1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 #include <linux/mutex.h>
21 #ifdef CONFIG_KEXEC_HANDOVER
22 #include <linux/libfdt.h>
23 #include <linux/kexec_handover.h>
24 #endif /* CONFIG_KEXEC_HANDOVER */
26 #include <asm/sections.h>
31 #define INIT_MEMBLOCK_REGIONS 128
32 #define INIT_PHYSMEM_REGIONS 4
34 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
35 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
38 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
39 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
43 * DOC: memblock overview
45 * Memblock is a method of managing memory regions during the early
46 * boot period when the usual kernel memory allocators are not up and
49 * Memblock views the system memory as collections of contiguous
50 * regions. There are several types of these collections:
52 * * ``memory`` - describes the physical memory available to the
53 * kernel; this may differ from the actual physical memory installed
54 * in the system, for instance when the memory is restricted with
55 * ``mem=`` command line parameter
56 * * ``reserved`` - describes the regions that were allocated
57 * * ``physmem`` - describes the actual physical memory available during
58 * boot regardless of the possible restrictions and memory hot(un)plug;
59 * the ``physmem`` type is only available on some architectures.
61 * Each region is represented by struct memblock_region that
62 * defines the region extents, its attributes and NUMA node id on NUMA
63 * systems. Every memory type is described by the struct memblock_type
64 * which contains an array of memory regions along with
65 * the allocator metadata. The "memory" and "reserved" types are nicely
66 * wrapped with struct memblock. This structure is statically
67 * initialized at build time. The region arrays are initially sized to
68 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
69 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
70 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
71 * The memblock_allow_resize() enables automatic resizing of the region
72 * arrays during addition of new regions. This feature should be used
73 * with care so that memory allocated for the region array will not
74 * overlap with areas that should be reserved, for example initrd.
76 * The early architecture setup should tell memblock what the physical
77 * memory layout is by using memblock_add() or memblock_add_node()
78 * functions. The first function does not assign the region to a NUMA
79 * node and it is appropriate for UMA systems. Yet, it is possible to
80 * use it on NUMA systems as well and assign the region to a NUMA node
81 * later in the setup process using memblock_set_node(). The
82 * memblock_add_node() performs such an assignment directly.
84 * Once memblock is setup the memory can be allocated using one of the
87 * * memblock_phys_alloc*() - these functions return the **physical**
88 * address of the allocated memory
89 * * memblock_alloc*() - these functions return the **virtual** address
90 * of the allocated memory.
92 * Note, that both API variants use implicit assumptions about allowed
93 * memory ranges and the fallback methods. Consult the documentation
94 * of memblock_alloc_internal() and memblock_alloc_range_nid()
95 * functions for more elaborate description.
97 * As the system boot progresses, the architecture specific mem_init()
98 * function frees all the memory to the buddy page allocator.
100 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
101 * memblock data structures (except "physmem") will be discarded after the
102 * system initialization completes.
106 struct pglist_data __refdata contig_page_data;
107 EXPORT_SYMBOL(contig_page_data);
110 unsigned long max_low_pfn;
111 unsigned long min_low_pfn;
112 unsigned long max_pfn;
113 unsigned long long max_possible_pfn;
115 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
116 /* When set to true, only allocate from MEMBLOCK_KHO_SCRATCH ranges */
117 static bool kho_scratch_only;
119 #define kho_scratch_only false
122 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
123 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
124 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
125 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
128 struct memblock memblock __initdata_memblock = {
129 .memory.regions = memblock_memory_init_regions,
130 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
131 .memory.name = "memory",
133 .reserved.regions = memblock_reserved_init_regions,
134 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
135 .reserved.name = "reserved",
138 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
141 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
142 struct memblock_type physmem = {
143 .regions = memblock_physmem_init_regions,
144 .max = INIT_PHYSMEM_REGIONS,
150 * keep a pointer to &memblock.memory in the text section to use it in
151 * __next_mem_range() and its helpers.
152 * For architectures that do not keep memblock data after init, this
153 * pointer will be reset to NULL at memblock_discard()
155 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
157 #define for_each_memblock_type(i, memblock_type, rgn) \
158 for (i = 0, rgn = &memblock_type->regions[0]; \
159 i < memblock_type->cnt; \
160 i++, rgn = &memblock_type->regions[i])
162 #define memblock_dbg(fmt, ...) \
164 if (memblock_debug) \
165 pr_info(fmt, ##__VA_ARGS__); \
168 static int memblock_debug __initdata_memblock;
169 static bool system_has_some_mirror __initdata_memblock;
170 static int memblock_can_resize __initdata_memblock;
171 static int memblock_memory_in_slab __initdata_memblock;
172 static int memblock_reserved_in_slab __initdata_memblock;
174 bool __init_memblock memblock_has_mirror(void)
176 return system_has_some_mirror;
179 static enum memblock_flags __init_memblock choose_memblock_flags(void)
181 /* skip non-scratch memory for kho early boot allocations */
182 if (kho_scratch_only)
183 return MEMBLOCK_KHO_SCRATCH;
185 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
188 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
189 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
191 return *size = min(*size, PHYS_ADDR_MAX - base);
195 * Address comparison utilities
197 unsigned long __init_memblock
198 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
201 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
204 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
205 phys_addr_t base, phys_addr_t size)
209 memblock_cap_size(base, &size);
211 for (i = 0; i < type->cnt; i++)
212 if (memblock_addrs_overlap(base, size, type->regions[i].base,
213 type->regions[i].size))
219 * __memblock_find_range_bottom_up - find free area utility in bottom-up
220 * @start: start of candidate range
221 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
222 * %MEMBLOCK_ALLOC_ACCESSIBLE
223 * @size: size of free area to find
224 * @align: alignment of free area to find
225 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
226 * @flags: pick from blocks based on memory attributes
228 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
231 * Found address on success, 0 on failure.
233 static phys_addr_t __init_memblock
234 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
235 phys_addr_t size, phys_addr_t align, int nid,
236 enum memblock_flags flags)
238 phys_addr_t this_start, this_end, cand;
241 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
242 this_start = clamp(this_start, start, end);
243 this_end = clamp(this_end, start, end);
245 cand = round_up(this_start, align);
246 if (cand < this_end && this_end - cand >= size)
254 * __memblock_find_range_top_down - find free area utility, in top-down
255 * @start: start of candidate range
256 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
257 * %MEMBLOCK_ALLOC_ACCESSIBLE
258 * @size: size of free area to find
259 * @align: alignment of free area to find
260 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
261 * @flags: pick from blocks based on memory attributes
263 * Utility called from memblock_find_in_range_node(), find free area top-down.
266 * Found address on success, 0 on failure.
268 static phys_addr_t __init_memblock
269 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
270 phys_addr_t size, phys_addr_t align, int nid,
271 enum memblock_flags flags)
273 phys_addr_t this_start, this_end, cand;
276 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
278 this_start = clamp(this_start, start, end);
279 this_end = clamp(this_end, start, end);
284 cand = round_down(this_end - size, align);
285 if (cand >= this_start)
293 * memblock_find_in_range_node - find free area in given range and node
294 * @size: size of free area to find
295 * @align: alignment of free area to find
296 * @start: start of candidate range
297 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
298 * %MEMBLOCK_ALLOC_ACCESSIBLE
299 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
300 * @flags: pick from blocks based on memory attributes
302 * Find @size free area aligned to @align in the specified range and node.
305 * Found address on success, 0 on failure.
307 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
308 phys_addr_t align, phys_addr_t start,
309 phys_addr_t end, int nid,
310 enum memblock_flags flags)
313 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
314 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
315 end = memblock.current_limit;
317 /* avoid allocating the first page */
318 start = max_t(phys_addr_t, start, PAGE_SIZE);
319 end = max(start, end);
321 if (memblock_bottom_up())
322 return __memblock_find_range_bottom_up(start, end, size, align,
325 return __memblock_find_range_top_down(start, end, size, align,
330 * memblock_find_in_range - find free area in given range
331 * @start: start of candidate range
332 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
333 * %MEMBLOCK_ALLOC_ACCESSIBLE
334 * @size: size of free area to find
335 * @align: alignment of free area to find
337 * Find @size free area aligned to @align in the specified range.
340 * Found address on success, 0 on failure.
342 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
343 phys_addr_t end, phys_addr_t size,
347 enum memblock_flags flags = choose_memblock_flags();
350 ret = memblock_find_in_range_node(size, align, start, end,
351 NUMA_NO_NODE, flags);
353 if (!ret && (flags & MEMBLOCK_MIRROR)) {
354 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
356 flags &= ~MEMBLOCK_MIRROR;
363 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
365 type->total_size -= type->regions[r].size;
366 memmove(&type->regions[r], &type->regions[r + 1],
367 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
370 /* Special case for empty arrays */
371 if (type->cnt == 0) {
372 WARN_ON(type->total_size != 0);
373 type->regions[0].base = 0;
374 type->regions[0].size = 0;
375 type->regions[0].flags = 0;
376 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
380 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
382 * memblock_discard - discard memory and reserved arrays if they were allocated
384 void __init memblock_discard(void)
386 phys_addr_t addr, size;
388 if (memblock.reserved.regions != memblock_reserved_init_regions) {
389 addr = __pa(memblock.reserved.regions);
390 size = PAGE_ALIGN(sizeof(struct memblock_region) *
391 memblock.reserved.max);
392 if (memblock_reserved_in_slab)
393 kfree(memblock.reserved.regions);
395 memblock_free_late(addr, size);
398 if (memblock.memory.regions != memblock_memory_init_regions) {
399 addr = __pa(memblock.memory.regions);
400 size = PAGE_ALIGN(sizeof(struct memblock_region) *
401 memblock.memory.max);
402 if (memblock_memory_in_slab)
403 kfree(memblock.memory.regions);
405 memblock_free_late(addr, size);
408 memblock_memory = NULL;
413 * memblock_double_array - double the size of the memblock regions array
414 * @type: memblock type of the regions array being doubled
415 * @new_area_start: starting address of memory range to avoid overlap with
416 * @new_area_size: size of memory range to avoid overlap with
418 * Double the size of the @type regions array. If memblock is being used to
419 * allocate memory for a new reserved regions array and there is a previously
420 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
421 * waiting to be reserved, ensure the memory used by the new array does
425 * 0 on success, -1 on failure.
427 static int __init_memblock memblock_double_array(struct memblock_type *type,
428 phys_addr_t new_area_start,
429 phys_addr_t new_area_size)
431 struct memblock_region *new_array, *old_array;
432 phys_addr_t old_alloc_size, new_alloc_size;
433 phys_addr_t old_size, new_size, addr, new_end;
434 int use_slab = slab_is_available();
437 /* We don't allow resizing until we know about the reserved regions
438 * of memory that aren't suitable for allocation
440 if (!memblock_can_resize)
441 panic("memblock: cannot resize %s array\n", type->name);
443 /* Calculate new doubled size */
444 old_size = type->max * sizeof(struct memblock_region);
445 new_size = old_size << 1;
447 * We need to allocated new one align to PAGE_SIZE,
448 * so we can free them completely later.
450 old_alloc_size = PAGE_ALIGN(old_size);
451 new_alloc_size = PAGE_ALIGN(new_size);
453 /* Retrieve the slab flag */
454 if (type == &memblock.memory)
455 in_slab = &memblock_memory_in_slab;
457 in_slab = &memblock_reserved_in_slab;
459 /* Try to find some space for it */
461 new_array = kmalloc(new_size, GFP_KERNEL);
462 addr = new_array ? __pa(new_array) : 0;
464 /* only exclude range when trying to double reserved.regions */
465 if (type != &memblock.reserved)
466 new_area_start = new_area_size = 0;
468 addr = memblock_find_in_range(new_area_start + new_area_size,
469 memblock.current_limit,
470 new_alloc_size, PAGE_SIZE);
471 if (!addr && new_area_size)
472 addr = memblock_find_in_range(0,
473 min(new_area_start, memblock.current_limit),
474 new_alloc_size, PAGE_SIZE);
477 /* The memory may not have been accepted, yet. */
478 accept_memory(addr, new_alloc_size);
480 new_array = __va(addr);
486 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
487 type->name, type->max, type->max * 2);
491 new_end = addr + new_size - 1;
492 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
493 type->name, type->max * 2, &addr, &new_end);
496 * Found space, we now need to move the array over before we add the
497 * reserved region since it may be our reserved array itself that is
500 memcpy(new_array, type->regions, old_size);
501 memset(new_array + type->max, 0, old_size);
502 old_array = type->regions;
503 type->regions = new_array;
506 /* Free old array. We needn't free it if the array is the static one */
509 else if (old_array != memblock_memory_init_regions &&
510 old_array != memblock_reserved_init_regions)
511 memblock_free(old_array, old_alloc_size);
514 * Reserve the new array if that comes from the memblock. Otherwise, we
518 BUG_ON(memblock_reserve_kern(addr, new_alloc_size));
520 /* Update slab flag */
527 * memblock_merge_regions - merge neighboring compatible regions
528 * @type: memblock type to scan
529 * @start_rgn: start scanning from (@start_rgn - 1)
530 * @end_rgn: end scanning at (@end_rgn - 1)
531 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
533 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
534 unsigned long start_rgn,
535 unsigned long end_rgn)
540 end_rgn = min(end_rgn, type->cnt - 1);
541 while (i < end_rgn) {
542 struct memblock_region *this = &type->regions[i];
543 struct memblock_region *next = &type->regions[i + 1];
545 if (this->base + this->size != next->base ||
546 memblock_get_region_node(this) !=
547 memblock_get_region_node(next) ||
548 this->flags != next->flags) {
549 BUG_ON(this->base + this->size > next->base);
554 this->size += next->size;
555 /* move forward from next + 1, index of which is i + 2 */
556 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
563 * memblock_insert_region - insert new memblock region
564 * @type: memblock type to insert into
565 * @idx: index for the insertion point
566 * @base: base address of the new region
567 * @size: size of the new region
568 * @nid: node id of the new region
569 * @flags: flags of the new region
571 * Insert new memblock region [@base, @base + @size) into @type at @idx.
572 * @type must already have extra room to accommodate the new region.
574 static void __init_memblock memblock_insert_region(struct memblock_type *type,
575 int idx, phys_addr_t base,
578 enum memblock_flags flags)
580 struct memblock_region *rgn = &type->regions[idx];
582 BUG_ON(type->cnt >= type->max);
583 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
587 memblock_set_region_node(rgn, nid);
589 type->total_size += size;
593 * memblock_add_range - add new memblock region
594 * @type: memblock type to add new region into
595 * @base: base address of the new region
596 * @size: size of the new region
597 * @nid: nid of the new region
598 * @flags: flags of the new region
600 * Add new memblock region [@base, @base + @size) into @type. The new region
601 * is allowed to overlap with existing ones - overlaps don't affect already
602 * existing regions. @type is guaranteed to be minimal (all neighbouring
603 * compatible regions are merged) after the addition.
606 * 0 on success, -errno on failure.
608 static int __init_memblock memblock_add_range(struct memblock_type *type,
609 phys_addr_t base, phys_addr_t size,
610 int nid, enum memblock_flags flags)
613 phys_addr_t obase = base;
614 phys_addr_t end = base + memblock_cap_size(base, &size);
615 int idx, nr_new, start_rgn = -1, end_rgn;
616 struct memblock_region *rgn;
621 /* special case for empty array */
622 if (type->regions[0].size == 0) {
623 WARN_ON(type->cnt != 0 || type->total_size);
624 type->regions[0].base = base;
625 type->regions[0].size = size;
626 type->regions[0].flags = flags;
627 memblock_set_region_node(&type->regions[0], nid);
628 type->total_size = size;
634 * The worst case is when new range overlaps all existing regions,
635 * then we'll need type->cnt + 1 empty regions in @type. So if
636 * type->cnt * 2 + 1 is less than or equal to type->max, we know
637 * that there is enough empty regions in @type, and we can insert
640 if (type->cnt * 2 + 1 <= type->max)
645 * The following is executed twice. Once with %false @insert and
646 * then with %true. The first counts the number of regions needed
647 * to accommodate the new area. The second actually inserts them.
652 for_each_memblock_type(idx, type, rgn) {
653 phys_addr_t rbase = rgn->base;
654 phys_addr_t rend = rbase + rgn->size;
661 * @rgn overlaps. If it separates the lower part of new
662 * area, insert that portion.
666 WARN_ON(nid != memblock_get_region_node(rgn));
668 WARN_ON(flags != MEMBLOCK_NONE && flags != rgn->flags);
674 memblock_insert_region(type, idx++, base,
679 /* area below @rend is dealt with, forget about it */
680 base = min(rend, end);
683 /* insert the remaining portion */
690 memblock_insert_region(type, idx, base, end - base,
699 * If this was the first round, resize array and repeat for actual
700 * insertions; otherwise, merge and return.
703 while (type->cnt + nr_new > type->max)
704 if (memblock_double_array(type, obase, size) < 0)
709 memblock_merge_regions(type, start_rgn, end_rgn);
715 * memblock_add_node - add new memblock region within a NUMA node
716 * @base: base address of the new region
717 * @size: size of the new region
718 * @nid: nid of the new region
719 * @flags: flags of the new region
721 * Add new memblock region [@base, @base + @size) to the "memory"
722 * type. See memblock_add_range() description for mode details
725 * 0 on success, -errno on failure.
727 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
728 int nid, enum memblock_flags flags)
730 phys_addr_t end = base + size - 1;
732 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
733 &base, &end, nid, flags, (void *)_RET_IP_);
735 return memblock_add_range(&memblock.memory, base, size, nid, flags);
739 * memblock_add - add new memblock region
740 * @base: base address of the new region
741 * @size: size of the new region
743 * Add new memblock region [@base, @base + @size) to the "memory"
744 * type. See memblock_add_range() description for mode details
747 * 0 on success, -errno on failure.
749 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
751 phys_addr_t end = base + size - 1;
753 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
754 &base, &end, (void *)_RET_IP_);
756 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
760 * memblock_validate_numa_coverage - check if amount of memory with
761 * no node ID assigned is less than a threshold
762 * @threshold_bytes: maximal memory size that can have unassigned node
765 * A buggy firmware may report memory that does not belong to any node.
766 * Check if amount of such memory is below @threshold_bytes.
768 * Return: true on success, false on failure.
770 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
772 unsigned long nr_pages = 0;
773 unsigned long start_pfn, end_pfn, mem_size_mb;
776 /* calculate lose page */
777 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
778 if (!numa_valid_node(nid))
779 nr_pages += end_pfn - start_pfn;
782 if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
783 mem_size_mb = memblock_phys_mem_size() >> 20;
784 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
785 (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
794 * memblock_isolate_range - isolate given range into disjoint memblocks
795 * @type: memblock type to isolate range for
796 * @base: base of range to isolate
797 * @size: size of range to isolate
798 * @start_rgn: out parameter for the start of isolated region
799 * @end_rgn: out parameter for the end of isolated region
801 * Walk @type and ensure that regions don't cross the boundaries defined by
802 * [@base, @base + @size). Crossing regions are split at the boundaries,
803 * which may create at most two more regions. The index of the first
804 * region inside the range is returned in *@start_rgn and the index of the
805 * first region after the range is returned in *@end_rgn.
808 * 0 on success, -errno on failure.
810 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
811 phys_addr_t base, phys_addr_t size,
812 int *start_rgn, int *end_rgn)
814 phys_addr_t end = base + memblock_cap_size(base, &size);
816 struct memblock_region *rgn;
818 *start_rgn = *end_rgn = 0;
823 /* we'll create at most two more regions */
824 while (type->cnt + 2 > type->max)
825 if (memblock_double_array(type, base, size) < 0)
828 for_each_memblock_type(idx, type, rgn) {
829 phys_addr_t rbase = rgn->base;
830 phys_addr_t rend = rbase + rgn->size;
839 * @rgn intersects from below. Split and continue
840 * to process the next region - the new top half.
843 rgn->size -= base - rbase;
844 type->total_size -= base - rbase;
845 memblock_insert_region(type, idx, rbase, base - rbase,
846 memblock_get_region_node(rgn),
848 } else if (rend > end) {
850 * @rgn intersects from above. Split and redo the
851 * current region - the new bottom half.
854 rgn->size -= end - rbase;
855 type->total_size -= end - rbase;
856 memblock_insert_region(type, idx--, rbase, end - rbase,
857 memblock_get_region_node(rgn),
860 /* @rgn is fully contained, record it */
870 static int __init_memblock memblock_remove_range(struct memblock_type *type,
871 phys_addr_t base, phys_addr_t size)
873 int start_rgn, end_rgn;
876 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
880 for (i = end_rgn - 1; i >= start_rgn; i--)
881 memblock_remove_region(type, i);
885 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
887 phys_addr_t end = base + size - 1;
889 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
890 &base, &end, (void *)_RET_IP_);
892 return memblock_remove_range(&memblock.memory, base, size);
896 * memblock_free - free boot memory allocation
897 * @ptr: starting address of the boot memory allocation
898 * @size: size of the boot memory block in bytes
900 * Free boot memory block previously allocated by memblock_alloc_xx() API.
901 * The freeing memory will not be released to the buddy allocator.
903 void __init_memblock memblock_free(void *ptr, size_t size)
906 memblock_phys_free(__pa(ptr), size);
910 * memblock_phys_free - free boot memory block
911 * @base: phys starting address of the boot memory block
912 * @size: size of the boot memory block in bytes
914 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
915 * The freeing memory will not be released to the buddy allocator.
917 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
919 phys_addr_t end = base + size - 1;
921 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922 &base, &end, (void *)_RET_IP_);
924 kmemleak_free_part_phys(base, size);
925 return memblock_remove_range(&memblock.reserved, base, size);
928 int __init_memblock __memblock_reserve(phys_addr_t base, phys_addr_t size,
929 int nid, enum memblock_flags flags)
931 phys_addr_t end = base + size - 1;
933 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
934 &base, &end, nid, flags, (void *)_RET_IP_);
936 return memblock_add_range(&memblock.reserved, base, size, nid, flags);
939 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
940 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
942 phys_addr_t end = base + size - 1;
944 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
945 &base, &end, (void *)_RET_IP_);
947 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
951 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
952 __init void memblock_set_kho_scratch_only(void)
954 kho_scratch_only = true;
957 __init void memblock_clear_kho_scratch_only(void)
959 kho_scratch_only = false;
962 __init void memmap_init_kho_scratch_pages(void)
964 phys_addr_t start, end;
969 if (!IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT))
973 * Initialize struct pages for free scratch memory.
974 * The struct pages for reserved scratch memory will be set up in
975 * reserve_bootmem_region()
977 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
978 MEMBLOCK_KHO_SCRATCH, &start, &end, &nid) {
979 for (pfn = PFN_UP(start); pfn < PFN_DOWN(end); pfn++)
980 init_deferred_page(pfn, nid);
986 * memblock_setclr_flag - set or clear flag for a memory region
987 * @type: memblock type to set/clear flag for
988 * @base: base address of the region
989 * @size: size of the region
990 * @set: set or clear the flag
991 * @flag: the flag to update
993 * This function isolates region [@base, @base + @size), and sets/clears flag
995 * Return: 0 on success, -errno on failure.
997 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
998 phys_addr_t base, phys_addr_t size, int set, int flag)
1000 int i, ret, start_rgn, end_rgn;
1002 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1006 for (i = start_rgn; i < end_rgn; i++) {
1007 struct memblock_region *r = &type->regions[i];
1015 memblock_merge_regions(type, start_rgn, end_rgn);
1020 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
1021 * @base: the base phys addr of the region
1022 * @size: the size of the region
1024 * Return: 0 on success, -errno on failure.
1026 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
1028 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
1032 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
1033 * @base: the base phys addr of the region
1034 * @size: the size of the region
1036 * Return: 0 on success, -errno on failure.
1038 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
1040 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
1044 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
1045 * @base: the base phys addr of the region
1046 * @size: the size of the region
1048 * Return: 0 on success, -errno on failure.
1050 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
1052 if (!mirrored_kernelcore)
1055 system_has_some_mirror = true;
1057 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1061 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1062 * @base: the base phys addr of the region
1063 * @size: the size of the region
1065 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1066 * direct mapping of the physical memory. These regions will still be
1067 * covered by the memory map. The struct page representing NOMAP memory
1068 * frames in the memory map will be PageReserved()
1070 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1071 * memblock, the caller must inform kmemleak to ignore that memory
1073 * Return: 0 on success, -errno on failure.
1075 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1077 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1081 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1082 * @base: the base phys addr of the region
1083 * @size: the size of the region
1085 * Return: 0 on success, -errno on failure.
1087 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1089 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1093 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1094 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1096 * @base: the base phys addr of the region
1097 * @size: the size of the region
1099 * struct pages will not be initialized for reserved memory regions marked with
1100 * %MEMBLOCK_RSRV_NOINIT.
1102 * Return: 0 on success, -errno on failure.
1104 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1106 return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1107 MEMBLOCK_RSRV_NOINIT);
1111 * memblock_mark_kho_scratch - Mark a memory region as MEMBLOCK_KHO_SCRATCH.
1112 * @base: the base phys addr of the region
1113 * @size: the size of the region
1115 * Only memory regions marked with %MEMBLOCK_KHO_SCRATCH will be considered
1116 * for allocations during early boot with kexec handover.
1118 * Return: 0 on success, -errno on failure.
1120 __init int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size)
1122 return memblock_setclr_flag(&memblock.memory, base, size, 1,
1123 MEMBLOCK_KHO_SCRATCH);
1127 * memblock_clear_kho_scratch - Clear MEMBLOCK_KHO_SCRATCH flag for a
1129 * @base: the base phys addr of the region
1130 * @size: the size of the region
1132 * Return: 0 on success, -errno on failure.
1134 __init int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size)
1136 return memblock_setclr_flag(&memblock.memory, base, size, 0,
1137 MEMBLOCK_KHO_SCRATCH);
1140 static bool should_skip_region(struct memblock_type *type,
1141 struct memblock_region *m,
1144 int m_nid = memblock_get_region_node(m);
1146 /* we never skip regions when iterating memblock.reserved or physmem */
1147 if (type != memblock_memory)
1150 /* only memory regions are associated with nodes, check it */
1151 if (numa_valid_node(nid) && nid != m_nid)
1154 /* skip hotpluggable memory regions if needed */
1155 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1156 !(flags & MEMBLOCK_HOTPLUG))
1159 /* if we want mirror memory skip non-mirror memory regions */
1160 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1163 /* skip nomap memory unless we were asked for it explicitly */
1164 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1167 /* skip driver-managed memory unless we were asked for it explicitly */
1168 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1172 * In early alloc during kexec handover, we can only consider
1173 * MEMBLOCK_KHO_SCRATCH regions for the allocations
1175 if ((flags & MEMBLOCK_KHO_SCRATCH) && !memblock_is_kho_scratch(m))
1182 * __next_mem_range - next function for for_each_free_mem_range() etc.
1183 * @idx: pointer to u64 loop variable
1184 * @nid: node selector, %NUMA_NO_NODE for all nodes
1185 * @flags: pick from blocks based on memory attributes
1186 * @type_a: pointer to memblock_type from where the range is taken
1187 * @type_b: pointer to memblock_type which excludes memory from being taken
1188 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1189 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1190 * @out_nid: ptr to int for nid of the range, can be %NULL
1192 * Find the first area from *@idx which matches @nid, fill the out
1193 * parameters, and update *@idx for the next iteration. The lower 32bit of
1194 * *@idx contains index into type_a and the upper 32bit indexes the
1195 * areas before each region in type_b. For example, if type_b regions
1196 * look like the following,
1198 * 0:[0-16), 1:[32-48), 2:[128-130)
1200 * The upper 32bit indexes the following regions.
1202 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1204 * As both region arrays are sorted, the function advances the two indices
1205 * in lockstep and returns each intersection.
1207 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1208 struct memblock_type *type_a,
1209 struct memblock_type *type_b, phys_addr_t *out_start,
1210 phys_addr_t *out_end, int *out_nid)
1212 int idx_a = *idx & 0xffffffff;
1213 int idx_b = *idx >> 32;
1215 for (; idx_a < type_a->cnt; idx_a++) {
1216 struct memblock_region *m = &type_a->regions[idx_a];
1218 phys_addr_t m_start = m->base;
1219 phys_addr_t m_end = m->base + m->size;
1220 int m_nid = memblock_get_region_node(m);
1222 if (should_skip_region(type_a, m, nid, flags))
1227 *out_start = m_start;
1233 *idx = (u32)idx_a | (u64)idx_b << 32;
1237 /* scan areas before each reservation */
1238 for (; idx_b < type_b->cnt + 1; idx_b++) {
1239 struct memblock_region *r;
1240 phys_addr_t r_start;
1243 r = &type_b->regions[idx_b];
1244 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1245 r_end = idx_b < type_b->cnt ?
1246 r->base : PHYS_ADDR_MAX;
1249 * if idx_b advanced past idx_a,
1250 * break out to advance idx_a
1252 if (r_start >= m_end)
1254 /* if the two regions intersect, we're done */
1255 if (m_start < r_end) {
1258 max(m_start, r_start);
1260 *out_end = min(m_end, r_end);
1264 * The region which ends first is
1265 * advanced for the next iteration.
1271 *idx = (u32)idx_a | (u64)idx_b << 32;
1277 /* signal end of iteration */
1282 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1284 * @idx: pointer to u64 loop variable
1285 * @nid: node selector, %NUMA_NO_NODE for all nodes
1286 * @flags: pick from blocks based on memory attributes
1287 * @type_a: pointer to memblock_type from where the range is taken
1288 * @type_b: pointer to memblock_type which excludes memory from being taken
1289 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1290 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1291 * @out_nid: ptr to int for nid of the range, can be %NULL
1293 * Finds the next range from type_a which is not marked as unsuitable
1296 * Reverse of __next_mem_range().
1298 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1299 enum memblock_flags flags,
1300 struct memblock_type *type_a,
1301 struct memblock_type *type_b,
1302 phys_addr_t *out_start,
1303 phys_addr_t *out_end, int *out_nid)
1305 int idx_a = *idx & 0xffffffff;
1306 int idx_b = *idx >> 32;
1308 if (*idx == (u64)ULLONG_MAX) {
1309 idx_a = type_a->cnt - 1;
1311 idx_b = type_b->cnt;
1316 for (; idx_a >= 0; idx_a--) {
1317 struct memblock_region *m = &type_a->regions[idx_a];
1319 phys_addr_t m_start = m->base;
1320 phys_addr_t m_end = m->base + m->size;
1321 int m_nid = memblock_get_region_node(m);
1323 if (should_skip_region(type_a, m, nid, flags))
1328 *out_start = m_start;
1334 *idx = (u32)idx_a | (u64)idx_b << 32;
1338 /* scan areas before each reservation */
1339 for (; idx_b >= 0; idx_b--) {
1340 struct memblock_region *r;
1341 phys_addr_t r_start;
1344 r = &type_b->regions[idx_b];
1345 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1346 r_end = idx_b < type_b->cnt ?
1347 r->base : PHYS_ADDR_MAX;
1349 * if idx_b advanced past idx_a,
1350 * break out to advance idx_a
1353 if (r_end <= m_start)
1355 /* if the two regions intersect, we're done */
1356 if (m_end > r_start) {
1358 *out_start = max(m_start, r_start);
1360 *out_end = min(m_end, r_end);
1363 if (m_start >= r_start)
1367 *idx = (u32)idx_a | (u64)idx_b << 32;
1372 /* signal end of iteration */
1377 * Common iterator interface used to define for_each_mem_pfn_range().
1379 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1380 unsigned long *out_start_pfn,
1381 unsigned long *out_end_pfn, int *out_nid)
1383 struct memblock_type *type = &memblock.memory;
1384 struct memblock_region *r;
1387 while (++*idx < type->cnt) {
1388 r = &type->regions[*idx];
1389 r_nid = memblock_get_region_node(r);
1391 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1393 if (!numa_valid_node(nid) || nid == r_nid)
1396 if (*idx >= type->cnt) {
1402 *out_start_pfn = PFN_UP(r->base);
1404 *out_end_pfn = PFN_DOWN(r->base + r->size);
1410 * memblock_set_node - set node ID on memblock regions
1411 * @base: base of area to set node ID for
1412 * @size: size of area to set node ID for
1413 * @type: memblock type to set node ID for
1414 * @nid: node ID to set
1416 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1417 * Regions which cross the area boundaries are split as necessary.
1420 * 0 on success, -errno on failure.
1422 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1423 struct memblock_type *type, int nid)
1426 int start_rgn, end_rgn;
1429 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1433 for (i = start_rgn; i < end_rgn; i++)
1434 memblock_set_region_node(&type->regions[i], nid);
1436 memblock_merge_regions(type, start_rgn, end_rgn);
1441 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1443 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1445 * @idx: pointer to u64 loop variable
1446 * @zone: zone in which all of the memory blocks reside
1447 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1448 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1450 * This function is meant to be a zone/pfn specific wrapper for the
1451 * for_each_mem_range type iterators. Specifically they are used in the
1452 * deferred memory init routines and as such we were duplicating much of
1453 * this logic throughout the code. So instead of having it in multiple
1454 * locations it seemed like it would make more sense to centralize this to
1455 * one new iterator that does everything they need.
1457 void __init_memblock
1458 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1459 unsigned long *out_spfn, unsigned long *out_epfn)
1461 int zone_nid = zone_to_nid(zone);
1462 phys_addr_t spa, epa;
1464 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1465 &memblock.memory, &memblock.reserved,
1468 while (*idx != U64_MAX) {
1469 unsigned long epfn = PFN_DOWN(epa);
1470 unsigned long spfn = PFN_UP(spa);
1473 * Verify the end is at least past the start of the zone and
1474 * that we have at least one PFN to initialize.
1476 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1477 /* if we went too far just stop searching */
1478 if (zone_end_pfn(zone) <= spfn) {
1484 *out_spfn = max(zone->zone_start_pfn, spfn);
1486 *out_epfn = min(zone_end_pfn(zone), epfn);
1491 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1492 &memblock.memory, &memblock.reserved,
1496 /* signal end of iteration */
1498 *out_spfn = ULONG_MAX;
1503 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1506 * memblock_alloc_range_nid - allocate boot memory block
1507 * @size: size of memory block to be allocated in bytes
1508 * @align: alignment of the region and block's size
1509 * @start: the lower bound of the memory region to allocate (phys address)
1510 * @end: the upper bound of the memory region to allocate (phys address)
1511 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1512 * @exact_nid: control the allocation fall back to other nodes
1514 * The allocation is performed from memory region limited by
1515 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1517 * If the specified node can not hold the requested memory and @exact_nid
1518 * is false, the allocation falls back to any node in the system.
1520 * For systems with memory mirroring, the allocation is attempted first
1521 * from the regions with mirroring enabled and then retried from any
1524 * In addition, function using kmemleak_alloc_phys for allocated boot
1525 * memory block, it is never reported as leaks.
1528 * Physical address of allocated memory block on success, %0 on failure.
1530 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1531 phys_addr_t align, phys_addr_t start,
1532 phys_addr_t end, int nid,
1535 enum memblock_flags flags = choose_memblock_flags();
1539 * Detect any accidental use of these APIs after slab is ready, as at
1540 * this moment memblock may be deinitialized already and its
1541 * internal data may be destroyed (after execution of memblock_free_all)
1543 if (WARN_ON_ONCE(slab_is_available())) {
1544 void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1546 return vaddr ? virt_to_phys(vaddr) : 0;
1550 /* Can't use WARNs this early in boot on powerpc */
1552 align = SMP_CACHE_BYTES;
1556 found = memblock_find_in_range_node(size, align, start, end, nid,
1558 if (found && !__memblock_reserve(found, size, nid, MEMBLOCK_RSRV_KERN))
1561 if (numa_valid_node(nid) && !exact_nid) {
1562 found = memblock_find_in_range_node(size, align, start,
1565 if (found && !memblock_reserve_kern(found, size))
1569 if (flags & MEMBLOCK_MIRROR) {
1570 flags &= ~MEMBLOCK_MIRROR;
1571 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1580 * Skip kmemleak for those places like kasan_init() and
1581 * early_pgtable_alloc() due to high volume.
1583 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1585 * Memblock allocated blocks are never reported as
1586 * leaks. This is because many of these blocks are
1587 * only referred via the physical address which is
1588 * not looked up by kmemleak.
1590 kmemleak_alloc_phys(found, size, 0);
1593 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1594 * require memory to be accepted before it can be used by the
1597 * Accept the memory of the allocated buffer.
1599 accept_memory(found, size);
1605 * memblock_phys_alloc_range - allocate a memory block inside specified range
1606 * @size: size of memory block to be allocated in bytes
1607 * @align: alignment of the region and block's size
1608 * @start: the lower bound of the memory region to allocate (physical address)
1609 * @end: the upper bound of the memory region to allocate (physical address)
1611 * Allocate @size bytes in the between @start and @end.
1613 * Return: physical address of the allocated memory block on success,
1616 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1621 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1622 __func__, (u64)size, (u64)align, &start, &end,
1624 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1629 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1630 * @size: size of memory block to be allocated in bytes
1631 * @align: alignment of the region and block's size
1632 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1634 * Allocates memory block from the specified NUMA node. If the node
1635 * has no available memory, attempts to allocated from any node in the
1638 * Return: physical address of the allocated memory block on success,
1641 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1643 return memblock_alloc_range_nid(size, align, 0,
1644 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1648 * memblock_alloc_internal - allocate boot memory block
1649 * @size: size of memory block to be allocated in bytes
1650 * @align: alignment of the region and block's size
1651 * @min_addr: the lower bound of the memory region to allocate (phys address)
1652 * @max_addr: the upper bound of the memory region to allocate (phys address)
1653 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1654 * @exact_nid: control the allocation fall back to other nodes
1656 * Allocates memory block using memblock_alloc_range_nid() and
1657 * converts the returned physical address to virtual.
1659 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1660 * will fall back to memory below @min_addr. Other constraints, such
1661 * as node and mirrored memory will be handled again in
1662 * memblock_alloc_range_nid().
1665 * Virtual address of allocated memory block on success, NULL on failure.
1667 static void * __init memblock_alloc_internal(
1668 phys_addr_t size, phys_addr_t align,
1669 phys_addr_t min_addr, phys_addr_t max_addr,
1670 int nid, bool exact_nid)
1675 if (max_addr > memblock.current_limit)
1676 max_addr = memblock.current_limit;
1678 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1681 /* retry allocation without lower limit */
1682 if (!alloc && min_addr)
1683 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1689 return phys_to_virt(alloc);
1693 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1694 * without zeroing memory
1695 * @size: size of memory block to be allocated in bytes
1696 * @align: alignment of the region and block's size
1697 * @min_addr: the lower bound of the memory region from where the allocation
1698 * is preferred (phys address)
1699 * @max_addr: the upper bound of the memory region from where the allocation
1700 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1701 * allocate only from memory limited by memblock.current_limit value
1702 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1704 * Public function, provides additional debug information (including caller
1705 * info), if enabled. Does not zero allocated memory.
1708 * Virtual address of allocated memory block on success, NULL on failure.
1710 void * __init memblock_alloc_exact_nid_raw(
1711 phys_addr_t size, phys_addr_t align,
1712 phys_addr_t min_addr, phys_addr_t max_addr,
1715 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1716 __func__, (u64)size, (u64)align, nid, &min_addr,
1717 &max_addr, (void *)_RET_IP_);
1719 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1724 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1725 * memory and without panicking
1726 * @size: size of memory block to be allocated in bytes
1727 * @align: alignment of the region and block's size
1728 * @min_addr: the lower bound of the memory region from where the allocation
1729 * is preferred (phys address)
1730 * @max_addr: the upper bound of the memory region from where the allocation
1731 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1732 * allocate only from memory limited by memblock.current_limit value
1733 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1735 * Public function, provides additional debug information (including caller
1736 * info), if enabled. Does not zero allocated memory, does not panic if request
1737 * cannot be satisfied.
1740 * Virtual address of allocated memory block on success, NULL on failure.
1742 void * __init memblock_alloc_try_nid_raw(
1743 phys_addr_t size, phys_addr_t align,
1744 phys_addr_t min_addr, phys_addr_t max_addr,
1747 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1748 __func__, (u64)size, (u64)align, nid, &min_addr,
1749 &max_addr, (void *)_RET_IP_);
1751 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1756 * memblock_alloc_try_nid - allocate boot memory block
1757 * @size: size of memory block to be allocated in bytes
1758 * @align: alignment of the region and block's size
1759 * @min_addr: the lower bound of the memory region from where the allocation
1760 * is preferred (phys address)
1761 * @max_addr: the upper bound of the memory region from where the allocation
1762 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1763 * allocate only from memory limited by memblock.current_limit value
1764 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1766 * Public function, provides additional debug information (including caller
1767 * info), if enabled. This function zeroes the allocated memory.
1770 * Virtual address of allocated memory block on success, NULL on failure.
1772 void * __init memblock_alloc_try_nid(
1773 phys_addr_t size, phys_addr_t align,
1774 phys_addr_t min_addr, phys_addr_t max_addr,
1779 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1780 __func__, (u64)size, (u64)align, nid, &min_addr,
1781 &max_addr, (void *)_RET_IP_);
1782 ptr = memblock_alloc_internal(size, align,
1783 min_addr, max_addr, nid, false);
1785 memset(ptr, 0, size);
1791 * __memblock_alloc_or_panic - Try to allocate memory and panic on failure
1792 * @size: size of memory block to be allocated in bytes
1793 * @align: alignment of the region and block's size
1794 * @func: caller func name
1796 * This function attempts to allocate memory using memblock_alloc,
1797 * and in case of failure, it calls panic with the formatted message.
1798 * This function should not be used directly, please use the macro memblock_alloc_or_panic.
1800 void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align,
1803 void *addr = memblock_alloc(size, align);
1805 if (unlikely(!addr))
1806 panic("%s: Failed to allocate %pap bytes\n", func, &size);
1811 * memblock_free_late - free pages directly to buddy allocator
1812 * @base: phys starting address of the boot memory block
1813 * @size: size of the boot memory block in bytes
1815 * This is only useful when the memblock allocator has already been torn
1816 * down, but we are still initializing the system. Pages are released directly
1817 * to the buddy allocator.
1819 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1821 phys_addr_t cursor, end;
1823 end = base + size - 1;
1824 memblock_dbg("%s: [%pa-%pa] %pS\n",
1825 __func__, &base, &end, (void *)_RET_IP_);
1826 kmemleak_free_part_phys(base, size);
1827 cursor = PFN_UP(base);
1828 end = PFN_DOWN(base + size);
1830 for (; cursor < end; cursor++) {
1831 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1832 totalram_pages_inc();
1837 * Remaining API functions
1840 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1842 return memblock.memory.total_size;
1845 phys_addr_t __init_memblock memblock_reserved_size(void)
1847 return memblock.reserved.total_size;
1850 phys_addr_t __init_memblock memblock_reserved_kern_size(phys_addr_t limit, int nid)
1852 struct memblock_region *r;
1853 phys_addr_t total = 0;
1855 for_each_reserved_mem_region(r) {
1856 phys_addr_t size = r->size;
1858 if (r->base > limit)
1861 if (r->base + r->size > limit)
1862 size = limit - r->base;
1864 if (nid == memblock_get_region_node(r) || !numa_valid_node(nid))
1865 if (r->flags & MEMBLOCK_RSRV_KERN)
1873 * memblock_estimated_nr_free_pages - return estimated number of free pages
1874 * from memblock point of view
1876 * During bootup, subsystems might need a rough estimate of the number of free
1877 * pages in the whole system, before precise numbers are available from the
1878 * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1879 * obtained from the buddy might be very imprecise during bootup.
1882 * An estimated number of free pages from memblock point of view.
1884 unsigned long __init memblock_estimated_nr_free_pages(void)
1886 return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1889 /* lowest address */
1890 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1892 return memblock.memory.regions[0].base;
1895 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1897 int idx = memblock.memory.cnt - 1;
1899 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1902 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1904 phys_addr_t max_addr = PHYS_ADDR_MAX;
1905 struct memblock_region *r;
1908 * translate the memory @limit size into the max address within one of
1909 * the memory memblock regions, if the @limit exceeds the total size
1910 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1912 for_each_mem_region(r) {
1913 if (limit <= r->size) {
1914 max_addr = r->base + limit;
1923 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1925 phys_addr_t max_addr;
1930 max_addr = __find_max_addr(limit);
1932 /* @limit exceeds the total size of the memory, do nothing */
1933 if (max_addr == PHYS_ADDR_MAX)
1936 /* truncate both memory and reserved regions */
1937 memblock_remove_range(&memblock.memory, max_addr,
1939 memblock_remove_range(&memblock.reserved, max_addr,
1943 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1945 int start_rgn, end_rgn;
1951 if (!memblock_memory->total_size) {
1952 pr_warn("%s: No memory registered yet\n", __func__);
1956 ret = memblock_isolate_range(&memblock.memory, base, size,
1957 &start_rgn, &end_rgn);
1961 /* remove all the MAP regions */
1962 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1963 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1964 memblock_remove_region(&memblock.memory, i);
1966 for (i = start_rgn - 1; i >= 0; i--)
1967 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1968 memblock_remove_region(&memblock.memory, i);
1970 /* truncate the reserved regions */
1971 memblock_remove_range(&memblock.reserved, 0, base);
1972 memblock_remove_range(&memblock.reserved,
1973 base + size, PHYS_ADDR_MAX);
1976 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1978 phys_addr_t max_addr;
1983 max_addr = __find_max_addr(limit);
1985 /* @limit exceeds the total size of the memory, do nothing */
1986 if (max_addr == PHYS_ADDR_MAX)
1989 memblock_cap_memory_range(0, max_addr);
1992 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1994 unsigned int left = 0, right = type->cnt;
1997 unsigned int mid = (right + left) / 2;
1999 if (addr < type->regions[mid].base)
2001 else if (addr >= (type->regions[mid].base +
2002 type->regions[mid].size))
2006 } while (left < right);
2010 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
2012 return memblock_search(&memblock.reserved, addr) != -1;
2015 bool __init_memblock memblock_is_memory(phys_addr_t addr)
2017 return memblock_search(&memblock.memory, addr) != -1;
2020 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
2022 int i = memblock_search(&memblock.memory, addr);
2026 return !memblock_is_nomap(&memblock.memory.regions[i]);
2029 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
2030 unsigned long *start_pfn, unsigned long *end_pfn)
2032 struct memblock_type *type = &memblock.memory;
2033 int mid = memblock_search(type, PFN_PHYS(pfn));
2036 return NUMA_NO_NODE;
2038 *start_pfn = PFN_DOWN(type->regions[mid].base);
2039 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
2041 return memblock_get_region_node(&type->regions[mid]);
2045 * memblock_is_region_memory - check if a region is a subset of memory
2046 * @base: base of region to check
2047 * @size: size of region to check
2049 * Check if the region [@base, @base + @size) is a subset of a memory block.
2052 * 0 if false, non-zero if true
2054 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
2056 int idx = memblock_search(&memblock.memory, base);
2057 phys_addr_t end = base + memblock_cap_size(base, &size);
2061 return (memblock.memory.regions[idx].base +
2062 memblock.memory.regions[idx].size) >= end;
2066 * memblock_is_region_reserved - check if a region intersects reserved memory
2067 * @base: base of region to check
2068 * @size: size of region to check
2070 * Check if the region [@base, @base + @size) intersects a reserved
2074 * True if they intersect, false if not.
2076 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
2078 return memblock_overlaps_region(&memblock.reserved, base, size);
2081 void __init_memblock memblock_trim_memory(phys_addr_t align)
2083 phys_addr_t start, end, orig_start, orig_end;
2084 struct memblock_region *r;
2086 for_each_mem_region(r) {
2087 orig_start = r->base;
2088 orig_end = r->base + r->size;
2089 start = round_up(orig_start, align);
2090 end = round_down(orig_end, align);
2092 if (start == orig_start && end == orig_end)
2097 r->size = end - start;
2099 memblock_remove_region(&memblock.memory,
2100 r - memblock.memory.regions);
2106 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
2108 memblock.current_limit = limit;
2111 phys_addr_t __init_memblock memblock_get_current_limit(void)
2113 return memblock.current_limit;
2116 static void __init_memblock memblock_dump(struct memblock_type *type)
2118 phys_addr_t base, end, size;
2119 enum memblock_flags flags;
2121 struct memblock_region *rgn;
2123 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
2125 for_each_memblock_type(idx, type, rgn) {
2126 char nid_buf[32] = "";
2130 end = base + size - 1;
2133 if (numa_valid_node(memblock_get_region_node(rgn)))
2134 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
2135 memblock_get_region_node(rgn));
2137 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2138 type->name, idx, &base, &end, &size, nid_buf, flags);
2142 static void __init_memblock __memblock_dump_all(void)
2144 pr_info("MEMBLOCK configuration:\n");
2145 pr_info(" memory size = %pa reserved size = %pa\n",
2146 &memblock.memory.total_size,
2147 &memblock.reserved.total_size);
2149 memblock_dump(&memblock.memory);
2150 memblock_dump(&memblock.reserved);
2151 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2152 memblock_dump(&physmem);
2156 void __init_memblock memblock_dump_all(void)
2159 __memblock_dump_all();
2162 void __init memblock_allow_resize(void)
2164 memblock_can_resize = 1;
2167 static int __init early_memblock(char *p)
2169 if (p && strstr(p, "debug"))
2173 early_param("memblock", early_memblock);
2175 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2177 struct page *start_pg, *end_pg;
2178 phys_addr_t pg, pgend;
2181 * Convert start_pfn/end_pfn to a struct page pointer.
2183 start_pg = pfn_to_page(start_pfn - 1) + 1;
2184 end_pg = pfn_to_page(end_pfn - 1) + 1;
2187 * Convert to physical addresses, and round start upwards and end
2190 pg = PAGE_ALIGN(__pa(start_pg));
2191 pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2194 * If there are free pages between these, free the section of the
2198 memblock_phys_free(pg, pgend - pg);
2202 * The mem_map array can get very big. Free the unused area of the memory map.
2204 static void __init free_unused_memmap(void)
2206 unsigned long start, end, prev_end = 0;
2209 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2210 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2214 * This relies on each bank being in address order.
2215 * The banks are sorted previously in bootmem_init().
2217 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2218 #ifdef CONFIG_SPARSEMEM
2220 * Take care not to free memmap entries that don't exist
2221 * due to SPARSEMEM sections which aren't present.
2223 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2226 * Align down here since many operations in VM subsystem
2227 * presume that there are no holes in the memory map inside
2230 start = pageblock_start_pfn(start);
2233 * If we had a previous bank, and there is a space
2234 * between the current bank and the previous, free it.
2236 if (prev_end && prev_end < start)
2237 free_memmap(prev_end, start);
2240 * Align up here since many operations in VM subsystem
2241 * presume that there are no holes in the memory map inside
2244 prev_end = pageblock_align(end);
2247 #ifdef CONFIG_SPARSEMEM
2248 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2249 prev_end = pageblock_align(end);
2250 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2255 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2259 while (start < end) {
2261 * Free the pages in the largest chunks alignment allows.
2263 * __ffs() behaviour is undefined for 0. start == 0 is
2264 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2268 order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2270 order = MAX_PAGE_ORDER;
2272 while (start + (1UL << order) > end)
2275 memblock_free_pages(pfn_to_page(start), start, order);
2277 start += (1UL << order);
2281 static unsigned long __init __free_memory_core(phys_addr_t start,
2284 unsigned long start_pfn = PFN_UP(start);
2285 unsigned long end_pfn = PFN_DOWN(end);
2287 if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn)
2288 end_pfn = max_low_pfn;
2290 if (start_pfn >= end_pfn)
2293 __free_pages_memory(start_pfn, end_pfn);
2295 return end_pfn - start_pfn;
2298 static void __init memmap_init_reserved_pages(void)
2300 struct memblock_region *region;
2301 phys_addr_t start, end;
2303 unsigned long max_reserved;
2306 * set nid on all reserved pages and also treat struct
2307 * pages for the NOMAP regions as PageReserved
2310 max_reserved = memblock.reserved.max;
2311 for_each_mem_region(region) {
2312 nid = memblock_get_region_node(region);
2313 start = region->base;
2314 end = start + region->size;
2316 if (memblock_is_nomap(region))
2317 reserve_bootmem_region(start, end, nid);
2319 memblock_set_node(start, region->size, &memblock.reserved, nid);
2322 * 'max' is changed means memblock.reserved has been doubled its
2323 * array, which may result a new reserved region before current
2324 * 'start'. Now we should repeat the procedure to set its node id.
2326 if (max_reserved != memblock.reserved.max)
2330 * initialize struct pages for reserved regions that don't have
2331 * the MEMBLOCK_RSRV_NOINIT flag set
2333 for_each_reserved_mem_region(region) {
2334 if (!memblock_is_reserved_noinit(region)) {
2335 nid = memblock_get_region_node(region);
2336 start = region->base;
2337 end = start + region->size;
2339 if (!numa_valid_node(nid))
2340 nid = early_pfn_to_nid(PFN_DOWN(start));
2342 reserve_bootmem_region(start, end, nid);
2347 static unsigned long __init free_low_memory_core_early(void)
2349 unsigned long count = 0;
2350 phys_addr_t start, end;
2353 memblock_clear_hotplug(0, -1);
2355 memmap_init_reserved_pages();
2358 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2359 * because in some case like Node0 doesn't have RAM installed
2360 * low ram will be on Node1
2362 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2364 count += __free_memory_core(start, end);
2369 static int reset_managed_pages_done __initdata;
2371 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2375 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2376 atomic_long_set(&z->managed_pages, 0);
2379 void __init reset_all_zones_managed_pages(void)
2381 struct pglist_data *pgdat;
2383 if (reset_managed_pages_done)
2386 for_each_online_pgdat(pgdat)
2387 reset_node_managed_pages(pgdat);
2389 reset_managed_pages_done = 1;
2393 * memblock_free_all - release free pages to the buddy allocator
2395 void __init memblock_free_all(void)
2397 unsigned long pages;
2399 free_unused_memmap();
2400 reset_all_zones_managed_pages();
2402 memblock_clear_kho_scratch_only();
2403 pages = free_low_memory_core_early();
2404 totalram_pages_add(pages);
2407 /* Keep a table to reserve named memory */
2408 #define RESERVE_MEM_MAX_ENTRIES 8
2409 #define RESERVE_MEM_NAME_SIZE 16
2410 struct reserve_mem_table {
2411 char name[RESERVE_MEM_NAME_SIZE];
2415 static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2416 static int reserved_mem_count;
2417 static DEFINE_MUTEX(reserve_mem_lock);
2419 /* Add wildcard region with a lookup name */
2420 static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2423 struct reserve_mem_table *map;
2425 map = &reserved_mem_table[reserved_mem_count++];
2428 strscpy(map->name, name);
2431 static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name)
2433 struct reserve_mem_table *map;
2436 for (i = 0; i < reserved_mem_count; i++) {
2437 map = &reserved_mem_table[i];
2440 if (strcmp(name, map->name) == 0)
2447 * reserve_mem_find_by_name - Find reserved memory region with a given name
2448 * @name: The name that is attached to a reserved memory region
2449 * @start: If found, holds the start address
2450 * @size: If found, holds the size of the address.
2452 * @start and @size are only updated if @name is found.
2454 * Returns: 1 if found or 0 if not found.
2456 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2458 struct reserve_mem_table *map;
2460 guard(mutex)(&reserve_mem_lock);
2461 map = reserve_mem_find_by_name_nolock(name);
2465 *start = map->start;
2469 EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2472 * reserve_mem_release_by_name - Release reserved memory region with a given name
2473 * @name: The name that is attatched to a reserved memory region
2475 * Forcibly release the pages in the reserved memory region so that those memory
2476 * can be used as free memory. After released the reserved region size becomes 0.
2478 * Returns: 1 if released or 0 if not found.
2480 int reserve_mem_release_by_name(const char *name)
2482 char buf[RESERVE_MEM_NAME_SIZE + 12];
2483 struct reserve_mem_table *map;
2486 guard(mutex)(&reserve_mem_lock);
2487 map = reserve_mem_find_by_name_nolock(name);
2491 start = phys_to_virt(map->start);
2492 end = start + map->size - 1;
2493 snprintf(buf, sizeof(buf), "reserve_mem:%s", name);
2494 free_reserved_area(start, end, 0, buf);
2500 #ifdef CONFIG_KEXEC_HANDOVER
2501 #define MEMBLOCK_KHO_FDT "memblock"
2502 #define MEMBLOCK_KHO_NODE_COMPATIBLE "memblock-v1"
2503 #define RESERVE_MEM_KHO_NODE_COMPATIBLE "reserve-mem-v1"
2504 static struct page *kho_fdt;
2506 static int reserve_mem_kho_finalize(struct kho_serialization *ser)
2510 for (i = 0; i < reserved_mem_count; i++) {
2511 struct reserve_mem_table *map = &reserved_mem_table[i];
2513 err |= kho_preserve_phys(map->start, map->size);
2516 err |= kho_preserve_folio(page_folio(kho_fdt));
2517 err |= kho_add_subtree(ser, MEMBLOCK_KHO_FDT, page_to_virt(kho_fdt));
2519 return notifier_from_errno(err);
2522 static int reserve_mem_kho_notifier(struct notifier_block *self,
2523 unsigned long cmd, void *v)
2526 case KEXEC_KHO_FINALIZE:
2527 return reserve_mem_kho_finalize((struct kho_serialization *)v);
2528 case KEXEC_KHO_ABORT:
2535 static struct notifier_block reserve_mem_kho_nb = {
2536 .notifier_call = reserve_mem_kho_notifier,
2539 static int __init prepare_kho_fdt(void)
2544 kho_fdt = alloc_page(GFP_KERNEL);
2548 fdt = page_to_virt(kho_fdt);
2550 err |= fdt_create(fdt, PAGE_SIZE);
2551 err |= fdt_finish_reservemap(fdt);
2553 err |= fdt_begin_node(fdt, "");
2554 err |= fdt_property_string(fdt, "compatible", MEMBLOCK_KHO_NODE_COMPATIBLE);
2555 for (i = 0; i < reserved_mem_count; i++) {
2556 struct reserve_mem_table *map = &reserved_mem_table[i];
2558 err |= fdt_begin_node(fdt, map->name);
2559 err |= fdt_property_string(fdt, "compatible", RESERVE_MEM_KHO_NODE_COMPATIBLE);
2560 err |= fdt_property(fdt, "start", &map->start, sizeof(map->start));
2561 err |= fdt_property(fdt, "size", &map->size, sizeof(map->size));
2562 err |= fdt_end_node(fdt);
2564 err |= fdt_end_node(fdt);
2566 err |= fdt_finish(fdt);
2569 pr_err("failed to prepare memblock FDT for KHO: %d\n", err);
2577 static int __init reserve_mem_init(void)
2581 if (!kho_is_enabled() || !reserved_mem_count)
2584 err = prepare_kho_fdt();
2588 err = register_kho_notifier(&reserve_mem_kho_nb);
2596 late_initcall(reserve_mem_init);
2598 static void *__init reserve_mem_kho_retrieve_fdt(void)
2600 phys_addr_t fdt_phys;
2607 err = kho_retrieve_subtree(MEMBLOCK_KHO_FDT, &fdt_phys);
2610 pr_warn("failed to retrieve FDT '%s' from KHO: %d\n",
2611 MEMBLOCK_KHO_FDT, err);
2615 fdt = phys_to_virt(fdt_phys);
2617 err = fdt_node_check_compatible(fdt, 0, MEMBLOCK_KHO_NODE_COMPATIBLE);
2619 pr_warn("FDT '%s' is incompatible with '%s': %d\n",
2620 MEMBLOCK_KHO_FDT, MEMBLOCK_KHO_NODE_COMPATIBLE, err);
2627 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2630 int err, len_start, len_size, offset;
2631 const phys_addr_t *p_start, *p_size;
2634 fdt = reserve_mem_kho_retrieve_fdt();
2638 offset = fdt_subnode_offset(fdt, 0, name);
2640 pr_warn("FDT '%s' has no child '%s': %d\n",
2641 MEMBLOCK_KHO_FDT, name, offset);
2644 err = fdt_node_check_compatible(fdt, offset, RESERVE_MEM_KHO_NODE_COMPATIBLE);
2646 pr_warn("Node '%s' is incompatible with '%s': %d\n",
2647 name, RESERVE_MEM_KHO_NODE_COMPATIBLE, err);
2651 p_start = fdt_getprop(fdt, offset, "start", &len_start);
2652 p_size = fdt_getprop(fdt, offset, "size", &len_size);
2653 if (!p_start || len_start != sizeof(*p_start) || !p_size ||
2654 len_size != sizeof(*p_size)) {
2658 if (*p_start & (align - 1)) {
2659 pr_warn("KHO reserve-mem '%s' has wrong alignment (0x%lx, 0x%lx)\n",
2660 name, (long)align, (long)*p_start);
2664 if (*p_size != size) {
2665 pr_warn("KHO reserve-mem '%s' has wrong size (0x%lx != 0x%lx)\n",
2666 name, (long)*p_size, (long)size);
2670 reserved_mem_add(*p_start, size, name);
2671 pr_info("Revived memory reservation '%s' from KHO\n", name);
2676 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2681 #endif /* CONFIG_KEXEC_HANDOVER */
2684 * Parse reserve_mem=nn:align:name
2686 static int __init reserve_mem(char *p)
2688 phys_addr_t start, size, align, tmp;
2696 /* Check if there's room for more reserved memory */
2697 if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2701 size = memparse(p, &p);
2702 if (!size || p == oldp)
2708 align = memparse(p+1, &p);
2713 * memblock_phys_alloc() doesn't like a zero size align,
2714 * but it is OK for this command to have it.
2716 if (align < SMP_CACHE_BYTES)
2717 align = SMP_CACHE_BYTES;
2722 /* name needs to have length but not too big */
2723 if (!len || len >= RESERVE_MEM_NAME_SIZE)
2726 /* Make sure that name has text */
2727 for (p = name; *p; p++) {
2734 /* Make sure the name is not already used */
2735 if (reserve_mem_find_by_name(name, &start, &tmp))
2738 /* Pick previous allocations up from KHO if available */
2739 if (reserve_mem_kho_revive(name, size, align))
2742 /* TODO: Allocation must be outside of scratch region */
2743 start = memblock_phys_alloc(size, align);
2747 reserved_mem_add(start, size, name);
2751 __setup("reserve_mem=", reserve_mem);
2753 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2754 static const char * const flagname[] = {
2755 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2756 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2757 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2758 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2759 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2760 [ilog2(MEMBLOCK_RSRV_KERN)] = "RSV_KERN",
2761 [ilog2(MEMBLOCK_KHO_SCRATCH)] = "KHO_SCRATCH",
2764 static int memblock_debug_show(struct seq_file *m, void *private)
2766 struct memblock_type *type = m->private;
2767 struct memblock_region *reg;
2769 unsigned int count = ARRAY_SIZE(flagname);
2772 for (i = 0; i < type->cnt; i++) {
2773 reg = &type->regions[i];
2774 end = reg->base + reg->size - 1;
2775 nid = memblock_get_region_node(reg);
2777 seq_printf(m, "%4d: ", i);
2778 seq_printf(m, "%pa..%pa ", ®->base, &end);
2779 if (numa_valid_node(nid))
2780 seq_printf(m, "%4d ", nid);
2782 seq_printf(m, "%4c ", 'x');
2784 for (j = 0; j < count; j++) {
2785 if (reg->flags & (1U << j)) {
2786 seq_printf(m, "%s\n", flagname[j]);
2791 seq_printf(m, "%s\n", "UNKNOWN");
2793 seq_printf(m, "%s\n", "NONE");
2798 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2800 static int __init memblock_init_debugfs(void)
2802 struct dentry *root = debugfs_create_dir("memblock", NULL);
2804 debugfs_create_file("memory", 0444, root,
2805 &memblock.memory, &memblock_debug_fops);
2806 debugfs_create_file("reserved", 0444, root,
2807 &memblock.reserved, &memblock_debug_fops);
2808 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2809 debugfs_create_file("physmem", 0444, root, &physmem,
2810 &memblock_debug_fops);
2815 __initcall(memblock_init_debugfs);
2817 #endif /* CONFIG_DEBUG_FS */