Merge branch 'for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include <linux/userfaultfd_k.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59  * free_huge_pages, and surplus_huge_pages.
60  */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64  * Serializes faults on the same logical page.  This is used to
65  * prevent spurious OOMs when the hugepage pool is fully utilized.
66  */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75         bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77         spin_unlock(&spool->lock);
78
79         /* If no pages are used, and no other handles to the subpool
80          * remain, give up any reservations mased on minimum size and
81          * free the subpool */
82         if (free) {
83                 if (spool->min_hpages != -1)
84                         hugetlb_acct_memory(spool->hstate,
85                                                 -spool->min_hpages);
86                 kfree(spool);
87         }
88 }
89
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91                                                 long min_hpages)
92 {
93         struct hugepage_subpool *spool;
94
95         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96         if (!spool)
97                 return NULL;
98
99         spin_lock_init(&spool->lock);
100         spool->count = 1;
101         spool->max_hpages = max_hpages;
102         spool->hstate = h;
103         spool->min_hpages = min_hpages;
104
105         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106                 kfree(spool);
107                 return NULL;
108         }
109         spool->rsv_hpages = min_hpages;
110
111         return spool;
112 }
113
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116         spin_lock(&spool->lock);
117         BUG_ON(!spool->count);
118         spool->count--;
119         unlock_or_release_subpool(spool);
120 }
121
122 /*
123  * Subpool accounting for allocating and reserving pages.
124  * Return -ENOMEM if there are not enough resources to satisfy the
125  * the request.  Otherwise, return the number of pages by which the
126  * global pools must be adjusted (upward).  The returned value may
127  * only be different than the passed value (delta) in the case where
128  * a subpool minimum size must be manitained.
129  */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131                                       long delta)
132 {
133         long ret = delta;
134
135         if (!spool)
136                 return ret;
137
138         spin_lock(&spool->lock);
139
140         if (spool->max_hpages != -1) {          /* maximum size accounting */
141                 if ((spool->used_hpages + delta) <= spool->max_hpages)
142                         spool->used_hpages += delta;
143                 else {
144                         ret = -ENOMEM;
145                         goto unlock_ret;
146                 }
147         }
148
149         /* minimum size accounting */
150         if (spool->min_hpages != -1 && spool->rsv_hpages) {
151                 if (delta > spool->rsv_hpages) {
152                         /*
153                          * Asking for more reserves than those already taken on
154                          * behalf of subpool.  Return difference.
155                          */
156                         ret = delta - spool->rsv_hpages;
157                         spool->rsv_hpages = 0;
158                 } else {
159                         ret = 0;        /* reserves already accounted for */
160                         spool->rsv_hpages -= delta;
161                 }
162         }
163
164 unlock_ret:
165         spin_unlock(&spool->lock);
166         return ret;
167 }
168
169 /*
170  * Subpool accounting for freeing and unreserving pages.
171  * Return the number of global page reservations that must be dropped.
172  * The return value may only be different than the passed value (delta)
173  * in the case where a subpool minimum size must be maintained.
174  */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176                                        long delta)
177 {
178         long ret = delta;
179
180         if (!spool)
181                 return delta;
182
183         spin_lock(&spool->lock);
184
185         if (spool->max_hpages != -1)            /* maximum size accounting */
186                 spool->used_hpages -= delta;
187
188          /* minimum size accounting */
189         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190                 if (spool->rsv_hpages + delta <= spool->min_hpages)
191                         ret = 0;
192                 else
193                         ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195                 spool->rsv_hpages += delta;
196                 if (spool->rsv_hpages > spool->min_hpages)
197                         spool->rsv_hpages = spool->min_hpages;
198         }
199
200         /*
201          * If hugetlbfs_put_super couldn't free spool due to an outstanding
202          * quota reference, free it now.
203          */
204         unlock_or_release_subpool(spool);
205
206         return ret;
207 }
208
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211         return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216         return subpool_inode(file_inode(vma->vm_file));
217 }
218
219 /*
220  * Region tracking -- allows tracking of reservations and instantiated pages
221  *                    across the pages in a mapping.
222  *
223  * The region data structures are embedded into a resv_map and protected
224  * by a resv_map's lock.  The set of regions within the resv_map represent
225  * reservations for huge pages, or huge pages that have already been
226  * instantiated within the map.  The from and to elements are huge page
227  * indicies into the associated mapping.  from indicates the starting index
228  * of the region.  to represents the first index past the end of  the region.
229  *
230  * For example, a file region structure with from == 0 and to == 4 represents
231  * four huge pages in a mapping.  It is important to note that the to element
232  * represents the first element past the end of the region. This is used in
233  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234  *
235  * Interval notation of the form [from, to) will be used to indicate that
236  * the endpoint from is inclusive and to is exclusive.
237  */
238 struct file_region {
239         struct list_head link;
240         long from;
241         long to;
242 };
243
244 /*
245  * Add the huge page range represented by [f, t) to the reserve
246  * map.  In the normal case, existing regions will be expanded
247  * to accommodate the specified range.  Sufficient regions should
248  * exist for expansion due to the previous call to region_chg
249  * with the same range.  However, it is possible that region_del
250  * could have been called after region_chg and modifed the map
251  * in such a way that no region exists to be expanded.  In this
252  * case, pull a region descriptor from the cache associated with
253  * the map and use that for the new range.
254  *
255  * Return the number of new huge pages added to the map.  This
256  * number is greater than or equal to zero.
257  */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260         struct list_head *head = &resv->regions;
261         struct file_region *rg, *nrg, *trg;
262         long add = 0;
263
264         spin_lock(&resv->lock);
265         /* Locate the region we are either in or before. */
266         list_for_each_entry(rg, head, link)
267                 if (f <= rg->to)
268                         break;
269
270         /*
271          * If no region exists which can be expanded to include the
272          * specified range, the list must have been modified by an
273          * interleving call to region_del().  Pull a region descriptor
274          * from the cache and use it for this range.
275          */
276         if (&rg->link == head || t < rg->from) {
277                 VM_BUG_ON(resv->region_cache_count <= 0);
278
279                 resv->region_cache_count--;
280                 nrg = list_first_entry(&resv->region_cache, struct file_region,
281                                         link);
282                 list_del(&nrg->link);
283
284                 nrg->from = f;
285                 nrg->to = t;
286                 list_add(&nrg->link, rg->link.prev);
287
288                 add += t - f;
289                 goto out_locked;
290         }
291
292         /* Round our left edge to the current segment if it encloses us. */
293         if (f > rg->from)
294                 f = rg->from;
295
296         /* Check for and consume any regions we now overlap with. */
297         nrg = rg;
298         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299                 if (&rg->link == head)
300                         break;
301                 if (rg->from > t)
302                         break;
303
304                 /* If this area reaches higher then extend our area to
305                  * include it completely.  If this is not the first area
306                  * which we intend to reuse, free it. */
307                 if (rg->to > t)
308                         t = rg->to;
309                 if (rg != nrg) {
310                         /* Decrement return value by the deleted range.
311                          * Another range will span this area so that by
312                          * end of routine add will be >= zero
313                          */
314                         add -= (rg->to - rg->from);
315                         list_del(&rg->link);
316                         kfree(rg);
317                 }
318         }
319
320         add += (nrg->from - f);         /* Added to beginning of region */
321         nrg->from = f;
322         add += t - nrg->to;             /* Added to end of region */
323         nrg->to = t;
324
325 out_locked:
326         resv->adds_in_progress--;
327         spin_unlock(&resv->lock);
328         VM_BUG_ON(add < 0);
329         return add;
330 }
331
332 /*
333  * Examine the existing reserve map and determine how many
334  * huge pages in the specified range [f, t) are NOT currently
335  * represented.  This routine is called before a subsequent
336  * call to region_add that will actually modify the reserve
337  * map to add the specified range [f, t).  region_chg does
338  * not change the number of huge pages represented by the
339  * map.  However, if the existing regions in the map can not
340  * be expanded to represent the new range, a new file_region
341  * structure is added to the map as a placeholder.  This is
342  * so that the subsequent region_add call will have all the
343  * regions it needs and will not fail.
344  *
345  * Upon entry, region_chg will also examine the cache of region descriptors
346  * associated with the map.  If there are not enough descriptors cached, one
347  * will be allocated for the in progress add operation.
348  *
349  * Returns the number of huge pages that need to be added to the existing
350  * reservation map for the range [f, t).  This number is greater or equal to
351  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
352  * is needed and can not be allocated.
353  */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356         struct list_head *head = &resv->regions;
357         struct file_region *rg, *nrg = NULL;
358         long chg = 0;
359
360 retry:
361         spin_lock(&resv->lock);
362 retry_locked:
363         resv->adds_in_progress++;
364
365         /*
366          * Check for sufficient descriptors in the cache to accommodate
367          * the number of in progress add operations.
368          */
369         if (resv->adds_in_progress > resv->region_cache_count) {
370                 struct file_region *trg;
371
372                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373                 /* Must drop lock to allocate a new descriptor. */
374                 resv->adds_in_progress--;
375                 spin_unlock(&resv->lock);
376
377                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378                 if (!trg) {
379                         kfree(nrg);
380                         return -ENOMEM;
381                 }
382
383                 spin_lock(&resv->lock);
384                 list_add(&trg->link, &resv->region_cache);
385                 resv->region_cache_count++;
386                 goto retry_locked;
387         }
388
389         /* Locate the region we are before or in. */
390         list_for_each_entry(rg, head, link)
391                 if (f <= rg->to)
392                         break;
393
394         /* If we are below the current region then a new region is required.
395          * Subtle, allocate a new region at the position but make it zero
396          * size such that we can guarantee to record the reservation. */
397         if (&rg->link == head || t < rg->from) {
398                 if (!nrg) {
399                         resv->adds_in_progress--;
400                         spin_unlock(&resv->lock);
401                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402                         if (!nrg)
403                                 return -ENOMEM;
404
405                         nrg->from = f;
406                         nrg->to   = f;
407                         INIT_LIST_HEAD(&nrg->link);
408                         goto retry;
409                 }
410
411                 list_add(&nrg->link, rg->link.prev);
412                 chg = t - f;
413                 goto out_nrg;
414         }
415
416         /* Round our left edge to the current segment if it encloses us. */
417         if (f > rg->from)
418                 f = rg->from;
419         chg = t - f;
420
421         /* Check for and consume any regions we now overlap with. */
422         list_for_each_entry(rg, rg->link.prev, link) {
423                 if (&rg->link == head)
424                         break;
425                 if (rg->from > t)
426                         goto out;
427
428                 /* We overlap with this area, if it extends further than
429                  * us then we must extend ourselves.  Account for its
430                  * existing reservation. */
431                 if (rg->to > t) {
432                         chg += rg->to - t;
433                         t = rg->to;
434                 }
435                 chg -= rg->to - rg->from;
436         }
437
438 out:
439         spin_unlock(&resv->lock);
440         /*  We already know we raced and no longer need the new region */
441         kfree(nrg);
442         return chg;
443 out_nrg:
444         spin_unlock(&resv->lock);
445         return chg;
446 }
447
448 /*
449  * Abort the in progress add operation.  The adds_in_progress field
450  * of the resv_map keeps track of the operations in progress between
451  * calls to region_chg and region_add.  Operations are sometimes
452  * aborted after the call to region_chg.  In such cases, region_abort
453  * is called to decrement the adds_in_progress counter.
454  *
455  * NOTE: The range arguments [f, t) are not needed or used in this
456  * routine.  They are kept to make reading the calling code easier as
457  * arguments will match the associated region_chg call.
458  */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461         spin_lock(&resv->lock);
462         VM_BUG_ON(!resv->region_cache_count);
463         resv->adds_in_progress--;
464         spin_unlock(&resv->lock);
465 }
466
467 /*
468  * Delete the specified range [f, t) from the reserve map.  If the
469  * t parameter is LONG_MAX, this indicates that ALL regions after f
470  * should be deleted.  Locate the regions which intersect [f, t)
471  * and either trim, delete or split the existing regions.
472  *
473  * Returns the number of huge pages deleted from the reserve map.
474  * In the normal case, the return value is zero or more.  In the
475  * case where a region must be split, a new region descriptor must
476  * be allocated.  If the allocation fails, -ENOMEM will be returned.
477  * NOTE: If the parameter t == LONG_MAX, then we will never split
478  * a region and possibly return -ENOMEM.  Callers specifying
479  * t == LONG_MAX do not need to check for -ENOMEM error.
480  */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483         struct list_head *head = &resv->regions;
484         struct file_region *rg, *trg;
485         struct file_region *nrg = NULL;
486         long del = 0;
487
488 retry:
489         spin_lock(&resv->lock);
490         list_for_each_entry_safe(rg, trg, head, link) {
491                 /*
492                  * Skip regions before the range to be deleted.  file_region
493                  * ranges are normally of the form [from, to).  However, there
494                  * may be a "placeholder" entry in the map which is of the form
495                  * (from, to) with from == to.  Check for placeholder entries
496                  * at the beginning of the range to be deleted.
497                  */
498                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499                         continue;
500
501                 if (rg->from >= t)
502                         break;
503
504                 if (f > rg->from && t < rg->to) { /* Must split region */
505                         /*
506                          * Check for an entry in the cache before dropping
507                          * lock and attempting allocation.
508                          */
509                         if (!nrg &&
510                             resv->region_cache_count > resv->adds_in_progress) {
511                                 nrg = list_first_entry(&resv->region_cache,
512                                                         struct file_region,
513                                                         link);
514                                 list_del(&nrg->link);
515                                 resv->region_cache_count--;
516                         }
517
518                         if (!nrg) {
519                                 spin_unlock(&resv->lock);
520                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521                                 if (!nrg)
522                                         return -ENOMEM;
523                                 goto retry;
524                         }
525
526                         del += t - f;
527
528                         /* New entry for end of split region */
529                         nrg->from = t;
530                         nrg->to = rg->to;
531                         INIT_LIST_HEAD(&nrg->link);
532
533                         /* Original entry is trimmed */
534                         rg->to = f;
535
536                         list_add(&nrg->link, &rg->link);
537                         nrg = NULL;
538                         break;
539                 }
540
541                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542                         del += rg->to - rg->from;
543                         list_del(&rg->link);
544                         kfree(rg);
545                         continue;
546                 }
547
548                 if (f <= rg->from) {    /* Trim beginning of region */
549                         del += t - rg->from;
550                         rg->from = t;
551                 } else {                /* Trim end of region */
552                         del += rg->to - f;
553                         rg->to = f;
554                 }
555         }
556
557         spin_unlock(&resv->lock);
558         kfree(nrg);
559         return del;
560 }
561
562 /*
563  * A rare out of memory error was encountered which prevented removal of
564  * the reserve map region for a page.  The huge page itself was free'ed
565  * and removed from the page cache.  This routine will adjust the subpool
566  * usage count, and the global reserve count if needed.  By incrementing
567  * these counts, the reserve map entry which could not be deleted will
568  * appear as a "reserved" entry instead of simply dangling with incorrect
569  * counts.
570  */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573         struct hugepage_subpool *spool = subpool_inode(inode);
574         long rsv_adjust;
575
576         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577         if (rsv_adjust) {
578                 struct hstate *h = hstate_inode(inode);
579
580                 hugetlb_acct_memory(h, 1);
581         }
582 }
583
584 /*
585  * Count and return the number of huge pages in the reserve map
586  * that intersect with the range [f, t).
587  */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590         struct list_head *head = &resv->regions;
591         struct file_region *rg;
592         long chg = 0;
593
594         spin_lock(&resv->lock);
595         /* Locate each segment we overlap with, and count that overlap. */
596         list_for_each_entry(rg, head, link) {
597                 long seg_from;
598                 long seg_to;
599
600                 if (rg->to <= f)
601                         continue;
602                 if (rg->from >= t)
603                         break;
604
605                 seg_from = max(rg->from, f);
606                 seg_to = min(rg->to, t);
607
608                 chg += seg_to - seg_from;
609         }
610         spin_unlock(&resv->lock);
611
612         return chg;
613 }
614
615 /*
616  * Convert the address within this vma to the page offset within
617  * the mapping, in pagecache page units; huge pages here.
618  */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620                         struct vm_area_struct *vma, unsigned long address)
621 {
622         return ((address - vma->vm_start) >> huge_page_shift(h)) +
623                         (vma->vm_pgoff >> huge_page_order(h));
624 }
625
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627                                      unsigned long address)
628 {
629         return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632
633 /*
634  * Return the size of the pages allocated when backing a VMA. In the majority
635  * cases this will be same size as used by the page table entries.
636  */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639         struct hstate *hstate;
640
641         if (!is_vm_hugetlb_page(vma))
642                 return PAGE_SIZE;
643
644         hstate = hstate_vma(vma);
645
646         return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649
650 /*
651  * Return the page size being used by the MMU to back a VMA. In the majority
652  * of cases, the page size used by the kernel matches the MMU size. On
653  * architectures where it differs, an architecture-specific version of this
654  * function is required.
655  */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659         return vma_kernel_pagesize(vma);
660 }
661 #endif
662
663 /*
664  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
665  * bits of the reservation map pointer, which are always clear due to
666  * alignment.
667  */
668 #define HPAGE_RESV_OWNER    (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671
672 /*
673  * These helpers are used to track how many pages are reserved for
674  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675  * is guaranteed to have their future faults succeed.
676  *
677  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678  * the reserve counters are updated with the hugetlb_lock held. It is safe
679  * to reset the VMA at fork() time as it is not in use yet and there is no
680  * chance of the global counters getting corrupted as a result of the values.
681  *
682  * The private mapping reservation is represented in a subtly different
683  * manner to a shared mapping.  A shared mapping has a region map associated
684  * with the underlying file, this region map represents the backing file
685  * pages which have ever had a reservation assigned which this persists even
686  * after the page is instantiated.  A private mapping has a region map
687  * associated with the original mmap which is attached to all VMAs which
688  * reference it, this region map represents those offsets which have consumed
689  * reservation ie. where pages have been instantiated.
690  */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693         return (unsigned long)vma->vm_private_data;
694 }
695
696 static void set_vma_private_data(struct vm_area_struct *vma,
697                                                         unsigned long value)
698 {
699         vma->vm_private_data = (void *)value;
700 }
701
702 struct resv_map *resv_map_alloc(void)
703 {
704         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707         if (!resv_map || !rg) {
708                 kfree(resv_map);
709                 kfree(rg);
710                 return NULL;
711         }
712
713         kref_init(&resv_map->refs);
714         spin_lock_init(&resv_map->lock);
715         INIT_LIST_HEAD(&resv_map->regions);
716
717         resv_map->adds_in_progress = 0;
718
719         INIT_LIST_HEAD(&resv_map->region_cache);
720         list_add(&rg->link, &resv_map->region_cache);
721         resv_map->region_cache_count = 1;
722
723         return resv_map;
724 }
725
726 void resv_map_release(struct kref *ref)
727 {
728         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729         struct list_head *head = &resv_map->region_cache;
730         struct file_region *rg, *trg;
731
732         /* Clear out any active regions before we release the map. */
733         region_del(resv_map, 0, LONG_MAX);
734
735         /* ... and any entries left in the cache */
736         list_for_each_entry_safe(rg, trg, head, link) {
737                 list_del(&rg->link);
738                 kfree(rg);
739         }
740
741         VM_BUG_ON(resv_map->adds_in_progress);
742
743         kfree(resv_map);
744 }
745
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748         return inode->i_mapping->private_data;
749 }
750
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754         if (vma->vm_flags & VM_MAYSHARE) {
755                 struct address_space *mapping = vma->vm_file->f_mapping;
756                 struct inode *inode = mapping->host;
757
758                 return inode_resv_map(inode);
759
760         } else {
761                 return (struct resv_map *)(get_vma_private_data(vma) &
762                                                         ~HPAGE_RESV_MASK);
763         }
764 }
765
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770
771         set_vma_private_data(vma, (get_vma_private_data(vma) &
772                                 HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779
780         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786
787         return (get_vma_private_data(vma) & flag) != 0;
788 }
789
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794         if (!(vma->vm_flags & VM_MAYSHARE))
795                 vma->vm_private_data = (void *)0;
796 }
797
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801         if (vma->vm_flags & VM_NORESERVE) {
802                 /*
803                  * This address is already reserved by other process(chg == 0),
804                  * so, we should decrement reserved count. Without decrementing,
805                  * reserve count remains after releasing inode, because this
806                  * allocated page will go into page cache and is regarded as
807                  * coming from reserved pool in releasing step.  Currently, we
808                  * don't have any other solution to deal with this situation
809                  * properly, so add work-around here.
810                  */
811                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812                         return true;
813                 else
814                         return false;
815         }
816
817         /* Shared mappings always use reserves */
818         if (vma->vm_flags & VM_MAYSHARE) {
819                 /*
820                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
821                  * be a region map for all pages.  The only situation where
822                  * there is no region map is if a hole was punched via
823                  * fallocate.  In this case, there really are no reverves to
824                  * use.  This situation is indicated if chg != 0.
825                  */
826                 if (chg)
827                         return false;
828                 else
829                         return true;
830         }
831
832         /*
833          * Only the process that called mmap() has reserves for
834          * private mappings.
835          */
836         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837                 /*
838                  * Like the shared case above, a hole punch or truncate
839                  * could have been performed on the private mapping.
840                  * Examine the value of chg to determine if reserves
841                  * actually exist or were previously consumed.
842                  * Very Subtle - The value of chg comes from a previous
843                  * call to vma_needs_reserves().  The reserve map for
844                  * private mappings has different (opposite) semantics
845                  * than that of shared mappings.  vma_needs_reserves()
846                  * has already taken this difference in semantics into
847                  * account.  Therefore, the meaning of chg is the same
848                  * as in the shared case above.  Code could easily be
849                  * combined, but keeping it separate draws attention to
850                  * subtle differences.
851                  */
852                 if (chg)
853                         return false;
854                 else
855                         return true;
856         }
857
858         return false;
859 }
860
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863         int nid = page_to_nid(page);
864         list_move(&page->lru, &h->hugepage_freelists[nid]);
865         h->free_huge_pages++;
866         h->free_huge_pages_node[nid]++;
867 }
868
869 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
870 {
871         struct page *page;
872
873         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874                 if (!is_migrate_isolate_page(page))
875                         break;
876         /*
877          * if 'non-isolated free hugepage' not found on the list,
878          * the allocation fails.
879          */
880         if (&h->hugepage_freelists[nid] == &page->lru)
881                 return NULL;
882         list_move(&page->lru, &h->hugepage_activelist);
883         set_page_refcounted(page);
884         h->free_huge_pages--;
885         h->free_huge_pages_node[nid]--;
886         return page;
887 }
888
889 /* Movability of hugepages depends on migration support. */
890 static inline gfp_t htlb_alloc_mask(struct hstate *h)
891 {
892         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
893                 return GFP_HIGHUSER_MOVABLE;
894         else
895                 return GFP_HIGHUSER;
896 }
897
898 static struct page *dequeue_huge_page_vma(struct hstate *h,
899                                 struct vm_area_struct *vma,
900                                 unsigned long address, int avoid_reserve,
901                                 long chg)
902 {
903         struct page *page = NULL;
904         struct mempolicy *mpol;
905         nodemask_t *nodemask;
906         struct zonelist *zonelist;
907         struct zone *zone;
908         struct zoneref *z;
909         unsigned int cpuset_mems_cookie;
910
911         /*
912          * A child process with MAP_PRIVATE mappings created by their parent
913          * have no page reserves. This check ensures that reservations are
914          * not "stolen". The child may still get SIGKILLed
915          */
916         if (!vma_has_reserves(vma, chg) &&
917                         h->free_huge_pages - h->resv_huge_pages == 0)
918                 goto err;
919
920         /* If reserves cannot be used, ensure enough pages are in the pool */
921         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
922                 goto err;
923
924 retry_cpuset:
925         cpuset_mems_cookie = read_mems_allowed_begin();
926         zonelist = huge_zonelist(vma, address,
927                                         htlb_alloc_mask(h), &mpol, &nodemask);
928
929         for_each_zone_zonelist_nodemask(zone, z, zonelist,
930                                                 MAX_NR_ZONES - 1, nodemask) {
931                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
932                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
933                         if (page) {
934                                 if (avoid_reserve)
935                                         break;
936                                 if (!vma_has_reserves(vma, chg))
937                                         break;
938
939                                 SetPagePrivate(page);
940                                 h->resv_huge_pages--;
941                                 break;
942                         }
943                 }
944         }
945
946         mpol_cond_put(mpol);
947         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
948                 goto retry_cpuset;
949         return page;
950
951 err:
952         return NULL;
953 }
954
955 /*
956  * common helper functions for hstate_next_node_to_{alloc|free}.
957  * We may have allocated or freed a huge page based on a different
958  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
959  * be outside of *nodes_allowed.  Ensure that we use an allowed
960  * node for alloc or free.
961  */
962 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963 {
964         nid = next_node_in(nid, *nodes_allowed);
965         VM_BUG_ON(nid >= MAX_NUMNODES);
966
967         return nid;
968 }
969
970 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971 {
972         if (!node_isset(nid, *nodes_allowed))
973                 nid = next_node_allowed(nid, nodes_allowed);
974         return nid;
975 }
976
977 /*
978  * returns the previously saved node ["this node"] from which to
979  * allocate a persistent huge page for the pool and advance the
980  * next node from which to allocate, handling wrap at end of node
981  * mask.
982  */
983 static int hstate_next_node_to_alloc(struct hstate *h,
984                                         nodemask_t *nodes_allowed)
985 {
986         int nid;
987
988         VM_BUG_ON(!nodes_allowed);
989
990         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
991         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
992
993         return nid;
994 }
995
996 /*
997  * helper for free_pool_huge_page() - return the previously saved
998  * node ["this node"] from which to free a huge page.  Advance the
999  * next node id whether or not we find a free huge page to free so
1000  * that the next attempt to free addresses the next node.
1001  */
1002 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1003 {
1004         int nid;
1005
1006         VM_BUG_ON(!nodes_allowed);
1007
1008         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1009         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1010
1011         return nid;
1012 }
1013
1014 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1015         for (nr_nodes = nodes_weight(*mask);                            \
1016                 nr_nodes > 0 &&                                         \
1017                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1018                 nr_nodes--)
1019
1020 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1021         for (nr_nodes = nodes_weight(*mask);                            \
1022                 nr_nodes > 0 &&                                         \
1023                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1024                 nr_nodes--)
1025
1026 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1027         ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1028         defined(CONFIG_CMA))
1029 static void destroy_compound_gigantic_page(struct page *page,
1030                                         unsigned int order)
1031 {
1032         int i;
1033         int nr_pages = 1 << order;
1034         struct page *p = page + 1;
1035
1036         atomic_set(compound_mapcount_ptr(page), 0);
1037         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1038                 clear_compound_head(p);
1039                 set_page_refcounted(p);
1040         }
1041
1042         set_compound_order(page, 0);
1043         __ClearPageHead(page);
1044 }
1045
1046 static void free_gigantic_page(struct page *page, unsigned int order)
1047 {
1048         free_contig_range(page_to_pfn(page), 1 << order);
1049 }
1050
1051 static int __alloc_gigantic_page(unsigned long start_pfn,
1052                                 unsigned long nr_pages)
1053 {
1054         unsigned long end_pfn = start_pfn + nr_pages;
1055         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1056                                   GFP_KERNEL);
1057 }
1058
1059 static bool pfn_range_valid_gigantic(struct zone *z,
1060                         unsigned long start_pfn, unsigned long nr_pages)
1061 {
1062         unsigned long i, end_pfn = start_pfn + nr_pages;
1063         struct page *page;
1064
1065         for (i = start_pfn; i < end_pfn; i++) {
1066                 if (!pfn_valid(i))
1067                         return false;
1068
1069                 page = pfn_to_page(i);
1070
1071                 if (page_zone(page) != z)
1072                         return false;
1073
1074                 if (PageReserved(page))
1075                         return false;
1076
1077                 if (page_count(page) > 0)
1078                         return false;
1079
1080                 if (PageHuge(page))
1081                         return false;
1082         }
1083
1084         return true;
1085 }
1086
1087 static bool zone_spans_last_pfn(const struct zone *zone,
1088                         unsigned long start_pfn, unsigned long nr_pages)
1089 {
1090         unsigned long last_pfn = start_pfn + nr_pages - 1;
1091         return zone_spans_pfn(zone, last_pfn);
1092 }
1093
1094 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1095 {
1096         unsigned long nr_pages = 1 << order;
1097         unsigned long ret, pfn, flags;
1098         struct zone *z;
1099
1100         z = NODE_DATA(nid)->node_zones;
1101         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1102                 spin_lock_irqsave(&z->lock, flags);
1103
1104                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1105                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1106                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1107                                 /*
1108                                  * We release the zone lock here because
1109                                  * alloc_contig_range() will also lock the zone
1110                                  * at some point. If there's an allocation
1111                                  * spinning on this lock, it may win the race
1112                                  * and cause alloc_contig_range() to fail...
1113                                  */
1114                                 spin_unlock_irqrestore(&z->lock, flags);
1115                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1116                                 if (!ret)
1117                                         return pfn_to_page(pfn);
1118                                 spin_lock_irqsave(&z->lock, flags);
1119                         }
1120                         pfn += nr_pages;
1121                 }
1122
1123                 spin_unlock_irqrestore(&z->lock, flags);
1124         }
1125
1126         return NULL;
1127 }
1128
1129 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1130 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1131
1132 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1133 {
1134         struct page *page;
1135
1136         page = alloc_gigantic_page(nid, huge_page_order(h));
1137         if (page) {
1138                 prep_compound_gigantic_page(page, huge_page_order(h));
1139                 prep_new_huge_page(h, page, nid);
1140         }
1141
1142         return page;
1143 }
1144
1145 static int alloc_fresh_gigantic_page(struct hstate *h,
1146                                 nodemask_t *nodes_allowed)
1147 {
1148         struct page *page = NULL;
1149         int nr_nodes, node;
1150
1151         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1152                 page = alloc_fresh_gigantic_page_node(h, node);
1153                 if (page)
1154                         return 1;
1155         }
1156
1157         return 0;
1158 }
1159
1160 static inline bool gigantic_page_supported(void) { return true; }
1161 #else
1162 static inline bool gigantic_page_supported(void) { return false; }
1163 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1164 static inline void destroy_compound_gigantic_page(struct page *page,
1165                                                 unsigned int order) { }
1166 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1167                                         nodemask_t *nodes_allowed) { return 0; }
1168 #endif
1169
1170 static void update_and_free_page(struct hstate *h, struct page *page)
1171 {
1172         int i;
1173
1174         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1175                 return;
1176
1177         h->nr_huge_pages--;
1178         h->nr_huge_pages_node[page_to_nid(page)]--;
1179         for (i = 0; i < pages_per_huge_page(h); i++) {
1180                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1181                                 1 << PG_referenced | 1 << PG_dirty |
1182                                 1 << PG_active | 1 << PG_private |
1183                                 1 << PG_writeback);
1184         }
1185         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1186         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1187         set_page_refcounted(page);
1188         if (hstate_is_gigantic(h)) {
1189                 destroy_compound_gigantic_page(page, huge_page_order(h));
1190                 free_gigantic_page(page, huge_page_order(h));
1191         } else {
1192                 __free_pages(page, huge_page_order(h));
1193         }
1194 }
1195
1196 struct hstate *size_to_hstate(unsigned long size)
1197 {
1198         struct hstate *h;
1199
1200         for_each_hstate(h) {
1201                 if (huge_page_size(h) == size)
1202                         return h;
1203         }
1204         return NULL;
1205 }
1206
1207 /*
1208  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1209  * to hstate->hugepage_activelist.)
1210  *
1211  * This function can be called for tail pages, but never returns true for them.
1212  */
1213 bool page_huge_active(struct page *page)
1214 {
1215         VM_BUG_ON_PAGE(!PageHuge(page), page);
1216         return PageHead(page) && PagePrivate(&page[1]);
1217 }
1218
1219 /* never called for tail page */
1220 static void set_page_huge_active(struct page *page)
1221 {
1222         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1223         SetPagePrivate(&page[1]);
1224 }
1225
1226 static void clear_page_huge_active(struct page *page)
1227 {
1228         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1229         ClearPagePrivate(&page[1]);
1230 }
1231
1232 void free_huge_page(struct page *page)
1233 {
1234         /*
1235          * Can't pass hstate in here because it is called from the
1236          * compound page destructor.
1237          */
1238         struct hstate *h = page_hstate(page);
1239         int nid = page_to_nid(page);
1240         struct hugepage_subpool *spool =
1241                 (struct hugepage_subpool *)page_private(page);
1242         bool restore_reserve;
1243
1244         set_page_private(page, 0);
1245         page->mapping = NULL;
1246         VM_BUG_ON_PAGE(page_count(page), page);
1247         VM_BUG_ON_PAGE(page_mapcount(page), page);
1248         restore_reserve = PagePrivate(page);
1249         ClearPagePrivate(page);
1250
1251         /*
1252          * A return code of zero implies that the subpool will be under its
1253          * minimum size if the reservation is not restored after page is free.
1254          * Therefore, force restore_reserve operation.
1255          */
1256         if (hugepage_subpool_put_pages(spool, 1) == 0)
1257                 restore_reserve = true;
1258
1259         spin_lock(&hugetlb_lock);
1260         clear_page_huge_active(page);
1261         hugetlb_cgroup_uncharge_page(hstate_index(h),
1262                                      pages_per_huge_page(h), page);
1263         if (restore_reserve)
1264                 h->resv_huge_pages++;
1265
1266         if (h->surplus_huge_pages_node[nid]) {
1267                 /* remove the page from active list */
1268                 list_del(&page->lru);
1269                 update_and_free_page(h, page);
1270                 h->surplus_huge_pages--;
1271                 h->surplus_huge_pages_node[nid]--;
1272         } else {
1273                 arch_clear_hugepage_flags(page);
1274                 enqueue_huge_page(h, page);
1275         }
1276         spin_unlock(&hugetlb_lock);
1277 }
1278
1279 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1280 {
1281         INIT_LIST_HEAD(&page->lru);
1282         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1283         spin_lock(&hugetlb_lock);
1284         set_hugetlb_cgroup(page, NULL);
1285         h->nr_huge_pages++;
1286         h->nr_huge_pages_node[nid]++;
1287         spin_unlock(&hugetlb_lock);
1288         put_page(page); /* free it into the hugepage allocator */
1289 }
1290
1291 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1292 {
1293         int i;
1294         int nr_pages = 1 << order;
1295         struct page *p = page + 1;
1296
1297         /* we rely on prep_new_huge_page to set the destructor */
1298         set_compound_order(page, order);
1299         __ClearPageReserved(page);
1300         __SetPageHead(page);
1301         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1302                 /*
1303                  * For gigantic hugepages allocated through bootmem at
1304                  * boot, it's safer to be consistent with the not-gigantic
1305                  * hugepages and clear the PG_reserved bit from all tail pages
1306                  * too.  Otherwse drivers using get_user_pages() to access tail
1307                  * pages may get the reference counting wrong if they see
1308                  * PG_reserved set on a tail page (despite the head page not
1309                  * having PG_reserved set).  Enforcing this consistency between
1310                  * head and tail pages allows drivers to optimize away a check
1311                  * on the head page when they need know if put_page() is needed
1312                  * after get_user_pages().
1313                  */
1314                 __ClearPageReserved(p);
1315                 set_page_count(p, 0);
1316                 set_compound_head(p, page);
1317         }
1318         atomic_set(compound_mapcount_ptr(page), -1);
1319 }
1320
1321 /*
1322  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1323  * transparent huge pages.  See the PageTransHuge() documentation for more
1324  * details.
1325  */
1326 int PageHuge(struct page *page)
1327 {
1328         if (!PageCompound(page))
1329                 return 0;
1330
1331         page = compound_head(page);
1332         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1333 }
1334 EXPORT_SYMBOL_GPL(PageHuge);
1335
1336 /*
1337  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1338  * normal or transparent huge pages.
1339  */
1340 int PageHeadHuge(struct page *page_head)
1341 {
1342         if (!PageHead(page_head))
1343                 return 0;
1344
1345         return get_compound_page_dtor(page_head) == free_huge_page;
1346 }
1347
1348 pgoff_t __basepage_index(struct page *page)
1349 {
1350         struct page *page_head = compound_head(page);
1351         pgoff_t index = page_index(page_head);
1352         unsigned long compound_idx;
1353
1354         if (!PageHuge(page_head))
1355                 return page_index(page);
1356
1357         if (compound_order(page_head) >= MAX_ORDER)
1358                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1359         else
1360                 compound_idx = page - page_head;
1361
1362         return (index << compound_order(page_head)) + compound_idx;
1363 }
1364
1365 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1366 {
1367         struct page *page;
1368
1369         page = __alloc_pages_node(nid,
1370                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1371                                                 __GFP_REPEAT|__GFP_NOWARN,
1372                 huge_page_order(h));
1373         if (page) {
1374                 prep_new_huge_page(h, page, nid);
1375         }
1376
1377         return page;
1378 }
1379
1380 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1381 {
1382         struct page *page;
1383         int nr_nodes, node;
1384         int ret = 0;
1385
1386         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1387                 page = alloc_fresh_huge_page_node(h, node);
1388                 if (page) {
1389                         ret = 1;
1390                         break;
1391                 }
1392         }
1393
1394         if (ret)
1395                 count_vm_event(HTLB_BUDDY_PGALLOC);
1396         else
1397                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1398
1399         return ret;
1400 }
1401
1402 /*
1403  * Free huge page from pool from next node to free.
1404  * Attempt to keep persistent huge pages more or less
1405  * balanced over allowed nodes.
1406  * Called with hugetlb_lock locked.
1407  */
1408 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1409                                                          bool acct_surplus)
1410 {
1411         int nr_nodes, node;
1412         int ret = 0;
1413
1414         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1415                 /*
1416                  * If we're returning unused surplus pages, only examine
1417                  * nodes with surplus pages.
1418                  */
1419                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1420                     !list_empty(&h->hugepage_freelists[node])) {
1421                         struct page *page =
1422                                 list_entry(h->hugepage_freelists[node].next,
1423                                           struct page, lru);
1424                         list_del(&page->lru);
1425                         h->free_huge_pages--;
1426                         h->free_huge_pages_node[node]--;
1427                         if (acct_surplus) {
1428                                 h->surplus_huge_pages--;
1429                                 h->surplus_huge_pages_node[node]--;
1430                         }
1431                         update_and_free_page(h, page);
1432                         ret = 1;
1433                         break;
1434                 }
1435         }
1436
1437         return ret;
1438 }
1439
1440 /*
1441  * Dissolve a given free hugepage into free buddy pages. This function does
1442  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1443  * number of free hugepages would be reduced below the number of reserved
1444  * hugepages.
1445  */
1446 static int dissolve_free_huge_page(struct page *page)
1447 {
1448         int rc = 0;
1449
1450         spin_lock(&hugetlb_lock);
1451         if (PageHuge(page) && !page_count(page)) {
1452                 struct page *head = compound_head(page);
1453                 struct hstate *h = page_hstate(head);
1454                 int nid = page_to_nid(head);
1455                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1456                         rc = -EBUSY;
1457                         goto out;
1458                 }
1459                 list_del(&head->lru);
1460                 h->free_huge_pages--;
1461                 h->free_huge_pages_node[nid]--;
1462                 h->max_huge_pages--;
1463                 update_and_free_page(h, head);
1464         }
1465 out:
1466         spin_unlock(&hugetlb_lock);
1467         return rc;
1468 }
1469
1470 /*
1471  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1472  * make specified memory blocks removable from the system.
1473  * Note that this will dissolve a free gigantic hugepage completely, if any
1474  * part of it lies within the given range.
1475  * Also note that if dissolve_free_huge_page() returns with an error, all
1476  * free hugepages that were dissolved before that error are lost.
1477  */
1478 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1479 {
1480         unsigned long pfn;
1481         struct page *page;
1482         int rc = 0;
1483
1484         if (!hugepages_supported())
1485                 return rc;
1486
1487         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1488                 page = pfn_to_page(pfn);
1489                 if (PageHuge(page) && !page_count(page)) {
1490                         rc = dissolve_free_huge_page(page);
1491                         if (rc)
1492                                 break;
1493                 }
1494         }
1495
1496         return rc;
1497 }
1498
1499 /*
1500  * There are 3 ways this can get called:
1501  * 1. With vma+addr: we use the VMA's memory policy
1502  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1503  *    page from any node, and let the buddy allocator itself figure
1504  *    it out.
1505  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1506  *    strictly from 'nid'
1507  */
1508 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1509                 struct vm_area_struct *vma, unsigned long addr, int nid)
1510 {
1511         int order = huge_page_order(h);
1512         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1513         unsigned int cpuset_mems_cookie;
1514
1515         /*
1516          * We need a VMA to get a memory policy.  If we do not
1517          * have one, we use the 'nid' argument.
1518          *
1519          * The mempolicy stuff below has some non-inlined bits
1520          * and calls ->vm_ops.  That makes it hard to optimize at
1521          * compile-time, even when NUMA is off and it does
1522          * nothing.  This helps the compiler optimize it out.
1523          */
1524         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1525                 /*
1526                  * If a specific node is requested, make sure to
1527                  * get memory from there, but only when a node
1528                  * is explicitly specified.
1529                  */
1530                 if (nid != NUMA_NO_NODE)
1531                         gfp |= __GFP_THISNODE;
1532                 /*
1533                  * Make sure to call something that can handle
1534                  * nid=NUMA_NO_NODE
1535                  */
1536                 return alloc_pages_node(nid, gfp, order);
1537         }
1538
1539         /*
1540          * OK, so we have a VMA.  Fetch the mempolicy and try to
1541          * allocate a huge page with it.  We will only reach this
1542          * when CONFIG_NUMA=y.
1543          */
1544         do {
1545                 struct page *page;
1546                 struct mempolicy *mpol;
1547                 struct zonelist *zl;
1548                 nodemask_t *nodemask;
1549
1550                 cpuset_mems_cookie = read_mems_allowed_begin();
1551                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1552                 mpol_cond_put(mpol);
1553                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1554                 if (page)
1555                         return page;
1556         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1557
1558         return NULL;
1559 }
1560
1561 /*
1562  * There are two ways to allocate a huge page:
1563  * 1. When you have a VMA and an address (like a fault)
1564  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1565  *
1566  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1567  * this case which signifies that the allocation should be done with
1568  * respect for the VMA's memory policy.
1569  *
1570  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1571  * implies that memory policies will not be taken in to account.
1572  */
1573 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1574                 struct vm_area_struct *vma, unsigned long addr, int nid)
1575 {
1576         struct page *page;
1577         unsigned int r_nid;
1578
1579         if (hstate_is_gigantic(h))
1580                 return NULL;
1581
1582         /*
1583          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1584          * This makes sure the caller is picking _one_ of the modes with which
1585          * we can call this function, not both.
1586          */
1587         if (vma || (addr != -1)) {
1588                 VM_WARN_ON_ONCE(addr == -1);
1589                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1590         }
1591         /*
1592          * Assume we will successfully allocate the surplus page to
1593          * prevent racing processes from causing the surplus to exceed
1594          * overcommit
1595          *
1596          * This however introduces a different race, where a process B
1597          * tries to grow the static hugepage pool while alloc_pages() is
1598          * called by process A. B will only examine the per-node
1599          * counters in determining if surplus huge pages can be
1600          * converted to normal huge pages in adjust_pool_surplus(). A
1601          * won't be able to increment the per-node counter, until the
1602          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1603          * no more huge pages can be converted from surplus to normal
1604          * state (and doesn't try to convert again). Thus, we have a
1605          * case where a surplus huge page exists, the pool is grown, and
1606          * the surplus huge page still exists after, even though it
1607          * should just have been converted to a normal huge page. This
1608          * does not leak memory, though, as the hugepage will be freed
1609          * once it is out of use. It also does not allow the counters to
1610          * go out of whack in adjust_pool_surplus() as we don't modify
1611          * the node values until we've gotten the hugepage and only the
1612          * per-node value is checked there.
1613          */
1614         spin_lock(&hugetlb_lock);
1615         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1616                 spin_unlock(&hugetlb_lock);
1617                 return NULL;
1618         } else {
1619                 h->nr_huge_pages++;
1620                 h->surplus_huge_pages++;
1621         }
1622         spin_unlock(&hugetlb_lock);
1623
1624         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1625
1626         spin_lock(&hugetlb_lock);
1627         if (page) {
1628                 INIT_LIST_HEAD(&page->lru);
1629                 r_nid = page_to_nid(page);
1630                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1631                 set_hugetlb_cgroup(page, NULL);
1632                 /*
1633                  * We incremented the global counters already
1634                  */
1635                 h->nr_huge_pages_node[r_nid]++;
1636                 h->surplus_huge_pages_node[r_nid]++;
1637                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1638         } else {
1639                 h->nr_huge_pages--;
1640                 h->surplus_huge_pages--;
1641                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1642         }
1643         spin_unlock(&hugetlb_lock);
1644
1645         return page;
1646 }
1647
1648 /*
1649  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1650  * NUMA_NO_NODE, which means that it may be allocated
1651  * anywhere.
1652  */
1653 static
1654 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1655 {
1656         unsigned long addr = -1;
1657
1658         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1659 }
1660
1661 /*
1662  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1663  */
1664 static
1665 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1666                 struct vm_area_struct *vma, unsigned long addr)
1667 {
1668         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1669 }
1670
1671 /*
1672  * This allocation function is useful in the context where vma is irrelevant.
1673  * E.g. soft-offlining uses this function because it only cares physical
1674  * address of error page.
1675  */
1676 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1677 {
1678         struct page *page = NULL;
1679
1680         spin_lock(&hugetlb_lock);
1681         if (h->free_huge_pages - h->resv_huge_pages > 0)
1682                 page = dequeue_huge_page_node(h, nid);
1683         spin_unlock(&hugetlb_lock);
1684
1685         if (!page)
1686                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1687
1688         return page;
1689 }
1690
1691 /*
1692  * Increase the hugetlb pool such that it can accommodate a reservation
1693  * of size 'delta'.
1694  */
1695 static int gather_surplus_pages(struct hstate *h, int delta)
1696 {
1697         struct list_head surplus_list;
1698         struct page *page, *tmp;
1699         int ret, i;
1700         int needed, allocated;
1701         bool alloc_ok = true;
1702
1703         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1704         if (needed <= 0) {
1705                 h->resv_huge_pages += delta;
1706                 return 0;
1707         }
1708
1709         allocated = 0;
1710         INIT_LIST_HEAD(&surplus_list);
1711
1712         ret = -ENOMEM;
1713 retry:
1714         spin_unlock(&hugetlb_lock);
1715         for (i = 0; i < needed; i++) {
1716                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1717                 if (!page) {
1718                         alloc_ok = false;
1719                         break;
1720                 }
1721                 list_add(&page->lru, &surplus_list);
1722         }
1723         allocated += i;
1724
1725         /*
1726          * After retaking hugetlb_lock, we need to recalculate 'needed'
1727          * because either resv_huge_pages or free_huge_pages may have changed.
1728          */
1729         spin_lock(&hugetlb_lock);
1730         needed = (h->resv_huge_pages + delta) -
1731                         (h->free_huge_pages + allocated);
1732         if (needed > 0) {
1733                 if (alloc_ok)
1734                         goto retry;
1735                 /*
1736                  * We were not able to allocate enough pages to
1737                  * satisfy the entire reservation so we free what
1738                  * we've allocated so far.
1739                  */
1740                 goto free;
1741         }
1742         /*
1743          * The surplus_list now contains _at_least_ the number of extra pages
1744          * needed to accommodate the reservation.  Add the appropriate number
1745          * of pages to the hugetlb pool and free the extras back to the buddy
1746          * allocator.  Commit the entire reservation here to prevent another
1747          * process from stealing the pages as they are added to the pool but
1748          * before they are reserved.
1749          */
1750         needed += allocated;
1751         h->resv_huge_pages += delta;
1752         ret = 0;
1753
1754         /* Free the needed pages to the hugetlb pool */
1755         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756                 if ((--needed) < 0)
1757                         break;
1758                 /*
1759                  * This page is now managed by the hugetlb allocator and has
1760                  * no users -- drop the buddy allocator's reference.
1761                  */
1762                 put_page_testzero(page);
1763                 VM_BUG_ON_PAGE(page_count(page), page);
1764                 enqueue_huge_page(h, page);
1765         }
1766 free:
1767         spin_unlock(&hugetlb_lock);
1768
1769         /* Free unnecessary surplus pages to the buddy allocator */
1770         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771                 put_page(page);
1772         spin_lock(&hugetlb_lock);
1773
1774         return ret;
1775 }
1776
1777 /*
1778  * This routine has two main purposes:
1779  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1781  *    to the associated reservation map.
1782  * 2) Free any unused surplus pages that may have been allocated to satisfy
1783  *    the reservation.  As many as unused_resv_pages may be freed.
1784  *
1785  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1786  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1787  * we must make sure nobody else can claim pages we are in the process of
1788  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1789  * number of huge pages we plan to free when dropping the lock.
1790  */
1791 static void return_unused_surplus_pages(struct hstate *h,
1792                                         unsigned long unused_resv_pages)
1793 {
1794         unsigned long nr_pages;
1795
1796         /* Cannot return gigantic pages currently */
1797         if (hstate_is_gigantic(h))
1798                 goto out;
1799
1800         /*
1801          * Part (or even all) of the reservation could have been backed
1802          * by pre-allocated pages. Only free surplus pages.
1803          */
1804         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805
1806         /*
1807          * We want to release as many surplus pages as possible, spread
1808          * evenly across all nodes with memory. Iterate across these nodes
1809          * until we can no longer free unreserved surplus pages. This occurs
1810          * when the nodes with surplus pages have no free pages.
1811          * free_pool_huge_page() will balance the the freed pages across the
1812          * on-line nodes with memory and will handle the hstate accounting.
1813          *
1814          * Note that we decrement resv_huge_pages as we free the pages.  If
1815          * we drop the lock, resv_huge_pages will still be sufficiently large
1816          * to cover subsequent pages we may free.
1817          */
1818         while (nr_pages--) {
1819                 h->resv_huge_pages--;
1820                 unused_resv_pages--;
1821                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822                         goto out;
1823                 cond_resched_lock(&hugetlb_lock);
1824         }
1825
1826 out:
1827         /* Fully uncommit the reservation */
1828         h->resv_huge_pages -= unused_resv_pages;
1829 }
1830
1831
1832 /*
1833  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834  * are used by the huge page allocation routines to manage reservations.
1835  *
1836  * vma_needs_reservation is called to determine if the huge page at addr
1837  * within the vma has an associated reservation.  If a reservation is
1838  * needed, the value 1 is returned.  The caller is then responsible for
1839  * managing the global reservation and subpool usage counts.  After
1840  * the huge page has been allocated, vma_commit_reservation is called
1841  * to add the page to the reservation map.  If the page allocation fails,
1842  * the reservation must be ended instead of committed.  vma_end_reservation
1843  * is called in such cases.
1844  *
1845  * In the normal case, vma_commit_reservation returns the same value
1846  * as the preceding vma_needs_reservation call.  The only time this
1847  * is not the case is if a reserve map was changed between calls.  It
1848  * is the responsibility of the caller to notice the difference and
1849  * take appropriate action.
1850  *
1851  * vma_add_reservation is used in error paths where a reservation must
1852  * be restored when a newly allocated huge page must be freed.  It is
1853  * to be called after calling vma_needs_reservation to determine if a
1854  * reservation exists.
1855  */
1856 enum vma_resv_mode {
1857         VMA_NEEDS_RESV,
1858         VMA_COMMIT_RESV,
1859         VMA_END_RESV,
1860         VMA_ADD_RESV,
1861 };
1862 static long __vma_reservation_common(struct hstate *h,
1863                                 struct vm_area_struct *vma, unsigned long addr,
1864                                 enum vma_resv_mode mode)
1865 {
1866         struct resv_map *resv;
1867         pgoff_t idx;
1868         long ret;
1869
1870         resv = vma_resv_map(vma);
1871         if (!resv)
1872                 return 1;
1873
1874         idx = vma_hugecache_offset(h, vma, addr);
1875         switch (mode) {
1876         case VMA_NEEDS_RESV:
1877                 ret = region_chg(resv, idx, idx + 1);
1878                 break;
1879         case VMA_COMMIT_RESV:
1880                 ret = region_add(resv, idx, idx + 1);
1881                 break;
1882         case VMA_END_RESV:
1883                 region_abort(resv, idx, idx + 1);
1884                 ret = 0;
1885                 break;
1886         case VMA_ADD_RESV:
1887                 if (vma->vm_flags & VM_MAYSHARE)
1888                         ret = region_add(resv, idx, idx + 1);
1889                 else {
1890                         region_abort(resv, idx, idx + 1);
1891                         ret = region_del(resv, idx, idx + 1);
1892                 }
1893                 break;
1894         default:
1895                 BUG();
1896         }
1897
1898         if (vma->vm_flags & VM_MAYSHARE)
1899                 return ret;
1900         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901                 /*
1902                  * In most cases, reserves always exist for private mappings.
1903                  * However, a file associated with mapping could have been
1904                  * hole punched or truncated after reserves were consumed.
1905                  * As subsequent fault on such a range will not use reserves.
1906                  * Subtle - The reserve map for private mappings has the
1907                  * opposite meaning than that of shared mappings.  If NO
1908                  * entry is in the reserve map, it means a reservation exists.
1909                  * If an entry exists in the reserve map, it means the
1910                  * reservation has already been consumed.  As a result, the
1911                  * return value of this routine is the opposite of the
1912                  * value returned from reserve map manipulation routines above.
1913                  */
1914                 if (ret)
1915                         return 0;
1916                 else
1917                         return 1;
1918         }
1919         else
1920                 return ret < 0 ? ret : 0;
1921 }
1922
1923 static long vma_needs_reservation(struct hstate *h,
1924                         struct vm_area_struct *vma, unsigned long addr)
1925 {
1926         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927 }
1928
1929 static long vma_commit_reservation(struct hstate *h,
1930                         struct vm_area_struct *vma, unsigned long addr)
1931 {
1932         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933 }
1934
1935 static void vma_end_reservation(struct hstate *h,
1936                         struct vm_area_struct *vma, unsigned long addr)
1937 {
1938         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939 }
1940
1941 static long vma_add_reservation(struct hstate *h,
1942                         struct vm_area_struct *vma, unsigned long addr)
1943 {
1944         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945 }
1946
1947 /*
1948  * This routine is called to restore a reservation on error paths.  In the
1949  * specific error paths, a huge page was allocated (via alloc_huge_page)
1950  * and is about to be freed.  If a reservation for the page existed,
1951  * alloc_huge_page would have consumed the reservation and set PagePrivate
1952  * in the newly allocated page.  When the page is freed via free_huge_page,
1953  * the global reservation count will be incremented if PagePrivate is set.
1954  * However, free_huge_page can not adjust the reserve map.  Adjust the
1955  * reserve map here to be consistent with global reserve count adjustments
1956  * to be made by free_huge_page.
1957  */
1958 static void restore_reserve_on_error(struct hstate *h,
1959                         struct vm_area_struct *vma, unsigned long address,
1960                         struct page *page)
1961 {
1962         if (unlikely(PagePrivate(page))) {
1963                 long rc = vma_needs_reservation(h, vma, address);
1964
1965                 if (unlikely(rc < 0)) {
1966                         /*
1967                          * Rare out of memory condition in reserve map
1968                          * manipulation.  Clear PagePrivate so that
1969                          * global reserve count will not be incremented
1970                          * by free_huge_page.  This will make it appear
1971                          * as though the reservation for this page was
1972                          * consumed.  This may prevent the task from
1973                          * faulting in the page at a later time.  This
1974                          * is better than inconsistent global huge page
1975                          * accounting of reserve counts.
1976                          */
1977                         ClearPagePrivate(page);
1978                 } else if (rc) {
1979                         rc = vma_add_reservation(h, vma, address);
1980                         if (unlikely(rc < 0))
1981                                 /*
1982                                  * See above comment about rare out of
1983                                  * memory condition.
1984                                  */
1985                                 ClearPagePrivate(page);
1986                 } else
1987                         vma_end_reservation(h, vma, address);
1988         }
1989 }
1990
1991 struct page *alloc_huge_page(struct vm_area_struct *vma,
1992                                     unsigned long addr, int avoid_reserve)
1993 {
1994         struct hugepage_subpool *spool = subpool_vma(vma);
1995         struct hstate *h = hstate_vma(vma);
1996         struct page *page;
1997         long map_chg, map_commit;
1998         long gbl_chg;
1999         int ret, idx;
2000         struct hugetlb_cgroup *h_cg;
2001
2002         idx = hstate_index(h);
2003         /*
2004          * Examine the region/reserve map to determine if the process
2005          * has a reservation for the page to be allocated.  A return
2006          * code of zero indicates a reservation exists (no change).
2007          */
2008         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009         if (map_chg < 0)
2010                 return ERR_PTR(-ENOMEM);
2011
2012         /*
2013          * Processes that did not create the mapping will have no
2014          * reserves as indicated by the region/reserve map. Check
2015          * that the allocation will not exceed the subpool limit.
2016          * Allocations for MAP_NORESERVE mappings also need to be
2017          * checked against any subpool limit.
2018          */
2019         if (map_chg || avoid_reserve) {
2020                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021                 if (gbl_chg < 0) {
2022                         vma_end_reservation(h, vma, addr);
2023                         return ERR_PTR(-ENOSPC);
2024                 }
2025
2026                 /*
2027                  * Even though there was no reservation in the region/reserve
2028                  * map, there could be reservations associated with the
2029                  * subpool that can be used.  This would be indicated if the
2030                  * return value of hugepage_subpool_get_pages() is zero.
2031                  * However, if avoid_reserve is specified we still avoid even
2032                  * the subpool reservations.
2033                  */
2034                 if (avoid_reserve)
2035                         gbl_chg = 1;
2036         }
2037
2038         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039         if (ret)
2040                 goto out_subpool_put;
2041
2042         spin_lock(&hugetlb_lock);
2043         /*
2044          * glb_chg is passed to indicate whether or not a page must be taken
2045          * from the global free pool (global change).  gbl_chg == 0 indicates
2046          * a reservation exists for the allocation.
2047          */
2048         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049         if (!page) {
2050                 spin_unlock(&hugetlb_lock);
2051                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052                 if (!page)
2053                         goto out_uncharge_cgroup;
2054                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055                         SetPagePrivate(page);
2056                         h->resv_huge_pages--;
2057                 }
2058                 spin_lock(&hugetlb_lock);
2059                 list_move(&page->lru, &h->hugepage_activelist);
2060                 /* Fall through */
2061         }
2062         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063         spin_unlock(&hugetlb_lock);
2064
2065         set_page_private(page, (unsigned long)spool);
2066
2067         map_commit = vma_commit_reservation(h, vma, addr);
2068         if (unlikely(map_chg > map_commit)) {
2069                 /*
2070                  * The page was added to the reservation map between
2071                  * vma_needs_reservation and vma_commit_reservation.
2072                  * This indicates a race with hugetlb_reserve_pages.
2073                  * Adjust for the subpool count incremented above AND
2074                  * in hugetlb_reserve_pages for the same page.  Also,
2075                  * the reservation count added in hugetlb_reserve_pages
2076                  * no longer applies.
2077                  */
2078                 long rsv_adjust;
2079
2080                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081                 hugetlb_acct_memory(h, -rsv_adjust);
2082         }
2083         return page;
2084
2085 out_uncharge_cgroup:
2086         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087 out_subpool_put:
2088         if (map_chg || avoid_reserve)
2089                 hugepage_subpool_put_pages(spool, 1);
2090         vma_end_reservation(h, vma, addr);
2091         return ERR_PTR(-ENOSPC);
2092 }
2093
2094 /*
2095  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2096  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2097  * where no ERR_VALUE is expected to be returned.
2098  */
2099 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2100                                 unsigned long addr, int avoid_reserve)
2101 {
2102         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2103         if (IS_ERR(page))
2104                 page = NULL;
2105         return page;
2106 }
2107
2108 int __weak alloc_bootmem_huge_page(struct hstate *h)
2109 {
2110         struct huge_bootmem_page *m;
2111         int nr_nodes, node;
2112
2113         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2114                 void *addr;
2115
2116                 addr = memblock_virt_alloc_try_nid_nopanic(
2117                                 huge_page_size(h), huge_page_size(h),
2118                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2119                 if (addr) {
2120                         /*
2121                          * Use the beginning of the huge page to store the
2122                          * huge_bootmem_page struct (until gather_bootmem
2123                          * puts them into the mem_map).
2124                          */
2125                         m = addr;
2126                         goto found;
2127                 }
2128         }
2129         return 0;
2130
2131 found:
2132         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2133         /* Put them into a private list first because mem_map is not up yet */
2134         list_add(&m->list, &huge_boot_pages);
2135         m->hstate = h;
2136         return 1;
2137 }
2138
2139 static void __init prep_compound_huge_page(struct page *page,
2140                 unsigned int order)
2141 {
2142         if (unlikely(order > (MAX_ORDER - 1)))
2143                 prep_compound_gigantic_page(page, order);
2144         else
2145                 prep_compound_page(page, order);
2146 }
2147
2148 /* Put bootmem huge pages into the standard lists after mem_map is up */
2149 static void __init gather_bootmem_prealloc(void)
2150 {
2151         struct huge_bootmem_page *m;
2152
2153         list_for_each_entry(m, &huge_boot_pages, list) {
2154                 struct hstate *h = m->hstate;
2155                 struct page *page;
2156
2157 #ifdef CONFIG_HIGHMEM
2158                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2159                 memblock_free_late(__pa(m),
2160                                    sizeof(struct huge_bootmem_page));
2161 #else
2162                 page = virt_to_page(m);
2163 #endif
2164                 WARN_ON(page_count(page) != 1);
2165                 prep_compound_huge_page(page, h->order);
2166                 WARN_ON(PageReserved(page));
2167                 prep_new_huge_page(h, page, page_to_nid(page));
2168                 /*
2169                  * If we had gigantic hugepages allocated at boot time, we need
2170                  * to restore the 'stolen' pages to totalram_pages in order to
2171                  * fix confusing memory reports from free(1) and another
2172                  * side-effects, like CommitLimit going negative.
2173                  */
2174                 if (hstate_is_gigantic(h))
2175                         adjust_managed_page_count(page, 1 << h->order);
2176         }
2177 }
2178
2179 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2180 {
2181         unsigned long i;
2182
2183         for (i = 0; i < h->max_huge_pages; ++i) {
2184                 if (hstate_is_gigantic(h)) {
2185                         if (!alloc_bootmem_huge_page(h))
2186                                 break;
2187                 } else if (!alloc_fresh_huge_page(h,
2188                                          &node_states[N_MEMORY]))
2189                         break;
2190         }
2191         h->max_huge_pages = i;
2192 }
2193
2194 static void __init hugetlb_init_hstates(void)
2195 {
2196         struct hstate *h;
2197
2198         for_each_hstate(h) {
2199                 if (minimum_order > huge_page_order(h))
2200                         minimum_order = huge_page_order(h);
2201
2202                 /* oversize hugepages were init'ed in early boot */
2203                 if (!hstate_is_gigantic(h))
2204                         hugetlb_hstate_alloc_pages(h);
2205         }
2206         VM_BUG_ON(minimum_order == UINT_MAX);
2207 }
2208
2209 static char * __init memfmt(char *buf, unsigned long n)
2210 {
2211         if (n >= (1UL << 30))
2212                 sprintf(buf, "%lu GB", n >> 30);
2213         else if (n >= (1UL << 20))
2214                 sprintf(buf, "%lu MB", n >> 20);
2215         else
2216                 sprintf(buf, "%lu KB", n >> 10);
2217         return buf;
2218 }
2219
2220 static void __init report_hugepages(void)
2221 {
2222         struct hstate *h;
2223
2224         for_each_hstate(h) {
2225                 char buf[32];
2226                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2227                         memfmt(buf, huge_page_size(h)),
2228                         h->free_huge_pages);
2229         }
2230 }
2231
2232 #ifdef CONFIG_HIGHMEM
2233 static void try_to_free_low(struct hstate *h, unsigned long count,
2234                                                 nodemask_t *nodes_allowed)
2235 {
2236         int i;
2237
2238         if (hstate_is_gigantic(h))
2239                 return;
2240
2241         for_each_node_mask(i, *nodes_allowed) {
2242                 struct page *page, *next;
2243                 struct list_head *freel = &h->hugepage_freelists[i];
2244                 list_for_each_entry_safe(page, next, freel, lru) {
2245                         if (count >= h->nr_huge_pages)
2246                                 return;
2247                         if (PageHighMem(page))
2248                                 continue;
2249                         list_del(&page->lru);
2250                         update_and_free_page(h, page);
2251                         h->free_huge_pages--;
2252                         h->free_huge_pages_node[page_to_nid(page)]--;
2253                 }
2254         }
2255 }
2256 #else
2257 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2258                                                 nodemask_t *nodes_allowed)
2259 {
2260 }
2261 #endif
2262
2263 /*
2264  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2265  * balanced by operating on them in a round-robin fashion.
2266  * Returns 1 if an adjustment was made.
2267  */
2268 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2269                                 int delta)
2270 {
2271         int nr_nodes, node;
2272
2273         VM_BUG_ON(delta != -1 && delta != 1);
2274
2275         if (delta < 0) {
2276                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2277                         if (h->surplus_huge_pages_node[node])
2278                                 goto found;
2279                 }
2280         } else {
2281                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2282                         if (h->surplus_huge_pages_node[node] <
2283                                         h->nr_huge_pages_node[node])
2284                                 goto found;
2285                 }
2286         }
2287         return 0;
2288
2289 found:
2290         h->surplus_huge_pages += delta;
2291         h->surplus_huge_pages_node[node] += delta;
2292         return 1;
2293 }
2294
2295 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2296 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2297                                                 nodemask_t *nodes_allowed)
2298 {
2299         unsigned long min_count, ret;
2300
2301         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2302                 return h->max_huge_pages;
2303
2304         /*
2305          * Increase the pool size
2306          * First take pages out of surplus state.  Then make up the
2307          * remaining difference by allocating fresh huge pages.
2308          *
2309          * We might race with __alloc_buddy_huge_page() here and be unable
2310          * to convert a surplus huge page to a normal huge page. That is
2311          * not critical, though, it just means the overall size of the
2312          * pool might be one hugepage larger than it needs to be, but
2313          * within all the constraints specified by the sysctls.
2314          */
2315         spin_lock(&hugetlb_lock);
2316         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2317                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2318                         break;
2319         }
2320
2321         while (count > persistent_huge_pages(h)) {
2322                 /*
2323                  * If this allocation races such that we no longer need the
2324                  * page, free_huge_page will handle it by freeing the page
2325                  * and reducing the surplus.
2326                  */
2327                 spin_unlock(&hugetlb_lock);
2328
2329                 /* yield cpu to avoid soft lockup */
2330                 cond_resched();
2331
2332                 if (hstate_is_gigantic(h))
2333                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2334                 else
2335                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2336                 spin_lock(&hugetlb_lock);
2337                 if (!ret)
2338                         goto out;
2339
2340                 /* Bail for signals. Probably ctrl-c from user */
2341                 if (signal_pending(current))
2342                         goto out;
2343         }
2344
2345         /*
2346          * Decrease the pool size
2347          * First return free pages to the buddy allocator (being careful
2348          * to keep enough around to satisfy reservations).  Then place
2349          * pages into surplus state as needed so the pool will shrink
2350          * to the desired size as pages become free.
2351          *
2352          * By placing pages into the surplus state independent of the
2353          * overcommit value, we are allowing the surplus pool size to
2354          * exceed overcommit. There are few sane options here. Since
2355          * __alloc_buddy_huge_page() is checking the global counter,
2356          * though, we'll note that we're not allowed to exceed surplus
2357          * and won't grow the pool anywhere else. Not until one of the
2358          * sysctls are changed, or the surplus pages go out of use.
2359          */
2360         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2361         min_count = max(count, min_count);
2362         try_to_free_low(h, min_count, nodes_allowed);
2363         while (min_count < persistent_huge_pages(h)) {
2364                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2365                         break;
2366                 cond_resched_lock(&hugetlb_lock);
2367         }
2368         while (count < persistent_huge_pages(h)) {
2369                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2370                         break;
2371         }
2372 out:
2373         ret = persistent_huge_pages(h);
2374         spin_unlock(&hugetlb_lock);
2375         return ret;
2376 }
2377
2378 #define HSTATE_ATTR_RO(_name) \
2379         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2380
2381 #define HSTATE_ATTR(_name) \
2382         static struct kobj_attribute _name##_attr = \
2383                 __ATTR(_name, 0644, _name##_show, _name##_store)
2384
2385 static struct kobject *hugepages_kobj;
2386 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2387
2388 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2389
2390 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2391 {
2392         int i;
2393
2394         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2395                 if (hstate_kobjs[i] == kobj) {
2396                         if (nidp)
2397                                 *nidp = NUMA_NO_NODE;
2398                         return &hstates[i];
2399                 }
2400
2401         return kobj_to_node_hstate(kobj, nidp);
2402 }
2403
2404 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2405                                         struct kobj_attribute *attr, char *buf)
2406 {
2407         struct hstate *h;
2408         unsigned long nr_huge_pages;
2409         int nid;
2410
2411         h = kobj_to_hstate(kobj, &nid);
2412         if (nid == NUMA_NO_NODE)
2413                 nr_huge_pages = h->nr_huge_pages;
2414         else
2415                 nr_huge_pages = h->nr_huge_pages_node[nid];
2416
2417         return sprintf(buf, "%lu\n", nr_huge_pages);
2418 }
2419
2420 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2421                                            struct hstate *h, int nid,
2422                                            unsigned long count, size_t len)
2423 {
2424         int err;
2425         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2426
2427         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2428                 err = -EINVAL;
2429                 goto out;
2430         }
2431
2432         if (nid == NUMA_NO_NODE) {
2433                 /*
2434                  * global hstate attribute
2435                  */
2436                 if (!(obey_mempolicy &&
2437                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2438                         NODEMASK_FREE(nodes_allowed);
2439                         nodes_allowed = &node_states[N_MEMORY];
2440                 }
2441         } else if (nodes_allowed) {
2442                 /*
2443                  * per node hstate attribute: adjust count to global,
2444                  * but restrict alloc/free to the specified node.
2445                  */
2446                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2447                 init_nodemask_of_node(nodes_allowed, nid);
2448         } else
2449                 nodes_allowed = &node_states[N_MEMORY];
2450
2451         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2452
2453         if (nodes_allowed != &node_states[N_MEMORY])
2454                 NODEMASK_FREE(nodes_allowed);
2455
2456         return len;
2457 out:
2458         NODEMASK_FREE(nodes_allowed);
2459         return err;
2460 }
2461
2462 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2463                                          struct kobject *kobj, const char *buf,
2464                                          size_t len)
2465 {
2466         struct hstate *h;
2467         unsigned long count;
2468         int nid;
2469         int err;
2470
2471         err = kstrtoul(buf, 10, &count);
2472         if (err)
2473                 return err;
2474
2475         h = kobj_to_hstate(kobj, &nid);
2476         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2477 }
2478
2479 static ssize_t nr_hugepages_show(struct kobject *kobj,
2480                                        struct kobj_attribute *attr, char *buf)
2481 {
2482         return nr_hugepages_show_common(kobj, attr, buf);
2483 }
2484
2485 static ssize_t nr_hugepages_store(struct kobject *kobj,
2486                struct kobj_attribute *attr, const char *buf, size_t len)
2487 {
2488         return nr_hugepages_store_common(false, kobj, buf, len);
2489 }
2490 HSTATE_ATTR(nr_hugepages);
2491
2492 #ifdef CONFIG_NUMA
2493
2494 /*
2495  * hstate attribute for optionally mempolicy-based constraint on persistent
2496  * huge page alloc/free.
2497  */
2498 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2499                                        struct kobj_attribute *attr, char *buf)
2500 {
2501         return nr_hugepages_show_common(kobj, attr, buf);
2502 }
2503
2504 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2505                struct kobj_attribute *attr, const char *buf, size_t len)
2506 {
2507         return nr_hugepages_store_common(true, kobj, buf, len);
2508 }
2509 HSTATE_ATTR(nr_hugepages_mempolicy);
2510 #endif
2511
2512
2513 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2514                                         struct kobj_attribute *attr, char *buf)
2515 {
2516         struct hstate *h = kobj_to_hstate(kobj, NULL);
2517         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2518 }
2519
2520 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2521                 struct kobj_attribute *attr, const char *buf, size_t count)
2522 {
2523         int err;
2524         unsigned long input;
2525         struct hstate *h = kobj_to_hstate(kobj, NULL);
2526
2527         if (hstate_is_gigantic(h))
2528                 return -EINVAL;
2529
2530         err = kstrtoul(buf, 10, &input);
2531         if (err)
2532                 return err;
2533
2534         spin_lock(&hugetlb_lock);
2535         h->nr_overcommit_huge_pages = input;
2536         spin_unlock(&hugetlb_lock);
2537
2538         return count;
2539 }
2540 HSTATE_ATTR(nr_overcommit_hugepages);
2541
2542 static ssize_t free_hugepages_show(struct kobject *kobj,
2543                                         struct kobj_attribute *attr, char *buf)
2544 {
2545         struct hstate *h;
2546         unsigned long free_huge_pages;
2547         int nid;
2548
2549         h = kobj_to_hstate(kobj, &nid);
2550         if (nid == NUMA_NO_NODE)
2551                 free_huge_pages = h->free_huge_pages;
2552         else
2553                 free_huge_pages = h->free_huge_pages_node[nid];
2554
2555         return sprintf(buf, "%lu\n", free_huge_pages);
2556 }
2557 HSTATE_ATTR_RO(free_hugepages);
2558
2559 static ssize_t resv_hugepages_show(struct kobject *kobj,
2560                                         struct kobj_attribute *attr, char *buf)
2561 {
2562         struct hstate *h = kobj_to_hstate(kobj, NULL);
2563         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2564 }
2565 HSTATE_ATTR_RO(resv_hugepages);
2566
2567 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2568                                         struct kobj_attribute *attr, char *buf)
2569 {
2570         struct hstate *h;
2571         unsigned long surplus_huge_pages;
2572         int nid;
2573
2574         h = kobj_to_hstate(kobj, &nid);
2575         if (nid == NUMA_NO_NODE)
2576                 surplus_huge_pages = h->surplus_huge_pages;
2577         else
2578                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2579
2580         return sprintf(buf, "%lu\n", surplus_huge_pages);
2581 }
2582 HSTATE_ATTR_RO(surplus_hugepages);
2583
2584 static struct attribute *hstate_attrs[] = {
2585         &nr_hugepages_attr.attr,
2586         &nr_overcommit_hugepages_attr.attr,
2587         &free_hugepages_attr.attr,
2588         &resv_hugepages_attr.attr,
2589         &surplus_hugepages_attr.attr,
2590 #ifdef CONFIG_NUMA
2591         &nr_hugepages_mempolicy_attr.attr,
2592 #endif
2593         NULL,
2594 };
2595
2596 static struct attribute_group hstate_attr_group = {
2597         .attrs = hstate_attrs,
2598 };
2599
2600 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2601                                     struct kobject **hstate_kobjs,
2602                                     struct attribute_group *hstate_attr_group)
2603 {
2604         int retval;
2605         int hi = hstate_index(h);
2606
2607         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2608         if (!hstate_kobjs[hi])
2609                 return -ENOMEM;
2610
2611         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2612         if (retval)
2613                 kobject_put(hstate_kobjs[hi]);
2614
2615         return retval;
2616 }
2617
2618 static void __init hugetlb_sysfs_init(void)
2619 {
2620         struct hstate *h;
2621         int err;
2622
2623         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2624         if (!hugepages_kobj)
2625                 return;
2626
2627         for_each_hstate(h) {
2628                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2629                                          hstate_kobjs, &hstate_attr_group);
2630                 if (err)
2631                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2632         }
2633 }
2634
2635 #ifdef CONFIG_NUMA
2636
2637 /*
2638  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2639  * with node devices in node_devices[] using a parallel array.  The array
2640  * index of a node device or _hstate == node id.
2641  * This is here to avoid any static dependency of the node device driver, in
2642  * the base kernel, on the hugetlb module.
2643  */
2644 struct node_hstate {
2645         struct kobject          *hugepages_kobj;
2646         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2647 };
2648 static struct node_hstate node_hstates[MAX_NUMNODES];
2649
2650 /*
2651  * A subset of global hstate attributes for node devices
2652  */
2653 static struct attribute *per_node_hstate_attrs[] = {
2654         &nr_hugepages_attr.attr,
2655         &free_hugepages_attr.attr,
2656         &surplus_hugepages_attr.attr,
2657         NULL,
2658 };
2659
2660 static struct attribute_group per_node_hstate_attr_group = {
2661         .attrs = per_node_hstate_attrs,
2662 };
2663
2664 /*
2665  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2666  * Returns node id via non-NULL nidp.
2667  */
2668 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2669 {
2670         int nid;
2671
2672         for (nid = 0; nid < nr_node_ids; nid++) {
2673                 struct node_hstate *nhs = &node_hstates[nid];
2674                 int i;
2675                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2676                         if (nhs->hstate_kobjs[i] == kobj) {
2677                                 if (nidp)
2678                                         *nidp = nid;
2679                                 return &hstates[i];
2680                         }
2681         }
2682
2683         BUG();
2684         return NULL;
2685 }
2686
2687 /*
2688  * Unregister hstate attributes from a single node device.
2689  * No-op if no hstate attributes attached.
2690  */
2691 static void hugetlb_unregister_node(struct node *node)
2692 {
2693         struct hstate *h;
2694         struct node_hstate *nhs = &node_hstates[node->dev.id];
2695
2696         if (!nhs->hugepages_kobj)
2697                 return;         /* no hstate attributes */
2698
2699         for_each_hstate(h) {
2700                 int idx = hstate_index(h);
2701                 if (nhs->hstate_kobjs[idx]) {
2702                         kobject_put(nhs->hstate_kobjs[idx]);
2703                         nhs->hstate_kobjs[idx] = NULL;
2704                 }
2705         }
2706
2707         kobject_put(nhs->hugepages_kobj);
2708         nhs->hugepages_kobj = NULL;
2709 }
2710
2711
2712 /*
2713  * Register hstate attributes for a single node device.
2714  * No-op if attributes already registered.
2715  */
2716 static void hugetlb_register_node(struct node *node)
2717 {
2718         struct hstate *h;
2719         struct node_hstate *nhs = &node_hstates[node->dev.id];
2720         int err;
2721
2722         if (nhs->hugepages_kobj)
2723                 return;         /* already allocated */
2724
2725         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2726                                                         &node->dev.kobj);
2727         if (!nhs->hugepages_kobj)
2728                 return;
2729
2730         for_each_hstate(h) {
2731                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2732                                                 nhs->hstate_kobjs,
2733                                                 &per_node_hstate_attr_group);
2734                 if (err) {
2735                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2736                                 h->name, node->dev.id);
2737                         hugetlb_unregister_node(node);
2738                         break;
2739                 }
2740         }
2741 }
2742
2743 /*
2744  * hugetlb init time:  register hstate attributes for all registered node
2745  * devices of nodes that have memory.  All on-line nodes should have
2746  * registered their associated device by this time.
2747  */
2748 static void __init hugetlb_register_all_nodes(void)
2749 {
2750         int nid;
2751
2752         for_each_node_state(nid, N_MEMORY) {
2753                 struct node *node = node_devices[nid];
2754                 if (node->dev.id == nid)
2755                         hugetlb_register_node(node);
2756         }
2757
2758         /*
2759          * Let the node device driver know we're here so it can
2760          * [un]register hstate attributes on node hotplug.
2761          */
2762         register_hugetlbfs_with_node(hugetlb_register_node,
2763                                      hugetlb_unregister_node);
2764 }
2765 #else   /* !CONFIG_NUMA */
2766
2767 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2768 {
2769         BUG();
2770         if (nidp)
2771                 *nidp = -1;
2772         return NULL;
2773 }
2774
2775 static void hugetlb_register_all_nodes(void) { }
2776
2777 #endif
2778
2779 static int __init hugetlb_init(void)
2780 {
2781         int i;
2782
2783         if (!hugepages_supported())
2784                 return 0;
2785
2786         if (!size_to_hstate(default_hstate_size)) {
2787                 default_hstate_size = HPAGE_SIZE;
2788                 if (!size_to_hstate(default_hstate_size))
2789                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2790         }
2791         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2792         if (default_hstate_max_huge_pages) {
2793                 if (!default_hstate.max_huge_pages)
2794                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2795         }
2796
2797         hugetlb_init_hstates();
2798         gather_bootmem_prealloc();
2799         report_hugepages();
2800
2801         hugetlb_sysfs_init();
2802         hugetlb_register_all_nodes();
2803         hugetlb_cgroup_file_init();
2804
2805 #ifdef CONFIG_SMP
2806         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2807 #else
2808         num_fault_mutexes = 1;
2809 #endif
2810         hugetlb_fault_mutex_table =
2811                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2812         BUG_ON(!hugetlb_fault_mutex_table);
2813
2814         for (i = 0; i < num_fault_mutexes; i++)
2815                 mutex_init(&hugetlb_fault_mutex_table[i]);
2816         return 0;
2817 }
2818 subsys_initcall(hugetlb_init);
2819
2820 /* Should be called on processing a hugepagesz=... option */
2821 void __init hugetlb_bad_size(void)
2822 {
2823         parsed_valid_hugepagesz = false;
2824 }
2825
2826 void __init hugetlb_add_hstate(unsigned int order)
2827 {
2828         struct hstate *h;
2829         unsigned long i;
2830
2831         if (size_to_hstate(PAGE_SIZE << order)) {
2832                 pr_warn("hugepagesz= specified twice, ignoring\n");
2833                 return;
2834         }
2835         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2836         BUG_ON(order == 0);
2837         h = &hstates[hugetlb_max_hstate++];
2838         h->order = order;
2839         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2840         h->nr_huge_pages = 0;
2841         h->free_huge_pages = 0;
2842         for (i = 0; i < MAX_NUMNODES; ++i)
2843                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2844         INIT_LIST_HEAD(&h->hugepage_activelist);
2845         h->next_nid_to_alloc = first_memory_node;
2846         h->next_nid_to_free = first_memory_node;
2847         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2848                                         huge_page_size(h)/1024);
2849
2850         parsed_hstate = h;
2851 }
2852
2853 static int __init hugetlb_nrpages_setup(char *s)
2854 {
2855         unsigned long *mhp;
2856         static unsigned long *last_mhp;
2857
2858         if (!parsed_valid_hugepagesz) {
2859                 pr_warn("hugepages = %s preceded by "
2860                         "an unsupported hugepagesz, ignoring\n", s);
2861                 parsed_valid_hugepagesz = true;
2862                 return 1;
2863         }
2864         /*
2865          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2866          * so this hugepages= parameter goes to the "default hstate".
2867          */
2868         else if (!hugetlb_max_hstate)
2869                 mhp = &default_hstate_max_huge_pages;
2870         else
2871                 mhp = &parsed_hstate->max_huge_pages;
2872
2873         if (mhp == last_mhp) {
2874                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2875                 return 1;
2876         }
2877
2878         if (sscanf(s, "%lu", mhp) <= 0)
2879                 *mhp = 0;
2880
2881         /*
2882          * Global state is always initialized later in hugetlb_init.
2883          * But we need to allocate >= MAX_ORDER hstates here early to still
2884          * use the bootmem allocator.
2885          */
2886         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2887                 hugetlb_hstate_alloc_pages(parsed_hstate);
2888
2889         last_mhp = mhp;
2890
2891         return 1;
2892 }
2893 __setup("hugepages=", hugetlb_nrpages_setup);
2894
2895 static int __init hugetlb_default_setup(char *s)
2896 {
2897         default_hstate_size = memparse(s, &s);
2898         return 1;
2899 }
2900 __setup("default_hugepagesz=", hugetlb_default_setup);
2901
2902 static unsigned int cpuset_mems_nr(unsigned int *array)
2903 {
2904         int node;
2905         unsigned int nr = 0;
2906
2907         for_each_node_mask(node, cpuset_current_mems_allowed)
2908                 nr += array[node];
2909
2910         return nr;
2911 }
2912
2913 #ifdef CONFIG_SYSCTL
2914 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2915                          struct ctl_table *table, int write,
2916                          void __user *buffer, size_t *length, loff_t *ppos)
2917 {
2918         struct hstate *h = &default_hstate;
2919         unsigned long tmp = h->max_huge_pages;
2920         int ret;
2921
2922         if (!hugepages_supported())
2923                 return -EOPNOTSUPP;
2924
2925         table->data = &tmp;
2926         table->maxlen = sizeof(unsigned long);
2927         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2928         if (ret)
2929                 goto out;
2930
2931         if (write)
2932                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2933                                                   NUMA_NO_NODE, tmp, *length);
2934 out:
2935         return ret;
2936 }
2937
2938 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2939                           void __user *buffer, size_t *length, loff_t *ppos)
2940 {
2941
2942         return hugetlb_sysctl_handler_common(false, table, write,
2943                                                         buffer, length, ppos);
2944 }
2945
2946 #ifdef CONFIG_NUMA
2947 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2948                           void __user *buffer, size_t *length, loff_t *ppos)
2949 {
2950         return hugetlb_sysctl_handler_common(true, table, write,
2951                                                         buffer, length, ppos);
2952 }
2953 #endif /* CONFIG_NUMA */
2954
2955 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2956                         void __user *buffer,
2957                         size_t *length, loff_t *ppos)
2958 {
2959         struct hstate *h = &default_hstate;
2960         unsigned long tmp;
2961         int ret;
2962
2963         if (!hugepages_supported())
2964                 return -EOPNOTSUPP;
2965
2966         tmp = h->nr_overcommit_huge_pages;
2967
2968         if (write && hstate_is_gigantic(h))
2969                 return -EINVAL;
2970
2971         table->data = &tmp;
2972         table->maxlen = sizeof(unsigned long);
2973         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2974         if (ret)
2975                 goto out;
2976
2977         if (write) {
2978                 spin_lock(&hugetlb_lock);
2979                 h->nr_overcommit_huge_pages = tmp;
2980                 spin_unlock(&hugetlb_lock);
2981         }
2982 out:
2983         return ret;
2984 }
2985
2986 #endif /* CONFIG_SYSCTL */
2987
2988 void hugetlb_report_meminfo(struct seq_file *m)
2989 {
2990         struct hstate *h = &default_hstate;
2991         if (!hugepages_supported())
2992                 return;
2993         seq_printf(m,
2994                         "HugePages_Total:   %5lu\n"
2995                         "HugePages_Free:    %5lu\n"
2996                         "HugePages_Rsvd:    %5lu\n"
2997                         "HugePages_Surp:    %5lu\n"
2998                         "Hugepagesize:   %8lu kB\n",
2999                         h->nr_huge_pages,
3000                         h->free_huge_pages,
3001                         h->resv_huge_pages,
3002                         h->surplus_huge_pages,
3003                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3004 }
3005
3006 int hugetlb_report_node_meminfo(int nid, char *buf)
3007 {
3008         struct hstate *h = &default_hstate;
3009         if (!hugepages_supported())
3010                 return 0;
3011         return sprintf(buf,
3012                 "Node %d HugePages_Total: %5u\n"
3013                 "Node %d HugePages_Free:  %5u\n"
3014                 "Node %d HugePages_Surp:  %5u\n",
3015                 nid, h->nr_huge_pages_node[nid],
3016                 nid, h->free_huge_pages_node[nid],
3017                 nid, h->surplus_huge_pages_node[nid]);
3018 }
3019
3020 void hugetlb_show_meminfo(void)
3021 {
3022         struct hstate *h;
3023         int nid;
3024
3025         if (!hugepages_supported())
3026                 return;
3027
3028         for_each_node_state(nid, N_MEMORY)
3029                 for_each_hstate(h)
3030                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031                                 nid,
3032                                 h->nr_huge_pages_node[nid],
3033                                 h->free_huge_pages_node[nid],
3034                                 h->surplus_huge_pages_node[nid],
3035                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3036 }
3037
3038 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3039 {
3040         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3041                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3042 }
3043
3044 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3045 unsigned long hugetlb_total_pages(void)
3046 {
3047         struct hstate *h;
3048         unsigned long nr_total_pages = 0;
3049
3050         for_each_hstate(h)
3051                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3052         return nr_total_pages;
3053 }
3054
3055 static int hugetlb_acct_memory(struct hstate *h, long delta)
3056 {
3057         int ret = -ENOMEM;
3058
3059         spin_lock(&hugetlb_lock);
3060         /*
3061          * When cpuset is configured, it breaks the strict hugetlb page
3062          * reservation as the accounting is done on a global variable. Such
3063          * reservation is completely rubbish in the presence of cpuset because
3064          * the reservation is not checked against page availability for the
3065          * current cpuset. Application can still potentially OOM'ed by kernel
3066          * with lack of free htlb page in cpuset that the task is in.
3067          * Attempt to enforce strict accounting with cpuset is almost
3068          * impossible (or too ugly) because cpuset is too fluid that
3069          * task or memory node can be dynamically moved between cpusets.
3070          *
3071          * The change of semantics for shared hugetlb mapping with cpuset is
3072          * undesirable. However, in order to preserve some of the semantics,
3073          * we fall back to check against current free page availability as
3074          * a best attempt and hopefully to minimize the impact of changing
3075          * semantics that cpuset has.
3076          */
3077         if (delta > 0) {
3078                 if (gather_surplus_pages(h, delta) < 0)
3079                         goto out;
3080
3081                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3082                         return_unused_surplus_pages(h, delta);
3083                         goto out;
3084                 }
3085         }
3086
3087         ret = 0;
3088         if (delta < 0)
3089                 return_unused_surplus_pages(h, (unsigned long) -delta);
3090
3091 out:
3092         spin_unlock(&hugetlb_lock);
3093         return ret;
3094 }
3095
3096 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3097 {
3098         struct resv_map *resv = vma_resv_map(vma);
3099
3100         /*
3101          * This new VMA should share its siblings reservation map if present.
3102          * The VMA will only ever have a valid reservation map pointer where
3103          * it is being copied for another still existing VMA.  As that VMA
3104          * has a reference to the reservation map it cannot disappear until
3105          * after this open call completes.  It is therefore safe to take a
3106          * new reference here without additional locking.
3107          */
3108         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3109                 kref_get(&resv->refs);
3110 }
3111
3112 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3113 {
3114         struct hstate *h = hstate_vma(vma);
3115         struct resv_map *resv = vma_resv_map(vma);
3116         struct hugepage_subpool *spool = subpool_vma(vma);
3117         unsigned long reserve, start, end;
3118         long gbl_reserve;
3119
3120         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3121                 return;
3122
3123         start = vma_hugecache_offset(h, vma, vma->vm_start);
3124         end = vma_hugecache_offset(h, vma, vma->vm_end);
3125
3126         reserve = (end - start) - region_count(resv, start, end);
3127
3128         kref_put(&resv->refs, resv_map_release);
3129
3130         if (reserve) {
3131                 /*
3132                  * Decrement reserve counts.  The global reserve count may be
3133                  * adjusted if the subpool has a minimum size.
3134                  */
3135                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3136                 hugetlb_acct_memory(h, -gbl_reserve);
3137         }
3138 }
3139
3140 /*
3141  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3142  * handle_mm_fault() to try to instantiate regular-sized pages in the
3143  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3144  * this far.
3145  */
3146 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3147 {
3148         BUG();
3149         return 0;
3150 }
3151
3152 const struct vm_operations_struct hugetlb_vm_ops = {
3153         .fault = hugetlb_vm_op_fault,
3154         .open = hugetlb_vm_op_open,
3155         .close = hugetlb_vm_op_close,
3156 };
3157
3158 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3159                                 int writable)
3160 {
3161         pte_t entry;
3162
3163         if (writable) {
3164                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3165                                          vma->vm_page_prot)));
3166         } else {
3167                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3168                                            vma->vm_page_prot));
3169         }
3170         entry = pte_mkyoung(entry);
3171         entry = pte_mkhuge(entry);
3172         entry = arch_make_huge_pte(entry, vma, page, writable);
3173
3174         return entry;
3175 }
3176
3177 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3178                                    unsigned long address, pte_t *ptep)
3179 {
3180         pte_t entry;
3181
3182         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3183         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3184                 update_mmu_cache(vma, address, ptep);
3185 }
3186
3187 static int is_hugetlb_entry_migration(pte_t pte)
3188 {
3189         swp_entry_t swp;
3190
3191         if (huge_pte_none(pte) || pte_present(pte))
3192                 return 0;
3193         swp = pte_to_swp_entry(pte);
3194         if (non_swap_entry(swp) && is_migration_entry(swp))
3195                 return 1;
3196         else
3197                 return 0;
3198 }
3199
3200 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3201 {
3202         swp_entry_t swp;
3203
3204         if (huge_pte_none(pte) || pte_present(pte))
3205                 return 0;
3206         swp = pte_to_swp_entry(pte);
3207         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3208                 return 1;
3209         else
3210                 return 0;
3211 }
3212
3213 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3214                             struct vm_area_struct *vma)
3215 {
3216         pte_t *src_pte, *dst_pte, entry;
3217         struct page *ptepage;
3218         unsigned long addr;
3219         int cow;
3220         struct hstate *h = hstate_vma(vma);
3221         unsigned long sz = huge_page_size(h);
3222         unsigned long mmun_start;       /* For mmu_notifiers */
3223         unsigned long mmun_end;         /* For mmu_notifiers */
3224         int ret = 0;
3225
3226         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3227
3228         mmun_start = vma->vm_start;
3229         mmun_end = vma->vm_end;
3230         if (cow)
3231                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3232
3233         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3234                 spinlock_t *src_ptl, *dst_ptl;
3235                 src_pte = huge_pte_offset(src, addr);
3236                 if (!src_pte)
3237                         continue;
3238                 dst_pte = huge_pte_alloc(dst, addr, sz);
3239                 if (!dst_pte) {
3240                         ret = -ENOMEM;
3241                         break;
3242                 }
3243
3244                 /* If the pagetables are shared don't copy or take references */
3245                 if (dst_pte == src_pte)
3246                         continue;
3247
3248                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3249                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3250                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3251                 entry = huge_ptep_get(src_pte);
3252                 if (huge_pte_none(entry)) { /* skip none entry */
3253                         ;
3254                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3255                                     is_hugetlb_entry_hwpoisoned(entry))) {
3256                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3257
3258                         if (is_write_migration_entry(swp_entry) && cow) {
3259                                 /*
3260                                  * COW mappings require pages in both
3261                                  * parent and child to be set to read.
3262                                  */
3263                                 make_migration_entry_read(&swp_entry);
3264                                 entry = swp_entry_to_pte(swp_entry);
3265                                 set_huge_pte_at(src, addr, src_pte, entry);
3266                         }
3267                         set_huge_pte_at(dst, addr, dst_pte, entry);
3268                 } else {
3269                         if (cow) {
3270                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3271                                 mmu_notifier_invalidate_range(src, mmun_start,
3272                                                                    mmun_end);
3273                         }
3274                         entry = huge_ptep_get(src_pte);
3275                         ptepage = pte_page(entry);
3276                         get_page(ptepage);
3277                         page_dup_rmap(ptepage, true);
3278                         set_huge_pte_at(dst, addr, dst_pte, entry);
3279                         hugetlb_count_add(pages_per_huge_page(h), dst);
3280                 }
3281                 spin_unlock(src_ptl);
3282                 spin_unlock(dst_ptl);
3283         }
3284
3285         if (cow)
3286                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3287
3288         return ret;
3289 }
3290
3291 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3292                             unsigned long start, unsigned long end,
3293                             struct page *ref_page)
3294 {
3295         struct mm_struct *mm = vma->vm_mm;
3296         unsigned long address;
3297         pte_t *ptep;
3298         pte_t pte;
3299         spinlock_t *ptl;
3300         struct page *page;
3301         struct hstate *h = hstate_vma(vma);
3302         unsigned long sz = huge_page_size(h);
3303         const unsigned long mmun_start = start; /* For mmu_notifiers */
3304         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3305
3306         WARN_ON(!is_vm_hugetlb_page(vma));
3307         BUG_ON(start & ~huge_page_mask(h));
3308         BUG_ON(end & ~huge_page_mask(h));
3309
3310         /*
3311          * This is a hugetlb vma, all the pte entries should point
3312          * to huge page.
3313          */
3314         tlb_remove_check_page_size_change(tlb, sz);
3315         tlb_start_vma(tlb, vma);
3316         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3317         address = start;
3318         for (; address < end; address += sz) {
3319                 ptep = huge_pte_offset(mm, address);
3320                 if (!ptep)
3321                         continue;
3322
3323                 ptl = huge_pte_lock(h, mm, ptep);
3324                 if (huge_pmd_unshare(mm, &address, ptep)) {
3325                         spin_unlock(ptl);
3326                         continue;
3327                 }
3328
3329                 pte = huge_ptep_get(ptep);
3330                 if (huge_pte_none(pte)) {
3331                         spin_unlock(ptl);
3332                         continue;
3333                 }
3334
3335                 /*
3336                  * Migrating hugepage or HWPoisoned hugepage is already
3337                  * unmapped and its refcount is dropped, so just clear pte here.
3338                  */
3339                 if (unlikely(!pte_present(pte))) {
3340                         huge_pte_clear(mm, address, ptep);
3341                         spin_unlock(ptl);
3342                         continue;
3343                 }
3344
3345                 page = pte_page(pte);
3346                 /*
3347                  * If a reference page is supplied, it is because a specific
3348                  * page is being unmapped, not a range. Ensure the page we
3349                  * are about to unmap is the actual page of interest.
3350                  */
3351                 if (ref_page) {
3352                         if (page != ref_page) {
3353                                 spin_unlock(ptl);
3354                                 continue;
3355                         }
3356                         /*
3357                          * Mark the VMA as having unmapped its page so that
3358                          * future faults in this VMA will fail rather than
3359                          * looking like data was lost
3360                          */
3361                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3362                 }
3363
3364                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3365                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3366                 if (huge_pte_dirty(pte))
3367                         set_page_dirty(page);
3368
3369                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3370                 page_remove_rmap(page, true);
3371
3372                 spin_unlock(ptl);
3373                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3374                 /*
3375                  * Bail out after unmapping reference page if supplied
3376                  */
3377                 if (ref_page)
3378                         break;
3379         }
3380         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3381         tlb_end_vma(tlb, vma);
3382 }
3383
3384 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3385                           struct vm_area_struct *vma, unsigned long start,
3386                           unsigned long end, struct page *ref_page)
3387 {
3388         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3389
3390         /*
3391          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3392          * test will fail on a vma being torn down, and not grab a page table
3393          * on its way out.  We're lucky that the flag has such an appropriate
3394          * name, and can in fact be safely cleared here. We could clear it
3395          * before the __unmap_hugepage_range above, but all that's necessary
3396          * is to clear it before releasing the i_mmap_rwsem. This works
3397          * because in the context this is called, the VMA is about to be
3398          * destroyed and the i_mmap_rwsem is held.
3399          */
3400         vma->vm_flags &= ~VM_MAYSHARE;
3401 }
3402
3403 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3404                           unsigned long end, struct page *ref_page)
3405 {
3406         struct mm_struct *mm;
3407         struct mmu_gather tlb;
3408
3409         mm = vma->vm_mm;
3410
3411         tlb_gather_mmu(&tlb, mm, start, end);
3412         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3413         tlb_finish_mmu(&tlb, start, end);
3414 }
3415
3416 /*
3417  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3418  * mappping it owns the reserve page for. The intention is to unmap the page
3419  * from other VMAs and let the children be SIGKILLed if they are faulting the
3420  * same region.
3421  */
3422 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3423                               struct page *page, unsigned long address)
3424 {
3425         struct hstate *h = hstate_vma(vma);
3426         struct vm_area_struct *iter_vma;
3427         struct address_space *mapping;
3428         pgoff_t pgoff;
3429
3430         /*
3431          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3432          * from page cache lookup which is in HPAGE_SIZE units.
3433          */
3434         address = address & huge_page_mask(h);
3435         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3436                         vma->vm_pgoff;
3437         mapping = vma->vm_file->f_mapping;
3438
3439         /*
3440          * Take the mapping lock for the duration of the table walk. As
3441          * this mapping should be shared between all the VMAs,
3442          * __unmap_hugepage_range() is called as the lock is already held
3443          */
3444         i_mmap_lock_write(mapping);
3445         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3446                 /* Do not unmap the current VMA */
3447                 if (iter_vma == vma)
3448                         continue;
3449
3450                 /*
3451                  * Shared VMAs have their own reserves and do not affect
3452                  * MAP_PRIVATE accounting but it is possible that a shared
3453                  * VMA is using the same page so check and skip such VMAs.
3454                  */
3455                 if (iter_vma->vm_flags & VM_MAYSHARE)
3456                         continue;
3457
3458                 /*
3459                  * Unmap the page from other VMAs without their own reserves.
3460                  * They get marked to be SIGKILLed if they fault in these
3461                  * areas. This is because a future no-page fault on this VMA
3462                  * could insert a zeroed page instead of the data existing
3463                  * from the time of fork. This would look like data corruption
3464                  */
3465                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3466                         unmap_hugepage_range(iter_vma, address,
3467                                              address + huge_page_size(h), page);
3468         }
3469         i_mmap_unlock_write(mapping);
3470 }
3471
3472 /*
3473  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3474  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3475  * cannot race with other handlers or page migration.
3476  * Keep the pte_same checks anyway to make transition from the mutex easier.
3477  */
3478 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3479                        unsigned long address, pte_t *ptep,
3480                        struct page *pagecache_page, spinlock_t *ptl)
3481 {
3482         pte_t pte;
3483         struct hstate *h = hstate_vma(vma);
3484         struct page *old_page, *new_page;
3485         int ret = 0, outside_reserve = 0;
3486         unsigned long mmun_start;       /* For mmu_notifiers */
3487         unsigned long mmun_end;         /* For mmu_notifiers */
3488
3489         pte = huge_ptep_get(ptep);
3490         old_page = pte_page(pte);
3491
3492 retry_avoidcopy:
3493         /* If no-one else is actually using this page, avoid the copy
3494          * and just make the page writable */
3495         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3496                 page_move_anon_rmap(old_page, vma);
3497                 set_huge_ptep_writable(vma, address, ptep);
3498                 return 0;
3499         }
3500
3501         /*
3502          * If the process that created a MAP_PRIVATE mapping is about to
3503          * perform a COW due to a shared page count, attempt to satisfy
3504          * the allocation without using the existing reserves. The pagecache
3505          * page is used to determine if the reserve at this address was
3506          * consumed or not. If reserves were used, a partial faulted mapping
3507          * at the time of fork() could consume its reserves on COW instead
3508          * of the full address range.
3509          */
3510         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3511                         old_page != pagecache_page)
3512                 outside_reserve = 1;
3513
3514         get_page(old_page);
3515
3516         /*
3517          * Drop page table lock as buddy allocator may be called. It will
3518          * be acquired again before returning to the caller, as expected.
3519          */
3520         spin_unlock(ptl);
3521         new_page = alloc_huge_page(vma, address, outside_reserve);
3522
3523         if (IS_ERR(new_page)) {
3524                 /*
3525                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3526                  * it is due to references held by a child and an insufficient
3527                  * huge page pool. To guarantee the original mappers
3528                  * reliability, unmap the page from child processes. The child
3529                  * may get SIGKILLed if it later faults.
3530                  */
3531                 if (outside_reserve) {
3532                         put_page(old_page);
3533                         BUG_ON(huge_pte_none(pte));
3534                         unmap_ref_private(mm, vma, old_page, address);
3535                         BUG_ON(huge_pte_none(pte));
3536                         spin_lock(ptl);
3537                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3538                         if (likely(ptep &&
3539                                    pte_same(huge_ptep_get(ptep), pte)))
3540                                 goto retry_avoidcopy;
3541                         /*
3542                          * race occurs while re-acquiring page table
3543                          * lock, and our job is done.
3544                          */
3545                         return 0;
3546                 }
3547
3548                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3549                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3550                 goto out_release_old;
3551         }
3552
3553         /*
3554          * When the original hugepage is shared one, it does not have
3555          * anon_vma prepared.
3556          */
3557         if (unlikely(anon_vma_prepare(vma))) {
3558                 ret = VM_FAULT_OOM;
3559                 goto out_release_all;
3560         }
3561
3562         copy_user_huge_page(new_page, old_page, address, vma,
3563                             pages_per_huge_page(h));
3564         __SetPageUptodate(new_page);
3565         set_page_huge_active(new_page);
3566
3567         mmun_start = address & huge_page_mask(h);
3568         mmun_end = mmun_start + huge_page_size(h);
3569         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3570
3571         /*
3572          * Retake the page table lock to check for racing updates
3573          * before the page tables are altered
3574          */
3575         spin_lock(ptl);
3576         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3577         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3578                 ClearPagePrivate(new_page);
3579
3580                 /* Break COW */
3581                 huge_ptep_clear_flush(vma, address, ptep);
3582                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3583                 set_huge_pte_at(mm, address, ptep,
3584                                 make_huge_pte(vma, new_page, 1));
3585                 page_remove_rmap(old_page, true);
3586                 hugepage_add_new_anon_rmap(new_page, vma, address);
3587                 /* Make the old page be freed below */
3588                 new_page = old_page;
3589         }
3590         spin_unlock(ptl);
3591         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3592 out_release_all:
3593         restore_reserve_on_error(h, vma, address, new_page);
3594         put_page(new_page);
3595 out_release_old:
3596         put_page(old_page);
3597
3598         spin_lock(ptl); /* Caller expects lock to be held */
3599         return ret;
3600 }
3601
3602 /* Return the pagecache page at a given address within a VMA */
3603 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3604                         struct vm_area_struct *vma, unsigned long address)
3605 {
3606         struct address_space *mapping;
3607         pgoff_t idx;
3608
3609         mapping = vma->vm_file->f_mapping;
3610         idx = vma_hugecache_offset(h, vma, address);
3611
3612         return find_lock_page(mapping, idx);
3613 }
3614
3615 /*
3616  * Return whether there is a pagecache page to back given address within VMA.
3617  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3618  */
3619 static bool hugetlbfs_pagecache_present(struct hstate *h,
3620                         struct vm_area_struct *vma, unsigned long address)
3621 {
3622         struct address_space *mapping;
3623         pgoff_t idx;
3624         struct page *page;
3625
3626         mapping = vma->vm_file->f_mapping;
3627         idx = vma_hugecache_offset(h, vma, address);
3628
3629         page = find_get_page(mapping, idx);
3630         if (page)
3631                 put_page(page);
3632         return page != NULL;
3633 }
3634
3635 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3636                            pgoff_t idx)
3637 {
3638         struct inode *inode = mapping->host;
3639         struct hstate *h = hstate_inode(inode);
3640         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3641
3642         if (err)
3643                 return err;
3644         ClearPagePrivate(page);
3645
3646         spin_lock(&inode->i_lock);
3647         inode->i_blocks += blocks_per_huge_page(h);
3648         spin_unlock(&inode->i_lock);
3649         return 0;
3650 }
3651
3652 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3653                            struct address_space *mapping, pgoff_t idx,
3654                            unsigned long address, pte_t *ptep, unsigned int flags)
3655 {
3656         struct hstate *h = hstate_vma(vma);
3657         int ret = VM_FAULT_SIGBUS;
3658         int anon_rmap = 0;
3659         unsigned long size;
3660         struct page *page;
3661         pte_t new_pte;
3662         spinlock_t *ptl;
3663
3664         /*
3665          * Currently, we are forced to kill the process in the event the
3666          * original mapper has unmapped pages from the child due to a failed
3667          * COW. Warn that such a situation has occurred as it may not be obvious
3668          */
3669         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3670                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3671                            current->pid);
3672                 return ret;
3673         }
3674
3675         /*
3676          * Use page lock to guard against racing truncation
3677          * before we get page_table_lock.
3678          */
3679 retry:
3680         page = find_lock_page(mapping, idx);
3681         if (!page) {
3682                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3683                 if (idx >= size)
3684                         goto out;
3685
3686                 /*
3687                  * Check for page in userfault range
3688                  */
3689                 if (userfaultfd_missing(vma)) {
3690                         u32 hash;
3691                         struct vm_fault vmf = {
3692                                 .vma = vma,
3693                                 .address = address,
3694                                 .flags = flags,
3695                                 /*
3696                                  * Hard to debug if it ends up being
3697                                  * used by a callee that assumes
3698                                  * something about the other
3699                                  * uninitialized fields... same as in
3700                                  * memory.c
3701                                  */
3702                         };
3703
3704                         /*
3705                          * hugetlb_fault_mutex must be dropped before
3706                          * handling userfault.  Reacquire after handling
3707                          * fault to make calling code simpler.
3708                          */
3709                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3710                                                         idx, address);
3711                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3712                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3713                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3714                         goto out;
3715                 }
3716
3717                 page = alloc_huge_page(vma, address, 0);
3718                 if (IS_ERR(page)) {
3719                         ret = PTR_ERR(page);
3720                         if (ret == -ENOMEM)
3721                                 ret = VM_FAULT_OOM;
3722                         else
3723                                 ret = VM_FAULT_SIGBUS;
3724                         goto out;
3725                 }
3726                 clear_huge_page(page, address, pages_per_huge_page(h));
3727                 __SetPageUptodate(page);
3728                 set_page_huge_active(page);
3729
3730                 if (vma->vm_flags & VM_MAYSHARE) {
3731                         int err = huge_add_to_page_cache(page, mapping, idx);
3732                         if (err) {
3733                                 put_page(page);
3734                                 if (err == -EEXIST)
3735                                         goto retry;
3736                                 goto out;
3737                         }
3738                 } else {
3739                         lock_page(page);
3740                         if (unlikely(anon_vma_prepare(vma))) {
3741                                 ret = VM_FAULT_OOM;
3742                                 goto backout_unlocked;
3743                         }
3744                         anon_rmap = 1;
3745                 }
3746         } else {
3747                 /*
3748                  * If memory error occurs between mmap() and fault, some process
3749                  * don't have hwpoisoned swap entry for errored virtual address.
3750                  * So we need to block hugepage fault by PG_hwpoison bit check.
3751                  */
3752                 if (unlikely(PageHWPoison(page))) {
3753                         ret = VM_FAULT_HWPOISON |
3754                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3755                         goto backout_unlocked;
3756                 }
3757         }
3758
3759         /*
3760          * If we are going to COW a private mapping later, we examine the
3761          * pending reservations for this page now. This will ensure that
3762          * any allocations necessary to record that reservation occur outside
3763          * the spinlock.
3764          */
3765         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3766                 if (vma_needs_reservation(h, vma, address) < 0) {
3767                         ret = VM_FAULT_OOM;
3768                         goto backout_unlocked;
3769                 }
3770                 /* Just decrements count, does not deallocate */
3771                 vma_end_reservation(h, vma, address);
3772         }
3773
3774         ptl = huge_pte_lock(h, mm, ptep);
3775         size = i_size_read(mapping->host) >> huge_page_shift(h);
3776         if (idx >= size)
3777                 goto backout;
3778
3779         ret = 0;
3780         if (!huge_pte_none(huge_ptep_get(ptep)))
3781                 goto backout;
3782
3783         if (anon_rmap) {
3784                 ClearPagePrivate(page);
3785                 hugepage_add_new_anon_rmap(page, vma, address);
3786         } else
3787                 page_dup_rmap(page, true);
3788         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3789                                 && (vma->vm_flags & VM_SHARED)));
3790         set_huge_pte_at(mm, address, ptep, new_pte);
3791
3792         hugetlb_count_add(pages_per_huge_page(h), mm);
3793         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3794                 /* Optimization, do the COW without a second fault */
3795                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3796         }
3797
3798         spin_unlock(ptl);
3799         unlock_page(page);
3800 out:
3801         return ret;
3802
3803 backout:
3804         spin_unlock(ptl);
3805 backout_unlocked:
3806         unlock_page(page);
3807         restore_reserve_on_error(h, vma, address, page);
3808         put_page(page);
3809         goto out;
3810 }
3811
3812 #ifdef CONFIG_SMP
3813 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3814                             struct vm_area_struct *vma,
3815                             struct address_space *mapping,
3816                             pgoff_t idx, unsigned long address)
3817 {
3818         unsigned long key[2];
3819         u32 hash;
3820
3821         if (vma->vm_flags & VM_SHARED) {
3822                 key[0] = (unsigned long) mapping;
3823                 key[1] = idx;
3824         } else {
3825                 key[0] = (unsigned long) mm;
3826                 key[1] = address >> huge_page_shift(h);
3827         }
3828
3829         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3830
3831         return hash & (num_fault_mutexes - 1);
3832 }
3833 #else
3834 /*
3835  * For uniprocesor systems we always use a single mutex, so just
3836  * return 0 and avoid the hashing overhead.
3837  */
3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839                             struct vm_area_struct *vma,
3840                             struct address_space *mapping,
3841                             pgoff_t idx, unsigned long address)
3842 {
3843         return 0;
3844 }
3845 #endif
3846
3847 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3848                         unsigned long address, unsigned int flags)
3849 {
3850         pte_t *ptep, entry;
3851         spinlock_t *ptl;
3852         int ret;
3853         u32 hash;
3854         pgoff_t idx;
3855         struct page *page = NULL;
3856         struct page *pagecache_page = NULL;
3857         struct hstate *h = hstate_vma(vma);
3858         struct address_space *mapping;
3859         int need_wait_lock = 0;
3860
3861         address &= huge_page_mask(h);
3862
3863         ptep = huge_pte_offset(mm, address);
3864         if (ptep) {
3865                 entry = huge_ptep_get(ptep);
3866                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3867                         migration_entry_wait_huge(vma, mm, ptep);
3868                         return 0;
3869                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3870                         return VM_FAULT_HWPOISON_LARGE |
3871                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3872         } else {
3873                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3874                 if (!ptep)
3875                         return VM_FAULT_OOM;
3876         }
3877
3878         mapping = vma->vm_file->f_mapping;
3879         idx = vma_hugecache_offset(h, vma, address);
3880
3881         /*
3882          * Serialize hugepage allocation and instantiation, so that we don't
3883          * get spurious allocation failures if two CPUs race to instantiate
3884          * the same page in the page cache.
3885          */
3886         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3887         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3888
3889         entry = huge_ptep_get(ptep);
3890         if (huge_pte_none(entry)) {
3891                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3892                 goto out_mutex;
3893         }
3894
3895         ret = 0;
3896
3897         /*
3898          * entry could be a migration/hwpoison entry at this point, so this
3899          * check prevents the kernel from going below assuming that we have
3900          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3901          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3902          * handle it.
3903          */
3904         if (!pte_present(entry))
3905                 goto out_mutex;
3906
3907         /*
3908          * If we are going to COW the mapping later, we examine the pending
3909          * reservations for this page now. This will ensure that any
3910          * allocations necessary to record that reservation occur outside the
3911          * spinlock. For private mappings, we also lookup the pagecache
3912          * page now as it is used to determine if a reservation has been
3913          * consumed.
3914          */
3915         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3916                 if (vma_needs_reservation(h, vma, address) < 0) {
3917                         ret = VM_FAULT_OOM;
3918                         goto out_mutex;
3919                 }
3920                 /* Just decrements count, does not deallocate */
3921                 vma_end_reservation(h, vma, address);
3922
3923                 if (!(vma->vm_flags & VM_MAYSHARE))
3924                         pagecache_page = hugetlbfs_pagecache_page(h,
3925                                                                 vma, address);
3926         }
3927
3928         ptl = huge_pte_lock(h, mm, ptep);
3929
3930         /* Check for a racing update before calling hugetlb_cow */
3931         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3932                 goto out_ptl;
3933
3934         /*
3935          * hugetlb_cow() requires page locks of pte_page(entry) and
3936          * pagecache_page, so here we need take the former one
3937          * when page != pagecache_page or !pagecache_page.
3938          */
3939         page = pte_page(entry);
3940         if (page != pagecache_page)
3941                 if (!trylock_page(page)) {
3942                         need_wait_lock = 1;
3943                         goto out_ptl;
3944                 }
3945
3946         get_page(page);
3947
3948         if (flags & FAULT_FLAG_WRITE) {
3949                 if (!huge_pte_write(entry)) {
3950                         ret = hugetlb_cow(mm, vma, address, ptep,
3951                                           pagecache_page, ptl);
3952                         goto out_put_page;
3953                 }
3954                 entry = huge_pte_mkdirty(entry);
3955         }
3956         entry = pte_mkyoung(entry);
3957         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3958                                                 flags & FAULT_FLAG_WRITE))
3959                 update_mmu_cache(vma, address, ptep);
3960 out_put_page:
3961         if (page != pagecache_page)
3962                 unlock_page(page);
3963         put_page(page);
3964 out_ptl:
3965         spin_unlock(ptl);
3966
3967         if (pagecache_page) {
3968                 unlock_page(pagecache_page);
3969                 put_page(pagecache_page);
3970         }
3971 out_mutex:
3972         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3973         /*
3974          * Generally it's safe to hold refcount during waiting page lock. But
3975          * here we just wait to defer the next page fault to avoid busy loop and
3976          * the page is not used after unlocked before returning from the current
3977          * page fault. So we are safe from accessing freed page, even if we wait
3978          * here without taking refcount.
3979          */
3980         if (need_wait_lock)
3981                 wait_on_page_locked(page);
3982         return ret;
3983 }
3984
3985 /*
3986  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
3987  * modifications for huge pages.
3988  */
3989 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3990                             pte_t *dst_pte,
3991                             struct vm_area_struct *dst_vma,
3992                             unsigned long dst_addr,
3993                             unsigned long src_addr,
3994                             struct page **pagep)
3995 {
3996         int vm_shared = dst_vma->vm_flags & VM_SHARED;
3997         struct hstate *h = hstate_vma(dst_vma);
3998         pte_t _dst_pte;
3999         spinlock_t *ptl;
4000         int ret;
4001         struct page *page;
4002
4003         if (!*pagep) {
4004                 ret = -ENOMEM;
4005                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4006                 if (IS_ERR(page))
4007                         goto out;
4008
4009                 ret = copy_huge_page_from_user(page,
4010                                                 (const void __user *) src_addr,
4011                                                 pages_per_huge_page(h), false);
4012
4013                 /* fallback to copy_from_user outside mmap_sem */
4014                 if (unlikely(ret)) {
4015                         ret = -EFAULT;
4016                         *pagep = page;
4017                         /* don't free the page */
4018                         goto out;
4019                 }
4020         } else {
4021                 page = *pagep;
4022                 *pagep = NULL;
4023         }
4024
4025         /*
4026          * The memory barrier inside __SetPageUptodate makes sure that
4027          * preceding stores to the page contents become visible before
4028          * the set_pte_at() write.
4029          */
4030         __SetPageUptodate(page);
4031         set_page_huge_active(page);
4032
4033         /*
4034          * If shared, add to page cache
4035          */
4036         if (vm_shared) {
4037                 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4038                 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4039
4040                 ret = huge_add_to_page_cache(page, mapping, idx);
4041                 if (ret)
4042                         goto out_release_nounlock;
4043         }
4044
4045         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4046         spin_lock(ptl);
4047
4048         ret = -EEXIST;
4049         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4050                 goto out_release_unlock;
4051
4052         if (vm_shared) {
4053                 page_dup_rmap(page, true);
4054         } else {
4055                 ClearPagePrivate(page);
4056                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4057         }
4058
4059         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4060         if (dst_vma->vm_flags & VM_WRITE)
4061                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4062         _dst_pte = pte_mkyoung(_dst_pte);
4063
4064         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4065
4066         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4067                                         dst_vma->vm_flags & VM_WRITE);
4068         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4069
4070         /* No need to invalidate - it was non-present before */
4071         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4072
4073         spin_unlock(ptl);
4074         if (vm_shared)
4075                 unlock_page(page);
4076         ret = 0;
4077 out:
4078         return ret;
4079 out_release_unlock:
4080         spin_unlock(ptl);
4081 out_release_nounlock:
4082         if (vm_shared)
4083                 unlock_page(page);
4084         put_page(page);
4085         goto out;
4086 }
4087
4088 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4089                          struct page **pages, struct vm_area_struct **vmas,
4090                          unsigned long *position, unsigned long *nr_pages,
4091                          long i, unsigned int flags, int *nonblocking)
4092 {
4093         unsigned long pfn_offset;
4094         unsigned long vaddr = *position;
4095         unsigned long remainder = *nr_pages;
4096         struct hstate *h = hstate_vma(vma);
4097
4098         while (vaddr < vma->vm_end && remainder) {
4099                 pte_t *pte;
4100                 spinlock_t *ptl = NULL;
4101                 int absent;
4102                 struct page *page;
4103
4104                 /*
4105                  * If we have a pending SIGKILL, don't keep faulting pages and
4106                  * potentially allocating memory.
4107                  */
4108                 if (unlikely(fatal_signal_pending(current))) {
4109                         remainder = 0;
4110                         break;
4111                 }
4112
4113                 /*
4114                  * Some archs (sparc64, sh*) have multiple pte_ts to
4115                  * each hugepage.  We have to make sure we get the
4116                  * first, for the page indexing below to work.
4117                  *
4118                  * Note that page table lock is not held when pte is null.
4119                  */
4120                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4121                 if (pte)
4122                         ptl = huge_pte_lock(h, mm, pte);
4123                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4124
4125                 /*
4126                  * When coredumping, it suits get_dump_page if we just return
4127                  * an error where there's an empty slot with no huge pagecache
4128                  * to back it.  This way, we avoid allocating a hugepage, and
4129                  * the sparse dumpfile avoids allocating disk blocks, but its
4130                  * huge holes still show up with zeroes where they need to be.
4131                  */
4132                 if (absent && (flags & FOLL_DUMP) &&
4133                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4134                         if (pte)
4135                                 spin_unlock(ptl);
4136                         remainder = 0;
4137                         break;
4138                 }
4139
4140                 /*
4141                  * We need call hugetlb_fault for both hugepages under migration
4142                  * (in which case hugetlb_fault waits for the migration,) and
4143                  * hwpoisoned hugepages (in which case we need to prevent the
4144                  * caller from accessing to them.) In order to do this, we use
4145                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4146                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4147                  * both cases, and because we can't follow correct pages
4148                  * directly from any kind of swap entries.
4149                  */
4150                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4151                     ((flags & FOLL_WRITE) &&
4152                       !huge_pte_write(huge_ptep_get(pte)))) {
4153                         int ret;
4154                         unsigned int fault_flags = 0;
4155
4156                         if (pte)
4157                                 spin_unlock(ptl);
4158                         if (flags & FOLL_WRITE)
4159                                 fault_flags |= FAULT_FLAG_WRITE;
4160                         if (nonblocking)
4161                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4162                         if (flags & FOLL_NOWAIT)
4163                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4164                                         FAULT_FLAG_RETRY_NOWAIT;
4165                         if (flags & FOLL_TRIED) {
4166                                 VM_WARN_ON_ONCE(fault_flags &
4167                                                 FAULT_FLAG_ALLOW_RETRY);
4168                                 fault_flags |= FAULT_FLAG_TRIED;
4169                         }
4170                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4171                         if (ret & VM_FAULT_ERROR) {
4172                                 remainder = 0;
4173                                 break;
4174                         }
4175                         if (ret & VM_FAULT_RETRY) {
4176                                 if (nonblocking)
4177                                         *nonblocking = 0;
4178                                 *nr_pages = 0;
4179                                 /*
4180                                  * VM_FAULT_RETRY must not return an
4181                                  * error, it will return zero
4182                                  * instead.
4183                                  *
4184                                  * No need to update "position" as the
4185                                  * caller will not check it after
4186                                  * *nr_pages is set to 0.
4187                                  */
4188                                 return i;
4189                         }
4190                         continue;
4191                 }
4192
4193                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4194                 page = pte_page(huge_ptep_get(pte));
4195 same_page:
4196                 if (pages) {
4197                         pages[i] = mem_map_offset(page, pfn_offset);
4198                         get_page(pages[i]);
4199                 }
4200
4201                 if (vmas)
4202                         vmas[i] = vma;
4203
4204                 vaddr += PAGE_SIZE;
4205                 ++pfn_offset;
4206                 --remainder;
4207                 ++i;
4208                 if (vaddr < vma->vm_end && remainder &&
4209                                 pfn_offset < pages_per_huge_page(h)) {
4210                         /*
4211                          * We use pfn_offset to avoid touching the pageframes
4212                          * of this compound page.
4213                          */
4214                         goto same_page;
4215                 }
4216                 spin_unlock(ptl);
4217         }
4218         *nr_pages = remainder;
4219         /*
4220          * setting position is actually required only if remainder is
4221          * not zero but it's faster not to add a "if (remainder)"
4222          * branch.
4223          */
4224         *position = vaddr;
4225
4226         return i ? i : -EFAULT;
4227 }
4228
4229 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4230 /*
4231  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4232  * implement this.
4233  */
4234 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4235 #endif
4236
4237 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4238                 unsigned long address, unsigned long end, pgprot_t newprot)
4239 {
4240         struct mm_struct *mm = vma->vm_mm;
4241         unsigned long start = address;
4242         pte_t *ptep;
4243         pte_t pte;
4244         struct hstate *h = hstate_vma(vma);
4245         unsigned long pages = 0;
4246
4247         BUG_ON(address >= end);
4248         flush_cache_range(vma, address, end);
4249
4250         mmu_notifier_invalidate_range_start(mm, start, end);
4251         i_mmap_lock_write(vma->vm_file->f_mapping);
4252         for (; address < end; address += huge_page_size(h)) {
4253                 spinlock_t *ptl;
4254                 ptep = huge_pte_offset(mm, address);
4255                 if (!ptep)
4256                         continue;
4257                 ptl = huge_pte_lock(h, mm, ptep);
4258                 if (huge_pmd_unshare(mm, &address, ptep)) {
4259                         pages++;
4260                         spin_unlock(ptl);
4261                         continue;
4262                 }
4263                 pte = huge_ptep_get(ptep);
4264                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4265                         spin_unlock(ptl);
4266                         continue;
4267                 }
4268                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4269                         swp_entry_t entry = pte_to_swp_entry(pte);
4270
4271                         if (is_write_migration_entry(entry)) {
4272                                 pte_t newpte;
4273
4274                                 make_migration_entry_read(&entry);
4275                                 newpte = swp_entry_to_pte(entry);
4276                                 set_huge_pte_at(mm, address, ptep, newpte);
4277                                 pages++;
4278                         }
4279                         spin_unlock(ptl);
4280                         continue;
4281                 }
4282                 if (!huge_pte_none(pte)) {
4283                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4284                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4285                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4286                         set_huge_pte_at(mm, address, ptep, pte);
4287                         pages++;
4288                 }
4289                 spin_unlock(ptl);
4290         }
4291         /*
4292          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4293          * may have cleared our pud entry and done put_page on the page table:
4294          * once we release i_mmap_rwsem, another task can do the final put_page
4295          * and that page table be reused and filled with junk.
4296          */
4297         flush_hugetlb_tlb_range(vma, start, end);
4298         mmu_notifier_invalidate_range(mm, start, end);
4299         i_mmap_unlock_write(vma->vm_file->f_mapping);
4300         mmu_notifier_invalidate_range_end(mm, start, end);
4301
4302         return pages << h->order;
4303 }
4304
4305 int hugetlb_reserve_pages(struct inode *inode,
4306                                         long from, long to,
4307                                         struct vm_area_struct *vma,
4308                                         vm_flags_t vm_flags)
4309 {
4310         long ret, chg;
4311         struct hstate *h = hstate_inode(inode);
4312         struct hugepage_subpool *spool = subpool_inode(inode);
4313         struct resv_map *resv_map;
4314         long gbl_reserve;
4315
4316         /*
4317          * Only apply hugepage reservation if asked. At fault time, an
4318          * attempt will be made for VM_NORESERVE to allocate a page
4319          * without using reserves
4320          */
4321         if (vm_flags & VM_NORESERVE)
4322                 return 0;
4323
4324         /*
4325          * Shared mappings base their reservation on the number of pages that
4326          * are already allocated on behalf of the file. Private mappings need
4327          * to reserve the full area even if read-only as mprotect() may be
4328          * called to make the mapping read-write. Assume !vma is a shm mapping
4329          */
4330         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4331                 resv_map = inode_resv_map(inode);
4332
4333                 chg = region_chg(resv_map, from, to);
4334
4335         } else {
4336                 resv_map = resv_map_alloc();
4337                 if (!resv_map)
4338                         return -ENOMEM;
4339
4340                 chg = to - from;
4341
4342                 set_vma_resv_map(vma, resv_map);
4343                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4344         }
4345
4346         if (chg < 0) {
4347                 ret = chg;
4348                 goto out_err;
4349         }
4350
4351         /*
4352          * There must be enough pages in the subpool for the mapping. If
4353          * the subpool has a minimum size, there may be some global
4354          * reservations already in place (gbl_reserve).
4355          */
4356         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4357         if (gbl_reserve < 0) {
4358                 ret = -ENOSPC;
4359                 goto out_err;
4360         }
4361
4362         /*
4363          * Check enough hugepages are available for the reservation.
4364          * Hand the pages back to the subpool if there are not
4365          */
4366         ret = hugetlb_acct_memory(h, gbl_reserve);
4367         if (ret < 0) {
4368                 /* put back original number of pages, chg */
4369                 (void)hugepage_subpool_put_pages(spool, chg);
4370                 goto out_err;
4371         }
4372
4373         /*
4374          * Account for the reservations made. Shared mappings record regions
4375          * that have reservations as they are shared by multiple VMAs.
4376          * When the last VMA disappears, the region map says how much
4377          * the reservation was and the page cache tells how much of
4378          * the reservation was consumed. Private mappings are per-VMA and
4379          * only the consumed reservations are tracked. When the VMA
4380          * disappears, the original reservation is the VMA size and the
4381          * consumed reservations are stored in the map. Hence, nothing
4382          * else has to be done for private mappings here
4383          */
4384         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4385                 long add = region_add(resv_map, from, to);
4386
4387                 if (unlikely(chg > add)) {
4388                         /*
4389                          * pages in this range were added to the reserve
4390                          * map between region_chg and region_add.  This
4391                          * indicates a race with alloc_huge_page.  Adjust
4392                          * the subpool and reserve counts modified above
4393                          * based on the difference.
4394                          */
4395                         long rsv_adjust;
4396
4397                         rsv_adjust = hugepage_subpool_put_pages(spool,
4398                                                                 chg - add);
4399                         hugetlb_acct_memory(h, -rsv_adjust);
4400                 }
4401         }
4402         return 0;
4403 out_err:
4404         if (!vma || vma->vm_flags & VM_MAYSHARE)
4405                 region_abort(resv_map, from, to);
4406         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4407                 kref_put(&resv_map->refs, resv_map_release);
4408         return ret;
4409 }
4410
4411 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4412                                                                 long freed)
4413 {
4414         struct hstate *h = hstate_inode(inode);
4415         struct resv_map *resv_map = inode_resv_map(inode);
4416         long chg = 0;
4417         struct hugepage_subpool *spool = subpool_inode(inode);
4418         long gbl_reserve;
4419
4420         if (resv_map) {
4421                 chg = region_del(resv_map, start, end);
4422                 /*
4423                  * region_del() can fail in the rare case where a region
4424                  * must be split and another region descriptor can not be
4425                  * allocated.  If end == LONG_MAX, it will not fail.
4426                  */
4427                 if (chg < 0)
4428                         return chg;
4429         }
4430
4431         spin_lock(&inode->i_lock);
4432         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4433         spin_unlock(&inode->i_lock);
4434
4435         /*
4436          * If the subpool has a minimum size, the number of global
4437          * reservations to be released may be adjusted.
4438          */
4439         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4440         hugetlb_acct_memory(h, -gbl_reserve);
4441
4442         return 0;
4443 }
4444
4445 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4446 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4447                                 struct vm_area_struct *vma,
4448                                 unsigned long addr, pgoff_t idx)
4449 {
4450         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4451                                 svma->vm_start;
4452         unsigned long sbase = saddr & PUD_MASK;
4453         unsigned long s_end = sbase + PUD_SIZE;
4454
4455         /* Allow segments to share if only one is marked locked */
4456         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4457         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4458
4459         /*
4460          * match the virtual addresses, permission and the alignment of the
4461          * page table page.
4462          */
4463         if (pmd_index(addr) != pmd_index(saddr) ||
4464             vm_flags != svm_flags ||
4465             sbase < svma->vm_start || svma->vm_end < s_end)
4466                 return 0;
4467
4468         return saddr;
4469 }
4470
4471 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4472 {
4473         unsigned long base = addr & PUD_MASK;
4474         unsigned long end = base + PUD_SIZE;
4475
4476         /*
4477          * check on proper vm_flags and page table alignment
4478          */
4479         if (vma->vm_flags & VM_MAYSHARE &&
4480             vma->vm_start <= base && end <= vma->vm_end)
4481                 return true;
4482         return false;
4483 }
4484
4485 /*
4486  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4487  * and returns the corresponding pte. While this is not necessary for the
4488  * !shared pmd case because we can allocate the pmd later as well, it makes the
4489  * code much cleaner. pmd allocation is essential for the shared case because
4490  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4491  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4492  * bad pmd for sharing.
4493  */
4494 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4495 {
4496         struct vm_area_struct *vma = find_vma(mm, addr);
4497         struct address_space *mapping = vma->vm_file->f_mapping;
4498         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4499                         vma->vm_pgoff;
4500         struct vm_area_struct *svma;
4501         unsigned long saddr;
4502         pte_t *spte = NULL;
4503         pte_t *pte;
4504         spinlock_t *ptl;
4505
4506         if (!vma_shareable(vma, addr))
4507                 return (pte_t *)pmd_alloc(mm, pud, addr);
4508
4509         i_mmap_lock_write(mapping);
4510         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4511                 if (svma == vma)
4512                         continue;
4513
4514                 saddr = page_table_shareable(svma, vma, addr, idx);
4515                 if (saddr) {
4516                         spte = huge_pte_offset(svma->vm_mm, saddr);
4517                         if (spte) {
4518                                 get_page(virt_to_page(spte));
4519                                 break;
4520                         }
4521                 }
4522         }
4523
4524         if (!spte)
4525                 goto out;
4526
4527         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4528         if (pud_none(*pud)) {
4529                 pud_populate(mm, pud,
4530                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4531                 mm_inc_nr_pmds(mm);
4532         } else {
4533                 put_page(virt_to_page(spte));
4534         }
4535         spin_unlock(ptl);
4536 out:
4537         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4538         i_mmap_unlock_write(mapping);
4539         return pte;
4540 }
4541
4542 /*
4543  * unmap huge page backed by shared pte.
4544  *
4545  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4546  * indicated by page_count > 1, unmap is achieved by clearing pud and
4547  * decrementing the ref count. If count == 1, the pte page is not shared.
4548  *
4549  * called with page table lock held.
4550  *
4551  * returns: 1 successfully unmapped a shared pte page
4552  *          0 the underlying pte page is not shared, or it is the last user
4553  */
4554 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4555 {
4556         pgd_t *pgd = pgd_offset(mm, *addr);
4557         pud_t *pud = pud_offset(pgd, *addr);
4558
4559         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4560         if (page_count(virt_to_page(ptep)) == 1)
4561                 return 0;
4562
4563         pud_clear(pud);
4564         put_page(virt_to_page(ptep));
4565         mm_dec_nr_pmds(mm);
4566         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4567         return 1;
4568 }
4569 #define want_pmd_share()        (1)
4570 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4571 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4572 {
4573         return NULL;
4574 }
4575
4576 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4577 {
4578         return 0;
4579 }
4580 #define want_pmd_share()        (0)
4581 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4582
4583 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4584 pte_t *huge_pte_alloc(struct mm_struct *mm,
4585                         unsigned long addr, unsigned long sz)
4586 {
4587         pgd_t *pgd;
4588         pud_t *pud;
4589         pte_t *pte = NULL;
4590
4591         pgd = pgd_offset(mm, addr);
4592         pud = pud_alloc(mm, pgd, addr);
4593         if (pud) {
4594                 if (sz == PUD_SIZE) {
4595                         pte = (pte_t *)pud;
4596                 } else {
4597                         BUG_ON(sz != PMD_SIZE);
4598                         if (want_pmd_share() && pud_none(*pud))
4599                                 pte = huge_pmd_share(mm, addr, pud);
4600                         else
4601                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4602                 }
4603         }
4604         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4605
4606         return pte;
4607 }
4608
4609 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4610 {
4611         pgd_t *pgd;
4612         pud_t *pud;
4613         pmd_t *pmd = NULL;
4614
4615         pgd = pgd_offset(mm, addr);
4616         if (pgd_present(*pgd)) {
4617                 pud = pud_offset(pgd, addr);
4618                 if (pud_present(*pud)) {
4619                         if (pud_huge(*pud))
4620                                 return (pte_t *)pud;
4621                         pmd = pmd_offset(pud, addr);
4622                 }
4623         }
4624         return (pte_t *) pmd;
4625 }
4626
4627 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4628
4629 /*
4630  * These functions are overwritable if your architecture needs its own
4631  * behavior.
4632  */
4633 struct page * __weak
4634 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4635                               int write)
4636 {
4637         return ERR_PTR(-EINVAL);
4638 }
4639
4640 struct page * __weak
4641 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4642                 pmd_t *pmd, int flags)
4643 {
4644         struct page *page = NULL;
4645         spinlock_t *ptl;
4646 retry:
4647         ptl = pmd_lockptr(mm, pmd);
4648         spin_lock(ptl);
4649         /*
4650          * make sure that the address range covered by this pmd is not
4651          * unmapped from other threads.
4652          */
4653         if (!pmd_huge(*pmd))
4654                 goto out;
4655         if (pmd_present(*pmd)) {
4656                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4657                 if (flags & FOLL_GET)
4658                         get_page(page);
4659         } else {
4660                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4661                         spin_unlock(ptl);
4662                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4663                         goto retry;
4664                 }
4665                 /*
4666                  * hwpoisoned entry is treated as no_page_table in
4667                  * follow_page_mask().
4668                  */
4669         }
4670 out:
4671         spin_unlock(ptl);
4672         return page;
4673 }
4674
4675 struct page * __weak
4676 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4677                 pud_t *pud, int flags)
4678 {
4679         if (flags & FOLL_GET)
4680                 return NULL;
4681
4682         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4683 }
4684
4685 #ifdef CONFIG_MEMORY_FAILURE
4686
4687 /*
4688  * This function is called from memory failure code.
4689  */
4690 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4691 {
4692         struct hstate *h = page_hstate(hpage);
4693         int nid = page_to_nid(hpage);
4694         int ret = -EBUSY;
4695
4696         spin_lock(&hugetlb_lock);
4697         /*
4698          * Just checking !page_huge_active is not enough, because that could be
4699          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4700          */
4701         if (!page_huge_active(hpage) && !page_count(hpage)) {
4702                 /*
4703                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4704                  * but dangling hpage->lru can trigger list-debug warnings
4705                  * (this happens when we call unpoison_memory() on it),
4706                  * so let it point to itself with list_del_init().
4707                  */
4708                 list_del_init(&hpage->lru);
4709                 set_page_refcounted(hpage);
4710                 h->free_huge_pages--;
4711                 h->free_huge_pages_node[nid]--;
4712                 ret = 0;
4713         }
4714         spin_unlock(&hugetlb_lock);
4715         return ret;
4716 }
4717 #endif
4718
4719 bool isolate_huge_page(struct page *page, struct list_head *list)
4720 {
4721         bool ret = true;
4722
4723         VM_BUG_ON_PAGE(!PageHead(page), page);
4724         spin_lock(&hugetlb_lock);
4725         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4726                 ret = false;
4727                 goto unlock;
4728         }
4729         clear_page_huge_active(page);
4730         list_move_tail(&page->lru, list);
4731 unlock:
4732         spin_unlock(&hugetlb_lock);
4733         return ret;
4734 }
4735
4736 void putback_active_hugepage(struct page *page)
4737 {
4738         VM_BUG_ON_PAGE(!PageHead(page), page);
4739         spin_lock(&hugetlb_lock);
4740         set_page_huge_active(page);
4741         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4742         spin_unlock(&hugetlb_lock);
4743         put_page(page);
4744 }