afs: Provide a splice-read wrapper
[linux-block.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/seq_file.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33
34 #include <asm/kfence.h>
35
36 #include "kfence.h"
37
38 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
39 #define KFENCE_WARN_ON(cond)                                                   \
40         ({                                                                     \
41                 const bool __cond = WARN_ON(cond);                             \
42                 if (unlikely(__cond)) {                                        \
43                         WRITE_ONCE(kfence_enabled, false);                     \
44                         disabled_by_warn = true;                               \
45                 }                                                              \
46                 __cond;                                                        \
47         })
48
49 /* === Data ================================================================= */
50
51 static bool kfence_enabled __read_mostly;
52 static bool disabled_by_warn __read_mostly;
53
54 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
55 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
56
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
59 #endif
60 #define MODULE_PARAM_PREFIX "kfence."
61
62 static int kfence_enable_late(void);
63 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
64 {
65         unsigned long num;
66         int ret = kstrtoul(val, 0, &num);
67
68         if (ret < 0)
69                 return ret;
70
71         /* Using 0 to indicate KFENCE is disabled. */
72         if (!num && READ_ONCE(kfence_enabled)) {
73                 pr_info("disabled\n");
74                 WRITE_ONCE(kfence_enabled, false);
75         }
76
77         *((unsigned long *)kp->arg) = num;
78
79         if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
80                 return disabled_by_warn ? -EINVAL : kfence_enable_late();
81         return 0;
82 }
83
84 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
85 {
86         if (!READ_ONCE(kfence_enabled))
87                 return sprintf(buffer, "0\n");
88
89         return param_get_ulong(buffer, kp);
90 }
91
92 static const struct kernel_param_ops sample_interval_param_ops = {
93         .set = param_set_sample_interval,
94         .get = param_get_sample_interval,
95 };
96 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
97
98 /* Pool usage% threshold when currently covered allocations are skipped. */
99 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
100 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
101
102 /* If true, use a deferrable timer. */
103 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
104 module_param_named(deferrable, kfence_deferrable, bool, 0444);
105
106 /* If true, check all canary bytes on panic. */
107 static bool kfence_check_on_panic __read_mostly;
108 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
109
110 /* The pool of pages used for guard pages and objects. */
111 char *__kfence_pool __read_mostly;
112 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
113
114 /*
115  * Per-object metadata, with one-to-one mapping of object metadata to
116  * backing pages (in __kfence_pool).
117  */
118 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
119 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
120
121 /* Freelist with available objects. */
122 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
123 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
124
125 /*
126  * The static key to set up a KFENCE allocation; or if static keys are not used
127  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
128  */
129 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
130
131 /* Gates the allocation, ensuring only one succeeds in a given period. */
132 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
133
134 /*
135  * A Counting Bloom filter of allocation coverage: limits currently covered
136  * allocations of the same source filling up the pool.
137  *
138  * Assuming a range of 15%-85% unique allocations in the pool at any point in
139  * time, the below parameters provide a probablity of 0.02-0.33 for false
140  * positive hits respectively:
141  *
142  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
143  */
144 #define ALLOC_COVERED_HNUM      2
145 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
146 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
147 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
148 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
149 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
150
151 /* Stack depth used to determine uniqueness of an allocation. */
152 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
153
154 /*
155  * Randomness for stack hashes, making the same collisions across reboots and
156  * different machines less likely.
157  */
158 static u32 stack_hash_seed __ro_after_init;
159
160 /* Statistics counters for debugfs. */
161 enum kfence_counter_id {
162         KFENCE_COUNTER_ALLOCATED,
163         KFENCE_COUNTER_ALLOCS,
164         KFENCE_COUNTER_FREES,
165         KFENCE_COUNTER_ZOMBIES,
166         KFENCE_COUNTER_BUGS,
167         KFENCE_COUNTER_SKIP_INCOMPAT,
168         KFENCE_COUNTER_SKIP_CAPACITY,
169         KFENCE_COUNTER_SKIP_COVERED,
170         KFENCE_COUNTER_COUNT,
171 };
172 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
173 static const char *const counter_names[] = {
174         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
175         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
176         [KFENCE_COUNTER_FREES]          = "total frees",
177         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
178         [KFENCE_COUNTER_BUGS]           = "total bugs",
179         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
180         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
181         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
182 };
183 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
184
185 /* === Internals ============================================================ */
186
187 static inline bool should_skip_covered(void)
188 {
189         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
190
191         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
192 }
193
194 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
195 {
196         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
197         num_entries = filter_irq_stacks(stack_entries, num_entries);
198         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
199 }
200
201 /*
202  * Adds (or subtracts) count @val for allocation stack trace hash
203  * @alloc_stack_hash from Counting Bloom filter.
204  */
205 static void alloc_covered_add(u32 alloc_stack_hash, int val)
206 {
207         int i;
208
209         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
210                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
211                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
212         }
213 }
214
215 /*
216  * Returns true if the allocation stack trace hash @alloc_stack_hash is
217  * currently contained (non-zero count) in Counting Bloom filter.
218  */
219 static bool alloc_covered_contains(u32 alloc_stack_hash)
220 {
221         int i;
222
223         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
224                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
225                         return false;
226                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
227         }
228
229         return true;
230 }
231
232 static bool kfence_protect(unsigned long addr)
233 {
234         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
235 }
236
237 static bool kfence_unprotect(unsigned long addr)
238 {
239         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
240 }
241
242 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
243 {
244         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
245         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
246
247         /* The checks do not affect performance; only called from slow-paths. */
248
249         /* Only call with a pointer into kfence_metadata. */
250         if (KFENCE_WARN_ON(meta < kfence_metadata ||
251                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
252                 return 0;
253
254         /*
255          * This metadata object only ever maps to 1 page; verify that the stored
256          * address is in the expected range.
257          */
258         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
259                 return 0;
260
261         return pageaddr;
262 }
263
264 /*
265  * Update the object's metadata state, including updating the alloc/free stacks
266  * depending on the state transition.
267  */
268 static noinline void
269 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
270                       unsigned long *stack_entries, size_t num_stack_entries)
271 {
272         struct kfence_track *track =
273                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
274
275         lockdep_assert_held(&meta->lock);
276
277         if (stack_entries) {
278                 memcpy(track->stack_entries, stack_entries,
279                        num_stack_entries * sizeof(stack_entries[0]));
280         } else {
281                 /*
282                  * Skip over 1 (this) functions; noinline ensures we do not
283                  * accidentally skip over the caller by never inlining.
284                  */
285                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
286         }
287         track->num_stack_entries = num_stack_entries;
288         track->pid = task_pid_nr(current);
289         track->cpu = raw_smp_processor_id();
290         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
291
292         /*
293          * Pairs with READ_ONCE() in
294          *      kfence_shutdown_cache(),
295          *      kfence_handle_page_fault().
296          */
297         WRITE_ONCE(meta->state, next);
298 }
299
300 /* Check canary byte at @addr. */
301 static inline bool check_canary_byte(u8 *addr)
302 {
303         struct kfence_metadata *meta;
304         unsigned long flags;
305
306         if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
307                 return true;
308
309         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
310
311         meta = addr_to_metadata((unsigned long)addr);
312         raw_spin_lock_irqsave(&meta->lock, flags);
313         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
314         raw_spin_unlock_irqrestore(&meta->lock, flags);
315
316         return false;
317 }
318
319 static inline void set_canary(const struct kfence_metadata *meta)
320 {
321         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
322         unsigned long addr = pageaddr;
323
324         /*
325          * The canary may be written to part of the object memory, but it does
326          * not affect it. The user should initialize the object before using it.
327          */
328         for (; addr < meta->addr; addr += sizeof(u64))
329                 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
330
331         addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
332         for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
333                 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
334 }
335
336 static inline void check_canary(const struct kfence_metadata *meta)
337 {
338         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
339         unsigned long addr = pageaddr;
340
341         /*
342          * We'll iterate over each canary byte per-side until a corrupted byte
343          * is found. However, we'll still iterate over the canary bytes to the
344          * right of the object even if there was an error in the canary bytes to
345          * the left of the object. Specifically, if check_canary_byte()
346          * generates an error, showing both sides might give more clues as to
347          * what the error is about when displaying which bytes were corrupted.
348          */
349
350         /* Apply to left of object. */
351         for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
352                 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
353                         break;
354         }
355
356         /*
357          * If the canary is corrupted in a certain 64 bytes, or the canary
358          * memory cannot be completely covered by multiple consecutive 64 bytes,
359          * it needs to be checked one by one.
360          */
361         for (; addr < meta->addr; addr++) {
362                 if (unlikely(!check_canary_byte((u8 *)addr)))
363                         break;
364         }
365
366         /* Apply to right of object. */
367         for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
368                 if (unlikely(!check_canary_byte((u8 *)addr)))
369                         return;
370         }
371         for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
372                 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
373
374                         for (; addr - pageaddr < PAGE_SIZE; addr++) {
375                                 if (!check_canary_byte((u8 *)addr))
376                                         return;
377                         }
378                 }
379         }
380 }
381
382 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
383                                   unsigned long *stack_entries, size_t num_stack_entries,
384                                   u32 alloc_stack_hash)
385 {
386         struct kfence_metadata *meta = NULL;
387         unsigned long flags;
388         struct slab *slab;
389         void *addr;
390         const bool random_right_allocate = get_random_u32_below(2);
391         const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
392                                   !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
393
394         /* Try to obtain a free object. */
395         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
396         if (!list_empty(&kfence_freelist)) {
397                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
398                 list_del_init(&meta->list);
399         }
400         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
401         if (!meta) {
402                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
403                 return NULL;
404         }
405
406         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
407                 /*
408                  * This is extremely unlikely -- we are reporting on a
409                  * use-after-free, which locked meta->lock, and the reporting
410                  * code via printk calls kmalloc() which ends up in
411                  * kfence_alloc() and tries to grab the same object that we're
412                  * reporting on. While it has never been observed, lockdep does
413                  * report that there is a possibility of deadlock. Fix it by
414                  * using trylock and bailing out gracefully.
415                  */
416                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
417                 /* Put the object back on the freelist. */
418                 list_add_tail(&meta->list, &kfence_freelist);
419                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
420
421                 return NULL;
422         }
423
424         meta->addr = metadata_to_pageaddr(meta);
425         /* Unprotect if we're reusing this page. */
426         if (meta->state == KFENCE_OBJECT_FREED)
427                 kfence_unprotect(meta->addr);
428
429         /*
430          * Note: for allocations made before RNG initialization, will always
431          * return zero. We still benefit from enabling KFENCE as early as
432          * possible, even when the RNG is not yet available, as this will allow
433          * KFENCE to detect bugs due to earlier allocations. The only downside
434          * is that the out-of-bounds accesses detected are deterministic for
435          * such allocations.
436          */
437         if (random_right_allocate) {
438                 /* Allocate on the "right" side, re-calculate address. */
439                 meta->addr += PAGE_SIZE - size;
440                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
441         }
442
443         addr = (void *)meta->addr;
444
445         /* Update remaining metadata. */
446         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
447         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
448         WRITE_ONCE(meta->cache, cache);
449         meta->size = size;
450         meta->alloc_stack_hash = alloc_stack_hash;
451         raw_spin_unlock_irqrestore(&meta->lock, flags);
452
453         alloc_covered_add(alloc_stack_hash, 1);
454
455         /* Set required slab fields. */
456         slab = virt_to_slab((void *)meta->addr);
457         slab->slab_cache = cache;
458 #if defined(CONFIG_SLUB)
459         slab->objects = 1;
460 #elif defined(CONFIG_SLAB)
461         slab->s_mem = addr;
462 #endif
463
464         /* Memory initialization. */
465         set_canary(meta);
466
467         /*
468          * We check slab_want_init_on_alloc() ourselves, rather than letting
469          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
470          * redzone.
471          */
472         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
473                 memzero_explicit(addr, size);
474         if (cache->ctor)
475                 cache->ctor(addr);
476
477         if (random_fault)
478                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
479
480         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
481         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
482
483         return addr;
484 }
485
486 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
487 {
488         struct kcsan_scoped_access assert_page_exclusive;
489         unsigned long flags;
490         bool init;
491
492         raw_spin_lock_irqsave(&meta->lock, flags);
493
494         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
495                 /* Invalid or double-free, bail out. */
496                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
497                 kfence_report_error((unsigned long)addr, false, NULL, meta,
498                                     KFENCE_ERROR_INVALID_FREE);
499                 raw_spin_unlock_irqrestore(&meta->lock, flags);
500                 return;
501         }
502
503         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
504         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
505                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
506                                   &assert_page_exclusive);
507
508         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
509                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
510
511         /* Restore page protection if there was an OOB access. */
512         if (meta->unprotected_page) {
513                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
514                 kfence_protect(meta->unprotected_page);
515                 meta->unprotected_page = 0;
516         }
517
518         /* Mark the object as freed. */
519         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
520         init = slab_want_init_on_free(meta->cache);
521         raw_spin_unlock_irqrestore(&meta->lock, flags);
522
523         alloc_covered_add(meta->alloc_stack_hash, -1);
524
525         /* Check canary bytes for memory corruption. */
526         check_canary(meta);
527
528         /*
529          * Clear memory if init-on-free is set. While we protect the page, the
530          * data is still there, and after a use-after-free is detected, we
531          * unprotect the page, so the data is still accessible.
532          */
533         if (!zombie && unlikely(init))
534                 memzero_explicit(addr, meta->size);
535
536         /* Protect to detect use-after-frees. */
537         kfence_protect((unsigned long)addr);
538
539         kcsan_end_scoped_access(&assert_page_exclusive);
540         if (!zombie) {
541                 /* Add it to the tail of the freelist for reuse. */
542                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
543                 KFENCE_WARN_ON(!list_empty(&meta->list));
544                 list_add_tail(&meta->list, &kfence_freelist);
545                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
546
547                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
548                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
549         } else {
550                 /* See kfence_shutdown_cache(). */
551                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
552         }
553 }
554
555 static void rcu_guarded_free(struct rcu_head *h)
556 {
557         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
558
559         kfence_guarded_free((void *)meta->addr, meta, false);
560 }
561
562 /*
563  * Initialization of the KFENCE pool after its allocation.
564  * Returns 0 on success; otherwise returns the address up to
565  * which partial initialization succeeded.
566  */
567 static unsigned long kfence_init_pool(void)
568 {
569         unsigned long addr = (unsigned long)__kfence_pool;
570         struct page *pages;
571         int i;
572
573         if (!arch_kfence_init_pool())
574                 return addr;
575
576         pages = virt_to_page(__kfence_pool);
577
578         /*
579          * Set up object pages: they must have PG_slab set, to avoid freeing
580          * these as real pages.
581          *
582          * We also want to avoid inserting kfence_free() in the kfree()
583          * fast-path in SLUB, and therefore need to ensure kfree() correctly
584          * enters __slab_free() slow-path.
585          */
586         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
587                 struct slab *slab = page_slab(nth_page(pages, i));
588
589                 if (!i || (i % 2))
590                         continue;
591
592                 __folio_set_slab(slab_folio(slab));
593 #ifdef CONFIG_MEMCG
594                 slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
595                                    MEMCG_DATA_OBJCGS;
596 #endif
597         }
598
599         /*
600          * Protect the first 2 pages. The first page is mostly unnecessary, and
601          * merely serves as an extended guard page. However, adding one
602          * additional page in the beginning gives us an even number of pages,
603          * which simplifies the mapping of address to metadata index.
604          */
605         for (i = 0; i < 2; i++) {
606                 if (unlikely(!kfence_protect(addr)))
607                         return addr;
608
609                 addr += PAGE_SIZE;
610         }
611
612         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
613                 struct kfence_metadata *meta = &kfence_metadata[i];
614
615                 /* Initialize metadata. */
616                 INIT_LIST_HEAD(&meta->list);
617                 raw_spin_lock_init(&meta->lock);
618                 meta->state = KFENCE_OBJECT_UNUSED;
619                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
620                 list_add_tail(&meta->list, &kfence_freelist);
621
622                 /* Protect the right redzone. */
623                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
624                         goto reset_slab;
625
626                 addr += 2 * PAGE_SIZE;
627         }
628
629         return 0;
630
631 reset_slab:
632         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
633                 struct slab *slab = page_slab(nth_page(pages, i));
634
635                 if (!i || (i % 2))
636                         continue;
637 #ifdef CONFIG_MEMCG
638                 slab->memcg_data = 0;
639 #endif
640                 __folio_clear_slab(slab_folio(slab));
641         }
642
643         return addr;
644 }
645
646 static bool __init kfence_init_pool_early(void)
647 {
648         unsigned long addr;
649
650         if (!__kfence_pool)
651                 return false;
652
653         addr = kfence_init_pool();
654
655         if (!addr) {
656                 /*
657                  * The pool is live and will never be deallocated from this point on.
658                  * Ignore the pool object from the kmemleak phys object tree, as it would
659                  * otherwise overlap with allocations returned by kfence_alloc(), which
660                  * are registered with kmemleak through the slab post-alloc hook.
661                  */
662                 kmemleak_ignore_phys(__pa(__kfence_pool));
663                 return true;
664         }
665
666         /*
667          * Only release unprotected pages, and do not try to go back and change
668          * page attributes due to risk of failing to do so as well. If changing
669          * page attributes for some pages fails, it is very likely that it also
670          * fails for the first page, and therefore expect addr==__kfence_pool in
671          * most failure cases.
672          */
673         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
674         __kfence_pool = NULL;
675         return false;
676 }
677
678 static bool kfence_init_pool_late(void)
679 {
680         unsigned long addr, free_size;
681
682         addr = kfence_init_pool();
683
684         if (!addr)
685                 return true;
686
687         /* Same as above. */
688         free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
689 #ifdef CONFIG_CONTIG_ALLOC
690         free_contig_range(page_to_pfn(virt_to_page((void *)addr)), free_size / PAGE_SIZE);
691 #else
692         free_pages_exact((void *)addr, free_size);
693 #endif
694         __kfence_pool = NULL;
695         return false;
696 }
697
698 /* === DebugFS Interface ==================================================== */
699
700 static int stats_show(struct seq_file *seq, void *v)
701 {
702         int i;
703
704         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
705         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
706                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
707
708         return 0;
709 }
710 DEFINE_SHOW_ATTRIBUTE(stats);
711
712 /*
713  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
714  * start_object() and next_object() return the object index + 1, because NULL is used
715  * to stop iteration.
716  */
717 static void *start_object(struct seq_file *seq, loff_t *pos)
718 {
719         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
720                 return (void *)((long)*pos + 1);
721         return NULL;
722 }
723
724 static void stop_object(struct seq_file *seq, void *v)
725 {
726 }
727
728 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
729 {
730         ++*pos;
731         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
732                 return (void *)((long)*pos + 1);
733         return NULL;
734 }
735
736 static int show_object(struct seq_file *seq, void *v)
737 {
738         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
739         unsigned long flags;
740
741         raw_spin_lock_irqsave(&meta->lock, flags);
742         kfence_print_object(seq, meta);
743         raw_spin_unlock_irqrestore(&meta->lock, flags);
744         seq_puts(seq, "---------------------------------\n");
745
746         return 0;
747 }
748
749 static const struct seq_operations objects_sops = {
750         .start = start_object,
751         .next = next_object,
752         .stop = stop_object,
753         .show = show_object,
754 };
755 DEFINE_SEQ_ATTRIBUTE(objects);
756
757 static int kfence_debugfs_init(void)
758 {
759         struct dentry *kfence_dir;
760
761         if (!READ_ONCE(kfence_enabled))
762                 return 0;
763
764         kfence_dir = debugfs_create_dir("kfence", NULL);
765         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
766         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
767         return 0;
768 }
769
770 late_initcall(kfence_debugfs_init);
771
772 /* === Panic Notifier ====================================================== */
773
774 static void kfence_check_all_canary(void)
775 {
776         int i;
777
778         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
779                 struct kfence_metadata *meta = &kfence_metadata[i];
780
781                 if (meta->state == KFENCE_OBJECT_ALLOCATED)
782                         check_canary(meta);
783         }
784 }
785
786 static int kfence_check_canary_callback(struct notifier_block *nb,
787                                         unsigned long reason, void *arg)
788 {
789         kfence_check_all_canary();
790         return NOTIFY_OK;
791 }
792
793 static struct notifier_block kfence_check_canary_notifier = {
794         .notifier_call = kfence_check_canary_callback,
795 };
796
797 /* === Allocation Gate Timer ================================================ */
798
799 static struct delayed_work kfence_timer;
800
801 #ifdef CONFIG_KFENCE_STATIC_KEYS
802 /* Wait queue to wake up allocation-gate timer task. */
803 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
804
805 static void wake_up_kfence_timer(struct irq_work *work)
806 {
807         wake_up(&allocation_wait);
808 }
809 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
810 #endif
811
812 /*
813  * Set up delayed work, which will enable and disable the static key. We need to
814  * use a work queue (rather than a simple timer), since enabling and disabling a
815  * static key cannot be done from an interrupt.
816  *
817  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
818  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
819  * more aggressive sampling intervals), we could get away with a variant that
820  * avoids IPIs, at the cost of not immediately capturing allocations if the
821  * instructions remain cached.
822  */
823 static void toggle_allocation_gate(struct work_struct *work)
824 {
825         if (!READ_ONCE(kfence_enabled))
826                 return;
827
828         atomic_set(&kfence_allocation_gate, 0);
829 #ifdef CONFIG_KFENCE_STATIC_KEYS
830         /* Enable static key, and await allocation to happen. */
831         static_branch_enable(&kfence_allocation_key);
832
833         wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
834
835         /* Disable static key and reset timer. */
836         static_branch_disable(&kfence_allocation_key);
837 #endif
838         queue_delayed_work(system_unbound_wq, &kfence_timer,
839                            msecs_to_jiffies(kfence_sample_interval));
840 }
841
842 /* === Public interface ===================================================== */
843
844 void __init kfence_alloc_pool(void)
845 {
846         if (!kfence_sample_interval)
847                 return;
848
849         /* if the pool has already been initialized by arch, skip the below. */
850         if (__kfence_pool)
851                 return;
852
853         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
854
855         if (!__kfence_pool)
856                 pr_err("failed to allocate pool\n");
857 }
858
859 static void kfence_init_enable(void)
860 {
861         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
862                 static_branch_enable(&kfence_allocation_key);
863
864         if (kfence_deferrable)
865                 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
866         else
867                 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
868
869         if (kfence_check_on_panic)
870                 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
871
872         WRITE_ONCE(kfence_enabled, true);
873         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
874
875         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
876                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
877                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
878 }
879
880 void __init kfence_init(void)
881 {
882         stack_hash_seed = get_random_u32();
883
884         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
885         if (!kfence_sample_interval)
886                 return;
887
888         if (!kfence_init_pool_early()) {
889                 pr_err("%s failed\n", __func__);
890                 return;
891         }
892
893         kfence_init_enable();
894 }
895
896 static int kfence_init_late(void)
897 {
898         const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
899 #ifdef CONFIG_CONTIG_ALLOC
900         struct page *pages;
901
902         pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
903         if (!pages)
904                 return -ENOMEM;
905         __kfence_pool = page_to_virt(pages);
906 #else
907         if (nr_pages > MAX_ORDER_NR_PAGES) {
908                 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
909                 return -EINVAL;
910         }
911         __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
912         if (!__kfence_pool)
913                 return -ENOMEM;
914 #endif
915
916         if (!kfence_init_pool_late()) {
917                 pr_err("%s failed\n", __func__);
918                 return -EBUSY;
919         }
920
921         kfence_init_enable();
922         kfence_debugfs_init();
923
924         return 0;
925 }
926
927 static int kfence_enable_late(void)
928 {
929         if (!__kfence_pool)
930                 return kfence_init_late();
931
932         WRITE_ONCE(kfence_enabled, true);
933         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
934         pr_info("re-enabled\n");
935         return 0;
936 }
937
938 void kfence_shutdown_cache(struct kmem_cache *s)
939 {
940         unsigned long flags;
941         struct kfence_metadata *meta;
942         int i;
943
944         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
945                 bool in_use;
946
947                 meta = &kfence_metadata[i];
948
949                 /*
950                  * If we observe some inconsistent cache and state pair where we
951                  * should have returned false here, cache destruction is racing
952                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
953                  * the lock will not help, as different critical section
954                  * serialization will have the same outcome.
955                  */
956                 if (READ_ONCE(meta->cache) != s ||
957                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
958                         continue;
959
960                 raw_spin_lock_irqsave(&meta->lock, flags);
961                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
962                 raw_spin_unlock_irqrestore(&meta->lock, flags);
963
964                 if (in_use) {
965                         /*
966                          * This cache still has allocations, and we should not
967                          * release them back into the freelist so they can still
968                          * safely be used and retain the kernel's default
969                          * behaviour of keeping the allocations alive (leak the
970                          * cache); however, they effectively become "zombie
971                          * allocations" as the KFENCE objects are the only ones
972                          * still in use and the owning cache is being destroyed.
973                          *
974                          * We mark them freed, so that any subsequent use shows
975                          * more useful error messages that will include stack
976                          * traces of the user of the object, the original
977                          * allocation, and caller to shutdown_cache().
978                          */
979                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
980                 }
981         }
982
983         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
984                 meta = &kfence_metadata[i];
985
986                 /* See above. */
987                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
988                         continue;
989
990                 raw_spin_lock_irqsave(&meta->lock, flags);
991                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
992                         meta->cache = NULL;
993                 raw_spin_unlock_irqrestore(&meta->lock, flags);
994         }
995 }
996
997 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
998 {
999         unsigned long stack_entries[KFENCE_STACK_DEPTH];
1000         size_t num_stack_entries;
1001         u32 alloc_stack_hash;
1002
1003         /*
1004          * Perform size check before switching kfence_allocation_gate, so that
1005          * we don't disable KFENCE without making an allocation.
1006          */
1007         if (size > PAGE_SIZE) {
1008                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1009                 return NULL;
1010         }
1011
1012         /*
1013          * Skip allocations from non-default zones, including DMA. We cannot
1014          * guarantee that pages in the KFENCE pool will have the requested
1015          * properties (e.g. reside in DMAable memory).
1016          */
1017         if ((flags & GFP_ZONEMASK) ||
1018             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1019                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1020                 return NULL;
1021         }
1022
1023         /*
1024          * Skip allocations for this slab, if KFENCE has been disabled for
1025          * this slab.
1026          */
1027         if (s->flags & SLAB_SKIP_KFENCE)
1028                 return NULL;
1029
1030         if (atomic_inc_return(&kfence_allocation_gate) > 1)
1031                 return NULL;
1032 #ifdef CONFIG_KFENCE_STATIC_KEYS
1033         /*
1034          * waitqueue_active() is fully ordered after the update of
1035          * kfence_allocation_gate per atomic_inc_return().
1036          */
1037         if (waitqueue_active(&allocation_wait)) {
1038                 /*
1039                  * Calling wake_up() here may deadlock when allocations happen
1040                  * from within timer code. Use an irq_work to defer it.
1041                  */
1042                 irq_work_queue(&wake_up_kfence_timer_work);
1043         }
1044 #endif
1045
1046         if (!READ_ONCE(kfence_enabled))
1047                 return NULL;
1048
1049         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1050
1051         /*
1052          * Do expensive check for coverage of allocation in slow-path after
1053          * allocation_gate has already become non-zero, even though it might
1054          * mean not making any allocation within a given sample interval.
1055          *
1056          * This ensures reasonable allocation coverage when the pool is almost
1057          * full, including avoiding long-lived allocations of the same source
1058          * filling up the pool (e.g. pagecache allocations).
1059          */
1060         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1061         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1062                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1063                 return NULL;
1064         }
1065
1066         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1067                                     alloc_stack_hash);
1068 }
1069
1070 size_t kfence_ksize(const void *addr)
1071 {
1072         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1073
1074         /*
1075          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1076          * either a use-after-free or invalid access.
1077          */
1078         return meta ? meta->size : 0;
1079 }
1080
1081 void *kfence_object_start(const void *addr)
1082 {
1083         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1084
1085         /*
1086          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1087          * either a use-after-free or invalid access.
1088          */
1089         return meta ? (void *)meta->addr : NULL;
1090 }
1091
1092 void __kfence_free(void *addr)
1093 {
1094         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1095
1096 #ifdef CONFIG_MEMCG
1097         KFENCE_WARN_ON(meta->objcg);
1098 #endif
1099         /*
1100          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1101          * the object, as the object page may be recycled for other-typed
1102          * objects once it has been freed. meta->cache may be NULL if the cache
1103          * was destroyed.
1104          */
1105         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1106                 call_rcu(&meta->rcu_head, rcu_guarded_free);
1107         else
1108                 kfence_guarded_free(addr, meta, false);
1109 }
1110
1111 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1112 {
1113         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1114         struct kfence_metadata *to_report = NULL;
1115         enum kfence_error_type error_type;
1116         unsigned long flags;
1117
1118         if (!is_kfence_address((void *)addr))
1119                 return false;
1120
1121         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1122                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1123
1124         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1125
1126         if (page_index % 2) {
1127                 /* This is a redzone, report a buffer overflow. */
1128                 struct kfence_metadata *meta;
1129                 int distance = 0;
1130
1131                 meta = addr_to_metadata(addr - PAGE_SIZE);
1132                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1133                         to_report = meta;
1134                         /* Data race ok; distance calculation approximate. */
1135                         distance = addr - data_race(meta->addr + meta->size);
1136                 }
1137
1138                 meta = addr_to_metadata(addr + PAGE_SIZE);
1139                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1140                         /* Data race ok; distance calculation approximate. */
1141                         if (!to_report || distance > data_race(meta->addr) - addr)
1142                                 to_report = meta;
1143                 }
1144
1145                 if (!to_report)
1146                         goto out;
1147
1148                 raw_spin_lock_irqsave(&to_report->lock, flags);
1149                 to_report->unprotected_page = addr;
1150                 error_type = KFENCE_ERROR_OOB;
1151
1152                 /*
1153                  * If the object was freed before we took the look we can still
1154                  * report this as an OOB -- the report will simply show the
1155                  * stacktrace of the free as well.
1156                  */
1157         } else {
1158                 to_report = addr_to_metadata(addr);
1159                 if (!to_report)
1160                         goto out;
1161
1162                 raw_spin_lock_irqsave(&to_report->lock, flags);
1163                 error_type = KFENCE_ERROR_UAF;
1164                 /*
1165                  * We may race with __kfence_alloc(), and it is possible that a
1166                  * freed object may be reallocated. We simply report this as a
1167                  * use-after-free, with the stack trace showing the place where
1168                  * the object was re-allocated.
1169                  */
1170         }
1171
1172 out:
1173         if (to_report) {
1174                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1175                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1176         } else {
1177                 /* This may be a UAF or OOB access, but we can't be sure. */
1178                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1179         }
1180
1181         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1182 }