1198         rcu_read_unlock();
1199         if (prev && prev != root)
1200                 css_put(&prev->css);
1201
1202         return memcg;
1203 }
1204
1205 /**
1206  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1207  * @root: hierarchy root
1208  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1209  */
1210 void mem_cgroup_iter_break(struct mem_cgroup *root,
1211                            struct mem_cgroup *prev)
1212 {
1213         if (!root)
1214                 root = root_mem_cgroup;
1215         if (prev && prev != root)
1216                 css_put(&prev->css);
1217 }
1218
1219 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1220                                         struct mem_cgroup *dead_memcg)
1221 {
1222         struct mem_cgroup_reclaim_iter *iter;
1223         struct mem_cgroup_per_node *mz;
1224         int nid;
1225
1226         for_each_node(nid) {
1227                 mz = from->nodeinfo[nid];
1228                 iter = &mz->iter;
1229                 cmpxchg(&iter->position, dead_memcg, NULL);
1230         }
1231 }
1232
1233 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1234 {
1235         struct mem_cgroup *memcg = dead_memcg;
1236         struct mem_cgroup *last;
1237
1238         do {
1239                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1240                 last = memcg;
1241         } while ((memcg = parent_mem_cgroup(memcg)));
1242
1243         /*
1244          * When cgroup1 non-hierarchy mode is used,
1245          * parent_mem_cgroup() does not walk all the way up to the
1246          * cgroup root (root_mem_cgroup). So we have to handle
1247          * dead_memcg from cgroup root separately.
1248          */
1249         if (!mem_cgroup_is_root(last))
1250                 __invalidate_reclaim_iterators(root_mem_cgroup,
1251                                                 dead_memcg);
1252 }
1253
1254 /**
1255  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1256  * @memcg: hierarchy root
1257  * @fn: function to call for each task
1258  * @arg: argument passed to @fn
1259  *
1260  * This function iterates over tasks attached to @memcg or to any of its
1261  * descendants and calls @fn for each task. If @fn returns a non-zero
1262  * value, the function breaks the iteration loop and returns the value.
1263  * Otherwise, it will iterate over all tasks and return 0.
1264  *
1265  * This function must not be called for the root memory cgroup.
1266  */
1267 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1268                           int (*fn)(struct task_struct *, void *), void *arg)
1269 {
1270         struct mem_cgroup *iter;
1271         int ret = 0;
1272
1273         BUG_ON(mem_cgroup_is_root(memcg));
1274
1275         for_each_mem_cgroup_tree(iter, memcg) {
1276                 struct css_task_iter it;
1277                 struct task_struct *task;
1278
1279                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1280                 while (!ret && (task = css_task_iter_next(&it)))
1281                         ret = fn(task, arg);
1282                 css_task_iter_end(&it);
1283                 if (ret) {
1284                         mem_cgroup_iter_break(memcg, iter);
1285                         break;
1286                 }
1287         }
1288         return ret;
1289 }
1290
1291 #ifdef CONFIG_DEBUG_VM
1292 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1293 {
1294         struct mem_cgroup *memcg;
1295
1296         if (mem_cgroup_disabled())
1297                 return;
1298
1299         memcg = folio_memcg(folio);
1300
1301         if (!memcg)
1302                 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1303         else
1304                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1305 }
1306 #endif
1307
1308 /**
1309  * folio_lruvec_lock - Lock the lruvec for a folio.
1310  * @folio: Pointer to the folio.
1311  *
1312  * These functions are safe to use under any of the following conditions:
1313  * - folio locked
1314  * - folio_test_lru false
1315  * - folio_memcg_lock()
1316  * - folio frozen (refcount of 0)
1317  *
1318  * Return: The lruvec this folio is on with its lock held.
1319  */
1320 struct lruvec *folio_lruvec_lock(struct folio *folio)
1321 {
1322         struct lruvec *lruvec = folio_lruvec(folio);
1323
1324         spin_lock(&lruvec->lru_lock);
1325         lruvec_memcg_debug(lruvec, folio);
1326
1327         return lruvec;
1328 }
1329
1330 /**
1331  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1332  * @folio: Pointer to the folio.
1333  *
1334  * These functions are safe to use under any of the following conditions:
1335  * - folio locked
1336  * - folio_test_lru false
1337  * - folio_memcg_lock()
1338  * - folio frozen (refcount of 0)
1339  *
1340  * Return: The lruvec this folio is on with its lock held and interrupts
1341  * disabled.
1342  */
1343 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1344 {
1345         struct lruvec *lruvec = folio_lruvec(folio);
1346
1347         spin_lock_irq(&lruvec->lru_lock);
1348         lruvec_memcg_debug(lruvec, folio);
1349
1350         return lruvec;
1351 }
1352
1353 /**
1354  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1355  * @folio: Pointer to the folio.
1356  * @flags: Pointer to irqsave flags.
1357  *
1358  * These functions are safe to use under any of the following conditions:
1359  * - folio locked
1360  * - folio_test_lru false
1361  * - folio_memcg_lock()
1362  * - folio frozen (refcount of 0)
1363  *
1364  * Return: The lruvec this folio is on with its lock held and interrupts
1365  * disabled.
1366  */
1367 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1368                 unsigned long *flags)
1369 {
1370         struct lruvec *lruvec = folio_lruvec(folio);
1371
1372         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1373         lruvec_memcg_debug(lruvec, folio);
1374
1375         return lruvec;
1376 }
1377
1378 /**
1379  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1380  * @lruvec: mem_cgroup per zone lru vector
1381  * @lru: index of lru list the page is sitting on
1382  * @zid: zone id of the accounted pages
1383  * @nr_pages: positive when adding or negative when removing
1384  *
1385  * This function must be called under lru_lock, just before a page is added
1386  * to or just after a page is removed from an lru list.
1387  */
1388 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1389                                 int zid, int nr_pages)
1390 {
1391         struct mem_cgroup_per_node *mz;
1392         unsigned long *lru_size;
1393         long size;
1394
1395         if (mem_cgroup_disabled())
1396                 return;
1397
1398         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1399         lru_size = &mz->lru_zone_size[zid][lru];
1400
1401         if (nr_pages < 0)
1402                 *lru_size += nr_pages;
1403
1404         size = *lru_size;
1405         if (WARN_ONCE(size < 0,
1406                 "%s(%p, %d, %d): lru_size %ld\n",
1407                 __func__, lruvec, lru, nr_pages, size)) {
1408                 VM_BUG_ON(1);
1409                 *lru_size = 0;
1410         }
1411
1412         if (nr_pages > 0)
1413                 *lru_size += nr_pages;
1414 }
1415
1416 /**
1417  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1418  * @memcg: the memory cgroup
1419  *
1420  * Returns the maximum amount of memory @mem can be charged with, in
1421  * pages.
1422  */
1423 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1424 {
1425         unsigned long margin = 0;
1426         unsigned long count;
1427         unsigned long limit;
1428
1429         count = page_counter_read(&memcg->memory);
1430         limit = READ_ONCE(memcg->memory.max);
1431         if (count < limit)
1432                 margin = limit - count;
1433
1434         if (do_memsw_account()) {
1435                 count = page_counter_read(&memcg->memsw);
1436                 limit = READ_ONCE(memcg->memsw.max);
1437                 if (count < limit)
1438                         margin = min(margin, limit - count);
1439                 else
1440                         margin = 0;
1441         }
1442
1443         return margin;
1444 }
1445
1446 /*
1447  * A routine for checking "mem" is under move_account() or not.
1448  *
1449  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1450  * moving cgroups. This is for waiting at high-memory pressure
1451  * caused by "move".
1452  */
1453 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1454 {
1455         struct mem_cgroup *from;
1456         struct mem_cgroup *to;
1457         bool ret = false;
1458         /*
1459          * Unlike task_move routines, we access mc.to, mc.from not under
1460          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1461          */
1462         spin_lock(&mc.lock);
1463         from = mc.from;
1464         to = mc.to;
1465         if (!from)
1466                 goto unlock;
1467
1468         ret = mem_cgroup_is_descendant(from, memcg) ||
1469                 mem_cgroup_is_descendant(to, memcg);
1470 unlock:
1471         spin_unlock(&mc.lock);
1472         return ret;
1473 }
1474
1475 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1476 {
1477         if (mc.moving_task && current != mc.moving_task) {
1478                 if (mem_cgroup_under_move(memcg)) {
1479                         DEFINE_WAIT(wait);
1480                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1481                         /* moving charge context might have finished. */
1482                         if (mc.moving_task)
1483                                 schedule();
1484                         finish_wait(&mc.waitq, &wait);
1485                         return true;
1486                 }
1487         }
1488         return false;
1489 }
1490
1491 struct memory_stat {
1492         const char *name;
1493         unsigned int idx;
1494 };
1495
1496 static const struct memory_stat memory_stats[] = {
1497         { "anon",                       NR_ANON_MAPPED                  },
1498         { "file",                       NR_FILE_PAGES                   },
1499         { "kernel",                     MEMCG_KMEM                      },
1500         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1501         { "pagetables",                 NR_PAGETABLE                    },
1502         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1503         { "percpu",                     MEMCG_PERCPU_B                  },
1504         { "sock",                       MEMCG_SOCK                      },
1505         { "vmalloc",                    MEMCG_VMALLOC                   },
1506         { "shmem",                      NR_SHMEM                        },
1507 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1508         { "zswap",                      MEMCG_ZSWAP_B                   },
1509         { "zswapped",                   MEMCG_ZSWAPPED                  },
1510 #endif
1511         { "file_mapped",                NR_FILE_MAPPED                  },
1512         { "file_dirty",                 NR_FILE_DIRTY                   },
1513         { "file_writeback",             NR_WRITEBACK                    },
1514 #ifdef CONFIG_SWAP
1515         { "swapcached",                 NR_SWAPCACHE                    },
1516 #endif
1517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1518         { "anon_thp",                   NR_ANON_THPS                    },
1519         { "file_thp",                   NR_FILE_THPS                    },
1520         { "shmem_thp",                  NR_SHMEM_THPS                   },
1521 #endif
1522         { "inactive_anon",              NR_INACTIVE_ANON                },
1523         { "active_anon",                NR_ACTIVE_ANON                  },
1524         { "inactive_file",              NR_INACTIVE_FILE                },
1525         { "active_file",                NR_ACTIVE_FILE                  },
1526         { "unevictable",                NR_UNEVICTABLE                  },
1527         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1528         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1529
1530         /* The memory events */
1531         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1532         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1533         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1534         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1535         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1536         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1537         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1538 };
1539
1540 /* Translate stat items to the correct unit for memory.stat output */
1541 static int memcg_page_state_unit(int item)
1542 {
1543         switch (item) {
1544         case MEMCG_PERCPU_B:
1545         case MEMCG_ZSWAP_B:
1546         case NR_SLAB_RECLAIMABLE_B:
1547         case NR_SLAB_UNRECLAIMABLE_B:
1548         case WORKINGSET_REFAULT_ANON:
1549         case WORKINGSET_REFAULT_FILE:
1550         case WORKINGSET_ACTIVATE_ANON:
1551         case WORKINGSET_ACTIVATE_FILE:
1552         case WORKINGSET_RESTORE_ANON:
1553         case WORKINGSET_RESTORE_FILE:
1554         case WORKINGSET_NODERECLAIM:
1555                 return 1;
1556         case NR_KERNEL_STACK_KB:
1557                 return SZ_1K;
1558         default:
1559                 return PAGE_SIZE;
1560         }
1561 }
1562
1563 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1564                                                     int item)
1565 {
1566         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1567 }
1568
1569 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1570 {
1571         int i;
1572
1573         /*
1574          * Provide statistics on the state of the memory subsystem as
1575          * well as cumulative event counters that show past behavior.
1576          *
1577          * This list is ordered following a combination of these gradients:
1578          * 1) generic big picture -> specifics and details
1579          * 2) reflecting userspace activity -> reflecting kernel heuristics
1580          *
1581          * Current memory state:
1582          */
1583         mem_cgroup_flush_stats();
1584
1585         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1586                 u64 size;
1587
1588                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1589                 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1590
1591                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1592                         size += memcg_page_state_output(memcg,
1593                                                         NR_SLAB_RECLAIMABLE_B);
1594                         seq_buf_printf(s, "slab %llu\n", size);
1595                 }
1596         }
1597
1598         /* Accumulated memory events */
1599         seq_buf_printf(s, "pgscan %lu\n",
1600                        memcg_events(memcg, PGSCAN_KSWAPD) +
1601                        memcg_events(memcg, PGSCAN_DIRECT) +
1602                        memcg_events(memcg, PGSCAN_KHUGEPAGED));
1603         seq_buf_printf(s, "pgsteal %lu\n",
1604                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1605                        memcg_events(memcg, PGSTEAL_DIRECT) +
1606                        memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1607
1608         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1609                 if (memcg_vm_event_stat[i] == PGPGIN ||
1610                     memcg_vm_event_stat[i] == PGPGOUT)
1611                         continue;
1612
1613                 seq_buf_printf(s, "%s %lu\n",
1614                                vm_event_name(memcg_vm_event_stat[i]),
1615                                memcg_events(memcg, memcg_vm_event_stat[i]));
1616         }
1617
1618         /* The above should easily fit into one page */
1619         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1620 }
1621
1622 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1623
1624 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1625 {
1626         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1627                 memcg_stat_format(memcg, s);
1628         else
1629                 memcg1_stat_format(memcg, s);
1630         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1631 }
1632
1633 #define K(x) ((x) << (PAGE_SHIFT-10))
1634 /**
1635  * mem_cgroup_print_oom_context: Print OOM information relevant to
1636  * memory controller.
1637  * @memcg: The memory cgroup that went over limit
1638  * @p: Task that is going to be killed
1639  *
1640  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1641  * enabled
1642  */
1643 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1644 {
1645         rcu_read_lock();
1646
1647         if (memcg) {
1648                 pr_cont(",oom_memcg=");
1649                 pr_cont_cgroup_path(memcg->css.cgroup);
1650         } else
1651                 pr_cont(",global_oom");
1652         if (p) {
1653                 pr_cont(",task_memcg=");
1654                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1655         }
1656         rcu_read_unlock();
1657 }
1658
1659 /**
1660  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1661  * memory controller.
1662  * @memcg: The memory cgroup that went over limit
1663  */
1664 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1665 {
1666         /* Use static buffer, for the caller is holding oom_lock. */
1667         static char buf[PAGE_SIZE];
1668         struct seq_buf s;
1669
1670         lockdep_assert_held(&oom_lock);
1671
1672         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1673                 K((u64)page_counter_read(&memcg->memory)),
1674                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1675         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1676                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1677                         K((u64)page_counter_read(&memcg->swap)),
1678                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1679         else {
1680                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1681                         K((u64)page_counter_read(&memcg->memsw)),
1682                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1683                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1684                         K((u64)page_counter_read(&memcg->kmem)),
1685                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1686         }
1687
1688         pr_info("Memory cgroup stats for ");
1689         pr_cont_cgroup_path(memcg->css.cgroup);
1690         pr_cont(":");
1691         seq_buf_init(&s, buf, sizeof(buf));
1692         memory_stat_format(memcg, &s);
1693         seq_buf_do_printk(&s, KERN_INFO);
1694 }
1695
1696 /*
1697  * Return the memory (and swap, if configured) limit for a memcg.
1698  */
1699 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1700 {
1701         unsigned long max = READ_ONCE(memcg->memory.max);
1702
1703         if (do_memsw_account()) {
1704                 if (mem_cgroup_swappiness(memcg)) {
1705                         /* Calculate swap excess capacity from memsw limit */
1706                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1707
1708                         max += min(swap, (unsigned long)total_swap_pages);
1709                 }
1710         } else {
1711                 if (mem_cgroup_swappiness(memcg))
1712                         max += min(READ_ONCE(memcg->swap.max),
1713                                    (unsigned long)total_swap_pages);
1714         }
1715         return max;
1716 }
1717
1718 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1719 {
1720         return page_counter_read(&memcg->memory);
1721 }
1722
1723 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1724                                      int order)
1725 {
1726         struct oom_control oc = {
1727                 .zonelist = NULL,
1728                 .nodemask = NULL,
1729                 .memcg = memcg,
1730                 .gfp_mask = gfp_mask,
1731                 .order = order,
1732         };
1733         bool ret = true;
1734
1735         if (mutex_lock_killable(&oom_lock))
1736                 return true;
1737
1738         if (mem_cgroup_margin(memcg) >= (1 << order))
1739                 goto unlock;
1740
1741         /*
1742          * A few threads which were not waiting at mutex_lock_killable() can
1743          * fail to bail out. Therefore, check again after holding oom_lock.
1744          */
1745         ret = task_is_dying() || out_of_memory(&oc);
1746
1747 unlock:
1748         mutex_unlock(&oom_lock);
1749         return ret;
1750 }
1751
1752 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1753                                    pg_data_t *pgdat,
1754                                    gfp_t gfp_mask,
1755                                    unsigned long *total_scanned)
1756 {
1757         struct mem_cgroup *victim = NULL;
1758         int total = 0;
1759         int loop = 0;
1760         unsigned long excess;
1761         unsigned long nr_scanned;
1762         struct mem_cgroup_reclaim_cookie reclaim = {
1763                 .pgdat = pgdat,
1764         };
1765
1766         excess = soft_limit_excess(root_memcg);
1767
1768         while (1) {
1769                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1770                 if (!victim) {
1771                         loop++;
1772                         if (loop >= 2) {
1773                                 /*
1774                                  * If we have not been able to reclaim
1775                                  * anything, it might because there are
1776                                  * no reclaimable pages under this hierarchy
1777                                  */
1778                                 if (!total)
1779                                         break;
1780                                 /*
1781                                  * We want to do more targeted reclaim.
1782                                  * excess >> 2 is not to excessive so as to
1783                                  * reclaim too much, nor too less that we keep
1784                                  * coming back to reclaim from this cgroup
1785                                  */
1786                                 if (total >= (excess >> 2) ||
1787                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1788                                         break;
1789                         }
1790                         continue;
1791                 }
1792                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1793                                         pgdat, &nr_scanned);
1794                 *total_scanned += nr_scanned;
1795                 if (!soft_limit_excess(root_memcg))
1796                         break;
1797         }
1798         mem_cgroup_iter_break(root_memcg, victim);
1799         return total;
1800 }
1801
1802 #ifdef CONFIG_LOCKDEP
1803 static struct lockdep_map memcg_oom_lock_dep_map = {
1804         .name = "memcg_oom_lock",
1805 };
1806 #endif
1807
1808 static DEFINE_SPINLOCK(memcg_oom_lock);
1809
1810 /*
1811  * Check OOM-Killer is already running under our hierarchy.
1812  * If someone is running, return false.
1813  */
1814 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1815 {
1816         struct mem_cgroup *iter, *failed = NULL;
1817
1818         spin_lock(&memcg_oom_lock);
1819
1820         for_each_mem_cgroup_tree(iter, memcg) {
1821                 if (iter->oom_lock) {
1822                         /*
1823                          * this subtree of our hierarchy is already locked
1824                          * so we cannot give a lock.
1825                          */
1826                         failed = iter;
1827                         mem_cgroup_iter_break(memcg, iter);
1828                         break;
1829                 } else
1830                         iter->oom_lock = true;
1831         }
1832
1833         if (failed) {
1834                 /*
1835                  * OK, we failed to lock the whole subtree so we have
1836                  * to clean up what we set up to the failing subtree
1837                  */
1838                 for_each_mem_cgroup_tree(iter, memcg) {
1839                         if (iter == failed) {
1840                                 mem_cgroup_iter_break(memcg, iter);
1841                                 break;
1842                         }
1843                         iter->oom_lock = false;
1844                 }
1845         } else
1846                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1847
1848         spin_unlock(&memcg_oom_lock);
1849
1850         return !failed;
1851 }
1852
1853 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1854 {
1855         struct mem_cgroup *iter;
1856
1857         spin_lock(&memcg_oom_lock);
1858         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1859         for_each_mem_cgroup_tree(iter, memcg)
1860                 iter->oom_lock = false;
1861         spin_unlock(&memcg_oom_lock);
1862 }
1863
1864 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1865 {
1866         struct mem_cgroup *iter;
1867
1868         spin_lock(&memcg_oom_lock);
1869         for_each_mem_cgroup_tree(iter, memcg)
1870                 iter->under_oom++;
1871         spin_unlock(&memcg_oom_lock);
1872 }
1873
1874 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1875 {
1876         struct mem_cgroup *iter;
1877
1878         /*
1879          * Be careful about under_oom underflows because a child memcg
1880          * could have been added after mem_cgroup_mark_under_oom.
1881          */
1882         spin_lock(&memcg_oom_lock);
1883         for_each_mem_cgroup_tree(iter, memcg)
1884                 if (iter->under_oom > 0)
1885                         iter->under_oom--;
1886         spin_unlock(&memcg_oom_lock);
1887 }
1888
1889 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1890
1891 struct oom_wait_info {
1892         struct mem_cgroup *memcg;
1893         wait_queue_entry_t      wait;
1894 };
1895
1896 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1897         unsigned mode, int sync, void *arg)
1898 {
1899         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1900         struct mem_cgroup *oom_wait_memcg;
1901         struct oom_wait_info *oom_wait_info;
1902
1903         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1904         oom_wait_memcg = oom_wait_info->memcg;
1905
1906         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1907             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1908                 return 0;
1909         return autoremove_wake_function(wait, mode, sync, arg);
1910 }
1911
1912 static void memcg_oom_recover(struct mem_cgroup *memcg)
1913 {
1914         /*
1915          * For the following lockless ->under_oom test, the only required
1916          * guarantee is that it must see the state asserted by an OOM when
1917          * this function is called as a result of userland actions
1918          * triggered by the notification of the OOM.  This is trivially
1919          * achieved by invoking mem_cgroup_mark_under_oom() before
1920          * triggering notification.
1921          */
1922         if (memcg && memcg->under_oom)
1923                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1924 }
1925
1926 /*
1927  * Returns true if successfully killed one or more processes. Though in some
1928  * corner cases it can return true even without killing any process.
1929  */
1930 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1931 {
1932         bool locked, ret;
1933
1934         if (order > PAGE_ALLOC_COSTLY_ORDER)
1935                 return false;
1936
1937         memcg_memory_event(memcg, MEMCG_OOM);
1938
1939         /*
1940          * We are in the middle of the charge context here, so we
1941          * don't want to block when potentially sitting on a callstack
1942          * that holds all kinds of filesystem and mm locks.
1943          *
1944          * cgroup1 allows disabling the OOM killer and waiting for outside
1945          * handling until the charge can succeed; remember the context and put
1946          * the task to sleep at the end of the page fault when all locks are
1947          * released.
1948          *
1949          * On the other hand, in-kernel OOM killer allows for an async victim
1950          * memory reclaim (oom_reaper) and that means that we are not solely
1951          * relying on the oom victim to make a forward progress and we can
1952          * invoke the oom killer here.
1953          *
1954          * Please note that mem_cgroup_out_of_memory might fail to find a
1955          * victim and then we have to bail out from the charge path.
1956          */
1957         if (READ_ONCE(memcg->oom_kill_disable)) {
1958                 if (current->in_user_fault) {
1959                         css_get(&memcg->css);
1960                         current->memcg_in_oom = memcg;
1961                         current->memcg_oom_gfp_mask = mask;
1962                         current->memcg_oom_order = order;
1963                 }
1964                 return false;
1965         }
1966
1967         mem_cgroup_mark_under_oom(memcg);
1968
1969         locked = mem_cgroup_oom_trylock(memcg);
1970
1971         if (locked)
1972                 mem_cgroup_oom_notify(memcg);
1973
1974         mem_cgroup_unmark_under_oom(memcg);
1975         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1976
1977         if (locked)
1978                 mem_cgroup_oom_unlock(memcg);
1979
1980         return ret;
1981 }
1982
1983 /**
1984  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1985  * @handle: actually kill/wait or just clean up the OOM state
1986  *
1987  * This has to be called at the end of a page fault if the memcg OOM
1988  * handler was enabled.
1989  *
1990  * Memcg supports userspace OOM handling where failed allocations must
1991  * sleep on a waitqueue until the userspace task resolves the
1992  * situation.  Sleeping directly in the charge context with all kinds
1993  * of locks held is not a good idea, instead we remember an OOM state
1994  * in the task and mem_cgroup_oom_synchronize() has to be called at
1995  * the end of the page fault to complete the OOM handling.
1996  *
1997  * Returns %true if an ongoing memcg OOM situation was detected and
1998  * completed, %false otherwise.
1999  */
2000 bool mem_cgroup_oom_synchronize(bool handle)
2001 {
2002         struct mem_cgroup *memcg = current->memcg_in_oom;
2003         struct oom_wait_info owait;
2004         bool locked;
2005
2006         /* OOM is global, do not handle */
2007         if (!memcg)
2008                 return false;
2009
2010         if (!handle)
2011                 goto cleanup;
2012
2013         owait.memcg = memcg;
2014         owait.wait.flags = 0;
2015         owait.wait.func = memcg_oom_wake_function;
2016         owait.wait.private = current;
2017         INIT_LIST_HEAD(&owait.wait.entry);
2018
2019         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2020         mem_cgroup_mark_under_oom(memcg);
2021
2022         locked = mem_cgroup_oom_trylock(memcg);
2023
2024         if (locked)
2025                 mem_cgroup_oom_notify(memcg);
2026
2027         schedule();
2028         mem_cgroup_unmark_under_oom(memcg);
2029         finish_wait(&memcg_oom_waitq, &owait.wait);
2030
2031         if (locked) {
2032                 mem_cgroup_oom_unlock(memcg);
2033                 /*
2034                  * There is no guarantee that an OOM-lock contender
2035                  * sees the wakeups triggered by the OOM kill
2036                  * uncharges.  Wake any sleepers explicitly.
2037                  */
2038                 memcg_oom_recover(memcg);
2039         }
2040 cleanup:
2041         current->memcg_in_oom = NULL;
2042         css_put(&memcg->css);
2043         return true;
2044 }
2045
2046 /**
2047  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2048  * @victim: task to be killed by the OOM killer
2049  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2050  *
2051  * Returns a pointer to a memory cgroup, which has to be cleaned up
2052  * by killing all belonging OOM-killable tasks.
2053  *
2054  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2055  */
2056 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2057                                             struct mem_cgroup *oom_domain)
2058 {
2059         struct mem_cgroup *oom_group = NULL;
2060         struct mem_cgroup *memcg;
2061
2062         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2063                 return NULL;
2064
2065         if (!oom_domain)
2066                 oom_domain = root_mem_cgroup;
2067
2068         rcu_read_lock();
2069
2070         memcg = mem_cgroup_from_task(victim);
2071         if (mem_cgroup_is_root(memcg))
2072                 goto out;
2073
2074         /*
2075          * If the victim task has been asynchronously moved to a different
2076          * memory cgroup, we might end up killing tasks outside oom_domain.
2077          * In this case it's better to ignore memory.group.oom.
2078          */
2079         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2080                 goto out;
2081
2082         /*
2083          * Traverse the memory cgroup hierarchy from the victim task's
2084          * cgroup up to the OOMing cgroup (or root) to find the
2085          * highest-level memory cgroup with oom.group set.
2086          */
2087         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2088                 if (READ_ONCE(memcg->oom_group))
2089                         oom_group = memcg;
2090
2091                 if (memcg == oom_domain)
2092                         break;
2093         }
2094
2095         if (oom_group)
2096                 css_get(&oom_group->css);
2097 out:
2098         rcu_read_unlock();
2099
2100         return oom_group;
2101 }
2102
2103 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2104 {
2105         pr_info("Tasks in ");
2106         pr_cont_cgroup_path(memcg->css.cgroup);
2107         pr_cont(" are going to be killed due to memory.oom.group set\n");
2108 }
2109
2110 /**
2111  * folio_memcg_lock - Bind a folio to its memcg.
2112  * @folio: The folio.
2113  *
2114  * This function prevents unlocked LRU folios from being moved to
2115  * another cgroup.
2116  *
2117  * It ensures lifetime of the bound memcg.  The caller is responsible
2118  * for the lifetime of the folio.
2119  */
2120 void folio_memcg_lock(struct folio *folio)
2121 {
2122         struct mem_cgroup *memcg;
2123         unsigned long flags;
2124
2125         /*
2126          * The RCU lock is held throughout the transaction.  The fast
2127          * path can get away without acquiring the memcg->move_lock
2128          * because page moving starts with an RCU grace period.
2129          */
2130         rcu_read_lock();
2131
2132         if (mem_cgroup_disabled())
2133                 return;
2134 again:
2135         memcg = folio_memcg(folio);
2136         if (unlikely(!memcg))
2137                 return;
2138
2139 #ifdef CONFIG_PROVE_LOCKING
2140         local_irq_save(flags);
2141         might_lock(&memcg->move_lock);
2142         local_irq_restore(flags);
2143 #endif
2144
2145         if (atomic_read(&memcg->moving_account) <= 0)
2146                 return;
2147
2148         spin_lock_irqsave(&memcg->move_lock, flags);
2149         if (memcg != folio_memcg(folio)) {
2150                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2151                 goto again;
2152         }
2153
2154         /*
2155          * When charge migration first begins, we can have multiple
2156          * critical sections holding the fast-path RCU lock and one
2157          * holding the slowpath move_lock. Track the task who has the
2158          * move_lock for unlock_page_memcg().
2159          */
2160         memcg->move_lock_task = current;
2161         memcg->move_lock_flags = flags;
2162 }
2163
2164 void lock_page_memcg(struct page *page)
2165 {
2166         folio_memcg_lock(page_folio(page));
2167 }
2168
2169 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2170 {
2171         if (memcg && memcg->move_lock_task == current) {
2172                 unsigned long flags = memcg->move_lock_flags;
2173
2174                 memcg->move_lock_task = NULL;
2175                 memcg->move_lock_flags = 0;
2176
2177                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2178         }
2179
2180         rcu_read_unlock();
2181 }
2182
2183 /**
2184  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2185  * @folio: The folio.
2186  *
2187  * This releases the binding created by folio_memcg_lock().  This does
2188  * not change the accounting of this folio to its memcg, but it does
2189  * permit others to change it.
2190  */
2191 void folio_memcg_unlock(struct folio *folio)
2192 {
2193         __folio_memcg_unlock(folio_memcg(folio));
2194 }
2195
2196 void unlock_page_memcg(struct page *page)
2197 {
2198         folio_memcg_unlock(page_folio(page));
2199 }
2200
2201 struct memcg_stock_pcp {
2202         local_lock_t stock_lock;
2203         struct mem_cgroup *cached; /* this never be root cgroup */
2204         unsigned int nr_pages;
2205
2206 #ifdef CONFIG_MEMCG_KMEM
2207         struct obj_cgroup *cached_objcg;
2208         struct pglist_data *cached_pgdat;
2209         unsigned int nr_bytes;
2210         int nr_slab_reclaimable_b;
2211         int nr_slab_unreclaimable_b;
2212 #endif
2213
2214         struct work_struct work;
2215         unsigned long flags;
2216 #define FLUSHING_CACHED_CHARGE  0
2217 };
2218 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2219         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2220 };
2221 static DEFINE_MUTEX(percpu_charge_mutex);
2222
2223 #ifdef CONFIG_MEMCG_KMEM
2224 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2225 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2226                                      struct mem_cgroup *root_memcg);
2227 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2228
2229 #else
2230 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2231 {
2232         return NULL;
2233 }
2234 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2235                                      struct mem_cgroup *root_memcg)
2236 {
2237         return false;
2238 }
2239 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2240 {
2241 }
2242 #endif
2243
2244 /**
2245  * consume_stock: Try to consume stocked charge on this cpu.
2246  * @memcg: memcg to consume from.
2247  * @nr_pages: how many pages to charge.
2248  *
2249  * The charges will only happen if @memcg matches the current cpu's memcg
2250  * stock, and at least @nr_pages are available in that stock.  Failure to
2251  * service an allocation will refill the stock.
2252  *
2253  * returns true if successful, false otherwise.
2254  */
2255 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2256 {
2257         struct memcg_stock_pcp *stock;
2258         unsigned long flags;
2259         bool ret = false;
2260
2261         if (nr_pages > MEMCG_CHARGE_BATCH)
2262                 return ret;
2263
2264         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2265
2266         stock = this_cpu_ptr(&memcg_stock);
2267         if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2268                 stock->nr_pages -= nr_pages;
2269                 ret = true;
2270         }
2271
2272         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2273
2274         return ret;
2275 }
2276
2277 /*
2278  * Returns stocks cached in percpu and reset cached information.
2279  */
2280 static void drain_stock(struct memcg_stock_pcp *stock)
2281 {
2282         struct mem_cgroup *old = READ_ONCE(stock->cached);
2283
2284         if (!old)
2285                 return;
2286
2287         if (stock->nr_pages) {
2288                 page_counter_uncharge(&old->memory, stock->nr_pages);
2289                 if (do_memsw_account())
2290                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2291                 stock->nr_pages = 0;
2292         }
2293
2294         css_put(&old->css);
2295         WRITE_ONCE(stock->cached, NULL);
2296 }
2297
2298 static void drain_local_stock(struct work_struct *dummy)
2299 {
2300         struct memcg_stock_pcp *stock;
2301         struct obj_cgroup *old = NULL;
2302         unsigned long flags;
2303
2304         /*
2305          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2306          * drain_stock races is that we always operate on local CPU stock
2307          * here with IRQ disabled
2308          */
2309         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2310
2311         stock = this_cpu_ptr(&memcg_stock);
2312         old = drain_obj_stock(stock);
2313         drain_stock(stock);
2314         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2315
2316         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2317         if (old)
2318                 obj_cgroup_put(old);
2319 }
2320
2321 /*
2322  * Cache charges(val) to local per_cpu area.
2323  * This will be consumed by consume_stock() function, later.
2324  */
2325 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2326 {
2327         struct memcg_stock_pcp *stock;
2328
2329         stock = this_cpu_ptr(&memcg_stock);
2330         if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2331                 drain_stock(stock);
2332                 css_get(&memcg->css);
2333                 WRITE_ONCE(stock->cached, memcg);
2334         }
2335         stock->nr_pages += nr_pages;
2336
2337         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2338                 drain_stock(stock);
2339 }
2340
2341 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2342 {
2343         unsigned long flags;
2344
2345         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2346         __refill_stock(memcg, nr_pages);
2347         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2348 }
2349
2350 /*
2351  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2352  * of the hierarchy under it.
2353  */
2354 static void drain_all_stock(struct mem_cgroup *root_memcg)
2355 {
2356         int cpu, curcpu;
2357
2358         /* If someone's already draining, avoid adding running more workers. */
2359         if (!mutex_trylock(&percpu_charge_mutex))
2360                 return;
2361         /*
2362          * Notify other cpus that system-wide "drain" is running
2363          * We do not care about races with the cpu hotplug because cpu down
2364          * as well as workers from this path always operate on the local
2365          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2366          */
2367         migrate_disable();
2368         curcpu = smp_processor_id();
2369         for_each_online_cpu(cpu) {
2370                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2371                 struct mem_cgroup *memcg;
2372                 bool flush = false;
2373
2374                 rcu_read_lock();
2375                 memcg = READ_ONCE(stock->cached);
2376                 if (memcg && stock->nr_pages &&
2377                     mem_cgroup_is_descendant(memcg, root_memcg))
2378                         flush = true;
2379                 else if (obj_stock_flush_required(stock, root_memcg))
2380                         flush = true;
2381                 rcu_read_unlock();
2382
2383                 if (flush &&
2384                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2385                         if (cpu == curcpu)
2386                                 drain_local_stock(&stock->work);
2387                         else if (!cpu_is_isolated(cpu))
2388                                 schedule_work_on(cpu, &stock->work);
2389                 }
2390         }
2391         migrate_enable();
2392         mutex_unlock(&percpu_charge_mutex);
2393 }
2394
2395 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2396 {
2397         struct memcg_stock_pcp *stock;
2398
2399         stock = &per_cpu(memcg_stock, cpu);
2400         drain_stock(stock);
2401
2402         return 0;
2403 }
2404
2405 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2406                                   unsigned int nr_pages,
2407                                   gfp_t gfp_mask)
2408 {
2409         unsigned long nr_reclaimed = 0;
2410
2411         do {
2412                 unsigned long pflags;
2413
2414                 if (page_counter_read(&memcg->memory) <=
2415                     READ_ONCE(memcg->memory.high))
2416                         continue;
2417
2418                 memcg_memory_event(memcg, MEMCG_HIGH);
2419
2420                 psi_memstall_enter(&pflags);
2421                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2422                                                         gfp_mask,
2423                                                         MEMCG_RECLAIM_MAY_SWAP);
2424                 psi_memstall_leave(&pflags);
2425         } while ((memcg = parent_mem_cgroup(memcg)) &&
2426                  !mem_cgroup_is_root(memcg));
2427
2428         return nr_reclaimed;
2429 }
2430
2431 static void high_work_func(struct work_struct *work)
2432 {
2433         struct mem_cgroup *memcg;
2434
2435         memcg = container_of(work, struct mem_cgroup, high_work);
2436         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2437 }
2438
2439 /*
2440  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2441  * enough to still cause a significant slowdown in most cases, while still
2442  * allowing diagnostics and tracing to proceed without becoming stuck.
2443  */
2444 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2445
2446 /*
2447  * When calculating the delay, we use these either side of the exponentiation to
2448  * maintain precision and scale to a reasonable number of jiffies (see the table
2449  * below.
2450  *
2451  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2452  *   overage ratio to a delay.
2453  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2454  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2455  *   to produce a reasonable delay curve.
2456  *
2457  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2458  * reasonable delay curve compared to precision-adjusted overage, not
2459  * penalising heavily at first, but still making sure that growth beyond the
2460  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2461  * example, with a high of 100 megabytes:
2462  *
2463  *  +-------+------------------------+
2464  *  | usage | time to allocate in ms |
2465  *  +-------+------------------------+
2466  *  | 100M  |                      0 |
2467  *  | 101M  |                      6 |
2468  *  | 102M  |                     25 |
2469  *  | 103M  |                     57 |
2470  *  | 104M  |                    102 |
2471  *  | 105M  |                    159 |
2472  *  | 106M  |                    230 |
2473  *  | 107M  |                    313 |
2474  *  | 108M  |                    409 |
2475  *  | 109M  |                    518 |
2476  *  | 110M  |                    639 |
2477  *  | 111M  |                    774 |
2478  *  | 112M  |                    921 |
2479  *  | 113M  |                   1081 |
2480  *  | 114M  |                   1254 |
2481  *  | 115M  |                   1439 |
2482  *  | 116M  |                   1638 |
2483  *  | 117M  |                   1849 |
2484  *  | 118M  |                   2000 |
2485  *  | 119M  |                   2000 |
2486  *  | 120M  |                   2000 |
2487  *  +-------+------------------------+
2488  */
2489  #define MEMCG_DELAY_PRECISION_SHIFT 20
2490  #define MEMCG_DELAY_SCALING_SHIFT 14
2491
2492 static u64 calculate_overage(unsigned long usage, unsigned long high)
2493 {
2494         u64 overage;
2495
2496         if (usage <= high)
2497                 return 0;
2498
2499         /*
2500          * Prevent division by 0 in overage calculation by acting as if
2501          * it was a threshold of 1 page
2502          */
2503         high = max(high, 1UL);
2504
2505         overage = usage - high;
2506         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2507         return div64_u64(overage, high);
2508 }
2509
2510 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2511 {
2512         u64 overage, max_overage = 0;
2513
2514         do {
2515                 overage = calculate_overage(page_counter_read(&memcg->memory),
2516                                             READ_ONCE(memcg->memory.high));
2517                 max_overage = max(overage, max_overage);
2518         } while ((memcg = parent_mem_cgroup(memcg)) &&
2519                  !mem_cgroup_is_root(memcg));
2520
2521         return max_overage;
2522 }
2523
2524 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2525 {
2526         u64 overage, max_overage = 0;
2527
2528         do {
2529                 overage = calculate_overage(page_counter_read(&memcg->swap),
2530                                             READ_ONCE(memcg->swap.high));
2531                 if (overage)
2532                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2533                 max_overage = max(overage, max_overage);
2534         } while ((memcg = parent_mem_cgroup(memcg)) &&
2535                  !mem_cgroup_is_root(memcg));
2536
2537         return max_overage;
2538 }
2539
2540 /*
2541  * Get the number of jiffies that we should penalise a mischievous cgroup which
2542  * is exceeding its memory.high by checking both it and its ancestors.
2543  */
2544 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2545                                           unsigned int nr_pages,
2546                                           u64 max_overage)
2547 {
2548         unsigned long penalty_jiffies;
2549
2550         if (!max_overage)
2551                 return 0;
2552
2553         /*
2554          * We use overage compared to memory.high to calculate the number of
2555          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2556          * fairly lenient on small overages, and increasingly harsh when the
2557          * memcg in question makes it clear that it has no intention of stopping
2558          * its crazy behaviour, so we exponentially increase the delay based on
2559          * overage amount.
2560          */
2561         penalty_jiffies = max_overage * max_overage * HZ;
2562         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2563         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2564
2565         /*
2566          * Factor in the task's own contribution to the overage, such that four
2567          * N-sized allocations are throttled approximately the same as one
2568          * 4N-sized allocation.
2569          *
2570          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2571          * larger the current charge patch is than that.
2572          */
2573         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2574 }
2575
2576 /*
2577  * Scheduled by try_charge() to be executed from the userland return path
2578  * and reclaims memory over the high limit.
2579  */
2580 void mem_cgroup_handle_over_high(void)
2581 {
2582         unsigned long penalty_jiffies;
2583         unsigned long pflags;
2584         unsigned long nr_reclaimed;
2585         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2586         int nr_retries = MAX_RECLAIM_RETRIES;
2587         struct mem_cgroup *memcg;
2588         bool in_retry = false;
2589
2590         if (likely(!nr_pages))
2591                 return;
2592
2593         memcg = get_mem_cgroup_from_mm(current->mm);
2594         current->memcg_nr_pages_over_high = 0;
2595
2596 retry_reclaim:
2597         /*
2598          * The allocating task should reclaim at least the batch size, but for
2599          * subsequent retries we only want to do what's necessary to prevent oom
2600          * or breaching resource isolation.
2601          *
2602          * This is distinct from memory.max or page allocator behaviour because
2603          * memory.high is currently batched, whereas memory.max and the page
2604          * allocator run every time an allocation is made.
2605          */
2606         nr_reclaimed = reclaim_high(memcg,
2607                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2608                                     GFP_KERNEL);
2609
2610         /*
2611          * memory.high is breached and reclaim is unable to keep up. Throttle
2612          * allocators proactively to slow down excessive growth.
2613          */
2614         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2615                                                mem_find_max_overage(memcg));
2616
2617         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2618                                                 swap_find_max_overage(memcg));
2619
2620         /*
2621          * Clamp the max delay per usermode return so as to still keep the
2622          * application moving forwards and also permit diagnostics, albeit
2623          * extremely slowly.
2624          */
2625         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2626
2627         /*
2628          * Don't sleep if the amount of jiffies this memcg owes us is so low
2629          * that it's not even worth doing, in an attempt to be nice to those who
2630          * go only a small amount over their memory.high value and maybe haven't
2631          * been aggressively reclaimed enough yet.
2632          */
2633         if (penalty_jiffies <= HZ / 100)
2634                 goto out;
2635
2636         /*
2637          * If reclaim is making forward progress but we're still over
2638          * memory.high, we want to encourage that rather than doing allocator
2639          * throttling.
2640          */
2641         if (nr_reclaimed || nr_retries--) {
2642                 in_retry = true;
2643                 goto retry_reclaim;
2644         }
2645
2646         /*
2647          * If we exit early, we're guaranteed to die (since
2648          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2649          * need to account for any ill-begotten jiffies to pay them off later.
2650          */
2651         psi_memstall_enter(&pflags);
2652         schedule_timeout_killable(penalty_jiffies);
2653         psi_memstall_leave(&pflags);
2654
2655 out:
2656         css_put(&memcg->css);
2657 }
2658
2659 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2660                         unsigned int nr_pages)
2661 {
2662         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2663         int nr_retries = MAX_RECLAIM_RETRIES;
2664         struct mem_cgroup *mem_over_limit;
2665         struct page_counter *counter;
2666         unsigned long nr_reclaimed;
2667         bool passed_oom = false;
2668         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2669         bool drained = false;
2670         bool raised_max_event = false;
2671         unsigned long pflags;
2672
2673 retry:
2674         if (consume_stock(memcg, nr_pages))
2675                 return 0;
2676
2677         if (!do_memsw_account() ||
2678             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2679                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2680                         goto done_restock;
2681                 if (do_memsw_account())
2682                         page_counter_uncharge(&memcg->memsw, batch);
2683                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2684         } else {
2685                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2686                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2687         }
2688
2689         if (batch > nr_pages) {
2690                 batch = nr_pages;
2691                 goto retry;
2692         }
2693
2694         /*
2695          * Prevent unbounded recursion when reclaim operations need to
2696          * allocate memory. This might exceed the limits temporarily,
2697          * but we prefer facilitating memory reclaim and getting back
2698          * under the limit over triggering OOM kills in these cases.
2699          */
2700         if (unlikely(current->flags & PF_MEMALLOC))
2701                 goto force;
2702
2703         if (unlikely(task_in_memcg_oom(current)))
2704                 goto nomem;
2705
2706         if (!gfpflags_allow_blocking(gfp_mask))
2707                 goto nomem;
2708
2709         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2710         raised_max_event = true;
2711
2712         psi_memstall_enter(&pflags);
2713         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2714                                                     gfp_mask, reclaim_options);
2715         psi_memstall_leave(&pflags);
2716
2717         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2718                 goto retry;
2719
2720         if (!drained) {
2721                 drain_all_stock(mem_over_limit);
2722                 drained = true;
2723                 goto retry;
2724         }
2725
2726         if (gfp_mask & __GFP_NORETRY)
2727                 goto nomem;
2728         /*
2729          * Even though the limit is exceeded at this point, reclaim
2730          * may have been able to free some pages.  Retry the charge
2731          * before killing the task.
2732          *
2733          * Only for regular pages, though: huge pages are rather
2734          * unlikely to succeed so close to the limit, and we fall back
2735          * to regular pages anyway in case of failure.
2736          */
2737         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2738                 goto retry;
2739         /*
2740          * At task move, charge accounts can be doubly counted. So, it's
2741          * better to wait until the end of task_move if something is going on.
2742          */
2743         if (mem_cgroup_wait_acct_move(mem_over_limit))
2744                 goto retry;
2745
2746         if (nr_retries--)
2747                 goto retry;
2748
2749         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2750                 goto nomem;
2751
2752         /* Avoid endless loop for tasks bypassed by the oom killer */
2753         if (passed_oom && task_is_dying())
2754                 goto nomem;
2755
2756         /*
2757          * keep retrying as long as the memcg oom killer is able to make
2758          * a forward progress or bypass the charge if the oom killer
2759          * couldn't make any progress.
2760          */
2761         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2762                            get_order(nr_pages * PAGE_SIZE))) {
2763                 passed_oom = true;
2764                 nr_retries = MAX_RECLAIM_RETRIES;
2765                 goto retry;
2766         }
2767 nomem:
2768         /*
2769          * Memcg doesn't have a dedicated reserve for atomic
2770          * allocations. But like the global atomic pool, we need to
2771          * put the burden of reclaim on regular allocation requests
2772          * and let these go through as privileged allocations.
2773          */
2774         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2775                 return -ENOMEM;
2776 force:
2777         /*
2778          * If the allocation has to be enforced, don't forget to raise
2779          * a MEMCG_MAX event.
2780          */
2781         if (!raised_max_event)
2782                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2783
2784         /*
2785          * The allocation either can't fail or will lead to more memory
2786          * being freed very soon.  Allow memory usage go over the limit
2787          * temporarily by force charging it.
2788          */
2789         page_counter_charge(&memcg->memory, nr_pages);
2790         if (do_memsw_account())
2791                 page_counter_charge(&memcg->memsw, nr_pages);
2792
2793         return 0;
2794
2795 done_restock:
2796         if (batch > nr_pages)
2797                 refill_stock(memcg, batch - nr_pages);
2798
2799         /*
2800          * If the hierarchy is above the normal consumption range, schedule
2801          * reclaim on returning to userland.  We can perform reclaim here
2802          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2803          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2804          * not recorded as it most likely matches current's and won't
2805          * change in the meantime.  As high limit is checked again before
2806          * reclaim, the cost of mismatch is negligible.
2807          */
2808         do {
2809                 bool mem_high, swap_high;
2810
2811                 mem_high = page_counter_read(&memcg->memory) >
2812                         READ_ONCE(memcg->memory.high);
2813                 swap_high = page_counter_read(&memcg->swap) >
2814                         READ_ONCE(memcg->swap.high);
2815
2816                 /* Don't bother a random interrupted task */
2817                 if (!in_task()) {
2818                         if (mem_high) {
2819                                 schedule_work(&memcg->high_work);
2820                                 break;
2821                         }
2822                         continue;
2823                 }
2824
2825                 if (mem_high || swap_high) {
2826                         /*
2827                          * The allocating tasks in this cgroup will need to do
2828                          * reclaim or be throttled to prevent further growth
2829                          * of the memory or swap footprints.
2830                          *
2831                          * Target some best-effort fairness between the tasks,
2832                          * and distribute reclaim work and delay penalties
2833                          * based on how much each task is actually allocating.
2834                          */
2835                         current->memcg_nr_pages_over_high += batch;
2836                         set_notify_resume(current);
2837                         break;
2838                 }
2839         } while ((memcg = parent_mem_cgroup(memcg)));
2840
2841         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2842             !(current->flags & PF_MEMALLOC) &&
2843             gfpflags_allow_blocking(gfp_mask)) {
2844                 mem_cgroup_handle_over_high();
2845         }
2846         return 0;
2847 }
2848
2849 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2850                              unsigned int nr_pages)
2851 {
2852         if (mem_cgroup_is_root(memcg))
2853                 return 0;
2854
2855         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2856 }
2857
2858 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2859 {
2860         if (mem_cgroup_is_root(memcg))
2861                 return;
2862
2863         page_counter_uncharge(&memcg->memory, nr_pages);
2864         if (do_memsw_account())
2865                 page_counter_uncharge(&memcg->memsw, nr_pages);
2866 }
2867
2868 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2869 {
2870         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2871         /*
2872          * Any of the following ensures page's memcg stability:
2873          *
2874          * - the page lock
2875          * - LRU isolation
2876          * - lock_page_memcg()
2877          * - exclusive reference
2878          * - mem_cgroup_trylock_pages()
2879          */
2880         folio->memcg_data = (unsigned long)memcg;
2881 }
2882
2883 #ifdef CONFIG_MEMCG_KMEM
2884 /*
2885  * The allocated objcg pointers array is not accounted directly.
2886  * Moreover, it should not come from DMA buffer and is not readily
2887  * reclaimable. So those GFP bits should be masked off.
2888  */
2889 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2890
2891 /*
2892  * mod_objcg_mlstate() may be called with irq enabled, so
2893  * mod_memcg_lruvec_state() should be used.
2894  */
2895 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2896                                      struct pglist_data *pgdat,
2897                                      enum node_stat_item idx, int nr)
2898 {
2899         struct mem_cgroup *memcg;
2900         struct lruvec *lruvec;
2901
2902         rcu_read_lock();
2903         memcg = obj_cgroup_memcg(objcg);
2904         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2905         mod_memcg_lruvec_state(lruvec, idx, nr);
2906         rcu_read_unlock();
2907 }
2908
2909 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2910                                  gfp_t gfp, bool new_slab)
2911 {
2912         unsigned int objects = objs_per_slab(s, slab);
2913         unsigned long memcg_data;
2914         void *vec;
2915
2916         gfp &= ~OBJCGS_CLEAR_MASK;
2917         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2918                            slab_nid(slab));
2919         if (!vec)
2920                 return -ENOMEM;
2921
2922         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2923         if (new_slab) {
2924                 /*
2925                  * If the slab is brand new and nobody can yet access its
2926                  * memcg_data, no synchronization is required and memcg_data can
2927                  * be simply assigned.
2928                  */
2929                 slab->memcg_data = memcg_data;
2930         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2931                 /*
2932                  * If the slab is already in use, somebody can allocate and
2933                  * assign obj_cgroups in parallel. In this case the existing
2934                  * objcg vector should be reused.
2935                  */
2936                 kfree(vec);
2937                 return 0;
2938         }
2939
2940         kmemleak_not_leak(vec);
2941         return 0;
2942 }
2943
2944 static __always_inline
2945 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2946 {
2947         /*
2948          * Slab objects are accounted individually, not per-page.
2949          * Memcg membership data for each individual object is saved in
2950          * slab->memcg_data.
2951          */
2952         if (folio_test_slab(folio)) {
2953                 struct obj_cgroup **objcgs;
2954                 struct slab *slab;
2955                 unsigned int off;
2956
2957                 slab = folio_slab(folio);
2958                 objcgs = slab_objcgs(slab);
2959                 if (!objcgs)
2960                         return NULL;
2961
2962                 off = obj_to_index(slab->slab_cache, slab, p);
2963                 if (objcgs[off])
2964                         return obj_cgroup_memcg(objcgs[off]);
2965
2966                 return NULL;
2967         }
2968
2969         /*
2970          * folio_memcg_check() is used here, because in theory we can encounter
2971          * a folio where the slab flag has been cleared already, but
2972          * slab->memcg_data has not been freed yet
2973          * folio_memcg_check() will guarantee that a proper memory
2974          * cgroup pointer or NULL will be returned.
2975          */
2976         return folio_memcg_check(folio);
2977 }
2978
2979 /*
2980  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2981  *
2982  * A passed kernel object can be a slab object, vmalloc object or a generic
2983  * kernel page, so different mechanisms for getting the memory cgroup pointer
2984  * should be used.
2985  *
2986  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2987  * can not know for sure how the kernel object is implemented.
2988  * mem_cgroup_from_obj() can be safely used in such cases.
2989  *
2990  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2991  * cgroup_mutex, etc.
2992  */
2993 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2994 {
2995         struct folio *folio;
2996
2997         if (mem_cgroup_disabled())
2998                 return NULL;
2999
3000         if (unlikely(is_vmalloc_addr(p)))
3001                 folio = page_folio(vmalloc_to_page(p));
3002         else
3003                 folio = virt_to_folio(p);
3004
3005         return mem_cgroup_from_obj_folio(folio, p);
3006 }
3007
3008 /*
3009  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3010  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3011  * allocated using vmalloc().
3012  *
3013  * A passed kernel object must be a slab object or a generic kernel page.
3014  *
3015  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3016  * cgroup_mutex, etc.
3017  */
3018 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3019 {
3020         if (mem_cgroup_disabled())
3021                 return NULL;
3022
3023         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3024 }
3025
3026 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3027 {
3028         struct obj_cgroup *objcg = NULL;
3029
3030         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3031                 objcg = rcu_dereference(memcg->objcg);
3032                 if (objcg && obj_cgroup_tryget(objcg))
3033                         break;
3034                 objcg = NULL;
3035         }
3036         return objcg;
3037 }
3038
3039 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3040 {
3041         struct obj_cgroup *objcg = NULL;
3042         struct mem_cgroup *memcg;
3043
3044         if (memcg_kmem_bypass())
3045                 return NULL;
3046
3047         rcu_read_lock();
3048         if (unlikely(active_memcg()))
3049                 memcg = active_memcg();
3050         else
3051                 memcg = mem_cgroup_from_task(current);
3052         objcg = __get_obj_cgroup_from_memcg(memcg);
3053         rcu_read_unlock();
3054         return objcg;
3055 }
3056
3057 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3058 {
3059         struct obj_cgroup *objcg;
3060
3061         if (!memcg_kmem_online())
3062                 return NULL;
3063
3064         if (PageMemcgKmem(page)) {
3065                 objcg = __folio_objcg(page_folio(page));
3066                 obj_cgroup_get(objcg);
3067         } else {
3068                 struct mem_cgroup *memcg;
3069
3070                 rcu_read_lock();
3071                 memcg = __folio_memcg(page_folio(page));
3072                 if (memcg)
3073                         objcg = __get_obj_cgroup_from_memcg(memcg);
3074                 else
3075                         objcg = NULL;
3076                 rcu_read_unlock();
3077         }
3078         return objcg;
3079 }
3080
3081 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3082 {
3083         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3084         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3085                 if (nr_pages > 0)
3086                         page_counter_charge(&memcg->kmem, nr_pages);
3087                 else
3088                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3089         }
3090 }
3091
3092
3093 /*
3094  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3095  * @objcg: object cgroup to uncharge
3096  * @nr_pages: number of pages to uncharge
3097  */
3098 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3099                                       unsigned int nr_pages)
3100 {
3101         struct mem_cgroup *memcg;
3102
3103         memcg = get_mem_cgroup_from_objcg(objcg);
3104
3105         memcg_account_kmem(memcg, -nr_pages);
3106         refill_stock(memcg, nr_pages);
3107
3108         css_put(&memcg->css);
3109 }
3110
3111 /*
3112  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3113  * @objcg: object cgroup to charge
3114  * @gfp: reclaim mode
3115  * @nr_pages: number of pages to charge
3116  *
3117  * Returns 0 on success, an error code on failure.
3118  */
3119 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3120                                    unsigned int nr_pages)
3121 {
3122         struct mem_cgroup *memcg;
3123         int ret;
3124
3125         memcg = get_mem_cgroup_from_objcg(objcg);
3126
3127         ret = try_charge_memcg(memcg, gfp, nr_pages);
3128         if (ret)
3129                 goto out;
3130
3131         memcg_account_kmem(memcg, nr_pages);
3132 out:
3133         css_put(&memcg->css);
3134
3135         return ret;
3136 }
3137
3138 /**
3139  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3140  * @page: page to charge
3141  * @gfp: reclaim mode
3142  * @order: allocation order
3143  *
3144  * Returns 0 on success, an error code on failure.
3145  */
3146 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3147 {
3148         struct obj_cgroup *objcg;
3149         int ret = 0;
3150
3151         objcg = get_obj_cgroup_from_current();
3152         if (objcg) {
3153                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3154                 if (!ret) {
3155                         page->memcg_data = (unsigned long)objcg |
3156                                 MEMCG_DATA_KMEM;
3157                         return 0;
3158                 }
3159                 obj_cgroup_put(objcg);
3160         }
3161         return ret;
3162 }
3163
3164 /**
3165  * __memcg_kmem_uncharge_page: uncharge a kmem page
3166  * @page: page to uncharge
3167  * @order: allocation order
3168  */
3169 void __memcg_kmem_uncharge_page(struct page *page, int order)
3170 {
3171         struct folio *folio = page_folio(page);
3172         struct obj_cgroup *objcg;
3173         unsigned int nr_pages = 1 << order;
3174
3175         if (!folio_memcg_kmem(folio))
3176                 return;
3177
3178         objcg = __folio_objcg(folio);
3179         obj_cgroup_uncharge_pages(objcg, nr_pages);
3180         folio->memcg_data = 0;
3181         obj_cgroup_put(objcg);
3182 }
3183
3184 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3185                      enum node_stat_item idx, int nr)
3186 {
3187         struct memcg_stock_pcp *stock;
3188         struct obj_cgroup *old = NULL;
3189         unsigned long flags;
3190         int *bytes;
3191
3192         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3193         stock = this_cpu_ptr(&memcg_stock);
3194
3195         /*
3196          * Save vmstat data in stock and skip vmstat array update unless
3197          * accumulating over a page of vmstat data or when pgdat or idx
3198          * changes.
3199          */
3200         if (READ_ONCE(stock->cached_objcg) != objcg) {
3201                 old = drain_obj_stock(stock);
3202                 obj_cgroup_get(objcg);
3203                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3204                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3205                 WRITE_ONCE(stock->cached_objcg, objcg);
3206                 stock->cached_pgdat = pgdat;
3207         } else if (stock->cached_pgdat != pgdat) {
3208                 /* Flush the existing cached vmstat data */
3209                 struct pglist_data *oldpg = stock->cached_pgdat;
3210
3211                 if (stock->nr_slab_reclaimable_b) {
3212                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3213                                           stock->nr_slab_reclaimable_b);
3214                         stock->nr_slab_reclaimable_b = 0;
3215                 }
3216                 if (stock->nr_slab_unreclaimable_b) {
3217                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3218                                           stock->nr_slab_unreclaimable_b);
3219                         stock->nr_slab_unreclaimable_b = 0;
3220                 }
3221                 stock->cached_pgdat = pgdat;
3222         }
3223
3224         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3225                                                : &stock->nr_slab_unreclaimable_b;
3226         /*
3227          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3228          * cached locally at least once before pushing it out.
3229          */
3230         if (!*bytes) {
3231                 *bytes = nr;
3232                 nr = 0;
3233         } else {
3234                 *bytes += nr;
3235                 if (abs(*bytes) > PAGE_SIZE) {
3236                         nr = *bytes;
3237                         *bytes = 0;
3238                 } else {
3239                         nr = 0;
3240                 }
3241         }
3242         if (nr)
3243                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3244
3245         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3246         if (old)
3247                 obj_cgroup_put(old);
3248 }
3249
3250 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3251 {
3252         struct memcg_stock_pcp *stock;
3253         unsigned long flags;
3254         bool ret = false;
3255
3256         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3257
3258         stock = this_cpu_ptr(&memcg_stock);
3259         if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3260                 stock->nr_bytes -= nr_bytes;
3261                 ret = true;
3262         }
3263
3264         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3265
3266         return ret;
3267 }
3268
3269 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3270 {
3271         struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3272
3273         if (!old)
3274                 return NULL;
3275
3276         if (stock->nr_bytes) {
3277                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3278                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3279
3280                 if (nr_pages) {
3281                         struct mem_cgroup *memcg;
3282
3283                         memcg = get_mem_cgroup_from_objcg(old);
3284
3285                         memcg_account_kmem(memcg, -nr_pages);
3286                         __refill_stock(memcg, nr_pages);
3287
3288                         css_put(&memcg->css);
3289                 }
3290
3291                 /*
3292                  * The leftover is flushed to the centralized per-memcg value.
3293                  * On the next attempt to refill obj stock it will be moved
3294                  * to a per-cpu stock (probably, on an other CPU), see
3295                  * refill_obj_stock().
3296                  *
3297                  * How often it's flushed is a trade-off between the memory
3298                  * limit enforcement accuracy and potential CPU contention,
3299                  * so it might be changed in the future.
3300                  */
3301                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3302                 stock->nr_bytes = 0;
3303         }
3304
3305         /*
3306          * Flush the vmstat data in current stock
3307          */
3308         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3309                 if (stock->nr_slab_reclaimable_b) {
3310                         mod_objcg_mlstate(old, stock->cached_pgdat,
3311                                           NR_SLAB_RECLAIMABLE_B,
3312                                           stock->nr_slab_reclaimable_b);
3313                         stock->nr_slab_reclaimable_b = 0;
3314                 }
3315                 if (stock->nr_slab_unreclaimable_b) {
3316                         mod_objcg_mlstate(old, stock->cached_pgdat,
3317                                           NR_SLAB_UNRECLAIMABLE_B,
3318                                           stock->nr_slab_unreclaimable_b);
3319                         stock->nr_slab_unreclaimable_b = 0;
3320                 }
3321                 stock->cached_pgdat = NULL;
3322         }
3323
3324         WRITE_ONCE(stock->cached_objcg, NULL);
3325         /*
3326          * The `old' objects needs to be released by the caller via
3327          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3328          */
3329         return old;
3330 }
3331
3332 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3333                                      struct mem_cgroup *root_memcg)
3334 {
3335         struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3336         struct mem_cgroup *memcg;
3337
3338         if (objcg) {
3339                 memcg = obj_cgroup_memcg(objcg);
3340                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3341                         return true;
3342         }
3343
3344         return false;
3345 }
3346
3347 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3348                              bool allow_uncharge)
3349 {
3350         struct memcg_stock_pcp *stock;
3351         struct obj_cgroup *old = NULL;
3352         unsigned long flags;
3353         unsigned int nr_pages = 0;
3354
3355         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3356
3357         stock = this_cpu_ptr(&memcg_stock);
3358         if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3359                 old = drain_obj_stock(stock);
3360                 obj_cgroup_get(objcg);
3361                 WRITE_ONCE(stock->cached_objcg, objcg);
3362                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3363                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3364                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3365         }
3366         stock->nr_bytes += nr_bytes;
3367
3368         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3369                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3370                 stock->nr_bytes &= (PAGE_SIZE - 1);
3371         }
3372
3373         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3374         if (old)
3375                 obj_cgroup_put(old);
3376
3377         if (nr_pages)
3378                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3379 }
3380
3381 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3382 {
3383         unsigned int nr_pages, nr_bytes;
3384         int ret;
3385
3386         if (consume_obj_stock(objcg, size))
3387                 return 0;
3388
3389         /*
3390          * In theory, objcg->nr_charged_bytes can have enough
3391          * pre-charged bytes to satisfy the allocation. However,
3392          * flushing objcg->nr_charged_bytes requires two atomic
3393          * operations, and objcg->nr_charged_bytes can't be big.
3394          * The shared objcg->nr_charged_bytes can also become a
3395          * performance bottleneck if all tasks of the same memcg are
3396          * trying to update it. So it's better to ignore it and try
3397          * grab some new pages. The stock's nr_bytes will be flushed to
3398          * objcg->nr_charged_bytes later on when objcg changes.
3399          *
3400          * The stock's nr_bytes may contain enough pre-charged bytes
3401          * to allow one less page from being charged, but we can't rely
3402          * on the pre-charged bytes not being changed outside of
3403          * consume_obj_stock() or refill_obj_stock(). So ignore those
3404          * pre-charged bytes as well when charging pages. To avoid a
3405          * page uncharge right after a page charge, we set the
3406          * allow_uncharge flag to false when calling refill_obj_stock()
3407          * to temporarily allow the pre-charged bytes to exceed the page
3408          * size limit. The maximum reachable value of the pre-charged
3409          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3410          * race.
3411          */
3412         nr_pages = size >> PAGE_SHIFT;
3413         nr_bytes = size & (PAGE_SIZE - 1);
3414
3415         if (nr_bytes)
3416                 nr_pages += 1;
3417
3418         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3419         if (!ret && nr_bytes)
3420                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3421
3422         return ret;
3423 }
3424
3425 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3426 {
3427         refill_obj_stock(objcg, size, true);
3428 }
3429
3430 #endif /* CONFIG_MEMCG_KMEM */
3431
3432 /*
3433  * Because page_memcg(head) is not set on tails, set it now.
3434  */
3435 void split_page_memcg(struct page *head, unsigned int nr)
3436 {
3437         struct folio *folio = page_folio(head);
3438         struct mem_cgroup *memcg = folio_memcg(folio);
3439         int i;
3440
3441         if (mem_cgroup_disabled() || !memcg)
3442                 return;
3443
3444         for (i = 1; i < nr; i++)
3445                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3446
3447         if (folio_memcg_kmem(folio))
3448                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3449         else
3450                 css_get_many(&memcg->css, nr - 1);
3451 }
3452
3453 #ifdef CONFIG_SWAP
3454 /**
3455  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3456  * @entry: swap entry to be moved
3457  * @from:  mem_cgroup which the entry is moved from
3458  * @to:  mem_cgroup which the entry is moved to
3459  *
3460  * It succeeds only when the swap_cgroup's record for this entry is the same
3461  * as the mem_cgroup's id of @from.
3462  *
3463  * Returns 0 on success, -EINVAL on failure.
3464  *
3465  * The caller must have charged to @to, IOW, called page_counter_charge() about
3466  * both res and memsw, and called css_get().
3467  */
3468 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3469                                 struct mem_cgroup *from, struct mem_cgroup *to)
3470 {
3471         unsigned short old_id, new_id;
3472
3473         old_id = mem_cgroup_id(from);
3474         new_id = mem_cgroup_id(to);
3475
3476         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3477                 mod_memcg_state(from, MEMCG_SWAP, -1);
3478                 mod_memcg_state(to, MEMCG_SWAP, 1);
3479                 return 0;
3480         }
3481         return -EINVAL;
3482 }
3483 #else
3484 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3485                                 struct mem_cgroup *from, struct mem_cgroup *to)
3486 {
3487         return -EINVAL;
3488 }
3489 #endif
3490
3491 static DEFINE_MUTEX(memcg_max_mutex);
3492
3493 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3494                                  unsigned long max, bool memsw)
3495 {
3496         bool enlarge = false;
3497         bool drained = false;
3498         int ret;
3499         bool limits_invariant;
3500         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3501
3502         do {
3503                 if (signal_pending(current)) {
3504                         ret = -EINTR;
3505                         break;
3506                 }
3507
3508                 mutex_lock(&memcg_max_mutex);
3509                 /*
3510                  * Make sure that the new limit (memsw or memory limit) doesn't
3511                  * break our basic invariant rule memory.max <= memsw.max.
3512                  */
3513                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3514                                            max <= memcg->memsw.max;
3515                 if (!limits_invariant) {
3516                         mutex_unlock(&memcg_max_mutex);
3517                         ret = -EINVAL;
3518                         break;
3519                 }
3520                 if (max > counter->max)
3521                         enlarge = true;
3522                 ret = page_counter_set_max(counter, max);
3523                 mutex_unlock(&memcg_max_mutex);
3524
3525                 if (!ret)
3526                         break;
3527
3528                 if (!drained) {
3529                         drain_all_stock(memcg);
3530                         drained = true;
3531                         continue;
3532                 }
3533
3534                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3535                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3536                         ret = -EBUSY;
3537                         break;
3538                 }
3539         } while (true);
3540
3541         if (!ret && enlarge)
3542                 memcg_oom_recover(memcg);
3543
3544         return ret;
3545 }
3546
3547 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3548                                             gfp_t gfp_mask,
3549                                             unsigned long *total_scanned)
3550 {
3551         unsigned long nr_reclaimed = 0;
3552         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3553         unsigned long reclaimed;
3554         int loop = 0;
3555         struct mem_cgroup_tree_per_node *mctz;
3556         unsigned long excess;
3557
3558         if (lru_gen_enabled())
3559                 return 0;
3560
3561         if (order > 0)
3562                 return 0;
3563
3564         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3565
3566         /*
3567          * Do not even bother to check the largest node if the root
3568          * is empty. Do it lockless to prevent lock bouncing. Races
3569          * are acceptable as soft limit is best effort anyway.
3570          */
3571         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3572                 return 0;
3573
3574         /*
3575          * This loop can run a while, specially if mem_cgroup's continuously
3576          * keep exceeding their soft limit and putting the system under
3577          * pressure
3578          */
3579         do {
3580                 if (next_mz)
3581                         mz = next_mz;
3582                 else
3583                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3584                 if (!mz)
3585                         break;
3586
3587                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3588                                                     gfp_mask, total_scanned);
3589                 nr_reclaimed += reclaimed;
3590                 spin_lock_irq(&mctz->lock);
3591
3592                 /*
3593                  * If we failed to reclaim anything from this memory cgroup
3594                  * it is time to move on to the next cgroup
3595                  */
3596                 next_mz = NULL;
3597                 if (!reclaimed)
3598                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3599
3600                 excess = soft_limit_excess(mz->memcg);
3601                 /*
3602                  * One school of thought says that we should not add
3603                  * back the node to the tree if reclaim returns 0.
3604                  * But our reclaim could return 0, simply because due
3605                  * to priority we are exposing a smaller subset of
3606                  * memory to reclaim from. Consider this as a longer
3607                  * term TODO.
3608                  */
3609                 /* If excess == 0, no tree ops */
3610                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3611                 spin_unlock_irq(&mctz->lock);
3612                 css_put(&mz->memcg->css);
3613                 loop++;
3614                 /*
3615                  * Could not reclaim anything and there are no more
3616                  * mem cgroups to try or we seem to be looping without
3617                  * reclaiming anything.
3618                  */
3619                 if (!nr_reclaimed &&
3620                         (next_mz == NULL ||
3621                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3622                         break;
3623         } while (!nr_reclaimed);
3624         if (next_mz)
3625                 css_put(&next_mz->memcg->css);
3626         return nr_reclaimed;
3627 }
3628
3629 /*
3630  * Reclaims as many pages from the given memcg as possible.
3631  *
3632  * Caller is responsible for holding css reference for memcg.
3633  */
3634 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3635 {
3636         int nr_retries = MAX_RECLAIM_RETRIES;
3637
3638         /* we call try-to-free pages for make this cgroup empty */
3639         lru_add_drain_all();
3640
3641         drain_all_stock(memcg);
3642
3643         /* try to free all pages in this cgroup */
3644         while (nr_retries && page_counter_read(&memcg->memory)) {
3645                 if (signal_pending(current))
3646                         return -EINTR;
3647
3648                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3649                                                   MEMCG_RECLAIM_MAY_SWAP))
3650                         nr_retries--;
3651         }
3652
3653         return 0;
3654 }
3655
3656 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3657                                             char *buf, size_t nbytes,
3658                                             loff_t off)
3659 {
3660         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3661
3662         if (mem_cgroup_is_root(memcg))
3663                 return -EINVAL;
3664         return mem_cgroup_force_empty(memcg) ?: nbytes;
3665 }
3666
3667 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3668                                      struct cftype *cft)
3669 {
3670         return 1;
3671 }
3672
3673 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3674                                       struct cftype *cft, u64 val)
3675 {
3676         if (val == 1)
3677                 return 0;
3678
3679         pr_warn_once("Non-hierarchical mode is deprecated. "
3680                      "Please report your usecase to linux-mm@kvack.org if you "
3681                      "depend on this functionality.\n");
3682
3683         return -EINVAL;
3684 }
3685
3686 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3687 {
3688         unsigned long val;
3689
3690         if (mem_cgroup_is_root(memcg)) {
3691                 /*
3692                  * Approximate root's usage from global state. This isn't
3693                  * perfect, but the root usage was always an approximation.
3694                  */
3695                 val = global_node_page_state(NR_FILE_PAGES) +
3696                         global_node_page_state(NR_ANON_MAPPED);
3697                 if (swap)
3698                         val += total_swap_pages - get_nr_swap_pages();
3699         } else {
3700                 if (!swap)
3701                         val = page_counter_read(&memcg->memory);
3702                 else
3703                         val = page_counter_read(&memcg->memsw);
3704         }
3705         return val;
3706 }
3707
3708 enum {
3709         RES_USAGE,
3710         RES_LIMIT,
3711         RES_MAX_USAGE,
3712         RES_FAILCNT,
3713         RES_SOFT_LIMIT,
3714 };
3715
3716 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3717                                struct cftype *cft)
3718 {
3719         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3720         struct page_counter *counter;
3721
3722         switch (MEMFILE_TYPE(cft->private)) {
3723         case _MEM:
3724                 counter = &memcg->memory;
3725                 break;
3726         case _MEMSWAP:
3727                 counter = &memcg->memsw;
3728                 break;
3729         case _KMEM:
3730                 counter = &memcg->kmem;
3731                 break;
3732         case _TCP:
3733                 counter = &memcg->tcpmem;
3734                 break;
3735         default:
3736                 BUG();
3737         }
3738
3739         switch (MEMFILE_ATTR(cft->private)) {
3740         case RES_USAGE:
3741                 if (counter == &memcg->memory)
3742                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3743                 if (counter == &memcg->memsw)
3744                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3745                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3746         case RES_LIMIT:
3747                 return (u64)counter->max * PAGE_SIZE;
3748         case RES_MAX_USAGE:
3749                 return (u64)counter->watermark * PAGE_SIZE;
3750         case RES_FAILCNT:
3751                 return counter->failcnt;
3752         case RES_SOFT_LIMIT:
3753                 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3754         default:
3755                 BUG();
3756         }
3757 }
3758
3759 /*
3760  * This function doesn't do anything useful. Its only job is to provide a read
3761  * handler for a file so that cgroup_file_mode() will add read permissions.
3762  */
3763 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3764                                      __always_unused void *v)
3765 {
3766         return -EINVAL;
3767 }
3768
3769 #ifdef CONFIG_MEMCG_KMEM
3770 static int memcg_online_kmem(struct mem_cgroup *memcg)
3771 {
3772         struct obj_cgroup *objcg;
3773
3774         if (mem_cgroup_kmem_disabled())
3775                 return 0;
3776
3777         if (unlikely(mem_cgroup_is_root(memcg)))
3778                 return 0;
3779
3780         objcg = obj_cgroup_alloc();
3781         if (!objcg)
3782                 return -ENOMEM;
3783
3784         objcg->memcg = memcg;
3785         rcu_assign_pointer(memcg->objcg, objcg);
3786
3787         static_branch_enable(&memcg_kmem_online_key);
3788
3789         memcg->kmemcg_id = memcg->id.id;
3790
3791         return 0;
3792 }
3793
3794 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3795 {
3796         struct mem_cgroup *parent;
3797
3798         if (mem_cgroup_kmem_disabled())
3799                 return;
3800
3801         if (unlikely(mem_cgroup_is_root(memcg)))
3802                 return;
3803
3804         parent = parent_mem_cgroup(memcg);
3805         if (!parent)
3806                 parent = root_mem_cgroup;
3807
3808         memcg_reparent_objcgs(memcg, parent);
3809
3810         /*
3811          * After we have finished memcg_reparent_objcgs(), all list_lrus
3812          * corresponding to this cgroup are guaranteed to remain empty.
3813          * The ordering is imposed by list_lru_node->lock taken by
3814          * memcg_reparent_list_lrus().
3815          */
3816         memcg_reparent_list_lrus(memcg, parent);
3817 }
3818 #else
3819 static int memcg_online_kmem(struct mem_cgroup *memcg)
3820 {
3821         return 0;
3822 }
3823 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3824 {
3825 }
3826 #endif /* CONFIG_MEMCG_KMEM */
3827
3828 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3829 {
3830         int ret;
3831
3832         mutex_lock(&memcg_max_mutex);
3833
3834         ret = page_counter_set_max(&memcg->tcpmem, max);
3835         if (ret)
3836                 goto out;
3837
3838         if (!memcg->tcpmem_active) {
3839                 /*
3840                  * The active flag needs to be written after the static_key
3841                  * update. This is what guarantees that the socket activation
3842                  * function is the last one to run. See mem_cgroup_sk_alloc()
3843                  * for details, and note that we don't mark any socket as
3844                  * belonging to this memcg until that flag is up.
3845                  *
3846                  * We need to do this, because static_keys will span multiple
3847                  * sites, but we can't control their order. If we mark a socket
3848                  * as accounted, but the accounting functions are not patched in
3849                  * yet, we'll lose accounting.
3850                  *
3851                  * We never race with the readers in mem_cgroup_sk_alloc(),
3852                  * because when this value change, the code to process it is not
3853                  * patched in yet.
3854                  */
3855                 static_branch_inc(&memcg_sockets_enabled_key);
3856                 memcg->tcpmem_active = true;
3857         }
3858 out:
3859         mutex_unlock(&memcg_max_mutex);
3860         return ret;
3861 }
3862
3863 /*
3864  * The user of this function is...
3865  * RES_LIMIT.
3866  */
3867 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3868                                 char *buf, size_t nbytes, loff_t off)
3869 {
3870         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3871         unsigned long nr_pages;
3872         int ret;
3873
3874         buf = strstrip(buf);
3875         ret = page_counter_memparse(buf, "-1", &nr_pages);
3876         if (ret)
3877                 return ret;
3878
3879         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3880         case RES_LIMIT:
3881                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3882                         ret = -EINVAL;
3883                         break;
3884                 }
3885                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3886                 case _MEM:
3887                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3888                         break;
3889                 case _MEMSWAP:
3890                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3891                         break;
3892                 case _KMEM:
3893                         /* kmem.limit_in_bytes is deprecated. */
3894                         ret = -EOPNOTSUPP;
3895                         break;
3896                 case _TCP:
3897                         ret = memcg_update_tcp_max(memcg, nr_pages);
3898                         break;
3899                 }
3900                 break;
3901         case RES_SOFT_LIMIT:
3902                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3903                         ret = -EOPNOTSUPP;
3904                 } else {
3905                         WRITE_ONCE(memcg->soft_limit, nr_pages);
3906                         ret = 0;
3907                 }
3908                 break;
3909         }
3910         return ret ?: nbytes;
3911 }
3912
3913 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3914                                 size_t nbytes, loff_t off)
3915 {
3916         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3917         struct page_counter *counter;
3918
3919         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3920         case _MEM:
3921                 counter = &memcg->memory;
3922                 break;
3923         case _MEMSWAP:
3924                 counter = &memcg->memsw;
3925                 break;
3926         case _KMEM:
3927                 counter = &memcg->kmem;
3928                 break;
3929         case _TCP:
3930                 counter = &memcg->tcpmem;
3931                 break;
3932         default:
3933                 BUG();
3934         }
3935
3936         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3937         case RES_MAX_USAGE:
3938                 page_counter_reset_watermark(counter);
3939                 break;
3940         case RES_FAILCNT:
3941                 counter->failcnt = 0;
3942                 break;
3943         default:
3944                 BUG();
3945         }
3946
3947         return nbytes;
3948 }
3949
3950 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3951                                         struct cftype *cft)
3952 {
3953         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3954 }
3955
3956 #ifdef CONFIG_MMU
3957 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3958                                         struct cftype *cft, u64 val)
3959 {
3960         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3961
3962         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3963                      "Please report your usecase to linux-mm@kvack.org if you "
3964                      "depend on this functionality.\n");
3965
3966         if (val & ~MOVE_MASK)
3967                 return -EINVAL;
3968
3969         /*
3970          * No kind of locking is needed in here, because ->can_attach() will
3971          * check this value once in the beginning of the process, and then carry
3972          * on with stale data. This means that changes to this value will only
3973          * affect task migrations starting after the change.
3974          */
3975         memcg->move_charge_at_immigrate = val;
3976         return 0;
3977 }
3978 #else
3979 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3980                                         struct cftype *cft, u64 val)
3981 {
3982         return -ENOSYS;
3983 }
3984 #endif
3985
3986 #ifdef CONFIG_NUMA
3987
3988 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3989 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3990 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3991
3992 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3993                                 int nid, unsigned int lru_mask, bool tree)
3994 {
3995         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3996         unsigned long nr = 0;
3997         enum lru_list lru;
3998
3999         VM_BUG_ON((unsigned)nid >= nr_node_ids);
4000
4001         for_each_lru(lru) {
4002                 if (!(BIT(lru) & lru_mask))
4003                         continue;
4004                 if (tree)
4005                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4006                 else
4007                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4008         }
4009         return nr;
4010 }
4011
4012 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4013                                              unsigned int lru_mask,
4014                                              bool tree)
4015 {
4016         unsigned long nr = 0;
4017         enum lru_list lru;
4018
4019         for_each_lru(lru) {
4020                 if (!(BIT(lru) & lru_mask))
4021                         continue;
4022                 if (tree)
4023                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4024                 else
4025                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4026         }
4027         return nr;
4028 }
4029
4030 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4031 {
4032         struct numa_stat {
4033                 const char *name;
4034                 unsigned int lru_mask;
4035         };
4036
4037         static const struct numa_stat stats[] = {
4038                 { "total", LRU_ALL },
4039                 { "file", LRU_ALL_FILE },
4040                 { "anon", LRU_ALL_ANON },
4041                 { "unevictable", BIT(LRU_UNEVICTABLE) },
4042         };
4043         const struct numa_stat *stat;
4044         int nid;
4045         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4046
4047         mem_cgroup_flush_stats();
4048
4049         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4050                 seq_printf(m, "%s=%lu", stat->name,
4051                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4052                                                    false));
4053                 for_each_node_state(nid, N_MEMORY)
4054                         seq_printf(m, " N%d=%lu", nid,
4055                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4056                                                         stat->lru_mask, false));
4057                 seq_putc(m, '\n');
4058         }
4059
4060         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4061
4062                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4063                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4064                                                    true));
4065                 for_each_node_state(nid, N_MEMORY)
4066                         seq_printf(m, " N%d=%lu", nid,
4067                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4068                                                         stat->lru_mask, true));
4069                 seq_putc(m, '\n');
4070         }
4071
4072         return 0;
4073 }
4074 #endif /* CONFIG_NUMA */
4075
4076 static const unsigned int memcg1_stats[] = {
4077         NR_FILE_PAGES,
4078         NR_ANON_MAPPED,
4079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4080         NR_ANON_THPS,
4081 #endif
4082         NR_SHMEM,
4083         NR_FILE_MAPPED,
4084         NR_FILE_DIRTY,
4085         NR_WRITEBACK,
4086         WORKINGSET_REFAULT_ANON,
4087         WORKINGSET_REFAULT_FILE,
4088         MEMCG_SWAP,
4089 };
4090
4091 static const char *const memcg1_stat_names[] = {
4092         "cache",
4093         "rss",
4094 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4095         "rss_huge",
4096 #endif
4097         "shmem",
4098         "mapped_file",
4099         "dirty",
4100         "writeback",
4101         "workingset_refault_anon",
4102         "workingset_refault_file",
4103         "swap",
4104 };
4105
4106 /* Universal VM events cgroup1 shows, original sort order */
4107 static const unsigned int memcg1_events[] = {
4108         PGPGIN,
4109         PGPGOUT,
4110         PGFAULT,
4111         PGMAJFAULT,
4112 };
4113
4114 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4115 {
4116         unsigned long memory, memsw;
4117         struct mem_cgroup *mi;
4118         unsigned int i;
4119
4120         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4121
4122         mem_cgroup_flush_stats();
4123
4124         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4125                 unsigned long nr;
4126
4127                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4128                         continue;
4129                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4130                 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4131                            nr * memcg_page_state_unit(memcg1_stats[i]));
4132         }
4133
4134         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4135                 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4136                                memcg_events_local(memcg, memcg1_events[i]));
4137
4138         for (i = 0; i < NR_LRU_LISTS; i++)
4139                 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4140                                memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4141                                PAGE_SIZE);
4142
4143         /* Hierarchical information */
4144         memory = memsw = PAGE_COUNTER_MAX;
4145         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4146                 memory = min(memory, READ_ONCE(mi->memory.max));
4147                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4148         }
4149         seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4150                        (u64)memory * PAGE_SIZE);
4151         if (do_memsw_account())
4152                 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4153                                (u64)memsw * PAGE_SIZE);
4154
4155         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4156                 unsigned long nr;
4157
4158                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4159                         continue;
4160                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4161                 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4162                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4163         }
4164
4165         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4166                 seq_buf_printf(s, "total_%s %llu\n",
4167                                vm_event_name(memcg1_events[i]),
4168                                (u64)memcg_events(memcg, memcg1_events[i]));
4169
4170         for (i = 0; i < NR_LRU_LISTS; i++)
4171                 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4172                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4173                                PAGE_SIZE);
4174
4175 #ifdef CONFIG_DEBUG_VM
4176         {
4177                 pg_data_t *pgdat;
4178                 struct mem_cgroup_per_node *mz;
4179                 unsigned long anon_cost = 0;
4180                 unsigned long file_cost = 0;
4181
4182                 for_each_online_pgdat(pgdat) {
4183                         mz = memcg->nodeinfo[pgdat->node_id];
4184
4185                         anon_cost += mz->lruvec.anon_cost;
4186                         file_cost += mz->lruvec.file_cost;
4187                 }
4188                 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4189                 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4190         }
4191 #endif
4192 }
4193
4194 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4195                                       struct cftype *cft)
4196 {
4197         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4198
4199         return mem_cgroup_swappiness(memcg);
4200 }
4201
4202 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4203                                        struct cftype *cft, u64 val)
4204 {
4205         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4206
4207         if (val > 200)
4208                 return -EINVAL;
4209
4210         if (!mem_cgroup_is_root(memcg))
4211                 WRITE_ONCE(memcg->swappiness, val);
4212         else
4213                 WRITE_ONCE(vm_swappiness, val);
4214
4215         return 0;
4216 }
4217
4218 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4219 {
4220         struct mem_cgroup_threshold_ary *t;
4221         unsigned long usage;
4222         int i;
4223
4224         rcu_read_lock();
4225         if (!swap)
4226                 t = rcu_dereference(memcg->thresholds.primary);
4227         else
4228                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4229
4230         if (!t)
4231                 goto unlock;
4232
4233         usage = mem_cgroup_usage(memcg, swap);
4234
4235         /*
4236          * current_threshold points to threshold just below or equal to usage.
4237          * If it's not true, a threshold was crossed after last
4238          * call of __mem_cgroup_threshold().
4239          */
4240         i = t->current_threshold;
4241
4242         /*
4243          * Iterate backward over array of thresholds starting from
4244          * current_threshold and check if a threshold is crossed.
4245          * If none of thresholds below usage is crossed, we read
4246          * only one element of the array here.
4247          */
4248         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4249                 eventfd_signal(t->entries[i].eventfd, 1);
4250
4251         /* i = current_threshold + 1 */
4252         i++;
4253
4254         /*
4255          * Iterate forward over array of thresholds starting from
4256          * current_threshold+1 and check if a threshold is crossed.
4257          * If none of thresholds above usage is crossed, we read
4258          * only one element of the array here.
4259          */
4260         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4261                 eventfd_signal(t->entries[i].eventfd, 1);
4262
4263         /* Update current_threshold */
4264         t->current_threshold = i - 1;
4265 unlock:
4266         rcu_read_unlock();
4267 }
4268
4269 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4270 {
4271         while (memcg) {
4272                 __mem_cgroup_threshold(memcg, false);
4273                 if (do_memsw_account())
4274                         __mem_cgroup_threshold(memcg, true);
4275
4276                 memcg = parent_mem_cgroup(memcg);
4277         }
4278 }
4279
4280 static int compare_thresholds(const void *a, const void *b)
4281 {
4282         const struct mem_cgroup_threshold *_a = a;
4283         const struct mem_cgroup_threshold *_b = b;
4284
4285         if (_a->threshold > _b->threshold)
4286                 return 1;
4287
4288         if (_a->threshold < _b->threshold)
4289                 return -1;
4290
4291         return 0;
4292 }
4293
4294 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4295 {
4296         struct mem_cgroup_eventfd_list *ev;
4297
4298         spin_lock(&memcg_oom_lock);
4299
4300         list_for_each_entry(ev, &memcg->oom_notify, list)
4301                 eventfd_signal(ev->eventfd, 1);
4302
4303         spin_unlock(&memcg_oom_lock);
4304         return 0;
4305 }
4306
4307 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4308 {
4309         struct mem_cgroup *iter;
4310
4311         for_each_mem_cgroup_tree(iter, memcg)
4312                 mem_cgroup_oom_notify_cb(iter);
4313 }
4314
4315 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4316         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4317 {
4318         struct mem_cgroup_thresholds *thresholds;
4319         struct mem_cgroup_threshold_ary *new;
4320         unsigned long threshold;
4321         unsigned long usage;
4322         int i, size, ret;
4323
4324         ret = page_counter_memparse(args, "-1", &threshold);
4325         if (ret)
4326                 return ret;
4327
4328         mutex_lock(&memcg->thresholds_lock);
4329
4330         if (type == _MEM) {
4331                 thresholds = &memcg->thresholds;
4332                 usage = mem_cgroup_usage(memcg, false);
4333         } else if (type == _MEMSWAP) {
4334                 thresholds = &memcg->memsw_thresholds;
4335                 usage = mem_cgroup_usage(memcg, true);
4336         } else
4337                 BUG();
4338
4339         /* Check if a threshold crossed before adding a new one */
4340         if (thresholds->primary)
4341                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4342
4343         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4344
4345         /* Allocate memory for new array of thresholds */
4346         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4347         if (!new) {
4348                 ret = -ENOMEM;
4349                 goto unlock;
4350         }
4351         new->size = size;
4352
4353         /* Copy thresholds (if any) to new array */
4354         if (thresholds->primary)
4355                 memcpy(new->entries, thresholds->primary->entries,
4356                        flex_array_size(new, entries, size - 1));
4357
4358         /* Add new threshold */
4359         new->entries[size - 1].eventfd = eventfd;
4360         new->entries[size - 1].threshold = threshold;
4361
4362         /* Sort thresholds. Registering of new threshold isn't time-critical */
4363         sort(new->entries, size, sizeof(*new->entries),
4364                         compare_thresholds, NULL);
4365
4366         /* Find current threshold */
4367         new->current_threshold = -1;
4368         for (i = 0; i < size; i++) {
4369                 if (new->entries[i].threshold <= usage) {
4370                         /*
4371                          * new->current_threshold will not be used until
4372                          * rcu_assign_pointer(), so it's safe to increment
4373                          * it here.
4374                          */
4375                         ++new->current_threshold;
4376                 } else
4377                         break;
4378         }
4379
4380         /* Free old spare buffer and save old primary buffer as spare */
4381         kfree(thresholds->spare);
4382         thresholds->spare = thresholds->primary;
4383
4384         rcu_assign_pointer(thresholds->primary, new);
4385
4386         /* To be sure that nobody uses thresholds */
4387         synchronize_rcu();
4388
4389 unlock:
4390         mutex_unlock(&memcg->thresholds_lock);
4391
4392         return ret;
4393 }
4394
4395 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4396         struct eventfd_ctx *eventfd, const char *args)
4397 {
4398         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4399 }
4400
4401 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4402         struct eventfd_ctx *eventfd, const char *args)
4403 {
4404         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4405 }
4406
4407 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4408         struct eventfd_ctx *eventfd, enum res_type type)
4409 {
4410         struct mem_cgroup_thresholds *thresholds;
4411         struct mem_cgroup_threshold_ary *new;
4412         unsigned long usage;
4413         int i, j, size, entries;
4414
4415         mutex_lock(&memcg->thresholds_lock);
4416
4417         if (type == _MEM) {
4418                 thresholds = &memcg->thresholds;
4419                 usage = mem_cgroup_usage(memcg, false);
4420         } else if (type == _MEMSWAP) {
4421                 thresholds = &memcg->memsw_thresholds;
4422                 usage = mem_cgroup_usage(memcg, true);
4423         } else
4424                 BUG();
4425
4426         if (!thresholds->primary)
4427                 goto unlock;
4428
4429         /* Check if a threshold crossed before removing */
4430         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4431
4432         /* Calculate new number of threshold */
4433         size = entries = 0;
4434         for (i = 0; i < thresholds->primary->size; i++) {
4435                 if (thresholds->primary->entries[i].eventfd != eventfd)
4436                         size++;
4437                 else
4438                         entries++;
4439         }
4440
4441         new = thresholds->spare;
4442
4443         /* If no items related to eventfd have been cleared, nothing to do */
4444         if (!entries)
4445                 goto unlock;
4446
4447         /* Set thresholds array to NULL if we don't have thresholds */
4448         if (!size) {
4449                 kfree(new);
4450                 new = NULL;
4451                 goto swap_buffers;
4452         }
4453
4454         new->size = size;
4455
4456         /* Copy thresholds and find current threshold */
4457         new->current_threshold = -1;
4458         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4459                 if (thresholds->primary->entries[i].eventfd == eventfd)
4460                         continue;
4461
4462                 new->entries[j] = thresholds->primary->entries[i];
4463                 if (new->entries[j].threshold <= usage) {
4464                         /*
4465                          * new->current_threshold will not be used
4466                          * until rcu_assign_pointer(), so it's safe to increment
4467                          * it here.
4468                          */
4469                         ++new->current_threshold;
4470                 }
4471                 j++;
4472         }
4473
4474 swap_buffers:
4475         /* Swap primary and spare array */
4476         thresholds->spare = thresholds->primary;
4477
4478         rcu_assign_pointer(thresholds->primary, new);
4479
4480         /* To be sure that nobody uses thresholds */
4481         synchronize_rcu();
4482
4483         /* If all events are unregistered, free the spare array */
4484         if (!new) {
4485                 kfree(thresholds->spare);
4486                 thresholds->spare = NULL;
4487         }
4488 unlock:
4489         mutex_unlock(&memcg->thresholds_lock);
4490 }
4491
4492 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4493         struct eventfd_ctx *eventfd)
4494 {
4495         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4496 }
4497
4498 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4499         struct eventfd_ctx *eventfd)
4500 {
4501         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4502 }
4503
4504 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4505         struct eventfd_ctx *eventfd, const char *args)
4506 {
4507         struct mem_cgroup_eventfd_list *event;
4508
4509         event = kmalloc(sizeof(*event), GFP_KERNEL);
4510         if (!event)
4511                 return -ENOMEM;
4512
4513         spin_lock(&memcg_oom_lock);
4514
4515         event->eventfd = eventfd;
4516         list_add(&event->list, &memcg->oom_notify);
4517
4518         /* already in OOM ? */
4519         if (memcg->under_oom)
4520                 eventfd_signal(eventfd, 1);
4521         spin_unlock(&memcg_oom_lock);
4522
4523         return 0;
4524 }
4525
4526 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4527         struct eventfd_ctx *eventfd)
4528 {
4529         struct mem_cgroup_eventfd_list *ev, *tmp;
4530
4531         spin_lock(&memcg_oom_lock);
4532
4533         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4534                 if (ev->eventfd == eventfd) {
4535                         list_del(&ev->list);
4536                         kfree(ev);
4537                 }
4538         }
4539
4540         spin_unlock(&memcg_oom_lock);
4541 }
4542
4543 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4544 {
4545         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4546
4547         seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4548         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4549         seq_printf(sf, "oom_kill %lu\n",
4550                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4551         return 0;
4552 }
4553
4554 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4555         struct cftype *cft, u64 val)
4556 {
4557         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4558
4559         /* cannot set to root cgroup and only 0 and 1 are allowed */
4560         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4561                 return -EINVAL;
4562
4563         WRITE_ONCE(memcg->oom_kill_disable, val);
4564         if (!val)
4565                 memcg_oom_recover(memcg);
4566
4567         return 0;
4568 }
4569
4570 #ifdef CONFIG_CGROUP_WRITEBACK
4571
4572 #include <trace/events/writeback.h>
4573
4574 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4575 {
4576         return wb_domain_init(&memcg->cgwb_domain, gfp);
4577 }
4578
4579 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4580 {
4581         wb_domain_exit(&memcg->cgwb_domain);
4582 }
4583
4584 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4585 {
4586         wb_domain_size_changed(&memcg->cgwb_domain);
4587 }
4588
4589 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4590 {
4591         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4592
4593         if (!memcg->css.parent)
4594                 return NULL;
4595
4596         return &memcg->cgwb_domain;
4597 }
4598
4599 /**
4600  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4601  * @wb: bdi_writeback in question
4602  * @pfilepages: out parameter for number of file pages
4603  * @pheadroom: out parameter for number of allocatable pages according to memcg
4604  * @pdirty: out parameter for number of dirty pages
4605  * @pwriteback: out parameter for number of pages under writeback
4606  *
4607  * Determine the numbers of file, headroom, dirty, and writeback pages in
4608  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4609  * is a bit more involved.
4610  *
4611  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4612  * headroom is calculated as the lowest headroom of itself and the
4613  * ancestors.  Note that this doesn't consider the actual amount of
4614  * available memory in the system.  The caller should further cap
4615  * *@pheadroom accordingly.
4616  */
4617 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4618                          unsigned long *pheadroom, unsigned long *pdirty,
4619                          unsigned long *pwriteback)
4620 {
4621         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4622         struct mem_cgroup *parent;
4623
4624         mem_cgroup_flush_stats();
4625
4626         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4627         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4628         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4629                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4630
4631         *pheadroom = PAGE_COUNTER_MAX;
4632         while ((parent = parent_mem_cgroup(memcg))) {
4633                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4634                                             READ_ONCE(memcg->memory.high));
4635                 unsigned long used = page_counter_read(&memcg->memory);
4636
4637                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4638                 memcg = parent;
4639         }
4640 }
4641
4642 /*
4643  * Foreign dirty flushing
4644  *
4645  * There's an inherent mismatch between memcg and writeback.  The former
4646  * tracks ownership per-page while the latter per-inode.  This was a
4647  * deliberate design decision because honoring per-page ownership in the
4648  * writeback path is complicated, may lead to higher CPU and IO overheads
4649  * and deemed unnecessary given that write-sharing an inode across
4650  * different cgroups isn't a common use-case.
4651  *
4652  * Combined with inode majority-writer ownership switching, this works well
4653  * enough in most cases but there are some pathological cases.  For
4654  * example, let's say there are two cgroups A and B which keep writing to
4655  * different but confined parts of the same inode.  B owns the inode and
4656  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4657  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4658  * triggering background writeback.  A will be slowed down without a way to
4659  * make writeback of the dirty pages happen.
4660  *
4661  * Conditions like the above can lead to a cgroup getting repeatedly and
4662  * severely throttled after making some progress after each
4663  * dirty_expire_interval while the underlying IO device is almost
4664  * completely idle.
4665  *
4666  * Solving this problem completely requires matching the ownership tracking
4667  * granularities between memcg and writeback in either direction.  However,
4668  * the more egregious behaviors can be avoided by simply remembering the
4669  * most recent foreign dirtying events and initiating remote flushes on
4670  * them when local writeback isn't enough to keep the memory clean enough.
4671  *
4672  * The following two functions implement such mechanism.  When a foreign
4673  * page - a page whose memcg and writeback ownerships don't match - is
4674  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4675  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4676  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4677  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4678  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4679  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4680  * limited to MEMCG_CGWB_FRN_CNT.
4681  *
4682  * The mechanism only remembers IDs and doesn't hold any object references.
4683  * As being wrong occasionally doesn't matter, updates and accesses to the
4684  * records are lockless and racy.
4685  */
4686 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4687                                              struct bdi_writeback *wb)
4688 {
4689         struct mem_cgroup *memcg = folio_memcg(folio);
4690         struct memcg_cgwb_frn *frn;
4691         u64 now = get_jiffies_64();
4692         u64 oldest_at = now;
4693         int oldest = -1;
4694         int i;
4695
4696         trace_track_foreign_dirty(folio, wb);
4697
4698         /*
4699          * Pick the slot to use.  If there is already a slot for @wb, keep
4700          * using it.  If not replace the oldest one which isn't being
4701          * written out.
4702          */
4703         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4704                 frn = &memcg->cgwb_frn[i];
4705                 if (frn->bdi_id == wb->bdi->id &&
4706                     frn->memcg_id == wb->memcg_css->id)
4707                         break;
4708                 if (time_before64(frn->at, oldest_at) &&
4709                     atomic_read(&frn->done.cnt) == 1) {
4710                         oldest = i;
4711                         oldest_at = frn->at;
4712                 }
4713         }
4714
4715         if (i < MEMCG_CGWB_FRN_CNT) {
4716                 /*
4717                  * Re-using an existing one.  Update timestamp lazily to
4718                  * avoid making the cacheline hot.  We want them to be
4719                  * reasonably up-to-date and significantly shorter than
4720                  * dirty_expire_interval as that's what expires the record.
4721                  * Use the shorter of 1s and dirty_expire_interval / 8.
4722                  */
4723                 unsigned long update_intv =
4724                         min_t(unsigned long, HZ,
4725                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4726
4727                 if (time_before64(frn->at, now - update_intv))
4728                         frn->at = now;
4729         } else if (oldest >= 0) {
4730                 /* replace the oldest free one */
4731                 frn = &memcg->cgwb_frn[oldest];
4732                 frn->bdi_id = wb->bdi->id;
4733                 frn->memcg_id = wb->memcg_css->id;
4734                 frn->at = now;
4735         }
4736 }
4737
4738 /* issue foreign writeback flushes for recorded foreign dirtying events */
4739 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4740 {
4741         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4742         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4743         u64 now = jiffies_64;
4744         int i;
4745
4746         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4747                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4748
4749                 /*
4750                  * If the record is older than dirty_expire_interval,
4751                  * writeback on it has already started.  No need to kick it
4752                  * off again.  Also, don't start a new one if there's
4753                  * already one in flight.
4754                  */
4755                 if (time_after64(frn->at, now - intv) &&
4756                     atomic_read(&frn->done.cnt) == 1) {
4757                         frn->at = 0;
4758                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4759                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4760                                                WB_REASON_FOREIGN_FLUSH,
4761                                                &frn->done);
4762                 }
4763         }
4764 }
4765
4766 #else   /* CONFIG_CGROUP_WRITEBACK */
4767
4768 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4769 {
4770         return 0;
4771 }
4772
4773 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4774 {
4775 }
4776
4777 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4778 {
4779 }
4780
4781 #endif  /* CONFIG_CGROUP_WRITEBACK */
4782
4783 /*
4784  * DO NOT USE IN NEW FILES.
4785  *
4786  * "cgroup.event_control" implementation.
4787  *
4788  * This is way over-engineered.  It tries to support fully configurable
4789  * events for each user.  Such level of flexibility is completely
4790  * unnecessary especially in the light of the planned unified hierarchy.
4791  *
4792  * Please deprecate this and replace with something simpler if at all
4793  * possible.
4794  */
4795
4796 /*
4797  * Unregister event and free resources.
4798  *
4799  * Gets called from workqueue.
4800  */
4801 static void memcg_event_remove(struct work_struct *work)
4802 {
4803         struct mem_cgroup_event *event =
4804                 container_of(work, struct mem_cgroup_event, remove);
4805         struct mem_cgroup *memcg = event->memcg;
4806
4807         remove_wait_queue(event->wqh, &event->wait);
4808
4809         event->unregister_event(memcg, event->eventfd);
4810
4811         /* Notify userspace the event is going away. */
4812         eventfd_signal(event->eventfd, 1);
4813
4814         eventfd_ctx_put(event->eventfd);
4815         kfree(event);
4816         css_put(&memcg->css);
4817 }
4818
4819 /*
4820  * Gets called on EPOLLHUP on eventfd when user closes it.
4821  *
4822  * Called with wqh->lock held and interrupts disabled.
4823  */
4824 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4825                             int sync, void *key)
4826 {
4827         struct mem_cgroup_event *event =
4828                 container_of(wait, struct mem_cgroup_event, wait);
4829         struct mem_cgroup *memcg = event->memcg;
4830         __poll_t flags = key_to_poll(key);
4831
4832         if (flags & EPOLLHUP) {
4833                 /*
4834                  * If the event has been detached at cgroup removal, we
4835                  * can simply return knowing the other side will cleanup
4836                  * for us.
4837                  *
4838                  * We can't race against event freeing since the other
4839                  * side will require wqh->lock via remove_wait_queue(),
4840                  * which we hold.
4841                  */
4842                 spin_lock(&memcg->event_list_lock);
4843                 if (!list_empty(&event->list)) {
4844                         list_del_init(&event->list);
4845                         /*
4846                          * We are in atomic context, but cgroup_event_remove()
4847                          * may sleep, so we have to call it in workqueue.
4848                          */
4849                         schedule_work(&event->remove);
4850                 }
4851                 spin_unlock(&memcg->event_list_lock);
4852         }
4853
4854         return 0;
4855 }
4856
4857 static void memcg_event_ptable_queue_proc(struct file *file,
4858                 wait_queue_head_t *wqh, poll_table *pt)
4859 {
4860         struct mem_cgroup_event *event =
4861                 container_of(pt, struct mem_cgroup_event, pt);
4862
4863         event->wqh = wqh;
4864         add_wait_queue(wqh, &event->wait);
4865 }
4866
4867 /*
4868  * DO NOT USE IN NEW FILES.
4869  *
4870  * Parse input and register new cgroup event handler.
4871  *
4872  * Input must be in format '<event_fd> <control_fd> <args>'.
4873  * Interpretation of args is defined by control file implementation.
4874  */
4875 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4876                                          char *buf, size_t nbytes, loff_t off)
4877 {
4878         struct cgroup_subsys_state *css = of_css(of);
4879         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4880         struct mem_cgroup_event *event;
4881         struct cgroup_subsys_state *cfile_css;
4882         unsigned int efd, cfd;
4883         struct fd efile;
4884         struct fd cfile;
4885         struct dentry *cdentry;
4886         const char *name;
4887         char *endp;
4888         int ret;
4889
4890         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4891                 return -EOPNOTSUPP;
4892
4893         buf = strstrip(buf);
4894
4895         efd = simple_strtoul(buf, &endp, 10);
4896         if (*endp != ' ')
4897                 return -EINVAL;
4898         buf = endp + 1;
4899
4900         cfd = simple_strtoul(buf, &endp, 10);
4901         if ((*endp != ' ') && (*endp != '\0'))
4902                 return -EINVAL;
4903         buf = endp + 1;
4904
4905         event = kzalloc(sizeof(*event), GFP_KERNEL);
4906         if (!event)
4907                 return -ENOMEM;
4908
4909         event->memcg = memcg;
4910         INIT_LIST_HEAD(&event->list);
4911         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4912         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4913         INIT_WORK(&event->remove, memcg_event_remove);
4914
4915         efile = fdget(efd);
4916         if (!efile.file) {
4917                 ret = -EBADF;
4918                 goto out_kfree;
4919         }
4920
4921         event->eventfd = eventfd_ctx_fileget(efile.file);
4922         if (IS_ERR(event->eventfd)) {
4923                 ret = PTR_ERR(event->eventfd);
4924                 goto out_put_efile;
4925         }
4926
4927         cfile = fdget(cfd);
4928         if (!cfile.file) {
4929                 ret = -EBADF;
4930                 goto out_put_eventfd;
4931         }
4932
4933         /* the process need read permission on control file */
4934         /* AV: shouldn't we check that it's been opened for read instead? */
4935         ret = file_permission(cfile.file, MAY_READ);
4936         if (ret < 0)
4937                 goto out_put_cfile;
4938
4939         /*
4940          * The control file must be a regular cgroup1 file. As a regular cgroup
4941          * file can't be renamed, it's safe to access its name afterwards.
4942          */
4943         cdentry = cfile.file->f_path.dentry;
4944         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4945                 ret = -EINVAL;
4946                 goto out_put_cfile;
4947         }
4948
4949         /*
4950          * Determine the event callbacks and set them in @event.  This used
4951          * to be done via struct cftype but cgroup core no longer knows
4952          * about these events.  The following is crude but the whole thing
4953          * is for compatibility anyway.
4954          *
4955          * DO NOT ADD NEW FILES.
4956          */
4957         name = cdentry->d_name.name;
4958
4959         if (!strcmp(name, "memory.usage_in_bytes")) {
4960                 event->register_event = mem_cgroup_usage_register_event;
4961                 event->unregister_event = mem_cgroup_usage_unregister_event;
4962         } else if (!strcmp(name, "memory.oom_control")) {
4963                 event->register_event = mem_cgroup_oom_register_event;
4964                 event->unregister_event = mem_cgroup_oom_unregister_event;
4965         } else if (!strcmp(name, "memory.pressure_level")) {
4966                 event->register_event = vmpressure_register_event;
4967                 event->unregister_event = vmpressure_unregister_event;
4968         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4969                 event->register_event = memsw_cgroup_usage_register_event;
4970                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4971         } else {
4972                 ret = -EINVAL;
4973                 goto out_put_cfile;
4974         }
4975
4976         /*
4977          * Verify @cfile should belong to @css.  Also, remaining events are
4978          * automatically removed on cgroup destruction but the removal is
4979          * asynchronous, so take an extra ref on @css.
4980          */
4981         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4982                                                &memory_cgrp_subsys);
4983         ret = -EINVAL;
4984         if (IS_ERR(cfile_css))
4985                 goto out_put_cfile;
4986         if (cfile_css != css) {
4987                 css_put(cfile_css);
4988                 goto out_put_cfile;
4989         }
4990
4991         ret = event->register_event(memcg, event->eventfd, buf);
4992         if (ret)
4993                 goto out_put_css;
4994
4995         vfs_poll(efile.file, &event->pt);
4996
4997         spin_lock_irq(&memcg->event_list_lock);
4998         list_add(&event->list, &memcg->event_list);
4999         spin_unlock_irq(&memcg->event_list_lock);
5000
5001         fdput(cfile);
5002         fdput(efile);
5003
5004         return nbytes;
5005
5006 out_put_css:
5007         css_put(css);
5008 out_put_cfile:
5009         fdput(cfile);
5010 out_put_eventfd:
5011         eventfd_ctx_put(event->eventfd);
5012 out_put_efile:
5013         fdput(efile);
5014 out_kfree:
5015         kfree(event);
5016
5017         return ret;
5018 }
5019
5020 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5021 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5022 {
5023         /*
5024          * Deprecated.
5025          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5026          */
5027         return 0;
5028 }
5029 #endif
5030
5031 static int memory_stat_show(struct seq_file *m, void *v);
5032
5033 static struct cftype mem_cgroup_legacy_files[] = {
5034         {
5035                 .name = "usage_in_bytes",
5036                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5037                 .read_u64 = mem_cgroup_read_u64,
5038         },
5039         {
5040                 .name = "max_usage_in_bytes",
5041                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5042                 .write = mem_cgroup_reset,
5043                 .read_u64 = mem_cgroup_read_u64,
5044         },
5045         {
5046                 .name = "limit_in_bytes",
5047                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5048                 .write = mem_cgroup_write,
5049                 .read_u64 = mem_cgroup_read_u64,
5050         },
5051         {
5052                 .name = "soft_limit_in_bytes",
5053                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5054                 .write = mem_cgroup_write,
5055                 .read_u64 = mem_cgroup_read_u64,
5056         },
5057         {
5058                 .name = "failcnt",
5059                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5060                 .write = mem_cgroup_reset,
5061                 .read_u64 = mem_cgroup_read_u64,
5062         },
5063         {
5064                 .name = "stat",
5065                 .seq_show = memory_stat_show,
5066         },
5067         {
5068                 .name = "force_empty",
5069                 .write = mem_cgroup_force_empty_write,
5070         },
5071         {
5072                 .name = "use_hierarchy",
5073                 .write_u64 = mem_cgroup_hierarchy_write,
5074                 .read_u64 = mem_cgroup_hierarchy_read,
5075         },
5076         {
5077                 .name = "cgroup.event_control",         /* XXX: for compat */
5078                 .write = memcg_write_event_control,
5079                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5080         },
5081         {
5082                 .name = "swappiness",
5083                 .read_u64 = mem_cgroup_swappiness_read,
5084                 .write_u64 = mem_cgroup_swappiness_write,
5085         },
5086         {
5087                 .name = "move_charge_at_immigrate",
5088                 .read_u64 = mem_cgroup_move_charge_read,
5089                 .write_u64 = mem_cgroup_move_charge_write,
5090         },
5091         {
5092                 .name = "oom_control",
5093                 .seq_show = mem_cgroup_oom_control_read,
5094                 .write_u64 = mem_cgroup_oom_control_write,
5095         },
5096         {
5097                 .name = "pressure_level",
5098                 .seq_show = mem_cgroup_dummy_seq_show,
5099         },
5100 #ifdef CONFIG_NUMA
5101         {
5102                 .name = "numa_stat",
5103                 .seq_show = memcg_numa_stat_show,
5104         },
5105 #endif
5106         {
5107                 .name = "kmem.limit_in_bytes",
5108                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5109                 .write = mem_cgroup_write,
5110                 .read_u64 = mem_cgroup_read_u64,
5111         },
5112         {
5113                 .name = "kmem.usage_in_bytes",
5114                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5115                 .read_u64 = mem_cgroup_read_u64,
5116         },
5117         {
5118                 .name = "kmem.failcnt",
5119                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5120                 .write = mem_cgroup_reset,
5121                 .read_u64 = mem_cgroup_read_u64,
5122         },
5123         {
5124                 .name = "kmem.max_usage_in_bytes",
5125                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5126                 .write = mem_cgroup_reset,
5127                 .read_u64 = mem_cgroup_read_u64,
5128         },
5129 #if defined(CONFIG_MEMCG_KMEM) && \
5130         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5131         {
5132                 .name = "kmem.slabinfo",
5133                 .seq_show = mem_cgroup_slab_show,
5134         },
5135 #endif
5136         {
5137                 .name = "kmem.tcp.limit_in_bytes",
5138                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5139                 .write = mem_cgroup_write,
5140                 .read_u64 = mem_cgroup_read_u64,
5141         },
5142         {
5143                 .name = "kmem.tcp.usage_in_bytes",
5144                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5145                 .read_u64 = mem_cgroup_read_u64,
5146         },
5147         {
5148                 .name = "kmem.tcp.failcnt",
5149                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5150                 .write = mem_cgroup_reset,
5151                 .read_u64 = mem_cgroup_read_u64,
5152         },
5153         {
5154                 .name = "kmem.tcp.max_usage_in_bytes",
5155                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5156                 .write = mem_cgroup_reset,
5157                 .read_u64 = mem_cgroup_read_u64,
5158         },
5159         { },    /* terminate */
5160 };
5161
5162 /*
5163  * Private memory cgroup IDR
5164  *
5165  * Swap-out records and page cache shadow entries need to store memcg
5166  * references in constrained space, so we maintain an ID space that is
5167  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5168  * memory-controlled cgroups to 64k.
5169  *
5170  * However, there usually are many references to the offline CSS after
5171  * the cgroup has been destroyed, such as page cache or reclaimable
5172  * slab objects, that don't need to hang on to the ID. We want to keep
5173  * those dead CSS from occupying IDs, or we might quickly exhaust the
5174  * relatively small ID space and prevent the creation of new cgroups
5175  * even when there are much fewer than 64k cgroups - possibly none.
5176  *
5177  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5178  * be freed and recycled when it's no longer needed, which is usually
5179  * when the CSS is offlined.
5180  *
5181  * The only exception to that are records of swapped out tmpfs/shmem
5182  * pages that need to be attributed to live ancestors on swapin. But
5183  * those references are manageable from userspace.
5184  */
5185
5186 static DEFINE_IDR(mem_cgroup_idr);
5187
5188 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5189 {
5190         if (memcg->id.id > 0) {
5191                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5192                 memcg->id.id = 0;
5193         }
5194 }
5195
5196 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5197                                                   unsigned int n)
5198 {
5199         refcount_add(n, &memcg->id.ref);
5200 }
5201
5202 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5203 {
5204         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5205                 mem_cgroup_id_remove(memcg);
5206
5207                 /* Memcg ID pins CSS */
5208                 css_put(&memcg->css);
5209         }
5210 }
5211
5212 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5213 {
5214         mem_cgroup_id_put_many(memcg, 1);
5215 }
5216
5217 /**
5218  * mem_cgroup_from_id - look up a memcg from a memcg id
5219  * @id: the memcg id to look up
5220  *
5221  * Caller must hold rcu_read_lock().
5222  */
5223 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5224 {
5225         WARN_ON_ONCE(!rcu_read_lock_held());
5226         return idr_find(&mem_cgroup_idr, id);
5227 }
5228
5229 #ifdef CONFIG_SHRINKER_DEBUG
5230 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5231 {
5232         struct cgroup *cgrp;
5233         struct cgroup_subsys_state *css;
5234         struct mem_cgroup *memcg;
5235
5236         cgrp = cgroup_get_from_id(ino);
5237         if (IS_ERR(cgrp))
5238                 return ERR_CAST(cgrp);
5239
5240         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5241         if (css)
5242                 memcg = container_of(css, struct mem_cgroup, css);
5243         else
5244                 memcg = ERR_PTR(-ENOENT);
5245
5246         cgroup_put(cgrp);
5247
5248         return memcg;
5249 }
5250 #endif
5251
5252 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5253 {
5254         struct mem_cgroup_per_node *pn;
5255
5256         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5257         if (!pn)
5258                 return 1;
5259
5260         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5261                                                    GFP_KERNEL_ACCOUNT);
5262         if (!pn->lruvec_stats_percpu) {
5263                 kfree(pn);
5264                 return 1;
5265         }
5266
5267         lruvec_init(&pn->lruvec);
5268         pn->memcg = memcg;
5269
5270         memcg->nodeinfo[node] = pn;
5271         return 0;
5272 }
5273
5274 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5275 {
5276         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5277
5278         if (!pn)
5279                 return;
5280
5281         free_percpu(pn->lruvec_stats_percpu);
5282         kfree(pn);
5283 }
5284
5285 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5286 {
5287         int node;
5288
5289         for_each_node(node)
5290                 free_mem_cgroup_per_node_info(memcg, node);
5291         kfree(memcg->vmstats);
5292         free_percpu(memcg->vmstats_percpu);
5293         kfree(memcg);
5294 }
5295
5296 static void mem_cgroup_free(struct mem_cgroup *memcg)
5297 {
5298         lru_gen_exit_memcg(memcg);
5299         memcg_wb_domain_exit(memcg);
5300         __mem_cgroup_free(memcg);
5301 }
5302
5303 static struct mem_cgroup *mem_cgroup_alloc(void)
5304 {
5305         struct mem_cgroup *memcg;
5306         int node;
5307         int __maybe_unused i;
5308         long error = -ENOMEM;
5309
5310         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5311         if (!memcg)
5312                 return ERR_PTR(error);
5313
5314         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5315                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5316         if (memcg->id.id < 0) {
5317                 error = memcg->id.id;
5318                 goto fail;
5319         }
5320
5321         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5322         if (!memcg->vmstats)
5323                 goto fail;
5324
5325         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5326                                                  GFP_KERNEL_ACCOUNT);
5327         if (!memcg->vmstats_percpu)
5328                 goto fail;
5329
5330         for_each_node(node)
5331                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5332                         goto fail;
5333
5334         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5335                 goto fail;
5336
5337         INIT_WORK(&memcg->high_work, high_work_func);
5338         INIT_LIST_HEAD(&memcg->oom_notify);
5339         mutex_init(&memcg->thresholds_lock);
5340         spin_lock_init(&memcg->move_lock);
5341         vmpressure_init(&memcg->vmpressure);
5342         INIT_LIST_HEAD(&memcg->event_list);
5343         spin_lock_init(&memcg->event_list_lock);
5344         memcg->socket_pressure = jiffies;
5345 #ifdef CONFIG_MEMCG_KMEM
5346         memcg->kmemcg_id = -1;
5347         INIT_LIST_HEAD(&memcg->objcg_list);
5348 #endif
5349 #ifdef CONFIG_CGROUP_WRITEBACK
5350         INIT_LIST_HEAD(&memcg->cgwb_list);
5351         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5352                 memcg->cgwb_frn[i].done =
5353                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5354 #endif
5355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5356         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5357         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5358         memcg->deferred_split_queue.split_queue_len = 0;
5359 #endif
5360         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5361         lru_gen_init_memcg(memcg);
5362         return memcg;
5363 fail:
5364         mem_cgroup_id_remove(memcg);
5365         __mem_cgroup_free(memcg);
5366         return ERR_PTR(error);
5367 }
5368
5369 static struct cgroup_subsys_state * __ref
5370 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5371 {
5372         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5373         struct mem_cgroup *memcg, *old_memcg;
5374
5375         old_memcg = set_active_memcg(parent);
5376         memcg = mem_cgroup_alloc();
5377         set_active_memcg(old_memcg);
5378         if (IS_ERR(memcg))
5379                 return ERR_CAST(memcg);
5380
5381         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5382         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5383 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5384         memcg->zswap_max = PAGE_COUNTER_MAX;
5385 #endif
5386         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5387         if (parent) {
5388                 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5389                 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5390
5391                 page_counter_init(&memcg->memory, &parent->memory);
5392                 page_counter_init(&memcg->swap, &parent->swap);
5393                 page_counter_init(&memcg->kmem, &parent->kmem);
5394                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5395         } else {
5396                 init_memcg_events();
5397                 page_counter_init(&memcg->memory, NULL);
5398                 page_counter_init(&memcg->swap, NULL);
5399                 page_counter_init(&memcg->kmem, NULL);
5400                 page_counter_init(&memcg->tcpmem, NULL);
5401
5402                 root_mem_cgroup = memcg;
5403                 return &memcg->css;
5404         }
5405
5406         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5407                 static_branch_inc(&memcg_sockets_enabled_key);
5408
5409 #if defined(CONFIG_MEMCG_KMEM)
5410         if (!cgroup_memory_nobpf)
5411                 static_branch_inc(&memcg_bpf_enabled_key);
5412 #endif
5413
5414         return &memcg->css;
5415 }
5416
5417 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5418 {
5419         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5420
5421         if (memcg_online_kmem(memcg))
5422                 goto remove_id;
5423
5424         /*
5425          * A memcg must be visible for expand_shrinker_info()
5426          * by the time the maps are allocated. So, we allocate maps
5427          * here, when for_each_mem_cgroup() can't skip it.
5428          */
5429         if (alloc_shrinker_info(memcg))
5430                 goto offline_kmem;
5431
5432         /* Online state pins memcg ID, memcg ID pins CSS */
5433         refcount_set(&memcg->id.ref, 1);
5434         css_get(css);
5435
5436         if (unlikely(mem_cgroup_is_root(memcg)))
5437                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5438                                    2UL*HZ);
5439         lru_gen_online_memcg(memcg);
5440         return 0;
5441 offline_kmem:
5442         memcg_offline_kmem(memcg);
5443 remove_id:
5444         mem_cgroup_id_remove(memcg);
5445         return -ENOMEM;
5446 }
5447
5448 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5449 {
5450         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5451         struct mem_cgroup_event *event, *tmp;
5452
5453         /*
5454          * Unregister events and notify userspace.
5455          * Notify userspace about cgroup removing only after rmdir of cgroup
5456          * directory to avoid race between userspace and kernelspace.
5457          */
5458         spin_lock_irq(&memcg->event_list_lock);
5459         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5460                 list_del_init(&event->list);
5461                 schedule_work(&event->remove);
5462         }
5463         spin_unlock_irq(&memcg->event_list_lock);
5464
5465         page_counter_set_min(&memcg->memory, 0);
5466         page_counter_set_low(&memcg->memory, 0);
5467
5468         memcg_offline_kmem(memcg);
5469         reparent_shrinker_deferred(memcg);
5470         wb_memcg_offline(memcg);
5471         lru_gen_offline_memcg(memcg);
5472
5473         drain_all_stock(memcg);
5474
5475         mem_cgroup_id_put(memcg);
5476 }
5477
5478 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5479 {
5480         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5481
5482         invalidate_reclaim_iterators(memcg);
5483         lru_gen_release_memcg(memcg);
5484 }
5485
5486 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5487 {
5488         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5489         int __maybe_unused i;
5490
5491 #ifdef CONFIG_CGROUP_WRITEBACK
5492         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5493                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5494 #endif
5495         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5496                 static_branch_dec(&memcg_sockets_enabled_key);
5497
5498         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5499                 static_branch_dec(&memcg_sockets_enabled_key);
5500
5501 #if defined(CONFIG_MEMCG_KMEM)
5502         if (!cgroup_memory_nobpf)
5503                 static_branch_dec(&memcg_bpf_enabled_key);
5504 #endif
5505
5506         vmpressure_cleanup(&memcg->vmpressure);
5507         cancel_work_sync(&memcg->high_work);
5508         mem_cgroup_remove_from_trees(memcg);
5509         free_shrinker_info(memcg);
5510         mem_cgroup_free(memcg);
5511 }
5512
5513 /**
5514  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5515  * @css: the target css
5516  *
5517  * Reset the states of the mem_cgroup associated with @css.  This is
5518  * invoked when the userland requests disabling on the default hierarchy
5519  * but the memcg is pinned through dependency.  The memcg should stop
5520  * applying policies and should revert to the vanilla state as it may be
5521  * made visible again.
5522  *
5523  * The current implementation only resets the essential configurations.
5524  * This needs to be expanded to cover all the visible parts.
5525  */
5526 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5527 {
5528         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5529
5530         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5531         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5532         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5533         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5534         page_counter_set_min(&memcg->memory, 0);
5535         page_counter_set_low(&memcg->memory, 0);
5536         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5537         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5538         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5539         memcg_wb_domain_size_changed(memcg);
5540 }
5541
5542 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5543 {
5544         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5545         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5546         struct memcg_vmstats_percpu *statc;
5547         long delta, v;
5548         int i, nid;
5549
5550         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5551
5552         for (i = 0; i < MEMCG_NR_STAT; i++) {
5553                 /*
5554                  * Collect the aggregated propagation counts of groups
5555                  * below us. We're in a per-cpu loop here and this is
5556                  * a global counter, so the first cycle will get them.
5557                  */
5558                 delta = memcg->vmstats->state_pending[i];
5559                 if (delta)
5560                         memcg->vmstats->state_pending[i] = 0;
5561
5562                 /* Add CPU changes on this level since the last flush */
5563                 v = READ_ONCE(statc->state[i]);
5564                 if (v != statc->state_prev[i]) {
5565                         delta += v - statc->state_prev[i];
5566                         statc->state_prev[i] = v;
5567                 }
5568
5569                 if (!delta)
5570                         continue;
5571
5572                 /* Aggregate counts on this level and propagate upwards */
5573                 memcg->vmstats->state[i] += delta;
5574                 if (parent)
5575                         parent->vmstats->state_pending[i] += delta;
5576         }
5577
5578         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5579                 delta = memcg->vmstats->events_pending[i];
5580                 if (delta)
5581                         memcg->vmstats->events_pending[i] = 0;
5582
5583                 v = READ_ONCE(statc->events[i]);
5584                 if (v != statc->events_prev[i]) {
5585                         delta += v - statc->events_prev[i];
5586                         statc->events_prev[i] = v;
5587                 }
5588
5589                 if (!delta)
5590                         continue;
5591
5592                 memcg->vmstats->events[i] += delta;
5593                 if (parent)
5594                         parent->vmstats->events_pending[i] += delta;
5595         }
5596
5597         for_each_node_state(nid, N_MEMORY) {
5598                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5599                 struct mem_cgroup_per_node *ppn = NULL;
5600                 struct lruvec_stats_percpu *lstatc;
5601
5602                 if (parent)
5603                         ppn = parent->nodeinfo[nid];
5604
5605                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5606
5607                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5608                         delta = pn->lruvec_stats.state_pending[i];
5609                         if (delta)
5610                                 pn->lruvec_stats.state_pending[i] = 0;
5611
5612                         v = READ_ONCE(lstatc->state[i]);
5613                         if (v != lstatc->state_prev[i]) {
5614                                 delta += v - lstatc->state_prev[i];
5615                                 lstatc->state_prev[i] = v;
5616                         }
5617
5618                         if (!delta)
5619                                 continue;
5620
5621                         pn->lruvec_stats.state[i] += delta;
5622                         if (ppn)
5623                                 ppn->lruvec_stats.state_pending[i] += delta;
5624                 }
5625         }
5626 }
5627
5628 #ifdef CONFIG_MMU
5629 /* Handlers for move charge at task migration. */
5630 static int mem_cgroup_do_precharge(unsigned long count)
5631 {
5632         int ret;
5633
5634         /* Try a single bulk charge without reclaim first, kswapd may wake */
5635         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5636         if (!ret) {
5637                 mc.precharge += count;
5638                 return ret;
5639         }
5640
5641         /* Try charges one by one with reclaim, but do not retry */
5642         while (count--) {
5643                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5644                 if (ret)
5645                         return ret;
5646                 mc.precharge++;
5647                 cond_resched();
5648         }
5649         return 0;
5650 }
5651
5652 union mc_target {
5653         struct page     *page;
5654         swp_entry_t     ent;
5655 };
5656
5657 enum mc_target_type {
5658         MC_TARGET_NONE = 0,
5659         MC_TARGET_PAGE,
5660         MC_TARGET_SWAP,
5661         MC_TARGET_DEVICE,
5662 };
5663
5664 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5665                                                 unsigned long addr, pte_t ptent)
5666 {
5667         struct page *page = vm_normal_page(vma, addr, ptent);
5668
5669         if (!page || !page_mapped(page))
5670                 return NULL;
5671         if (PageAnon(page)) {
5672                 if (!(mc.flags & MOVE_ANON))
5673                         return NULL;
5674         } else {
5675                 if (!(mc.flags & MOVE_FILE))
5676                         return NULL;
5677         }
5678         if (!get_page_unless_zero(page))
5679                 return NULL;
5680
5681         return page;
5682 }
5683
5684 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5686                         pte_t ptent, swp_entry_t *entry)
5687 {
5688         struct page *page = NULL;
5689         swp_entry_t ent = pte_to_swp_entry(ptent);
5690
5691         if (!(mc.flags & MOVE_ANON))
5692                 return NULL;
5693
5694         /*
5695          * Handle device private pages that are not accessible by the CPU, but
5696          * stored as special swap entries in the page table.
5697          */
5698         if (is_device_private_entry(ent)) {
5699                 page = pfn_swap_entry_to_page(ent);
5700                 if (!get_page_unless_zero(page))
5701                         return NULL;
5702                 return page;
5703         }
5704
5705         if (non_swap_entry(ent))
5706                 return NULL;
5707
5708         /*
5709          * Because swap_cache_get_folio() updates some statistics counter,
5710          * we call find_get_page() with swapper_space directly.
5711          */
5712         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5713         entry->val = ent.val;
5714
5715         return page;
5716 }
5717 #else
5718 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5719                         pte_t ptent, swp_entry_t *entry)
5720 {
5721         return NULL;
5722 }
5723 #endif
5724
5725 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5726                         unsigned long addr, pte_t ptent)
5727 {
5728         unsigned long index;
5729         struct folio *folio;
5730
5731         if (!vma->vm_file) /* anonymous vma */
5732                 return NULL;
5733         if (!(mc.flags & MOVE_FILE))
5734                 return NULL;
5735
5736         /* folio is moved even if it's not RSS of this task(page-faulted). */
5737         /* shmem/tmpfs may report page out on swap: account for that too. */
5738         index = linear_page_index(vma, addr);
5739         folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5740         if (IS_ERR(folio))
5741                 return NULL;
5742         return folio_file_page(folio, index);
5743 }
5744
5745 /**
5746  * mem_cgroup_move_account - move account of the page
5747  * @page: the page
5748  * @compound: charge the page as compound or small page
5749  * @from: mem_cgroup which the page is moved from.
5750  * @to: mem_cgroup which the page is moved to. @from != @to.
5751  *
5752  * The page must be locked and not on the LRU.
5753  *
5754  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5755  * from old cgroup.
5756  */
5757 static int mem_cgroup_move_account(struct page *page,
5758                                    bool compound,
5759                                    struct mem_cgroup *from,
5760                                    struct mem_cgroup *to)
5761 {
5762         struct folio *folio = page_folio(page);
5763         struct lruvec *from_vec, *to_vec;
5764         struct pglist_data *pgdat;
5765         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5766         int nid, ret;
5767
5768         VM_BUG_ON(from == to);
5769         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5770         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5771         VM_BUG_ON(compound && !folio_test_large(folio));
5772
5773         ret = -EINVAL;
5774         if (folio_memcg(folio) != from)
5775                 goto out;
5776
5777         pgdat = folio_pgdat(folio);
5778         from_vec = mem_cgroup_lruvec(from, pgdat);
5779         to_vec = mem_cgroup_lruvec(to, pgdat);
5780
5781         folio_memcg_lock(folio);
5782
5783         if (folio_test_anon(folio)) {
5784                 if (folio_mapped(folio)) {
5785                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5786                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5787                         if (folio_test_transhuge(folio)) {
5788                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5789                                                    -nr_pages);
5790                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5791                                                    nr_pages);
5792                         }
5793                 }
5794         } else {
5795                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5796                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5797
5798                 if (folio_test_swapbacked(folio)) {
5799                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5800                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5801                 }
5802
5803                 if (folio_mapped(folio)) {
5804                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5805                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5806                 }
5807
5808                 if (folio_test_dirty(folio)) {
5809                         struct address_space *mapping = folio_mapping(folio);
5810
5811                         if (mapping_can_writeback(mapping)) {
5812                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5813                                                    -nr_pages);
5814                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5815                                                    nr_pages);
5816                         }
5817                 }
5818         }
5819
5820 #ifdef CONFIG_SWAP
5821         if (folio_test_swapcache(folio)) {
5822                 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5823                 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5824         }
5825 #endif
5826         if (folio_test_writeback(folio)) {
5827                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5828                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5829         }
5830
5831         /*
5832          * All state has been migrated, let's switch to the new memcg.
5833          *
5834          * It is safe to change page's memcg here because the page
5835          * is referenced, charged, isolated, and locked: we can't race
5836          * with (un)charging, migration, LRU putback, or anything else
5837          * that would rely on a stable page's memory cgroup.
5838          *
5839          * Note that lock_page_memcg is a memcg lock, not a page lock,
5840          * to save space. As soon as we switch page's memory cgroup to a
5841          * new memcg that isn't locked, the above state can change
5842          * concurrently again. Make sure we're truly done with it.
5843          */
5844         smp_mb();
5845
5846         css_get(&to->css);
5847         css_put(&from->css);
5848
5849         folio->memcg_data = (unsigned long)to;
5850
5851         __folio_memcg_unlock(from);
5852
5853         ret = 0;
5854         nid = folio_nid(folio);
5855
5856         local_irq_disable();
5857         mem_cgroup_charge_statistics(to, nr_pages);
5858         memcg_check_events(to, nid);
5859         mem_cgroup_charge_statistics(from, -nr_pages);
5860         memcg_check_events(from, nid);
5861         local_irq_enable();
5862 out:
5863         return ret;
5864 }
5865
5866 /**
5867  * get_mctgt_type - get target type of moving charge
5868  * @vma: the vma the pte to be checked belongs
5869  * @addr: the address corresponding to the pte to be checked
5870  * @ptent: the pte to be checked
5871  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5872  *
5873  * Returns
5874  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5875  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5876  *     move charge. if @target is not NULL, the page is stored in target->page
5877  *     with extra refcnt got(Callers should handle it).
5878  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5879  *     target for charge migration. if @target is not NULL, the entry is stored
5880  *     in target->ent.
5881  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5882  *   thus not on the lru.
5883  *     For now we such page is charge like a regular page would be as for all
5884  *     intent and purposes it is just special memory taking the place of a
5885  *     regular page.
5886  *
5887  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5888  *
5889  * Called with pte lock held.
5890  */
5891
5892 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5893                 unsigned long addr, pte_t ptent, union mc_target *target)
5894 {
5895         struct page *page = NULL;
5896         enum mc_target_type ret = MC_TARGET_NONE;
5897         swp_entry_t ent = { .val = 0 };
5898
5899         if (pte_present(ptent))
5900                 page = mc_handle_present_pte(vma, addr, ptent);
5901         else if (pte_none_mostly(ptent))
5902                 /*
5903                  * PTE markers should be treated as a none pte here, separated
5904                  * from other swap handling below.
5905                  */
5906                 page = mc_handle_file_pte(vma, addr, ptent);
5907         else if (is_swap_pte(ptent))
5908                 page = mc_handle_swap_pte(vma, ptent, &ent);
5909
5910         if (target && page) {
5911                 if (!trylock_page(page)) {
5912                         put_page(page);
5913                         return ret;
5914                 }
5915                 /*
5916                  * page_mapped() must be stable during the move. This
5917                  * pte is locked, so if it's present, the page cannot
5918                  * become unmapped. If it isn't, we have only partial
5919                  * control over the mapped state: the page lock will
5920                  * prevent new faults against pagecache and swapcache,
5921                  * so an unmapped page cannot become mapped. However,
5922                  * if the page is already mapped elsewhere, it can
5923                  * unmap, and there is nothing we can do about it.
5924                  * Alas, skip moving the page in this case.
5925                  */
5926                 if (!pte_present(ptent) && page_mapped(page)) {
5927                         unlock_page(page);
5928                         put_page(page);
5929                         return ret;
5930                 }
5931         }
5932
5933         if (!page && !ent.val)
5934                 return ret;
5935         if (page) {
5936                 /*
5937                  * Do only loose check w/o serialization.
5938                  * mem_cgroup_move_account() checks the page is valid or
5939                  * not under LRU exclusion.
5940                  */
5941                 if (page_memcg(page) == mc.from) {
5942                         ret = MC_TARGET_PAGE;
5943                         if (is_device_private_page(page) ||
5944                             is_device_coherent_page(page))
5945                                 ret = MC_TARGET_DEVICE;
5946                         if (target)
5947                                 target->page = page;
5948                 }
5949                 if (!ret || !target) {
5950                         if (target)
5951                                 unlock_page(page);
5952                         put_page(page);
5953                 }
5954         }
5955         /*
5956          * There is a swap entry and a page doesn't exist or isn't charged.
5957          * But we cannot move a tail-page in a THP.
5958          */
5959         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5960             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5961                 ret = MC_TARGET_SWAP;
5962                 if (target)
5963                         target->ent = ent;
5964         }
5965         return ret;
5966 }
5967
5968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5969 /*
5970  * We don't consider PMD mapped swapping or file mapped pages because THP does
5971  * not support them for now.
5972  * Caller should make sure that pmd_trans_huge(pmd) is true.
5973  */
5974 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5975                 unsigned long addr, pmd_t pmd, union mc_target *target)
5976 {
5977         struct page *page = NULL;
5978         enum mc_target_type ret = MC_TARGET_NONE;
5979
5980         if (unlikely(is_swap_pmd(pmd))) {
5981                 VM_BUG_ON(thp_migration_supported() &&
5982                                   !is_pmd_migration_entry(pmd));
5983                 return ret;
5984         }
5985         page = pmd_page(pmd);
5986         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5987         if (!(mc.flags & MOVE_ANON))
5988                 return ret;
5989         if (page_memcg(page) == mc.from) {
5990                 ret = MC_TARGET_PAGE;
5991                 if (target) {
5992                         get_page(page);
5993                         if (!trylock_page(page)) {
5994                                 put_page(page);
5995                                 return MC_TARGET_NONE;
5996                         }
5997                         target->page = page;
5998                 }
5999         }
6000         return ret;
6001 }
6002 #else
6003 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6004                 unsigned long addr, pmd_t pmd, union mc_target *target)
6005 {
6006         return MC_TARGET_NONE;
6007 }
6008 #endif
6009
6010 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6011                                         unsigned long addr, unsigned long end,
6012                                         struct mm_walk *walk)
6013 {
6014         struct vm_area_struct *vma = walk->vma;
6015         pte_t *pte;
6016         spinlock_t *ptl;
6017
6018         ptl = pmd_trans_huge_lock(pmd, vma);
6019         if (ptl) {
6020                 /*
6021                  * Note their can not be MC_TARGET_DEVICE for now as we do not
6022                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6023                  * this might change.
6024                  */
6025                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6026                         mc.precharge += HPAGE_PMD_NR;
6027                 spin_unlock(ptl);
6028                 return 0;
6029         }
6030
6031         if (pmd_trans_unstable(pmd))
6032                 return 0;
6033         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6034         for (; addr != end; pte++, addr += PAGE_SIZE)
6035                 if (get_mctgt_type(vma, addr, *pte, NULL))
6036                         mc.precharge++; /* increment precharge temporarily */
6037         pte_unmap_unlock(pte - 1, ptl);
6038         cond_resched();
6039
6040         return 0;
6041 }
6042
6043 static const struct mm_walk_ops precharge_walk_ops = {
6044         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
6045 };
6046
6047 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6048 {
6049         unsigned long precharge;
6050
6051         mmap_read_lock(mm);
6052         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6053         mmap_read_unlock(mm);
6054
6055         precharge = mc.precharge;
6056         mc.precharge = 0;
6057
6058         return precharge;
6059 }
6060
6061 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6062 {
6063         unsigned long precharge = mem_cgroup_count_precharge(mm);
6064
6065         VM_BUG_ON(mc.moving_task);
6066         mc.moving_task = current;
6067         return mem_cgroup_do_precharge(precharge);
6068 }
6069
6070 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6071 static void __mem_cgroup_clear_mc(void)
6072 {
6073         struct mem_cgroup *from = mc.from;
6074         struct mem_cgroup *to = mc.to;
6075
6076         /* we must uncharge all the leftover precharges from mc.to */
6077         if (mc.precharge) {
6078                 cancel_charge(mc.to, mc.precharge);
6079                 mc.precharge = 0;
6080         }
6081         /*
6082          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6083          * we must uncharge here.
6084          */
6085         if (mc.moved_charge) {
6086                 cancel_charge(mc.from, mc.moved_charge);
6087                 mc.moved_charge = 0;
6088         }
6089         /* we must fixup refcnts and charges */
6090         if (mc.moved_swap) {
6091                 /* uncharge swap account from the old cgroup */
6092                 if (!mem_cgroup_is_root(mc.from))
6093                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6094
6095                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6096
6097                 /*
6098                  * we charged both to->memory and to->memsw, so we
6099                  * should uncharge to->memory.
6100                  */
6101                 if (!mem_cgroup_is_root(mc.to))
6102                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6103
6104                 mc.moved_swap = 0;
6105         }
6106         memcg_oom_recover(from);
6107         memcg_oom_recover(to);
6108         wake_up_all(&mc.waitq);
6109 }
6110
6111 static void mem_cgroup_clear_mc(void)
6112 {
6113         struct mm_struct *mm = mc.mm;
6114
6115         /*
6116          * we must clear moving_task before waking up waiters at the end of
6117          * task migration.
6118          */
6119         mc.moving_task = NULL;
6120         __mem_cgroup_clear_mc();
6121         spin_lock(&mc.lock);
6122         mc.from = NULL;
6123         mc.to = NULL;
6124         mc.mm = NULL;
6125         spin_unlock(&mc.lock);
6126
6127         mmput(mm);
6128 }
6129
6130 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6131 {
6132         struct cgroup_subsys_state *css;
6133         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6134         struct mem_cgroup *from;
6135         struct task_struct *leader, *p;
6136         struct mm_struct *mm;
6137         unsigned long move_flags;
6138         int ret = 0;
6139
6140         /* charge immigration isn't supported on the default hierarchy */
6141         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6142                 return 0;
6143
6144         /*
6145          * Multi-process migrations only happen on the default hierarchy
6146          * where charge immigration is not used.  Perform charge
6147          * immigration if @tset contains a leader and whine if there are
6148          * multiple.
6149          */
6150         p = NULL;
6151         cgroup_taskset_for_each_leader(leader, css, tset) {
6152                 WARN_ON_ONCE(p);
6153                 p = leader;
6154                 memcg = mem_cgroup_from_css(css);
6155         }
6156         if (!p)
6157                 return 0;
6158
6159         /*
6160          * We are now committed to this value whatever it is. Changes in this
6161          * tunable will only affect upcoming migrations, not the current one.
6162          * So we need to save it, and keep it going.
6163          */
6164         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6165         if (!move_flags)
6166                 return 0;
6167
6168         from = mem_cgroup_from_task(p);
6169
6170         VM_BUG_ON(from == memcg);
6171
6172         mm = get_task_mm(p);
6173         if (!mm)
6174                 return 0;
6175         /* We move charges only when we move a owner of the mm */
6176         if (mm->owner == p) {
6177                 VM_BUG_ON(mc.from);
6178                 VM_BUG_ON(mc.to);
6179                 VM_BUG_ON(mc.precharge);
6180                 VM_BUG_ON(mc.moved_charge);
6181                 VM_BUG_ON(mc.moved_swap);
6182
6183                 spin_lock(&mc.lock);
6184                 mc.mm = mm;
6185                 mc.from = from;
6186                 mc.to = memcg;
6187                 mc.flags = move_flags;
6188                 spin_unlock(&mc.lock);
6189                 /* We set mc.moving_task later */
6190
6191                 ret = mem_cgroup_precharge_mc(mm);
6192                 if (ret)
6193                         mem_cgroup_clear_mc();
6194         } else {
6195                 mmput(mm);
6196         }
6197         return ret;
6198 }
6199
6200 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6201 {
6202         if (mc.to)
6203                 mem_cgroup_clear_mc();
6204 }
6205
6206 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6207                                 unsigned long addr, unsigned long end,
6208                                 struct mm_walk *walk)
6209 {
6210         int ret = 0;
6211         struct vm_area_struct *vma = walk->vma;
6212         pte_t *pte;
6213         spinlock_t *ptl;
6214         enum mc_target_type target_type;
6215         union mc_target target;
6216         struct page *page;
6217
6218         ptl = pmd_trans_huge_lock(pmd, vma);
6219         if (ptl) {
6220                 if (mc.precharge < HPAGE_PMD_NR) {
6221                         spin_unlock(ptl);
6222                         return 0;
6223                 }
6224                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6225                 if (target_type == MC_TARGET_PAGE) {
6226                         page = target.page;
6227                         if (isolate_lru_page(page)) {
6228                                 if (!mem_cgroup_move_account(page, true,
6229                                                              mc.from, mc.to)) {
6230                                         mc.precharge -= HPAGE_PMD_NR;
6231                                         mc.moved_charge += HPAGE_PMD_NR;
6232                                 }
6233                                 putback_lru_page(page);
6234                         }
6235                         unlock_page(page);
6236                         put_page(page);
6237                 } else if (target_type == MC_TARGET_DEVICE) {
6238                         page = target.page;
6239                         if (!mem_cgroup_move_account(page, true,
6240                                                      mc.from, mc.to)) {
6241                                 mc.precharge -= HPAGE_PMD_NR;
6242                                 mc.moved_charge += HPAGE_PMD_NR;
6243                         }
6244                         unlock_page(page);
6245                         put_page(page);
6246                 }
6247                 spin_unlock(ptl);
6248                 return 0;
6249         }
6250
6251         if (pmd_trans_unstable(pmd))
6252                 return 0;
6253 retry:
6254         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6255         for (; addr != end; addr += PAGE_SIZE) {
6256                 pte_t ptent = *(pte++);
6257                 bool device = false;
6258                 swp_entry_t ent;
6259
6260                 if (!mc.precharge)
6261                         break;
6262
6263                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6264                 case MC_TARGET_DEVICE:
6265                         device = true;
6266                         fallthrough;
6267                 case MC_TARGET_PAGE:
6268                         page = target.page;
6269                         /*
6270                          * We can have a part of the split pmd here. Moving it
6271                          * can be done but it would be too convoluted so simply
6272                          * ignore such a partial THP and keep it in original
6273                          * memcg. There should be somebody mapping the head.
6274                          */
6275                         if (PageTransCompound(page))
6276                                 goto put;
6277                         if (!device && !isolate_lru_page(page))
6278                                 goto put;
6279                         if (!mem_cgroup_move_account(page, false,
6280                                                 mc.from, mc.to)) {
6281                                 mc.precharge--;
6282                                 /* we uncharge from mc.from later. */
6283                                 mc.moved_charge++;
6284                         }
6285                         if (!device)
6286                                 putback_lru_page(page);
6287 put:                    /* get_mctgt_type() gets & locks the page */
6288                         unlock_page(page);
6289                         put_page(page);
6290                         break;
6291                 case MC_TARGET_SWAP:
6292                         ent = target.ent;
6293                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6294                                 mc.precharge--;
6295                                 mem_cgroup_id_get_many(mc.to, 1);
6296                                 /* we fixup other refcnts and charges later. */
6297                                 mc.moved_swap++;
6298                         }
6299                         break;
6300                 default:
6301                         break;
6302                 }
6303         }
6304         pte_unmap_unlock(pte - 1, ptl);
6305         cond_resched();
6306
6307         if (addr != end) {
6308                 /*
6309                  * We have consumed all precharges we got in can_attach().
6310                  * We try charge one by one, but don't do any additional
6311                  * charges to mc.to if we have failed in charge once in attach()
6312                  * phase.
6313                  */
6314                 ret = mem_cgroup_do_precharge(1);
6315                 if (!ret)
6316                         goto retry;
6317         }
6318
6319         return ret;
6320 }
6321
6322 static const struct mm_walk_ops charge_walk_ops = {
6323         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6324 };
6325
6326 static void mem_cgroup_move_charge(void)
6327 {
6328         lru_add_drain_all();
6329         /*
6330          * Signal lock_page_memcg() to take the memcg's move_lock
6331          * while we're moving its pages to another memcg. Then wait
6332          * for already started RCU-only updates to finish.
6333          */
6334         atomic_inc(&mc.from->moving_account);
6335         synchronize_rcu();
6336 retry:
6337         if (unlikely(!mmap_read_trylock(mc.mm))) {
6338                 /*
6339                  * Someone who are holding the mmap_lock might be waiting in
6340                  * waitq. So we cancel all extra charges, wake up all waiters,
6341                  * and retry. Because we cancel precharges, we might not be able
6342                  * to move enough charges, but moving charge is a best-effort
6343                  * feature anyway, so it wouldn't be a big problem.
6344                  */
6345                 __mem_cgroup_clear_mc();
6346                 cond_resched();
6347                 goto retry;
6348         }
6349         /*
6350          * When we have consumed all precharges and failed in doing
6351          * additional charge, the page walk just aborts.
6352          */
6353         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6354         mmap_read_unlock(mc.mm);
6355         atomic_dec(&mc.from->moving_account);
6356 }
6357
6358 static void mem_cgroup_move_task(void)
6359 {
6360         if (mc.to) {
6361                 mem_cgroup_move_charge();
6362                 mem_cgroup_clear_mc();
6363         }
6364 }
6365 #else   /* !CONFIG_MMU */
6366 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6367 {
6368         return 0;
6369 }
6370 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6371 {
6372 }
6373 static void mem_cgroup_move_task(void)
6374 {
6375 }
6376 #endif
6377
6378 #ifdef CONFIG_LRU_GEN
6379 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6380 {
6381         struct task_struct *task;
6382         struct cgroup_subsys_state *css;
6383
6384         /* find the first leader if there is any */
6385         cgroup_taskset_for_each_leader(task, css, tset)
6386                 break;
6387
6388         if (!task)
6389                 return;
6390
6391         task_lock(task);
6392         if (task->mm && READ_ONCE(task->mm->owner) == task)
6393                 lru_gen_migrate_mm(task->mm);
6394         task_unlock(task);
6395 }
6396 #else
6397 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6398 {
6399 }
6400 #endif /* CONFIG_LRU_GEN */
6401
6402 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6403 {
6404         if (value == PAGE_COUNTER_MAX)
6405                 seq_puts(m, "max\n");
6406         else
6407                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6408
6409         return 0;
6410 }
6411
6412 static u64 memory_current_read(struct cgroup_subsys_state *css,
6413                                struct cftype *cft)
6414 {
6415         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6416
6417         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6418 }
6419
6420 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6421                             struct cftype *cft)
6422 {
6423         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6424
6425         return (u64)memcg->memory.watermark * PAGE_SIZE;
6426 }
6427
6428 static int memory_min_show(struct seq_file *m, void *v)
6429 {
6430         return seq_puts_memcg_tunable(m,
6431                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6432 }
6433
6434 static ssize_t memory_min_write(struct kernfs_open_file *of,
6435                                 char *buf, size_t nbytes, loff_t off)
6436 {
6437         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438         unsigned long min;
6439         int err;
6440
6441         buf = strstrip(buf);
6442         err = page_counter_memparse(buf, "max", &min);
6443         if (err)
6444                 return err;
6445
6446         page_counter_set_min(&memcg->memory, min);
6447
6448         return nbytes;
6449 }
6450
6451 static int memory_low_show(struct seq_file *m, void *v)
6452 {
6453         return seq_puts_memcg_tunable(m,
6454                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6455 }
6456
6457 static ssize_t memory_low_write(struct kernfs_open_file *of,
6458                                 char *buf, size_t nbytes, loff_t off)
6459 {
6460         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6461         unsigned long low;
6462         int err;
6463
6464         buf = strstrip(buf);
6465         err = page_counter_memparse(buf, "max", &low);
6466         if (err)
6467                 return err;
6468
6469         page_counter_set_low(&memcg->memory, low);
6470
6471         return nbytes;
6472 }
6473
6474 static int memory_high_show(struct seq_file *m, void *v)
6475 {
6476         return seq_puts_memcg_tunable(m,
6477                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6478 }
6479
6480 static ssize_t memory_high_write(struct kernfs_open_file *of,
6481                                  char *buf, size_t nbytes, loff_t off)
6482 {
6483         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6484         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6485         bool drained = false;
6486         unsigned long high;
6487         int err;
6488
6489         buf = strstrip(buf);
6490         err = page_counter_memparse(buf, "max", &high);
6491         if (err)
6492                 return err;
6493
6494         page_counter_set_high(&memcg->memory, high);
6495
6496         for (;;) {
6497                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6498                 unsigned long reclaimed;
6499
6500                 if (nr_pages <= high)
6501                         break;
6502
6503                 if (signal_pending(current))
6504                         break;
6505
6506                 if (!drained) {
6507                         drain_all_stock(memcg);
6508                         drained = true;
6509                         continue;
6510                 }
6511
6512                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6513                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6514
6515                 if (!reclaimed && !nr_retries--)
6516                         break;
6517         }
6518
6519         memcg_wb_domain_size_changed(memcg);
6520         return nbytes;
6521 }
6522
6523 static int memory_max_show(struct seq_file *m, void *v)
6524 {
6525         return seq_puts_memcg_tunable(m,
6526                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6527 }
6528
6529 static ssize_t memory_max_write(struct kernfs_open_file *of,
6530                                 char *buf, size_t nbytes, loff_t off)
6531 {
6532         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6533         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6534         bool drained = false;
6535         unsigned long max;
6536         int err;
6537
6538         buf = strstrip(buf);
6539         err = page_counter_memparse(buf, "max", &max);
6540         if (err)
6541                 return err;
6542
6543         xchg(&memcg->memory.max, max);
6544
6545         for (;;) {
6546                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6547
6548                 if (nr_pages <= max)
6549                         break;
6550
6551                 if (signal_pending(current))
6552                         break;
6553
6554                 if (!drained) {
6555                         drain_all_stock(memcg);
6556                         drained = true;
6557                         continue;
6558                 }
6559
6560                 if (nr_reclaims) {
6561                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6562                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6563                                 nr_reclaims--;
6564                         continue;
6565                 }
6566
6567                 memcg_memory_event(memcg, MEMCG_OOM);
6568                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6569                         break;
6570         }
6571
6572         memcg_wb_domain_size_changed(memcg);
6573         return nbytes;
6574 }
6575
6576 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6577 {
6578         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6579         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6580         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6581         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6582         seq_printf(m, "oom_kill %lu\n",
6583                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6584         seq_printf(m, "oom_group_kill %lu\n",
6585                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6586 }
6587
6588 static int memory_events_show(struct seq_file *m, void *v)
6589 {
6590         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6591
6592         __memory_events_show(m, memcg->memory_events);
6593         return 0;
6594 }
6595
6596 static int memory_events_local_show(struct seq_file *m, void *v)
6597 {
6598         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6599
6600         __memory_events_show(m, memcg->memory_events_local);
6601         return 0;
6602 }
6603
6604 static int memory_stat_show(struct seq_file *m, void *v)
6605 {
6606         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6607         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6608         struct seq_buf s;
6609
6610         if (!buf)
6611                 return -ENOMEM;
6612         seq_buf_init(&s, buf, PAGE_SIZE);
6613         memory_stat_format(memcg, &s);
6614         seq_puts(m, buf);
6615         kfree(buf);
6616         return 0;
6617 }
6618
6619 #ifdef CONFIG_NUMA
6620 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6621                                                      int item)
6622 {
6623         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6624 }
6625
6626 static int memory_numa_stat_show(struct seq_file *m, void *v)
6627 {
6628         int i;
6629         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6630
6631         mem_cgroup_flush_stats();
6632
6633         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6634                 int nid;
6635
6636                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6637                         continue;
6638
6639                 seq_printf(m, "%s", memory_stats[i].name);
6640                 for_each_node_state(nid, N_MEMORY) {
6641                         u64 size;
6642                         struct lruvec *lruvec;
6643
6644                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6645                         size = lruvec_page_state_output(lruvec,
6646                                                         memory_stats[i].idx);
6647                         seq_printf(m, " N%d=%llu", nid, size);
6648                 }
6649                 seq_putc(m, '\n');
6650         }
6651
6652         return 0;
6653 }
6654 #endif
6655
6656 static int memory_oom_group_show(struct seq_file *m, void *v)
6657 {
6658         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6659
6660         seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6661
6662         return 0;
6663 }
6664
6665 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6666                                       char *buf, size_t nbytes, loff_t off)
6667 {
6668         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6669         int ret, oom_group;
6670
6671         buf = strstrip(buf);
6672         if (!buf)
6673                 return -EINVAL;
6674
6675         ret = kstrtoint(buf, 0, &oom_group);
6676         if (ret)
6677                 return ret;
6678
6679         if (oom_group != 0 && oom_group != 1)
6680                 return -EINVAL;
6681
6682         WRITE_ONCE(memcg->oom_group, oom_group);
6683
6684         return nbytes;
6685 }
6686
6687 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6688                               size_t nbytes, loff_t off)
6689 {
6690         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6691         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6692         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6693         unsigned int reclaim_options;
6694         int err;
6695
6696         buf = strstrip(buf);
6697         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6698         if (err)
6699                 return err;
6700
6701         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6702         while (nr_reclaimed < nr_to_reclaim) {
6703                 unsigned long reclaimed;
6704
6705                 if (signal_pending(current))
6706                         return -EINTR;
6707
6708                 /*
6709                  * This is the final attempt, drain percpu lru caches in the
6710                  * hope of introducing more evictable pages for
6711                  * try_to_free_mem_cgroup_pages().
6712                  */
6713                 if (!nr_retries)
6714                         lru_add_drain_all();
6715
6716                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6717                                                 nr_to_reclaim - nr_reclaimed,
6718                                                 GFP_KERNEL, reclaim_options);
6719
6720                 if (!reclaimed && !nr_retries--)
6721                         return -EAGAIN;
6722
6723                 nr_reclaimed += reclaimed;
6724         }
6725
6726         return nbytes;
6727 }
6728
6729 static struct cftype memory_files[] = {
6730         {
6731                 .name = "current",
6732                 .flags = CFTYPE_NOT_ON_ROOT,
6733                 .read_u64 = memory_current_read,
6734         },
6735         {
6736                 .name = "peak",
6737                 .flags = CFTYPE_NOT_ON_ROOT,
6738                 .read_u64 = memory_peak_read,
6739         },
6740         {
6741                 .name = "min",
6742                 .flags = CFTYPE_NOT_ON_ROOT,
6743                 .seq_show = memory_min_show,
6744                 .write = memory_min_write,
6745         },
6746         {
6747                 .name = "low",
6748                 .flags = CFTYPE_NOT_ON_ROOT,
6749                 .seq_show = memory_low_show,
6750                 .write = memory_low_write,
6751         },
6752         {
6753                 .name = "high",
6754                 .flags = CFTYPE_NOT_ON_ROOT,
6755                 .seq_show = memory_high_show,
6756                 .write = memory_high_write,
6757         },
6758         {
6759                 .name = "max",
6760                 .flags = CFTYPE_NOT_ON_ROOT,
6761                 .seq_show = memory_max_show,
6762                 .write = memory_max_write,
6763         },
6764         {
6765                 .name = "events",
6766                 .flags = CFTYPE_NOT_ON_ROOT,
6767                 .file_offset = offsetof(struct mem_cgroup, events_file),
6768                 .seq_show = memory_events_show,
6769         },
6770         {
6771                 .name = "events.local",
6772                 .flags = CFTYPE_NOT_ON_ROOT,
6773                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6774                 .seq_show = memory_events_local_show,
6775         },
6776         {
6777                 .name = "stat",
6778                 .seq_show = memory_stat_show,
6779         },
6780 #ifdef CONFIG_NUMA
6781         {
6782                 .name = "numa_stat",
6783                 .seq_show = memory_numa_stat_show,
6784         },
6785 #endif
6786         {
6787                 .name = "oom.group",
6788                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6789                 .seq_show = memory_oom_group_show,
6790                 .write = memory_oom_group_write,
6791         },
6792         {
6793                 .name = "reclaim",
6794                 .flags = CFTYPE_NS_DELEGATABLE,
6795                 .write = memory_reclaim,
6796         },
6797         { }     /* terminate */
6798 };
6799
6800 struct cgroup_subsys memory_cgrp_subsys = {
6801         .css_alloc = mem_cgroup_css_alloc,
6802         .css_online = mem_cgroup_css_online,
6803         .css_offline = mem_cgroup_css_offline,
6804         .css_released = mem_cgroup_css_released,
6805         .css_free = mem_cgroup_css_free,
6806         .css_reset = mem_cgroup_css_reset,
6807         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6808         .can_attach = mem_cgroup_can_attach,
6809         .attach = mem_cgroup_attach,
6810         .cancel_attach = mem_cgroup_cancel_attach,
6811         .post_attach = mem_cgroup_move_task,
6812         .dfl_cftypes = memory_files,
6813         .legacy_cftypes = mem_cgroup_legacy_files,
6814         .early_init = 0,
6815 };
6816
6817 /*
6818  * This function calculates an individual cgroup's effective
6819  * protection which is derived from its own memory.min/low, its
6820  * parent's and siblings' settings, as well as the actual memory
6821  * distribution in the tree.
6822  *
6823  * The following rules apply to the effective protection values:
6824  *
6825  * 1. At the first level of reclaim, effective protection is equal to
6826  *    the declared protection in memory.min and memory.low.
6827  *
6828  * 2. To enable safe delegation of the protection configuration, at
6829  *    subsequent levels the effective protection is capped to the
6830  *    parent's effective protection.
6831  *
6832  * 3. To make complex and dynamic subtrees easier to configure, the
6833  *    user is allowed to overcommit the declared protection at a given
6834  *    level. If that is the case, the parent's effective protection is
6835  *    distributed to the children in proportion to how much protection
6836  *    they have declared and how much of it they are utilizing.
6837  *
6838  *    This makes distribution proportional, but also work-conserving:
6839  *    if one cgroup claims much more protection than it uses memory,
6840  *    the unused remainder is available to its siblings.
6841  *
6842  * 4. Conversely, when the declared protection is undercommitted at a
6843  *    given level, the distribution of the larger parental protection
6844  *    budget is NOT proportional. A cgroup's protection from a sibling
6845  *    is capped to its own memory.min/low setting.
6846  *
6847  * 5. However, to allow protecting recursive subtrees from each other
6848  *    without having to declare each individual cgroup's fixed share
6849  *    of the ancestor's claim to protection, any unutilized -
6850  *    "floating" - protection from up the tree is distributed in
6851  *    proportion to each cgroup's *usage*. This makes the protection
6852  *    neutral wrt sibling cgroups and lets them compete freely over
6853  *    the shared parental protection budget, but it protects the
6854  *    subtree as a whole from neighboring subtrees.
6855  *
6856  * Note that 4. and 5. are not in conflict: 4. is about protecting
6857  * against immediate siblings whereas 5. is about protecting against
6858  * neighboring subtrees.
6859  */
6860 static unsigned long effective_protection(unsigned long usage,
6861                                           unsigned long parent_usage,
6862                                           unsigned long setting,
6863                                           unsigned long parent_effective,
6864                                           unsigned long siblings_protected)
6865 {
6866         unsigned long protected;
6867         unsigned long ep;
6868
6869         protected = min(usage, setting);
6870         /*
6871          * If all cgroups at this level combined claim and use more
6872          * protection then what the parent affords them, distribute
6873          * shares in proportion to utilization.
6874          *
6875          * We are using actual utilization rather than the statically
6876          * claimed protection in order to be work-conserving: claimed
6877          * but unused protection is available to siblings that would
6878          * otherwise get a smaller chunk than what they claimed.
6879          */
6880         if (siblings_protected > parent_effective)
6881                 return protected * parent_effective / siblings_protected;
6882
6883         /*
6884          * Ok, utilized protection of all children is within what the
6885          * parent affords them, so we know whatever this child claims
6886          * and utilizes is effectively protected.
6887          *
6888          * If there is unprotected usage beyond this value, reclaim
6889          * will apply pressure in proportion to that amount.
6890          *
6891          * If there is unutilized protection, the cgroup will be fully
6892          * shielded from reclaim, but we do return a smaller value for
6893          * protection than what the group could enjoy in theory. This
6894          * is okay. With the overcommit distribution above, effective
6895          * protection is always dependent on how memory is actually
6896          * consumed among the siblings anyway.
6897          */
6898         ep = protected;
6899
6900         /*
6901          * If the children aren't claiming (all of) the protection
6902          * afforded to them by the parent, distribute the remainder in
6903          * proportion to the (unprotected) memory of each cgroup. That
6904          * way, cgroups that aren't explicitly prioritized wrt each
6905          * other compete freely over the allowance, but they are
6906          * collectively protected from neighboring trees.
6907          *
6908          * We're using unprotected memory for the weight so that if
6909          * some cgroups DO claim explicit protection, we don't protect
6910          * the same bytes twice.
6911          *
6912          * Check both usage and parent_usage against the respective
6913          * protected values. One should imply the other, but they
6914          * aren't read atomically - make sure the division is sane.
6915          */
6916         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6917                 return ep;
6918         if (parent_effective > siblings_protected &&
6919             parent_usage > siblings_protected &&
6920             usage > protected) {
6921                 unsigned long unclaimed;
6922
6923                 unclaimed = parent_effective - siblings_protected;
6924                 unclaimed *= usage - protected;
6925                 unclaimed /= parent_usage - siblings_protected;
6926
6927                 ep += unclaimed;
6928         }
6929
6930         return ep;
6931 }
6932
6933 /**
6934  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6935  * @root: the top ancestor of the sub-tree being checked
6936  * @memcg: the memory cgroup to check
6937  *
6938  * WARNING: This function is not stateless! It can only be used as part
6939  *          of a top-down tree iteration, not for isolated queries.
6940  */
6941 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6942                                      struct mem_cgroup *memcg)
6943 {
6944         unsigned long usage, parent_usage;
6945         struct mem_cgroup *parent;
6946
6947         if (mem_cgroup_disabled())
6948                 return;
6949
6950         if (!root)
6951                 root = root_mem_cgroup;
6952
6953         /*
6954          * Effective values of the reclaim targets are ignored so they
6955          * can be stale. Have a look at mem_cgroup_protection for more
6956          * details.
6957          * TODO: calculation should be more robust so that we do not need
6958          * that special casing.
6959          */
6960         if (memcg == root)
6961                 return;
6962
6963         usage = page_counter_read(&memcg->memory);
6964         if (!usage)
6965                 return;
6966
6967         parent = parent_mem_cgroup(memcg);
6968
6969         if (parent == root) {
6970                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6971                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6972                 return;
6973         }
6974
6975         parent_usage = page_counter_read(&parent->memory);
6976
6977         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6978                         READ_ONCE(memcg->memory.min),
6979                         READ_ONCE(parent->memory.emin),
6980                         atomic_long_read(&parent->memory.children_min_usage)));
6981
6982         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6983                         READ_ONCE(memcg->memory.low),
6984                         READ_ONCE(parent->memory.elow),
6985                         atomic_long_read(&parent->memory.children_low_usage)));
6986 }
6987
6988 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6989                         gfp_t gfp)
6990 {
6991         long nr_pages = folio_nr_pages(folio);
6992         int ret;
6993
6994         ret = try_charge(memcg, gfp, nr_pages);
6995         if (ret)
6996                 goto out;
6997
6998         css_get(&memcg->css);
6999         commit_charge(folio, memcg);
7000
7001         local_irq_disable();
7002         mem_cgroup_charge_statistics(memcg, nr_pages);
7003         memcg_check_events(memcg, folio_nid(folio));
7004         local_irq_enable();
7005 out:
7006         return ret;
7007 }
7008
7009 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7010 {
7011         struct mem_cgroup *memcg;
7012         int ret;
7013
7014         memcg = get_mem_cgroup_from_mm(mm);
7015         ret = charge_memcg(folio, memcg, gfp);
7016         css_put(&memcg->css);
7017
7018         return ret;
7019 }
7020
7021 /**
7022  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7023  * @folio: folio to charge.
7024  * @mm: mm context of the victim
7025  * @gfp: reclaim mode
7026  * @entry: swap entry for which the folio is allocated
7027  *
7028  * This function charges a folio allocated for swapin. Please call this before
7029  * adding the folio to the swapcache.
7030  *
7031  * Returns 0 on success. Otherwise, an error code is returned.
7032  */
7033 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7034                                   gfp_t gfp, swp_entry_t entry)
7035 {
7036         struct mem_cgroup *memcg;
7037         unsigned short id;
7038         int ret;
7039
7040         if (mem_cgroup_disabled())
7041                 return 0;
7042
7043         id = lookup_swap_cgroup_id(entry);
7044         rcu_read_lock();
7045         memcg = mem_cgroup_from_id(id);
7046         if (!memcg || !css_tryget_online(&memcg->css))
7047                 memcg = get_mem_cgroup_from_mm(mm);
7048         rcu_read_unlock();
7049
7050         ret = charge_memcg(folio, memcg, gfp);
7051
7052         css_put(&memcg->css);
7053         return ret;
7054 }
7055
7056 /*
7057  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7058  * @entry: swap entry for which the page is charged
7059  *
7060  * Call this function after successfully adding the charged page to swapcache.
7061  *
7062  * Note: This function assumes the page for which swap slot is being uncharged
7063  * is order 0 page.
7064  */
7065 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7066 {
7067         /*
7068          * Cgroup1's unified memory+swap counter has been charged with the
7069          * new swapcache page, finish the transfer by uncharging the swap
7070          * slot. The swap slot would also get uncharged when it dies, but
7071          * it can stick around indefinitely and we'd count the page twice
7072          * the entire time.
7073          *
7074          * Cgroup2 has separate resource counters for memory and swap,
7075          * so this is a non-issue here. Memory and swap charge lifetimes
7076          * correspond 1:1 to page and swap slot lifetimes: we charge the
7077          * page to memory here, and uncharge swap when the slot is freed.
7078          */
7079         if (!mem_cgroup_disabled() && do_memsw_account()) {
7080                 /*
7081                  * The swap entry might not get freed for a long time,
7082                  * let's not wait for it.  The page already received a
7083                  * memory+swap charge, drop the swap entry duplicate.
7084                  */
7085                 mem_cgroup_uncharge_swap(entry, 1);
7086         }
7087 }
7088
7089 struct uncharge_gather {
7090         struct mem_cgroup *memcg;
7091         unsigned long nr_memory;
7092         unsigned long pgpgout;
7093         unsigned long nr_kmem;
7094         int nid;
7095 };
7096
7097 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7098 {
7099         memset(ug, 0, sizeof(*ug));
7100 }
7101
7102 static void uncharge_batch(const struct uncharge_gather *ug)
7103 {
7104         unsigned long flags;
7105
7106         if (ug->nr_memory) {
7107                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7108                 if (do_memsw_account())
7109                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7110                 if (ug->nr_kmem)
7111                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7112                 memcg_oom_recover(ug->memcg);
7113         }
7114
7115         local_irq_save(flags);
7116         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7117         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7118         memcg_check_events(ug->memcg, ug->nid);
7119         local_irq_restore(flags);
7120
7121         /* drop reference from uncharge_folio */
7122         css_put(&ug->memcg->css);
7123 }
7124
7125 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7126 {
7127         long nr_pages;
7128         struct mem_cgroup *memcg;
7129         struct obj_cgroup *objcg;
7130
7131         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7132
7133         /*
7134          * Nobody should be changing or seriously looking at
7135          * folio memcg or objcg at this point, we have fully
7136          * exclusive access to the folio.
7137          */
7138         if (folio_memcg_kmem(folio)) {
7139                 objcg = __folio_objcg(folio);
7140                 /*
7141                  * This get matches the put at the end of the function and
7142                  * kmem pages do not hold memcg references anymore.
7143                  */
7144                 memcg = get_mem_cgroup_from_objcg(objcg);
7145         } else {
7146                 memcg = __folio_memcg(folio);
7147         }
7148
7149         if (!memcg)
7150                 return;
7151
7152         if (ug->memcg != memcg) {
7153                 if (ug->memcg) {
7154                         uncharge_batch(ug);
7155                         uncharge_gather_clear(ug);
7156                 }
7157                 ug->memcg = memcg;
7158                 ug->nid = folio_nid(folio);
7159
7160                 /* pairs with css_put in uncharge_batch */
7161                 css_get(&memcg->css);
7162         }
7163
7164         nr_pages = folio_nr_pages(folio);
7165
7166         if (folio_memcg_kmem(folio)) {
7167                 ug->nr_memory += nr_pages;
7168                 ug->nr_kmem += nr_pages;
7169
7170                 folio->memcg_data = 0;
7171                 obj_cgroup_put(objcg);
7172         } else {
7173                 /* LRU pages aren't accounted at the root level */
7174                 if (!mem_cgroup_is_root(memcg))
7175                         ug->nr_memory += nr_pages;
7176                 ug->pgpgout++;
7177
7178                 folio->memcg_data = 0;
7179         }
7180
7181         css_put(&memcg->css);
7182 }
7183
7184 void __mem_cgroup_uncharge(struct folio *folio)
7185 {
7186         struct uncharge_gather ug;
7187
7188         /* Don't touch folio->lru of any random page, pre-check: */
7189         if (!folio_memcg(folio))
7190                 return;
7191
7192         uncharge_gather_clear(&ug);
7193         uncharge_folio(folio, &ug);
7194         uncharge_batch(&ug);
7195 }
7196
7197 /**
7198  * __mem_cgroup_uncharge_list - uncharge a list of page
7199  * @page_list: list of pages to uncharge
7200  *
7201  * Uncharge a list of pages previously charged with
7202  * __mem_cgroup_charge().
7203  */
7204 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7205 {
7206         struct uncharge_gather ug;
7207         struct folio *folio;
7208
7209         uncharge_gather_clear(&ug);
7210         list_for_each_entry(folio, page_list, lru)
7211                 uncharge_folio(folio, &ug);
7212         if (ug.memcg)
7213                 uncharge_batch(&ug);
7214 }
7215
7216 /**
7217  * mem_cgroup_migrate - Charge a folio's replacement.
7218  * @old: Currently circulating folio.
7219  * @new: Replacement folio.
7220  *
7221  * Charge @new as a replacement folio for @old. @old will
7222  * be uncharged upon free.
7223  *
7224  * Both folios must be locked, @new->mapping must be set up.
7225  */
7226 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7227 {
7228         struct mem_cgroup *memcg;
7229         long nr_pages = folio_nr_pages(new);
7230         unsigned long flags;
7231
7232         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7233         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7234         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7235         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7236
7237         if (mem_cgroup_disabled())
7238                 return;
7239
7240         /* Page cache replacement: new folio already charged? */
7241         if (folio_memcg(new))
7242                 return;
7243
7244         memcg = folio_memcg(old);
7245         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7246         if (!memcg)
7247                 return;
7248
7249         /* Force-charge the new page. The old one will be freed soon */
7250         if (!mem_cgroup_is_root(memcg)) {
7251                 page_counter_charge(&memcg->memory, nr_pages);
7252                 if (do_memsw_account())
7253                         page_counter_charge(&memcg->memsw, nr_pages);
7254         }
7255
7256         css_get(&memcg->css);
7257         commit_charge(new, memcg);
7258
7259         local_irq_save(flags);
7260         mem_cgroup_charge_statistics(memcg, nr_pages);
7261         memcg_check_events(memcg, folio_nid(new));
7262         local_irq_restore(flags);
7263 }
7264
7265 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7266 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7267
7268 void mem_cgroup_sk_alloc(struct sock *sk)
7269 {
7270         struct mem_cgroup *memcg;
7271
7272         if (!mem_cgroup_sockets_enabled)
7273                 return;
7274
7275         /* Do not associate the sock with unrelated interrupted task's memcg. */
7276         if (!in_task())
7277                 return;
7278
7279         rcu_read_lock();
7280         memcg = mem_cgroup_from_task(current);
7281         if (mem_cgroup_is_root(memcg))
7282                 goto out;
7283         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7284                 goto out;
7285         if (css_tryget(&memcg->css))
7286                 sk->sk_memcg = memcg;
7287 out:
7288         rcu_read_unlock();
7289 }
7290
7291 void mem_cgroup_sk_free(struct sock *sk)
7292 {
7293         if (sk->sk_memcg)
7294                 css_put(&sk->sk_memcg->css);
7295 }
7296
7297 /**
7298  * mem_cgroup_charge_skmem - charge socket memory
7299  * @memcg: memcg to charge
7300  * @nr_pages: number of pages to charge
7301  * @gfp_mask: reclaim mode
7302  *
7303  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7304  * @memcg's configured limit, %false if it doesn't.
7305  */
7306 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7307                              gfp_t gfp_mask)
7308 {
7309         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7310                 struct page_counter *fail;
7311
7312                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7313                         memcg->tcpmem_pressure = 0;
7314                         return true;
7315                 }
7316                 memcg->tcpmem_pressure = 1;
7317                 if (gfp_mask & __GFP_NOFAIL) {
7318                         page_counter_charge(&memcg->tcpmem, nr_pages);
7319                         return true;
7320                 }
7321                 return false;
7322         }
7323
7324         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7325                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7326                 return true;
7327         }
7328
7329         return false;
7330 }
7331
7332 /**
7333  * mem_cgroup_uncharge_skmem - uncharge socket memory
7334  * @memcg: memcg to uncharge
7335  * @nr_pages: number of pages to uncharge
7336  */
7337 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7338 {
7339         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7340                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7341                 return;
7342         }
7343
7344         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7345
7346         refill_stock(memcg, nr_pages);
7347 }
7348
7349 static int __init cgroup_memory(char *s)
7350 {
7351         char *token;
7352
7353         while ((token = strsep(&s, ",")) != NULL) {
7354                 if (!*token)
7355                         continue;
7356                 if (!strcmp(token, "nosocket"))
7357                         cgroup_memory_nosocket = true;
7358                 if (!strcmp(token, "nokmem"))
7359                         cgroup_memory_nokmem = true;
7360                 if (!strcmp(token, "nobpf"))
7361                         cgroup_memory_nobpf = true;
7362         }
7363         return 1;
7364 }
7365 __setup("cgroup.memory=", cgroup_memory);
7366
7367 /*
7368  * subsys_initcall() for memory controller.
7369  *
7370  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7371  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7372  * basically everything that doesn't depend on a specific mem_cgroup structure
7373  * should be initialized from here.
7374  */
7375 static int __init mem_cgroup_init(void)
7376 {
7377         int cpu, node;
7378
7379         /*
7380          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7381          * used for per-memcg-per-cpu caching of per-node statistics. In order
7382          * to work fine, we should make sure that the overfill threshold can't
7383          * exceed S32_MAX / PAGE_SIZE.
7384          */
7385         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7386
7387         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7388                                   memcg_hotplug_cpu_dead);
7389
7390         for_each_possible_cpu(cpu)
7391                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7392                           drain_local_stock);
7393
7394         for_each_node(node) {
7395                 struct mem_cgroup_tree_per_node *rtpn;
7396
7397                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7398                                     node_online(node) ? node : NUMA_NO_NODE);
7399
7400                 rtpn->rb_root = RB_ROOT;
7401                 rtpn->rb_rightmost = NULL;
7402                 spin_lock_init(&rtpn->lock);
7403                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7404         }
7405
7406         return 0;
7407 }
7408 subsys_initcall(mem_cgroup_init);
7409
7410 #ifdef CONFIG_SWAP
7411 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7412 {
7413         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7414                 /*
7415                  * The root cgroup cannot be destroyed, so it's refcount must
7416                  * always be >= 1.
7417                  */
7418                 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7419                         VM_BUG_ON(1);
7420                         break;
7421                 }
7422                 memcg = parent_mem_cgroup(memcg);
7423                 if (!memcg)
7424                         memcg = root_mem_cgroup;
7425         }
7426         return memcg;
7427 }
7428
7429 /**
7430  * mem_cgroup_swapout - transfer a memsw charge to swap
7431  * @folio: folio whose memsw charge to transfer
7432  * @entry: swap entry to move the charge to
7433  *
7434  * Transfer the memsw charge of @folio to @entry.
7435  */
7436 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7437 {
7438         struct mem_cgroup *memcg, *swap_memcg;
7439         unsigned int nr_entries;
7440         unsigned short oldid;
7441
7442         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7443         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7444
7445         if (mem_cgroup_disabled())
7446                 return;
7447
7448         if (!do_memsw_account())
7449                 return;
7450
7451         memcg = folio_memcg(folio);
7452
7453         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7454         if (!memcg)
7455                 return;
7456
7457         /*
7458          * In case the memcg owning these pages has been offlined and doesn't
7459          * have an ID allocated to it anymore, charge the closest online
7460          * ancestor for the swap instead and transfer the memory+swap charge.
7461          */
7462         swap_memcg = mem_cgroup_id_get_online(memcg);
7463         nr_entries = folio_nr_pages(folio);
7464         /* Get references for the tail pages, too */
7465         if (nr_entries > 1)
7466                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7467         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7468                                    nr_entries);
7469         VM_BUG_ON_FOLIO(oldid, folio);
7470         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7471
7472         folio->memcg_data = 0;
7473
7474         if (!mem_cgroup_is_root(memcg))
7475                 page_counter_uncharge(&memcg->memory, nr_entries);
7476
7477         if (memcg != swap_memcg) {
7478                 if (!mem_cgroup_is_root(swap_memcg))
7479                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7480                 page_counter_uncharge(&memcg->memsw, nr_entries);
7481         }
7482
7483         /*
7484          * Interrupts should be disabled here because the caller holds the
7485          * i_pages lock which is taken with interrupts-off. It is
7486          * important here to have the interrupts disabled because it is the
7487          * only synchronisation we have for updating the per-CPU variables.
7488          */
7489         memcg_stats_lock();
7490         mem_cgroup_charge_statistics(memcg, -nr_entries);
7491         memcg_stats_unlock();
7492         memcg_check_events(memcg, folio_nid(folio));
7493
7494         css_put(&memcg->css);
7495 }
7496
7497 /**
7498  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7499  * @folio: folio being added to swap
7500  * @entry: swap entry to charge
7501  *
7502  * Try to charge @folio's memcg for the swap space at @entry.
7503  *
7504  * Returns 0 on success, -ENOMEM on failure.
7505  */
7506 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7507 {
7508         unsigned int nr_pages = folio_nr_pages(folio);
7509         struct page_counter *counter;
7510         struct mem_cgroup *memcg;
7511         unsigned short oldid;
7512
7513         if (do_memsw_account())
7514                 return 0;
7515
7516         memcg = folio_memcg(folio);
7517
7518         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7519         if (!memcg)
7520                 return 0;
7521
7522         if (!entry.val) {
7523                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7524                 return 0;
7525         }
7526
7527         memcg = mem_cgroup_id_get_online(memcg);
7528
7529         if (!mem_cgroup_is_root(memcg) &&
7530             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7531                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7532                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7533                 mem_cgroup_id_put(memcg);
7534                 return -ENOMEM;
7535         }
7536
7537         /* Get references for the tail pages, too */
7538         if (nr_pages > 1)
7539                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7540         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7541         VM_BUG_ON_FOLIO(oldid, folio);
7542         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7543
7544         return 0;
7545 }
7546
7547 /**
7548  * __mem_cgroup_uncharge_swap - uncharge swap space
7549  * @entry: swap entry to uncharge
7550  * @nr_pages: the amount of swap space to uncharge
7551  */
7552 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7553 {
7554         struct mem_cgroup *memcg;
7555         unsigned short id;
7556
7557         if (mem_cgroup_disabled())
7558                 return;
7559
7560         id = swap_cgroup_record(entry, 0, nr_pages);
7561         rcu_read_lock();
7562         memcg = mem_cgroup_from_id(id);
7563         if (memcg) {
7564                 if (!mem_cgroup_is_root(memcg)) {
7565                         if (do_memsw_account())
7566                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7567                         else
7568                                 page_counter_uncharge(&memcg->swap, nr_pages);
7569                 }
7570                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7571                 mem_cgroup_id_put_many(memcg, nr_pages);
7572         }
7573         rcu_read_unlock();
7574 }
7575
7576 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7577 {
7578         long nr_swap_pages = get_nr_swap_pages();
7579
7580         if (mem_cgroup_disabled() || do_memsw_account())
7581                 return nr_swap_pages;
7582         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7583                 nr_swap_pages = min_t(long, nr_swap_pages,
7584                                       READ_ONCE(memcg->swap.max) -
7585                                       page_counter_read(&memcg->swap));
7586         return nr_swap_pages;
7587 }
7588
7589 bool mem_cgroup_swap_full(struct folio *folio)
7590 {
7591         struct mem_cgroup *memcg;
7592
7593         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7594
7595         if (vm_swap_full())
7596                 return true;
7597         if (do_memsw_account())
7598                 return false;
7599
7600         memcg = folio_memcg(folio);
7601         if (!memcg)
7602                 return false;
7603
7604         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7605                 unsigned long usage = page_counter_read(&memcg->swap);
7606
7607                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7608                     usage * 2 >= READ_ONCE(memcg->swap.max))
7609                         return true;
7610         }
7611
7612         return false;
7613 }
7614
7615 static int __init setup_swap_account(char *s)
7616 {
7617         pr_warn_once("The swapaccount= commandline option is deprecated. "
7618                      "Please report your usecase to linux-mm@kvack.org if you "
7619                      "depend on this functionality.\n");
7620         return 1;
7621 }
7622 __setup("swapaccount=", setup_swap_account);
7623
7624 static u64 swap_current_read(struct cgroup_subsys_state *css,
7625                              struct cftype *cft)
7626 {
7627         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7628
7629         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7630 }
7631
7632 static int swap_high_show(struct seq_file *m, void *v)
7633 {
7634         return seq_puts_memcg_tunable(m,
7635                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7636 }
7637
7638 static ssize_t swap_high_write(struct kernfs_open_file *of,
7639                                char *buf, size_t nbytes, loff_t off)
7640 {
7641         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7642         unsigned long high;
7643         int err;
7644
7645         buf = strstrip(buf);
7646         err = page_counter_memparse(buf, "max", &high);
7647         if (err)
7648                 return err;
7649
7650         page_counter_set_high(&memcg->swap, high);
7651
7652         return nbytes;
7653 }
7654
7655 static int swap_max_show(struct seq_file *m, void *v)
7656 {
7657         return seq_puts_memcg_tunable(m,
7658                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7659 }
7660
7661 static ssize_t swap_max_write(struct kernfs_open_file *of,
7662                               char *buf, size_t nbytes, loff_t off)
7663 {
7664         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7665         unsigned long max;
7666         int err;
7667
7668         buf = strstrip(buf);
7669         err = page_counter_memparse(buf, "max", &max);
7670         if (err)
7671                 return err;
7672
7673         xchg(&memcg->swap.max, max);
7674
7675         return nbytes;
7676 }
7677
7678 static int swap_events_show(struct seq_file *m, void *v)
7679 {
7680         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7681
7682         seq_printf(m, "high %lu\n",
7683                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7684         seq_printf(m, "max %lu\n",
7685                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7686         seq_printf(m, "fail %lu\n",
7687                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7688
7689         return 0;
7690 }
7691
7692 static struct cftype swap_files[] = {
7693         {
7694                 .name = "swap.current",
7695                 .flags = CFTYPE_NOT_ON_ROOT,
7696                 .read_u64 = swap_current_read,
7697         },
7698         {
7699                 .name = "swap.high",
7700                 .flags = CFTYPE_NOT_ON_ROOT,
7701                 .seq_show = swap_high_show,
7702                 .write = swap_high_write,
7703         },
7704         {
7705                 .name = "swap.max",
7706                 .flags = CFTYPE_NOT_ON_ROOT,
7707                 .seq_show = swap_max_show,
7708                 .write = swap_max_write,
7709         },
7710         {
7711                 .name = "swap.events",
7712                 .flags = CFTYPE_NOT_ON_ROOT,
7713                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7714                 .seq_show = swap_events_show,
7715         },
7716         { }     /* terminate */
7717 };
7718
7719 static struct cftype memsw_files[] = {
7720         {
7721                 .name = "memsw.usage_in_bytes",
7722                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7723                 .read_u64 = mem_cgroup_read_u64,
7724         },
7725         {
7726                 .name = "memsw.max_usage_in_bytes",
7727                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7728                 .write = mem_cgroup_reset,
7729                 .read_u64 = mem_cgroup_read_u64,
7730         },
7731         {
7732                 .name = "memsw.limit_in_bytes",
7733                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7734                 .write = mem_cgroup_write,
7735                 .read_u64 = mem_cgroup_read_u64,
7736         },
7737         {
7738                 .name = "memsw.failcnt",
7739                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7740                 .write = mem_cgroup_reset,
7741                 .read_u64 = mem_cgroup_read_u64,
7742         },
7743         { },    /* terminate */
7744 };
7745
7746 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7747 /**
7748  * obj_cgroup_may_zswap - check if this cgroup can zswap
7749  * @objcg: the object cgroup
7750  *
7751  * Check if the hierarchical zswap limit has been reached.
7752  *
7753  * This doesn't check for specific headroom, and it is not atomic
7754  * either. But with zswap, the size of the allocation is only known
7755  * once compression has occured, and this optimistic pre-check avoids
7756  * spending cycles on compression when there is already no room left
7757  * or zswap is disabled altogether somewhere in the hierarchy.
7758  */
7759 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7760 {
7761         struct mem_cgroup *memcg, *original_memcg;
7762         bool ret = true;
7763
7764         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7765                 return true;
7766
7767         original_memcg = get_mem_cgroup_from_objcg(objcg);
7768         for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7769              memcg = parent_mem_cgroup(memcg)) {
7770                 unsigned long max = READ_ONCE(memcg->zswap_max);
7771                 unsigned long pages;
7772
7773                 if (max == PAGE_COUNTER_MAX)
7774                         continue;
7775                 if (max == 0) {
7776                         ret = false;
7777                         break;
7778                 }
7779
7780                 cgroup_rstat_flush(memcg->css.cgroup);
7781                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7782                 if (pages < max)
7783                         continue;
7784                 ret = false;
7785                 break;
7786         }
7787         mem_cgroup_put(original_memcg);
7788         return ret;
7789 }
7790
7791 /**
7792  * obj_cgroup_charge_zswap - charge compression backend memory
7793  * @objcg: the object cgroup
7794  * @size: size of compressed object
7795  *
7796  * This forces the charge after obj_cgroup_may_swap() allowed
7797  * compression and storage in zwap for this cgroup to go ahead.
7798  */
7799 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7800 {
7801         struct mem_cgroup *memcg;
7802
7803         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7804                 return;
7805
7806         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7807
7808         /* PF_MEMALLOC context, charging must succeed */
7809         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7810                 VM_WARN_ON_ONCE(1);
7811
7812         rcu_read_lock();
7813         memcg = obj_cgroup_memcg(objcg);
7814         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7815         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7816         rcu_read_unlock();
7817 }
7818
7819 /**
7820  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7821  * @objcg: the object cgroup
7822  * @size: size of compressed object
7823  *
7824  * Uncharges zswap memory on page in.
7825  */
7826 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7827 {
7828         struct mem_cgroup *memcg;
7829
7830         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7831                 return;
7832
7833         obj_cgroup_uncharge(objcg, size);
7834
7835         rcu_read_lock();
7836         memcg = obj_cgroup_memcg(objcg);
7837         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7838         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7839         rcu_read_unlock();
7840 }
7841
7842 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7843                               struct cftype *cft)
7844 {
7845         cgroup_rstat_flush(css->cgroup);
7846         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7847 }
7848
7849 static int zswap_max_show(struct seq_file *m, void *v)
7850 {
7851         return seq_puts_memcg_tunable(m,
7852                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7853 }
7854
7855 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7856                                char *buf, size_t nbytes, loff_t off)
7857 {
7858         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7859         unsigned long max;
7860         int err;
7861
7862         buf = strstrip(buf);
7863         err = page_counter_memparse(buf, "max", &max);
7864         if (err)
7865                 return err;
7866
7867         xchg(&memcg->zswap_max, max);
7868
7869         return nbytes;
7870 }
7871
7872 static struct cftype zswap_files[] = {
7873         {
7874                 .name = "zswap.current",
7875                 .flags = CFTYPE_NOT_ON_ROOT,
7876                 .read_u64 = zswap_current_read,
7877         },
7878         {
7879                 .name = "zswap.max",
7880                 .flags = CFTYPE_NOT_ON_ROOT,
7881                 .seq_show = zswap_max_show,
7882                 .write = zswap_max_write,
7883         },
7884         { }     /* terminate */
7885 };
7886 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7887
7888 static int __init mem_cgroup_swap_init(void)
7889 {
7890         if (mem_cgroup_disabled())
7891                 return 0;
7892
7893         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7894         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7895 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7896         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7897 #endif
7898         return 0;
7899 }
7900 subsys_initcall(mem_cgroup_swap_init);
7901
7902 #endif /* CONFIG_SWAP */