mm/ksm: use folio in write_protect_page
[linux-block.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/rwsem.h>
26 #include <linux/pagemap.h>
27 #include <linux/rmap.h>
28 #include <linux/spinlock.h>
29 #include <linux/xxhash.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/wait.h>
33 #include <linux/slab.h>
34 #include <linux/rbtree.h>
35 #include <linux/memory.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/swap.h>
38 #include <linux/ksm.h>
39 #include <linux/hashtable.h>
40 #include <linux/freezer.h>
41 #include <linux/oom.h>
42 #include <linux/numa.h>
43 #include <linux/pagewalk.h>
44
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 #include "mm_slot.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ksm.h>
51
52 #ifdef CONFIG_NUMA
53 #define NUMA(x)         (x)
54 #define DO_NUMA(x)      do { (x); } while (0)
55 #else
56 #define NUMA(x)         (0)
57 #define DO_NUMA(x)      do { } while (0)
58 #endif
59
60 typedef u8 rmap_age_t;
61
62 /**
63  * DOC: Overview
64  *
65  * A few notes about the KSM scanning process,
66  * to make it easier to understand the data structures below:
67  *
68  * In order to reduce excessive scanning, KSM sorts the memory pages by their
69  * contents into a data structure that holds pointers to the pages' locations.
70  *
71  * Since the contents of the pages may change at any moment, KSM cannot just
72  * insert the pages into a normal sorted tree and expect it to find anything.
73  * Therefore KSM uses two data structures - the stable and the unstable tree.
74  *
75  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76  * by their contents.  Because each such page is write-protected, searching on
77  * this tree is fully assured to be working (except when pages are unmapped),
78  * and therefore this tree is called the stable tree.
79  *
80  * The stable tree node includes information required for reverse
81  * mapping from a KSM page to virtual addresses that map this page.
82  *
83  * In order to avoid large latencies of the rmap walks on KSM pages,
84  * KSM maintains two types of nodes in the stable tree:
85  *
86  * * the regular nodes that keep the reverse mapping structures in a
87  *   linked list
88  * * the "chains" that link nodes ("dups") that represent the same
89  *   write protected memory content, but each "dup" corresponds to a
90  *   different KSM page copy of that content
91  *
92  * Internally, the regular nodes, "dups" and "chains" are represented
93  * using the same struct ksm_stable_node structure.
94  *
95  * In addition to the stable tree, KSM uses a second data structure called the
96  * unstable tree: this tree holds pointers to pages which have been found to
97  * be "unchanged for a period of time".  The unstable tree sorts these pages
98  * by their contents, but since they are not write-protected, KSM cannot rely
99  * upon the unstable tree to work correctly - the unstable tree is liable to
100  * be corrupted as its contents are modified, and so it is called unstable.
101  *
102  * KSM solves this problem by several techniques:
103  *
104  * 1) The unstable tree is flushed every time KSM completes scanning all
105  *    memory areas, and then the tree is rebuilt again from the beginning.
106  * 2) KSM will only insert into the unstable tree, pages whose hash value
107  *    has not changed since the previous scan of all memory areas.
108  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109  *    colors of the nodes and not on their contents, assuring that even when
110  *    the tree gets "corrupted" it won't get out of balance, so scanning time
111  *    remains the same (also, searching and inserting nodes in an rbtree uses
112  *    the same algorithm, so we have no overhead when we flush and rebuild).
113  * 4) KSM never flushes the stable tree, which means that even if it were to
114  *    take 10 attempts to find a page in the unstable tree, once it is found,
115  *    it is secured in the stable tree.  (When we scan a new page, we first
116  *    compare it against the stable tree, and then against the unstable tree.)
117  *
118  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119  * stable trees and multiple unstable trees: one of each for each NUMA node.
120  */
121
122 /**
123  * struct ksm_mm_slot - ksm information per mm that is being scanned
124  * @slot: hash lookup from mm to mm_slot
125  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126  */
127 struct ksm_mm_slot {
128         struct mm_slot slot;
129         struct ksm_rmap_item *rmap_list;
130 };
131
132 /**
133  * struct ksm_scan - cursor for scanning
134  * @mm_slot: the current mm_slot we are scanning
135  * @address: the next address inside that to be scanned
136  * @rmap_list: link to the next rmap to be scanned in the rmap_list
137  * @seqnr: count of completed full scans (needed when removing unstable node)
138  *
139  * There is only the one ksm_scan instance of this cursor structure.
140  */
141 struct ksm_scan {
142         struct ksm_mm_slot *mm_slot;
143         unsigned long address;
144         struct ksm_rmap_item **rmap_list;
145         unsigned long seqnr;
146 };
147
148 /**
149  * struct ksm_stable_node - node of the stable rbtree
150  * @node: rb node of this ksm page in the stable tree
151  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153  * @list: linked into migrate_nodes, pending placement in the proper node tree
154  * @hlist: hlist head of rmap_items using this ksm page
155  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156  * @chain_prune_time: time of the last full garbage collection
157  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159  */
160 struct ksm_stable_node {
161         union {
162                 struct rb_node node;    /* when node of stable tree */
163                 struct {                /* when listed for migration */
164                         struct list_head *head;
165                         struct {
166                                 struct hlist_node hlist_dup;
167                                 struct list_head list;
168                         };
169                 };
170         };
171         struct hlist_head hlist;
172         union {
173                 unsigned long kpfn;
174                 unsigned long chain_prune_time;
175         };
176         /*
177          * STABLE_NODE_CHAIN can be any negative number in
178          * rmap_hlist_len negative range, but better not -1 to be able
179          * to reliably detect underflows.
180          */
181 #define STABLE_NODE_CHAIN -1024
182         int rmap_hlist_len;
183 #ifdef CONFIG_NUMA
184         int nid;
185 #endif
186 };
187
188 /**
189  * struct ksm_rmap_item - reverse mapping item for virtual addresses
190  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192  * @nid: NUMA node id of unstable tree in which linked (may not match page)
193  * @mm: the memory structure this rmap_item is pointing into
194  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195  * @oldchecksum: previous checksum of the page at that virtual address
196  * @node: rb node of this rmap_item in the unstable tree
197  * @head: pointer to stable_node heading this list in the stable tree
198  * @hlist: link into hlist of rmap_items hanging off that stable_node
199  * @age: number of scan iterations since creation
200  * @remaining_skips: how many scans to skip
201  */
202 struct ksm_rmap_item {
203         struct ksm_rmap_item *rmap_list;
204         union {
205                 struct anon_vma *anon_vma;      /* when stable */
206 #ifdef CONFIG_NUMA
207                 int nid;                /* when node of unstable tree */
208 #endif
209         };
210         struct mm_struct *mm;
211         unsigned long address;          /* + low bits used for flags below */
212         unsigned int oldchecksum;       /* when unstable */
213         rmap_age_t age;
214         rmap_age_t remaining_skips;
215         union {
216                 struct rb_node node;    /* when node of unstable tree */
217                 struct {                /* when listed from stable tree */
218                         struct ksm_stable_node *head;
219                         struct hlist_node hlist;
220                 };
221         };
222 };
223
224 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
226 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
227
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
233
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240
241 static struct ksm_mm_slot ksm_mm_head = {
242         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243 };
244 static struct ksm_scan ksm_scan = {
245         .mm_slot = &ksm_mm_head,
246 };
247
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
251
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
254
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
257
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
260
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
263
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
266
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
269
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
272
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
275
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
281
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
287
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
290
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
293
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
297
298 /* The number of zero pages which is placed by KSM */
299 unsigned long ksm_zero_pages;
300
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
303
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
309
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu =  70;
312
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
315
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
318
319 /**
320  * struct advisor_ctx - metadata for KSM advisor
321  * @start_scan: start time of the current scan
322  * @scan_time: scan time of previous scan
323  * @change: change in percent to pages_to_scan parameter
324  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325  */
326 struct advisor_ctx {
327         ktime_t start_scan;
328         unsigned long scan_time;
329         unsigned long change;
330         unsigned long long cpu_time;
331 };
332 static struct advisor_ctx advisor_ctx;
333
334 /* Define different advisor's */
335 enum ksm_advisor_type {
336         KSM_ADVISOR_NONE,
337         KSM_ADVISOR_SCAN_TIME,
338 };
339 static enum ksm_advisor_type ksm_advisor;
340
341 #ifdef CONFIG_SYSFS
342 /*
343  * Only called through the sysfs control interface:
344  */
345
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349 static void set_advisor_defaults(void)
350 {
351         if (ksm_advisor == KSM_ADVISOR_NONE) {
352                 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353         } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354                 advisor_ctx = (const struct advisor_ctx){ 0 };
355                 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356         }
357 }
358 #endif /* CONFIG_SYSFS */
359
360 static inline void advisor_start_scan(void)
361 {
362         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363                 advisor_ctx.start_scan = ktime_get();
364 }
365
366 /*
367  * Use previous scan time if available, otherwise use current scan time as an
368  * approximation for the previous scan time.
369  */
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371                                            unsigned long scan_time)
372 {
373         return ctx->scan_time ? ctx->scan_time : scan_time;
374 }
375
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
378 {
379         return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380 }
381
382 /*
383  * The scan time advisor is based on the current scan rate and the target
384  * scan rate.
385  *
386  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387  *
388  * To avoid perturbations it calculates a change factor of previous changes.
389  * A new change factor is calculated for each iteration and it uses an
390  * exponentially weighted moving average. The new pages_to_scan value is
391  * multiplied with that change factor:
392  *
393  *      new_pages_to_scan *= change facor
394  *
395  * The new_pages_to_scan value is limited by the cpu min and max values. It
396  * calculates the cpu percent for the last scan and calculates the new
397  * estimated cpu percent cost for the next scan. That value is capped by the
398  * cpu min and max setting.
399  *
400  * In addition the new pages_to_scan value is capped by the max and min
401  * limits.
402  */
403 static void scan_time_advisor(void)
404 {
405         unsigned int cpu_percent;
406         unsigned long cpu_time;
407         unsigned long cpu_time_diff;
408         unsigned long cpu_time_diff_ms;
409         unsigned long pages;
410         unsigned long per_page_cost;
411         unsigned long factor;
412         unsigned long change;
413         unsigned long last_scan_time;
414         unsigned long scan_time;
415
416         /* Convert scan time to seconds */
417         scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418                             MSEC_PER_SEC);
419         scan_time = scan_time ? scan_time : 1;
420
421         /* Calculate CPU consumption of ksmd background thread */
422         cpu_time = task_sched_runtime(current);
423         cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424         cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426         cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427         cpu_percent = cpu_percent ? cpu_percent : 1;
428         last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430         /* Calculate scan time as percentage of target scan time */
431         factor = ksm_advisor_target_scan_time * 100 / scan_time;
432         factor = factor ? factor : 1;
433
434         /*
435          * Calculate scan time as percentage of last scan time and use
436          * exponentially weighted average to smooth it
437          */
438         change = scan_time * 100 / last_scan_time;
439         change = change ? change : 1;
440         change = ewma(advisor_ctx.change, change);
441
442         /* Calculate new scan rate based on target scan rate. */
443         pages = ksm_thread_pages_to_scan * 100 / factor;
444         /* Update pages_to_scan by weighted change percentage. */
445         pages = pages * change / 100;
446
447         /* Cap new pages_to_scan value */
448         per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449         per_page_cost = per_page_cost ? per_page_cost : 1;
450
451         pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452         pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453         pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455         /* Update advisor context */
456         advisor_ctx.change = change;
457         advisor_ctx.scan_time = scan_time;
458         advisor_ctx.cpu_time = cpu_time;
459
460         ksm_thread_pages_to_scan = pages;
461         trace_ksm_advisor(scan_time, pages, cpu_percent);
462 }
463
464 static void advisor_stop_scan(void)
465 {
466         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467                 scan_time_advisor();
468 }
469
470 #ifdef CONFIG_NUMA
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
474 #else
475 #define ksm_merge_across_nodes  1U
476 #define ksm_nr_node_ids         1
477 #endif
478
479 #define KSM_RUN_STOP    0
480 #define KSM_RUN_MERGE   1
481 #define KSM_RUN_UNMERGE 2
482 #define KSM_RUN_OFFLINE 4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
485
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
491 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
492                 sizeof(struct __struct), __alignof__(struct __struct),\
493                 (__flags), NULL)
494
495 static int __init ksm_slab_init(void)
496 {
497         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
498         if (!rmap_item_cache)
499                 goto out;
500
501         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
502         if (!stable_node_cache)
503                 goto out_free1;
504
505         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
506         if (!mm_slot_cache)
507                 goto out_free2;
508
509         return 0;
510
511 out_free2:
512         kmem_cache_destroy(stable_node_cache);
513 out_free1:
514         kmem_cache_destroy(rmap_item_cache);
515 out:
516         return -ENOMEM;
517 }
518
519 static void __init ksm_slab_free(void)
520 {
521         kmem_cache_destroy(mm_slot_cache);
522         kmem_cache_destroy(stable_node_cache);
523         kmem_cache_destroy(rmap_item_cache);
524         mm_slot_cache = NULL;
525 }
526
527 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
528 {
529         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
530 }
531
532 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
533 {
534         return dup->head == STABLE_NODE_DUP_HEAD;
535 }
536
537 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
538                                              struct ksm_stable_node *chain)
539 {
540         VM_BUG_ON(is_stable_node_dup(dup));
541         dup->head = STABLE_NODE_DUP_HEAD;
542         VM_BUG_ON(!is_stable_node_chain(chain));
543         hlist_add_head(&dup->hlist_dup, &chain->hlist);
544         ksm_stable_node_dups++;
545 }
546
547 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
548 {
549         VM_BUG_ON(!is_stable_node_dup(dup));
550         hlist_del(&dup->hlist_dup);
551         ksm_stable_node_dups--;
552 }
553
554 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
555 {
556         VM_BUG_ON(is_stable_node_chain(dup));
557         if (is_stable_node_dup(dup))
558                 __stable_node_dup_del(dup);
559         else
560                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
561 #ifdef CONFIG_DEBUG_VM
562         dup->head = NULL;
563 #endif
564 }
565
566 static inline struct ksm_rmap_item *alloc_rmap_item(void)
567 {
568         struct ksm_rmap_item *rmap_item;
569
570         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
571                                                 __GFP_NORETRY | __GFP_NOWARN);
572         if (rmap_item)
573                 ksm_rmap_items++;
574         return rmap_item;
575 }
576
577 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
578 {
579         ksm_rmap_items--;
580         rmap_item->mm->ksm_rmap_items--;
581         rmap_item->mm = NULL;   /* debug safety */
582         kmem_cache_free(rmap_item_cache, rmap_item);
583 }
584
585 static inline struct ksm_stable_node *alloc_stable_node(void)
586 {
587         /*
588          * The allocation can take too long with GFP_KERNEL when memory is under
589          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
590          * grants access to memory reserves, helping to avoid this problem.
591          */
592         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
593 }
594
595 static inline void free_stable_node(struct ksm_stable_node *stable_node)
596 {
597         VM_BUG_ON(stable_node->rmap_hlist_len &&
598                   !is_stable_node_chain(stable_node));
599         kmem_cache_free(stable_node_cache, stable_node);
600 }
601
602 /*
603  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
604  * page tables after it has passed through ksm_exit() - which, if necessary,
605  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
606  * a special flag: they can just back out as soon as mm_users goes to zero.
607  * ksm_test_exit() is used throughout to make this test for exit: in some
608  * places for correctness, in some places just to avoid unnecessary work.
609  */
610 static inline bool ksm_test_exit(struct mm_struct *mm)
611 {
612         return atomic_read(&mm->mm_users) == 0;
613 }
614
615 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
616                         struct mm_walk *walk)
617 {
618         struct page *page = NULL;
619         spinlock_t *ptl;
620         pte_t *pte;
621         pte_t ptent;
622         int ret;
623
624         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
625         if (!pte)
626                 return 0;
627         ptent = ptep_get(pte);
628         if (pte_present(ptent)) {
629                 page = vm_normal_page(walk->vma, addr, ptent);
630         } else if (!pte_none(ptent)) {
631                 swp_entry_t entry = pte_to_swp_entry(ptent);
632
633                 /*
634                  * As KSM pages remain KSM pages until freed, no need to wait
635                  * here for migration to end.
636                  */
637                 if (is_migration_entry(entry))
638                         page = pfn_swap_entry_to_page(entry);
639         }
640         /* return 1 if the page is an normal ksm page or KSM-placed zero page */
641         ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
642         pte_unmap_unlock(pte, ptl);
643         return ret;
644 }
645
646 static const struct mm_walk_ops break_ksm_ops = {
647         .pmd_entry = break_ksm_pmd_entry,
648         .walk_lock = PGWALK_RDLOCK,
649 };
650
651 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
652         .pmd_entry = break_ksm_pmd_entry,
653         .walk_lock = PGWALK_WRLOCK,
654 };
655
656 /*
657  * We use break_ksm to break COW on a ksm page by triggering unsharing,
658  * such that the ksm page will get replaced by an exclusive anonymous page.
659  *
660  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
661  * in case the application has unmapped and remapped mm,addr meanwhile.
662  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
663  * mmap of /dev/mem, where we would not want to touch it.
664  *
665  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
666  * of the process that owns 'vma'.  We also do not want to enforce
667  * protection keys here anyway.
668  */
669 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
670 {
671         vm_fault_t ret = 0;
672         const struct mm_walk_ops *ops = lock_vma ?
673                                 &break_ksm_lock_vma_ops : &break_ksm_ops;
674
675         do {
676                 int ksm_page;
677
678                 cond_resched();
679                 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
680                 if (WARN_ON_ONCE(ksm_page < 0))
681                         return ksm_page;
682                 if (!ksm_page)
683                         return 0;
684                 ret = handle_mm_fault(vma, addr,
685                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
686                                       NULL);
687         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
688         /*
689          * We must loop until we no longer find a KSM page because
690          * handle_mm_fault() may back out if there's any difficulty e.g. if
691          * pte accessed bit gets updated concurrently.
692          *
693          * VM_FAULT_SIGBUS could occur if we race with truncation of the
694          * backing file, which also invalidates anonymous pages: that's
695          * okay, that truncation will have unmapped the PageKsm for us.
696          *
697          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
698          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
699          * current task has TIF_MEMDIE set, and will be OOM killed on return
700          * to user; and ksmd, having no mm, would never be chosen for that.
701          *
702          * But if the mm is in a limited mem_cgroup, then the fault may fail
703          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
704          * even ksmd can fail in this way - though it's usually breaking ksm
705          * just to undo a merge it made a moment before, so unlikely to oom.
706          *
707          * That's a pity: we might therefore have more kernel pages allocated
708          * than we're counting as nodes in the stable tree; but ksm_do_scan
709          * will retry to break_cow on each pass, so should recover the page
710          * in due course.  The important thing is to not let VM_MERGEABLE
711          * be cleared while any such pages might remain in the area.
712          */
713         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
714 }
715
716 static bool vma_ksm_compatible(struct vm_area_struct *vma)
717 {
718         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
719                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
720                              VM_MIXEDMAP))
721                 return false;           /* just ignore the advice */
722
723         if (vma_is_dax(vma))
724                 return false;
725
726 #ifdef VM_SAO
727         if (vma->vm_flags & VM_SAO)
728                 return false;
729 #endif
730 #ifdef VM_SPARC_ADI
731         if (vma->vm_flags & VM_SPARC_ADI)
732                 return false;
733 #endif
734
735         return true;
736 }
737
738 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
739                 unsigned long addr)
740 {
741         struct vm_area_struct *vma;
742         if (ksm_test_exit(mm))
743                 return NULL;
744         vma = vma_lookup(mm, addr);
745         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
746                 return NULL;
747         return vma;
748 }
749
750 static void break_cow(struct ksm_rmap_item *rmap_item)
751 {
752         struct mm_struct *mm = rmap_item->mm;
753         unsigned long addr = rmap_item->address;
754         struct vm_area_struct *vma;
755
756         /*
757          * It is not an accident that whenever we want to break COW
758          * to undo, we also need to drop a reference to the anon_vma.
759          */
760         put_anon_vma(rmap_item->anon_vma);
761
762         mmap_read_lock(mm);
763         vma = find_mergeable_vma(mm, addr);
764         if (vma)
765                 break_ksm(vma, addr, false);
766         mmap_read_unlock(mm);
767 }
768
769 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
770 {
771         struct mm_struct *mm = rmap_item->mm;
772         unsigned long addr = rmap_item->address;
773         struct vm_area_struct *vma;
774         struct page *page;
775
776         mmap_read_lock(mm);
777         vma = find_mergeable_vma(mm, addr);
778         if (!vma)
779                 goto out;
780
781         page = follow_page(vma, addr, FOLL_GET);
782         if (IS_ERR_OR_NULL(page))
783                 goto out;
784         if (is_zone_device_page(page))
785                 goto out_putpage;
786         if (PageAnon(page)) {
787                 flush_anon_page(vma, page, addr);
788                 flush_dcache_page(page);
789         } else {
790 out_putpage:
791                 put_page(page);
792 out:
793                 page = NULL;
794         }
795         mmap_read_unlock(mm);
796         return page;
797 }
798
799 /*
800  * This helper is used for getting right index into array of tree roots.
801  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
802  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
803  * every node has its own stable and unstable tree.
804  */
805 static inline int get_kpfn_nid(unsigned long kpfn)
806 {
807         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
808 }
809
810 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
811                                                    struct rb_root *root)
812 {
813         struct ksm_stable_node *chain = alloc_stable_node();
814         VM_BUG_ON(is_stable_node_chain(dup));
815         if (likely(chain)) {
816                 INIT_HLIST_HEAD(&chain->hlist);
817                 chain->chain_prune_time = jiffies;
818                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
819 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
820                 chain->nid = NUMA_NO_NODE; /* debug */
821 #endif
822                 ksm_stable_node_chains++;
823
824                 /*
825                  * Put the stable node chain in the first dimension of
826                  * the stable tree and at the same time remove the old
827                  * stable node.
828                  */
829                 rb_replace_node(&dup->node, &chain->node, root);
830
831                 /*
832                  * Move the old stable node to the second dimension
833                  * queued in the hlist_dup. The invariant is that all
834                  * dup stable_nodes in the chain->hlist point to pages
835                  * that are write protected and have the exact same
836                  * content.
837                  */
838                 stable_node_chain_add_dup(dup, chain);
839         }
840         return chain;
841 }
842
843 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
844                                           struct rb_root *root)
845 {
846         rb_erase(&chain->node, root);
847         free_stable_node(chain);
848         ksm_stable_node_chains--;
849 }
850
851 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
852 {
853         struct ksm_rmap_item *rmap_item;
854
855         /* check it's not STABLE_NODE_CHAIN or negative */
856         BUG_ON(stable_node->rmap_hlist_len < 0);
857
858         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
859                 if (rmap_item->hlist.next) {
860                         ksm_pages_sharing--;
861                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
862                 } else {
863                         ksm_pages_shared--;
864                 }
865
866                 rmap_item->mm->ksm_merging_pages--;
867
868                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
869                 stable_node->rmap_hlist_len--;
870                 put_anon_vma(rmap_item->anon_vma);
871                 rmap_item->address &= PAGE_MASK;
872                 cond_resched();
873         }
874
875         /*
876          * We need the second aligned pointer of the migrate_nodes
877          * list_head to stay clear from the rb_parent_color union
878          * (aligned and different than any node) and also different
879          * from &migrate_nodes. This will verify that future list.h changes
880          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
881          */
882         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
883         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
884
885         trace_ksm_remove_ksm_page(stable_node->kpfn);
886         if (stable_node->head == &migrate_nodes)
887                 list_del(&stable_node->list);
888         else
889                 stable_node_dup_del(stable_node);
890         free_stable_node(stable_node);
891 }
892
893 enum get_ksm_page_flags {
894         GET_KSM_PAGE_NOLOCK,
895         GET_KSM_PAGE_LOCK,
896         GET_KSM_PAGE_TRYLOCK
897 };
898
899 /*
900  * ksm_get_folio: checks if the page indicated by the stable node
901  * is still its ksm page, despite having held no reference to it.
902  * In which case we can trust the content of the page, and it
903  * returns the gotten page; but if the page has now been zapped,
904  * remove the stale node from the stable tree and return NULL.
905  * But beware, the stable node's page might be being migrated.
906  *
907  * You would expect the stable_node to hold a reference to the ksm page.
908  * But if it increments the page's count, swapping out has to wait for
909  * ksmd to come around again before it can free the page, which may take
910  * seconds or even minutes: much too unresponsive.  So instead we use a
911  * "keyhole reference": access to the ksm page from the stable node peeps
912  * out through its keyhole to see if that page still holds the right key,
913  * pointing back to this stable node.  This relies on freeing a PageAnon
914  * page to reset its page->mapping to NULL, and relies on no other use of
915  * a page to put something that might look like our key in page->mapping.
916  * is on its way to being freed; but it is an anomaly to bear in mind.
917  */
918 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
919                                  enum get_ksm_page_flags flags)
920 {
921         struct folio *folio;
922         void *expected_mapping;
923         unsigned long kpfn;
924
925         expected_mapping = (void *)((unsigned long)stable_node |
926                                         PAGE_MAPPING_KSM);
927 again:
928         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
929         folio = pfn_folio(kpfn);
930         if (READ_ONCE(folio->mapping) != expected_mapping)
931                 goto stale;
932
933         /*
934          * We cannot do anything with the page while its refcount is 0.
935          * Usually 0 means free, or tail of a higher-order page: in which
936          * case this node is no longer referenced, and should be freed;
937          * however, it might mean that the page is under page_ref_freeze().
938          * The __remove_mapping() case is easy, again the node is now stale;
939          * the same is in reuse_ksm_page() case; but if page is swapcache
940          * in folio_migrate_mapping(), it might still be our page,
941          * in which case it's essential to keep the node.
942          */
943         while (!folio_try_get(folio)) {
944                 /*
945                  * Another check for page->mapping != expected_mapping would
946                  * work here too.  We have chosen the !PageSwapCache test to
947                  * optimize the common case, when the page is or is about to
948                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
949                  * in the ref_freeze section of __remove_mapping(); but Anon
950                  * folio->mapping reset to NULL later, in free_pages_prepare().
951                  */
952                 if (!folio_test_swapcache(folio))
953                         goto stale;
954                 cpu_relax();
955         }
956
957         if (READ_ONCE(folio->mapping) != expected_mapping) {
958                 folio_put(folio);
959                 goto stale;
960         }
961
962         if (flags == GET_KSM_PAGE_TRYLOCK) {
963                 if (!folio_trylock(folio)) {
964                         folio_put(folio);
965                         return ERR_PTR(-EBUSY);
966                 }
967         } else if (flags == GET_KSM_PAGE_LOCK)
968                 folio_lock(folio);
969
970         if (flags != GET_KSM_PAGE_NOLOCK) {
971                 if (READ_ONCE(folio->mapping) != expected_mapping) {
972                         folio_unlock(folio);
973                         folio_put(folio);
974                         goto stale;
975                 }
976         }
977         return folio;
978
979 stale:
980         /*
981          * We come here from above when page->mapping or !PageSwapCache
982          * suggests that the node is stale; but it might be under migration.
983          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
984          * before checking whether node->kpfn has been changed.
985          */
986         smp_rmb();
987         if (READ_ONCE(stable_node->kpfn) != kpfn)
988                 goto again;
989         remove_node_from_stable_tree(stable_node);
990         return NULL;
991 }
992
993 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
994                                  enum get_ksm_page_flags flags)
995 {
996         struct folio *folio = ksm_get_folio(stable_node, flags);
997
998         return &folio->page;
999 }
1000
1001 /*
1002  * Removing rmap_item from stable or unstable tree.
1003  * This function will clean the information from the stable/unstable tree.
1004  */
1005 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
1006 {
1007         if (rmap_item->address & STABLE_FLAG) {
1008                 struct ksm_stable_node *stable_node;
1009                 struct folio *folio;
1010
1011                 stable_node = rmap_item->head;
1012                 folio = ksm_get_folio(stable_node, GET_KSM_PAGE_LOCK);
1013                 if (!folio)
1014                         goto out;
1015
1016                 hlist_del(&rmap_item->hlist);
1017                 folio_unlock(folio);
1018                 folio_put(folio);
1019
1020                 if (!hlist_empty(&stable_node->hlist))
1021                         ksm_pages_sharing--;
1022                 else
1023                         ksm_pages_shared--;
1024
1025                 rmap_item->mm->ksm_merging_pages--;
1026
1027                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1028                 stable_node->rmap_hlist_len--;
1029
1030                 put_anon_vma(rmap_item->anon_vma);
1031                 rmap_item->head = NULL;
1032                 rmap_item->address &= PAGE_MASK;
1033
1034         } else if (rmap_item->address & UNSTABLE_FLAG) {
1035                 unsigned char age;
1036                 /*
1037                  * Usually ksmd can and must skip the rb_erase, because
1038                  * root_unstable_tree was already reset to RB_ROOT.
1039                  * But be careful when an mm is exiting: do the rb_erase
1040                  * if this rmap_item was inserted by this scan, rather
1041                  * than left over from before.
1042                  */
1043                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1044                 BUG_ON(age > 1);
1045                 if (!age)
1046                         rb_erase(&rmap_item->node,
1047                                  root_unstable_tree + NUMA(rmap_item->nid));
1048                 ksm_pages_unshared--;
1049                 rmap_item->address &= PAGE_MASK;
1050         }
1051 out:
1052         cond_resched();         /* we're called from many long loops */
1053 }
1054
1055 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1056 {
1057         while (*rmap_list) {
1058                 struct ksm_rmap_item *rmap_item = *rmap_list;
1059                 *rmap_list = rmap_item->rmap_list;
1060                 remove_rmap_item_from_tree(rmap_item);
1061                 free_rmap_item(rmap_item);
1062         }
1063 }
1064
1065 /*
1066  * Though it's very tempting to unmerge rmap_items from stable tree rather
1067  * than check every pte of a given vma, the locking doesn't quite work for
1068  * that - an rmap_item is assigned to the stable tree after inserting ksm
1069  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1070  * rmap_items from parent to child at fork time (so as not to waste time
1071  * if exit comes before the next scan reaches it).
1072  *
1073  * Similarly, although we'd like to remove rmap_items (so updating counts
1074  * and freeing memory) when unmerging an area, it's easier to leave that
1075  * to the next pass of ksmd - consider, for example, how ksmd might be
1076  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1077  */
1078 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1079                              unsigned long start, unsigned long end, bool lock_vma)
1080 {
1081         unsigned long addr;
1082         int err = 0;
1083
1084         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1085                 if (ksm_test_exit(vma->vm_mm))
1086                         break;
1087                 if (signal_pending(current))
1088                         err = -ERESTARTSYS;
1089                 else
1090                         err = break_ksm(vma, addr, lock_vma);
1091         }
1092         return err;
1093 }
1094
1095 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1096 {
1097         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1098 }
1099
1100 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1101 {
1102         return folio_stable_node(page_folio(page));
1103 }
1104
1105 static inline void set_page_stable_node(struct page *page,
1106                                         struct ksm_stable_node *stable_node)
1107 {
1108         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
1109         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1110 }
1111
1112 static inline void folio_set_stable_node(struct folio *folio,
1113                                          struct ksm_stable_node *stable_node)
1114 {
1115         set_page_stable_node(&folio->page, stable_node);
1116 }
1117
1118 #ifdef CONFIG_SYSFS
1119 /*
1120  * Only called through the sysfs control interface:
1121  */
1122 static int remove_stable_node(struct ksm_stable_node *stable_node)
1123 {
1124         struct folio *folio;
1125         int err;
1126
1127         folio = ksm_get_folio(stable_node, GET_KSM_PAGE_LOCK);
1128         if (!folio) {
1129                 /*
1130                  * ksm_get_folio did remove_node_from_stable_tree itself.
1131                  */
1132                 return 0;
1133         }
1134
1135         /*
1136          * Page could be still mapped if this races with __mmput() running in
1137          * between ksm_exit() and exit_mmap(). Just refuse to let
1138          * merge_across_nodes/max_page_sharing be switched.
1139          */
1140         err = -EBUSY;
1141         if (!folio_mapped(folio)) {
1142                 /*
1143                  * The stable node did not yet appear stale to ksm_get_folio(),
1144                  * since that allows for an unmapped ksm folio to be recognized
1145                  * right up until it is freed; but the node is safe to remove.
1146                  * This folio might be in an LRU cache waiting to be freed,
1147                  * or it might be in the swapcache (perhaps under writeback),
1148                  * or it might have been removed from swapcache a moment ago.
1149                  */
1150                 folio_set_stable_node(folio, NULL);
1151                 remove_node_from_stable_tree(stable_node);
1152                 err = 0;
1153         }
1154
1155         folio_unlock(folio);
1156         folio_put(folio);
1157         return err;
1158 }
1159
1160 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1161                                     struct rb_root *root)
1162 {
1163         struct ksm_stable_node *dup;
1164         struct hlist_node *hlist_safe;
1165
1166         if (!is_stable_node_chain(stable_node)) {
1167                 VM_BUG_ON(is_stable_node_dup(stable_node));
1168                 if (remove_stable_node(stable_node))
1169                         return true;
1170                 else
1171                         return false;
1172         }
1173
1174         hlist_for_each_entry_safe(dup, hlist_safe,
1175                                   &stable_node->hlist, hlist_dup) {
1176                 VM_BUG_ON(!is_stable_node_dup(dup));
1177                 if (remove_stable_node(dup))
1178                         return true;
1179         }
1180         BUG_ON(!hlist_empty(&stable_node->hlist));
1181         free_stable_node_chain(stable_node, root);
1182         return false;
1183 }
1184
1185 static int remove_all_stable_nodes(void)
1186 {
1187         struct ksm_stable_node *stable_node, *next;
1188         int nid;
1189         int err = 0;
1190
1191         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1192                 while (root_stable_tree[nid].rb_node) {
1193                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
1194                                                 struct ksm_stable_node, node);
1195                         if (remove_stable_node_chain(stable_node,
1196                                                      root_stable_tree + nid)) {
1197                                 err = -EBUSY;
1198                                 break;  /* proceed to next nid */
1199                         }
1200                         cond_resched();
1201                 }
1202         }
1203         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1204                 if (remove_stable_node(stable_node))
1205                         err = -EBUSY;
1206                 cond_resched();
1207         }
1208         return err;
1209 }
1210
1211 static int unmerge_and_remove_all_rmap_items(void)
1212 {
1213         struct ksm_mm_slot *mm_slot;
1214         struct mm_slot *slot;
1215         struct mm_struct *mm;
1216         struct vm_area_struct *vma;
1217         int err = 0;
1218
1219         spin_lock(&ksm_mmlist_lock);
1220         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1221                           struct mm_slot, mm_node);
1222         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1223         spin_unlock(&ksm_mmlist_lock);
1224
1225         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1226              mm_slot = ksm_scan.mm_slot) {
1227                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1228
1229                 mm = mm_slot->slot.mm;
1230                 mmap_read_lock(mm);
1231
1232                 /*
1233                  * Exit right away if mm is exiting to avoid lockdep issue in
1234                  * the maple tree
1235                  */
1236                 if (ksm_test_exit(mm))
1237                         goto mm_exiting;
1238
1239                 for_each_vma(vmi, vma) {
1240                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1241                                 continue;
1242                         err = unmerge_ksm_pages(vma,
1243                                                 vma->vm_start, vma->vm_end, false);
1244                         if (err)
1245                                 goto error;
1246                 }
1247
1248 mm_exiting:
1249                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1250                 mmap_read_unlock(mm);
1251
1252                 spin_lock(&ksm_mmlist_lock);
1253                 slot = list_entry(mm_slot->slot.mm_node.next,
1254                                   struct mm_slot, mm_node);
1255                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1256                 if (ksm_test_exit(mm)) {
1257                         hash_del(&mm_slot->slot.hash);
1258                         list_del(&mm_slot->slot.mm_node);
1259                         spin_unlock(&ksm_mmlist_lock);
1260
1261                         mm_slot_free(mm_slot_cache, mm_slot);
1262                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1263                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1264                         mmdrop(mm);
1265                 } else
1266                         spin_unlock(&ksm_mmlist_lock);
1267         }
1268
1269         /* Clean up stable nodes, but don't worry if some are still busy */
1270         remove_all_stable_nodes();
1271         ksm_scan.seqnr = 0;
1272         return 0;
1273
1274 error:
1275         mmap_read_unlock(mm);
1276         spin_lock(&ksm_mmlist_lock);
1277         ksm_scan.mm_slot = &ksm_mm_head;
1278         spin_unlock(&ksm_mmlist_lock);
1279         return err;
1280 }
1281 #endif /* CONFIG_SYSFS */
1282
1283 static u32 calc_checksum(struct page *page)
1284 {
1285         u32 checksum;
1286         void *addr = kmap_local_page(page);
1287         checksum = xxhash(addr, PAGE_SIZE, 0);
1288         kunmap_local(addr);
1289         return checksum;
1290 }
1291
1292 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1293                               pte_t *orig_pte)
1294 {
1295         struct mm_struct *mm = vma->vm_mm;
1296         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1297         int swapped;
1298         int err = -EFAULT;
1299         struct mmu_notifier_range range;
1300         bool anon_exclusive;
1301         pte_t entry;
1302
1303         if (WARN_ON_ONCE(folio_test_large(folio)))
1304                 return err;
1305
1306         pvmw.address = page_address_in_vma(&folio->page, vma);
1307         if (pvmw.address == -EFAULT)
1308                 goto out;
1309
1310         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1311                                 pvmw.address + PAGE_SIZE);
1312         mmu_notifier_invalidate_range_start(&range);
1313
1314         if (!page_vma_mapped_walk(&pvmw))
1315                 goto out_mn;
1316         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1317                 goto out_unlock;
1318
1319         anon_exclusive = PageAnonExclusive(&folio->page);
1320         entry = ptep_get(pvmw.pte);
1321         if (pte_write(entry) || pte_dirty(entry) ||
1322             anon_exclusive || mm_tlb_flush_pending(mm)) {
1323                 swapped = folio_test_swapcache(folio);
1324                 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1325                 /*
1326                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1327                  * take any lock, therefore the check that we are going to make
1328                  * with the pagecount against the mapcount is racy and
1329                  * O_DIRECT can happen right after the check.
1330                  * So we clear the pte and flush the tlb before the check
1331                  * this assure us that no O_DIRECT can happen after the check
1332                  * or in the middle of the check.
1333                  *
1334                  * No need to notify as we are downgrading page table to read
1335                  * only not changing it to point to a new page.
1336                  *
1337                  * See Documentation/mm/mmu_notifier.rst
1338                  */
1339                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1340                 /*
1341                  * Check that no O_DIRECT or similar I/O is in progress on the
1342                  * page
1343                  */
1344                 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1345                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1346                         goto out_unlock;
1347                 }
1348
1349                 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1350                 if (anon_exclusive &&
1351                     folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1352                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1353                         goto out_unlock;
1354                 }
1355
1356                 if (pte_dirty(entry))
1357                         folio_mark_dirty(folio);
1358                 entry = pte_mkclean(entry);
1359
1360                 if (pte_write(entry))
1361                         entry = pte_wrprotect(entry);
1362
1363                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1364         }
1365         *orig_pte = entry;
1366         err = 0;
1367
1368 out_unlock:
1369         page_vma_mapped_walk_done(&pvmw);
1370 out_mn:
1371         mmu_notifier_invalidate_range_end(&range);
1372 out:
1373         return err;
1374 }
1375
1376 /**
1377  * replace_page - replace page in vma by new ksm page
1378  * @vma:      vma that holds the pte pointing to page
1379  * @page:     the page we are replacing by kpage
1380  * @kpage:    the ksm page we replace page by
1381  * @orig_pte: the original value of the pte
1382  *
1383  * Returns 0 on success, -EFAULT on failure.
1384  */
1385 static int replace_page(struct vm_area_struct *vma, struct page *page,
1386                         struct page *kpage, pte_t orig_pte)
1387 {
1388         struct folio *kfolio = page_folio(kpage);
1389         struct mm_struct *mm = vma->vm_mm;
1390         struct folio *folio;
1391         pmd_t *pmd;
1392         pmd_t pmde;
1393         pte_t *ptep;
1394         pte_t newpte;
1395         spinlock_t *ptl;
1396         unsigned long addr;
1397         int err = -EFAULT;
1398         struct mmu_notifier_range range;
1399
1400         addr = page_address_in_vma(page, vma);
1401         if (addr == -EFAULT)
1402                 goto out;
1403
1404         pmd = mm_find_pmd(mm, addr);
1405         if (!pmd)
1406                 goto out;
1407         /*
1408          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1409          * without holding anon_vma lock for write.  So when looking for a
1410          * genuine pmde (in which to find pte), test present and !THP together.
1411          */
1412         pmde = pmdp_get_lockless(pmd);
1413         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1414                 goto out;
1415
1416         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1417                                 addr + PAGE_SIZE);
1418         mmu_notifier_invalidate_range_start(&range);
1419
1420         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1421         if (!ptep)
1422                 goto out_mn;
1423         if (!pte_same(ptep_get(ptep), orig_pte)) {
1424                 pte_unmap_unlock(ptep, ptl);
1425                 goto out_mn;
1426         }
1427         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1428         VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1429                         kfolio);
1430
1431         /*
1432          * No need to check ksm_use_zero_pages here: we can only have a
1433          * zero_page here if ksm_use_zero_pages was enabled already.
1434          */
1435         if (!is_zero_pfn(page_to_pfn(kpage))) {
1436                 folio_get(kfolio);
1437                 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1438                 newpte = mk_pte(kpage, vma->vm_page_prot);
1439         } else {
1440                 /*
1441                  * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1442                  * we can easily track all KSM-placed zero pages by checking if
1443                  * the dirty bit in zero page's PTE is set.
1444                  */
1445                 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1446                 ksm_zero_pages++;
1447                 mm->ksm_zero_pages++;
1448                 /*
1449                  * We're replacing an anonymous page with a zero page, which is
1450                  * not anonymous. We need to do proper accounting otherwise we
1451                  * will get wrong values in /proc, and a BUG message in dmesg
1452                  * when tearing down the mm.
1453                  */
1454                 dec_mm_counter(mm, MM_ANONPAGES);
1455         }
1456
1457         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1458         /*
1459          * No need to notify as we are replacing a read only page with another
1460          * read only page with the same content.
1461          *
1462          * See Documentation/mm/mmu_notifier.rst
1463          */
1464         ptep_clear_flush(vma, addr, ptep);
1465         set_pte_at_notify(mm, addr, ptep, newpte);
1466
1467         folio = page_folio(page);
1468         folio_remove_rmap_pte(folio, page, vma);
1469         if (!folio_mapped(folio))
1470                 folio_free_swap(folio);
1471         folio_put(folio);
1472
1473         pte_unmap_unlock(ptep, ptl);
1474         err = 0;
1475 out_mn:
1476         mmu_notifier_invalidate_range_end(&range);
1477 out:
1478         return err;
1479 }
1480
1481 /*
1482  * try_to_merge_one_page - take two pages and merge them into one
1483  * @vma: the vma that holds the pte pointing to page
1484  * @page: the PageAnon page that we want to replace with kpage
1485  * @kpage: the PageKsm page that we want to map instead of page,
1486  *         or NULL the first time when we want to use page as kpage.
1487  *
1488  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1489  */
1490 static int try_to_merge_one_page(struct vm_area_struct *vma,
1491                                  struct page *page, struct page *kpage)
1492 {
1493         pte_t orig_pte = __pte(0);
1494         int err = -EFAULT;
1495
1496         if (page == kpage)                      /* ksm page forked */
1497                 return 0;
1498
1499         if (!PageAnon(page))
1500                 goto out;
1501
1502         /*
1503          * We need the page lock to read a stable PageSwapCache in
1504          * write_protect_page().  We use trylock_page() instead of
1505          * lock_page() because we don't want to wait here - we
1506          * prefer to continue scanning and merging different pages,
1507          * then come back to this page when it is unlocked.
1508          */
1509         if (!trylock_page(page))
1510                 goto out;
1511
1512         if (PageTransCompound(page)) {
1513                 if (split_huge_page(page))
1514                         goto out_unlock;
1515         }
1516
1517         /*
1518          * If this anonymous page is mapped only here, its pte may need
1519          * to be write-protected.  If it's mapped elsewhere, all of its
1520          * ptes are necessarily already write-protected.  But in either
1521          * case, we need to lock and check page_count is not raised.
1522          */
1523         if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
1524                 if (!kpage) {
1525                         /*
1526                          * While we hold page lock, upgrade page from
1527                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1528                          * stable_tree_insert() will update stable_node.
1529                          */
1530                         set_page_stable_node(page, NULL);
1531                         mark_page_accessed(page);
1532                         /*
1533                          * Page reclaim just frees a clean page with no dirty
1534                          * ptes: make sure that the ksm page would be swapped.
1535                          */
1536                         if (!PageDirty(page))
1537                                 SetPageDirty(page);
1538                         err = 0;
1539                 } else if (pages_identical(page, kpage))
1540                         err = replace_page(vma, page, kpage, orig_pte);
1541         }
1542
1543 out_unlock:
1544         unlock_page(page);
1545 out:
1546         return err;
1547 }
1548
1549 /*
1550  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1551  * but no new kernel page is allocated: kpage must already be a ksm page.
1552  *
1553  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1554  */
1555 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1556                                       struct page *page, struct page *kpage)
1557 {
1558         struct mm_struct *mm = rmap_item->mm;
1559         struct vm_area_struct *vma;
1560         int err = -EFAULT;
1561
1562         mmap_read_lock(mm);
1563         vma = find_mergeable_vma(mm, rmap_item->address);
1564         if (!vma)
1565                 goto out;
1566
1567         err = try_to_merge_one_page(vma, page, kpage);
1568         if (err)
1569                 goto out;
1570
1571         /* Unstable nid is in union with stable anon_vma: remove first */
1572         remove_rmap_item_from_tree(rmap_item);
1573
1574         /* Must get reference to anon_vma while still holding mmap_lock */
1575         rmap_item->anon_vma = vma->anon_vma;
1576         get_anon_vma(vma->anon_vma);
1577 out:
1578         mmap_read_unlock(mm);
1579         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1580                                 rmap_item, mm, err);
1581         return err;
1582 }
1583
1584 /*
1585  * try_to_merge_two_pages - take two identical pages and prepare them
1586  * to be merged into one page.
1587  *
1588  * This function returns the kpage if we successfully merged two identical
1589  * pages into one ksm page, NULL otherwise.
1590  *
1591  * Note that this function upgrades page to ksm page: if one of the pages
1592  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1593  */
1594 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1595                                            struct page *page,
1596                                            struct ksm_rmap_item *tree_rmap_item,
1597                                            struct page *tree_page)
1598 {
1599         int err;
1600
1601         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1602         if (!err) {
1603                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1604                                                         tree_page, page);
1605                 /*
1606                  * If that fails, we have a ksm page with only one pte
1607                  * pointing to it: so break it.
1608                  */
1609                 if (err)
1610                         break_cow(rmap_item);
1611         }
1612         return err ? NULL : page;
1613 }
1614
1615 static __always_inline
1616 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1617 {
1618         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1619         /*
1620          * Check that at least one mapping still exists, otherwise
1621          * there's no much point to merge and share with this
1622          * stable_node, as the underlying tree_page of the other
1623          * sharer is going to be freed soon.
1624          */
1625         return stable_node->rmap_hlist_len &&
1626                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1627 }
1628
1629 static __always_inline
1630 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1631 {
1632         return __is_page_sharing_candidate(stable_node, 0);
1633 }
1634
1635 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1636                                     struct ksm_stable_node **_stable_node,
1637                                     struct rb_root *root,
1638                                     bool prune_stale_stable_nodes)
1639 {
1640         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1641         struct hlist_node *hlist_safe;
1642         struct folio *folio, *tree_folio = NULL;
1643         int nr = 0;
1644         int found_rmap_hlist_len;
1645
1646         if (!prune_stale_stable_nodes ||
1647             time_before(jiffies, stable_node->chain_prune_time +
1648                         msecs_to_jiffies(
1649                                 ksm_stable_node_chains_prune_millisecs)))
1650                 prune_stale_stable_nodes = false;
1651         else
1652                 stable_node->chain_prune_time = jiffies;
1653
1654         hlist_for_each_entry_safe(dup, hlist_safe,
1655                                   &stable_node->hlist, hlist_dup) {
1656                 cond_resched();
1657                 /*
1658                  * We must walk all stable_node_dup to prune the stale
1659                  * stable nodes during lookup.
1660                  *
1661                  * ksm_get_folio can drop the nodes from the
1662                  * stable_node->hlist if they point to freed pages
1663                  * (that's why we do a _safe walk). The "dup"
1664                  * stable_node parameter itself will be freed from
1665                  * under us if it returns NULL.
1666                  */
1667                 folio = ksm_get_folio(dup, GET_KSM_PAGE_NOLOCK);
1668                 if (!folio)
1669                         continue;
1670                 nr += 1;
1671                 if (is_page_sharing_candidate(dup)) {
1672                         if (!found ||
1673                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1674                                 if (found)
1675                                         folio_put(tree_folio);
1676                                 found = dup;
1677                                 found_rmap_hlist_len = found->rmap_hlist_len;
1678                                 tree_folio = folio;
1679
1680                                 /* skip put_page for found dup */
1681                                 if (!prune_stale_stable_nodes)
1682                                         break;
1683                                 continue;
1684                         }
1685                 }
1686                 folio_put(folio);
1687         }
1688
1689         if (found) {
1690                 /*
1691                  * nr is counting all dups in the chain only if
1692                  * prune_stale_stable_nodes is true, otherwise we may
1693                  * break the loop at nr == 1 even if there are
1694                  * multiple entries.
1695                  */
1696                 if (prune_stale_stable_nodes && nr == 1) {
1697                         /*
1698                          * If there's not just one entry it would
1699                          * corrupt memory, better BUG_ON. In KSM
1700                          * context with no lock held it's not even
1701                          * fatal.
1702                          */
1703                         BUG_ON(stable_node->hlist.first->next);
1704
1705                         /*
1706                          * There's just one entry and it is below the
1707                          * deduplication limit so drop the chain.
1708                          */
1709                         rb_replace_node(&stable_node->node, &found->node,
1710                                         root);
1711                         free_stable_node(stable_node);
1712                         ksm_stable_node_chains--;
1713                         ksm_stable_node_dups--;
1714                         /*
1715                          * NOTE: the caller depends on the stable_node
1716                          * to be equal to stable_node_dup if the chain
1717                          * was collapsed.
1718                          */
1719                         *_stable_node = found;
1720                         /*
1721                          * Just for robustness, as stable_node is
1722                          * otherwise left as a stable pointer, the
1723                          * compiler shall optimize it away at build
1724                          * time.
1725                          */
1726                         stable_node = NULL;
1727                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1728                            __is_page_sharing_candidate(found, 1)) {
1729                         /*
1730                          * If the found stable_node dup can accept one
1731                          * more future merge (in addition to the one
1732                          * that is underway) and is not at the head of
1733                          * the chain, put it there so next search will
1734                          * be quicker in the !prune_stale_stable_nodes
1735                          * case.
1736                          *
1737                          * NOTE: it would be inaccurate to use nr > 1
1738                          * instead of checking the hlist.first pointer
1739                          * directly, because in the
1740                          * prune_stale_stable_nodes case "nr" isn't
1741                          * the position of the found dup in the chain,
1742                          * but the total number of dups in the chain.
1743                          */
1744                         hlist_del(&found->hlist_dup);
1745                         hlist_add_head(&found->hlist_dup,
1746                                        &stable_node->hlist);
1747                 }
1748         }
1749
1750         *_stable_node_dup = found;
1751         return &tree_folio->page;
1752 }
1753
1754 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1755                                                struct rb_root *root)
1756 {
1757         if (!is_stable_node_chain(stable_node))
1758                 return stable_node;
1759         if (hlist_empty(&stable_node->hlist)) {
1760                 free_stable_node_chain(stable_node, root);
1761                 return NULL;
1762         }
1763         return hlist_entry(stable_node->hlist.first,
1764                            typeof(*stable_node), hlist_dup);
1765 }
1766
1767 /*
1768  * Like for get_ksm_page, this function can free the *_stable_node and
1769  * *_stable_node_dup if the returned tree_page is NULL.
1770  *
1771  * It can also free and overwrite *_stable_node with the found
1772  * stable_node_dup if the chain is collapsed (in which case
1773  * *_stable_node will be equal to *_stable_node_dup like if the chain
1774  * never existed). It's up to the caller to verify tree_page is not
1775  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1776  *
1777  * *_stable_node_dup is really a second output parameter of this
1778  * function and will be overwritten in all cases, the caller doesn't
1779  * need to initialize it.
1780  */
1781 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1782                                         struct ksm_stable_node **_stable_node,
1783                                         struct rb_root *root,
1784                                         bool prune_stale_stable_nodes)
1785 {
1786         struct ksm_stable_node *stable_node = *_stable_node;
1787         if (!is_stable_node_chain(stable_node)) {
1788                 if (is_page_sharing_candidate(stable_node)) {
1789                         *_stable_node_dup = stable_node;
1790                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1791                 }
1792                 /*
1793                  * _stable_node_dup set to NULL means the stable_node
1794                  * reached the ksm_max_page_sharing limit.
1795                  */
1796                 *_stable_node_dup = NULL;
1797                 return NULL;
1798         }
1799         return stable_node_dup(_stable_node_dup, _stable_node, root,
1800                                prune_stale_stable_nodes);
1801 }
1802
1803 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1804                                                 struct ksm_stable_node **s_n,
1805                                                 struct rb_root *root)
1806 {
1807         return __stable_node_chain(s_n_d, s_n, root, true);
1808 }
1809
1810 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1811                                           struct ksm_stable_node *s_n,
1812                                           struct rb_root *root)
1813 {
1814         struct ksm_stable_node *old_stable_node = s_n;
1815         struct page *tree_page;
1816
1817         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1818         /* not pruning dups so s_n cannot have changed */
1819         VM_BUG_ON(s_n != old_stable_node);
1820         return tree_page;
1821 }
1822
1823 /*
1824  * stable_tree_search - search for page inside the stable tree
1825  *
1826  * This function checks if there is a page inside the stable tree
1827  * with identical content to the page that we are scanning right now.
1828  *
1829  * This function returns the stable tree node of identical content if found,
1830  * NULL otherwise.
1831  */
1832 static struct page *stable_tree_search(struct page *page)
1833 {
1834         int nid;
1835         struct rb_root *root;
1836         struct rb_node **new;
1837         struct rb_node *parent;
1838         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1839         struct ksm_stable_node *page_node;
1840
1841         page_node = page_stable_node(page);
1842         if (page_node && page_node->head != &migrate_nodes) {
1843                 /* ksm page forked */
1844                 get_page(page);
1845                 return page;
1846         }
1847
1848         nid = get_kpfn_nid(page_to_pfn(page));
1849         root = root_stable_tree + nid;
1850 again:
1851         new = &root->rb_node;
1852         parent = NULL;
1853
1854         while (*new) {
1855                 struct page *tree_page;
1856                 int ret;
1857
1858                 cond_resched();
1859                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1860                 stable_node_any = NULL;
1861                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1862                 /*
1863                  * NOTE: stable_node may have been freed by
1864                  * chain_prune() if the returned stable_node_dup is
1865                  * not NULL. stable_node_dup may have been inserted in
1866                  * the rbtree instead as a regular stable_node (in
1867                  * order to collapse the stable_node chain if a single
1868                  * stable_node dup was found in it). In such case the
1869                  * stable_node is overwritten by the callee to point
1870                  * to the stable_node_dup that was collapsed in the
1871                  * stable rbtree and stable_node will be equal to
1872                  * stable_node_dup like if the chain never existed.
1873                  */
1874                 if (!stable_node_dup) {
1875                         /*
1876                          * Either all stable_node dups were full in
1877                          * this stable_node chain, or this chain was
1878                          * empty and should be rb_erased.
1879                          */
1880                         stable_node_any = stable_node_dup_any(stable_node,
1881                                                               root);
1882                         if (!stable_node_any) {
1883                                 /* rb_erase just run */
1884                                 goto again;
1885                         }
1886                         /*
1887                          * Take any of the stable_node dups page of
1888                          * this stable_node chain to let the tree walk
1889                          * continue. All KSM pages belonging to the
1890                          * stable_node dups in a stable_node chain
1891                          * have the same content and they're
1892                          * write protected at all times. Any will work
1893                          * fine to continue the walk.
1894                          */
1895                         tree_page = get_ksm_page(stable_node_any,
1896                                                  GET_KSM_PAGE_NOLOCK);
1897                 }
1898                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1899                 if (!tree_page) {
1900                         /*
1901                          * If we walked over a stale stable_node,
1902                          * get_ksm_page() will call rb_erase() and it
1903                          * may rebalance the tree from under us. So
1904                          * restart the search from scratch. Returning
1905                          * NULL would be safe too, but we'd generate
1906                          * false negative insertions just because some
1907                          * stable_node was stale.
1908                          */
1909                         goto again;
1910                 }
1911
1912                 ret = memcmp_pages(page, tree_page);
1913                 put_page(tree_page);
1914
1915                 parent = *new;
1916                 if (ret < 0)
1917                         new = &parent->rb_left;
1918                 else if (ret > 0)
1919                         new = &parent->rb_right;
1920                 else {
1921                         if (page_node) {
1922                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1923                                 /*
1924                                  * Test if the migrated page should be merged
1925                                  * into a stable node dup. If the mapcount is
1926                                  * 1 we can migrate it with another KSM page
1927                                  * without adding it to the chain.
1928                                  */
1929                                 if (page_mapcount(page) > 1)
1930                                         goto chain_append;
1931                         }
1932
1933                         if (!stable_node_dup) {
1934                                 /*
1935                                  * If the stable_node is a chain and
1936                                  * we got a payload match in memcmp
1937                                  * but we cannot merge the scanned
1938                                  * page in any of the existing
1939                                  * stable_node dups because they're
1940                                  * all full, we need to wait the
1941                                  * scanned page to find itself a match
1942                                  * in the unstable tree to create a
1943                                  * brand new KSM page to add later to
1944                                  * the dups of this stable_node.
1945                                  */
1946                                 return NULL;
1947                         }
1948
1949                         /*
1950                          * Lock and unlock the stable_node's page (which
1951                          * might already have been migrated) so that page
1952                          * migration is sure to notice its raised count.
1953                          * It would be more elegant to return stable_node
1954                          * than kpage, but that involves more changes.
1955                          */
1956                         tree_page = get_ksm_page(stable_node_dup,
1957                                                  GET_KSM_PAGE_TRYLOCK);
1958
1959                         if (PTR_ERR(tree_page) == -EBUSY)
1960                                 return ERR_PTR(-EBUSY);
1961
1962                         if (unlikely(!tree_page))
1963                                 /*
1964                                  * The tree may have been rebalanced,
1965                                  * so re-evaluate parent and new.
1966                                  */
1967                                 goto again;
1968                         unlock_page(tree_page);
1969
1970                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1971                             NUMA(stable_node_dup->nid)) {
1972                                 put_page(tree_page);
1973                                 goto replace;
1974                         }
1975                         return tree_page;
1976                 }
1977         }
1978
1979         if (!page_node)
1980                 return NULL;
1981
1982         list_del(&page_node->list);
1983         DO_NUMA(page_node->nid = nid);
1984         rb_link_node(&page_node->node, parent, new);
1985         rb_insert_color(&page_node->node, root);
1986 out:
1987         if (is_page_sharing_candidate(page_node)) {
1988                 get_page(page);
1989                 return page;
1990         } else
1991                 return NULL;
1992
1993 replace:
1994         /*
1995          * If stable_node was a chain and chain_prune collapsed it,
1996          * stable_node has been updated to be the new regular
1997          * stable_node. A collapse of the chain is indistinguishable
1998          * from the case there was no chain in the stable
1999          * rbtree. Otherwise stable_node is the chain and
2000          * stable_node_dup is the dup to replace.
2001          */
2002         if (stable_node_dup == stable_node) {
2003                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
2004                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2005                 /* there is no chain */
2006                 if (page_node) {
2007                         VM_BUG_ON(page_node->head != &migrate_nodes);
2008                         list_del(&page_node->list);
2009                         DO_NUMA(page_node->nid = nid);
2010                         rb_replace_node(&stable_node_dup->node,
2011                                         &page_node->node,
2012                                         root);
2013                         if (is_page_sharing_candidate(page_node))
2014                                 get_page(page);
2015                         else
2016                                 page = NULL;
2017                 } else {
2018                         rb_erase(&stable_node_dup->node, root);
2019                         page = NULL;
2020                 }
2021         } else {
2022                 VM_BUG_ON(!is_stable_node_chain(stable_node));
2023                 __stable_node_dup_del(stable_node_dup);
2024                 if (page_node) {
2025                         VM_BUG_ON(page_node->head != &migrate_nodes);
2026                         list_del(&page_node->list);
2027                         DO_NUMA(page_node->nid = nid);
2028                         stable_node_chain_add_dup(page_node, stable_node);
2029                         if (is_page_sharing_candidate(page_node))
2030                                 get_page(page);
2031                         else
2032                                 page = NULL;
2033                 } else {
2034                         page = NULL;
2035                 }
2036         }
2037         stable_node_dup->head = &migrate_nodes;
2038         list_add(&stable_node_dup->list, stable_node_dup->head);
2039         return page;
2040
2041 chain_append:
2042         /* stable_node_dup could be null if it reached the limit */
2043         if (!stable_node_dup)
2044                 stable_node_dup = stable_node_any;
2045         /*
2046          * If stable_node was a chain and chain_prune collapsed it,
2047          * stable_node has been updated to be the new regular
2048          * stable_node. A collapse of the chain is indistinguishable
2049          * from the case there was no chain in the stable
2050          * rbtree. Otherwise stable_node is the chain and
2051          * stable_node_dup is the dup to replace.
2052          */
2053         if (stable_node_dup == stable_node) {
2054                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2055                 /* chain is missing so create it */
2056                 stable_node = alloc_stable_node_chain(stable_node_dup,
2057                                                       root);
2058                 if (!stable_node)
2059                         return NULL;
2060         }
2061         /*
2062          * Add this stable_node dup that was
2063          * migrated to the stable_node chain
2064          * of the current nid for this page
2065          * content.
2066          */
2067         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2068         VM_BUG_ON(page_node->head != &migrate_nodes);
2069         list_del(&page_node->list);
2070         DO_NUMA(page_node->nid = nid);
2071         stable_node_chain_add_dup(page_node, stable_node);
2072         goto out;
2073 }
2074
2075 /*
2076  * stable_tree_insert - insert stable tree node pointing to new ksm page
2077  * into the stable tree.
2078  *
2079  * This function returns the stable tree node just allocated on success,
2080  * NULL otherwise.
2081  */
2082 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
2083 {
2084         int nid;
2085         unsigned long kpfn;
2086         struct rb_root *root;
2087         struct rb_node **new;
2088         struct rb_node *parent;
2089         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2090         bool need_chain = false;
2091
2092         kpfn = page_to_pfn(kpage);
2093         nid = get_kpfn_nid(kpfn);
2094         root = root_stable_tree + nid;
2095 again:
2096         parent = NULL;
2097         new = &root->rb_node;
2098
2099         while (*new) {
2100                 struct page *tree_page;
2101                 int ret;
2102
2103                 cond_resched();
2104                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2105                 stable_node_any = NULL;
2106                 tree_page = chain(&stable_node_dup, stable_node, root);
2107                 if (!stable_node_dup) {
2108                         /*
2109                          * Either all stable_node dups were full in
2110                          * this stable_node chain, or this chain was
2111                          * empty and should be rb_erased.
2112                          */
2113                         stable_node_any = stable_node_dup_any(stable_node,
2114                                                               root);
2115                         if (!stable_node_any) {
2116                                 /* rb_erase just run */
2117                                 goto again;
2118                         }
2119                         /*
2120                          * Take any of the stable_node dups page of
2121                          * this stable_node chain to let the tree walk
2122                          * continue. All KSM pages belonging to the
2123                          * stable_node dups in a stable_node chain
2124                          * have the same content and they're
2125                          * write protected at all times. Any will work
2126                          * fine to continue the walk.
2127                          */
2128                         tree_page = get_ksm_page(stable_node_any,
2129                                                  GET_KSM_PAGE_NOLOCK);
2130                 }
2131                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
2132                 if (!tree_page) {
2133                         /*
2134                          * If we walked over a stale stable_node,
2135                          * get_ksm_page() will call rb_erase() and it
2136                          * may rebalance the tree from under us. So
2137                          * restart the search from scratch. Returning
2138                          * NULL would be safe too, but we'd generate
2139                          * false negative insertions just because some
2140                          * stable_node was stale.
2141                          */
2142                         goto again;
2143                 }
2144
2145                 ret = memcmp_pages(kpage, tree_page);
2146                 put_page(tree_page);
2147
2148                 parent = *new;
2149                 if (ret < 0)
2150                         new = &parent->rb_left;
2151                 else if (ret > 0)
2152                         new = &parent->rb_right;
2153                 else {
2154                         need_chain = true;
2155                         break;
2156                 }
2157         }
2158
2159         stable_node_dup = alloc_stable_node();
2160         if (!stable_node_dup)
2161                 return NULL;
2162
2163         INIT_HLIST_HEAD(&stable_node_dup->hlist);
2164         stable_node_dup->kpfn = kpfn;
2165         set_page_stable_node(kpage, stable_node_dup);
2166         stable_node_dup->rmap_hlist_len = 0;
2167         DO_NUMA(stable_node_dup->nid = nid);
2168         if (!need_chain) {
2169                 rb_link_node(&stable_node_dup->node, parent, new);
2170                 rb_insert_color(&stable_node_dup->node, root);
2171         } else {
2172                 if (!is_stable_node_chain(stable_node)) {
2173                         struct ksm_stable_node *orig = stable_node;
2174                         /* chain is missing so create it */
2175                         stable_node = alloc_stable_node_chain(orig, root);
2176                         if (!stable_node) {
2177                                 free_stable_node(stable_node_dup);
2178                                 return NULL;
2179                         }
2180                 }
2181                 stable_node_chain_add_dup(stable_node_dup, stable_node);
2182         }
2183
2184         return stable_node_dup;
2185 }
2186
2187 /*
2188  * unstable_tree_search_insert - search for identical page,
2189  * else insert rmap_item into the unstable tree.
2190  *
2191  * This function searches for a page in the unstable tree identical to the
2192  * page currently being scanned; and if no identical page is found in the
2193  * tree, we insert rmap_item as a new object into the unstable tree.
2194  *
2195  * This function returns pointer to rmap_item found to be identical
2196  * to the currently scanned page, NULL otherwise.
2197  *
2198  * This function does both searching and inserting, because they share
2199  * the same walking algorithm in an rbtree.
2200  */
2201 static
2202 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2203                                               struct page *page,
2204                                               struct page **tree_pagep)
2205 {
2206         struct rb_node **new;
2207         struct rb_root *root;
2208         struct rb_node *parent = NULL;
2209         int nid;
2210
2211         nid = get_kpfn_nid(page_to_pfn(page));
2212         root = root_unstable_tree + nid;
2213         new = &root->rb_node;
2214
2215         while (*new) {
2216                 struct ksm_rmap_item *tree_rmap_item;
2217                 struct page *tree_page;
2218                 int ret;
2219
2220                 cond_resched();
2221                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2222                 tree_page = get_mergeable_page(tree_rmap_item);
2223                 if (!tree_page)
2224                         return NULL;
2225
2226                 /*
2227                  * Don't substitute a ksm page for a forked page.
2228                  */
2229                 if (page == tree_page) {
2230                         put_page(tree_page);
2231                         return NULL;
2232                 }
2233
2234                 ret = memcmp_pages(page, tree_page);
2235
2236                 parent = *new;
2237                 if (ret < 0) {
2238                         put_page(tree_page);
2239                         new = &parent->rb_left;
2240                 } else if (ret > 0) {
2241                         put_page(tree_page);
2242                         new = &parent->rb_right;
2243                 } else if (!ksm_merge_across_nodes &&
2244                            page_to_nid(tree_page) != nid) {
2245                         /*
2246                          * If tree_page has been migrated to another NUMA node,
2247                          * it will be flushed out and put in the right unstable
2248                          * tree next time: only merge with it when across_nodes.
2249                          */
2250                         put_page(tree_page);
2251                         return NULL;
2252                 } else {
2253                         *tree_pagep = tree_page;
2254                         return tree_rmap_item;
2255                 }
2256         }
2257
2258         rmap_item->address |= UNSTABLE_FLAG;
2259         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2260         DO_NUMA(rmap_item->nid = nid);
2261         rb_link_node(&rmap_item->node, parent, new);
2262         rb_insert_color(&rmap_item->node, root);
2263
2264         ksm_pages_unshared++;
2265         return NULL;
2266 }
2267
2268 /*
2269  * stable_tree_append - add another rmap_item to the linked list of
2270  * rmap_items hanging off a given node of the stable tree, all sharing
2271  * the same ksm page.
2272  */
2273 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2274                                struct ksm_stable_node *stable_node,
2275                                bool max_page_sharing_bypass)
2276 {
2277         /*
2278          * rmap won't find this mapping if we don't insert the
2279          * rmap_item in the right stable_node
2280          * duplicate. page_migration could break later if rmap breaks,
2281          * so we can as well crash here. We really need to check for
2282          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2283          * for other negative values as an underflow if detected here
2284          * for the first time (and not when decreasing rmap_hlist_len)
2285          * would be sign of memory corruption in the stable_node.
2286          */
2287         BUG_ON(stable_node->rmap_hlist_len < 0);
2288
2289         stable_node->rmap_hlist_len++;
2290         if (!max_page_sharing_bypass)
2291                 /* possibly non fatal but unexpected overflow, only warn */
2292                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2293                              ksm_max_page_sharing);
2294
2295         rmap_item->head = stable_node;
2296         rmap_item->address |= STABLE_FLAG;
2297         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2298
2299         if (rmap_item->hlist.next)
2300                 ksm_pages_sharing++;
2301         else
2302                 ksm_pages_shared++;
2303
2304         rmap_item->mm->ksm_merging_pages++;
2305 }
2306
2307 /*
2308  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2309  * if not, compare checksum to previous and if it's the same, see if page can
2310  * be inserted into the unstable tree, or merged with a page already there and
2311  * both transferred to the stable tree.
2312  *
2313  * @page: the page that we are searching identical page to.
2314  * @rmap_item: the reverse mapping into the virtual address of this page
2315  */
2316 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2317 {
2318         struct mm_struct *mm = rmap_item->mm;
2319         struct ksm_rmap_item *tree_rmap_item;
2320         struct page *tree_page = NULL;
2321         struct ksm_stable_node *stable_node;
2322         struct page *kpage;
2323         unsigned int checksum;
2324         int err;
2325         bool max_page_sharing_bypass = false;
2326
2327         stable_node = page_stable_node(page);
2328         if (stable_node) {
2329                 if (stable_node->head != &migrate_nodes &&
2330                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2331                     NUMA(stable_node->nid)) {
2332                         stable_node_dup_del(stable_node);
2333                         stable_node->head = &migrate_nodes;
2334                         list_add(&stable_node->list, stable_node->head);
2335                 }
2336                 if (stable_node->head != &migrate_nodes &&
2337                     rmap_item->head == stable_node)
2338                         return;
2339                 /*
2340                  * If it's a KSM fork, allow it to go over the sharing limit
2341                  * without warnings.
2342                  */
2343                 if (!is_page_sharing_candidate(stable_node))
2344                         max_page_sharing_bypass = true;
2345         }
2346
2347         /* We first start with searching the page inside the stable tree */
2348         kpage = stable_tree_search(page);
2349         if (kpage == page && rmap_item->head == stable_node) {
2350                 put_page(kpage);
2351                 return;
2352         }
2353
2354         remove_rmap_item_from_tree(rmap_item);
2355
2356         if (kpage) {
2357                 if (PTR_ERR(kpage) == -EBUSY)
2358                         return;
2359
2360                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2361                 if (!err) {
2362                         /*
2363                          * The page was successfully merged:
2364                          * add its rmap_item to the stable tree.
2365                          */
2366                         lock_page(kpage);
2367                         stable_tree_append(rmap_item, page_stable_node(kpage),
2368                                            max_page_sharing_bypass);
2369                         unlock_page(kpage);
2370                 }
2371                 put_page(kpage);
2372                 return;
2373         }
2374
2375         /*
2376          * If the hash value of the page has changed from the last time
2377          * we calculated it, this page is changing frequently: therefore we
2378          * don't want to insert it in the unstable tree, and we don't want
2379          * to waste our time searching for something identical to it there.
2380          */
2381         checksum = calc_checksum(page);
2382         if (rmap_item->oldchecksum != checksum) {
2383                 rmap_item->oldchecksum = checksum;
2384                 return;
2385         }
2386
2387         /*
2388          * Same checksum as an empty page. We attempt to merge it with the
2389          * appropriate zero page if the user enabled this via sysfs.
2390          */
2391         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2392                 struct vm_area_struct *vma;
2393
2394                 mmap_read_lock(mm);
2395                 vma = find_mergeable_vma(mm, rmap_item->address);
2396                 if (vma) {
2397                         err = try_to_merge_one_page(vma, page,
2398                                         ZERO_PAGE(rmap_item->address));
2399                         trace_ksm_merge_one_page(
2400                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2401                                 rmap_item, mm, err);
2402                 } else {
2403                         /*
2404                          * If the vma is out of date, we do not need to
2405                          * continue.
2406                          */
2407                         err = 0;
2408                 }
2409                 mmap_read_unlock(mm);
2410                 /*
2411                  * In case of failure, the page was not really empty, so we
2412                  * need to continue. Otherwise we're done.
2413                  */
2414                 if (!err)
2415                         return;
2416         }
2417         tree_rmap_item =
2418                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2419         if (tree_rmap_item) {
2420                 bool split;
2421
2422                 kpage = try_to_merge_two_pages(rmap_item, page,
2423                                                 tree_rmap_item, tree_page);
2424                 /*
2425                  * If both pages we tried to merge belong to the same compound
2426                  * page, then we actually ended up increasing the reference
2427                  * count of the same compound page twice, and split_huge_page
2428                  * failed.
2429                  * Here we set a flag if that happened, and we use it later to
2430                  * try split_huge_page again. Since we call put_page right
2431                  * afterwards, the reference count will be correct and
2432                  * split_huge_page should succeed.
2433                  */
2434                 split = PageTransCompound(page)
2435                         && compound_head(page) == compound_head(tree_page);
2436                 put_page(tree_page);
2437                 if (kpage) {
2438                         /*
2439                          * The pages were successfully merged: insert new
2440                          * node in the stable tree and add both rmap_items.
2441                          */
2442                         lock_page(kpage);
2443                         stable_node = stable_tree_insert(kpage);
2444                         if (stable_node) {
2445                                 stable_tree_append(tree_rmap_item, stable_node,
2446                                                    false);
2447                                 stable_tree_append(rmap_item, stable_node,
2448                                                    false);
2449                         }
2450                         unlock_page(kpage);
2451
2452                         /*
2453                          * If we fail to insert the page into the stable tree,
2454                          * we will have 2 virtual addresses that are pointing
2455                          * to a ksm page left outside the stable tree,
2456                          * in which case we need to break_cow on both.
2457                          */
2458                         if (!stable_node) {
2459                                 break_cow(tree_rmap_item);
2460                                 break_cow(rmap_item);
2461                         }
2462                 } else if (split) {
2463                         /*
2464                          * We are here if we tried to merge two pages and
2465                          * failed because they both belonged to the same
2466                          * compound page. We will split the page now, but no
2467                          * merging will take place.
2468                          * We do not want to add the cost of a full lock; if
2469                          * the page is locked, it is better to skip it and
2470                          * perhaps try again later.
2471                          */
2472                         if (!trylock_page(page))
2473                                 return;
2474                         split_huge_page(page);
2475                         unlock_page(page);
2476                 }
2477         }
2478 }
2479
2480 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2481                                             struct ksm_rmap_item **rmap_list,
2482                                             unsigned long addr)
2483 {
2484         struct ksm_rmap_item *rmap_item;
2485
2486         while (*rmap_list) {
2487                 rmap_item = *rmap_list;
2488                 if ((rmap_item->address & PAGE_MASK) == addr)
2489                         return rmap_item;
2490                 if (rmap_item->address > addr)
2491                         break;
2492                 *rmap_list = rmap_item->rmap_list;
2493                 remove_rmap_item_from_tree(rmap_item);
2494                 free_rmap_item(rmap_item);
2495         }
2496
2497         rmap_item = alloc_rmap_item();
2498         if (rmap_item) {
2499                 /* It has already been zeroed */
2500                 rmap_item->mm = mm_slot->slot.mm;
2501                 rmap_item->mm->ksm_rmap_items++;
2502                 rmap_item->address = addr;
2503                 rmap_item->rmap_list = *rmap_list;
2504                 *rmap_list = rmap_item;
2505         }
2506         return rmap_item;
2507 }
2508
2509 /*
2510  * Calculate skip age for the ksm page age. The age determines how often
2511  * de-duplicating has already been tried unsuccessfully. If the age is
2512  * smaller, the scanning of this page is skipped for less scans.
2513  *
2514  * @age: rmap_item age of page
2515  */
2516 static unsigned int skip_age(rmap_age_t age)
2517 {
2518         if (age <= 3)
2519                 return 1;
2520         if (age <= 5)
2521                 return 2;
2522         if (age <= 8)
2523                 return 4;
2524
2525         return 8;
2526 }
2527
2528 /*
2529  * Determines if a page should be skipped for the current scan.
2530  *
2531  * @page: page to check
2532  * @rmap_item: associated rmap_item of page
2533  */
2534 static bool should_skip_rmap_item(struct page *page,
2535                                   struct ksm_rmap_item *rmap_item)
2536 {
2537         rmap_age_t age;
2538
2539         if (!ksm_smart_scan)
2540                 return false;
2541
2542         /*
2543          * Never skip pages that are already KSM; pages cmp_and_merge_page()
2544          * will essentially ignore them, but we still have to process them
2545          * properly.
2546          */
2547         if (PageKsm(page))
2548                 return false;
2549
2550         age = rmap_item->age;
2551         if (age != U8_MAX)
2552                 rmap_item->age++;
2553
2554         /*
2555          * Smaller ages are not skipped, they need to get a chance to go
2556          * through the different phases of the KSM merging.
2557          */
2558         if (age < 3)
2559                 return false;
2560
2561         /*
2562          * Are we still allowed to skip? If not, then don't skip it
2563          * and determine how much more often we are allowed to skip next.
2564          */
2565         if (!rmap_item->remaining_skips) {
2566                 rmap_item->remaining_skips = skip_age(age);
2567                 return false;
2568         }
2569
2570         /* Skip this page */
2571         ksm_pages_skipped++;
2572         rmap_item->remaining_skips--;
2573         remove_rmap_item_from_tree(rmap_item);
2574         return true;
2575 }
2576
2577 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2578 {
2579         struct mm_struct *mm;
2580         struct ksm_mm_slot *mm_slot;
2581         struct mm_slot *slot;
2582         struct vm_area_struct *vma;
2583         struct ksm_rmap_item *rmap_item;
2584         struct vma_iterator vmi;
2585         int nid;
2586
2587         if (list_empty(&ksm_mm_head.slot.mm_node))
2588                 return NULL;
2589
2590         mm_slot = ksm_scan.mm_slot;
2591         if (mm_slot == &ksm_mm_head) {
2592                 advisor_start_scan();
2593                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2594
2595                 /*
2596                  * A number of pages can hang around indefinitely in per-cpu
2597                  * LRU cache, raised page count preventing write_protect_page
2598                  * from merging them.  Though it doesn't really matter much,
2599                  * it is puzzling to see some stuck in pages_volatile until
2600                  * other activity jostles them out, and they also prevented
2601                  * LTP's KSM test from succeeding deterministically; so drain
2602                  * them here (here rather than on entry to ksm_do_scan(),
2603                  * so we don't IPI too often when pages_to_scan is set low).
2604                  */
2605                 lru_add_drain_all();
2606
2607                 /*
2608                  * Whereas stale stable_nodes on the stable_tree itself
2609                  * get pruned in the regular course of stable_tree_search(),
2610                  * those moved out to the migrate_nodes list can accumulate:
2611                  * so prune them once before each full scan.
2612                  */
2613                 if (!ksm_merge_across_nodes) {
2614                         struct ksm_stable_node *stable_node, *next;
2615                         struct folio *folio;
2616
2617                         list_for_each_entry_safe(stable_node, next,
2618                                                  &migrate_nodes, list) {
2619                                 folio = ksm_get_folio(stable_node,
2620                                                       GET_KSM_PAGE_NOLOCK);
2621                                 if (folio)
2622                                         folio_put(folio);
2623                                 cond_resched();
2624                         }
2625                 }
2626
2627                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2628                         root_unstable_tree[nid] = RB_ROOT;
2629
2630                 spin_lock(&ksm_mmlist_lock);
2631                 slot = list_entry(mm_slot->slot.mm_node.next,
2632                                   struct mm_slot, mm_node);
2633                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2634                 ksm_scan.mm_slot = mm_slot;
2635                 spin_unlock(&ksm_mmlist_lock);
2636                 /*
2637                  * Although we tested list_empty() above, a racing __ksm_exit
2638                  * of the last mm on the list may have removed it since then.
2639                  */
2640                 if (mm_slot == &ksm_mm_head)
2641                         return NULL;
2642 next_mm:
2643                 ksm_scan.address = 0;
2644                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2645         }
2646
2647         slot = &mm_slot->slot;
2648         mm = slot->mm;
2649         vma_iter_init(&vmi, mm, ksm_scan.address);
2650
2651         mmap_read_lock(mm);
2652         if (ksm_test_exit(mm))
2653                 goto no_vmas;
2654
2655         for_each_vma(vmi, vma) {
2656                 if (!(vma->vm_flags & VM_MERGEABLE))
2657                         continue;
2658                 if (ksm_scan.address < vma->vm_start)
2659                         ksm_scan.address = vma->vm_start;
2660                 if (!vma->anon_vma)
2661                         ksm_scan.address = vma->vm_end;
2662
2663                 while (ksm_scan.address < vma->vm_end) {
2664                         if (ksm_test_exit(mm))
2665                                 break;
2666                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2667                         if (IS_ERR_OR_NULL(*page)) {
2668                                 ksm_scan.address += PAGE_SIZE;
2669                                 cond_resched();
2670                                 continue;
2671                         }
2672                         if (is_zone_device_page(*page))
2673                                 goto next_page;
2674                         if (PageAnon(*page)) {
2675                                 flush_anon_page(vma, *page, ksm_scan.address);
2676                                 flush_dcache_page(*page);
2677                                 rmap_item = get_next_rmap_item(mm_slot,
2678                                         ksm_scan.rmap_list, ksm_scan.address);
2679                                 if (rmap_item) {
2680                                         ksm_scan.rmap_list =
2681                                                         &rmap_item->rmap_list;
2682
2683                                         if (should_skip_rmap_item(*page, rmap_item))
2684                                                 goto next_page;
2685
2686                                         ksm_scan.address += PAGE_SIZE;
2687                                 } else
2688                                         put_page(*page);
2689                                 mmap_read_unlock(mm);
2690                                 return rmap_item;
2691                         }
2692 next_page:
2693                         put_page(*page);
2694                         ksm_scan.address += PAGE_SIZE;
2695                         cond_resched();
2696                 }
2697         }
2698
2699         if (ksm_test_exit(mm)) {
2700 no_vmas:
2701                 ksm_scan.address = 0;
2702                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2703         }
2704         /*
2705          * Nuke all the rmap_items that are above this current rmap:
2706          * because there were no VM_MERGEABLE vmas with such addresses.
2707          */
2708         remove_trailing_rmap_items(ksm_scan.rmap_list);
2709
2710         spin_lock(&ksm_mmlist_lock);
2711         slot = list_entry(mm_slot->slot.mm_node.next,
2712                           struct mm_slot, mm_node);
2713         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2714         if (ksm_scan.address == 0) {
2715                 /*
2716                  * We've completed a full scan of all vmas, holding mmap_lock
2717                  * throughout, and found no VM_MERGEABLE: so do the same as
2718                  * __ksm_exit does to remove this mm from all our lists now.
2719                  * This applies either when cleaning up after __ksm_exit
2720                  * (but beware: we can reach here even before __ksm_exit),
2721                  * or when all VM_MERGEABLE areas have been unmapped (and
2722                  * mmap_lock then protects against race with MADV_MERGEABLE).
2723                  */
2724                 hash_del(&mm_slot->slot.hash);
2725                 list_del(&mm_slot->slot.mm_node);
2726                 spin_unlock(&ksm_mmlist_lock);
2727
2728                 mm_slot_free(mm_slot_cache, mm_slot);
2729                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2730                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2731                 mmap_read_unlock(mm);
2732                 mmdrop(mm);
2733         } else {
2734                 mmap_read_unlock(mm);
2735                 /*
2736                  * mmap_read_unlock(mm) first because after
2737                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2738                  * already have been freed under us by __ksm_exit()
2739                  * because the "mm_slot" is still hashed and
2740                  * ksm_scan.mm_slot doesn't point to it anymore.
2741                  */
2742                 spin_unlock(&ksm_mmlist_lock);
2743         }
2744
2745         /* Repeat until we've completed scanning the whole list */
2746         mm_slot = ksm_scan.mm_slot;
2747         if (mm_slot != &ksm_mm_head)
2748                 goto next_mm;
2749
2750         advisor_stop_scan();
2751
2752         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2753         ksm_scan.seqnr++;
2754         return NULL;
2755 }
2756
2757 /**
2758  * ksm_do_scan  - the ksm scanner main worker function.
2759  * @scan_npages:  number of pages we want to scan before we return.
2760  */
2761 static void ksm_do_scan(unsigned int scan_npages)
2762 {
2763         struct ksm_rmap_item *rmap_item;
2764         struct page *page;
2765         unsigned int npages = scan_npages;
2766
2767         while (npages-- && likely(!freezing(current))) {
2768                 cond_resched();
2769                 rmap_item = scan_get_next_rmap_item(&page);
2770                 if (!rmap_item)
2771                         return;
2772                 cmp_and_merge_page(page, rmap_item);
2773                 put_page(page);
2774         }
2775
2776         ksm_pages_scanned += scan_npages - npages;
2777 }
2778
2779 static int ksmd_should_run(void)
2780 {
2781         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2782 }
2783
2784 static int ksm_scan_thread(void *nothing)
2785 {
2786         unsigned int sleep_ms;
2787
2788         set_freezable();
2789         set_user_nice(current, 5);
2790
2791         while (!kthread_should_stop()) {
2792                 mutex_lock(&ksm_thread_mutex);
2793                 wait_while_offlining();
2794                 if (ksmd_should_run())
2795                         ksm_do_scan(ksm_thread_pages_to_scan);
2796                 mutex_unlock(&ksm_thread_mutex);
2797
2798                 if (ksmd_should_run()) {
2799                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2800                         wait_event_freezable_timeout(ksm_iter_wait,
2801                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2802                                 msecs_to_jiffies(sleep_ms));
2803                 } else {
2804                         wait_event_freezable(ksm_thread_wait,
2805                                 ksmd_should_run() || kthread_should_stop());
2806                 }
2807         }
2808         return 0;
2809 }
2810
2811 static void __ksm_add_vma(struct vm_area_struct *vma)
2812 {
2813         unsigned long vm_flags = vma->vm_flags;
2814
2815         if (vm_flags & VM_MERGEABLE)
2816                 return;
2817
2818         if (vma_ksm_compatible(vma))
2819                 vm_flags_set(vma, VM_MERGEABLE);
2820 }
2821
2822 static int __ksm_del_vma(struct vm_area_struct *vma)
2823 {
2824         int err;
2825
2826         if (!(vma->vm_flags & VM_MERGEABLE))
2827                 return 0;
2828
2829         if (vma->anon_vma) {
2830                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2831                 if (err)
2832                         return err;
2833         }
2834
2835         vm_flags_clear(vma, VM_MERGEABLE);
2836         return 0;
2837 }
2838 /**
2839  * ksm_add_vma - Mark vma as mergeable if compatible
2840  *
2841  * @vma:  Pointer to vma
2842  */
2843 void ksm_add_vma(struct vm_area_struct *vma)
2844 {
2845         struct mm_struct *mm = vma->vm_mm;
2846
2847         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2848                 __ksm_add_vma(vma);
2849 }
2850
2851 static void ksm_add_vmas(struct mm_struct *mm)
2852 {
2853         struct vm_area_struct *vma;
2854
2855         VMA_ITERATOR(vmi, mm, 0);
2856         for_each_vma(vmi, vma)
2857                 __ksm_add_vma(vma);
2858 }
2859
2860 static int ksm_del_vmas(struct mm_struct *mm)
2861 {
2862         struct vm_area_struct *vma;
2863         int err;
2864
2865         VMA_ITERATOR(vmi, mm, 0);
2866         for_each_vma(vmi, vma) {
2867                 err = __ksm_del_vma(vma);
2868                 if (err)
2869                         return err;
2870         }
2871         return 0;
2872 }
2873
2874 /**
2875  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2876  *                        compatible VMA's
2877  *
2878  * @mm:  Pointer to mm
2879  *
2880  * Returns 0 on success, otherwise error code
2881  */
2882 int ksm_enable_merge_any(struct mm_struct *mm)
2883 {
2884         int err;
2885
2886         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2887                 return 0;
2888
2889         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2890                 err = __ksm_enter(mm);
2891                 if (err)
2892                         return err;
2893         }
2894
2895         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2896         ksm_add_vmas(mm);
2897
2898         return 0;
2899 }
2900
2901 /**
2902  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2903  *                         previously enabled via ksm_enable_merge_any().
2904  *
2905  * Disabling merging implies unmerging any merged pages, like setting
2906  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2907  * merging on all compatible VMA's remains enabled.
2908  *
2909  * @mm: Pointer to mm
2910  *
2911  * Returns 0 on success, otherwise error code
2912  */
2913 int ksm_disable_merge_any(struct mm_struct *mm)
2914 {
2915         int err;
2916
2917         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2918                 return 0;
2919
2920         err = ksm_del_vmas(mm);
2921         if (err) {
2922                 ksm_add_vmas(mm);
2923                 return err;
2924         }
2925
2926         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2927         return 0;
2928 }
2929
2930 int ksm_disable(struct mm_struct *mm)
2931 {
2932         mmap_assert_write_locked(mm);
2933
2934         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2935                 return 0;
2936         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2937                 return ksm_disable_merge_any(mm);
2938         return ksm_del_vmas(mm);
2939 }
2940
2941 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2942                 unsigned long end, int advice, unsigned long *vm_flags)
2943 {
2944         struct mm_struct *mm = vma->vm_mm;
2945         int err;
2946
2947         switch (advice) {
2948         case MADV_MERGEABLE:
2949                 if (vma->vm_flags & VM_MERGEABLE)
2950                         return 0;
2951                 if (!vma_ksm_compatible(vma))
2952                         return 0;
2953
2954                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2955                         err = __ksm_enter(mm);
2956                         if (err)
2957                                 return err;
2958                 }
2959
2960                 *vm_flags |= VM_MERGEABLE;
2961                 break;
2962
2963         case MADV_UNMERGEABLE:
2964                 if (!(*vm_flags & VM_MERGEABLE))
2965                         return 0;               /* just ignore the advice */
2966
2967                 if (vma->anon_vma) {
2968                         err = unmerge_ksm_pages(vma, start, end, true);
2969                         if (err)
2970                                 return err;
2971                 }
2972
2973                 *vm_flags &= ~VM_MERGEABLE;
2974                 break;
2975         }
2976
2977         return 0;
2978 }
2979 EXPORT_SYMBOL_GPL(ksm_madvise);
2980
2981 int __ksm_enter(struct mm_struct *mm)
2982 {
2983         struct ksm_mm_slot *mm_slot;
2984         struct mm_slot *slot;
2985         int needs_wakeup;
2986
2987         mm_slot = mm_slot_alloc(mm_slot_cache);
2988         if (!mm_slot)
2989                 return -ENOMEM;
2990
2991         slot = &mm_slot->slot;
2992
2993         /* Check ksm_run too?  Would need tighter locking */
2994         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2995
2996         spin_lock(&ksm_mmlist_lock);
2997         mm_slot_insert(mm_slots_hash, mm, slot);
2998         /*
2999          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
3000          * insert just behind the scanning cursor, to let the area settle
3001          * down a little; when fork is followed by immediate exec, we don't
3002          * want ksmd to waste time setting up and tearing down an rmap_list.
3003          *
3004          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
3005          * scanning cursor, otherwise KSM pages in newly forked mms will be
3006          * missed: then we might as well insert at the end of the list.
3007          */
3008         if (ksm_run & KSM_RUN_UNMERGE)
3009                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
3010         else
3011                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
3012         spin_unlock(&ksm_mmlist_lock);
3013
3014         set_bit(MMF_VM_MERGEABLE, &mm->flags);
3015         mmgrab(mm);
3016
3017         if (needs_wakeup)
3018                 wake_up_interruptible(&ksm_thread_wait);
3019
3020         trace_ksm_enter(mm);
3021         return 0;
3022 }
3023
3024 void __ksm_exit(struct mm_struct *mm)
3025 {
3026         struct ksm_mm_slot *mm_slot;
3027         struct mm_slot *slot;
3028         int easy_to_free = 0;
3029
3030         /*
3031          * This process is exiting: if it's straightforward (as is the
3032          * case when ksmd was never running), free mm_slot immediately.
3033          * But if it's at the cursor or has rmap_items linked to it, use
3034          * mmap_lock to synchronize with any break_cows before pagetables
3035          * are freed, and leave the mm_slot on the list for ksmd to free.
3036          * Beware: ksm may already have noticed it exiting and freed the slot.
3037          */
3038
3039         spin_lock(&ksm_mmlist_lock);
3040         slot = mm_slot_lookup(mm_slots_hash, mm);
3041         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
3042         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
3043                 if (!mm_slot->rmap_list) {
3044                         hash_del(&slot->hash);
3045                         list_del(&slot->mm_node);
3046                         easy_to_free = 1;
3047                 } else {
3048                         list_move(&slot->mm_node,
3049                                   &ksm_scan.mm_slot->slot.mm_node);
3050                 }
3051         }
3052         spin_unlock(&ksm_mmlist_lock);
3053
3054         if (easy_to_free) {
3055                 mm_slot_free(mm_slot_cache, mm_slot);
3056                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
3057                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3058                 mmdrop(mm);
3059         } else if (mm_slot) {
3060                 mmap_write_lock(mm);
3061                 mmap_write_unlock(mm);
3062         }
3063
3064         trace_ksm_exit(mm);
3065 }
3066
3067 struct folio *ksm_might_need_to_copy(struct folio *folio,
3068                         struct vm_area_struct *vma, unsigned long addr)
3069 {
3070         struct page *page = folio_page(folio, 0);
3071         struct anon_vma *anon_vma = folio_anon_vma(folio);
3072         struct folio *new_folio;
3073
3074         if (folio_test_large(folio))
3075                 return folio;
3076
3077         if (folio_test_ksm(folio)) {
3078                 if (folio_stable_node(folio) &&
3079                     !(ksm_run & KSM_RUN_UNMERGE))
3080                         return folio;   /* no need to copy it */
3081         } else if (!anon_vma) {
3082                 return folio;           /* no need to copy it */
3083         } else if (folio->index == linear_page_index(vma, addr) &&
3084                         anon_vma->root == vma->anon_vma->root) {
3085                 return folio;           /* still no need to copy it */
3086         }
3087         if (PageHWPoison(page))
3088                 return ERR_PTR(-EHWPOISON);
3089         if (!folio_test_uptodate(folio))
3090                 return folio;           /* let do_swap_page report the error */
3091
3092         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3093         if (new_folio &&
3094             mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3095                 folio_put(new_folio);
3096                 new_folio = NULL;
3097         }
3098         if (new_folio) {
3099                 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3100                                                                 addr, vma)) {
3101                         folio_put(new_folio);
3102                         memory_failure_queue(folio_pfn(folio), 0);
3103                         return ERR_PTR(-EHWPOISON);
3104                 }
3105                 folio_set_dirty(new_folio);
3106                 __folio_mark_uptodate(new_folio);
3107                 __folio_set_locked(new_folio);
3108 #ifdef CONFIG_SWAP
3109                 count_vm_event(KSM_SWPIN_COPY);
3110 #endif
3111         }
3112
3113         return new_folio;
3114 }
3115
3116 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3117 {
3118         struct ksm_stable_node *stable_node;
3119         struct ksm_rmap_item *rmap_item;
3120         int search_new_forks = 0;
3121
3122         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3123
3124         /*
3125          * Rely on the page lock to protect against concurrent modifications
3126          * to that page's node of the stable tree.
3127          */
3128         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3129
3130         stable_node = folio_stable_node(folio);
3131         if (!stable_node)
3132                 return;
3133 again:
3134         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3135                 struct anon_vma *anon_vma = rmap_item->anon_vma;
3136                 struct anon_vma_chain *vmac;
3137                 struct vm_area_struct *vma;
3138
3139                 cond_resched();
3140                 if (!anon_vma_trylock_read(anon_vma)) {
3141                         if (rwc->try_lock) {
3142                                 rwc->contended = true;
3143                                 return;
3144                         }
3145                         anon_vma_lock_read(anon_vma);
3146                 }
3147                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3148                                                0, ULONG_MAX) {
3149                         unsigned long addr;
3150
3151                         cond_resched();
3152                         vma = vmac->vma;
3153
3154                         /* Ignore the stable/unstable/sqnr flags */
3155                         addr = rmap_item->address & PAGE_MASK;
3156
3157                         if (addr < vma->vm_start || addr >= vma->vm_end)
3158                                 continue;
3159                         /*
3160                          * Initially we examine only the vma which covers this
3161                          * rmap_item; but later, if there is still work to do,
3162                          * we examine covering vmas in other mms: in case they
3163                          * were forked from the original since ksmd passed.
3164                          */
3165                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3166                                 continue;
3167
3168                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3169                                 continue;
3170
3171                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3172                                 anon_vma_unlock_read(anon_vma);
3173                                 return;
3174                         }
3175                         if (rwc->done && rwc->done(folio)) {
3176                                 anon_vma_unlock_read(anon_vma);
3177                                 return;
3178                         }
3179                 }
3180                 anon_vma_unlock_read(anon_vma);
3181         }
3182         if (!search_new_forks++)
3183                 goto again;
3184 }
3185
3186 #ifdef CONFIG_MEMORY_FAILURE
3187 /*
3188  * Collect processes when the error hit an ksm page.
3189  */
3190 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
3191                        int force_early)
3192 {
3193         struct ksm_stable_node *stable_node;
3194         struct ksm_rmap_item *rmap_item;
3195         struct folio *folio = page_folio(page);
3196         struct vm_area_struct *vma;
3197         struct task_struct *tsk;
3198
3199         stable_node = folio_stable_node(folio);
3200         if (!stable_node)
3201                 return;
3202         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3203                 struct anon_vma *av = rmap_item->anon_vma;
3204
3205                 anon_vma_lock_read(av);
3206                 rcu_read_lock();
3207                 for_each_process(tsk) {
3208                         struct anon_vma_chain *vmac;
3209                         unsigned long addr;
3210                         struct task_struct *t =
3211                                 task_early_kill(tsk, force_early);
3212                         if (!t)
3213                                 continue;
3214                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3215                                                        ULONG_MAX)
3216                         {
3217                                 vma = vmac->vma;
3218                                 if (vma->vm_mm == t->mm) {
3219                                         addr = rmap_item->address & PAGE_MASK;
3220                                         add_to_kill_ksm(t, page, vma, to_kill,
3221                                                         addr);
3222                                 }
3223                         }
3224                 }
3225                 rcu_read_unlock();
3226                 anon_vma_unlock_read(av);
3227         }
3228 }
3229 #endif
3230
3231 #ifdef CONFIG_MIGRATION
3232 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3233 {
3234         struct ksm_stable_node *stable_node;
3235
3236         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3237         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3238         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3239
3240         stable_node = folio_stable_node(folio);
3241         if (stable_node) {
3242                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3243                 stable_node->kpfn = folio_pfn(newfolio);
3244                 /*
3245                  * newfolio->mapping was set in advance; now we need smp_wmb()
3246                  * to make sure that the new stable_node->kpfn is visible
3247                  * to get_ksm_page() before it can see that folio->mapping
3248                  * has gone stale (or that folio_test_swapcache has been cleared).
3249                  */
3250                 smp_wmb();
3251                 folio_set_stable_node(folio, NULL);
3252         }
3253 }
3254 #endif /* CONFIG_MIGRATION */
3255
3256 #ifdef CONFIG_MEMORY_HOTREMOVE
3257 static void wait_while_offlining(void)
3258 {
3259         while (ksm_run & KSM_RUN_OFFLINE) {
3260                 mutex_unlock(&ksm_thread_mutex);
3261                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3262                             TASK_UNINTERRUPTIBLE);
3263                 mutex_lock(&ksm_thread_mutex);
3264         }
3265 }
3266
3267 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3268                                          unsigned long start_pfn,
3269                                          unsigned long end_pfn)
3270 {
3271         if (stable_node->kpfn >= start_pfn &&
3272             stable_node->kpfn < end_pfn) {
3273                 /*
3274                  * Don't get_ksm_page, page has already gone:
3275                  * which is why we keep kpfn instead of page*
3276                  */
3277                 remove_node_from_stable_tree(stable_node);
3278                 return true;
3279         }
3280         return false;
3281 }
3282
3283 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3284                                            unsigned long start_pfn,
3285                                            unsigned long end_pfn,
3286                                            struct rb_root *root)
3287 {
3288         struct ksm_stable_node *dup;
3289         struct hlist_node *hlist_safe;
3290
3291         if (!is_stable_node_chain(stable_node)) {
3292                 VM_BUG_ON(is_stable_node_dup(stable_node));
3293                 return stable_node_dup_remove_range(stable_node, start_pfn,
3294                                                     end_pfn);
3295         }
3296
3297         hlist_for_each_entry_safe(dup, hlist_safe,
3298                                   &stable_node->hlist, hlist_dup) {
3299                 VM_BUG_ON(!is_stable_node_dup(dup));
3300                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3301         }
3302         if (hlist_empty(&stable_node->hlist)) {
3303                 free_stable_node_chain(stable_node, root);
3304                 return true; /* notify caller that tree was rebalanced */
3305         } else
3306                 return false;
3307 }
3308
3309 static void ksm_check_stable_tree(unsigned long start_pfn,
3310                                   unsigned long end_pfn)
3311 {
3312         struct ksm_stable_node *stable_node, *next;
3313         struct rb_node *node;
3314         int nid;
3315
3316         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3317                 node = rb_first(root_stable_tree + nid);
3318                 while (node) {
3319                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3320                         if (stable_node_chain_remove_range(stable_node,
3321                                                            start_pfn, end_pfn,
3322                                                            root_stable_tree +
3323                                                            nid))
3324                                 node = rb_first(root_stable_tree + nid);
3325                         else
3326                                 node = rb_next(node);
3327                         cond_resched();
3328                 }
3329         }
3330         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3331                 if (stable_node->kpfn >= start_pfn &&
3332                     stable_node->kpfn < end_pfn)
3333                         remove_node_from_stable_tree(stable_node);
3334                 cond_resched();
3335         }
3336 }
3337
3338 static int ksm_memory_callback(struct notifier_block *self,
3339                                unsigned long action, void *arg)
3340 {
3341         struct memory_notify *mn = arg;
3342
3343         switch (action) {
3344         case MEM_GOING_OFFLINE:
3345                 /*
3346                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3347                  * and remove_all_stable_nodes() while memory is going offline:
3348                  * it is unsafe for them to touch the stable tree at this time.
3349                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3350                  * which do not need the ksm_thread_mutex are all safe.
3351                  */
3352                 mutex_lock(&ksm_thread_mutex);
3353                 ksm_run |= KSM_RUN_OFFLINE;
3354                 mutex_unlock(&ksm_thread_mutex);
3355                 break;
3356
3357         case MEM_OFFLINE:
3358                 /*
3359                  * Most of the work is done by page migration; but there might
3360                  * be a few stable_nodes left over, still pointing to struct
3361                  * pages which have been offlined: prune those from the tree,
3362                  * otherwise get_ksm_page() might later try to access a
3363                  * non-existent struct page.
3364                  */
3365                 ksm_check_stable_tree(mn->start_pfn,
3366                                       mn->start_pfn + mn->nr_pages);
3367                 fallthrough;
3368         case MEM_CANCEL_OFFLINE:
3369                 mutex_lock(&ksm_thread_mutex);
3370                 ksm_run &= ~KSM_RUN_OFFLINE;
3371                 mutex_unlock(&ksm_thread_mutex);
3372
3373                 smp_mb();       /* wake_up_bit advises this */
3374                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3375                 break;
3376         }
3377         return NOTIFY_OK;
3378 }
3379 #else
3380 static void wait_while_offlining(void)
3381 {
3382 }
3383 #endif /* CONFIG_MEMORY_HOTREMOVE */
3384
3385 #ifdef CONFIG_PROC_FS
3386 long ksm_process_profit(struct mm_struct *mm)
3387 {
3388         return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3389                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3390 }
3391 #endif /* CONFIG_PROC_FS */
3392
3393 #ifdef CONFIG_SYSFS
3394 /*
3395  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3396  */
3397
3398 #define KSM_ATTR_RO(_name) \
3399         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3400 #define KSM_ATTR(_name) \
3401         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3402
3403 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3404                                     struct kobj_attribute *attr, char *buf)
3405 {
3406         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3407 }
3408
3409 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3410                                      struct kobj_attribute *attr,
3411                                      const char *buf, size_t count)
3412 {
3413         unsigned int msecs;
3414         int err;
3415
3416         err = kstrtouint(buf, 10, &msecs);
3417         if (err)
3418                 return -EINVAL;
3419
3420         ksm_thread_sleep_millisecs = msecs;
3421         wake_up_interruptible(&ksm_iter_wait);
3422
3423         return count;
3424 }
3425 KSM_ATTR(sleep_millisecs);
3426
3427 static ssize_t pages_to_scan_show(struct kobject *kobj,
3428                                   struct kobj_attribute *attr, char *buf)
3429 {
3430         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3431 }
3432
3433 static ssize_t pages_to_scan_store(struct kobject *kobj,
3434                                    struct kobj_attribute *attr,
3435                                    const char *buf, size_t count)
3436 {
3437         unsigned int nr_pages;
3438         int err;
3439
3440         if (ksm_advisor != KSM_ADVISOR_NONE)
3441                 return -EINVAL;
3442
3443         err = kstrtouint(buf, 10, &nr_pages);
3444         if (err)
3445                 return -EINVAL;
3446
3447         ksm_thread_pages_to_scan = nr_pages;
3448
3449         return count;
3450 }
3451 KSM_ATTR(pages_to_scan);
3452
3453 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3454                         char *buf)
3455 {
3456         return sysfs_emit(buf, "%lu\n", ksm_run);
3457 }
3458
3459 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3460                          const char *buf, size_t count)
3461 {
3462         unsigned int flags;
3463         int err;
3464
3465         err = kstrtouint(buf, 10, &flags);
3466         if (err)
3467                 return -EINVAL;
3468         if (flags > KSM_RUN_UNMERGE)
3469                 return -EINVAL;
3470
3471         /*
3472          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3473          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3474          * breaking COW to free the pages_shared (but leaves mm_slots
3475          * on the list for when ksmd may be set running again).
3476          */
3477
3478         mutex_lock(&ksm_thread_mutex);
3479         wait_while_offlining();
3480         if (ksm_run != flags) {
3481                 ksm_run = flags;
3482                 if (flags & KSM_RUN_UNMERGE) {
3483                         set_current_oom_origin();
3484                         err = unmerge_and_remove_all_rmap_items();
3485                         clear_current_oom_origin();
3486                         if (err) {
3487                                 ksm_run = KSM_RUN_STOP;
3488                                 count = err;
3489                         }
3490                 }
3491         }
3492         mutex_unlock(&ksm_thread_mutex);
3493
3494         if (flags & KSM_RUN_MERGE)
3495                 wake_up_interruptible(&ksm_thread_wait);
3496
3497         return count;
3498 }
3499 KSM_ATTR(run);
3500
3501 #ifdef CONFIG_NUMA
3502 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3503                                        struct kobj_attribute *attr, char *buf)
3504 {
3505         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3506 }
3507
3508 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3509                                    struct kobj_attribute *attr,
3510                                    const char *buf, size_t count)
3511 {
3512         int err;
3513         unsigned long knob;
3514
3515         err = kstrtoul(buf, 10, &knob);
3516         if (err)
3517                 return err;
3518         if (knob > 1)
3519                 return -EINVAL;
3520
3521         mutex_lock(&ksm_thread_mutex);
3522         wait_while_offlining();
3523         if (ksm_merge_across_nodes != knob) {
3524                 if (ksm_pages_shared || remove_all_stable_nodes())
3525                         err = -EBUSY;
3526                 else if (root_stable_tree == one_stable_tree) {
3527                         struct rb_root *buf;
3528                         /*
3529                          * This is the first time that we switch away from the
3530                          * default of merging across nodes: must now allocate
3531                          * a buffer to hold as many roots as may be needed.
3532                          * Allocate stable and unstable together:
3533                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3534                          */
3535                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3536                                       GFP_KERNEL);
3537                         /* Let us assume that RB_ROOT is NULL is zero */
3538                         if (!buf)
3539                                 err = -ENOMEM;
3540                         else {
3541                                 root_stable_tree = buf;
3542                                 root_unstable_tree = buf + nr_node_ids;
3543                                 /* Stable tree is empty but not the unstable */
3544                                 root_unstable_tree[0] = one_unstable_tree[0];
3545                         }
3546                 }
3547                 if (!err) {
3548                         ksm_merge_across_nodes = knob;
3549                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3550                 }
3551         }
3552         mutex_unlock(&ksm_thread_mutex);
3553
3554         return err ? err : count;
3555 }
3556 KSM_ATTR(merge_across_nodes);
3557 #endif
3558
3559 static ssize_t use_zero_pages_show(struct kobject *kobj,
3560                                    struct kobj_attribute *attr, char *buf)
3561 {
3562         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3563 }
3564 static ssize_t use_zero_pages_store(struct kobject *kobj,
3565                                    struct kobj_attribute *attr,
3566                                    const char *buf, size_t count)
3567 {
3568         int err;
3569         bool value;
3570
3571         err = kstrtobool(buf, &value);
3572         if (err)
3573                 return -EINVAL;
3574
3575         ksm_use_zero_pages = value;
3576
3577         return count;
3578 }
3579 KSM_ATTR(use_zero_pages);
3580
3581 static ssize_t max_page_sharing_show(struct kobject *kobj,
3582                                      struct kobj_attribute *attr, char *buf)
3583 {
3584         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3585 }
3586
3587 static ssize_t max_page_sharing_store(struct kobject *kobj,
3588                                       struct kobj_attribute *attr,
3589                                       const char *buf, size_t count)
3590 {
3591         int err;
3592         int knob;
3593
3594         err = kstrtoint(buf, 10, &knob);
3595         if (err)
3596                 return err;
3597         /*
3598          * When a KSM page is created it is shared by 2 mappings. This
3599          * being a signed comparison, it implicitly verifies it's not
3600          * negative.
3601          */
3602         if (knob < 2)
3603                 return -EINVAL;
3604
3605         if (READ_ONCE(ksm_max_page_sharing) == knob)
3606                 return count;
3607
3608         mutex_lock(&ksm_thread_mutex);
3609         wait_while_offlining();
3610         if (ksm_max_page_sharing != knob) {
3611                 if (ksm_pages_shared || remove_all_stable_nodes())
3612                         err = -EBUSY;
3613                 else
3614                         ksm_max_page_sharing = knob;
3615         }
3616         mutex_unlock(&ksm_thread_mutex);
3617
3618         return err ? err : count;
3619 }
3620 KSM_ATTR(max_page_sharing);
3621
3622 static ssize_t pages_scanned_show(struct kobject *kobj,
3623                                   struct kobj_attribute *attr, char *buf)
3624 {
3625         return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3626 }
3627 KSM_ATTR_RO(pages_scanned);
3628
3629 static ssize_t pages_shared_show(struct kobject *kobj,
3630                                  struct kobj_attribute *attr, char *buf)
3631 {
3632         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3633 }
3634 KSM_ATTR_RO(pages_shared);
3635
3636 static ssize_t pages_sharing_show(struct kobject *kobj,
3637                                   struct kobj_attribute *attr, char *buf)
3638 {
3639         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3640 }
3641 KSM_ATTR_RO(pages_sharing);
3642
3643 static ssize_t pages_unshared_show(struct kobject *kobj,
3644                                    struct kobj_attribute *attr, char *buf)
3645 {
3646         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3647 }
3648 KSM_ATTR_RO(pages_unshared);
3649
3650 static ssize_t pages_volatile_show(struct kobject *kobj,
3651                                    struct kobj_attribute *attr, char *buf)
3652 {
3653         long ksm_pages_volatile;
3654
3655         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3656                                 - ksm_pages_sharing - ksm_pages_unshared;
3657         /*
3658          * It was not worth any locking to calculate that statistic,
3659          * but it might therefore sometimes be negative: conceal that.
3660          */
3661         if (ksm_pages_volatile < 0)
3662                 ksm_pages_volatile = 0;
3663         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3664 }
3665 KSM_ATTR_RO(pages_volatile);
3666
3667 static ssize_t pages_skipped_show(struct kobject *kobj,
3668                                   struct kobj_attribute *attr, char *buf)
3669 {
3670         return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3671 }
3672 KSM_ATTR_RO(pages_skipped);
3673
3674 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3675                                 struct kobj_attribute *attr, char *buf)
3676 {
3677         return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3678 }
3679 KSM_ATTR_RO(ksm_zero_pages);
3680
3681 static ssize_t general_profit_show(struct kobject *kobj,
3682                                    struct kobj_attribute *attr, char *buf)
3683 {
3684         long general_profit;
3685
3686         general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3687                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3688
3689         return sysfs_emit(buf, "%ld\n", general_profit);
3690 }
3691 KSM_ATTR_RO(general_profit);
3692
3693 static ssize_t stable_node_dups_show(struct kobject *kobj,
3694                                      struct kobj_attribute *attr, char *buf)
3695 {
3696         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3697 }
3698 KSM_ATTR_RO(stable_node_dups);
3699
3700 static ssize_t stable_node_chains_show(struct kobject *kobj,
3701                                        struct kobj_attribute *attr, char *buf)
3702 {
3703         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3704 }
3705 KSM_ATTR_RO(stable_node_chains);
3706
3707 static ssize_t
3708 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3709                                         struct kobj_attribute *attr,
3710                                         char *buf)
3711 {
3712         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3713 }
3714
3715 static ssize_t
3716 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3717                                          struct kobj_attribute *attr,
3718                                          const char *buf, size_t count)
3719 {
3720         unsigned int msecs;
3721         int err;
3722
3723         err = kstrtouint(buf, 10, &msecs);
3724         if (err)
3725                 return -EINVAL;
3726
3727         ksm_stable_node_chains_prune_millisecs = msecs;
3728
3729         return count;
3730 }
3731 KSM_ATTR(stable_node_chains_prune_millisecs);
3732
3733 static ssize_t full_scans_show(struct kobject *kobj,
3734                                struct kobj_attribute *attr, char *buf)
3735 {
3736         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3737 }
3738 KSM_ATTR_RO(full_scans);
3739
3740 static ssize_t smart_scan_show(struct kobject *kobj,
3741                                struct kobj_attribute *attr, char *buf)
3742 {
3743         return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3744 }
3745
3746 static ssize_t smart_scan_store(struct kobject *kobj,
3747                                 struct kobj_attribute *attr,
3748                                 const char *buf, size_t count)
3749 {
3750         int err;
3751         bool value;
3752
3753         err = kstrtobool(buf, &value);
3754         if (err)
3755                 return -EINVAL;
3756
3757         ksm_smart_scan = value;
3758         return count;
3759 }
3760 KSM_ATTR(smart_scan);
3761
3762 static ssize_t advisor_mode_show(struct kobject *kobj,
3763                                  struct kobj_attribute *attr, char *buf)
3764 {
3765         const char *output;
3766
3767         if (ksm_advisor == KSM_ADVISOR_NONE)
3768                 output = "[none] scan-time";
3769         else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3770                 output = "none [scan-time]";
3771
3772         return sysfs_emit(buf, "%s\n", output);
3773 }
3774
3775 static ssize_t advisor_mode_store(struct kobject *kobj,
3776                                   struct kobj_attribute *attr, const char *buf,
3777                                   size_t count)
3778 {
3779         enum ksm_advisor_type curr_advisor = ksm_advisor;
3780
3781         if (sysfs_streq("scan-time", buf))
3782                 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3783         else if (sysfs_streq("none", buf))
3784                 ksm_advisor = KSM_ADVISOR_NONE;
3785         else
3786                 return -EINVAL;
3787
3788         /* Set advisor default values */
3789         if (curr_advisor != ksm_advisor)
3790                 set_advisor_defaults();
3791
3792         return count;
3793 }
3794 KSM_ATTR(advisor_mode);
3795
3796 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3797                                     struct kobj_attribute *attr, char *buf)
3798 {
3799         return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3800 }
3801
3802 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3803                                      struct kobj_attribute *attr,
3804                                      const char *buf, size_t count)
3805 {
3806         int err;
3807         unsigned long value;
3808
3809         err = kstrtoul(buf, 10, &value);
3810         if (err)
3811                 return -EINVAL;
3812
3813         ksm_advisor_max_cpu = value;
3814         return count;
3815 }
3816 KSM_ATTR(advisor_max_cpu);
3817
3818 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3819                                         struct kobj_attribute *attr, char *buf)
3820 {
3821         return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3822 }
3823
3824 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3825                                         struct kobj_attribute *attr,
3826                                         const char *buf, size_t count)
3827 {
3828         int err;
3829         unsigned long value;
3830
3831         err = kstrtoul(buf, 10, &value);
3832         if (err)
3833                 return -EINVAL;
3834
3835         ksm_advisor_min_pages_to_scan = value;
3836         return count;
3837 }
3838 KSM_ATTR(advisor_min_pages_to_scan);
3839
3840 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3841                                         struct kobj_attribute *attr, char *buf)
3842 {
3843         return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3844 }
3845
3846 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3847                                         struct kobj_attribute *attr,
3848                                         const char *buf, size_t count)
3849 {
3850         int err;
3851         unsigned long value;
3852
3853         err = kstrtoul(buf, 10, &value);
3854         if (err)
3855                 return -EINVAL;
3856
3857         ksm_advisor_max_pages_to_scan = value;
3858         return count;
3859 }
3860 KSM_ATTR(advisor_max_pages_to_scan);
3861
3862 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3863                                              struct kobj_attribute *attr, char *buf)
3864 {
3865         return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3866 }
3867
3868 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3869                                               struct kobj_attribute *attr,
3870                                               const char *buf, size_t count)
3871 {
3872         int err;
3873         unsigned long value;
3874
3875         err = kstrtoul(buf, 10, &value);
3876         if (err)
3877                 return -EINVAL;
3878         if (value < 1)
3879                 return -EINVAL;
3880
3881         ksm_advisor_target_scan_time = value;
3882         return count;
3883 }
3884 KSM_ATTR(advisor_target_scan_time);
3885
3886 static struct attribute *ksm_attrs[] = {
3887         &sleep_millisecs_attr.attr,
3888         &pages_to_scan_attr.attr,
3889         &run_attr.attr,
3890         &pages_scanned_attr.attr,
3891         &pages_shared_attr.attr,
3892         &pages_sharing_attr.attr,
3893         &pages_unshared_attr.attr,
3894         &pages_volatile_attr.attr,
3895         &pages_skipped_attr.attr,
3896         &ksm_zero_pages_attr.attr,
3897         &full_scans_attr.attr,
3898 #ifdef CONFIG_NUMA
3899         &merge_across_nodes_attr.attr,
3900 #endif
3901         &max_page_sharing_attr.attr,
3902         &stable_node_chains_attr.attr,
3903         &stable_node_dups_attr.attr,
3904         &stable_node_chains_prune_millisecs_attr.attr,
3905         &use_zero_pages_attr.attr,
3906         &general_profit_attr.attr,
3907         &smart_scan_attr.attr,
3908         &advisor_mode_attr.attr,
3909         &advisor_max_cpu_attr.attr,
3910         &advisor_min_pages_to_scan_attr.attr,
3911         &advisor_max_pages_to_scan_attr.attr,
3912         &advisor_target_scan_time_attr.attr,
3913         NULL,
3914 };
3915
3916 static const struct attribute_group ksm_attr_group = {
3917         .attrs = ksm_attrs,
3918         .name = "ksm",
3919 };
3920 #endif /* CONFIG_SYSFS */
3921
3922 static int __init ksm_init(void)
3923 {
3924         struct task_struct *ksm_thread;
3925         int err;
3926
3927         /* The correct value depends on page size and endianness */
3928         zero_checksum = calc_checksum(ZERO_PAGE(0));
3929         /* Default to false for backwards compatibility */
3930         ksm_use_zero_pages = false;
3931
3932         err = ksm_slab_init();
3933         if (err)
3934                 goto out;
3935
3936         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3937         if (IS_ERR(ksm_thread)) {
3938                 pr_err("ksm: creating kthread failed\n");
3939                 err = PTR_ERR(ksm_thread);
3940                 goto out_free;
3941         }
3942
3943 #ifdef CONFIG_SYSFS
3944         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3945         if (err) {
3946                 pr_err("ksm: register sysfs failed\n");
3947                 kthread_stop(ksm_thread);
3948                 goto out_free;
3949         }
3950 #else
3951         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3952
3953 #endif /* CONFIG_SYSFS */
3954
3955 #ifdef CONFIG_MEMORY_HOTREMOVE
3956         /* There is no significance to this priority 100 */
3957         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3958 #endif
3959         return 0;
3960
3961 out_free:
3962         ksm_slab_free();
3963 out:
3964         return err;
3965 }
3966 subsys_initcall(ksm_init);