sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-2.6-block.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/jiffies.h>
79 #include <linux/delay.h>
80 #include <linux/export.h>
81 #include <linux/kthread.h>
82 #include <linux/rbtree.h>
83 #include <linux/fs.h>
84 #include <linux/debugfs.h>
85 #include <linux/seq_file.h>
86 #include <linux/cpumask.h>
87 #include <linux/spinlock.h>
88 #include <linux/mutex.h>
89 #include <linux/rcupdate.h>
90 #include <linux/stacktrace.h>
91 #include <linux/cache.h>
92 #include <linux/percpu.h>
93 #include <linux/hardirq.h>
94 #include <linux/bootmem.h>
95 #include <linux/pfn.h>
96 #include <linux/mmzone.h>
97 #include <linux/slab.h>
98 #include <linux/thread_info.h>
99 #include <linux/err.h>
100 #include <linux/uaccess.h>
101 #include <linux/string.h>
102 #include <linux/nodemask.h>
103 #include <linux/mm.h>
104 #include <linux/workqueue.h>
105 #include <linux/crc32.h>
106
107 #include <asm/sections.h>
108 #include <asm/processor.h>
109 #include <linux/atomic.h>
110
111 #include <linux/kasan.h>
112 #include <linux/kmemcheck.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
115
116 /*
117  * Kmemleak configuration and common defines.
118  */
119 #define MAX_TRACE               16      /* stack trace length */
120 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
121 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
122 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
124
125 #define BYTES_PER_POINTER       sizeof(void *)
126
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
130                                  __GFP_NOWARN)
131
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area {
134         struct hlist_node node;
135         unsigned long start;
136         size_t size;
137 };
138
139 #define KMEMLEAK_GREY   0
140 #define KMEMLEAK_BLACK  -1
141
142 /*
143  * Structure holding the metadata for each allocated memory block.
144  * Modifications to such objects should be made while holding the
145  * object->lock. Insertions or deletions from object_list, gray_list or
146  * rb_node are already protected by the corresponding locks or mutex (see
147  * the notes on locking above). These objects are reference-counted
148  * (use_count) and freed using the RCU mechanism.
149  */
150 struct kmemleak_object {
151         spinlock_t lock;
152         unsigned long flags;            /* object status flags */
153         struct list_head object_list;
154         struct list_head gray_list;
155         struct rb_node rb_node;
156         struct rcu_head rcu;            /* object_list lockless traversal */
157         /* object usage count; object freed when use_count == 0 */
158         atomic_t use_count;
159         unsigned long pointer;
160         size_t size;
161         /* minimum number of a pointers found before it is considered leak */
162         int min_count;
163         /* the total number of pointers found pointing to this object */
164         int count;
165         /* checksum for detecting modified objects */
166         u32 checksum;
167         /* memory ranges to be scanned inside an object (empty for all) */
168         struct hlist_head area_list;
169         unsigned long trace[MAX_TRACE];
170         unsigned int trace_len;
171         unsigned long jiffies;          /* creation timestamp */
172         pid_t pid;                      /* pid of the current task */
173         char comm[TASK_COMM_LEN];       /* executable name */
174 };
175
176 /* flag representing the memory block allocation status */
177 #define OBJECT_ALLOCATED        (1 << 0)
178 /* flag set after the first reporting of an unreference object */
179 #define OBJECT_REPORTED         (1 << 1)
180 /* flag set to not scan the object */
181 #define OBJECT_NO_SCAN          (1 << 2)
182
183 /* number of bytes to print per line; must be 16 or 32 */
184 #define HEX_ROW_SIZE            16
185 /* number of bytes to print at a time (1, 2, 4, 8) */
186 #define HEX_GROUP_SIZE          1
187 /* include ASCII after the hex output */
188 #define HEX_ASCII               1
189 /* max number of lines to be printed */
190 #define HEX_MAX_LINES           2
191
192 /* the list of all allocated objects */
193 static LIST_HEAD(object_list);
194 /* the list of gray-colored objects (see color_gray comment below) */
195 static LIST_HEAD(gray_list);
196 /* search tree for object boundaries */
197 static struct rb_root object_tree_root = RB_ROOT;
198 /* rw_lock protecting the access to object_list and object_tree_root */
199 static DEFINE_RWLOCK(kmemleak_lock);
200
201 /* allocation caches for kmemleak internal data */
202 static struct kmem_cache *object_cache;
203 static struct kmem_cache *scan_area_cache;
204
205 /* set if tracing memory operations is enabled */
206 static int kmemleak_enabled;
207 /* same as above but only for the kmemleak_free() callback */
208 static int kmemleak_free_enabled;
209 /* set in the late_initcall if there were no errors */
210 static int kmemleak_initialized;
211 /* enables or disables early logging of the memory operations */
212 static int kmemleak_early_log = 1;
213 /* set if a kmemleak warning was issued */
214 static int kmemleak_warning;
215 /* set if a fatal kmemleak error has occurred */
216 static int kmemleak_error;
217
218 /* minimum and maximum address that may be valid pointers */
219 static unsigned long min_addr = ULONG_MAX;
220 static unsigned long max_addr;
221
222 static struct task_struct *scan_thread;
223 /* used to avoid reporting of recently allocated objects */
224 static unsigned long jiffies_min_age;
225 static unsigned long jiffies_last_scan;
226 /* delay between automatic memory scannings */
227 static signed long jiffies_scan_wait;
228 /* enables or disables the task stacks scanning */
229 static int kmemleak_stack_scan = 1;
230 /* protects the memory scanning, parameters and debug/kmemleak file access */
231 static DEFINE_MUTEX(scan_mutex);
232 /* setting kmemleak=on, will set this var, skipping the disable */
233 static int kmemleak_skip_disable;
234 /* If there are leaks that can be reported */
235 static bool kmemleak_found_leaks;
236
237 /*
238  * Early object allocation/freeing logging. Kmemleak is initialized after the
239  * kernel allocator. However, both the kernel allocator and kmemleak may
240  * allocate memory blocks which need to be tracked. Kmemleak defines an
241  * arbitrary buffer to hold the allocation/freeing information before it is
242  * fully initialized.
243  */
244
245 /* kmemleak operation type for early logging */
246 enum {
247         KMEMLEAK_ALLOC,
248         KMEMLEAK_ALLOC_PERCPU,
249         KMEMLEAK_FREE,
250         KMEMLEAK_FREE_PART,
251         KMEMLEAK_FREE_PERCPU,
252         KMEMLEAK_NOT_LEAK,
253         KMEMLEAK_IGNORE,
254         KMEMLEAK_SCAN_AREA,
255         KMEMLEAK_NO_SCAN
256 };
257
258 /*
259  * Structure holding the information passed to kmemleak callbacks during the
260  * early logging.
261  */
262 struct early_log {
263         int op_type;                    /* kmemleak operation type */
264         const void *ptr;                /* allocated/freed memory block */
265         size_t size;                    /* memory block size */
266         int min_count;                  /* minimum reference count */
267         unsigned long trace[MAX_TRACE]; /* stack trace */
268         unsigned int trace_len;         /* stack trace length */
269 };
270
271 /* early logging buffer and current position */
272 static struct early_log
273         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
274 static int crt_early_log __initdata;
275
276 static void kmemleak_disable(void);
277
278 /*
279  * Print a warning and dump the stack trace.
280  */
281 #define kmemleak_warn(x...)     do {            \
282         pr_warn(x);                             \
283         dump_stack();                           \
284         kmemleak_warning = 1;                   \
285 } while (0)
286
287 /*
288  * Macro invoked when a serious kmemleak condition occurred and cannot be
289  * recovered from. Kmemleak will be disabled and further allocation/freeing
290  * tracing no longer available.
291  */
292 #define kmemleak_stop(x...)     do {    \
293         kmemleak_warn(x);               \
294         kmemleak_disable();             \
295 } while (0)
296
297 /*
298  * Printing of the objects hex dump to the seq file. The number of lines to be
299  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
300  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
301  * with the object->lock held.
302  */
303 static void hex_dump_object(struct seq_file *seq,
304                             struct kmemleak_object *object)
305 {
306         const u8 *ptr = (const u8 *)object->pointer;
307         size_t len;
308
309         /* limit the number of lines to HEX_MAX_LINES */
310         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
311
312         seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
313         kasan_disable_current();
314         seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
315                      HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
316         kasan_enable_current();
317 }
318
319 /*
320  * Object colors, encoded with count and min_count:
321  * - white - orphan object, not enough references to it (count < min_count)
322  * - gray  - not orphan, not marked as false positive (min_count == 0) or
323  *              sufficient references to it (count >= min_count)
324  * - black - ignore, it doesn't contain references (e.g. text section)
325  *              (min_count == -1). No function defined for this color.
326  * Newly created objects don't have any color assigned (object->count == -1)
327  * before the next memory scan when they become white.
328  */
329 static bool color_white(const struct kmemleak_object *object)
330 {
331         return object->count != KMEMLEAK_BLACK &&
332                 object->count < object->min_count;
333 }
334
335 static bool color_gray(const struct kmemleak_object *object)
336 {
337         return object->min_count != KMEMLEAK_BLACK &&
338                 object->count >= object->min_count;
339 }
340
341 /*
342  * Objects are considered unreferenced only if their color is white, they have
343  * not be deleted and have a minimum age to avoid false positives caused by
344  * pointers temporarily stored in CPU registers.
345  */
346 static bool unreferenced_object(struct kmemleak_object *object)
347 {
348         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
349                 time_before_eq(object->jiffies + jiffies_min_age,
350                                jiffies_last_scan);
351 }
352
353 /*
354  * Printing of the unreferenced objects information to the seq file. The
355  * print_unreferenced function must be called with the object->lock held.
356  */
357 static void print_unreferenced(struct seq_file *seq,
358                                struct kmemleak_object *object)
359 {
360         int i;
361         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
362
363         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
364                    object->pointer, object->size);
365         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
366                    object->comm, object->pid, object->jiffies,
367                    msecs_age / 1000, msecs_age % 1000);
368         hex_dump_object(seq, object);
369         seq_printf(seq, "  backtrace:\n");
370
371         for (i = 0; i < object->trace_len; i++) {
372                 void *ptr = (void *)object->trace[i];
373                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
374         }
375 }
376
377 /*
378  * Print the kmemleak_object information. This function is used mainly for
379  * debugging special cases when kmemleak operations. It must be called with
380  * the object->lock held.
381  */
382 static void dump_object_info(struct kmemleak_object *object)
383 {
384         struct stack_trace trace;
385
386         trace.nr_entries = object->trace_len;
387         trace.entries = object->trace;
388
389         pr_notice("Object 0x%08lx (size %zu):\n",
390                   object->pointer, object->size);
391         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
392                   object->comm, object->pid, object->jiffies);
393         pr_notice("  min_count = %d\n", object->min_count);
394         pr_notice("  count = %d\n", object->count);
395         pr_notice("  flags = 0x%lx\n", object->flags);
396         pr_notice("  checksum = %u\n", object->checksum);
397         pr_notice("  backtrace:\n");
398         print_stack_trace(&trace, 4);
399 }
400
401 /*
402  * Look-up a memory block metadata (kmemleak_object) in the object search
403  * tree based on a pointer value. If alias is 0, only values pointing to the
404  * beginning of the memory block are allowed. The kmemleak_lock must be held
405  * when calling this function.
406  */
407 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
408 {
409         struct rb_node *rb = object_tree_root.rb_node;
410
411         while (rb) {
412                 struct kmemleak_object *object =
413                         rb_entry(rb, struct kmemleak_object, rb_node);
414                 if (ptr < object->pointer)
415                         rb = object->rb_node.rb_left;
416                 else if (object->pointer + object->size <= ptr)
417                         rb = object->rb_node.rb_right;
418                 else if (object->pointer == ptr || alias)
419                         return object;
420                 else {
421                         kmemleak_warn("Found object by alias at 0x%08lx\n",
422                                       ptr);
423                         dump_object_info(object);
424                         break;
425                 }
426         }
427         return NULL;
428 }
429
430 /*
431  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
432  * that once an object's use_count reached 0, the RCU freeing was already
433  * registered and the object should no longer be used. This function must be
434  * called under the protection of rcu_read_lock().
435  */
436 static int get_object(struct kmemleak_object *object)
437 {
438         return atomic_inc_not_zero(&object->use_count);
439 }
440
441 /*
442  * RCU callback to free a kmemleak_object.
443  */
444 static void free_object_rcu(struct rcu_head *rcu)
445 {
446         struct hlist_node *tmp;
447         struct kmemleak_scan_area *area;
448         struct kmemleak_object *object =
449                 container_of(rcu, struct kmemleak_object, rcu);
450
451         /*
452          * Once use_count is 0 (guaranteed by put_object), there is no other
453          * code accessing this object, hence no need for locking.
454          */
455         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
456                 hlist_del(&area->node);
457                 kmem_cache_free(scan_area_cache, area);
458         }
459         kmem_cache_free(object_cache, object);
460 }
461
462 /*
463  * Decrement the object use_count. Once the count is 0, free the object using
464  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
465  * delete_object() path, the delayed RCU freeing ensures that there is no
466  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
467  * is also possible.
468  */
469 static void put_object(struct kmemleak_object *object)
470 {
471         if (!atomic_dec_and_test(&object->use_count))
472                 return;
473
474         /* should only get here after delete_object was called */
475         WARN_ON(object->flags & OBJECT_ALLOCATED);
476
477         call_rcu(&object->rcu, free_object_rcu);
478 }
479
480 /*
481  * Look up an object in the object search tree and increase its use_count.
482  */
483 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
484 {
485         unsigned long flags;
486         struct kmemleak_object *object;
487
488         rcu_read_lock();
489         read_lock_irqsave(&kmemleak_lock, flags);
490         object = lookup_object(ptr, alias);
491         read_unlock_irqrestore(&kmemleak_lock, flags);
492
493         /* check whether the object is still available */
494         if (object && !get_object(object))
495                 object = NULL;
496         rcu_read_unlock();
497
498         return object;
499 }
500
501 /*
502  * Look up an object in the object search tree and remove it from both
503  * object_tree_root and object_list. The returned object's use_count should be
504  * at least 1, as initially set by create_object().
505  */
506 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
507 {
508         unsigned long flags;
509         struct kmemleak_object *object;
510
511         write_lock_irqsave(&kmemleak_lock, flags);
512         object = lookup_object(ptr, alias);
513         if (object) {
514                 rb_erase(&object->rb_node, &object_tree_root);
515                 list_del_rcu(&object->object_list);
516         }
517         write_unlock_irqrestore(&kmemleak_lock, flags);
518
519         return object;
520 }
521
522 /*
523  * Save stack trace to the given array of MAX_TRACE size.
524  */
525 static int __save_stack_trace(unsigned long *trace)
526 {
527         struct stack_trace stack_trace;
528
529         stack_trace.max_entries = MAX_TRACE;
530         stack_trace.nr_entries = 0;
531         stack_trace.entries = trace;
532         stack_trace.skip = 2;
533         save_stack_trace(&stack_trace);
534
535         return stack_trace.nr_entries;
536 }
537
538 /*
539  * Create the metadata (struct kmemleak_object) corresponding to an allocated
540  * memory block and add it to the object_list and object_tree_root.
541  */
542 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
543                                              int min_count, gfp_t gfp)
544 {
545         unsigned long flags;
546         struct kmemleak_object *object, *parent;
547         struct rb_node **link, *rb_parent;
548
549         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
550         if (!object) {
551                 pr_warn("Cannot allocate a kmemleak_object structure\n");
552                 kmemleak_disable();
553                 return NULL;
554         }
555
556         INIT_LIST_HEAD(&object->object_list);
557         INIT_LIST_HEAD(&object->gray_list);
558         INIT_HLIST_HEAD(&object->area_list);
559         spin_lock_init(&object->lock);
560         atomic_set(&object->use_count, 1);
561         object->flags = OBJECT_ALLOCATED;
562         object->pointer = ptr;
563         object->size = size;
564         object->min_count = min_count;
565         object->count = 0;                      /* white color initially */
566         object->jiffies = jiffies;
567         object->checksum = 0;
568
569         /* task information */
570         if (in_irq()) {
571                 object->pid = 0;
572                 strncpy(object->comm, "hardirq", sizeof(object->comm));
573         } else if (in_softirq()) {
574                 object->pid = 0;
575                 strncpy(object->comm, "softirq", sizeof(object->comm));
576         } else {
577                 object->pid = current->pid;
578                 /*
579                  * There is a small chance of a race with set_task_comm(),
580                  * however using get_task_comm() here may cause locking
581                  * dependency issues with current->alloc_lock. In the worst
582                  * case, the command line is not correct.
583                  */
584                 strncpy(object->comm, current->comm, sizeof(object->comm));
585         }
586
587         /* kernel backtrace */
588         object->trace_len = __save_stack_trace(object->trace);
589
590         write_lock_irqsave(&kmemleak_lock, flags);
591
592         min_addr = min(min_addr, ptr);
593         max_addr = max(max_addr, ptr + size);
594         link = &object_tree_root.rb_node;
595         rb_parent = NULL;
596         while (*link) {
597                 rb_parent = *link;
598                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
599                 if (ptr + size <= parent->pointer)
600                         link = &parent->rb_node.rb_left;
601                 else if (parent->pointer + parent->size <= ptr)
602                         link = &parent->rb_node.rb_right;
603                 else {
604                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
605                                       ptr);
606                         /*
607                          * No need for parent->lock here since "parent" cannot
608                          * be freed while the kmemleak_lock is held.
609                          */
610                         dump_object_info(parent);
611                         kmem_cache_free(object_cache, object);
612                         object = NULL;
613                         goto out;
614                 }
615         }
616         rb_link_node(&object->rb_node, rb_parent, link);
617         rb_insert_color(&object->rb_node, &object_tree_root);
618
619         list_add_tail_rcu(&object->object_list, &object_list);
620 out:
621         write_unlock_irqrestore(&kmemleak_lock, flags);
622         return object;
623 }
624
625 /*
626  * Mark the object as not allocated and schedule RCU freeing via put_object().
627  */
628 static void __delete_object(struct kmemleak_object *object)
629 {
630         unsigned long flags;
631
632         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
633         WARN_ON(atomic_read(&object->use_count) < 1);
634
635         /*
636          * Locking here also ensures that the corresponding memory block
637          * cannot be freed when it is being scanned.
638          */
639         spin_lock_irqsave(&object->lock, flags);
640         object->flags &= ~OBJECT_ALLOCATED;
641         spin_unlock_irqrestore(&object->lock, flags);
642         put_object(object);
643 }
644
645 /*
646  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
647  * delete it.
648  */
649 static void delete_object_full(unsigned long ptr)
650 {
651         struct kmemleak_object *object;
652
653         object = find_and_remove_object(ptr, 0);
654         if (!object) {
655 #ifdef DEBUG
656                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
657                               ptr);
658 #endif
659                 return;
660         }
661         __delete_object(object);
662 }
663
664 /*
665  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
666  * delete it. If the memory block is partially freed, the function may create
667  * additional metadata for the remaining parts of the block.
668  */
669 static void delete_object_part(unsigned long ptr, size_t size)
670 {
671         struct kmemleak_object *object;
672         unsigned long start, end;
673
674         object = find_and_remove_object(ptr, 1);
675         if (!object) {
676 #ifdef DEBUG
677                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
678                               ptr, size);
679 #endif
680                 return;
681         }
682
683         /*
684          * Create one or two objects that may result from the memory block
685          * split. Note that partial freeing is only done by free_bootmem() and
686          * this happens before kmemleak_init() is called. The path below is
687          * only executed during early log recording in kmemleak_init(), so
688          * GFP_KERNEL is enough.
689          */
690         start = object->pointer;
691         end = object->pointer + object->size;
692         if (ptr > start)
693                 create_object(start, ptr - start, object->min_count,
694                               GFP_KERNEL);
695         if (ptr + size < end)
696                 create_object(ptr + size, end - ptr - size, object->min_count,
697                               GFP_KERNEL);
698
699         __delete_object(object);
700 }
701
702 static void __paint_it(struct kmemleak_object *object, int color)
703 {
704         object->min_count = color;
705         if (color == KMEMLEAK_BLACK)
706                 object->flags |= OBJECT_NO_SCAN;
707 }
708
709 static void paint_it(struct kmemleak_object *object, int color)
710 {
711         unsigned long flags;
712
713         spin_lock_irqsave(&object->lock, flags);
714         __paint_it(object, color);
715         spin_unlock_irqrestore(&object->lock, flags);
716 }
717
718 static void paint_ptr(unsigned long ptr, int color)
719 {
720         struct kmemleak_object *object;
721
722         object = find_and_get_object(ptr, 0);
723         if (!object) {
724                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
725                               ptr,
726                               (color == KMEMLEAK_GREY) ? "Grey" :
727                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
728                 return;
729         }
730         paint_it(object, color);
731         put_object(object);
732 }
733
734 /*
735  * Mark an object permanently as gray-colored so that it can no longer be
736  * reported as a leak. This is used in general to mark a false positive.
737  */
738 static void make_gray_object(unsigned long ptr)
739 {
740         paint_ptr(ptr, KMEMLEAK_GREY);
741 }
742
743 /*
744  * Mark the object as black-colored so that it is ignored from scans and
745  * reporting.
746  */
747 static void make_black_object(unsigned long ptr)
748 {
749         paint_ptr(ptr, KMEMLEAK_BLACK);
750 }
751
752 /*
753  * Add a scanning area to the object. If at least one such area is added,
754  * kmemleak will only scan these ranges rather than the whole memory block.
755  */
756 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
757 {
758         unsigned long flags;
759         struct kmemleak_object *object;
760         struct kmemleak_scan_area *area;
761
762         object = find_and_get_object(ptr, 1);
763         if (!object) {
764                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
765                               ptr);
766                 return;
767         }
768
769         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
770         if (!area) {
771                 pr_warn("Cannot allocate a scan area\n");
772                 goto out;
773         }
774
775         spin_lock_irqsave(&object->lock, flags);
776         if (size == SIZE_MAX) {
777                 size = object->pointer + object->size - ptr;
778         } else if (ptr + size > object->pointer + object->size) {
779                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
780                 dump_object_info(object);
781                 kmem_cache_free(scan_area_cache, area);
782                 goto out_unlock;
783         }
784
785         INIT_HLIST_NODE(&area->node);
786         area->start = ptr;
787         area->size = size;
788
789         hlist_add_head(&area->node, &object->area_list);
790 out_unlock:
791         spin_unlock_irqrestore(&object->lock, flags);
792 out:
793         put_object(object);
794 }
795
796 /*
797  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
798  * pointer. Such object will not be scanned by kmemleak but references to it
799  * are searched.
800  */
801 static void object_no_scan(unsigned long ptr)
802 {
803         unsigned long flags;
804         struct kmemleak_object *object;
805
806         object = find_and_get_object(ptr, 0);
807         if (!object) {
808                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
809                 return;
810         }
811
812         spin_lock_irqsave(&object->lock, flags);
813         object->flags |= OBJECT_NO_SCAN;
814         spin_unlock_irqrestore(&object->lock, flags);
815         put_object(object);
816 }
817
818 /*
819  * Log an early kmemleak_* call to the early_log buffer. These calls will be
820  * processed later once kmemleak is fully initialized.
821  */
822 static void __init log_early(int op_type, const void *ptr, size_t size,
823                              int min_count)
824 {
825         unsigned long flags;
826         struct early_log *log;
827
828         if (kmemleak_error) {
829                 /* kmemleak stopped recording, just count the requests */
830                 crt_early_log++;
831                 return;
832         }
833
834         if (crt_early_log >= ARRAY_SIZE(early_log)) {
835                 crt_early_log++;
836                 kmemleak_disable();
837                 return;
838         }
839
840         /*
841          * There is no need for locking since the kernel is still in UP mode
842          * at this stage. Disabling the IRQs is enough.
843          */
844         local_irq_save(flags);
845         log = &early_log[crt_early_log];
846         log->op_type = op_type;
847         log->ptr = ptr;
848         log->size = size;
849         log->min_count = min_count;
850         log->trace_len = __save_stack_trace(log->trace);
851         crt_early_log++;
852         local_irq_restore(flags);
853 }
854
855 /*
856  * Log an early allocated block and populate the stack trace.
857  */
858 static void early_alloc(struct early_log *log)
859 {
860         struct kmemleak_object *object;
861         unsigned long flags;
862         int i;
863
864         if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
865                 return;
866
867         /*
868          * RCU locking needed to ensure object is not freed via put_object().
869          */
870         rcu_read_lock();
871         object = create_object((unsigned long)log->ptr, log->size,
872                                log->min_count, GFP_ATOMIC);
873         if (!object)
874                 goto out;
875         spin_lock_irqsave(&object->lock, flags);
876         for (i = 0; i < log->trace_len; i++)
877                 object->trace[i] = log->trace[i];
878         object->trace_len = log->trace_len;
879         spin_unlock_irqrestore(&object->lock, flags);
880 out:
881         rcu_read_unlock();
882 }
883
884 /*
885  * Log an early allocated block and populate the stack trace.
886  */
887 static void early_alloc_percpu(struct early_log *log)
888 {
889         unsigned int cpu;
890         const void __percpu *ptr = log->ptr;
891
892         for_each_possible_cpu(cpu) {
893                 log->ptr = per_cpu_ptr(ptr, cpu);
894                 early_alloc(log);
895         }
896 }
897
898 /**
899  * kmemleak_alloc - register a newly allocated object
900  * @ptr:        pointer to beginning of the object
901  * @size:       size of the object
902  * @min_count:  minimum number of references to this object. If during memory
903  *              scanning a number of references less than @min_count is found,
904  *              the object is reported as a memory leak. If @min_count is 0,
905  *              the object is never reported as a leak. If @min_count is -1,
906  *              the object is ignored (not scanned and not reported as a leak)
907  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
908  *
909  * This function is called from the kernel allocators when a new object
910  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
911  */
912 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
913                           gfp_t gfp)
914 {
915         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
916
917         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
918                 create_object((unsigned long)ptr, size, min_count, gfp);
919         else if (kmemleak_early_log)
920                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
921 }
922 EXPORT_SYMBOL_GPL(kmemleak_alloc);
923
924 /**
925  * kmemleak_alloc_percpu - register a newly allocated __percpu object
926  * @ptr:        __percpu pointer to beginning of the object
927  * @size:       size of the object
928  * @gfp:        flags used for kmemleak internal memory allocations
929  *
930  * This function is called from the kernel percpu allocator when a new object
931  * (memory block) is allocated (alloc_percpu).
932  */
933 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
934                                  gfp_t gfp)
935 {
936         unsigned int cpu;
937
938         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
939
940         /*
941          * Percpu allocations are only scanned and not reported as leaks
942          * (min_count is set to 0).
943          */
944         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
945                 for_each_possible_cpu(cpu)
946                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
947                                       size, 0, gfp);
948         else if (kmemleak_early_log)
949                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
950 }
951 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
952
953 /**
954  * kmemleak_free - unregister a previously registered object
955  * @ptr:        pointer to beginning of the object
956  *
957  * This function is called from the kernel allocators when an object (memory
958  * block) is freed (kmem_cache_free, kfree, vfree etc.).
959  */
960 void __ref kmemleak_free(const void *ptr)
961 {
962         pr_debug("%s(0x%p)\n", __func__, ptr);
963
964         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
965                 delete_object_full((unsigned long)ptr);
966         else if (kmemleak_early_log)
967                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
968 }
969 EXPORT_SYMBOL_GPL(kmemleak_free);
970
971 /**
972  * kmemleak_free_part - partially unregister a previously registered object
973  * @ptr:        pointer to the beginning or inside the object. This also
974  *              represents the start of the range to be freed
975  * @size:       size to be unregistered
976  *
977  * This function is called when only a part of a memory block is freed
978  * (usually from the bootmem allocator).
979  */
980 void __ref kmemleak_free_part(const void *ptr, size_t size)
981 {
982         pr_debug("%s(0x%p)\n", __func__, ptr);
983
984         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
985                 delete_object_part((unsigned long)ptr, size);
986         else if (kmemleak_early_log)
987                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
988 }
989 EXPORT_SYMBOL_GPL(kmemleak_free_part);
990
991 /**
992  * kmemleak_free_percpu - unregister a previously registered __percpu object
993  * @ptr:        __percpu pointer to beginning of the object
994  *
995  * This function is called from the kernel percpu allocator when an object
996  * (memory block) is freed (free_percpu).
997  */
998 void __ref kmemleak_free_percpu(const void __percpu *ptr)
999 {
1000         unsigned int cpu;
1001
1002         pr_debug("%s(0x%p)\n", __func__, ptr);
1003
1004         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1005                 for_each_possible_cpu(cpu)
1006                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1007                                                                       cpu));
1008         else if (kmemleak_early_log)
1009                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1010 }
1011 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1012
1013 /**
1014  * kmemleak_update_trace - update object allocation stack trace
1015  * @ptr:        pointer to beginning of the object
1016  *
1017  * Override the object allocation stack trace for cases where the actual
1018  * allocation place is not always useful.
1019  */
1020 void __ref kmemleak_update_trace(const void *ptr)
1021 {
1022         struct kmemleak_object *object;
1023         unsigned long flags;
1024
1025         pr_debug("%s(0x%p)\n", __func__, ptr);
1026
1027         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1028                 return;
1029
1030         object = find_and_get_object((unsigned long)ptr, 1);
1031         if (!object) {
1032 #ifdef DEBUG
1033                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1034                               ptr);
1035 #endif
1036                 return;
1037         }
1038
1039         spin_lock_irqsave(&object->lock, flags);
1040         object->trace_len = __save_stack_trace(object->trace);
1041         spin_unlock_irqrestore(&object->lock, flags);
1042
1043         put_object(object);
1044 }
1045 EXPORT_SYMBOL(kmemleak_update_trace);
1046
1047 /**
1048  * kmemleak_not_leak - mark an allocated object as false positive
1049  * @ptr:        pointer to beginning of the object
1050  *
1051  * Calling this function on an object will cause the memory block to no longer
1052  * be reported as leak and always be scanned.
1053  */
1054 void __ref kmemleak_not_leak(const void *ptr)
1055 {
1056         pr_debug("%s(0x%p)\n", __func__, ptr);
1057
1058         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1059                 make_gray_object((unsigned long)ptr);
1060         else if (kmemleak_early_log)
1061                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1062 }
1063 EXPORT_SYMBOL(kmemleak_not_leak);
1064
1065 /**
1066  * kmemleak_ignore - ignore an allocated object
1067  * @ptr:        pointer to beginning of the object
1068  *
1069  * Calling this function on an object will cause the memory block to be
1070  * ignored (not scanned and not reported as a leak). This is usually done when
1071  * it is known that the corresponding block is not a leak and does not contain
1072  * any references to other allocated memory blocks.
1073  */
1074 void __ref kmemleak_ignore(const void *ptr)
1075 {
1076         pr_debug("%s(0x%p)\n", __func__, ptr);
1077
1078         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1079                 make_black_object((unsigned long)ptr);
1080         else if (kmemleak_early_log)
1081                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1082 }
1083 EXPORT_SYMBOL(kmemleak_ignore);
1084
1085 /**
1086  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1087  * @ptr:        pointer to beginning or inside the object. This also
1088  *              represents the start of the scan area
1089  * @size:       size of the scan area
1090  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1091  *
1092  * This function is used when it is known that only certain parts of an object
1093  * contain references to other objects. Kmemleak will only scan these areas
1094  * reducing the number false negatives.
1095  */
1096 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1097 {
1098         pr_debug("%s(0x%p)\n", __func__, ptr);
1099
1100         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1101                 add_scan_area((unsigned long)ptr, size, gfp);
1102         else if (kmemleak_early_log)
1103                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1104 }
1105 EXPORT_SYMBOL(kmemleak_scan_area);
1106
1107 /**
1108  * kmemleak_no_scan - do not scan an allocated object
1109  * @ptr:        pointer to beginning of the object
1110  *
1111  * This function notifies kmemleak not to scan the given memory block. Useful
1112  * in situations where it is known that the given object does not contain any
1113  * references to other objects. Kmemleak will not scan such objects reducing
1114  * the number of false negatives.
1115  */
1116 void __ref kmemleak_no_scan(const void *ptr)
1117 {
1118         pr_debug("%s(0x%p)\n", __func__, ptr);
1119
1120         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1121                 object_no_scan((unsigned long)ptr);
1122         else if (kmemleak_early_log)
1123                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1124 }
1125 EXPORT_SYMBOL(kmemleak_no_scan);
1126
1127 /**
1128  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1129  *                       address argument
1130  */
1131 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1132                                gfp_t gfp)
1133 {
1134         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1135                 kmemleak_alloc(__va(phys), size, min_count, gfp);
1136 }
1137 EXPORT_SYMBOL(kmemleak_alloc_phys);
1138
1139 /**
1140  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1141  *                           physical address argument
1142  */
1143 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1144 {
1145         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1146                 kmemleak_free_part(__va(phys), size);
1147 }
1148 EXPORT_SYMBOL(kmemleak_free_part_phys);
1149
1150 /**
1151  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1152  *                          address argument
1153  */
1154 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1155 {
1156         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1157                 kmemleak_not_leak(__va(phys));
1158 }
1159 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1160
1161 /**
1162  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1163  *                        address argument
1164  */
1165 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1166 {
1167         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1168                 kmemleak_ignore(__va(phys));
1169 }
1170 EXPORT_SYMBOL(kmemleak_ignore_phys);
1171
1172 /*
1173  * Update an object's checksum and return true if it was modified.
1174  */
1175 static bool update_checksum(struct kmemleak_object *object)
1176 {
1177         u32 old_csum = object->checksum;
1178
1179         if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1180                 return false;
1181
1182         kasan_disable_current();
1183         object->checksum = crc32(0, (void *)object->pointer, object->size);
1184         kasan_enable_current();
1185
1186         return object->checksum != old_csum;
1187 }
1188
1189 /*
1190  * Memory scanning is a long process and it needs to be interruptable. This
1191  * function checks whether such interrupt condition occurred.
1192  */
1193 static int scan_should_stop(void)
1194 {
1195         if (!kmemleak_enabled)
1196                 return 1;
1197
1198         /*
1199          * This function may be called from either process or kthread context,
1200          * hence the need to check for both stop conditions.
1201          */
1202         if (current->mm)
1203                 return signal_pending(current);
1204         else
1205                 return kthread_should_stop();
1206
1207         return 0;
1208 }
1209
1210 /*
1211  * Scan a memory block (exclusive range) for valid pointers and add those
1212  * found to the gray list.
1213  */
1214 static void scan_block(void *_start, void *_end,
1215                        struct kmemleak_object *scanned)
1216 {
1217         unsigned long *ptr;
1218         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1219         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1220         unsigned long flags;
1221
1222         read_lock_irqsave(&kmemleak_lock, flags);
1223         for (ptr = start; ptr < end; ptr++) {
1224                 struct kmemleak_object *object;
1225                 unsigned long pointer;
1226
1227                 if (scan_should_stop())
1228                         break;
1229
1230                 /* don't scan uninitialized memory */
1231                 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1232                                                   BYTES_PER_POINTER))
1233                         continue;
1234
1235                 kasan_disable_current();
1236                 pointer = *ptr;
1237                 kasan_enable_current();
1238
1239                 if (pointer < min_addr || pointer >= max_addr)
1240                         continue;
1241
1242                 /*
1243                  * No need for get_object() here since we hold kmemleak_lock.
1244                  * object->use_count cannot be dropped to 0 while the object
1245                  * is still present in object_tree_root and object_list
1246                  * (with updates protected by kmemleak_lock).
1247                  */
1248                 object = lookup_object(pointer, 1);
1249                 if (!object)
1250                         continue;
1251                 if (object == scanned)
1252                         /* self referenced, ignore */
1253                         continue;
1254
1255                 /*
1256                  * Avoid the lockdep recursive warning on object->lock being
1257                  * previously acquired in scan_object(). These locks are
1258                  * enclosed by scan_mutex.
1259                  */
1260                 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1261                 if (!color_white(object)) {
1262                         /* non-orphan, ignored or new */
1263                         spin_unlock(&object->lock);
1264                         continue;
1265                 }
1266
1267                 /*
1268                  * Increase the object's reference count (number of pointers
1269                  * to the memory block). If this count reaches the required
1270                  * minimum, the object's color will become gray and it will be
1271                  * added to the gray_list.
1272                  */
1273                 object->count++;
1274                 if (color_gray(object)) {
1275                         /* put_object() called when removing from gray_list */
1276                         WARN_ON(!get_object(object));
1277                         list_add_tail(&object->gray_list, &gray_list);
1278                 }
1279                 spin_unlock(&object->lock);
1280         }
1281         read_unlock_irqrestore(&kmemleak_lock, flags);
1282 }
1283
1284 /*
1285  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1286  */
1287 static void scan_large_block(void *start, void *end)
1288 {
1289         void *next;
1290
1291         while (start < end) {
1292                 next = min(start + MAX_SCAN_SIZE, end);
1293                 scan_block(start, next, NULL);
1294                 start = next;
1295                 cond_resched();
1296         }
1297 }
1298
1299 /*
1300  * Scan a memory block corresponding to a kmemleak_object. A condition is
1301  * that object->use_count >= 1.
1302  */
1303 static void scan_object(struct kmemleak_object *object)
1304 {
1305         struct kmemleak_scan_area *area;
1306         unsigned long flags;
1307
1308         /*
1309          * Once the object->lock is acquired, the corresponding memory block
1310          * cannot be freed (the same lock is acquired in delete_object).
1311          */
1312         spin_lock_irqsave(&object->lock, flags);
1313         if (object->flags & OBJECT_NO_SCAN)
1314                 goto out;
1315         if (!(object->flags & OBJECT_ALLOCATED))
1316                 /* already freed object */
1317                 goto out;
1318         if (hlist_empty(&object->area_list)) {
1319                 void *start = (void *)object->pointer;
1320                 void *end = (void *)(object->pointer + object->size);
1321                 void *next;
1322
1323                 do {
1324                         next = min(start + MAX_SCAN_SIZE, end);
1325                         scan_block(start, next, object);
1326
1327                         start = next;
1328                         if (start >= end)
1329                                 break;
1330
1331                         spin_unlock_irqrestore(&object->lock, flags);
1332                         cond_resched();
1333                         spin_lock_irqsave(&object->lock, flags);
1334                 } while (object->flags & OBJECT_ALLOCATED);
1335         } else
1336                 hlist_for_each_entry(area, &object->area_list, node)
1337                         scan_block((void *)area->start,
1338                                    (void *)(area->start + area->size),
1339                                    object);
1340 out:
1341         spin_unlock_irqrestore(&object->lock, flags);
1342 }
1343
1344 /*
1345  * Scan the objects already referenced (gray objects). More objects will be
1346  * referenced and, if there are no memory leaks, all the objects are scanned.
1347  */
1348 static void scan_gray_list(void)
1349 {
1350         struct kmemleak_object *object, *tmp;
1351
1352         /*
1353          * The list traversal is safe for both tail additions and removals
1354          * from inside the loop. The kmemleak objects cannot be freed from
1355          * outside the loop because their use_count was incremented.
1356          */
1357         object = list_entry(gray_list.next, typeof(*object), gray_list);
1358         while (&object->gray_list != &gray_list) {
1359                 cond_resched();
1360
1361                 /* may add new objects to the list */
1362                 if (!scan_should_stop())
1363                         scan_object(object);
1364
1365                 tmp = list_entry(object->gray_list.next, typeof(*object),
1366                                  gray_list);
1367
1368                 /* remove the object from the list and release it */
1369                 list_del(&object->gray_list);
1370                 put_object(object);
1371
1372                 object = tmp;
1373         }
1374         WARN_ON(!list_empty(&gray_list));
1375 }
1376
1377 /*
1378  * Scan data sections and all the referenced memory blocks allocated via the
1379  * kernel's standard allocators. This function must be called with the
1380  * scan_mutex held.
1381  */
1382 static void kmemleak_scan(void)
1383 {
1384         unsigned long flags;
1385         struct kmemleak_object *object;
1386         int i;
1387         int new_leaks = 0;
1388
1389         jiffies_last_scan = jiffies;
1390
1391         /* prepare the kmemleak_object's */
1392         rcu_read_lock();
1393         list_for_each_entry_rcu(object, &object_list, object_list) {
1394                 spin_lock_irqsave(&object->lock, flags);
1395 #ifdef DEBUG
1396                 /*
1397                  * With a few exceptions there should be a maximum of
1398                  * 1 reference to any object at this point.
1399                  */
1400                 if (atomic_read(&object->use_count) > 1) {
1401                         pr_debug("object->use_count = %d\n",
1402                                  atomic_read(&object->use_count));
1403                         dump_object_info(object);
1404                 }
1405 #endif
1406                 /* reset the reference count (whiten the object) */
1407                 object->count = 0;
1408                 if (color_gray(object) && get_object(object))
1409                         list_add_tail(&object->gray_list, &gray_list);
1410
1411                 spin_unlock_irqrestore(&object->lock, flags);
1412         }
1413         rcu_read_unlock();
1414
1415         /* data/bss scanning */
1416         scan_large_block(_sdata, _edata);
1417         scan_large_block(__bss_start, __bss_stop);
1418         scan_large_block(__start_data_ro_after_init, __end_data_ro_after_init);
1419
1420 #ifdef CONFIG_SMP
1421         /* per-cpu sections scanning */
1422         for_each_possible_cpu(i)
1423                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1424                                  __per_cpu_end + per_cpu_offset(i));
1425 #endif
1426
1427         /*
1428          * Struct page scanning for each node.
1429          */
1430         get_online_mems();
1431         for_each_online_node(i) {
1432                 unsigned long start_pfn = node_start_pfn(i);
1433                 unsigned long end_pfn = node_end_pfn(i);
1434                 unsigned long pfn;
1435
1436                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1437                         struct page *page;
1438
1439                         if (!pfn_valid(pfn))
1440                                 continue;
1441                         page = pfn_to_page(pfn);
1442                         /* only scan if page is in use */
1443                         if (page_count(page) == 0)
1444                                 continue;
1445                         scan_block(page, page + 1, NULL);
1446                 }
1447         }
1448         put_online_mems();
1449
1450         /*
1451          * Scanning the task stacks (may introduce false negatives).
1452          */
1453         if (kmemleak_stack_scan) {
1454                 struct task_struct *p, *g;
1455
1456                 read_lock(&tasklist_lock);
1457                 do_each_thread(g, p) {
1458                         void *stack = try_get_task_stack(p);
1459                         if (stack) {
1460                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1461                                 put_task_stack(p);
1462                         }
1463                 } while_each_thread(g, p);
1464                 read_unlock(&tasklist_lock);
1465         }
1466
1467         /*
1468          * Scan the objects already referenced from the sections scanned
1469          * above.
1470          */
1471         scan_gray_list();
1472
1473         /*
1474          * Check for new or unreferenced objects modified since the previous
1475          * scan and color them gray until the next scan.
1476          */
1477         rcu_read_lock();
1478         list_for_each_entry_rcu(object, &object_list, object_list) {
1479                 spin_lock_irqsave(&object->lock, flags);
1480                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1481                     && update_checksum(object) && get_object(object)) {
1482                         /* color it gray temporarily */
1483                         object->count = object->min_count;
1484                         list_add_tail(&object->gray_list, &gray_list);
1485                 }
1486                 spin_unlock_irqrestore(&object->lock, flags);
1487         }
1488         rcu_read_unlock();
1489
1490         /*
1491          * Re-scan the gray list for modified unreferenced objects.
1492          */
1493         scan_gray_list();
1494
1495         /*
1496          * If scanning was stopped do not report any new unreferenced objects.
1497          */
1498         if (scan_should_stop())
1499                 return;
1500
1501         /*
1502          * Scanning result reporting.
1503          */
1504         rcu_read_lock();
1505         list_for_each_entry_rcu(object, &object_list, object_list) {
1506                 spin_lock_irqsave(&object->lock, flags);
1507                 if (unreferenced_object(object) &&
1508                     !(object->flags & OBJECT_REPORTED)) {
1509                         object->flags |= OBJECT_REPORTED;
1510                         new_leaks++;
1511                 }
1512                 spin_unlock_irqrestore(&object->lock, flags);
1513         }
1514         rcu_read_unlock();
1515
1516         if (new_leaks) {
1517                 kmemleak_found_leaks = true;
1518
1519                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1520                         new_leaks);
1521         }
1522
1523 }
1524
1525 /*
1526  * Thread function performing automatic memory scanning. Unreferenced objects
1527  * at the end of a memory scan are reported but only the first time.
1528  */
1529 static int kmemleak_scan_thread(void *arg)
1530 {
1531         static int first_run = 1;
1532
1533         pr_info("Automatic memory scanning thread started\n");
1534         set_user_nice(current, 10);
1535
1536         /*
1537          * Wait before the first scan to allow the system to fully initialize.
1538          */
1539         if (first_run) {
1540                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1541                 first_run = 0;
1542                 while (timeout && !kthread_should_stop())
1543                         timeout = schedule_timeout_interruptible(timeout);
1544         }
1545
1546         while (!kthread_should_stop()) {
1547                 signed long timeout = jiffies_scan_wait;
1548
1549                 mutex_lock(&scan_mutex);
1550                 kmemleak_scan();
1551                 mutex_unlock(&scan_mutex);
1552
1553                 /* wait before the next scan */
1554                 while (timeout && !kthread_should_stop())
1555                         timeout = schedule_timeout_interruptible(timeout);
1556         }
1557
1558         pr_info("Automatic memory scanning thread ended\n");
1559
1560         return 0;
1561 }
1562
1563 /*
1564  * Start the automatic memory scanning thread. This function must be called
1565  * with the scan_mutex held.
1566  */
1567 static void start_scan_thread(void)
1568 {
1569         if (scan_thread)
1570                 return;
1571         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1572         if (IS_ERR(scan_thread)) {
1573                 pr_warn("Failed to create the scan thread\n");
1574                 scan_thread = NULL;
1575         }
1576 }
1577
1578 /*
1579  * Stop the automatic memory scanning thread. This function must be called
1580  * with the scan_mutex held.
1581  */
1582 static void stop_scan_thread(void)
1583 {
1584         if (scan_thread) {
1585                 kthread_stop(scan_thread);
1586                 scan_thread = NULL;
1587         }
1588 }
1589
1590 /*
1591  * Iterate over the object_list and return the first valid object at or after
1592  * the required position with its use_count incremented. The function triggers
1593  * a memory scanning when the pos argument points to the first position.
1594  */
1595 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1596 {
1597         struct kmemleak_object *object;
1598         loff_t n = *pos;
1599         int err;
1600
1601         err = mutex_lock_interruptible(&scan_mutex);
1602         if (err < 0)
1603                 return ERR_PTR(err);
1604
1605         rcu_read_lock();
1606         list_for_each_entry_rcu(object, &object_list, object_list) {
1607                 if (n-- > 0)
1608                         continue;
1609                 if (get_object(object))
1610                         goto out;
1611         }
1612         object = NULL;
1613 out:
1614         return object;
1615 }
1616
1617 /*
1618  * Return the next object in the object_list. The function decrements the
1619  * use_count of the previous object and increases that of the next one.
1620  */
1621 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1622 {
1623         struct kmemleak_object *prev_obj = v;
1624         struct kmemleak_object *next_obj = NULL;
1625         struct kmemleak_object *obj = prev_obj;
1626
1627         ++(*pos);
1628
1629         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1630                 if (get_object(obj)) {
1631                         next_obj = obj;
1632                         break;
1633                 }
1634         }
1635
1636         put_object(prev_obj);
1637         return next_obj;
1638 }
1639
1640 /*
1641  * Decrement the use_count of the last object required, if any.
1642  */
1643 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1644 {
1645         if (!IS_ERR(v)) {
1646                 /*
1647                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1648                  * waiting was interrupted, so only release it if !IS_ERR.
1649                  */
1650                 rcu_read_unlock();
1651                 mutex_unlock(&scan_mutex);
1652                 if (v)
1653                         put_object(v);
1654         }
1655 }
1656
1657 /*
1658  * Print the information for an unreferenced object to the seq file.
1659  */
1660 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1661 {
1662         struct kmemleak_object *object = v;
1663         unsigned long flags;
1664
1665         spin_lock_irqsave(&object->lock, flags);
1666         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1667                 print_unreferenced(seq, object);
1668         spin_unlock_irqrestore(&object->lock, flags);
1669         return 0;
1670 }
1671
1672 static const struct seq_operations kmemleak_seq_ops = {
1673         .start = kmemleak_seq_start,
1674         .next  = kmemleak_seq_next,
1675         .stop  = kmemleak_seq_stop,
1676         .show  = kmemleak_seq_show,
1677 };
1678
1679 static int kmemleak_open(struct inode *inode, struct file *file)
1680 {
1681         return seq_open(file, &kmemleak_seq_ops);
1682 }
1683
1684 static int dump_str_object_info(const char *str)
1685 {
1686         unsigned long flags;
1687         struct kmemleak_object *object;
1688         unsigned long addr;
1689
1690         if (kstrtoul(str, 0, &addr))
1691                 return -EINVAL;
1692         object = find_and_get_object(addr, 0);
1693         if (!object) {
1694                 pr_info("Unknown object at 0x%08lx\n", addr);
1695                 return -EINVAL;
1696         }
1697
1698         spin_lock_irqsave(&object->lock, flags);
1699         dump_object_info(object);
1700         spin_unlock_irqrestore(&object->lock, flags);
1701
1702         put_object(object);
1703         return 0;
1704 }
1705
1706 /*
1707  * We use grey instead of black to ensure we can do future scans on the same
1708  * objects. If we did not do future scans these black objects could
1709  * potentially contain references to newly allocated objects in the future and
1710  * we'd end up with false positives.
1711  */
1712 static void kmemleak_clear(void)
1713 {
1714         struct kmemleak_object *object;
1715         unsigned long flags;
1716
1717         rcu_read_lock();
1718         list_for_each_entry_rcu(object, &object_list, object_list) {
1719                 spin_lock_irqsave(&object->lock, flags);
1720                 if ((object->flags & OBJECT_REPORTED) &&
1721                     unreferenced_object(object))
1722                         __paint_it(object, KMEMLEAK_GREY);
1723                 spin_unlock_irqrestore(&object->lock, flags);
1724         }
1725         rcu_read_unlock();
1726
1727         kmemleak_found_leaks = false;
1728 }
1729
1730 static void __kmemleak_do_cleanup(void);
1731
1732 /*
1733  * File write operation to configure kmemleak at run-time. The following
1734  * commands can be written to the /sys/kernel/debug/kmemleak file:
1735  *   off        - disable kmemleak (irreversible)
1736  *   stack=on   - enable the task stacks scanning
1737  *   stack=off  - disable the tasks stacks scanning
1738  *   scan=on    - start the automatic memory scanning thread
1739  *   scan=off   - stop the automatic memory scanning thread
1740  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1741  *                disable it)
1742  *   scan       - trigger a memory scan
1743  *   clear      - mark all current reported unreferenced kmemleak objects as
1744  *                grey to ignore printing them, or free all kmemleak objects
1745  *                if kmemleak has been disabled.
1746  *   dump=...   - dump information about the object found at the given address
1747  */
1748 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1749                               size_t size, loff_t *ppos)
1750 {
1751         char buf[64];
1752         int buf_size;
1753         int ret;
1754
1755         buf_size = min(size, (sizeof(buf) - 1));
1756         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1757                 return -EFAULT;
1758         buf[buf_size] = 0;
1759
1760         ret = mutex_lock_interruptible(&scan_mutex);
1761         if (ret < 0)
1762                 return ret;
1763
1764         if (strncmp(buf, "clear", 5) == 0) {
1765                 if (kmemleak_enabled)
1766                         kmemleak_clear();
1767                 else
1768                         __kmemleak_do_cleanup();
1769                 goto out;
1770         }
1771
1772         if (!kmemleak_enabled) {
1773                 ret = -EBUSY;
1774                 goto out;
1775         }
1776
1777         if (strncmp(buf, "off", 3) == 0)
1778                 kmemleak_disable();
1779         else if (strncmp(buf, "stack=on", 8) == 0)
1780                 kmemleak_stack_scan = 1;
1781         else if (strncmp(buf, "stack=off", 9) == 0)
1782                 kmemleak_stack_scan = 0;
1783         else if (strncmp(buf, "scan=on", 7) == 0)
1784                 start_scan_thread();
1785         else if (strncmp(buf, "scan=off", 8) == 0)
1786                 stop_scan_thread();
1787         else if (strncmp(buf, "scan=", 5) == 0) {
1788                 unsigned long secs;
1789
1790                 ret = kstrtoul(buf + 5, 0, &secs);
1791                 if (ret < 0)
1792                         goto out;
1793                 stop_scan_thread();
1794                 if (secs) {
1795                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1796                         start_scan_thread();
1797                 }
1798         } else if (strncmp(buf, "scan", 4) == 0)
1799                 kmemleak_scan();
1800         else if (strncmp(buf, "dump=", 5) == 0)
1801                 ret = dump_str_object_info(buf + 5);
1802         else
1803                 ret = -EINVAL;
1804
1805 out:
1806         mutex_unlock(&scan_mutex);
1807         if (ret < 0)
1808                 return ret;
1809
1810         /* ignore the rest of the buffer, only one command at a time */
1811         *ppos += size;
1812         return size;
1813 }
1814
1815 static const struct file_operations kmemleak_fops = {
1816         .owner          = THIS_MODULE,
1817         .open           = kmemleak_open,
1818         .read           = seq_read,
1819         .write          = kmemleak_write,
1820         .llseek         = seq_lseek,
1821         .release        = seq_release,
1822 };
1823
1824 static void __kmemleak_do_cleanup(void)
1825 {
1826         struct kmemleak_object *object;
1827
1828         rcu_read_lock();
1829         list_for_each_entry_rcu(object, &object_list, object_list)
1830                 delete_object_full(object->pointer);
1831         rcu_read_unlock();
1832 }
1833
1834 /*
1835  * Stop the memory scanning thread and free the kmemleak internal objects if
1836  * no previous scan thread (otherwise, kmemleak may still have some useful
1837  * information on memory leaks).
1838  */
1839 static void kmemleak_do_cleanup(struct work_struct *work)
1840 {
1841         stop_scan_thread();
1842
1843         /*
1844          * Once the scan thread has stopped, it is safe to no longer track
1845          * object freeing. Ordering of the scan thread stopping and the memory
1846          * accesses below is guaranteed by the kthread_stop() function.
1847          */
1848         kmemleak_free_enabled = 0;
1849
1850         if (!kmemleak_found_leaks)
1851                 __kmemleak_do_cleanup();
1852         else
1853                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1854 }
1855
1856 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1857
1858 /*
1859  * Disable kmemleak. No memory allocation/freeing will be traced once this
1860  * function is called. Disabling kmemleak is an irreversible operation.
1861  */
1862 static void kmemleak_disable(void)
1863 {
1864         /* atomically check whether it was already invoked */
1865         if (cmpxchg(&kmemleak_error, 0, 1))
1866                 return;
1867
1868         /* stop any memory operation tracing */
1869         kmemleak_enabled = 0;
1870
1871         /* check whether it is too early for a kernel thread */
1872         if (kmemleak_initialized)
1873                 schedule_work(&cleanup_work);
1874         else
1875                 kmemleak_free_enabled = 0;
1876
1877         pr_info("Kernel memory leak detector disabled\n");
1878 }
1879
1880 /*
1881  * Allow boot-time kmemleak disabling (enabled by default).
1882  */
1883 static int kmemleak_boot_config(char *str)
1884 {
1885         if (!str)
1886                 return -EINVAL;
1887         if (strcmp(str, "off") == 0)
1888                 kmemleak_disable();
1889         else if (strcmp(str, "on") == 0)
1890                 kmemleak_skip_disable = 1;
1891         else
1892                 return -EINVAL;
1893         return 0;
1894 }
1895 early_param("kmemleak", kmemleak_boot_config);
1896
1897 static void __init print_log_trace(struct early_log *log)
1898 {
1899         struct stack_trace trace;
1900
1901         trace.nr_entries = log->trace_len;
1902         trace.entries = log->trace;
1903
1904         pr_notice("Early log backtrace:\n");
1905         print_stack_trace(&trace, 2);
1906 }
1907
1908 /*
1909  * Kmemleak initialization.
1910  */
1911 void __init kmemleak_init(void)
1912 {
1913         int i;
1914         unsigned long flags;
1915
1916 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1917         if (!kmemleak_skip_disable) {
1918                 kmemleak_early_log = 0;
1919                 kmemleak_disable();
1920                 return;
1921         }
1922 #endif
1923
1924         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1925         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1926
1927         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1928         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1929
1930         if (crt_early_log > ARRAY_SIZE(early_log))
1931                 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1932                         crt_early_log);
1933
1934         /* the kernel is still in UP mode, so disabling the IRQs is enough */
1935         local_irq_save(flags);
1936         kmemleak_early_log = 0;
1937         if (kmemleak_error) {
1938                 local_irq_restore(flags);
1939                 return;
1940         } else {
1941                 kmemleak_enabled = 1;
1942                 kmemleak_free_enabled = 1;
1943         }
1944         local_irq_restore(flags);
1945
1946         /*
1947          * This is the point where tracking allocations is safe. Automatic
1948          * scanning is started during the late initcall. Add the early logged
1949          * callbacks to the kmemleak infrastructure.
1950          */
1951         for (i = 0; i < crt_early_log; i++) {
1952                 struct early_log *log = &early_log[i];
1953
1954                 switch (log->op_type) {
1955                 case KMEMLEAK_ALLOC:
1956                         early_alloc(log);
1957                         break;
1958                 case KMEMLEAK_ALLOC_PERCPU:
1959                         early_alloc_percpu(log);
1960                         break;
1961                 case KMEMLEAK_FREE:
1962                         kmemleak_free(log->ptr);
1963                         break;
1964                 case KMEMLEAK_FREE_PART:
1965                         kmemleak_free_part(log->ptr, log->size);
1966                         break;
1967                 case KMEMLEAK_FREE_PERCPU:
1968                         kmemleak_free_percpu(log->ptr);
1969                         break;
1970                 case KMEMLEAK_NOT_LEAK:
1971                         kmemleak_not_leak(log->ptr);
1972                         break;
1973                 case KMEMLEAK_IGNORE:
1974                         kmemleak_ignore(log->ptr);
1975                         break;
1976                 case KMEMLEAK_SCAN_AREA:
1977                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1978                         break;
1979                 case KMEMLEAK_NO_SCAN:
1980                         kmemleak_no_scan(log->ptr);
1981                         break;
1982                 default:
1983                         kmemleak_warn("Unknown early log operation: %d\n",
1984                                       log->op_type);
1985                 }
1986
1987                 if (kmemleak_warning) {
1988                         print_log_trace(log);
1989                         kmemleak_warning = 0;
1990                 }
1991         }
1992 }
1993
1994 /*
1995  * Late initialization function.
1996  */
1997 static int __init kmemleak_late_init(void)
1998 {
1999         struct dentry *dentry;
2000
2001         kmemleak_initialized = 1;
2002
2003         if (kmemleak_error) {
2004                 /*
2005                  * Some error occurred and kmemleak was disabled. There is a
2006                  * small chance that kmemleak_disable() was called immediately
2007                  * after setting kmemleak_initialized and we may end up with
2008                  * two clean-up threads but serialized by scan_mutex.
2009                  */
2010                 schedule_work(&cleanup_work);
2011                 return -ENOMEM;
2012         }
2013
2014         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2015                                      &kmemleak_fops);
2016         if (!dentry)
2017                 pr_warn("Failed to create the debugfs kmemleak file\n");
2018         mutex_lock(&scan_mutex);
2019         start_scan_thread();
2020         mutex_unlock(&scan_mutex);
2021
2022         pr_info("Kernel memory leak detector initialized\n");
2023
2024         return 0;
2025 }
2026 late_initcall(kmemleak_late_init);