mm, hugetlb: remove redundant list_empty check in gather_surplus_pages()
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation_mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate *h,
439                         struct vm_area_struct *vma)
440 {
441         if (vma->vm_flags & VM_NORESERVE)
442                 return;
443
444         if (vma->vm_flags & VM_MAYSHARE) {
445                 /* Shared mappings always use reserves */
446                 h->resv_huge_pages--;
447         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448                 /*
449                  * Only the process that called mmap() has reserves for
450                  * private mappings.
451                  */
452                 h->resv_huge_pages--;
453         }
454 }
455
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458 {
459         VM_BUG_ON(!is_vm_hugetlb_page(vma));
460         if (!(vma->vm_flags & VM_MAYSHARE))
461                 vma->vm_private_data = (void *)0;
462 }
463
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct *vma)
466 {
467         if (vma->vm_flags & VM_MAYSHARE)
468                 return 1;
469         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470                 return 1;
471         return 0;
472 }
473
474 static void copy_gigantic_page(struct page *dst, struct page *src)
475 {
476         int i;
477         struct hstate *h = page_hstate(src);
478         struct page *dst_base = dst;
479         struct page *src_base = src;
480
481         for (i = 0; i < pages_per_huge_page(h); ) {
482                 cond_resched();
483                 copy_highpage(dst, src);
484
485                 i++;
486                 dst = mem_map_next(dst, dst_base, i);
487                 src = mem_map_next(src, src_base, i);
488         }
489 }
490
491 void copy_huge_page(struct page *dst, struct page *src)
492 {
493         int i;
494         struct hstate *h = page_hstate(src);
495
496         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497                 copy_gigantic_page(dst, src);
498                 return;
499         }
500
501         might_sleep();
502         for (i = 0; i < pages_per_huge_page(h); i++) {
503                 cond_resched();
504                 copy_highpage(dst + i, src + i);
505         }
506 }
507
508 static void enqueue_huge_page(struct hstate *h, struct page *page)
509 {
510         int nid = page_to_nid(page);
511         list_move(&page->lru, &h->hugepage_freelists[nid]);
512         h->free_huge_pages++;
513         h->free_huge_pages_node[nid]++;
514 }
515
516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517 {
518         struct page *page;
519
520         if (list_empty(&h->hugepage_freelists[nid]))
521                 return NULL;
522         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523         list_move(&page->lru, &h->hugepage_activelist);
524         set_page_refcounted(page);
525         h->free_huge_pages--;
526         h->free_huge_pages_node[nid]--;
527         return page;
528 }
529
530 static struct page *dequeue_huge_page_vma(struct hstate *h,
531                                 struct vm_area_struct *vma,
532                                 unsigned long address, int avoid_reserve)
533 {
534         struct page *page = NULL;
535         struct mempolicy *mpol;
536         nodemask_t *nodemask;
537         struct zonelist *zonelist;
538         struct zone *zone;
539         struct zoneref *z;
540         unsigned int cpuset_mems_cookie;
541
542         /*
543          * A child process with MAP_PRIVATE mappings created by their parent
544          * have no page reserves. This check ensures that reservations are
545          * not "stolen". The child may still get SIGKILLed
546          */
547         if (!vma_has_reserves(vma) &&
548                         h->free_huge_pages - h->resv_huge_pages == 0)
549                 goto err;
550
551         /* If reserves cannot be used, ensure enough pages are in the pool */
552         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
553                 goto err;
554
555 retry_cpuset:
556         cpuset_mems_cookie = get_mems_allowed();
557         zonelist = huge_zonelist(vma, address,
558                                         htlb_alloc_mask, &mpol, &nodemask);
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         return NULL;
579 }
580
581 static void update_and_free_page(struct hstate *h, struct page *page)
582 {
583         int i;
584
585         VM_BUG_ON(h->order >= MAX_ORDER);
586
587         h->nr_huge_pages--;
588         h->nr_huge_pages_node[page_to_nid(page)]--;
589         for (i = 0; i < pages_per_huge_page(h); i++) {
590                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591                                 1 << PG_referenced | 1 << PG_dirty |
592                                 1 << PG_active | 1 << PG_reserved |
593                                 1 << PG_private | 1 << PG_writeback);
594         }
595         VM_BUG_ON(hugetlb_cgroup_from_page(page));
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628
629         spin_lock(&hugetlb_lock);
630         hugetlb_cgroup_uncharge_page(hstate_index(h),
631                                      pages_per_huge_page(h), page);
632         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633                 /* remove the page from active list */
634                 list_del(&page->lru);
635                 update_and_free_page(h, page);
636                 h->surplus_huge_pages--;
637                 h->surplus_huge_pages_node[nid]--;
638         } else {
639                 arch_clear_hugepage_flags(page);
640                 enqueue_huge_page(h, page);
641         }
642         spin_unlock(&hugetlb_lock);
643         hugepage_subpool_put_pages(spool, 1);
644 }
645
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648         INIT_LIST_HEAD(&page->lru);
649         set_compound_page_dtor(page, free_huge_page);
650         spin_lock(&hugetlb_lock);
651         set_hugetlb_cgroup(page, NULL);
652         h->nr_huge_pages++;
653         h->nr_huge_pages_node[nid]++;
654         spin_unlock(&hugetlb_lock);
655         put_page(page); /* free it into the hugepage allocator */
656 }
657
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660         int i;
661         int nr_pages = 1 << order;
662         struct page *p = page + 1;
663
664         /* we rely on prep_new_huge_page to set the destructor */
665         set_compound_order(page, order);
666         __SetPageHead(page);
667         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668                 __SetPageTail(p);
669                 set_page_count(p, 0);
670                 p->first_page = page;
671         }
672 }
673
674 /*
675  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676  * transparent huge pages.  See the PageTransHuge() documentation for more
677  * details.
678  */
679 int PageHuge(struct page *page)
680 {
681         compound_page_dtor *dtor;
682
683         if (!PageCompound(page))
684                 return 0;
685
686         page = compound_head(page);
687         dtor = get_compound_page_dtor(page);
688
689         return dtor == free_huge_page;
690 }
691 EXPORT_SYMBOL_GPL(PageHuge);
692
693 pgoff_t __basepage_index(struct page *page)
694 {
695         struct page *page_head = compound_head(page);
696         pgoff_t index = page_index(page_head);
697         unsigned long compound_idx;
698
699         if (!PageHuge(page_head))
700                 return page_index(page);
701
702         if (compound_order(page_head) >= MAX_ORDER)
703                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
704         else
705                 compound_idx = page - page_head;
706
707         return (index << compound_order(page_head)) + compound_idx;
708 }
709
710 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
711 {
712         struct page *page;
713
714         if (h->order >= MAX_ORDER)
715                 return NULL;
716
717         page = alloc_pages_exact_node(nid,
718                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
719                                                 __GFP_REPEAT|__GFP_NOWARN,
720                 huge_page_order(h));
721         if (page) {
722                 if (arch_prepare_hugepage(page)) {
723                         __free_pages(page, huge_page_order(h));
724                         return NULL;
725                 }
726                 prep_new_huge_page(h, page, nid);
727         }
728
729         return page;
730 }
731
732 /*
733  * common helper functions for hstate_next_node_to_{alloc|free}.
734  * We may have allocated or freed a huge page based on a different
735  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
736  * be outside of *nodes_allowed.  Ensure that we use an allowed
737  * node for alloc or free.
738  */
739 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
740 {
741         nid = next_node(nid, *nodes_allowed);
742         if (nid == MAX_NUMNODES)
743                 nid = first_node(*nodes_allowed);
744         VM_BUG_ON(nid >= MAX_NUMNODES);
745
746         return nid;
747 }
748
749 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
750 {
751         if (!node_isset(nid, *nodes_allowed))
752                 nid = next_node_allowed(nid, nodes_allowed);
753         return nid;
754 }
755
756 /*
757  * returns the previously saved node ["this node"] from which to
758  * allocate a persistent huge page for the pool and advance the
759  * next node from which to allocate, handling wrap at end of node
760  * mask.
761  */
762 static int hstate_next_node_to_alloc(struct hstate *h,
763                                         nodemask_t *nodes_allowed)
764 {
765         int nid;
766
767         VM_BUG_ON(!nodes_allowed);
768
769         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
770         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
771
772         return nid;
773 }
774
775 /*
776  * helper for free_pool_huge_page() - return the previously saved
777  * node ["this node"] from which to free a huge page.  Advance the
778  * next node id whether or not we find a free huge page to free so
779  * that the next attempt to free addresses the next node.
780  */
781 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
782 {
783         int nid;
784
785         VM_BUG_ON(!nodes_allowed);
786
787         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
788         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
789
790         return nid;
791 }
792
793 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
794         for (nr_nodes = nodes_weight(*mask);                            \
795                 nr_nodes > 0 &&                                         \
796                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
797                 nr_nodes--)
798
799 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
800         for (nr_nodes = nodes_weight(*mask);                            \
801                 nr_nodes > 0 &&                                         \
802                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
803                 nr_nodes--)
804
805 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
806 {
807         struct page *page;
808         int nr_nodes, node;
809         int ret = 0;
810
811         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
812                 page = alloc_fresh_huge_page_node(h, node);
813                 if (page) {
814                         ret = 1;
815                         break;
816                 }
817         }
818
819         if (ret)
820                 count_vm_event(HTLB_BUDDY_PGALLOC);
821         else
822                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
823
824         return ret;
825 }
826
827 /*
828  * Free huge page from pool from next node to free.
829  * Attempt to keep persistent huge pages more or less
830  * balanced over allowed nodes.
831  * Called with hugetlb_lock locked.
832  */
833 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
834                                                          bool acct_surplus)
835 {
836         int nr_nodes, node;
837         int ret = 0;
838
839         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
840                 /*
841                  * If we're returning unused surplus pages, only examine
842                  * nodes with surplus pages.
843                  */
844                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
845                     !list_empty(&h->hugepage_freelists[node])) {
846                         struct page *page =
847                                 list_entry(h->hugepage_freelists[node].next,
848                                           struct page, lru);
849                         list_del(&page->lru);
850                         h->free_huge_pages--;
851                         h->free_huge_pages_node[node]--;
852                         if (acct_surplus) {
853                                 h->surplus_huge_pages--;
854                                 h->surplus_huge_pages_node[node]--;
855                         }
856                         update_and_free_page(h, page);
857                         ret = 1;
858                         break;
859                 }
860         }
861
862         return ret;
863 }
864
865 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
866 {
867         struct page *page;
868         unsigned int r_nid;
869
870         if (h->order >= MAX_ORDER)
871                 return NULL;
872
873         /*
874          * Assume we will successfully allocate the surplus page to
875          * prevent racing processes from causing the surplus to exceed
876          * overcommit
877          *
878          * This however introduces a different race, where a process B
879          * tries to grow the static hugepage pool while alloc_pages() is
880          * called by process A. B will only examine the per-node
881          * counters in determining if surplus huge pages can be
882          * converted to normal huge pages in adjust_pool_surplus(). A
883          * won't be able to increment the per-node counter, until the
884          * lock is dropped by B, but B doesn't drop hugetlb_lock until
885          * no more huge pages can be converted from surplus to normal
886          * state (and doesn't try to convert again). Thus, we have a
887          * case where a surplus huge page exists, the pool is grown, and
888          * the surplus huge page still exists after, even though it
889          * should just have been converted to a normal huge page. This
890          * does not leak memory, though, as the hugepage will be freed
891          * once it is out of use. It also does not allow the counters to
892          * go out of whack in adjust_pool_surplus() as we don't modify
893          * the node values until we've gotten the hugepage and only the
894          * per-node value is checked there.
895          */
896         spin_lock(&hugetlb_lock);
897         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
898                 spin_unlock(&hugetlb_lock);
899                 return NULL;
900         } else {
901                 h->nr_huge_pages++;
902                 h->surplus_huge_pages++;
903         }
904         spin_unlock(&hugetlb_lock);
905
906         if (nid == NUMA_NO_NODE)
907                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
908                                    __GFP_REPEAT|__GFP_NOWARN,
909                                    huge_page_order(h));
910         else
911                 page = alloc_pages_exact_node(nid,
912                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
913                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
914
915         if (page && arch_prepare_hugepage(page)) {
916                 __free_pages(page, huge_page_order(h));
917                 page = NULL;
918         }
919
920         spin_lock(&hugetlb_lock);
921         if (page) {
922                 INIT_LIST_HEAD(&page->lru);
923                 r_nid = page_to_nid(page);
924                 set_compound_page_dtor(page, free_huge_page);
925                 set_hugetlb_cgroup(page, NULL);
926                 /*
927                  * We incremented the global counters already
928                  */
929                 h->nr_huge_pages_node[r_nid]++;
930                 h->surplus_huge_pages_node[r_nid]++;
931                 __count_vm_event(HTLB_BUDDY_PGALLOC);
932         } else {
933                 h->nr_huge_pages--;
934                 h->surplus_huge_pages--;
935                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
936         }
937         spin_unlock(&hugetlb_lock);
938
939         return page;
940 }
941
942 /*
943  * This allocation function is useful in the context where vma is irrelevant.
944  * E.g. soft-offlining uses this function because it only cares physical
945  * address of error page.
946  */
947 struct page *alloc_huge_page_node(struct hstate *h, int nid)
948 {
949         struct page *page;
950
951         spin_lock(&hugetlb_lock);
952         page = dequeue_huge_page_node(h, nid);
953         spin_unlock(&hugetlb_lock);
954
955         if (!page)
956                 page = alloc_buddy_huge_page(h, nid);
957
958         return page;
959 }
960
961 /*
962  * Increase the hugetlb pool such that it can accommodate a reservation
963  * of size 'delta'.
964  */
965 static int gather_surplus_pages(struct hstate *h, int delta)
966 {
967         struct list_head surplus_list;
968         struct page *page, *tmp;
969         int ret, i;
970         int needed, allocated;
971         bool alloc_ok = true;
972
973         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
974         if (needed <= 0) {
975                 h->resv_huge_pages += delta;
976                 return 0;
977         }
978
979         allocated = 0;
980         INIT_LIST_HEAD(&surplus_list);
981
982         ret = -ENOMEM;
983 retry:
984         spin_unlock(&hugetlb_lock);
985         for (i = 0; i < needed; i++) {
986                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
987                 if (!page) {
988                         alloc_ok = false;
989                         break;
990                 }
991                 list_add(&page->lru, &surplus_list);
992         }
993         allocated += i;
994
995         /*
996          * After retaking hugetlb_lock, we need to recalculate 'needed'
997          * because either resv_huge_pages or free_huge_pages may have changed.
998          */
999         spin_lock(&hugetlb_lock);
1000         needed = (h->resv_huge_pages + delta) -
1001                         (h->free_huge_pages + allocated);
1002         if (needed > 0) {
1003                 if (alloc_ok)
1004                         goto retry;
1005                 /*
1006                  * We were not able to allocate enough pages to
1007                  * satisfy the entire reservation so we free what
1008                  * we've allocated so far.
1009                  */
1010                 goto free;
1011         }
1012         /*
1013          * The surplus_list now contains _at_least_ the number of extra pages
1014          * needed to accommodate the reservation.  Add the appropriate number
1015          * of pages to the hugetlb pool and free the extras back to the buddy
1016          * allocator.  Commit the entire reservation here to prevent another
1017          * process from stealing the pages as they are added to the pool but
1018          * before they are reserved.
1019          */
1020         needed += allocated;
1021         h->resv_huge_pages += delta;
1022         ret = 0;
1023
1024         /* Free the needed pages to the hugetlb pool */
1025         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1026                 if ((--needed) < 0)
1027                         break;
1028                 /*
1029                  * This page is now managed by the hugetlb allocator and has
1030                  * no users -- drop the buddy allocator's reference.
1031                  */
1032                 put_page_testzero(page);
1033                 VM_BUG_ON(page_count(page));
1034                 enqueue_huge_page(h, page);
1035         }
1036 free:
1037         spin_unlock(&hugetlb_lock);
1038
1039         /* Free unnecessary surplus pages to the buddy allocator */
1040         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1041                 put_page(page);
1042         spin_lock(&hugetlb_lock);
1043
1044         return ret;
1045 }
1046
1047 /*
1048  * When releasing a hugetlb pool reservation, any surplus pages that were
1049  * allocated to satisfy the reservation must be explicitly freed if they were
1050  * never used.
1051  * Called with hugetlb_lock held.
1052  */
1053 static void return_unused_surplus_pages(struct hstate *h,
1054                                         unsigned long unused_resv_pages)
1055 {
1056         unsigned long nr_pages;
1057
1058         /* Uncommit the reservation */
1059         h->resv_huge_pages -= unused_resv_pages;
1060
1061         /* Cannot return gigantic pages currently */
1062         if (h->order >= MAX_ORDER)
1063                 return;
1064
1065         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1066
1067         /*
1068          * We want to release as many surplus pages as possible, spread
1069          * evenly across all nodes with memory. Iterate across these nodes
1070          * until we can no longer free unreserved surplus pages. This occurs
1071          * when the nodes with surplus pages have no free pages.
1072          * free_pool_huge_page() will balance the the freed pages across the
1073          * on-line nodes with memory and will handle the hstate accounting.
1074          */
1075         while (nr_pages--) {
1076                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1077                         break;
1078         }
1079 }
1080
1081 /*
1082  * Determine if the huge page at addr within the vma has an associated
1083  * reservation.  Where it does not we will need to logically increase
1084  * reservation and actually increase subpool usage before an allocation
1085  * can occur.  Where any new reservation would be required the
1086  * reservation change is prepared, but not committed.  Once the page
1087  * has been allocated from the subpool and instantiated the change should
1088  * be committed via vma_commit_reservation.  No action is required on
1089  * failure.
1090  */
1091 static long vma_needs_reservation(struct hstate *h,
1092                         struct vm_area_struct *vma, unsigned long addr)
1093 {
1094         struct address_space *mapping = vma->vm_file->f_mapping;
1095         struct inode *inode = mapping->host;
1096
1097         if (vma->vm_flags & VM_MAYSHARE) {
1098                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1099                 return region_chg(&inode->i_mapping->private_list,
1100                                                         idx, idx + 1);
1101
1102         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1103                 return 1;
1104
1105         } else  {
1106                 long err;
1107                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108                 struct resv_map *reservations = vma_resv_map(vma);
1109
1110                 err = region_chg(&reservations->regions, idx, idx + 1);
1111                 if (err < 0)
1112                         return err;
1113                 return 0;
1114         }
1115 }
1116 static void vma_commit_reservation(struct hstate *h,
1117                         struct vm_area_struct *vma, unsigned long addr)
1118 {
1119         struct address_space *mapping = vma->vm_file->f_mapping;
1120         struct inode *inode = mapping->host;
1121
1122         if (vma->vm_flags & VM_MAYSHARE) {
1123                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1124                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1125
1126         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1127                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1128                 struct resv_map *reservations = vma_resv_map(vma);
1129
1130                 /* Mark this page used in the map. */
1131                 region_add(&reservations->regions, idx, idx + 1);
1132         }
1133 }
1134
1135 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1136                                     unsigned long addr, int avoid_reserve)
1137 {
1138         struct hugepage_subpool *spool = subpool_vma(vma);
1139         struct hstate *h = hstate_vma(vma);
1140         struct page *page;
1141         long chg;
1142         int ret, idx;
1143         struct hugetlb_cgroup *h_cg;
1144
1145         idx = hstate_index(h);
1146         /*
1147          * Processes that did not create the mapping will have no
1148          * reserves and will not have accounted against subpool
1149          * limit. Check that the subpool limit can be made before
1150          * satisfying the allocation MAP_NORESERVE mappings may also
1151          * need pages and subpool limit allocated allocated if no reserve
1152          * mapping overlaps.
1153          */
1154         chg = vma_needs_reservation(h, vma, addr);
1155         if (chg < 0)
1156                 return ERR_PTR(-ENOMEM);
1157         if (chg)
1158                 if (hugepage_subpool_get_pages(spool, chg))
1159                         return ERR_PTR(-ENOSPC);
1160
1161         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1162         if (ret) {
1163                 hugepage_subpool_put_pages(spool, chg);
1164                 return ERR_PTR(-ENOSPC);
1165         }
1166         spin_lock(&hugetlb_lock);
1167         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1168         if (!page) {
1169                 spin_unlock(&hugetlb_lock);
1170                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1171                 if (!page) {
1172                         hugetlb_cgroup_uncharge_cgroup(idx,
1173                                                        pages_per_huge_page(h),
1174                                                        h_cg);
1175                         hugepage_subpool_put_pages(spool, chg);
1176                         return ERR_PTR(-ENOSPC);
1177                 }
1178                 spin_lock(&hugetlb_lock);
1179                 list_move(&page->lru, &h->hugepage_activelist);
1180                 /* Fall through */
1181         }
1182         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1183         spin_unlock(&hugetlb_lock);
1184
1185         set_page_private(page, (unsigned long)spool);
1186
1187         vma_commit_reservation(h, vma, addr);
1188         return page;
1189 }
1190
1191 int __weak alloc_bootmem_huge_page(struct hstate *h)
1192 {
1193         struct huge_bootmem_page *m;
1194         int nr_nodes, node;
1195
1196         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1197                 void *addr;
1198
1199                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1200                                 huge_page_size(h), huge_page_size(h), 0);
1201
1202                 if (addr) {
1203                         /*
1204                          * Use the beginning of the huge page to store the
1205                          * huge_bootmem_page struct (until gather_bootmem
1206                          * puts them into the mem_map).
1207                          */
1208                         m = addr;
1209                         goto found;
1210                 }
1211         }
1212         return 0;
1213
1214 found:
1215         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1216         /* Put them into a private list first because mem_map is not up yet */
1217         list_add(&m->list, &huge_boot_pages);
1218         m->hstate = h;
1219         return 1;
1220 }
1221
1222 static void prep_compound_huge_page(struct page *page, int order)
1223 {
1224         if (unlikely(order > (MAX_ORDER - 1)))
1225                 prep_compound_gigantic_page(page, order);
1226         else
1227                 prep_compound_page(page, order);
1228 }
1229
1230 /* Put bootmem huge pages into the standard lists after mem_map is up */
1231 static void __init gather_bootmem_prealloc(void)
1232 {
1233         struct huge_bootmem_page *m;
1234
1235         list_for_each_entry(m, &huge_boot_pages, list) {
1236                 struct hstate *h = m->hstate;
1237                 struct page *page;
1238
1239 #ifdef CONFIG_HIGHMEM
1240                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1241                 free_bootmem_late((unsigned long)m,
1242                                   sizeof(struct huge_bootmem_page));
1243 #else
1244                 page = virt_to_page(m);
1245 #endif
1246                 __ClearPageReserved(page);
1247                 WARN_ON(page_count(page) != 1);
1248                 prep_compound_huge_page(page, h->order);
1249                 prep_new_huge_page(h, page, page_to_nid(page));
1250                 /*
1251                  * If we had gigantic hugepages allocated at boot time, we need
1252                  * to restore the 'stolen' pages to totalram_pages in order to
1253                  * fix confusing memory reports from free(1) and another
1254                  * side-effects, like CommitLimit going negative.
1255                  */
1256                 if (h->order > (MAX_ORDER - 1))
1257                         adjust_managed_page_count(page, 1 << h->order);
1258         }
1259 }
1260
1261 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1262 {
1263         unsigned long i;
1264
1265         for (i = 0; i < h->max_huge_pages; ++i) {
1266                 if (h->order >= MAX_ORDER) {
1267                         if (!alloc_bootmem_huge_page(h))
1268                                 break;
1269                 } else if (!alloc_fresh_huge_page(h,
1270                                          &node_states[N_MEMORY]))
1271                         break;
1272         }
1273         h->max_huge_pages = i;
1274 }
1275
1276 static void __init hugetlb_init_hstates(void)
1277 {
1278         struct hstate *h;
1279
1280         for_each_hstate(h) {
1281                 /* oversize hugepages were init'ed in early boot */
1282                 if (h->order < MAX_ORDER)
1283                         hugetlb_hstate_alloc_pages(h);
1284         }
1285 }
1286
1287 static char * __init memfmt(char *buf, unsigned long n)
1288 {
1289         if (n >= (1UL << 30))
1290                 sprintf(buf, "%lu GB", n >> 30);
1291         else if (n >= (1UL << 20))
1292                 sprintf(buf, "%lu MB", n >> 20);
1293         else
1294                 sprintf(buf, "%lu KB", n >> 10);
1295         return buf;
1296 }
1297
1298 static void __init report_hugepages(void)
1299 {
1300         struct hstate *h;
1301
1302         for_each_hstate(h) {
1303                 char buf[32];
1304                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1305                         memfmt(buf, huge_page_size(h)),
1306                         h->free_huge_pages);
1307         }
1308 }
1309
1310 #ifdef CONFIG_HIGHMEM
1311 static void try_to_free_low(struct hstate *h, unsigned long count,
1312                                                 nodemask_t *nodes_allowed)
1313 {
1314         int i;
1315
1316         if (h->order >= MAX_ORDER)
1317                 return;
1318
1319         for_each_node_mask(i, *nodes_allowed) {
1320                 struct page *page, *next;
1321                 struct list_head *freel = &h->hugepage_freelists[i];
1322                 list_for_each_entry_safe(page, next, freel, lru) {
1323                         if (count >= h->nr_huge_pages)
1324                                 return;
1325                         if (PageHighMem(page))
1326                                 continue;
1327                         list_del(&page->lru);
1328                         update_and_free_page(h, page);
1329                         h->free_huge_pages--;
1330                         h->free_huge_pages_node[page_to_nid(page)]--;
1331                 }
1332         }
1333 }
1334 #else
1335 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1336                                                 nodemask_t *nodes_allowed)
1337 {
1338 }
1339 #endif
1340
1341 /*
1342  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1343  * balanced by operating on them in a round-robin fashion.
1344  * Returns 1 if an adjustment was made.
1345  */
1346 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1347                                 int delta)
1348 {
1349         int nr_nodes, node;
1350
1351         VM_BUG_ON(delta != -1 && delta != 1);
1352
1353         if (delta < 0) {
1354                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1355                         if (h->surplus_huge_pages_node[node])
1356                                 goto found;
1357                 }
1358         } else {
1359                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1360                         if (h->surplus_huge_pages_node[node] <
1361                                         h->nr_huge_pages_node[node])
1362                                 goto found;
1363                 }
1364         }
1365         return 0;
1366
1367 found:
1368         h->surplus_huge_pages += delta;
1369         h->surplus_huge_pages_node[node] += delta;
1370         return 1;
1371 }
1372
1373 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1374 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1375                                                 nodemask_t *nodes_allowed)
1376 {
1377         unsigned long min_count, ret;
1378
1379         if (h->order >= MAX_ORDER)
1380                 return h->max_huge_pages;
1381
1382         /*
1383          * Increase the pool size
1384          * First take pages out of surplus state.  Then make up the
1385          * remaining difference by allocating fresh huge pages.
1386          *
1387          * We might race with alloc_buddy_huge_page() here and be unable
1388          * to convert a surplus huge page to a normal huge page. That is
1389          * not critical, though, it just means the overall size of the
1390          * pool might be one hugepage larger than it needs to be, but
1391          * within all the constraints specified by the sysctls.
1392          */
1393         spin_lock(&hugetlb_lock);
1394         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1395                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1396                         break;
1397         }
1398
1399         while (count > persistent_huge_pages(h)) {
1400                 /*
1401                  * If this allocation races such that we no longer need the
1402                  * page, free_huge_page will handle it by freeing the page
1403                  * and reducing the surplus.
1404                  */
1405                 spin_unlock(&hugetlb_lock);
1406                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1407                 spin_lock(&hugetlb_lock);
1408                 if (!ret)
1409                         goto out;
1410
1411                 /* Bail for signals. Probably ctrl-c from user */
1412                 if (signal_pending(current))
1413                         goto out;
1414         }
1415
1416         /*
1417          * Decrease the pool size
1418          * First return free pages to the buddy allocator (being careful
1419          * to keep enough around to satisfy reservations).  Then place
1420          * pages into surplus state as needed so the pool will shrink
1421          * to the desired size as pages become free.
1422          *
1423          * By placing pages into the surplus state independent of the
1424          * overcommit value, we are allowing the surplus pool size to
1425          * exceed overcommit. There are few sane options here. Since
1426          * alloc_buddy_huge_page() is checking the global counter,
1427          * though, we'll note that we're not allowed to exceed surplus
1428          * and won't grow the pool anywhere else. Not until one of the
1429          * sysctls are changed, or the surplus pages go out of use.
1430          */
1431         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1432         min_count = max(count, min_count);
1433         try_to_free_low(h, min_count, nodes_allowed);
1434         while (min_count < persistent_huge_pages(h)) {
1435                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1436                         break;
1437         }
1438         while (count < persistent_huge_pages(h)) {
1439                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1440                         break;
1441         }
1442 out:
1443         ret = persistent_huge_pages(h);
1444         spin_unlock(&hugetlb_lock);
1445         return ret;
1446 }
1447
1448 #define HSTATE_ATTR_RO(_name) \
1449         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1450
1451 #define HSTATE_ATTR(_name) \
1452         static struct kobj_attribute _name##_attr = \
1453                 __ATTR(_name, 0644, _name##_show, _name##_store)
1454
1455 static struct kobject *hugepages_kobj;
1456 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1457
1458 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1459
1460 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1461 {
1462         int i;
1463
1464         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1465                 if (hstate_kobjs[i] == kobj) {
1466                         if (nidp)
1467                                 *nidp = NUMA_NO_NODE;
1468                         return &hstates[i];
1469                 }
1470
1471         return kobj_to_node_hstate(kobj, nidp);
1472 }
1473
1474 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1475                                         struct kobj_attribute *attr, char *buf)
1476 {
1477         struct hstate *h;
1478         unsigned long nr_huge_pages;
1479         int nid;
1480
1481         h = kobj_to_hstate(kobj, &nid);
1482         if (nid == NUMA_NO_NODE)
1483                 nr_huge_pages = h->nr_huge_pages;
1484         else
1485                 nr_huge_pages = h->nr_huge_pages_node[nid];
1486
1487         return sprintf(buf, "%lu\n", nr_huge_pages);
1488 }
1489
1490 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1491                         struct kobject *kobj, struct kobj_attribute *attr,
1492                         const char *buf, size_t len)
1493 {
1494         int err;
1495         int nid;
1496         unsigned long count;
1497         struct hstate *h;
1498         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1499
1500         err = kstrtoul(buf, 10, &count);
1501         if (err)
1502                 goto out;
1503
1504         h = kobj_to_hstate(kobj, &nid);
1505         if (h->order >= MAX_ORDER) {
1506                 err = -EINVAL;
1507                 goto out;
1508         }
1509
1510         if (nid == NUMA_NO_NODE) {
1511                 /*
1512                  * global hstate attribute
1513                  */
1514                 if (!(obey_mempolicy &&
1515                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1516                         NODEMASK_FREE(nodes_allowed);
1517                         nodes_allowed = &node_states[N_MEMORY];
1518                 }
1519         } else if (nodes_allowed) {
1520                 /*
1521                  * per node hstate attribute: adjust count to global,
1522                  * but restrict alloc/free to the specified node.
1523                  */
1524                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1525                 init_nodemask_of_node(nodes_allowed, nid);
1526         } else
1527                 nodes_allowed = &node_states[N_MEMORY];
1528
1529         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1530
1531         if (nodes_allowed != &node_states[N_MEMORY])
1532                 NODEMASK_FREE(nodes_allowed);
1533
1534         return len;
1535 out:
1536         NODEMASK_FREE(nodes_allowed);
1537         return err;
1538 }
1539
1540 static ssize_t nr_hugepages_show(struct kobject *kobj,
1541                                        struct kobj_attribute *attr, char *buf)
1542 {
1543         return nr_hugepages_show_common(kobj, attr, buf);
1544 }
1545
1546 static ssize_t nr_hugepages_store(struct kobject *kobj,
1547                struct kobj_attribute *attr, const char *buf, size_t len)
1548 {
1549         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1550 }
1551 HSTATE_ATTR(nr_hugepages);
1552
1553 #ifdef CONFIG_NUMA
1554
1555 /*
1556  * hstate attribute for optionally mempolicy-based constraint on persistent
1557  * huge page alloc/free.
1558  */
1559 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1560                                        struct kobj_attribute *attr, char *buf)
1561 {
1562         return nr_hugepages_show_common(kobj, attr, buf);
1563 }
1564
1565 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1566                struct kobj_attribute *attr, const char *buf, size_t len)
1567 {
1568         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1569 }
1570 HSTATE_ATTR(nr_hugepages_mempolicy);
1571 #endif
1572
1573
1574 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1575                                         struct kobj_attribute *attr, char *buf)
1576 {
1577         struct hstate *h = kobj_to_hstate(kobj, NULL);
1578         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1579 }
1580
1581 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1582                 struct kobj_attribute *attr, const char *buf, size_t count)
1583 {
1584         int err;
1585         unsigned long input;
1586         struct hstate *h = kobj_to_hstate(kobj, NULL);
1587
1588         if (h->order >= MAX_ORDER)
1589                 return -EINVAL;
1590
1591         err = kstrtoul(buf, 10, &input);
1592         if (err)
1593                 return err;
1594
1595         spin_lock(&hugetlb_lock);
1596         h->nr_overcommit_huge_pages = input;
1597         spin_unlock(&hugetlb_lock);
1598
1599         return count;
1600 }
1601 HSTATE_ATTR(nr_overcommit_hugepages);
1602
1603 static ssize_t free_hugepages_show(struct kobject *kobj,
1604                                         struct kobj_attribute *attr, char *buf)
1605 {
1606         struct hstate *h;
1607         unsigned long free_huge_pages;
1608         int nid;
1609
1610         h = kobj_to_hstate(kobj, &nid);
1611         if (nid == NUMA_NO_NODE)
1612                 free_huge_pages = h->free_huge_pages;
1613         else
1614                 free_huge_pages = h->free_huge_pages_node[nid];
1615
1616         return sprintf(buf, "%lu\n", free_huge_pages);
1617 }
1618 HSTATE_ATTR_RO(free_hugepages);
1619
1620 static ssize_t resv_hugepages_show(struct kobject *kobj,
1621                                         struct kobj_attribute *attr, char *buf)
1622 {
1623         struct hstate *h = kobj_to_hstate(kobj, NULL);
1624         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1625 }
1626 HSTATE_ATTR_RO(resv_hugepages);
1627
1628 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1629                                         struct kobj_attribute *attr, char *buf)
1630 {
1631         struct hstate *h;
1632         unsigned long surplus_huge_pages;
1633         int nid;
1634
1635         h = kobj_to_hstate(kobj, &nid);
1636         if (nid == NUMA_NO_NODE)
1637                 surplus_huge_pages = h->surplus_huge_pages;
1638         else
1639                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1640
1641         return sprintf(buf, "%lu\n", surplus_huge_pages);
1642 }
1643 HSTATE_ATTR_RO(surplus_hugepages);
1644
1645 static struct attribute *hstate_attrs[] = {
1646         &nr_hugepages_attr.attr,
1647         &nr_overcommit_hugepages_attr.attr,
1648         &free_hugepages_attr.attr,
1649         &resv_hugepages_attr.attr,
1650         &surplus_hugepages_attr.attr,
1651 #ifdef CONFIG_NUMA
1652         &nr_hugepages_mempolicy_attr.attr,
1653 #endif
1654         NULL,
1655 };
1656
1657 static struct attribute_group hstate_attr_group = {
1658         .attrs = hstate_attrs,
1659 };
1660
1661 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1662                                     struct kobject **hstate_kobjs,
1663                                     struct attribute_group *hstate_attr_group)
1664 {
1665         int retval;
1666         int hi = hstate_index(h);
1667
1668         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1669         if (!hstate_kobjs[hi])
1670                 return -ENOMEM;
1671
1672         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1673         if (retval)
1674                 kobject_put(hstate_kobjs[hi]);
1675
1676         return retval;
1677 }
1678
1679 static void __init hugetlb_sysfs_init(void)
1680 {
1681         struct hstate *h;
1682         int err;
1683
1684         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1685         if (!hugepages_kobj)
1686                 return;
1687
1688         for_each_hstate(h) {
1689                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1690                                          hstate_kobjs, &hstate_attr_group);
1691                 if (err)
1692                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1693         }
1694 }
1695
1696 #ifdef CONFIG_NUMA
1697
1698 /*
1699  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1700  * with node devices in node_devices[] using a parallel array.  The array
1701  * index of a node device or _hstate == node id.
1702  * This is here to avoid any static dependency of the node device driver, in
1703  * the base kernel, on the hugetlb module.
1704  */
1705 struct node_hstate {
1706         struct kobject          *hugepages_kobj;
1707         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1708 };
1709 struct node_hstate node_hstates[MAX_NUMNODES];
1710
1711 /*
1712  * A subset of global hstate attributes for node devices
1713  */
1714 static struct attribute *per_node_hstate_attrs[] = {
1715         &nr_hugepages_attr.attr,
1716         &free_hugepages_attr.attr,
1717         &surplus_hugepages_attr.attr,
1718         NULL,
1719 };
1720
1721 static struct attribute_group per_node_hstate_attr_group = {
1722         .attrs = per_node_hstate_attrs,
1723 };
1724
1725 /*
1726  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1727  * Returns node id via non-NULL nidp.
1728  */
1729 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1730 {
1731         int nid;
1732
1733         for (nid = 0; nid < nr_node_ids; nid++) {
1734                 struct node_hstate *nhs = &node_hstates[nid];
1735                 int i;
1736                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1737                         if (nhs->hstate_kobjs[i] == kobj) {
1738                                 if (nidp)
1739                                         *nidp = nid;
1740                                 return &hstates[i];
1741                         }
1742         }
1743
1744         BUG();
1745         return NULL;
1746 }
1747
1748 /*
1749  * Unregister hstate attributes from a single node device.
1750  * No-op if no hstate attributes attached.
1751  */
1752 static void hugetlb_unregister_node(struct node *node)
1753 {
1754         struct hstate *h;
1755         struct node_hstate *nhs = &node_hstates[node->dev.id];
1756
1757         if (!nhs->hugepages_kobj)
1758                 return;         /* no hstate attributes */
1759
1760         for_each_hstate(h) {
1761                 int idx = hstate_index(h);
1762                 if (nhs->hstate_kobjs[idx]) {
1763                         kobject_put(nhs->hstate_kobjs[idx]);
1764                         nhs->hstate_kobjs[idx] = NULL;
1765                 }
1766         }
1767
1768         kobject_put(nhs->hugepages_kobj);
1769         nhs->hugepages_kobj = NULL;
1770 }
1771
1772 /*
1773  * hugetlb module exit:  unregister hstate attributes from node devices
1774  * that have them.
1775  */
1776 static void hugetlb_unregister_all_nodes(void)
1777 {
1778         int nid;
1779
1780         /*
1781          * disable node device registrations.
1782          */
1783         register_hugetlbfs_with_node(NULL, NULL);
1784
1785         /*
1786          * remove hstate attributes from any nodes that have them.
1787          */
1788         for (nid = 0; nid < nr_node_ids; nid++)
1789                 hugetlb_unregister_node(node_devices[nid]);
1790 }
1791
1792 /*
1793  * Register hstate attributes for a single node device.
1794  * No-op if attributes already registered.
1795  */
1796 static void hugetlb_register_node(struct node *node)
1797 {
1798         struct hstate *h;
1799         struct node_hstate *nhs = &node_hstates[node->dev.id];
1800         int err;
1801
1802         if (nhs->hugepages_kobj)
1803                 return;         /* already allocated */
1804
1805         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1806                                                         &node->dev.kobj);
1807         if (!nhs->hugepages_kobj)
1808                 return;
1809
1810         for_each_hstate(h) {
1811                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1812                                                 nhs->hstate_kobjs,
1813                                                 &per_node_hstate_attr_group);
1814                 if (err) {
1815                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1816                                 h->name, node->dev.id);
1817                         hugetlb_unregister_node(node);
1818                         break;
1819                 }
1820         }
1821 }
1822
1823 /*
1824  * hugetlb init time:  register hstate attributes for all registered node
1825  * devices of nodes that have memory.  All on-line nodes should have
1826  * registered their associated device by this time.
1827  */
1828 static void hugetlb_register_all_nodes(void)
1829 {
1830         int nid;
1831
1832         for_each_node_state(nid, N_MEMORY) {
1833                 struct node *node = node_devices[nid];
1834                 if (node->dev.id == nid)
1835                         hugetlb_register_node(node);
1836         }
1837
1838         /*
1839          * Let the node device driver know we're here so it can
1840          * [un]register hstate attributes on node hotplug.
1841          */
1842         register_hugetlbfs_with_node(hugetlb_register_node,
1843                                      hugetlb_unregister_node);
1844 }
1845 #else   /* !CONFIG_NUMA */
1846
1847 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1848 {
1849         BUG();
1850         if (nidp)
1851                 *nidp = -1;
1852         return NULL;
1853 }
1854
1855 static void hugetlb_unregister_all_nodes(void) { }
1856
1857 static void hugetlb_register_all_nodes(void) { }
1858
1859 #endif
1860
1861 static void __exit hugetlb_exit(void)
1862 {
1863         struct hstate *h;
1864
1865         hugetlb_unregister_all_nodes();
1866
1867         for_each_hstate(h) {
1868                 kobject_put(hstate_kobjs[hstate_index(h)]);
1869         }
1870
1871         kobject_put(hugepages_kobj);
1872 }
1873 module_exit(hugetlb_exit);
1874
1875 static int __init hugetlb_init(void)
1876 {
1877         /* Some platform decide whether they support huge pages at boot
1878          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1879          * there is no such support
1880          */
1881         if (HPAGE_SHIFT == 0)
1882                 return 0;
1883
1884         if (!size_to_hstate(default_hstate_size)) {
1885                 default_hstate_size = HPAGE_SIZE;
1886                 if (!size_to_hstate(default_hstate_size))
1887                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1888         }
1889         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1890         if (default_hstate_max_huge_pages)
1891                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1892
1893         hugetlb_init_hstates();
1894         gather_bootmem_prealloc();
1895         report_hugepages();
1896
1897         hugetlb_sysfs_init();
1898         hugetlb_register_all_nodes();
1899         hugetlb_cgroup_file_init();
1900
1901         return 0;
1902 }
1903 module_init(hugetlb_init);
1904
1905 /* Should be called on processing a hugepagesz=... option */
1906 void __init hugetlb_add_hstate(unsigned order)
1907 {
1908         struct hstate *h;
1909         unsigned long i;
1910
1911         if (size_to_hstate(PAGE_SIZE << order)) {
1912                 pr_warning("hugepagesz= specified twice, ignoring\n");
1913                 return;
1914         }
1915         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1916         BUG_ON(order == 0);
1917         h = &hstates[hugetlb_max_hstate++];
1918         h->order = order;
1919         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1920         h->nr_huge_pages = 0;
1921         h->free_huge_pages = 0;
1922         for (i = 0; i < MAX_NUMNODES; ++i)
1923                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1924         INIT_LIST_HEAD(&h->hugepage_activelist);
1925         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1926         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1927         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1928                                         huge_page_size(h)/1024);
1929
1930         parsed_hstate = h;
1931 }
1932
1933 static int __init hugetlb_nrpages_setup(char *s)
1934 {
1935         unsigned long *mhp;
1936         static unsigned long *last_mhp;
1937
1938         /*
1939          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1940          * so this hugepages= parameter goes to the "default hstate".
1941          */
1942         if (!hugetlb_max_hstate)
1943                 mhp = &default_hstate_max_huge_pages;
1944         else
1945                 mhp = &parsed_hstate->max_huge_pages;
1946
1947         if (mhp == last_mhp) {
1948                 pr_warning("hugepages= specified twice without "
1949                            "interleaving hugepagesz=, ignoring\n");
1950                 return 1;
1951         }
1952
1953         if (sscanf(s, "%lu", mhp) <= 0)
1954                 *mhp = 0;
1955
1956         /*
1957          * Global state is always initialized later in hugetlb_init.
1958          * But we need to allocate >= MAX_ORDER hstates here early to still
1959          * use the bootmem allocator.
1960          */
1961         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1962                 hugetlb_hstate_alloc_pages(parsed_hstate);
1963
1964         last_mhp = mhp;
1965
1966         return 1;
1967 }
1968 __setup("hugepages=", hugetlb_nrpages_setup);
1969
1970 static int __init hugetlb_default_setup(char *s)
1971 {
1972         default_hstate_size = memparse(s, &s);
1973         return 1;
1974 }
1975 __setup("default_hugepagesz=", hugetlb_default_setup);
1976
1977 static unsigned int cpuset_mems_nr(unsigned int *array)
1978 {
1979         int node;
1980         unsigned int nr = 0;
1981
1982         for_each_node_mask(node, cpuset_current_mems_allowed)
1983                 nr += array[node];
1984
1985         return nr;
1986 }
1987
1988 #ifdef CONFIG_SYSCTL
1989 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1990                          struct ctl_table *table, int write,
1991                          void __user *buffer, size_t *length, loff_t *ppos)
1992 {
1993         struct hstate *h = &default_hstate;
1994         unsigned long tmp;
1995         int ret;
1996
1997         tmp = h->max_huge_pages;
1998
1999         if (write && h->order >= MAX_ORDER)
2000                 return -EINVAL;
2001
2002         table->data = &tmp;
2003         table->maxlen = sizeof(unsigned long);
2004         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2005         if (ret)
2006                 goto out;
2007
2008         if (write) {
2009                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2010                                                 GFP_KERNEL | __GFP_NORETRY);
2011                 if (!(obey_mempolicy &&
2012                                init_nodemask_of_mempolicy(nodes_allowed))) {
2013                         NODEMASK_FREE(nodes_allowed);
2014                         nodes_allowed = &node_states[N_MEMORY];
2015                 }
2016                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2017
2018                 if (nodes_allowed != &node_states[N_MEMORY])
2019                         NODEMASK_FREE(nodes_allowed);
2020         }
2021 out:
2022         return ret;
2023 }
2024
2025 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2026                           void __user *buffer, size_t *length, loff_t *ppos)
2027 {
2028
2029         return hugetlb_sysctl_handler_common(false, table, write,
2030                                                         buffer, length, ppos);
2031 }
2032
2033 #ifdef CONFIG_NUMA
2034 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2035                           void __user *buffer, size_t *length, loff_t *ppos)
2036 {
2037         return hugetlb_sysctl_handler_common(true, table, write,
2038                                                         buffer, length, ppos);
2039 }
2040 #endif /* CONFIG_NUMA */
2041
2042 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2043                         void __user *buffer,
2044                         size_t *length, loff_t *ppos)
2045 {
2046         proc_dointvec(table, write, buffer, length, ppos);
2047         if (hugepages_treat_as_movable)
2048                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2049         else
2050                 htlb_alloc_mask = GFP_HIGHUSER;
2051         return 0;
2052 }
2053
2054 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2055                         void __user *buffer,
2056                         size_t *length, loff_t *ppos)
2057 {
2058         struct hstate *h = &default_hstate;
2059         unsigned long tmp;
2060         int ret;
2061
2062         tmp = h->nr_overcommit_huge_pages;
2063
2064         if (write && h->order >= MAX_ORDER)
2065                 return -EINVAL;
2066
2067         table->data = &tmp;
2068         table->maxlen = sizeof(unsigned long);
2069         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2070         if (ret)
2071                 goto out;
2072
2073         if (write) {
2074                 spin_lock(&hugetlb_lock);
2075                 h->nr_overcommit_huge_pages = tmp;
2076                 spin_unlock(&hugetlb_lock);
2077         }
2078 out:
2079         return ret;
2080 }
2081
2082 #endif /* CONFIG_SYSCTL */
2083
2084 void hugetlb_report_meminfo(struct seq_file *m)
2085 {
2086         struct hstate *h = &default_hstate;
2087         seq_printf(m,
2088                         "HugePages_Total:   %5lu\n"
2089                         "HugePages_Free:    %5lu\n"
2090                         "HugePages_Rsvd:    %5lu\n"
2091                         "HugePages_Surp:    %5lu\n"
2092                         "Hugepagesize:   %8lu kB\n",
2093                         h->nr_huge_pages,
2094                         h->free_huge_pages,
2095                         h->resv_huge_pages,
2096                         h->surplus_huge_pages,
2097                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2098 }
2099
2100 int hugetlb_report_node_meminfo(int nid, char *buf)
2101 {
2102         struct hstate *h = &default_hstate;
2103         return sprintf(buf,
2104                 "Node %d HugePages_Total: %5u\n"
2105                 "Node %d HugePages_Free:  %5u\n"
2106                 "Node %d HugePages_Surp:  %5u\n",
2107                 nid, h->nr_huge_pages_node[nid],
2108                 nid, h->free_huge_pages_node[nid],
2109                 nid, h->surplus_huge_pages_node[nid]);
2110 }
2111
2112 void hugetlb_show_meminfo(void)
2113 {
2114         struct hstate *h;
2115         int nid;
2116
2117         for_each_node_state(nid, N_MEMORY)
2118                 for_each_hstate(h)
2119                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2120                                 nid,
2121                                 h->nr_huge_pages_node[nid],
2122                                 h->free_huge_pages_node[nid],
2123                                 h->surplus_huge_pages_node[nid],
2124                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2125 }
2126
2127 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2128 unsigned long hugetlb_total_pages(void)
2129 {
2130         struct hstate *h;
2131         unsigned long nr_total_pages = 0;
2132
2133         for_each_hstate(h)
2134                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2135         return nr_total_pages;
2136 }
2137
2138 static int hugetlb_acct_memory(struct hstate *h, long delta)
2139 {
2140         int ret = -ENOMEM;
2141
2142         spin_lock(&hugetlb_lock);
2143         /*
2144          * When cpuset is configured, it breaks the strict hugetlb page
2145          * reservation as the accounting is done on a global variable. Such
2146          * reservation is completely rubbish in the presence of cpuset because
2147          * the reservation is not checked against page availability for the
2148          * current cpuset. Application can still potentially OOM'ed by kernel
2149          * with lack of free htlb page in cpuset that the task is in.
2150          * Attempt to enforce strict accounting with cpuset is almost
2151          * impossible (or too ugly) because cpuset is too fluid that
2152          * task or memory node can be dynamically moved between cpusets.
2153          *
2154          * The change of semantics for shared hugetlb mapping with cpuset is
2155          * undesirable. However, in order to preserve some of the semantics,
2156          * we fall back to check against current free page availability as
2157          * a best attempt and hopefully to minimize the impact of changing
2158          * semantics that cpuset has.
2159          */
2160         if (delta > 0) {
2161                 if (gather_surplus_pages(h, delta) < 0)
2162                         goto out;
2163
2164                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2165                         return_unused_surplus_pages(h, delta);
2166                         goto out;
2167                 }
2168         }
2169
2170         ret = 0;
2171         if (delta < 0)
2172                 return_unused_surplus_pages(h, (unsigned long) -delta);
2173
2174 out:
2175         spin_unlock(&hugetlb_lock);
2176         return ret;
2177 }
2178
2179 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2180 {
2181         struct resv_map *reservations = vma_resv_map(vma);
2182
2183         /*
2184          * This new VMA should share its siblings reservation map if present.
2185          * The VMA will only ever have a valid reservation map pointer where
2186          * it is being copied for another still existing VMA.  As that VMA
2187          * has a reference to the reservation map it cannot disappear until
2188          * after this open call completes.  It is therefore safe to take a
2189          * new reference here without additional locking.
2190          */
2191         if (reservations)
2192                 kref_get(&reservations->refs);
2193 }
2194
2195 static void resv_map_put(struct vm_area_struct *vma)
2196 {
2197         struct resv_map *reservations = vma_resv_map(vma);
2198
2199         if (!reservations)
2200                 return;
2201         kref_put(&reservations->refs, resv_map_release);
2202 }
2203
2204 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2205 {
2206         struct hstate *h = hstate_vma(vma);
2207         struct resv_map *reservations = vma_resv_map(vma);
2208         struct hugepage_subpool *spool = subpool_vma(vma);
2209         unsigned long reserve;
2210         unsigned long start;
2211         unsigned long end;
2212
2213         if (reservations) {
2214                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2215                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2216
2217                 reserve = (end - start) -
2218                         region_count(&reservations->regions, start, end);
2219
2220                 resv_map_put(vma);
2221
2222                 if (reserve) {
2223                         hugetlb_acct_memory(h, -reserve);
2224                         hugepage_subpool_put_pages(spool, reserve);
2225                 }
2226         }
2227 }
2228
2229 /*
2230  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2231  * handle_mm_fault() to try to instantiate regular-sized pages in the
2232  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2233  * this far.
2234  */
2235 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2236 {
2237         BUG();
2238         return 0;
2239 }
2240
2241 const struct vm_operations_struct hugetlb_vm_ops = {
2242         .fault = hugetlb_vm_op_fault,
2243         .open = hugetlb_vm_op_open,
2244         .close = hugetlb_vm_op_close,
2245 };
2246
2247 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2248                                 int writable)
2249 {
2250         pte_t entry;
2251
2252         if (writable) {
2253                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2254                                          vma->vm_page_prot)));
2255         } else {
2256                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2257                                            vma->vm_page_prot));
2258         }
2259         entry = pte_mkyoung(entry);
2260         entry = pte_mkhuge(entry);
2261         entry = arch_make_huge_pte(entry, vma, page, writable);
2262
2263         return entry;
2264 }
2265
2266 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2267                                    unsigned long address, pte_t *ptep)
2268 {
2269         pte_t entry;
2270
2271         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2272         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2273                 update_mmu_cache(vma, address, ptep);
2274 }
2275
2276
2277 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2278                             struct vm_area_struct *vma)
2279 {
2280         pte_t *src_pte, *dst_pte, entry;
2281         struct page *ptepage;
2282         unsigned long addr;
2283         int cow;
2284         struct hstate *h = hstate_vma(vma);
2285         unsigned long sz = huge_page_size(h);
2286
2287         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2288
2289         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2290                 src_pte = huge_pte_offset(src, addr);
2291                 if (!src_pte)
2292                         continue;
2293                 dst_pte = huge_pte_alloc(dst, addr, sz);
2294                 if (!dst_pte)
2295                         goto nomem;
2296
2297                 /* If the pagetables are shared don't copy or take references */
2298                 if (dst_pte == src_pte)
2299                         continue;
2300
2301                 spin_lock(&dst->page_table_lock);
2302                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2303                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2304                         if (cow)
2305                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2306                         entry = huge_ptep_get(src_pte);
2307                         ptepage = pte_page(entry);
2308                         get_page(ptepage);
2309                         page_dup_rmap(ptepage);
2310                         set_huge_pte_at(dst, addr, dst_pte, entry);
2311                 }
2312                 spin_unlock(&src->page_table_lock);
2313                 spin_unlock(&dst->page_table_lock);
2314         }
2315         return 0;
2316
2317 nomem:
2318         return -ENOMEM;
2319 }
2320
2321 static int is_hugetlb_entry_migration(pte_t pte)
2322 {
2323         swp_entry_t swp;
2324
2325         if (huge_pte_none(pte) || pte_present(pte))
2326                 return 0;
2327         swp = pte_to_swp_entry(pte);
2328         if (non_swap_entry(swp) && is_migration_entry(swp))
2329                 return 1;
2330         else
2331                 return 0;
2332 }
2333
2334 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2335 {
2336         swp_entry_t swp;
2337
2338         if (huge_pte_none(pte) || pte_present(pte))
2339                 return 0;
2340         swp = pte_to_swp_entry(pte);
2341         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2342                 return 1;
2343         else
2344                 return 0;
2345 }
2346
2347 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2348                             unsigned long start, unsigned long end,
2349                             struct page *ref_page)
2350 {
2351         int force_flush = 0;
2352         struct mm_struct *mm = vma->vm_mm;
2353         unsigned long address;
2354         pte_t *ptep;
2355         pte_t pte;
2356         struct page *page;
2357         struct hstate *h = hstate_vma(vma);
2358         unsigned long sz = huge_page_size(h);
2359         const unsigned long mmun_start = start; /* For mmu_notifiers */
2360         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2361
2362         WARN_ON(!is_vm_hugetlb_page(vma));
2363         BUG_ON(start & ~huge_page_mask(h));
2364         BUG_ON(end & ~huge_page_mask(h));
2365
2366         tlb_start_vma(tlb, vma);
2367         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2368 again:
2369         spin_lock(&mm->page_table_lock);
2370         for (address = start; address < end; address += sz) {
2371                 ptep = huge_pte_offset(mm, address);
2372                 if (!ptep)
2373                         continue;
2374
2375                 if (huge_pmd_unshare(mm, &address, ptep))
2376                         continue;
2377
2378                 pte = huge_ptep_get(ptep);
2379                 if (huge_pte_none(pte))
2380                         continue;
2381
2382                 /*
2383                  * HWPoisoned hugepage is already unmapped and dropped reference
2384                  */
2385                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2386                         huge_pte_clear(mm, address, ptep);
2387                         continue;
2388                 }
2389
2390                 page = pte_page(pte);
2391                 /*
2392                  * If a reference page is supplied, it is because a specific
2393                  * page is being unmapped, not a range. Ensure the page we
2394                  * are about to unmap is the actual page of interest.
2395                  */
2396                 if (ref_page) {
2397                         if (page != ref_page)
2398                                 continue;
2399
2400                         /*
2401                          * Mark the VMA as having unmapped its page so that
2402                          * future faults in this VMA will fail rather than
2403                          * looking like data was lost
2404                          */
2405                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2406                 }
2407
2408                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2409                 tlb_remove_tlb_entry(tlb, ptep, address);
2410                 if (huge_pte_dirty(pte))
2411                         set_page_dirty(page);
2412
2413                 page_remove_rmap(page);
2414                 force_flush = !__tlb_remove_page(tlb, page);
2415                 if (force_flush)
2416                         break;
2417                 /* Bail out after unmapping reference page if supplied */
2418                 if (ref_page)
2419                         break;
2420         }
2421         spin_unlock(&mm->page_table_lock);
2422         /*
2423          * mmu_gather ran out of room to batch pages, we break out of
2424          * the PTE lock to avoid doing the potential expensive TLB invalidate
2425          * and page-free while holding it.
2426          */
2427         if (force_flush) {
2428                 force_flush = 0;
2429                 tlb_flush_mmu(tlb);
2430                 if (address < end && !ref_page)
2431                         goto again;
2432         }
2433         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2434         tlb_end_vma(tlb, vma);
2435 }
2436
2437 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2438                           struct vm_area_struct *vma, unsigned long start,
2439                           unsigned long end, struct page *ref_page)
2440 {
2441         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2442
2443         /*
2444          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2445          * test will fail on a vma being torn down, and not grab a page table
2446          * on its way out.  We're lucky that the flag has such an appropriate
2447          * name, and can in fact be safely cleared here. We could clear it
2448          * before the __unmap_hugepage_range above, but all that's necessary
2449          * is to clear it before releasing the i_mmap_mutex. This works
2450          * because in the context this is called, the VMA is about to be
2451          * destroyed and the i_mmap_mutex is held.
2452          */
2453         vma->vm_flags &= ~VM_MAYSHARE;
2454 }
2455
2456 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2457                           unsigned long end, struct page *ref_page)
2458 {
2459         struct mm_struct *mm;
2460         struct mmu_gather tlb;
2461
2462         mm = vma->vm_mm;
2463
2464         tlb_gather_mmu(&tlb, mm, start, end);
2465         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2466         tlb_finish_mmu(&tlb, start, end);
2467 }
2468
2469 /*
2470  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2471  * mappping it owns the reserve page for. The intention is to unmap the page
2472  * from other VMAs and let the children be SIGKILLed if they are faulting the
2473  * same region.
2474  */
2475 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2476                                 struct page *page, unsigned long address)
2477 {
2478         struct hstate *h = hstate_vma(vma);
2479         struct vm_area_struct *iter_vma;
2480         struct address_space *mapping;
2481         pgoff_t pgoff;
2482
2483         /*
2484          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2485          * from page cache lookup which is in HPAGE_SIZE units.
2486          */
2487         address = address & huge_page_mask(h);
2488         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2489                         vma->vm_pgoff;
2490         mapping = file_inode(vma->vm_file)->i_mapping;
2491
2492         /*
2493          * Take the mapping lock for the duration of the table walk. As
2494          * this mapping should be shared between all the VMAs,
2495          * __unmap_hugepage_range() is called as the lock is already held
2496          */
2497         mutex_lock(&mapping->i_mmap_mutex);
2498         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2499                 /* Do not unmap the current VMA */
2500                 if (iter_vma == vma)
2501                         continue;
2502
2503                 /*
2504                  * Unmap the page from other VMAs without their own reserves.
2505                  * They get marked to be SIGKILLed if they fault in these
2506                  * areas. This is because a future no-page fault on this VMA
2507                  * could insert a zeroed page instead of the data existing
2508                  * from the time of fork. This would look like data corruption
2509                  */
2510                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2511                         unmap_hugepage_range(iter_vma, address,
2512                                              address + huge_page_size(h), page);
2513         }
2514         mutex_unlock(&mapping->i_mmap_mutex);
2515
2516         return 1;
2517 }
2518
2519 /*
2520  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2521  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2522  * cannot race with other handlers or page migration.
2523  * Keep the pte_same checks anyway to make transition from the mutex easier.
2524  */
2525 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2526                         unsigned long address, pte_t *ptep, pte_t pte,
2527                         struct page *pagecache_page)
2528 {
2529         struct hstate *h = hstate_vma(vma);
2530         struct page *old_page, *new_page;
2531         int avoidcopy;
2532         int outside_reserve = 0;
2533         unsigned long mmun_start;       /* For mmu_notifiers */
2534         unsigned long mmun_end;         /* For mmu_notifiers */
2535
2536         old_page = pte_page(pte);
2537
2538 retry_avoidcopy:
2539         /* If no-one else is actually using this page, avoid the copy
2540          * and just make the page writable */
2541         avoidcopy = (page_mapcount(old_page) == 1);
2542         if (avoidcopy) {
2543                 if (PageAnon(old_page))
2544                         page_move_anon_rmap(old_page, vma, address);
2545                 set_huge_ptep_writable(vma, address, ptep);
2546                 return 0;
2547         }
2548
2549         /*
2550          * If the process that created a MAP_PRIVATE mapping is about to
2551          * perform a COW due to a shared page count, attempt to satisfy
2552          * the allocation without using the existing reserves. The pagecache
2553          * page is used to determine if the reserve at this address was
2554          * consumed or not. If reserves were used, a partial faulted mapping
2555          * at the time of fork() could consume its reserves on COW instead
2556          * of the full address range.
2557          */
2558         if (!(vma->vm_flags & VM_MAYSHARE) &&
2559                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2560                         old_page != pagecache_page)
2561                 outside_reserve = 1;
2562
2563         page_cache_get(old_page);
2564
2565         /* Drop page_table_lock as buddy allocator may be called */
2566         spin_unlock(&mm->page_table_lock);
2567         new_page = alloc_huge_page(vma, address, outside_reserve);
2568
2569         if (IS_ERR(new_page)) {
2570                 long err = PTR_ERR(new_page);
2571                 page_cache_release(old_page);
2572
2573                 /*
2574                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2575                  * it is due to references held by a child and an insufficient
2576                  * huge page pool. To guarantee the original mappers
2577                  * reliability, unmap the page from child processes. The child
2578                  * may get SIGKILLed if it later faults.
2579                  */
2580                 if (outside_reserve) {
2581                         BUG_ON(huge_pte_none(pte));
2582                         if (unmap_ref_private(mm, vma, old_page, address)) {
2583                                 BUG_ON(huge_pte_none(pte));
2584                                 spin_lock(&mm->page_table_lock);
2585                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2586                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2587                                         goto retry_avoidcopy;
2588                                 /*
2589                                  * race occurs while re-acquiring page_table_lock, and
2590                                  * our job is done.
2591                                  */
2592                                 return 0;
2593                         }
2594                         WARN_ON_ONCE(1);
2595                 }
2596
2597                 /* Caller expects lock to be held */
2598                 spin_lock(&mm->page_table_lock);
2599                 if (err == -ENOMEM)
2600                         return VM_FAULT_OOM;
2601                 else
2602                         return VM_FAULT_SIGBUS;
2603         }
2604
2605         /*
2606          * When the original hugepage is shared one, it does not have
2607          * anon_vma prepared.
2608          */
2609         if (unlikely(anon_vma_prepare(vma))) {
2610                 page_cache_release(new_page);
2611                 page_cache_release(old_page);
2612                 /* Caller expects lock to be held */
2613                 spin_lock(&mm->page_table_lock);
2614                 return VM_FAULT_OOM;
2615         }
2616
2617         copy_user_huge_page(new_page, old_page, address, vma,
2618                             pages_per_huge_page(h));
2619         __SetPageUptodate(new_page);
2620
2621         mmun_start = address & huge_page_mask(h);
2622         mmun_end = mmun_start + huge_page_size(h);
2623         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2624         /*
2625          * Retake the page_table_lock to check for racing updates
2626          * before the page tables are altered
2627          */
2628         spin_lock(&mm->page_table_lock);
2629         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2630         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2631                 /* Break COW */
2632                 huge_ptep_clear_flush(vma, address, ptep);
2633                 set_huge_pte_at(mm, address, ptep,
2634                                 make_huge_pte(vma, new_page, 1));
2635                 page_remove_rmap(old_page);
2636                 hugepage_add_new_anon_rmap(new_page, vma, address);
2637                 /* Make the old page be freed below */
2638                 new_page = old_page;
2639         }
2640         spin_unlock(&mm->page_table_lock);
2641         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2642         /* Caller expects lock to be held */
2643         spin_lock(&mm->page_table_lock);
2644         page_cache_release(new_page);
2645         page_cache_release(old_page);
2646         return 0;
2647 }
2648
2649 /* Return the pagecache page at a given address within a VMA */
2650 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2651                         struct vm_area_struct *vma, unsigned long address)
2652 {
2653         struct address_space *mapping;
2654         pgoff_t idx;
2655
2656         mapping = vma->vm_file->f_mapping;
2657         idx = vma_hugecache_offset(h, vma, address);
2658
2659         return find_lock_page(mapping, idx);
2660 }
2661
2662 /*
2663  * Return whether there is a pagecache page to back given address within VMA.
2664  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2665  */
2666 static bool hugetlbfs_pagecache_present(struct hstate *h,
2667                         struct vm_area_struct *vma, unsigned long address)
2668 {
2669         struct address_space *mapping;
2670         pgoff_t idx;
2671         struct page *page;
2672
2673         mapping = vma->vm_file->f_mapping;
2674         idx = vma_hugecache_offset(h, vma, address);
2675
2676         page = find_get_page(mapping, idx);
2677         if (page)
2678                 put_page(page);
2679         return page != NULL;
2680 }
2681
2682 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2683                         unsigned long address, pte_t *ptep, unsigned int flags)
2684 {
2685         struct hstate *h = hstate_vma(vma);
2686         int ret = VM_FAULT_SIGBUS;
2687         int anon_rmap = 0;
2688         pgoff_t idx;
2689         unsigned long size;
2690         struct page *page;
2691         struct address_space *mapping;
2692         pte_t new_pte;
2693
2694         /*
2695          * Currently, we are forced to kill the process in the event the
2696          * original mapper has unmapped pages from the child due to a failed
2697          * COW. Warn that such a situation has occurred as it may not be obvious
2698          */
2699         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2700                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2701                            current->pid);
2702                 return ret;
2703         }
2704
2705         mapping = vma->vm_file->f_mapping;
2706         idx = vma_hugecache_offset(h, vma, address);
2707
2708         /*
2709          * Use page lock to guard against racing truncation
2710          * before we get page_table_lock.
2711          */
2712 retry:
2713         page = find_lock_page(mapping, idx);
2714         if (!page) {
2715                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2716                 if (idx >= size)
2717                         goto out;
2718                 page = alloc_huge_page(vma, address, 0);
2719                 if (IS_ERR(page)) {
2720                         ret = PTR_ERR(page);
2721                         if (ret == -ENOMEM)
2722                                 ret = VM_FAULT_OOM;
2723                         else
2724                                 ret = VM_FAULT_SIGBUS;
2725                         goto out;
2726                 }
2727                 clear_huge_page(page, address, pages_per_huge_page(h));
2728                 __SetPageUptodate(page);
2729
2730                 if (vma->vm_flags & VM_MAYSHARE) {
2731                         int err;
2732                         struct inode *inode = mapping->host;
2733
2734                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2735                         if (err) {
2736                                 put_page(page);
2737                                 if (err == -EEXIST)
2738                                         goto retry;
2739                                 goto out;
2740                         }
2741
2742                         spin_lock(&inode->i_lock);
2743                         inode->i_blocks += blocks_per_huge_page(h);
2744                         spin_unlock(&inode->i_lock);
2745                 } else {
2746                         lock_page(page);
2747                         if (unlikely(anon_vma_prepare(vma))) {
2748                                 ret = VM_FAULT_OOM;
2749                                 goto backout_unlocked;
2750                         }
2751                         anon_rmap = 1;
2752                 }
2753         } else {
2754                 /*
2755                  * If memory error occurs between mmap() and fault, some process
2756                  * don't have hwpoisoned swap entry for errored virtual address.
2757                  * So we need to block hugepage fault by PG_hwpoison bit check.
2758                  */
2759                 if (unlikely(PageHWPoison(page))) {
2760                         ret = VM_FAULT_HWPOISON |
2761                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2762                         goto backout_unlocked;
2763                 }
2764         }
2765
2766         /*
2767          * If we are going to COW a private mapping later, we examine the
2768          * pending reservations for this page now. This will ensure that
2769          * any allocations necessary to record that reservation occur outside
2770          * the spinlock.
2771          */
2772         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2773                 if (vma_needs_reservation(h, vma, address) < 0) {
2774                         ret = VM_FAULT_OOM;
2775                         goto backout_unlocked;
2776                 }
2777
2778         spin_lock(&mm->page_table_lock);
2779         size = i_size_read(mapping->host) >> huge_page_shift(h);
2780         if (idx >= size)
2781                 goto backout;
2782
2783         ret = 0;
2784         if (!huge_pte_none(huge_ptep_get(ptep)))
2785                 goto backout;
2786
2787         if (anon_rmap)
2788                 hugepage_add_new_anon_rmap(page, vma, address);
2789         else
2790                 page_dup_rmap(page);
2791         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2792                                 && (vma->vm_flags & VM_SHARED)));
2793         set_huge_pte_at(mm, address, ptep, new_pte);
2794
2795         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2796                 /* Optimization, do the COW without a second fault */
2797                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2798         }
2799
2800         spin_unlock(&mm->page_table_lock);
2801         unlock_page(page);
2802 out:
2803         return ret;
2804
2805 backout:
2806         spin_unlock(&mm->page_table_lock);
2807 backout_unlocked:
2808         unlock_page(page);
2809         put_page(page);
2810         goto out;
2811 }
2812
2813 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2814                         unsigned long address, unsigned int flags)
2815 {
2816         pte_t *ptep;
2817         pte_t entry;
2818         int ret;
2819         struct page *page = NULL;
2820         struct page *pagecache_page = NULL;
2821         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2822         struct hstate *h = hstate_vma(vma);
2823
2824         address &= huge_page_mask(h);
2825
2826         ptep = huge_pte_offset(mm, address);
2827         if (ptep) {
2828                 entry = huge_ptep_get(ptep);
2829                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2830                         migration_entry_wait_huge(mm, ptep);
2831                         return 0;
2832                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2833                         return VM_FAULT_HWPOISON_LARGE |
2834                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2835         }
2836
2837         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2838         if (!ptep)
2839                 return VM_FAULT_OOM;
2840
2841         /*
2842          * Serialize hugepage allocation and instantiation, so that we don't
2843          * get spurious allocation failures if two CPUs race to instantiate
2844          * the same page in the page cache.
2845          */
2846         mutex_lock(&hugetlb_instantiation_mutex);
2847         entry = huge_ptep_get(ptep);
2848         if (huge_pte_none(entry)) {
2849                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2850                 goto out_mutex;
2851         }
2852
2853         ret = 0;
2854
2855         /*
2856          * If we are going to COW the mapping later, we examine the pending
2857          * reservations for this page now. This will ensure that any
2858          * allocations necessary to record that reservation occur outside the
2859          * spinlock. For private mappings, we also lookup the pagecache
2860          * page now as it is used to determine if a reservation has been
2861          * consumed.
2862          */
2863         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2864                 if (vma_needs_reservation(h, vma, address) < 0) {
2865                         ret = VM_FAULT_OOM;
2866                         goto out_mutex;
2867                 }
2868
2869                 if (!(vma->vm_flags & VM_MAYSHARE))
2870                         pagecache_page = hugetlbfs_pagecache_page(h,
2871                                                                 vma, address);
2872         }
2873
2874         /*
2875          * hugetlb_cow() requires page locks of pte_page(entry) and
2876          * pagecache_page, so here we need take the former one
2877          * when page != pagecache_page or !pagecache_page.
2878          * Note that locking order is always pagecache_page -> page,
2879          * so no worry about deadlock.
2880          */
2881         page = pte_page(entry);
2882         get_page(page);
2883         if (page != pagecache_page)
2884                 lock_page(page);
2885
2886         spin_lock(&mm->page_table_lock);
2887         /* Check for a racing update before calling hugetlb_cow */
2888         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2889                 goto out_page_table_lock;
2890
2891
2892         if (flags & FAULT_FLAG_WRITE) {
2893                 if (!huge_pte_write(entry)) {
2894                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2895                                                         pagecache_page);
2896                         goto out_page_table_lock;
2897                 }
2898                 entry = huge_pte_mkdirty(entry);
2899         }
2900         entry = pte_mkyoung(entry);
2901         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2902                                                 flags & FAULT_FLAG_WRITE))
2903                 update_mmu_cache(vma, address, ptep);
2904
2905 out_page_table_lock:
2906         spin_unlock(&mm->page_table_lock);
2907
2908         if (pagecache_page) {
2909                 unlock_page(pagecache_page);
2910                 put_page(pagecache_page);
2911         }
2912         if (page != pagecache_page)
2913                 unlock_page(page);
2914         put_page(page);
2915
2916 out_mutex:
2917         mutex_unlock(&hugetlb_instantiation_mutex);
2918
2919         return ret;
2920 }
2921
2922 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2923                          struct page **pages, struct vm_area_struct **vmas,
2924                          unsigned long *position, unsigned long *nr_pages,
2925                          long i, unsigned int flags)
2926 {
2927         unsigned long pfn_offset;
2928         unsigned long vaddr = *position;
2929         unsigned long remainder = *nr_pages;
2930         struct hstate *h = hstate_vma(vma);
2931
2932         spin_lock(&mm->page_table_lock);
2933         while (vaddr < vma->vm_end && remainder) {
2934                 pte_t *pte;
2935                 int absent;
2936                 struct page *page;
2937
2938                 /*
2939                  * Some archs (sparc64, sh*) have multiple pte_ts to
2940                  * each hugepage.  We have to make sure we get the
2941                  * first, for the page indexing below to work.
2942                  */
2943                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2944                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2945
2946                 /*
2947                  * When coredumping, it suits get_dump_page if we just return
2948                  * an error where there's an empty slot with no huge pagecache
2949                  * to back it.  This way, we avoid allocating a hugepage, and
2950                  * the sparse dumpfile avoids allocating disk blocks, but its
2951                  * huge holes still show up with zeroes where they need to be.
2952                  */
2953                 if (absent && (flags & FOLL_DUMP) &&
2954                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2955                         remainder = 0;
2956                         break;
2957                 }
2958
2959                 /*
2960                  * We need call hugetlb_fault for both hugepages under migration
2961                  * (in which case hugetlb_fault waits for the migration,) and
2962                  * hwpoisoned hugepages (in which case we need to prevent the
2963                  * caller from accessing to them.) In order to do this, we use
2964                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2965                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2966                  * both cases, and because we can't follow correct pages
2967                  * directly from any kind of swap entries.
2968                  */
2969                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2970                     ((flags & FOLL_WRITE) &&
2971                       !huge_pte_write(huge_ptep_get(pte)))) {
2972                         int ret;
2973
2974                         spin_unlock(&mm->page_table_lock);
2975                         ret = hugetlb_fault(mm, vma, vaddr,
2976                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2977                         spin_lock(&mm->page_table_lock);
2978                         if (!(ret & VM_FAULT_ERROR))
2979                                 continue;
2980
2981                         remainder = 0;
2982                         break;
2983                 }
2984
2985                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2986                 page = pte_page(huge_ptep_get(pte));
2987 same_page:
2988                 if (pages) {
2989                         pages[i] = mem_map_offset(page, pfn_offset);
2990                         get_page(pages[i]);
2991                 }
2992
2993                 if (vmas)
2994                         vmas[i] = vma;
2995
2996                 vaddr += PAGE_SIZE;
2997                 ++pfn_offset;
2998                 --remainder;
2999                 ++i;
3000                 if (vaddr < vma->vm_end && remainder &&
3001                                 pfn_offset < pages_per_huge_page(h)) {
3002                         /*
3003                          * We use pfn_offset to avoid touching the pageframes
3004                          * of this compound page.
3005                          */
3006                         goto same_page;
3007                 }
3008         }
3009         spin_unlock(&mm->page_table_lock);
3010         *nr_pages = remainder;
3011         *position = vaddr;
3012
3013         return i ? i : -EFAULT;
3014 }
3015
3016 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3017                 unsigned long address, unsigned long end, pgprot_t newprot)
3018 {
3019         struct mm_struct *mm = vma->vm_mm;
3020         unsigned long start = address;
3021         pte_t *ptep;
3022         pte_t pte;
3023         struct hstate *h = hstate_vma(vma);
3024         unsigned long pages = 0;
3025
3026         BUG_ON(address >= end);
3027         flush_cache_range(vma, address, end);
3028
3029         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3030         spin_lock(&mm->page_table_lock);
3031         for (; address < end; address += huge_page_size(h)) {
3032                 ptep = huge_pte_offset(mm, address);
3033                 if (!ptep)
3034                         continue;
3035                 if (huge_pmd_unshare(mm, &address, ptep)) {
3036                         pages++;
3037                         continue;
3038                 }
3039                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3040                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3041                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3042                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3043                         set_huge_pte_at(mm, address, ptep, pte);
3044                         pages++;
3045                 }
3046         }
3047         spin_unlock(&mm->page_table_lock);
3048         /*
3049          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3050          * may have cleared our pud entry and done put_page on the page table:
3051          * once we release i_mmap_mutex, another task can do the final put_page
3052          * and that page table be reused and filled with junk.
3053          */
3054         flush_tlb_range(vma, start, end);
3055         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3056
3057         return pages << h->order;
3058 }
3059
3060 int hugetlb_reserve_pages(struct inode *inode,
3061                                         long from, long to,
3062                                         struct vm_area_struct *vma,
3063                                         vm_flags_t vm_flags)
3064 {
3065         long ret, chg;
3066         struct hstate *h = hstate_inode(inode);
3067         struct hugepage_subpool *spool = subpool_inode(inode);
3068
3069         /*
3070          * Only apply hugepage reservation if asked. At fault time, an
3071          * attempt will be made for VM_NORESERVE to allocate a page
3072          * without using reserves
3073          */
3074         if (vm_flags & VM_NORESERVE)
3075                 return 0;
3076
3077         /*
3078          * Shared mappings base their reservation on the number of pages that
3079          * are already allocated on behalf of the file. Private mappings need
3080          * to reserve the full area even if read-only as mprotect() may be
3081          * called to make the mapping read-write. Assume !vma is a shm mapping
3082          */
3083         if (!vma || vma->vm_flags & VM_MAYSHARE)
3084                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3085         else {
3086                 struct resv_map *resv_map = resv_map_alloc();
3087                 if (!resv_map)
3088                         return -ENOMEM;
3089
3090                 chg = to - from;
3091
3092                 set_vma_resv_map(vma, resv_map);
3093                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3094         }
3095
3096         if (chg < 0) {
3097                 ret = chg;
3098                 goto out_err;
3099         }
3100
3101         /* There must be enough pages in the subpool for the mapping */
3102         if (hugepage_subpool_get_pages(spool, chg)) {
3103                 ret = -ENOSPC;
3104                 goto out_err;
3105         }
3106
3107         /*
3108          * Check enough hugepages are available for the reservation.
3109          * Hand the pages back to the subpool if there are not
3110          */
3111         ret = hugetlb_acct_memory(h, chg);
3112         if (ret < 0) {
3113                 hugepage_subpool_put_pages(spool, chg);
3114                 goto out_err;
3115         }
3116
3117         /*
3118          * Account for the reservations made. Shared mappings record regions
3119          * that have reservations as they are shared by multiple VMAs.
3120          * When the last VMA disappears, the region map says how much
3121          * the reservation was and the page cache tells how much of
3122          * the reservation was consumed. Private mappings are per-VMA and
3123          * only the consumed reservations are tracked. When the VMA
3124          * disappears, the original reservation is the VMA size and the
3125          * consumed reservations are stored in the map. Hence, nothing
3126          * else has to be done for private mappings here
3127          */
3128         if (!vma || vma->vm_flags & VM_MAYSHARE)
3129                 region_add(&inode->i_mapping->private_list, from, to);
3130         return 0;
3131 out_err:
3132         if (vma)
3133                 resv_map_put(vma);
3134         return ret;
3135 }
3136
3137 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3138 {
3139         struct hstate *h = hstate_inode(inode);
3140         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3141         struct hugepage_subpool *spool = subpool_inode(inode);
3142
3143         spin_lock(&inode->i_lock);
3144         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3145         spin_unlock(&inode->i_lock);
3146
3147         hugepage_subpool_put_pages(spool, (chg - freed));
3148         hugetlb_acct_memory(h, -(chg - freed));
3149 }
3150
3151 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3152 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3153                                 struct vm_area_struct *vma,
3154                                 unsigned long addr, pgoff_t idx)
3155 {
3156         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3157                                 svma->vm_start;
3158         unsigned long sbase = saddr & PUD_MASK;
3159         unsigned long s_end = sbase + PUD_SIZE;
3160
3161         /* Allow segments to share if only one is marked locked */
3162         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3163         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3164
3165         /*
3166          * match the virtual addresses, permission and the alignment of the
3167          * page table page.
3168          */
3169         if (pmd_index(addr) != pmd_index(saddr) ||
3170             vm_flags != svm_flags ||
3171             sbase < svma->vm_start || svma->vm_end < s_end)
3172                 return 0;
3173
3174         return saddr;
3175 }
3176
3177 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3178 {
3179         unsigned long base = addr & PUD_MASK;
3180         unsigned long end = base + PUD_SIZE;
3181
3182         /*
3183          * check on proper vm_flags and page table alignment
3184          */
3185         if (vma->vm_flags & VM_MAYSHARE &&
3186             vma->vm_start <= base && end <= vma->vm_end)
3187                 return 1;
3188         return 0;
3189 }
3190
3191 /*
3192  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3193  * and returns the corresponding pte. While this is not necessary for the
3194  * !shared pmd case because we can allocate the pmd later as well, it makes the
3195  * code much cleaner. pmd allocation is essential for the shared case because
3196  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3197  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3198  * bad pmd for sharing.
3199  */
3200 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3201 {
3202         struct vm_area_struct *vma = find_vma(mm, addr);
3203         struct address_space *mapping = vma->vm_file->f_mapping;
3204         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3205                         vma->vm_pgoff;
3206         struct vm_area_struct *svma;
3207         unsigned long saddr;
3208         pte_t *spte = NULL;
3209         pte_t *pte;
3210
3211         if (!vma_shareable(vma, addr))
3212                 return (pte_t *)pmd_alloc(mm, pud, addr);
3213
3214         mutex_lock(&mapping->i_mmap_mutex);
3215         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3216                 if (svma == vma)
3217                         continue;
3218
3219                 saddr = page_table_shareable(svma, vma, addr, idx);
3220                 if (saddr) {
3221                         spte = huge_pte_offset(svma->vm_mm, saddr);
3222                         if (spte) {
3223                                 get_page(virt_to_page(spte));
3224                                 break;
3225                         }
3226                 }
3227         }
3228
3229         if (!spte)
3230                 goto out;
3231
3232         spin_lock(&mm->page_table_lock);
3233         if (pud_none(*pud))
3234                 pud_populate(mm, pud,
3235                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3236         else
3237                 put_page(virt_to_page(spte));
3238         spin_unlock(&mm->page_table_lock);
3239 out:
3240         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3241         mutex_unlock(&mapping->i_mmap_mutex);
3242         return pte;
3243 }
3244
3245 /*
3246  * unmap huge page backed by shared pte.
3247  *
3248  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3249  * indicated by page_count > 1, unmap is achieved by clearing pud and
3250  * decrementing the ref count. If count == 1, the pte page is not shared.
3251  *
3252  * called with vma->vm_mm->page_table_lock held.
3253  *
3254  * returns: 1 successfully unmapped a shared pte page
3255  *          0 the underlying pte page is not shared, or it is the last user
3256  */
3257 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3258 {
3259         pgd_t *pgd = pgd_offset(mm, *addr);
3260         pud_t *pud = pud_offset(pgd, *addr);
3261
3262         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3263         if (page_count(virt_to_page(ptep)) == 1)
3264                 return 0;
3265
3266         pud_clear(pud);
3267         put_page(virt_to_page(ptep));
3268         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3269         return 1;
3270 }
3271 #define want_pmd_share()        (1)
3272 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3273 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3274 {
3275         return NULL;
3276 }
3277 #define want_pmd_share()        (0)
3278 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3279
3280 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3281 pte_t *huge_pte_alloc(struct mm_struct *mm,
3282                         unsigned long addr, unsigned long sz)
3283 {
3284         pgd_t *pgd;
3285         pud_t *pud;
3286         pte_t *pte = NULL;
3287
3288         pgd = pgd_offset(mm, addr);
3289         pud = pud_alloc(mm, pgd, addr);
3290         if (pud) {
3291                 if (sz == PUD_SIZE) {
3292                         pte = (pte_t *)pud;
3293                 } else {
3294                         BUG_ON(sz != PMD_SIZE);
3295                         if (want_pmd_share() && pud_none(*pud))
3296                                 pte = huge_pmd_share(mm, addr, pud);
3297                         else
3298                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3299                 }
3300         }
3301         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3302
3303         return pte;
3304 }
3305
3306 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3307 {
3308         pgd_t *pgd;
3309         pud_t *pud;
3310         pmd_t *pmd = NULL;
3311
3312         pgd = pgd_offset(mm, addr);
3313         if (pgd_present(*pgd)) {
3314                 pud = pud_offset(pgd, addr);
3315                 if (pud_present(*pud)) {
3316                         if (pud_huge(*pud))
3317                                 return (pte_t *)pud;
3318                         pmd = pmd_offset(pud, addr);
3319                 }
3320         }
3321         return (pte_t *) pmd;
3322 }
3323
3324 struct page *
3325 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3326                 pmd_t *pmd, int write)
3327 {
3328         struct page *page;
3329
3330         page = pte_page(*(pte_t *)pmd);
3331         if (page)
3332                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3333         return page;
3334 }
3335
3336 struct page *
3337 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3338                 pud_t *pud, int write)
3339 {
3340         struct page *page;
3341
3342         page = pte_page(*(pte_t *)pud);
3343         if (page)
3344                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3345         return page;
3346 }
3347
3348 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3349
3350 /* Can be overriden by architectures */
3351 __attribute__((weak)) struct page *
3352 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3353                pud_t *pud, int write)
3354 {
3355         BUG();
3356         return NULL;
3357 }
3358
3359 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3360
3361 #ifdef CONFIG_MEMORY_FAILURE
3362
3363 /* Should be called in hugetlb_lock */
3364 static int is_hugepage_on_freelist(struct page *hpage)
3365 {
3366         struct page *page;
3367         struct page *tmp;
3368         struct hstate *h = page_hstate(hpage);
3369         int nid = page_to_nid(hpage);
3370
3371         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3372                 if (page == hpage)
3373                         return 1;
3374         return 0;
3375 }
3376
3377 /*
3378  * This function is called from memory failure code.
3379  * Assume the caller holds page lock of the head page.
3380  */
3381 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3382 {
3383         struct hstate *h = page_hstate(hpage);
3384         int nid = page_to_nid(hpage);
3385         int ret = -EBUSY;
3386
3387         spin_lock(&hugetlb_lock);
3388         if (is_hugepage_on_freelist(hpage)) {
3389                 /*
3390                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3391                  * but dangling hpage->lru can trigger list-debug warnings
3392                  * (this happens when we call unpoison_memory() on it),
3393                  * so let it point to itself with list_del_init().
3394                  */
3395                 list_del_init(&hpage->lru);
3396                 set_page_refcounted(hpage);
3397                 h->free_huge_pages--;
3398                 h->free_huge_pages_node[nid]--;
3399                 ret = 0;
3400         }
3401         spin_unlock(&hugetlb_lock);
3402         return ret;
3403 }
3404 #endif