03d5d1374ca7e52c6754d9a58d36cd13c3c60ecf
[linux-2.6-block.git] / mm / kasan / common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37
38 #include "kasan.h"
39 #include "../slab.h"
40
41 static inline int in_irqentry_text(unsigned long ptr)
42 {
43         return (ptr >= (unsigned long)&__irqentry_text_start &&
44                 ptr < (unsigned long)&__irqentry_text_end) ||
45                 (ptr >= (unsigned long)&__softirqentry_text_start &&
46                  ptr < (unsigned long)&__softirqentry_text_end);
47 }
48
49 static inline void filter_irq_stacks(struct stack_trace *trace)
50 {
51         int i;
52
53         if (!trace->nr_entries)
54                 return;
55         for (i = 0; i < trace->nr_entries; i++)
56                 if (in_irqentry_text(trace->entries[i])) {
57                         /* Include the irqentry function into the stack. */
58                         trace->nr_entries = i + 1;
59                         break;
60                 }
61 }
62
63 static inline depot_stack_handle_t save_stack(gfp_t flags)
64 {
65         unsigned long entries[KASAN_STACK_DEPTH];
66         struct stack_trace trace = {
67                 .nr_entries = 0,
68                 .entries = entries,
69                 .max_entries = KASAN_STACK_DEPTH,
70                 .skip = 0
71         };
72
73         save_stack_trace(&trace);
74         filter_irq_stacks(&trace);
75         if (trace.nr_entries != 0 &&
76             trace.entries[trace.nr_entries-1] == ULONG_MAX)
77                 trace.nr_entries--;
78
79         return depot_save_stack(&trace, flags);
80 }
81
82 static inline void set_track(struct kasan_track *track, gfp_t flags)
83 {
84         track->pid = current->pid;
85         track->stack = save_stack(flags);
86 }
87
88 void kasan_enable_current(void)
89 {
90         current->kasan_depth++;
91 }
92
93 void kasan_disable_current(void)
94 {
95         current->kasan_depth--;
96 }
97
98 void kasan_check_read(const volatile void *p, unsigned int size)
99 {
100         check_memory_region((unsigned long)p, size, false, _RET_IP_);
101 }
102 EXPORT_SYMBOL(kasan_check_read);
103
104 void kasan_check_write(const volatile void *p, unsigned int size)
105 {
106         check_memory_region((unsigned long)p, size, true, _RET_IP_);
107 }
108 EXPORT_SYMBOL(kasan_check_write);
109
110 #undef memset
111 void *memset(void *addr, int c, size_t len)
112 {
113         check_memory_region((unsigned long)addr, len, true, _RET_IP_);
114
115         return __memset(addr, c, len);
116 }
117
118 #undef memmove
119 void *memmove(void *dest, const void *src, size_t len)
120 {
121         check_memory_region((unsigned long)src, len, false, _RET_IP_);
122         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
123
124         return __memmove(dest, src, len);
125 }
126
127 #undef memcpy
128 void *memcpy(void *dest, const void *src, size_t len)
129 {
130         check_memory_region((unsigned long)src, len, false, _RET_IP_);
131         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
132
133         return __memcpy(dest, src, len);
134 }
135
136 /*
137  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
138  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
139  */
140 void kasan_poison_shadow(const void *address, size_t size, u8 value)
141 {
142         void *shadow_start, *shadow_end;
143
144         /*
145          * Perform shadow offset calculation based on untagged address, as
146          * some of the callers (e.g. kasan_poison_object_data) pass tagged
147          * addresses to this function.
148          */
149         address = reset_tag(address);
150
151         shadow_start = kasan_mem_to_shadow(address);
152         shadow_end = kasan_mem_to_shadow(address + size);
153
154         __memset(shadow_start, value, shadow_end - shadow_start);
155 }
156
157 void kasan_unpoison_shadow(const void *address, size_t size)
158 {
159         u8 tag = get_tag(address);
160
161         /*
162          * Perform shadow offset calculation based on untagged address, as
163          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
164          * addresses to this function.
165          */
166         address = reset_tag(address);
167
168         kasan_poison_shadow(address, size, tag);
169
170         if (size & KASAN_SHADOW_MASK) {
171                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
172
173                 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
174                         *shadow = tag;
175                 else
176                         *shadow = size & KASAN_SHADOW_MASK;
177         }
178 }
179
180 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
181 {
182         void *base = task_stack_page(task);
183         size_t size = sp - base;
184
185         kasan_unpoison_shadow(base, size);
186 }
187
188 /* Unpoison the entire stack for a task. */
189 void kasan_unpoison_task_stack(struct task_struct *task)
190 {
191         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
192 }
193
194 /* Unpoison the stack for the current task beyond a watermark sp value. */
195 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
196 {
197         /*
198          * Calculate the task stack base address.  Avoid using 'current'
199          * because this function is called by early resume code which hasn't
200          * yet set up the percpu register (%gs).
201          */
202         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
203
204         kasan_unpoison_shadow(base, watermark - base);
205 }
206
207 /*
208  * Clear all poison for the region between the current SP and a provided
209  * watermark value, as is sometimes required prior to hand-crafted asm function
210  * returns in the middle of functions.
211  */
212 void kasan_unpoison_stack_above_sp_to(const void *watermark)
213 {
214         const void *sp = __builtin_frame_address(0);
215         size_t size = watermark - sp;
216
217         if (WARN_ON(sp > watermark))
218                 return;
219         kasan_unpoison_shadow(sp, size);
220 }
221
222 void kasan_alloc_pages(struct page *page, unsigned int order)
223 {
224         u8 tag;
225         unsigned long i;
226
227         if (unlikely(PageHighMem(page)))
228                 return;
229
230         tag = random_tag();
231         for (i = 0; i < (1 << order); i++)
232                 page_kasan_tag_set(page + i, tag);
233         kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
234 }
235
236 void kasan_free_pages(struct page *page, unsigned int order)
237 {
238         if (likely(!PageHighMem(page)))
239                 kasan_poison_shadow(page_address(page),
240                                 PAGE_SIZE << order,
241                                 KASAN_FREE_PAGE);
242 }
243
244 /*
245  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
246  * For larger allocations larger redzones are used.
247  */
248 static inline unsigned int optimal_redzone(unsigned int object_size)
249 {
250         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
251                 return 0;
252
253         return
254                 object_size <= 64        - 16   ? 16 :
255                 object_size <= 128       - 32   ? 32 :
256                 object_size <= 512       - 64   ? 64 :
257                 object_size <= 4096      - 128  ? 128 :
258                 object_size <= (1 << 14) - 256  ? 256 :
259                 object_size <= (1 << 15) - 512  ? 512 :
260                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
261 }
262
263 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
264                         slab_flags_t *flags)
265 {
266         unsigned int orig_size = *size;
267         unsigned int redzone_size;
268         int redzone_adjust;
269
270         /* Add alloc meta. */
271         cache->kasan_info.alloc_meta_offset = *size;
272         *size += sizeof(struct kasan_alloc_meta);
273
274         /* Add free meta. */
275         if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
276             (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
277              cache->object_size < sizeof(struct kasan_free_meta))) {
278                 cache->kasan_info.free_meta_offset = *size;
279                 *size += sizeof(struct kasan_free_meta);
280         }
281
282         redzone_size = optimal_redzone(cache->object_size);
283         redzone_adjust = redzone_size - (*size - cache->object_size);
284         if (redzone_adjust > 0)
285                 *size += redzone_adjust;
286
287         *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
288                         max(*size, cache->object_size + redzone_size));
289
290         /*
291          * If the metadata doesn't fit, don't enable KASAN at all.
292          */
293         if (*size <= cache->kasan_info.alloc_meta_offset ||
294                         *size <= cache->kasan_info.free_meta_offset) {
295                 cache->kasan_info.alloc_meta_offset = 0;
296                 cache->kasan_info.free_meta_offset = 0;
297                 *size = orig_size;
298                 return;
299         }
300
301         cache->align = round_up(cache->align, KASAN_SHADOW_SCALE_SIZE);
302
303         *flags |= SLAB_KASAN;
304 }
305
306 size_t kasan_metadata_size(struct kmem_cache *cache)
307 {
308         return (cache->kasan_info.alloc_meta_offset ?
309                 sizeof(struct kasan_alloc_meta) : 0) +
310                 (cache->kasan_info.free_meta_offset ?
311                 sizeof(struct kasan_free_meta) : 0);
312 }
313
314 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
315                                         const void *object)
316 {
317         BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
318         return (void *)object + cache->kasan_info.alloc_meta_offset;
319 }
320
321 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
322                                       const void *object)
323 {
324         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
325         return (void *)object + cache->kasan_info.free_meta_offset;
326 }
327
328 void kasan_poison_slab(struct page *page)
329 {
330         unsigned long i;
331
332         for (i = 0; i < (1 << compound_order(page)); i++)
333                 page_kasan_tag_reset(page + i);
334         kasan_poison_shadow(page_address(page),
335                         PAGE_SIZE << compound_order(page),
336                         KASAN_KMALLOC_REDZONE);
337 }
338
339 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
340 {
341         kasan_unpoison_shadow(object, cache->object_size);
342 }
343
344 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
345 {
346         kasan_poison_shadow(object,
347                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
348                         KASAN_KMALLOC_REDZONE);
349 }
350
351 /*
352  * Since it's desirable to only call object contructors once during slab
353  * allocation, we preassign tags to all such objects. Also preassign tags for
354  * SLAB_TYPESAFE_BY_RCU slabs to avoid use-after-free reports.
355  * For SLAB allocator we can't preassign tags randomly since the freelist is
356  * stored as an array of indexes instead of a linked list. Assign tags based
357  * on objects indexes, so that objects that are next to each other get
358  * different tags.
359  * After a tag is assigned, the object always gets allocated with the same tag.
360  * The reason is that we can't change tags for objects with constructors on
361  * reallocation (even for non-SLAB_TYPESAFE_BY_RCU), because the constructor
362  * code can save the pointer to the object somewhere (e.g. in the object
363  * itself). Then if we retag it, the old saved pointer will become invalid.
364  */
365 static u8 assign_tag(struct kmem_cache *cache, const void *object, bool new)
366 {
367         if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
368                 return new ? KASAN_TAG_KERNEL : random_tag();
369
370 #ifdef CONFIG_SLAB
371         return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
372 #else
373         return new ? random_tag() : get_tag(object);
374 #endif
375 }
376
377 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
378                                                 const void *object)
379 {
380         struct kasan_alloc_meta *alloc_info;
381
382         if (!(cache->flags & SLAB_KASAN))
383                 return (void *)object;
384
385         alloc_info = get_alloc_info(cache, object);
386         __memset(alloc_info, 0, sizeof(*alloc_info));
387
388         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
389                 object = set_tag(object, assign_tag(cache, object, true));
390
391         return (void *)object;
392 }
393
394 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
395                                         gfp_t flags)
396 {
397         return kasan_kmalloc(cache, object, cache->object_size, flags);
398 }
399
400 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
401 {
402         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
403                 return shadow_byte < 0 ||
404                         shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
405         else
406                 return tag != (u8)shadow_byte;
407 }
408
409 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
410                               unsigned long ip, bool quarantine)
411 {
412         s8 shadow_byte;
413         u8 tag;
414         void *tagged_object;
415         unsigned long rounded_up_size;
416
417         tag = get_tag(object);
418         tagged_object = object;
419         object = reset_tag(object);
420
421         if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
422             object)) {
423                 kasan_report_invalid_free(tagged_object, ip);
424                 return true;
425         }
426
427         /* RCU slabs could be legally used after free within the RCU period */
428         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
429                 return false;
430
431         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
432         if (shadow_invalid(tag, shadow_byte)) {
433                 kasan_report_invalid_free(tagged_object, ip);
434                 return true;
435         }
436
437         rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
438         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
439
440         if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
441                         unlikely(!(cache->flags & SLAB_KASAN)))
442                 return false;
443
444         set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
445         quarantine_put(get_free_info(cache, object), cache);
446
447         return IS_ENABLED(CONFIG_KASAN_GENERIC);
448 }
449
450 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
451 {
452         return __kasan_slab_free(cache, object, ip, true);
453 }
454
455 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
456                                         size_t size, gfp_t flags)
457 {
458         unsigned long redzone_start;
459         unsigned long redzone_end;
460         u8 tag;
461
462         if (gfpflags_allow_blocking(flags))
463                 quarantine_reduce();
464
465         if (unlikely(object == NULL))
466                 return NULL;
467
468         redzone_start = round_up((unsigned long)(object + size),
469                                 KASAN_SHADOW_SCALE_SIZE);
470         redzone_end = round_up((unsigned long)object + cache->object_size,
471                                 KASAN_SHADOW_SCALE_SIZE);
472
473         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
474                 tag = assign_tag(cache, object, false);
475
476         /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
477         kasan_unpoison_shadow(set_tag(object, tag), size);
478         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
479                 KASAN_KMALLOC_REDZONE);
480
481         if (cache->flags & SLAB_KASAN)
482                 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
483
484         return set_tag(object, tag);
485 }
486 EXPORT_SYMBOL(kasan_kmalloc);
487
488 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
489                                                 gfp_t flags)
490 {
491         struct page *page;
492         unsigned long redzone_start;
493         unsigned long redzone_end;
494
495         if (gfpflags_allow_blocking(flags))
496                 quarantine_reduce();
497
498         if (unlikely(ptr == NULL))
499                 return NULL;
500
501         page = virt_to_page(ptr);
502         redzone_start = round_up((unsigned long)(ptr + size),
503                                 KASAN_SHADOW_SCALE_SIZE);
504         redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
505
506         kasan_unpoison_shadow(ptr, size);
507         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
508                 KASAN_PAGE_REDZONE);
509
510         return (void *)ptr;
511 }
512
513 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
514 {
515         struct page *page;
516
517         if (unlikely(object == ZERO_SIZE_PTR))
518                 return (void *)object;
519
520         page = virt_to_head_page(object);
521
522         if (unlikely(!PageSlab(page)))
523                 return kasan_kmalloc_large(object, size, flags);
524         else
525                 return kasan_kmalloc(page->slab_cache, object, size, flags);
526 }
527
528 void kasan_poison_kfree(void *ptr, unsigned long ip)
529 {
530         struct page *page;
531
532         page = virt_to_head_page(ptr);
533
534         if (unlikely(!PageSlab(page))) {
535                 if (ptr != page_address(page)) {
536                         kasan_report_invalid_free(ptr, ip);
537                         return;
538                 }
539                 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
540                                 KASAN_FREE_PAGE);
541         } else {
542                 __kasan_slab_free(page->slab_cache, ptr, ip, false);
543         }
544 }
545
546 void kasan_kfree_large(void *ptr, unsigned long ip)
547 {
548         if (ptr != page_address(virt_to_head_page(ptr)))
549                 kasan_report_invalid_free(ptr, ip);
550         /* The object will be poisoned by page_alloc. */
551 }
552
553 int kasan_module_alloc(void *addr, size_t size)
554 {
555         void *ret;
556         size_t scaled_size;
557         size_t shadow_size;
558         unsigned long shadow_start;
559
560         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
561         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
562         shadow_size = round_up(scaled_size, PAGE_SIZE);
563
564         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
565                 return -EINVAL;
566
567         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
568                         shadow_start + shadow_size,
569                         GFP_KERNEL,
570                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
571                         __builtin_return_address(0));
572
573         if (ret) {
574                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
575                 find_vm_area(addr)->flags |= VM_KASAN;
576                 kmemleak_ignore(ret);
577                 return 0;
578         }
579
580         return -ENOMEM;
581 }
582
583 void kasan_free_shadow(const struct vm_struct *vm)
584 {
585         if (vm->flags & VM_KASAN)
586                 vfree(kasan_mem_to_shadow(vm->addr));
587 }
588
589 #ifdef CONFIG_MEMORY_HOTPLUG
590 static bool shadow_mapped(unsigned long addr)
591 {
592         pgd_t *pgd = pgd_offset_k(addr);
593         p4d_t *p4d;
594         pud_t *pud;
595         pmd_t *pmd;
596         pte_t *pte;
597
598         if (pgd_none(*pgd))
599                 return false;
600         p4d = p4d_offset(pgd, addr);
601         if (p4d_none(*p4d))
602                 return false;
603         pud = pud_offset(p4d, addr);
604         if (pud_none(*pud))
605                 return false;
606
607         /*
608          * We can't use pud_large() or pud_huge(), the first one is
609          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
610          * pud_bad(), if pud is bad then it's bad because it's huge.
611          */
612         if (pud_bad(*pud))
613                 return true;
614         pmd = pmd_offset(pud, addr);
615         if (pmd_none(*pmd))
616                 return false;
617
618         if (pmd_bad(*pmd))
619                 return true;
620         pte = pte_offset_kernel(pmd, addr);
621         return !pte_none(*pte);
622 }
623
624 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
625                         unsigned long action, void *data)
626 {
627         struct memory_notify *mem_data = data;
628         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
629         unsigned long shadow_end, shadow_size;
630
631         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
632         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
633         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
634         shadow_size = nr_shadow_pages << PAGE_SHIFT;
635         shadow_end = shadow_start + shadow_size;
636
637         if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
638                 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
639                 return NOTIFY_BAD;
640
641         switch (action) {
642         case MEM_GOING_ONLINE: {
643                 void *ret;
644
645                 /*
646                  * If shadow is mapped already than it must have been mapped
647                  * during the boot. This could happen if we onlining previously
648                  * offlined memory.
649                  */
650                 if (shadow_mapped(shadow_start))
651                         return NOTIFY_OK;
652
653                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
654                                         shadow_end, GFP_KERNEL,
655                                         PAGE_KERNEL, VM_NO_GUARD,
656                                         pfn_to_nid(mem_data->start_pfn),
657                                         __builtin_return_address(0));
658                 if (!ret)
659                         return NOTIFY_BAD;
660
661                 kmemleak_ignore(ret);
662                 return NOTIFY_OK;
663         }
664         case MEM_CANCEL_ONLINE:
665         case MEM_OFFLINE: {
666                 struct vm_struct *vm;
667
668                 /*
669                  * shadow_start was either mapped during boot by kasan_init()
670                  * or during memory online by __vmalloc_node_range().
671                  * In the latter case we can use vfree() to free shadow.
672                  * Non-NULL result of the find_vm_area() will tell us if
673                  * that was the second case.
674                  *
675                  * Currently it's not possible to free shadow mapped
676                  * during boot by kasan_init(). It's because the code
677                  * to do that hasn't been written yet. So we'll just
678                  * leak the memory.
679                  */
680                 vm = find_vm_area((void *)shadow_start);
681                 if (vm)
682                         vfree((void *)shadow_start);
683         }
684         }
685
686         return NOTIFY_OK;
687 }
688
689 static int __init kasan_memhotplug_init(void)
690 {
691         hotplug_memory_notifier(kasan_mem_notifier, 0);
692
693         return 0;
694 }
695
696 core_initcall(kasan_memhotplug_init);
697 #endif