mm/mprotect: use long for page accountings and retval
[linux-block.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265         if (__vma_shareable_lock(vma)) {
266                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268                 down_read(&vma_lock->rw_sema);
269         }
270 }
271
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274         if (__vma_shareable_lock(vma)) {
275                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277                 up_read(&vma_lock->rw_sema);
278         }
279 }
280
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283         if (__vma_shareable_lock(vma)) {
284                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286                 down_write(&vma_lock->rw_sema);
287         }
288 }
289
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292         if (__vma_shareable_lock(vma)) {
293                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295                 up_write(&vma_lock->rw_sema);
296         }
297 }
298
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303         if (!__vma_shareable_lock(vma))
304                 return 1;
305
306         return down_write_trylock(&vma_lock->rw_sema);
307 }
308
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311         if (__vma_shareable_lock(vma)) {
312                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314                 lockdep_assert_held(&vma_lock->rw_sema);
315         }
316 }
317
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320         struct hugetlb_vma_lock *vma_lock = container_of(kref,
321                         struct hugetlb_vma_lock, refs);
322
323         kfree(vma_lock);
324 }
325
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328         struct vm_area_struct *vma = vma_lock->vma;
329
330         /*
331          * vma_lock structure may or not be released as a result of put,
332          * it certainly will no longer be attached to vma so clear pointer.
333          * Semaphore synchronizes access to vma_lock->vma field.
334          */
335         vma_lock->vma = NULL;
336         vma->vm_private_data = NULL;
337         up_write(&vma_lock->rw_sema);
338         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343         if (__vma_shareable_lock(vma)) {
344                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346                 __hugetlb_vma_unlock_write_put(vma_lock);
347         }
348 }
349
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352         /*
353          * Only present in sharable vmas.
354          */
355         if (!vma || !__vma_shareable_lock(vma))
356                 return;
357
358         if (vma->vm_private_data) {
359                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361                 down_write(&vma_lock->rw_sema);
362                 __hugetlb_vma_unlock_write_put(vma_lock);
363         }
364 }
365
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368         struct hugetlb_vma_lock *vma_lock;
369
370         /* Only establish in (flags) sharable vmas */
371         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372                 return;
373
374         /* Should never get here with non-NULL vm_private_data */
375         if (vma->vm_private_data)
376                 return;
377
378         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379         if (!vma_lock) {
380                 /*
381                  * If we can not allocate structure, then vma can not
382                  * participate in pmd sharing.  This is only a possible
383                  * performance enhancement and memory saving issue.
384                  * However, the lock is also used to synchronize page
385                  * faults with truncation.  If the lock is not present,
386                  * unlikely races could leave pages in a file past i_size
387                  * until the file is removed.  Warn in the unlikely case of
388                  * allocation failure.
389                  */
390                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391                 return;
392         }
393
394         kref_init(&vma_lock->refs);
395         init_rwsem(&vma_lock->rw_sema);
396         vma_lock->vma = vma;
397         vma->vm_private_data = vma_lock;
398 }
399
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406         struct file_region *nrg;
407
408         VM_BUG_ON(resv->region_cache_count <= 0);
409
410         resv->region_cache_count--;
411         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412         list_del(&nrg->link);
413
414         nrg->from = from;
415         nrg->to = to;
416
417         return nrg;
418 }
419
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421                                               struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424         nrg->reservation_counter = rg->reservation_counter;
425         nrg->css = rg->css;
426         if (rg->css)
427                 css_get(rg->css);
428 #endif
429 }
430
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433                                                 struct hstate *h,
434                                                 struct resv_map *resv,
435                                                 struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438         if (h_cg) {
439                 nrg->reservation_counter =
440                         &h_cg->rsvd_hugepage[hstate_index(h)];
441                 nrg->css = &h_cg->css;
442                 /*
443                  * The caller will hold exactly one h_cg->css reference for the
444                  * whole contiguous reservation region. But this area might be
445                  * scattered when there are already some file_regions reside in
446                  * it. As a result, many file_regions may share only one css
447                  * reference. In order to ensure that one file_region must hold
448                  * exactly one h_cg->css reference, we should do css_get for
449                  * each file_region and leave the reference held by caller
450                  * untouched.
451                  */
452                 css_get(&h_cg->css);
453                 if (!resv->pages_per_hpage)
454                         resv->pages_per_hpage = pages_per_huge_page(h);
455                 /* pages_per_hpage should be the same for all entries in
456                  * a resv_map.
457                  */
458                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459         } else {
460                 nrg->reservation_counter = NULL;
461                 nrg->css = NULL;
462         }
463 #endif
464 }
465
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469         if (rg->css)
470                 css_put(rg->css);
471 #endif
472 }
473
474 static bool has_same_uncharge_info(struct file_region *rg,
475                                    struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478         return rg->reservation_counter == org->reservation_counter &&
479                rg->css == org->css;
480
481 #else
482         return true;
483 #endif
484 }
485
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488         struct file_region *nrg, *prg;
489
490         prg = list_prev_entry(rg, link);
491         if (&prg->link != &resv->regions && prg->to == rg->from &&
492             has_same_uncharge_info(prg, rg)) {
493                 prg->to = rg->to;
494
495                 list_del(&rg->link);
496                 put_uncharge_info(rg);
497                 kfree(rg);
498
499                 rg = prg;
500         }
501
502         nrg = list_next_entry(rg, link);
503         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504             has_same_uncharge_info(nrg, rg)) {
505                 nrg->from = rg->from;
506
507                 list_del(&rg->link);
508                 put_uncharge_info(rg);
509                 kfree(rg);
510         }
511 }
512
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
516                      long *regions_needed)
517 {
518         struct file_region *nrg;
519
520         if (!regions_needed) {
521                 nrg = get_file_region_entry_from_cache(map, from, to);
522                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523                 list_add(&nrg->link, rg);
524                 coalesce_file_region(map, nrg);
525         } else
526                 *regions_needed += 1;
527
528         return to - from;
529 }
530
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540                                      struct hugetlb_cgroup *h_cg,
541                                      struct hstate *h, long *regions_needed)
542 {
543         long add = 0;
544         struct list_head *head = &resv->regions;
545         long last_accounted_offset = f;
546         struct file_region *iter, *trg = NULL;
547         struct list_head *rg = NULL;
548
549         if (regions_needed)
550                 *regions_needed = 0;
551
552         /* In this loop, we essentially handle an entry for the range
553          * [last_accounted_offset, iter->from), at every iteration, with some
554          * bounds checking.
555          */
556         list_for_each_entry_safe(iter, trg, head, link) {
557                 /* Skip irrelevant regions that start before our range. */
558                 if (iter->from < f) {
559                         /* If this region ends after the last accounted offset,
560                          * then we need to update last_accounted_offset.
561                          */
562                         if (iter->to > last_accounted_offset)
563                                 last_accounted_offset = iter->to;
564                         continue;
565                 }
566
567                 /* When we find a region that starts beyond our range, we've
568                  * finished.
569                  */
570                 if (iter->from >= t) {
571                         rg = iter->link.prev;
572                         break;
573                 }
574
575                 /* Add an entry for last_accounted_offset -> iter->from, and
576                  * update last_accounted_offset.
577                  */
578                 if (iter->from > last_accounted_offset)
579                         add += hugetlb_resv_map_add(resv, iter->link.prev,
580                                                     last_accounted_offset,
581                                                     iter->from, h, h_cg,
582                                                     regions_needed);
583
584                 last_accounted_offset = iter->to;
585         }
586
587         /* Handle the case where our range extends beyond
588          * last_accounted_offset.
589          */
590         if (!rg)
591                 rg = head->prev;
592         if (last_accounted_offset < t)
593                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594                                             t, h, h_cg, regions_needed);
595
596         return add;
597 }
598
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602                                         int regions_needed)
603         __must_hold(&resv->lock)
604 {
605         LIST_HEAD(allocated_regions);
606         int to_allocate = 0, i = 0;
607         struct file_region *trg = NULL, *rg = NULL;
608
609         VM_BUG_ON(regions_needed < 0);
610
611         /*
612          * Check for sufficient descriptors in the cache to accommodate
613          * the number of in progress add operations plus regions_needed.
614          *
615          * This is a while loop because when we drop the lock, some other call
616          * to region_add or region_del may have consumed some region_entries,
617          * so we keep looping here until we finally have enough entries for
618          * (adds_in_progress + regions_needed).
619          */
620         while (resv->region_cache_count <
621                (resv->adds_in_progress + regions_needed)) {
622                 to_allocate = resv->adds_in_progress + regions_needed -
623                               resv->region_cache_count;
624
625                 /* At this point, we should have enough entries in the cache
626                  * for all the existing adds_in_progress. We should only be
627                  * needing to allocate for regions_needed.
628                  */
629                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631                 spin_unlock(&resv->lock);
632                 for (i = 0; i < to_allocate; i++) {
633                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634                         if (!trg)
635                                 goto out_of_memory;
636                         list_add(&trg->link, &allocated_regions);
637                 }
638
639                 spin_lock(&resv->lock);
640
641                 list_splice(&allocated_regions, &resv->region_cache);
642                 resv->region_cache_count += to_allocate;
643         }
644
645         return 0;
646
647 out_of_memory:
648         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649                 list_del(&rg->link);
650                 kfree(rg);
651         }
652         return -ENOMEM;
653 }
654
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673                        long in_regions_needed, struct hstate *h,
674                        struct hugetlb_cgroup *h_cg)
675 {
676         long add = 0, actual_regions_needed = 0;
677
678         spin_lock(&resv->lock);
679 retry:
680
681         /* Count how many regions are actually needed to execute this add. */
682         add_reservation_in_range(resv, f, t, NULL, NULL,
683                                  &actual_regions_needed);
684
685         /*
686          * Check for sufficient descriptors in the cache to accommodate
687          * this add operation. Note that actual_regions_needed may be greater
688          * than in_regions_needed, as the resv_map may have been modified since
689          * the region_chg call. In this case, we need to make sure that we
690          * allocate extra entries, such that we have enough for all the
691          * existing adds_in_progress, plus the excess needed for this
692          * operation.
693          */
694         if (actual_regions_needed > in_regions_needed &&
695             resv->region_cache_count <
696                     resv->adds_in_progress +
697                             (actual_regions_needed - in_regions_needed)) {
698                 /* region_add operation of range 1 should never need to
699                  * allocate file_region entries.
700                  */
701                 VM_BUG_ON(t - f <= 1);
702
703                 if (allocate_file_region_entries(
704                             resv, actual_regions_needed - in_regions_needed)) {
705                         return -ENOMEM;
706                 }
707
708                 goto retry;
709         }
710
711         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712
713         resv->adds_in_progress -= in_regions_needed;
714
715         spin_unlock(&resv->lock);
716         return add;
717 }
718
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740                        long *out_regions_needed)
741 {
742         long chg = 0;
743
744         spin_lock(&resv->lock);
745
746         /* Count how many hugepages in this range are NOT represented. */
747         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748                                        out_regions_needed);
749
750         if (*out_regions_needed == 0)
751                 *out_regions_needed = 1;
752
753         if (allocate_file_region_entries(resv, *out_regions_needed))
754                 return -ENOMEM;
755
756         resv->adds_in_progress += *out_regions_needed;
757
758         spin_unlock(&resv->lock);
759         return chg;
760 }
761
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776                          long regions_needed)
777 {
778         spin_lock(&resv->lock);
779         VM_BUG_ON(!resv->region_cache_count);
780         resv->adds_in_progress -= regions_needed;
781         spin_unlock(&resv->lock);
782 }
783
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800         struct list_head *head = &resv->regions;
801         struct file_region *rg, *trg;
802         struct file_region *nrg = NULL;
803         long del = 0;
804
805 retry:
806         spin_lock(&resv->lock);
807         list_for_each_entry_safe(rg, trg, head, link) {
808                 /*
809                  * Skip regions before the range to be deleted.  file_region
810                  * ranges are normally of the form [from, to).  However, there
811                  * may be a "placeholder" entry in the map which is of the form
812                  * (from, to) with from == to.  Check for placeholder entries
813                  * at the beginning of the range to be deleted.
814                  */
815                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816                         continue;
817
818                 if (rg->from >= t)
819                         break;
820
821                 if (f > rg->from && t < rg->to) { /* Must split region */
822                         /*
823                          * Check for an entry in the cache before dropping
824                          * lock and attempting allocation.
825                          */
826                         if (!nrg &&
827                             resv->region_cache_count > resv->adds_in_progress) {
828                                 nrg = list_first_entry(&resv->region_cache,
829                                                         struct file_region,
830                                                         link);
831                                 list_del(&nrg->link);
832                                 resv->region_cache_count--;
833                         }
834
835                         if (!nrg) {
836                                 spin_unlock(&resv->lock);
837                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838                                 if (!nrg)
839                                         return -ENOMEM;
840                                 goto retry;
841                         }
842
843                         del += t - f;
844                         hugetlb_cgroup_uncharge_file_region(
845                                 resv, rg, t - f, false);
846
847                         /* New entry for end of split region */
848                         nrg->from = t;
849                         nrg->to = rg->to;
850
851                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
853                         INIT_LIST_HEAD(&nrg->link);
854
855                         /* Original entry is trimmed */
856                         rg->to = f;
857
858                         list_add(&nrg->link, &rg->link);
859                         nrg = NULL;
860                         break;
861                 }
862
863                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864                         del += rg->to - rg->from;
865                         hugetlb_cgroup_uncharge_file_region(resv, rg,
866                                                             rg->to - rg->from, true);
867                         list_del(&rg->link);
868                         kfree(rg);
869                         continue;
870                 }
871
872                 if (f <= rg->from) {    /* Trim beginning of region */
873                         hugetlb_cgroup_uncharge_file_region(resv, rg,
874                                                             t - rg->from, false);
875
876                         del += t - rg->from;
877                         rg->from = t;
878                 } else {                /* Trim end of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             rg->to - f, false);
881
882                         del += rg->to - f;
883                         rg->to = f;
884                 }
885         }
886
887         spin_unlock(&resv->lock);
888         kfree(nrg);
889         return del;
890 }
891
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903         struct hugepage_subpool *spool = subpool_inode(inode);
904         long rsv_adjust;
905         bool reserved = false;
906
907         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908         if (rsv_adjust > 0) {
909                 struct hstate *h = hstate_inode(inode);
910
911                 if (!hugetlb_acct_memory(h, 1))
912                         reserved = true;
913         } else if (!rsv_adjust) {
914                 reserved = true;
915         }
916
917         if (!reserved)
918                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927         struct list_head *head = &resv->regions;
928         struct file_region *rg;
929         long chg = 0;
930
931         spin_lock(&resv->lock);
932         /* Locate each segment we overlap with, and count that overlap. */
933         list_for_each_entry(rg, head, link) {
934                 long seg_from;
935                 long seg_to;
936
937                 if (rg->to <= f)
938                         continue;
939                 if (rg->from >= t)
940                         break;
941
942                 seg_from = max(rg->from, f);
943                 seg_to = min(rg->to, t);
944
945                 chg += seg_to - seg_from;
946         }
947         spin_unlock(&resv->lock);
948
949         return chg;
950 }
951
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957                         struct vm_area_struct *vma, unsigned long address)
958 {
959         return ((address - vma->vm_start) >> huge_page_shift(h)) +
960                         (vma->vm_pgoff >> huge_page_order(h));
961 }
962
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964                                      unsigned long address)
965 {
966         return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976         if (vma->vm_ops && vma->vm_ops->pagesize)
977                 return vma->vm_ops->pagesize(vma);
978         return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990         return vma_kernel_pagesize(vma);
991 }
992
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023         return (unsigned long)vma->vm_private_data;
1024 }
1025
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027                                                         unsigned long value)
1028 {
1029         vma->vm_private_data = (void *)value;
1030 }
1031
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034                                           struct hugetlb_cgroup *h_cg,
1035                                           struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038         if (!h_cg || !h) {
1039                 resv_map->reservation_counter = NULL;
1040                 resv_map->pages_per_hpage = 0;
1041                 resv_map->css = NULL;
1042         } else {
1043                 resv_map->reservation_counter =
1044                         &h_cg->rsvd_hugepage[hstate_index(h)];
1045                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046                 resv_map->css = &h_cg->css;
1047         }
1048 #endif
1049 }
1050
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056         if (!resv_map || !rg) {
1057                 kfree(resv_map);
1058                 kfree(rg);
1059                 return NULL;
1060         }
1061
1062         kref_init(&resv_map->refs);
1063         spin_lock_init(&resv_map->lock);
1064         INIT_LIST_HEAD(&resv_map->regions);
1065
1066         resv_map->adds_in_progress = 0;
1067         /*
1068          * Initialize these to 0. On shared mappings, 0's here indicate these
1069          * fields don't do cgroup accounting. On private mappings, these will be
1070          * re-initialized to the proper values, to indicate that hugetlb cgroup
1071          * reservations are to be un-charged from here.
1072          */
1073         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074
1075         INIT_LIST_HEAD(&resv_map->region_cache);
1076         list_add(&rg->link, &resv_map->region_cache);
1077         resv_map->region_cache_count = 1;
1078
1079         return resv_map;
1080 }
1081
1082 void resv_map_release(struct kref *ref)
1083 {
1084         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085         struct list_head *head = &resv_map->region_cache;
1086         struct file_region *rg, *trg;
1087
1088         /* Clear out any active regions before we release the map. */
1089         region_del(resv_map, 0, LONG_MAX);
1090
1091         /* ... and any entries left in the cache */
1092         list_for_each_entry_safe(rg, trg, head, link) {
1093                 list_del(&rg->link);
1094                 kfree(rg);
1095         }
1096
1097         VM_BUG_ON(resv_map->adds_in_progress);
1098
1099         kfree(resv_map);
1100 }
1101
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104         /*
1105          * At inode evict time, i_mapping may not point to the original
1106          * address space within the inode.  This original address space
1107          * contains the pointer to the resv_map.  So, always use the
1108          * address space embedded within the inode.
1109          * The VERY common case is inode->mapping == &inode->i_data but,
1110          * this may not be true for device special inodes.
1111          */
1112         return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118         if (vma->vm_flags & VM_MAYSHARE) {
1119                 struct address_space *mapping = vma->vm_file->f_mapping;
1120                 struct inode *inode = mapping->host;
1121
1122                 return inode_resv_map(inode);
1123
1124         } else {
1125                 return (struct resv_map *)(get_vma_private_data(vma) &
1126                                                         ~HPAGE_RESV_MASK);
1127         }
1128 }
1129
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134
1135         set_vma_private_data(vma, (get_vma_private_data(vma) &
1136                                 HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143
1144         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150
1151         return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157         /*
1158          * Clear vm_private_data
1159          * - For shared mappings this is a per-vma semaphore that may be
1160          *   allocated in a subsequent call to hugetlb_vm_op_open.
1161          *   Before clearing, make sure pointer is not associated with vma
1162          *   as this will leak the structure.  This is the case when called
1163          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164          *   been called to allocate a new structure.
1165          * - For MAP_PRIVATE mappings, this is the reserve map which does
1166          *   not apply to children.  Faults generated by the children are
1167          *   not guaranteed to succeed, even if read-only.
1168          */
1169         if (vma->vm_flags & VM_MAYSHARE) {
1170                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172                 if (vma_lock && vma_lock->vma != vma)
1173                         vma->vm_private_data = NULL;
1174         } else
1175                 vma->vm_private_data = NULL;
1176 }
1177
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187         /*
1188          * Clear the old hugetlb private page reservation.
1189          * It has already been transferred to new_vma.
1190          *
1191          * During a mremap() operation of a hugetlb vma we call move_vma()
1192          * which copies vma into new_vma and unmaps vma. After the copy
1193          * operation both new_vma and vma share a reference to the resv_map
1194          * struct, and at that point vma is about to be unmapped. We don't
1195          * want to return the reservation to the pool at unmap of vma because
1196          * the reservation still lives on in new_vma, so simply decrement the
1197          * ref here and remove the resv_map reference from this vma.
1198          */
1199         struct resv_map *reservations = vma_resv_map(vma);
1200
1201         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203                 kref_put(&reservations->refs, resv_map_release);
1204         }
1205
1206         hugetlb_dup_vma_private(vma);
1207 }
1208
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212         if (vma->vm_flags & VM_NORESERVE) {
1213                 /*
1214                  * This address is already reserved by other process(chg == 0),
1215                  * so, we should decrement reserved count. Without decrementing,
1216                  * reserve count remains after releasing inode, because this
1217                  * allocated page will go into page cache and is regarded as
1218                  * coming from reserved pool in releasing step.  Currently, we
1219                  * don't have any other solution to deal with this situation
1220                  * properly, so add work-around here.
1221                  */
1222                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223                         return true;
1224                 else
1225                         return false;
1226         }
1227
1228         /* Shared mappings always use reserves */
1229         if (vma->vm_flags & VM_MAYSHARE) {
1230                 /*
1231                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232                  * be a region map for all pages.  The only situation where
1233                  * there is no region map is if a hole was punched via
1234                  * fallocate.  In this case, there really are no reserves to
1235                  * use.  This situation is indicated if chg != 0.
1236                  */
1237                 if (chg)
1238                         return false;
1239                 else
1240                         return true;
1241         }
1242
1243         /*
1244          * Only the process that called mmap() has reserves for
1245          * private mappings.
1246          */
1247         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248                 /*
1249                  * Like the shared case above, a hole punch or truncate
1250                  * could have been performed on the private mapping.
1251                  * Examine the value of chg to determine if reserves
1252                  * actually exist or were previously consumed.
1253                  * Very Subtle - The value of chg comes from a previous
1254                  * call to vma_needs_reserves().  The reserve map for
1255                  * private mappings has different (opposite) semantics
1256                  * than that of shared mappings.  vma_needs_reserves()
1257                  * has already taken this difference in semantics into
1258                  * account.  Therefore, the meaning of chg is the same
1259                  * as in the shared case above.  Code could easily be
1260                  * combined, but keeping it separate draws attention to
1261                  * subtle differences.
1262                  */
1263                 if (chg)
1264                         return false;
1265                 else
1266                         return true;
1267         }
1268
1269         return false;
1270 }
1271
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274         int nid = folio_nid(folio);
1275
1276         lockdep_assert_held(&hugetlb_lock);
1277         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278
1279         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280         h->free_huge_pages++;
1281         h->free_huge_pages_node[nid]++;
1282         folio_set_hugetlb_freed(folio);
1283 }
1284
1285 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1286 {
1287         struct page *page;
1288         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1289
1290         lockdep_assert_held(&hugetlb_lock);
1291         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1292                 if (pin && !is_longterm_pinnable_page(page))
1293                         continue;
1294
1295                 if (PageHWPoison(page))
1296                         continue;
1297
1298                 list_move(&page->lru, &h->hugepage_activelist);
1299                 set_page_refcounted(page);
1300                 ClearHPageFreed(page);
1301                 h->free_huge_pages--;
1302                 h->free_huge_pages_node[nid]--;
1303                 return page;
1304         }
1305
1306         return NULL;
1307 }
1308
1309 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1310                 nodemask_t *nmask)
1311 {
1312         unsigned int cpuset_mems_cookie;
1313         struct zonelist *zonelist;
1314         struct zone *zone;
1315         struct zoneref *z;
1316         int node = NUMA_NO_NODE;
1317
1318         zonelist = node_zonelist(nid, gfp_mask);
1319
1320 retry_cpuset:
1321         cpuset_mems_cookie = read_mems_allowed_begin();
1322         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1323                 struct page *page;
1324
1325                 if (!cpuset_zone_allowed(zone, gfp_mask))
1326                         continue;
1327                 /*
1328                  * no need to ask again on the same node. Pool is node rather than
1329                  * zone aware
1330                  */
1331                 if (zone_to_nid(zone) == node)
1332                         continue;
1333                 node = zone_to_nid(zone);
1334
1335                 page = dequeue_huge_page_node_exact(h, node);
1336                 if (page)
1337                         return page;
1338         }
1339         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1340                 goto retry_cpuset;
1341
1342         return NULL;
1343 }
1344
1345 static unsigned long available_huge_pages(struct hstate *h)
1346 {
1347         return h->free_huge_pages - h->resv_huge_pages;
1348 }
1349
1350 static struct page *dequeue_huge_page_vma(struct hstate *h,
1351                                 struct vm_area_struct *vma,
1352                                 unsigned long address, int avoid_reserve,
1353                                 long chg)
1354 {
1355         struct page *page = NULL;
1356         struct mempolicy *mpol;
1357         gfp_t gfp_mask;
1358         nodemask_t *nodemask;
1359         int nid;
1360
1361         /*
1362          * A child process with MAP_PRIVATE mappings created by their parent
1363          * have no page reserves. This check ensures that reservations are
1364          * not "stolen". The child may still get SIGKILLed
1365          */
1366         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1367                 goto err;
1368
1369         /* If reserves cannot be used, ensure enough pages are in the pool */
1370         if (avoid_reserve && !available_huge_pages(h))
1371                 goto err;
1372
1373         gfp_mask = htlb_alloc_mask(h);
1374         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1375
1376         if (mpol_is_preferred_many(mpol)) {
1377                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1378
1379                 /* Fallback to all nodes if page==NULL */
1380                 nodemask = NULL;
1381         }
1382
1383         if (!page)
1384                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1385
1386         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1387                 SetHPageRestoreReserve(page);
1388                 h->resv_huge_pages--;
1389         }
1390
1391         mpol_cond_put(mpol);
1392         return page;
1393
1394 err:
1395         return NULL;
1396 }
1397
1398 /*
1399  * common helper functions for hstate_next_node_to_{alloc|free}.
1400  * We may have allocated or freed a huge page based on a different
1401  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1402  * be outside of *nodes_allowed.  Ensure that we use an allowed
1403  * node for alloc or free.
1404  */
1405 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1406 {
1407         nid = next_node_in(nid, *nodes_allowed);
1408         VM_BUG_ON(nid >= MAX_NUMNODES);
1409
1410         return nid;
1411 }
1412
1413 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1414 {
1415         if (!node_isset(nid, *nodes_allowed))
1416                 nid = next_node_allowed(nid, nodes_allowed);
1417         return nid;
1418 }
1419
1420 /*
1421  * returns the previously saved node ["this node"] from which to
1422  * allocate a persistent huge page for the pool and advance the
1423  * next node from which to allocate, handling wrap at end of node
1424  * mask.
1425  */
1426 static int hstate_next_node_to_alloc(struct hstate *h,
1427                                         nodemask_t *nodes_allowed)
1428 {
1429         int nid;
1430
1431         VM_BUG_ON(!nodes_allowed);
1432
1433         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1434         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1435
1436         return nid;
1437 }
1438
1439 /*
1440  * helper for remove_pool_huge_page() - return the previously saved
1441  * node ["this node"] from which to free a huge page.  Advance the
1442  * next node id whether or not we find a free huge page to free so
1443  * that the next attempt to free addresses the next node.
1444  */
1445 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1446 {
1447         int nid;
1448
1449         VM_BUG_ON(!nodes_allowed);
1450
1451         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1452         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1453
1454         return nid;
1455 }
1456
1457 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1458         for (nr_nodes = nodes_weight(*mask);                            \
1459                 nr_nodes > 0 &&                                         \
1460                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1461                 nr_nodes--)
1462
1463 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1464         for (nr_nodes = nodes_weight(*mask);                            \
1465                 nr_nodes > 0 &&                                         \
1466                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1467                 nr_nodes--)
1468
1469 /* used to demote non-gigantic_huge pages as well */
1470 static void __destroy_compound_gigantic_folio(struct folio *folio,
1471                                         unsigned int order, bool demote)
1472 {
1473         int i;
1474         int nr_pages = 1 << order;
1475         struct page *p;
1476
1477         atomic_set(folio_mapcount_ptr(folio), 0);
1478         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1479         atomic_set(folio_pincount_ptr(folio), 0);
1480
1481         for (i = 1; i < nr_pages; i++) {
1482                 p = folio_page(folio, i);
1483                 p->mapping = NULL;
1484                 clear_compound_head(p);
1485                 if (!demote)
1486                         set_page_refcounted(p);
1487         }
1488
1489         folio_set_order(folio, 0);
1490         __folio_clear_head(folio);
1491 }
1492
1493 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1494                                         unsigned int order)
1495 {
1496         __destroy_compound_gigantic_folio(folio, order, true);
1497 }
1498
1499 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1500 static void destroy_compound_gigantic_folio(struct folio *folio,
1501                                         unsigned int order)
1502 {
1503         __destroy_compound_gigantic_folio(folio, order, false);
1504 }
1505
1506 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1507 {
1508         /*
1509          * If the page isn't allocated using the cma allocator,
1510          * cma_release() returns false.
1511          */
1512 #ifdef CONFIG_CMA
1513         int nid = folio_nid(folio);
1514
1515         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1516                 return;
1517 #endif
1518
1519         free_contig_range(folio_pfn(folio), 1 << order);
1520 }
1521
1522 #ifdef CONFIG_CONTIG_ALLOC
1523 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1524                 int nid, nodemask_t *nodemask)
1525 {
1526         struct page *page;
1527         unsigned long nr_pages = pages_per_huge_page(h);
1528         if (nid == NUMA_NO_NODE)
1529                 nid = numa_mem_id();
1530
1531 #ifdef CONFIG_CMA
1532         {
1533                 int node;
1534
1535                 if (hugetlb_cma[nid]) {
1536                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1537                                         huge_page_order(h), true);
1538                         if (page)
1539                                 return page_folio(page);
1540                 }
1541
1542                 if (!(gfp_mask & __GFP_THISNODE)) {
1543                         for_each_node_mask(node, *nodemask) {
1544                                 if (node == nid || !hugetlb_cma[node])
1545                                         continue;
1546
1547                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1548                                                 huge_page_order(h), true);
1549                                 if (page)
1550                                         return page_folio(page);
1551                         }
1552                 }
1553         }
1554 #endif
1555
1556         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1557         return page ? page_folio(page) : NULL;
1558 }
1559
1560 #else /* !CONFIG_CONTIG_ALLOC */
1561 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1562                                         int nid, nodemask_t *nodemask)
1563 {
1564         return NULL;
1565 }
1566 #endif /* CONFIG_CONTIG_ALLOC */
1567
1568 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1570                                         int nid, nodemask_t *nodemask)
1571 {
1572         return NULL;
1573 }
1574 static inline void free_gigantic_folio(struct folio *folio,
1575                                                 unsigned int order) { }
1576 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1577                                                 unsigned int order) { }
1578 #endif
1579
1580 /*
1581  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1582  * as just a compound page.
1583  *
1584  * A reference is held on the folio, except in the case of demote.
1585  *
1586  * Must be called with hugetlb lock held.
1587  */
1588 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1589                                                         bool adjust_surplus,
1590                                                         bool demote)
1591 {
1592         int nid = folio_nid(folio);
1593
1594         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1595         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1596
1597         lockdep_assert_held(&hugetlb_lock);
1598         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1599                 return;
1600
1601         list_del(&folio->lru);
1602
1603         if (folio_test_hugetlb_freed(folio)) {
1604                 h->free_huge_pages--;
1605                 h->free_huge_pages_node[nid]--;
1606         }
1607         if (adjust_surplus) {
1608                 h->surplus_huge_pages--;
1609                 h->surplus_huge_pages_node[nid]--;
1610         }
1611
1612         /*
1613          * Very subtle
1614          *
1615          * For non-gigantic pages set the destructor to the normal compound
1616          * page dtor.  This is needed in case someone takes an additional
1617          * temporary ref to the page, and freeing is delayed until they drop
1618          * their reference.
1619          *
1620          * For gigantic pages set the destructor to the null dtor.  This
1621          * destructor will never be called.  Before freeing the gigantic
1622          * page destroy_compound_gigantic_folio will turn the folio into a
1623          * simple group of pages.  After this the destructor does not
1624          * apply.
1625          *
1626          * This handles the case where more than one ref is held when and
1627          * after update_and_free_hugetlb_folio is called.
1628          *
1629          * In the case of demote we do not ref count the page as it will soon
1630          * be turned into a page of smaller size.
1631          */
1632         if (!demote)
1633                 folio_ref_unfreeze(folio, 1);
1634         if (hstate_is_gigantic(h))
1635                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1636         else
1637                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1638
1639         h->nr_huge_pages--;
1640         h->nr_huge_pages_node[nid]--;
1641 }
1642
1643 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1644                                                         bool adjust_surplus)
1645 {
1646         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1647 }
1648
1649 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1650                                                         bool adjust_surplus)
1651 {
1652         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1653 }
1654
1655 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1656                              bool adjust_surplus)
1657 {
1658         int zeroed;
1659         int nid = folio_nid(folio);
1660
1661         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1662
1663         lockdep_assert_held(&hugetlb_lock);
1664
1665         INIT_LIST_HEAD(&folio->lru);
1666         h->nr_huge_pages++;
1667         h->nr_huge_pages_node[nid]++;
1668
1669         if (adjust_surplus) {
1670                 h->surplus_huge_pages++;
1671                 h->surplus_huge_pages_node[nid]++;
1672         }
1673
1674         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1675         folio_change_private(folio, NULL);
1676         /*
1677          * We have to set hugetlb_vmemmap_optimized again as above
1678          * folio_change_private(folio, NULL) cleared it.
1679          */
1680         folio_set_hugetlb_vmemmap_optimized(folio);
1681
1682         /*
1683          * This folio is about to be managed by the hugetlb allocator and
1684          * should have no users.  Drop our reference, and check for others
1685          * just in case.
1686          */
1687         zeroed = folio_put_testzero(folio);
1688         if (unlikely(!zeroed))
1689                 /*
1690                  * It is VERY unlikely soneone else has taken a ref on
1691                  * the page.  In this case, we simply return as the
1692                  * hugetlb destructor (free_huge_page) will be called
1693                  * when this other ref is dropped.
1694                  */
1695                 return;
1696
1697         arch_clear_hugepage_flags(&folio->page);
1698         enqueue_hugetlb_folio(h, folio);
1699 }
1700
1701 static void __update_and_free_page(struct hstate *h, struct page *page)
1702 {
1703         int i;
1704         struct folio *folio = page_folio(page);
1705         struct page *subpage;
1706
1707         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1708                 return;
1709
1710         /*
1711          * If we don't know which subpages are hwpoisoned, we can't free
1712          * the hugepage, so it's leaked intentionally.
1713          */
1714         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1715                 return;
1716
1717         if (hugetlb_vmemmap_restore(h, page)) {
1718                 spin_lock_irq(&hugetlb_lock);
1719                 /*
1720                  * If we cannot allocate vmemmap pages, just refuse to free the
1721                  * page and put the page back on the hugetlb free list and treat
1722                  * as a surplus page.
1723                  */
1724                 add_hugetlb_folio(h, folio, true);
1725                 spin_unlock_irq(&hugetlb_lock);
1726                 return;
1727         }
1728
1729         /*
1730          * Move PageHWPoison flag from head page to the raw error pages,
1731          * which makes any healthy subpages reusable.
1732          */
1733         if (unlikely(folio_test_hwpoison(folio)))
1734                 hugetlb_clear_page_hwpoison(&folio->page);
1735
1736         for (i = 0; i < pages_per_huge_page(h); i++) {
1737                 subpage = folio_page(folio, i);
1738                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1739                                 1 << PG_referenced | 1 << PG_dirty |
1740                                 1 << PG_active | 1 << PG_private |
1741                                 1 << PG_writeback);
1742         }
1743
1744         /*
1745          * Non-gigantic pages demoted from CMA allocated gigantic pages
1746          * need to be given back to CMA in free_gigantic_folio.
1747          */
1748         if (hstate_is_gigantic(h) ||
1749             hugetlb_cma_folio(folio, huge_page_order(h))) {
1750                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1751                 free_gigantic_folio(folio, huge_page_order(h));
1752         } else {
1753                 __free_pages(page, huge_page_order(h));
1754         }
1755 }
1756
1757 /*
1758  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1759  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1760  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1761  * the vmemmap pages.
1762  *
1763  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1764  * freed and frees them one-by-one. As the page->mapping pointer is going
1765  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1766  * structure of a lockless linked list of huge pages to be freed.
1767  */
1768 static LLIST_HEAD(hpage_freelist);
1769
1770 static void free_hpage_workfn(struct work_struct *work)
1771 {
1772         struct llist_node *node;
1773
1774         node = llist_del_all(&hpage_freelist);
1775
1776         while (node) {
1777                 struct page *page;
1778                 struct hstate *h;
1779
1780                 page = container_of((struct address_space **)node,
1781                                      struct page, mapping);
1782                 node = node->next;
1783                 page->mapping = NULL;
1784                 /*
1785                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1786                  * is going to trigger because a previous call to
1787                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1788                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1789                  * directly.
1790                  */
1791                 h = size_to_hstate(page_size(page));
1792
1793                 __update_and_free_page(h, page);
1794
1795                 cond_resched();
1796         }
1797 }
1798 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1799
1800 static inline void flush_free_hpage_work(struct hstate *h)
1801 {
1802         if (hugetlb_vmemmap_optimizable(h))
1803                 flush_work(&free_hpage_work);
1804 }
1805
1806 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1807                                  bool atomic)
1808 {
1809         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1810                 __update_and_free_page(h, &folio->page);
1811                 return;
1812         }
1813
1814         /*
1815          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1816          *
1817          * Only call schedule_work() if hpage_freelist is previously
1818          * empty. Otherwise, schedule_work() had been called but the workfn
1819          * hasn't retrieved the list yet.
1820          */
1821         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1822                 schedule_work(&free_hpage_work);
1823 }
1824
1825 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1826 {
1827         struct page *page, *t_page;
1828         struct folio *folio;
1829
1830         list_for_each_entry_safe(page, t_page, list, lru) {
1831                 folio = page_folio(page);
1832                 update_and_free_hugetlb_folio(h, folio, false);
1833                 cond_resched();
1834         }
1835 }
1836
1837 struct hstate *size_to_hstate(unsigned long size)
1838 {
1839         struct hstate *h;
1840
1841         for_each_hstate(h) {
1842                 if (huge_page_size(h) == size)
1843                         return h;
1844         }
1845         return NULL;
1846 }
1847
1848 void free_huge_page(struct page *page)
1849 {
1850         /*
1851          * Can't pass hstate in here because it is called from the
1852          * compound page destructor.
1853          */
1854         struct folio *folio = page_folio(page);
1855         struct hstate *h = folio_hstate(folio);
1856         int nid = folio_nid(folio);
1857         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1858         bool restore_reserve;
1859         unsigned long flags;
1860
1861         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1862         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1863
1864         hugetlb_set_folio_subpool(folio, NULL);
1865         if (folio_test_anon(folio))
1866                 __ClearPageAnonExclusive(&folio->page);
1867         folio->mapping = NULL;
1868         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1869         folio_clear_hugetlb_restore_reserve(folio);
1870
1871         /*
1872          * If HPageRestoreReserve was set on page, page allocation consumed a
1873          * reservation.  If the page was associated with a subpool, there
1874          * would have been a page reserved in the subpool before allocation
1875          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1876          * reservation, do not call hugepage_subpool_put_pages() as this will
1877          * remove the reserved page from the subpool.
1878          */
1879         if (!restore_reserve) {
1880                 /*
1881                  * A return code of zero implies that the subpool will be
1882                  * under its minimum size if the reservation is not restored
1883                  * after page is free.  Therefore, force restore_reserve
1884                  * operation.
1885                  */
1886                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1887                         restore_reserve = true;
1888         }
1889
1890         spin_lock_irqsave(&hugetlb_lock, flags);
1891         folio_clear_hugetlb_migratable(folio);
1892         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1893                                      pages_per_huge_page(h), folio);
1894         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1895                                           pages_per_huge_page(h), folio);
1896         if (restore_reserve)
1897                 h->resv_huge_pages++;
1898
1899         if (folio_test_hugetlb_temporary(folio)) {
1900                 remove_hugetlb_folio(h, folio, false);
1901                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1902                 update_and_free_hugetlb_folio(h, folio, true);
1903         } else if (h->surplus_huge_pages_node[nid]) {
1904                 /* remove the page from active list */
1905                 remove_hugetlb_folio(h, folio, true);
1906                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1907                 update_and_free_hugetlb_folio(h, folio, true);
1908         } else {
1909                 arch_clear_hugepage_flags(page);
1910                 enqueue_hugetlb_folio(h, folio);
1911                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1912         }
1913 }
1914
1915 /*
1916  * Must be called with the hugetlb lock held
1917  */
1918 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1919 {
1920         lockdep_assert_held(&hugetlb_lock);
1921         h->nr_huge_pages++;
1922         h->nr_huge_pages_node[nid]++;
1923 }
1924
1925 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1926 {
1927         hugetlb_vmemmap_optimize(h, &folio->page);
1928         INIT_LIST_HEAD(&folio->lru);
1929         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1930         hugetlb_set_folio_subpool(folio, NULL);
1931         set_hugetlb_cgroup(folio, NULL);
1932         set_hugetlb_cgroup_rsvd(folio, NULL);
1933 }
1934
1935 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1936 {
1937         __prep_new_hugetlb_folio(h, folio);
1938         spin_lock_irq(&hugetlb_lock);
1939         __prep_account_new_huge_page(h, nid);
1940         spin_unlock_irq(&hugetlb_lock);
1941 }
1942
1943 static bool __prep_compound_gigantic_folio(struct folio *folio,
1944                                         unsigned int order, bool demote)
1945 {
1946         int i, j;
1947         int nr_pages = 1 << order;
1948         struct page *p;
1949
1950         __folio_clear_reserved(folio);
1951         __folio_set_head(folio);
1952         /* we rely on prep_new_hugetlb_folio to set the destructor */
1953         folio_set_order(folio, order);
1954         for (i = 0; i < nr_pages; i++) {
1955                 p = folio_page(folio, i);
1956
1957                 /*
1958                  * For gigantic hugepages allocated through bootmem at
1959                  * boot, it's safer to be consistent with the not-gigantic
1960                  * hugepages and clear the PG_reserved bit from all tail pages
1961                  * too.  Otherwise drivers using get_user_pages() to access tail
1962                  * pages may get the reference counting wrong if they see
1963                  * PG_reserved set on a tail page (despite the head page not
1964                  * having PG_reserved set).  Enforcing this consistency between
1965                  * head and tail pages allows drivers to optimize away a check
1966                  * on the head page when they need know if put_page() is needed
1967                  * after get_user_pages().
1968                  */
1969                 if (i != 0)     /* head page cleared above */
1970                         __ClearPageReserved(p);
1971                 /*
1972                  * Subtle and very unlikely
1973                  *
1974                  * Gigantic 'page allocators' such as memblock or cma will
1975                  * return a set of pages with each page ref counted.  We need
1976                  * to turn this set of pages into a compound page with tail
1977                  * page ref counts set to zero.  Code such as speculative page
1978                  * cache adding could take a ref on a 'to be' tail page.
1979                  * We need to respect any increased ref count, and only set
1980                  * the ref count to zero if count is currently 1.  If count
1981                  * is not 1, we return an error.  An error return indicates
1982                  * the set of pages can not be converted to a gigantic page.
1983                  * The caller who allocated the pages should then discard the
1984                  * pages using the appropriate free interface.
1985                  *
1986                  * In the case of demote, the ref count will be zero.
1987                  */
1988                 if (!demote) {
1989                         if (!page_ref_freeze(p, 1)) {
1990                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1991                                 goto out_error;
1992                         }
1993                 } else {
1994                         VM_BUG_ON_PAGE(page_count(p), p);
1995                 }
1996                 if (i != 0)
1997                         set_compound_head(p, &folio->page);
1998         }
1999         atomic_set(folio_mapcount_ptr(folio), -1);
2000         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2001         atomic_set(folio_pincount_ptr(folio), 0);
2002         return true;
2003
2004 out_error:
2005         /* undo page modifications made above */
2006         for (j = 0; j < i; j++) {
2007                 p = folio_page(folio, j);
2008                 if (j != 0)
2009                         clear_compound_head(p);
2010                 set_page_refcounted(p);
2011         }
2012         /* need to clear PG_reserved on remaining tail pages  */
2013         for (; j < nr_pages; j++) {
2014                 p = folio_page(folio, j);
2015                 __ClearPageReserved(p);
2016         }
2017         folio_set_order(folio, 0);
2018         __folio_clear_head(folio);
2019         return false;
2020 }
2021
2022 static bool prep_compound_gigantic_folio(struct folio *folio,
2023                                                         unsigned int order)
2024 {
2025         return __prep_compound_gigantic_folio(folio, order, false);
2026 }
2027
2028 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2029                                                         unsigned int order)
2030 {
2031         return __prep_compound_gigantic_folio(folio, order, true);
2032 }
2033
2034 /*
2035  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036  * transparent huge pages.  See the PageTransHuge() documentation for more
2037  * details.
2038  */
2039 int PageHuge(struct page *page)
2040 {
2041         if (!PageCompound(page))
2042                 return 0;
2043
2044         page = compound_head(page);
2045         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2046 }
2047 EXPORT_SYMBOL_GPL(PageHuge);
2048
2049 /*
2050  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2051  * normal or transparent huge pages.
2052  */
2053 int PageHeadHuge(struct page *page_head)
2054 {
2055         if (!PageHead(page_head))
2056                 return 0;
2057
2058         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2059 }
2060 EXPORT_SYMBOL_GPL(PageHeadHuge);
2061
2062 /*
2063  * Find and lock address space (mapping) in write mode.
2064  *
2065  * Upon entry, the page is locked which means that page_mapping() is
2066  * stable.  Due to locking order, we can only trylock_write.  If we can
2067  * not get the lock, simply return NULL to caller.
2068  */
2069 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2070 {
2071         struct address_space *mapping = page_mapping(hpage);
2072
2073         if (!mapping)
2074                 return mapping;
2075
2076         if (i_mmap_trylock_write(mapping))
2077                 return mapping;
2078
2079         return NULL;
2080 }
2081
2082 pgoff_t hugetlb_basepage_index(struct page *page)
2083 {
2084         struct page *page_head = compound_head(page);
2085         pgoff_t index = page_index(page_head);
2086         unsigned long compound_idx;
2087
2088         if (compound_order(page_head) >= MAX_ORDER)
2089                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2090         else
2091                 compound_idx = page - page_head;
2092
2093         return (index << compound_order(page_head)) + compound_idx;
2094 }
2095
2096 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2097                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2098                 nodemask_t *node_alloc_noretry)
2099 {
2100         int order = huge_page_order(h);
2101         struct page *page;
2102         bool alloc_try_hard = true;
2103         bool retry = true;
2104
2105         /*
2106          * By default we always try hard to allocate the page with
2107          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2108          * a loop (to adjust global huge page counts) and previous allocation
2109          * failed, do not continue to try hard on the same node.  Use the
2110          * node_alloc_noretry bitmap to manage this state information.
2111          */
2112         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2113                 alloc_try_hard = false;
2114         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2115         if (alloc_try_hard)
2116                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2117         if (nid == NUMA_NO_NODE)
2118                 nid = numa_mem_id();
2119 retry:
2120         page = __alloc_pages(gfp_mask, order, nid, nmask);
2121
2122         /* Freeze head page */
2123         if (page && !page_ref_freeze(page, 1)) {
2124                 __free_pages(page, order);
2125                 if (retry) {    /* retry once */
2126                         retry = false;
2127                         goto retry;
2128                 }
2129                 /* WOW!  twice in a row. */
2130                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2131                 page = NULL;
2132         }
2133
2134         /*
2135          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2136          * indicates an overall state change.  Clear bit so that we resume
2137          * normal 'try hard' allocations.
2138          */
2139         if (node_alloc_noretry && page && !alloc_try_hard)
2140                 node_clear(nid, *node_alloc_noretry);
2141
2142         /*
2143          * If we tried hard to get a page but failed, set bit so that
2144          * subsequent attempts will not try as hard until there is an
2145          * overall state change.
2146          */
2147         if (node_alloc_noretry && !page && alloc_try_hard)
2148                 node_set(nid, *node_alloc_noretry);
2149
2150         if (!page) {
2151                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2152                 return NULL;
2153         }
2154
2155         __count_vm_event(HTLB_BUDDY_PGALLOC);
2156         return page_folio(page);
2157 }
2158
2159 /*
2160  * Common helper to allocate a fresh hugetlb page. All specific allocators
2161  * should use this function to get new hugetlb pages
2162  *
2163  * Note that returned page is 'frozen':  ref count of head page and all tail
2164  * pages is zero.
2165  */
2166 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2167                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2168                 nodemask_t *node_alloc_noretry)
2169 {
2170         struct folio *folio;
2171         bool retry = false;
2172
2173 retry:
2174         if (hstate_is_gigantic(h))
2175                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2176         else
2177                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2178                                 nid, nmask, node_alloc_noretry);
2179         if (!folio)
2180                 return NULL;
2181         if (hstate_is_gigantic(h)) {
2182                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2183                         /*
2184                          * Rare failure to convert pages to compound page.
2185                          * Free pages and try again - ONCE!
2186                          */
2187                         free_gigantic_folio(folio, huge_page_order(h));
2188                         if (!retry) {
2189                                 retry = true;
2190                                 goto retry;
2191                         }
2192                         return NULL;
2193                 }
2194         }
2195         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2196
2197         return folio;
2198 }
2199
2200 /*
2201  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2202  * manner.
2203  */
2204 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2205                                 nodemask_t *node_alloc_noretry)
2206 {
2207         struct folio *folio;
2208         int nr_nodes, node;
2209         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2210
2211         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2212                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2213                                         nodes_allowed, node_alloc_noretry);
2214                 if (folio) {
2215                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2216                         return 1;
2217                 }
2218         }
2219
2220         return 0;
2221 }
2222
2223 /*
2224  * Remove huge page from pool from next node to free.  Attempt to keep
2225  * persistent huge pages more or less balanced over allowed nodes.
2226  * This routine only 'removes' the hugetlb page.  The caller must make
2227  * an additional call to free the page to low level allocators.
2228  * Called with hugetlb_lock locked.
2229  */
2230 static struct page *remove_pool_huge_page(struct hstate *h,
2231                                                 nodemask_t *nodes_allowed,
2232                                                  bool acct_surplus)
2233 {
2234         int nr_nodes, node;
2235         struct page *page = NULL;
2236         struct folio *folio;
2237
2238         lockdep_assert_held(&hugetlb_lock);
2239         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2240                 /*
2241                  * If we're returning unused surplus pages, only examine
2242                  * nodes with surplus pages.
2243                  */
2244                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2245                     !list_empty(&h->hugepage_freelists[node])) {
2246                         page = list_entry(h->hugepage_freelists[node].next,
2247                                           struct page, lru);
2248                         folio = page_folio(page);
2249                         remove_hugetlb_folio(h, folio, acct_surplus);
2250                         break;
2251                 }
2252         }
2253
2254         return page;
2255 }
2256
2257 /*
2258  * Dissolve a given free hugepage into free buddy pages. This function does
2259  * nothing for in-use hugepages and non-hugepages.
2260  * This function returns values like below:
2261  *
2262  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2263  *           when the system is under memory pressure and the feature of
2264  *           freeing unused vmemmap pages associated with each hugetlb page
2265  *           is enabled.
2266  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2267  *           (allocated or reserved.)
2268  *       0:  successfully dissolved free hugepages or the page is not a
2269  *           hugepage (considered as already dissolved)
2270  */
2271 int dissolve_free_huge_page(struct page *page)
2272 {
2273         int rc = -EBUSY;
2274         struct folio *folio = page_folio(page);
2275
2276 retry:
2277         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2278         if (!folio_test_hugetlb(folio))
2279                 return 0;
2280
2281         spin_lock_irq(&hugetlb_lock);
2282         if (!folio_test_hugetlb(folio)) {
2283                 rc = 0;
2284                 goto out;
2285         }
2286
2287         if (!folio_ref_count(folio)) {
2288                 struct hstate *h = folio_hstate(folio);
2289                 if (!available_huge_pages(h))
2290                         goto out;
2291
2292                 /*
2293                  * We should make sure that the page is already on the free list
2294                  * when it is dissolved.
2295                  */
2296                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2297                         spin_unlock_irq(&hugetlb_lock);
2298                         cond_resched();
2299
2300                         /*
2301                          * Theoretically, we should return -EBUSY when we
2302                          * encounter this race. In fact, we have a chance
2303                          * to successfully dissolve the page if we do a
2304                          * retry. Because the race window is quite small.
2305                          * If we seize this opportunity, it is an optimization
2306                          * for increasing the success rate of dissolving page.
2307                          */
2308                         goto retry;
2309                 }
2310
2311                 remove_hugetlb_folio(h, folio, false);
2312                 h->max_huge_pages--;
2313                 spin_unlock_irq(&hugetlb_lock);
2314
2315                 /*
2316                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2317                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2318                  * free the page if it can not allocate required vmemmap.  We
2319                  * need to adjust max_huge_pages if the page is not freed.
2320                  * Attempt to allocate vmemmmap here so that we can take
2321                  * appropriate action on failure.
2322                  */
2323                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2324                 if (!rc) {
2325                         update_and_free_hugetlb_folio(h, folio, false);
2326                 } else {
2327                         spin_lock_irq(&hugetlb_lock);
2328                         add_hugetlb_folio(h, folio, false);
2329                         h->max_huge_pages++;
2330                         spin_unlock_irq(&hugetlb_lock);
2331                 }
2332
2333                 return rc;
2334         }
2335 out:
2336         spin_unlock_irq(&hugetlb_lock);
2337         return rc;
2338 }
2339
2340 /*
2341  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2342  * make specified memory blocks removable from the system.
2343  * Note that this will dissolve a free gigantic hugepage completely, if any
2344  * part of it lies within the given range.
2345  * Also note that if dissolve_free_huge_page() returns with an error, all
2346  * free hugepages that were dissolved before that error are lost.
2347  */
2348 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2349 {
2350         unsigned long pfn;
2351         struct page *page;
2352         int rc = 0;
2353         unsigned int order;
2354         struct hstate *h;
2355
2356         if (!hugepages_supported())
2357                 return rc;
2358
2359         order = huge_page_order(&default_hstate);
2360         for_each_hstate(h)
2361                 order = min(order, huge_page_order(h));
2362
2363         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2364                 page = pfn_to_page(pfn);
2365                 rc = dissolve_free_huge_page(page);
2366                 if (rc)
2367                         break;
2368         }
2369
2370         return rc;
2371 }
2372
2373 /*
2374  * Allocates a fresh surplus page from the page allocator.
2375  */
2376 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2377                                                 int nid, nodemask_t *nmask)
2378 {
2379         struct folio *folio = NULL;
2380
2381         if (hstate_is_gigantic(h))
2382                 return NULL;
2383
2384         spin_lock_irq(&hugetlb_lock);
2385         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2386                 goto out_unlock;
2387         spin_unlock_irq(&hugetlb_lock);
2388
2389         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2390         if (!folio)
2391                 return NULL;
2392
2393         spin_lock_irq(&hugetlb_lock);
2394         /*
2395          * We could have raced with the pool size change.
2396          * Double check that and simply deallocate the new page
2397          * if we would end up overcommiting the surpluses. Abuse
2398          * temporary page to workaround the nasty free_huge_page
2399          * codeflow
2400          */
2401         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2402                 folio_set_hugetlb_temporary(folio);
2403                 spin_unlock_irq(&hugetlb_lock);
2404                 free_huge_page(&folio->page);
2405                 return NULL;
2406         }
2407
2408         h->surplus_huge_pages++;
2409         h->surplus_huge_pages_node[folio_nid(folio)]++;
2410
2411 out_unlock:
2412         spin_unlock_irq(&hugetlb_lock);
2413
2414         return &folio->page;
2415 }
2416
2417 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2418                                      int nid, nodemask_t *nmask)
2419 {
2420         struct folio *folio;
2421
2422         if (hstate_is_gigantic(h))
2423                 return NULL;
2424
2425         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2426         if (!folio)
2427                 return NULL;
2428
2429         /* fresh huge pages are frozen */
2430         folio_ref_unfreeze(folio, 1);
2431         /*
2432          * We do not account these pages as surplus because they are only
2433          * temporary and will be released properly on the last reference
2434          */
2435         folio_set_hugetlb_temporary(folio);
2436
2437         return &folio->page;
2438 }
2439
2440 /*
2441  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2442  */
2443 static
2444 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2445                 struct vm_area_struct *vma, unsigned long addr)
2446 {
2447         struct page *page = NULL;
2448         struct mempolicy *mpol;
2449         gfp_t gfp_mask = htlb_alloc_mask(h);
2450         int nid;
2451         nodemask_t *nodemask;
2452
2453         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2454         if (mpol_is_preferred_many(mpol)) {
2455                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2456
2457                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2458                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2459
2460                 /* Fallback to all nodes if page==NULL */
2461                 nodemask = NULL;
2462         }
2463
2464         if (!page)
2465                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2466         mpol_cond_put(mpol);
2467         return page;
2468 }
2469
2470 /* page migration callback function */
2471 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2472                 nodemask_t *nmask, gfp_t gfp_mask)
2473 {
2474         spin_lock_irq(&hugetlb_lock);
2475         if (available_huge_pages(h)) {
2476                 struct page *page;
2477
2478                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2479                 if (page) {
2480                         spin_unlock_irq(&hugetlb_lock);
2481                         return page;
2482                 }
2483         }
2484         spin_unlock_irq(&hugetlb_lock);
2485
2486         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2487 }
2488
2489 /* mempolicy aware migration callback */
2490 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2491                 unsigned long address)
2492 {
2493         struct mempolicy *mpol;
2494         nodemask_t *nodemask;
2495         struct page *page;
2496         gfp_t gfp_mask;
2497         int node;
2498
2499         gfp_mask = htlb_alloc_mask(h);
2500         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2501         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2502         mpol_cond_put(mpol);
2503
2504         return page;
2505 }
2506
2507 /*
2508  * Increase the hugetlb pool such that it can accommodate a reservation
2509  * of size 'delta'.
2510  */
2511 static int gather_surplus_pages(struct hstate *h, long delta)
2512         __must_hold(&hugetlb_lock)
2513 {
2514         LIST_HEAD(surplus_list);
2515         struct page *page, *tmp;
2516         int ret;
2517         long i;
2518         long needed, allocated;
2519         bool alloc_ok = true;
2520
2521         lockdep_assert_held(&hugetlb_lock);
2522         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2523         if (needed <= 0) {
2524                 h->resv_huge_pages += delta;
2525                 return 0;
2526         }
2527
2528         allocated = 0;
2529
2530         ret = -ENOMEM;
2531 retry:
2532         spin_unlock_irq(&hugetlb_lock);
2533         for (i = 0; i < needed; i++) {
2534                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2535                                 NUMA_NO_NODE, NULL);
2536                 if (!page) {
2537                         alloc_ok = false;
2538                         break;
2539                 }
2540                 list_add(&page->lru, &surplus_list);
2541                 cond_resched();
2542         }
2543         allocated += i;
2544
2545         /*
2546          * After retaking hugetlb_lock, we need to recalculate 'needed'
2547          * because either resv_huge_pages or free_huge_pages may have changed.
2548          */
2549         spin_lock_irq(&hugetlb_lock);
2550         needed = (h->resv_huge_pages + delta) -
2551                         (h->free_huge_pages + allocated);
2552         if (needed > 0) {
2553                 if (alloc_ok)
2554                         goto retry;
2555                 /*
2556                  * We were not able to allocate enough pages to
2557                  * satisfy the entire reservation so we free what
2558                  * we've allocated so far.
2559                  */
2560                 goto free;
2561         }
2562         /*
2563          * The surplus_list now contains _at_least_ the number of extra pages
2564          * needed to accommodate the reservation.  Add the appropriate number
2565          * of pages to the hugetlb pool and free the extras back to the buddy
2566          * allocator.  Commit the entire reservation here to prevent another
2567          * process from stealing the pages as they are added to the pool but
2568          * before they are reserved.
2569          */
2570         needed += allocated;
2571         h->resv_huge_pages += delta;
2572         ret = 0;
2573
2574         /* Free the needed pages to the hugetlb pool */
2575         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2576                 if ((--needed) < 0)
2577                         break;
2578                 /* Add the page to the hugetlb allocator */
2579                 enqueue_hugetlb_folio(h, page_folio(page));
2580         }
2581 free:
2582         spin_unlock_irq(&hugetlb_lock);
2583
2584         /*
2585          * Free unnecessary surplus pages to the buddy allocator.
2586          * Pages have no ref count, call free_huge_page directly.
2587          */
2588         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2589                 free_huge_page(page);
2590         spin_lock_irq(&hugetlb_lock);
2591
2592         return ret;
2593 }
2594
2595 /*
2596  * This routine has two main purposes:
2597  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2598  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2599  *    to the associated reservation map.
2600  * 2) Free any unused surplus pages that may have been allocated to satisfy
2601  *    the reservation.  As many as unused_resv_pages may be freed.
2602  */
2603 static void return_unused_surplus_pages(struct hstate *h,
2604                                         unsigned long unused_resv_pages)
2605 {
2606         unsigned long nr_pages;
2607         struct page *page;
2608         LIST_HEAD(page_list);
2609
2610         lockdep_assert_held(&hugetlb_lock);
2611         /* Uncommit the reservation */
2612         h->resv_huge_pages -= unused_resv_pages;
2613
2614         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2615                 goto out;
2616
2617         /*
2618          * Part (or even all) of the reservation could have been backed
2619          * by pre-allocated pages. Only free surplus pages.
2620          */
2621         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2622
2623         /*
2624          * We want to release as many surplus pages as possible, spread
2625          * evenly across all nodes with memory. Iterate across these nodes
2626          * until we can no longer free unreserved surplus pages. This occurs
2627          * when the nodes with surplus pages have no free pages.
2628          * remove_pool_huge_page() will balance the freed pages across the
2629          * on-line nodes with memory and will handle the hstate accounting.
2630          */
2631         while (nr_pages--) {
2632                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2633                 if (!page)
2634                         goto out;
2635
2636                 list_add(&page->lru, &page_list);
2637         }
2638
2639 out:
2640         spin_unlock_irq(&hugetlb_lock);
2641         update_and_free_pages_bulk(h, &page_list);
2642         spin_lock_irq(&hugetlb_lock);
2643 }
2644
2645
2646 /*
2647  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2648  * are used by the huge page allocation routines to manage reservations.
2649  *
2650  * vma_needs_reservation is called to determine if the huge page at addr
2651  * within the vma has an associated reservation.  If a reservation is
2652  * needed, the value 1 is returned.  The caller is then responsible for
2653  * managing the global reservation and subpool usage counts.  After
2654  * the huge page has been allocated, vma_commit_reservation is called
2655  * to add the page to the reservation map.  If the page allocation fails,
2656  * the reservation must be ended instead of committed.  vma_end_reservation
2657  * is called in such cases.
2658  *
2659  * In the normal case, vma_commit_reservation returns the same value
2660  * as the preceding vma_needs_reservation call.  The only time this
2661  * is not the case is if a reserve map was changed between calls.  It
2662  * is the responsibility of the caller to notice the difference and
2663  * take appropriate action.
2664  *
2665  * vma_add_reservation is used in error paths where a reservation must
2666  * be restored when a newly allocated huge page must be freed.  It is
2667  * to be called after calling vma_needs_reservation to determine if a
2668  * reservation exists.
2669  *
2670  * vma_del_reservation is used in error paths where an entry in the reserve
2671  * map was created during huge page allocation and must be removed.  It is to
2672  * be called after calling vma_needs_reservation to determine if a reservation
2673  * exists.
2674  */
2675 enum vma_resv_mode {
2676         VMA_NEEDS_RESV,
2677         VMA_COMMIT_RESV,
2678         VMA_END_RESV,
2679         VMA_ADD_RESV,
2680         VMA_DEL_RESV,
2681 };
2682 static long __vma_reservation_common(struct hstate *h,
2683                                 struct vm_area_struct *vma, unsigned long addr,
2684                                 enum vma_resv_mode mode)
2685 {
2686         struct resv_map *resv;
2687         pgoff_t idx;
2688         long ret;
2689         long dummy_out_regions_needed;
2690
2691         resv = vma_resv_map(vma);
2692         if (!resv)
2693                 return 1;
2694
2695         idx = vma_hugecache_offset(h, vma, addr);
2696         switch (mode) {
2697         case VMA_NEEDS_RESV:
2698                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2699                 /* We assume that vma_reservation_* routines always operate on
2700                  * 1 page, and that adding to resv map a 1 page entry can only
2701                  * ever require 1 region.
2702                  */
2703                 VM_BUG_ON(dummy_out_regions_needed != 1);
2704                 break;
2705         case VMA_COMMIT_RESV:
2706                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2707                 /* region_add calls of range 1 should never fail. */
2708                 VM_BUG_ON(ret < 0);
2709                 break;
2710         case VMA_END_RESV:
2711                 region_abort(resv, idx, idx + 1, 1);
2712                 ret = 0;
2713                 break;
2714         case VMA_ADD_RESV:
2715                 if (vma->vm_flags & VM_MAYSHARE) {
2716                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2717                         /* region_add calls of range 1 should never fail. */
2718                         VM_BUG_ON(ret < 0);
2719                 } else {
2720                         region_abort(resv, idx, idx + 1, 1);
2721                         ret = region_del(resv, idx, idx + 1);
2722                 }
2723                 break;
2724         case VMA_DEL_RESV:
2725                 if (vma->vm_flags & VM_MAYSHARE) {
2726                         region_abort(resv, idx, idx + 1, 1);
2727                         ret = region_del(resv, idx, idx + 1);
2728                 } else {
2729                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2730                         /* region_add calls of range 1 should never fail. */
2731                         VM_BUG_ON(ret < 0);
2732                 }
2733                 break;
2734         default:
2735                 BUG();
2736         }
2737
2738         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2739                 return ret;
2740         /*
2741          * We know private mapping must have HPAGE_RESV_OWNER set.
2742          *
2743          * In most cases, reserves always exist for private mappings.
2744          * However, a file associated with mapping could have been
2745          * hole punched or truncated after reserves were consumed.
2746          * As subsequent fault on such a range will not use reserves.
2747          * Subtle - The reserve map for private mappings has the
2748          * opposite meaning than that of shared mappings.  If NO
2749          * entry is in the reserve map, it means a reservation exists.
2750          * If an entry exists in the reserve map, it means the
2751          * reservation has already been consumed.  As a result, the
2752          * return value of this routine is the opposite of the
2753          * value returned from reserve map manipulation routines above.
2754          */
2755         if (ret > 0)
2756                 return 0;
2757         if (ret == 0)
2758                 return 1;
2759         return ret;
2760 }
2761
2762 static long vma_needs_reservation(struct hstate *h,
2763                         struct vm_area_struct *vma, unsigned long addr)
2764 {
2765         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2766 }
2767
2768 static long vma_commit_reservation(struct hstate *h,
2769                         struct vm_area_struct *vma, unsigned long addr)
2770 {
2771         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2772 }
2773
2774 static void vma_end_reservation(struct hstate *h,
2775                         struct vm_area_struct *vma, unsigned long addr)
2776 {
2777         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2778 }
2779
2780 static long vma_add_reservation(struct hstate *h,
2781                         struct vm_area_struct *vma, unsigned long addr)
2782 {
2783         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2784 }
2785
2786 static long vma_del_reservation(struct hstate *h,
2787                         struct vm_area_struct *vma, unsigned long addr)
2788 {
2789         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2790 }
2791
2792 /*
2793  * This routine is called to restore reservation information on error paths.
2794  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2795  * the hugetlb mutex should remain held when calling this routine.
2796  *
2797  * It handles two specific cases:
2798  * 1) A reservation was in place and the page consumed the reservation.
2799  *    HPageRestoreReserve is set in the page.
2800  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2801  *    not set.  However, alloc_huge_page always updates the reserve map.
2802  *
2803  * In case 1, free_huge_page later in the error path will increment the
2804  * global reserve count.  But, free_huge_page does not have enough context
2805  * to adjust the reservation map.  This case deals primarily with private
2806  * mappings.  Adjust the reserve map here to be consistent with global
2807  * reserve count adjustments to be made by free_huge_page.  Make sure the
2808  * reserve map indicates there is a reservation present.
2809  *
2810  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2811  */
2812 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2813                         unsigned long address, struct page *page)
2814 {
2815         long rc = vma_needs_reservation(h, vma, address);
2816
2817         if (HPageRestoreReserve(page)) {
2818                 if (unlikely(rc < 0))
2819                         /*
2820                          * Rare out of memory condition in reserve map
2821                          * manipulation.  Clear HPageRestoreReserve so that
2822                          * global reserve count will not be incremented
2823                          * by free_huge_page.  This will make it appear
2824                          * as though the reservation for this page was
2825                          * consumed.  This may prevent the task from
2826                          * faulting in the page at a later time.  This
2827                          * is better than inconsistent global huge page
2828                          * accounting of reserve counts.
2829                          */
2830                         ClearHPageRestoreReserve(page);
2831                 else if (rc)
2832                         (void)vma_add_reservation(h, vma, address);
2833                 else
2834                         vma_end_reservation(h, vma, address);
2835         } else {
2836                 if (!rc) {
2837                         /*
2838                          * This indicates there is an entry in the reserve map
2839                          * not added by alloc_huge_page.  We know it was added
2840                          * before the alloc_huge_page call, otherwise
2841                          * HPageRestoreReserve would be set on the page.
2842                          * Remove the entry so that a subsequent allocation
2843                          * does not consume a reservation.
2844                          */
2845                         rc = vma_del_reservation(h, vma, address);
2846                         if (rc < 0)
2847                                 /*
2848                                  * VERY rare out of memory condition.  Since
2849                                  * we can not delete the entry, set
2850                                  * HPageRestoreReserve so that the reserve
2851                                  * count will be incremented when the page
2852                                  * is freed.  This reserve will be consumed
2853                                  * on a subsequent allocation.
2854                                  */
2855                                 SetHPageRestoreReserve(page);
2856                 } else if (rc < 0) {
2857                         /*
2858                          * Rare out of memory condition from
2859                          * vma_needs_reservation call.  Memory allocation is
2860                          * only attempted if a new entry is needed.  Therefore,
2861                          * this implies there is not an entry in the
2862                          * reserve map.
2863                          *
2864                          * For shared mappings, no entry in the map indicates
2865                          * no reservation.  We are done.
2866                          */
2867                         if (!(vma->vm_flags & VM_MAYSHARE))
2868                                 /*
2869                                  * For private mappings, no entry indicates
2870                                  * a reservation is present.  Since we can
2871                                  * not add an entry, set SetHPageRestoreReserve
2872                                  * on the page so reserve count will be
2873                                  * incremented when freed.  This reserve will
2874                                  * be consumed on a subsequent allocation.
2875                                  */
2876                                 SetHPageRestoreReserve(page);
2877                 } else
2878                         /*
2879                          * No reservation present, do nothing
2880                          */
2881                          vma_end_reservation(h, vma, address);
2882         }
2883 }
2884
2885 /*
2886  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2887  * the old one
2888  * @h: struct hstate old page belongs to
2889  * @old_folio: Old folio to dissolve
2890  * @list: List to isolate the page in case we need to
2891  * Returns 0 on success, otherwise negated error.
2892  */
2893 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2894                         struct folio *old_folio, struct list_head *list)
2895 {
2896         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2897         int nid = folio_nid(old_folio);
2898         struct folio *new_folio;
2899         int ret = 0;
2900
2901         /*
2902          * Before dissolving the folio, we need to allocate a new one for the
2903          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2904          * by doing everything but actually updating counters and adding to
2905          * the pool.  This simplifies and let us do most of the processing
2906          * under the lock.
2907          */
2908         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2909         if (!new_folio)
2910                 return -ENOMEM;
2911         __prep_new_hugetlb_folio(h, new_folio);
2912
2913 retry:
2914         spin_lock_irq(&hugetlb_lock);
2915         if (!folio_test_hugetlb(old_folio)) {
2916                 /*
2917                  * Freed from under us. Drop new_folio too.
2918                  */
2919                 goto free_new;
2920         } else if (folio_ref_count(old_folio)) {
2921                 /*
2922                  * Someone has grabbed the folio, try to isolate it here.
2923                  * Fail with -EBUSY if not possible.
2924                  */
2925                 spin_unlock_irq(&hugetlb_lock);
2926                 ret = isolate_hugetlb(&old_folio->page, list);
2927                 spin_lock_irq(&hugetlb_lock);
2928                 goto free_new;
2929         } else if (!folio_test_hugetlb_freed(old_folio)) {
2930                 /*
2931                  * Folio's refcount is 0 but it has not been enqueued in the
2932                  * freelist yet. Race window is small, so we can succeed here if
2933                  * we retry.
2934                  */
2935                 spin_unlock_irq(&hugetlb_lock);
2936                 cond_resched();
2937                 goto retry;
2938         } else {
2939                 /*
2940                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2941                  * the freelist and decrease the counters. These will be
2942                  * incremented again when calling __prep_account_new_huge_page()
2943                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2944                  * remain stable since this happens under the lock.
2945                  */
2946                 remove_hugetlb_folio(h, old_folio, false);
2947
2948                 /*
2949                  * Ref count on new_folio is already zero as it was dropped
2950                  * earlier.  It can be directly added to the pool free list.
2951                  */
2952                 __prep_account_new_huge_page(h, nid);
2953                 enqueue_hugetlb_folio(h, new_folio);
2954
2955                 /*
2956                  * Folio has been replaced, we can safely free the old one.
2957                  */
2958                 spin_unlock_irq(&hugetlb_lock);
2959                 update_and_free_hugetlb_folio(h, old_folio, false);
2960         }
2961
2962         return ret;
2963
2964 free_new:
2965         spin_unlock_irq(&hugetlb_lock);
2966         /* Folio has a zero ref count, but needs a ref to be freed */
2967         folio_ref_unfreeze(new_folio, 1);
2968         update_and_free_hugetlb_folio(h, new_folio, false);
2969
2970         return ret;
2971 }
2972
2973 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2974 {
2975         struct hstate *h;
2976         struct folio *folio = page_folio(page);
2977         int ret = -EBUSY;
2978
2979         /*
2980          * The page might have been dissolved from under our feet, so make sure
2981          * to carefully check the state under the lock.
2982          * Return success when racing as if we dissolved the page ourselves.
2983          */
2984         spin_lock_irq(&hugetlb_lock);
2985         if (folio_test_hugetlb(folio)) {
2986                 h = folio_hstate(folio);
2987         } else {
2988                 spin_unlock_irq(&hugetlb_lock);
2989                 return 0;
2990         }
2991         spin_unlock_irq(&hugetlb_lock);
2992
2993         /*
2994          * Fence off gigantic pages as there is a cyclic dependency between
2995          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2996          * of bailing out right away without further retrying.
2997          */
2998         if (hstate_is_gigantic(h))
2999                 return -ENOMEM;
3000
3001         if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3002                 ret = 0;
3003         else if (!folio_ref_count(folio))
3004                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3005
3006         return ret;
3007 }
3008
3009 struct page *alloc_huge_page(struct vm_area_struct *vma,
3010                                     unsigned long addr, int avoid_reserve)
3011 {
3012         struct hugepage_subpool *spool = subpool_vma(vma);
3013         struct hstate *h = hstate_vma(vma);
3014         struct page *page;
3015         struct folio *folio;
3016         long map_chg, map_commit;
3017         long gbl_chg;
3018         int ret, idx;
3019         struct hugetlb_cgroup *h_cg;
3020         bool deferred_reserve;
3021
3022         idx = hstate_index(h);
3023         /*
3024          * Examine the region/reserve map to determine if the process
3025          * has a reservation for the page to be allocated.  A return
3026          * code of zero indicates a reservation exists (no change).
3027          */
3028         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3029         if (map_chg < 0)
3030                 return ERR_PTR(-ENOMEM);
3031
3032         /*
3033          * Processes that did not create the mapping will have no
3034          * reserves as indicated by the region/reserve map. Check
3035          * that the allocation will not exceed the subpool limit.
3036          * Allocations for MAP_NORESERVE mappings also need to be
3037          * checked against any subpool limit.
3038          */
3039         if (map_chg || avoid_reserve) {
3040                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3041                 if (gbl_chg < 0) {
3042                         vma_end_reservation(h, vma, addr);
3043                         return ERR_PTR(-ENOSPC);
3044                 }
3045
3046                 /*
3047                  * Even though there was no reservation in the region/reserve
3048                  * map, there could be reservations associated with the
3049                  * subpool that can be used.  This would be indicated if the
3050                  * return value of hugepage_subpool_get_pages() is zero.
3051                  * However, if avoid_reserve is specified we still avoid even
3052                  * the subpool reservations.
3053                  */
3054                 if (avoid_reserve)
3055                         gbl_chg = 1;
3056         }
3057
3058         /* If this allocation is not consuming a reservation, charge it now.
3059          */
3060         deferred_reserve = map_chg || avoid_reserve;
3061         if (deferred_reserve) {
3062                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3063                         idx, pages_per_huge_page(h), &h_cg);
3064                 if (ret)
3065                         goto out_subpool_put;
3066         }
3067
3068         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3069         if (ret)
3070                 goto out_uncharge_cgroup_reservation;
3071
3072         spin_lock_irq(&hugetlb_lock);
3073         /*
3074          * glb_chg is passed to indicate whether or not a page must be taken
3075          * from the global free pool (global change).  gbl_chg == 0 indicates
3076          * a reservation exists for the allocation.
3077          */
3078         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3079         if (!page) {
3080                 spin_unlock_irq(&hugetlb_lock);
3081                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3082                 if (!page)
3083                         goto out_uncharge_cgroup;
3084                 spin_lock_irq(&hugetlb_lock);
3085                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3086                         SetHPageRestoreReserve(page);
3087                         h->resv_huge_pages--;
3088                 }
3089                 list_add(&page->lru, &h->hugepage_activelist);
3090                 set_page_refcounted(page);
3091                 /* Fall through */
3092         }
3093         folio = page_folio(page);
3094         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3095         /* If allocation is not consuming a reservation, also store the
3096          * hugetlb_cgroup pointer on the page.
3097          */
3098         if (deferred_reserve) {
3099                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3100                                                   h_cg, page);
3101         }
3102
3103         spin_unlock_irq(&hugetlb_lock);
3104
3105         hugetlb_set_page_subpool(page, spool);
3106
3107         map_commit = vma_commit_reservation(h, vma, addr);
3108         if (unlikely(map_chg > map_commit)) {
3109                 /*
3110                  * The page was added to the reservation map between
3111                  * vma_needs_reservation and vma_commit_reservation.
3112                  * This indicates a race with hugetlb_reserve_pages.
3113                  * Adjust for the subpool count incremented above AND
3114                  * in hugetlb_reserve_pages for the same page.  Also,
3115                  * the reservation count added in hugetlb_reserve_pages
3116                  * no longer applies.
3117                  */
3118                 long rsv_adjust;
3119
3120                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3121                 hugetlb_acct_memory(h, -rsv_adjust);
3122                 if (deferred_reserve)
3123                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3124                                         pages_per_huge_page(h), folio);
3125         }
3126         return page;
3127
3128 out_uncharge_cgroup:
3129         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3130 out_uncharge_cgroup_reservation:
3131         if (deferred_reserve)
3132                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3133                                                     h_cg);
3134 out_subpool_put:
3135         if (map_chg || avoid_reserve)
3136                 hugepage_subpool_put_pages(spool, 1);
3137         vma_end_reservation(h, vma, addr);
3138         return ERR_PTR(-ENOSPC);
3139 }
3140
3141 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3142         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3143 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3144 {
3145         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3146         int nr_nodes, node;
3147
3148         /* do node specific alloc */
3149         if (nid != NUMA_NO_NODE) {
3150                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3151                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3152                 if (!m)
3153                         return 0;
3154                 goto found;
3155         }
3156         /* allocate from next node when distributing huge pages */
3157         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3158                 m = memblock_alloc_try_nid_raw(
3159                                 huge_page_size(h), huge_page_size(h),
3160                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3161                 /*
3162                  * Use the beginning of the huge page to store the
3163                  * huge_bootmem_page struct (until gather_bootmem
3164                  * puts them into the mem_map).
3165                  */
3166                 if (!m)
3167                         return 0;
3168                 goto found;
3169         }
3170
3171 found:
3172         /* Put them into a private list first because mem_map is not up yet */
3173         INIT_LIST_HEAD(&m->list);
3174         list_add(&m->list, &huge_boot_pages);
3175         m->hstate = h;
3176         return 1;
3177 }
3178
3179 /*
3180  * Put bootmem huge pages into the standard lists after mem_map is up.
3181  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3182  */
3183 static void __init gather_bootmem_prealloc(void)
3184 {
3185         struct huge_bootmem_page *m;
3186
3187         list_for_each_entry(m, &huge_boot_pages, list) {
3188                 struct page *page = virt_to_page(m);
3189                 struct folio *folio = page_folio(page);
3190                 struct hstate *h = m->hstate;
3191
3192                 VM_BUG_ON(!hstate_is_gigantic(h));
3193                 WARN_ON(folio_ref_count(folio) != 1);
3194                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3195                         WARN_ON(folio_test_reserved(folio));
3196                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3197                         free_huge_page(page); /* add to the hugepage allocator */
3198                 } else {
3199                         /* VERY unlikely inflated ref count on a tail page */
3200                         free_gigantic_folio(folio, huge_page_order(h));
3201                 }
3202
3203                 /*
3204                  * We need to restore the 'stolen' pages to totalram_pages
3205                  * in order to fix confusing memory reports from free(1) and
3206                  * other side-effects, like CommitLimit going negative.
3207                  */
3208                 adjust_managed_page_count(page, pages_per_huge_page(h));
3209                 cond_resched();
3210         }
3211 }
3212 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3213 {
3214         unsigned long i;
3215         char buf[32];
3216
3217         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3218                 if (hstate_is_gigantic(h)) {
3219                         if (!alloc_bootmem_huge_page(h, nid))
3220                                 break;
3221                 } else {
3222                         struct folio *folio;
3223                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3224
3225                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3226                                         &node_states[N_MEMORY], NULL);
3227                         if (!folio)
3228                                 break;
3229                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3230                 }
3231                 cond_resched();
3232         }
3233         if (i == h->max_huge_pages_node[nid])
3234                 return;
3235
3236         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3237         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3238                 h->max_huge_pages_node[nid], buf, nid, i);
3239         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3240         h->max_huge_pages_node[nid] = i;
3241 }
3242
3243 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3244 {
3245         unsigned long i;
3246         nodemask_t *node_alloc_noretry;
3247         bool node_specific_alloc = false;
3248
3249         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3250         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3251                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3252                 return;
3253         }
3254
3255         /* do node specific alloc */
3256         for_each_online_node(i) {
3257                 if (h->max_huge_pages_node[i] > 0) {
3258                         hugetlb_hstate_alloc_pages_onenode(h, i);
3259                         node_specific_alloc = true;
3260                 }
3261         }
3262
3263         if (node_specific_alloc)
3264                 return;
3265
3266         /* below will do all node balanced alloc */
3267         if (!hstate_is_gigantic(h)) {
3268                 /*
3269                  * Bit mask controlling how hard we retry per-node allocations.
3270                  * Ignore errors as lower level routines can deal with
3271                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3272                  * time, we are likely in bigger trouble.
3273                  */
3274                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3275                                                 GFP_KERNEL);
3276         } else {
3277                 /* allocations done at boot time */
3278                 node_alloc_noretry = NULL;
3279         }
3280
3281         /* bit mask controlling how hard we retry per-node allocations */
3282         if (node_alloc_noretry)
3283                 nodes_clear(*node_alloc_noretry);
3284
3285         for (i = 0; i < h->max_huge_pages; ++i) {
3286                 if (hstate_is_gigantic(h)) {
3287                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3288                                 break;
3289                 } else if (!alloc_pool_huge_page(h,
3290                                          &node_states[N_MEMORY],
3291                                          node_alloc_noretry))
3292                         break;
3293                 cond_resched();
3294         }
3295         if (i < h->max_huge_pages) {
3296                 char buf[32];
3297
3298                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3299                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3300                         h->max_huge_pages, buf, i);
3301                 h->max_huge_pages = i;
3302         }
3303         kfree(node_alloc_noretry);
3304 }
3305
3306 static void __init hugetlb_init_hstates(void)
3307 {
3308         struct hstate *h, *h2;
3309
3310         for_each_hstate(h) {
3311                 /* oversize hugepages were init'ed in early boot */
3312                 if (!hstate_is_gigantic(h))
3313                         hugetlb_hstate_alloc_pages(h);
3314
3315                 /*
3316                  * Set demote order for each hstate.  Note that
3317                  * h->demote_order is initially 0.
3318                  * - We can not demote gigantic pages if runtime freeing
3319                  *   is not supported, so skip this.
3320                  * - If CMA allocation is possible, we can not demote
3321                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3322                  */
3323                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3324                         continue;
3325                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3326                         continue;
3327                 for_each_hstate(h2) {
3328                         if (h2 == h)
3329                                 continue;
3330                         if (h2->order < h->order &&
3331                             h2->order > h->demote_order)
3332                                 h->demote_order = h2->order;
3333                 }
3334         }
3335 }
3336
3337 static void __init report_hugepages(void)
3338 {
3339         struct hstate *h;
3340
3341         for_each_hstate(h) {
3342                 char buf[32];
3343
3344                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3345                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3346                         buf, h->free_huge_pages);
3347                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3348                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3349         }
3350 }
3351
3352 #ifdef CONFIG_HIGHMEM
3353 static void try_to_free_low(struct hstate *h, unsigned long count,
3354                                                 nodemask_t *nodes_allowed)
3355 {
3356         int i;
3357         LIST_HEAD(page_list);
3358
3359         lockdep_assert_held(&hugetlb_lock);
3360         if (hstate_is_gigantic(h))
3361                 return;
3362
3363         /*
3364          * Collect pages to be freed on a list, and free after dropping lock
3365          */
3366         for_each_node_mask(i, *nodes_allowed) {
3367                 struct page *page, *next;
3368                 struct list_head *freel = &h->hugepage_freelists[i];
3369                 list_for_each_entry_safe(page, next, freel, lru) {
3370                         if (count >= h->nr_huge_pages)
3371                                 goto out;
3372                         if (PageHighMem(page))
3373                                 continue;
3374                         remove_hugetlb_folio(h, page_folio(page), false);
3375                         list_add(&page->lru, &page_list);
3376                 }
3377         }
3378
3379 out:
3380         spin_unlock_irq(&hugetlb_lock);
3381         update_and_free_pages_bulk(h, &page_list);
3382         spin_lock_irq(&hugetlb_lock);
3383 }
3384 #else
3385 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3386                                                 nodemask_t *nodes_allowed)
3387 {
3388 }
3389 #endif
3390
3391 /*
3392  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3393  * balanced by operating on them in a round-robin fashion.
3394  * Returns 1 if an adjustment was made.
3395  */
3396 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3397                                 int delta)
3398 {
3399         int nr_nodes, node;
3400
3401         lockdep_assert_held(&hugetlb_lock);
3402         VM_BUG_ON(delta != -1 && delta != 1);
3403
3404         if (delta < 0) {
3405                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3406                         if (h->surplus_huge_pages_node[node])
3407                                 goto found;
3408                 }
3409         } else {
3410                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3411                         if (h->surplus_huge_pages_node[node] <
3412                                         h->nr_huge_pages_node[node])
3413                                 goto found;
3414                 }
3415         }
3416         return 0;
3417
3418 found:
3419         h->surplus_huge_pages += delta;
3420         h->surplus_huge_pages_node[node] += delta;
3421         return 1;
3422 }
3423
3424 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3425 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3426                               nodemask_t *nodes_allowed)
3427 {
3428         unsigned long min_count, ret;
3429         struct page *page;
3430         LIST_HEAD(page_list);
3431         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3432
3433         /*
3434          * Bit mask controlling how hard we retry per-node allocations.
3435          * If we can not allocate the bit mask, do not attempt to allocate
3436          * the requested huge pages.
3437          */
3438         if (node_alloc_noretry)
3439                 nodes_clear(*node_alloc_noretry);
3440         else
3441                 return -ENOMEM;
3442
3443         /*
3444          * resize_lock mutex prevents concurrent adjustments to number of
3445          * pages in hstate via the proc/sysfs interfaces.
3446          */
3447         mutex_lock(&h->resize_lock);
3448         flush_free_hpage_work(h);
3449         spin_lock_irq(&hugetlb_lock);
3450
3451         /*
3452          * Check for a node specific request.
3453          * Changing node specific huge page count may require a corresponding
3454          * change to the global count.  In any case, the passed node mask
3455          * (nodes_allowed) will restrict alloc/free to the specified node.
3456          */
3457         if (nid != NUMA_NO_NODE) {
3458                 unsigned long old_count = count;
3459
3460                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3461                 /*
3462                  * User may have specified a large count value which caused the
3463                  * above calculation to overflow.  In this case, they wanted
3464                  * to allocate as many huge pages as possible.  Set count to
3465                  * largest possible value to align with their intention.
3466                  */
3467                 if (count < old_count)
3468                         count = ULONG_MAX;
3469         }
3470
3471         /*
3472          * Gigantic pages runtime allocation depend on the capability for large
3473          * page range allocation.
3474          * If the system does not provide this feature, return an error when
3475          * the user tries to allocate gigantic pages but let the user free the
3476          * boottime allocated gigantic pages.
3477          */
3478         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3479                 if (count > persistent_huge_pages(h)) {
3480                         spin_unlock_irq(&hugetlb_lock);
3481                         mutex_unlock(&h->resize_lock);
3482                         NODEMASK_FREE(node_alloc_noretry);
3483                         return -EINVAL;
3484                 }
3485                 /* Fall through to decrease pool */
3486         }
3487
3488         /*
3489          * Increase the pool size
3490          * First take pages out of surplus state.  Then make up the
3491          * remaining difference by allocating fresh huge pages.
3492          *
3493          * We might race with alloc_surplus_huge_page() here and be unable
3494          * to convert a surplus huge page to a normal huge page. That is
3495          * not critical, though, it just means the overall size of the
3496          * pool might be one hugepage larger than it needs to be, but
3497          * within all the constraints specified by the sysctls.
3498          */
3499         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3500                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3501                         break;
3502         }
3503
3504         while (count > persistent_huge_pages(h)) {
3505                 /*
3506                  * If this allocation races such that we no longer need the
3507                  * page, free_huge_page will handle it by freeing the page
3508                  * and reducing the surplus.
3509                  */
3510                 spin_unlock_irq(&hugetlb_lock);
3511
3512                 /* yield cpu to avoid soft lockup */
3513                 cond_resched();
3514
3515                 ret = alloc_pool_huge_page(h, nodes_allowed,
3516                                                 node_alloc_noretry);
3517                 spin_lock_irq(&hugetlb_lock);
3518                 if (!ret)
3519                         goto out;
3520
3521                 /* Bail for signals. Probably ctrl-c from user */
3522                 if (signal_pending(current))
3523                         goto out;
3524         }
3525
3526         /*
3527          * Decrease the pool size
3528          * First return free pages to the buddy allocator (being careful
3529          * to keep enough around to satisfy reservations).  Then place
3530          * pages into surplus state as needed so the pool will shrink
3531          * to the desired size as pages become free.
3532          *
3533          * By placing pages into the surplus state independent of the
3534          * overcommit value, we are allowing the surplus pool size to
3535          * exceed overcommit. There are few sane options here. Since
3536          * alloc_surplus_huge_page() is checking the global counter,
3537          * though, we'll note that we're not allowed to exceed surplus
3538          * and won't grow the pool anywhere else. Not until one of the
3539          * sysctls are changed, or the surplus pages go out of use.
3540          */
3541         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3542         min_count = max(count, min_count);
3543         try_to_free_low(h, min_count, nodes_allowed);
3544
3545         /*
3546          * Collect pages to be removed on list without dropping lock
3547          */
3548         while (min_count < persistent_huge_pages(h)) {
3549                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3550                 if (!page)
3551                         break;
3552
3553                 list_add(&page->lru, &page_list);
3554         }
3555         /* free the pages after dropping lock */
3556         spin_unlock_irq(&hugetlb_lock);
3557         update_and_free_pages_bulk(h, &page_list);
3558         flush_free_hpage_work(h);
3559         spin_lock_irq(&hugetlb_lock);
3560
3561         while (count < persistent_huge_pages(h)) {
3562                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3563                         break;
3564         }
3565 out:
3566         h->max_huge_pages = persistent_huge_pages(h);
3567         spin_unlock_irq(&hugetlb_lock);
3568         mutex_unlock(&h->resize_lock);
3569
3570         NODEMASK_FREE(node_alloc_noretry);
3571
3572         return 0;
3573 }
3574
3575 static int demote_free_huge_page(struct hstate *h, struct page *page)
3576 {
3577         int i, nid = page_to_nid(page);
3578         struct hstate *target_hstate;
3579         struct folio *folio = page_folio(page);
3580         struct page *subpage;
3581         int rc = 0;
3582
3583         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3584
3585         remove_hugetlb_folio_for_demote(h, folio, false);
3586         spin_unlock_irq(&hugetlb_lock);
3587
3588         rc = hugetlb_vmemmap_restore(h, page);
3589         if (rc) {
3590                 /* Allocation of vmemmmap failed, we can not demote page */
3591                 spin_lock_irq(&hugetlb_lock);
3592                 set_page_refcounted(page);
3593                 add_hugetlb_folio(h, page_folio(page), false);
3594                 return rc;
3595         }
3596
3597         /*
3598          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3599          * sizes as it will not ref count pages.
3600          */
3601         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3602
3603         /*
3604          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3605          * Without the mutex, pages added to target hstate could be marked
3606          * as surplus.
3607          *
3608          * Note that we already hold h->resize_lock.  To prevent deadlock,
3609          * use the convention of always taking larger size hstate mutex first.
3610          */
3611         mutex_lock(&target_hstate->resize_lock);
3612         for (i = 0; i < pages_per_huge_page(h);
3613                                 i += pages_per_huge_page(target_hstate)) {
3614                 subpage = nth_page(page, i);
3615                 folio = page_folio(subpage);
3616                 if (hstate_is_gigantic(target_hstate))
3617                         prep_compound_gigantic_folio_for_demote(folio,
3618                                                         target_hstate->order);
3619                 else
3620                         prep_compound_page(subpage, target_hstate->order);
3621                 set_page_private(subpage, 0);
3622                 prep_new_hugetlb_folio(target_hstate, folio, nid);
3623                 free_huge_page(subpage);
3624         }
3625         mutex_unlock(&target_hstate->resize_lock);
3626
3627         spin_lock_irq(&hugetlb_lock);
3628
3629         /*
3630          * Not absolutely necessary, but for consistency update max_huge_pages
3631          * based on pool changes for the demoted page.
3632          */
3633         h->max_huge_pages--;
3634         target_hstate->max_huge_pages +=
3635                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3636
3637         return rc;
3638 }
3639
3640 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3641         __must_hold(&hugetlb_lock)
3642 {
3643         int nr_nodes, node;
3644         struct page *page;
3645
3646         lockdep_assert_held(&hugetlb_lock);
3647
3648         /* We should never get here if no demote order */
3649         if (!h->demote_order) {
3650                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3651                 return -EINVAL;         /* internal error */
3652         }
3653
3654         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3655                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3656                         if (PageHWPoison(page))
3657                                 continue;
3658
3659                         return demote_free_huge_page(h, page);
3660                 }
3661         }
3662
3663         /*
3664          * Only way to get here is if all pages on free lists are poisoned.
3665          * Return -EBUSY so that caller will not retry.
3666          */
3667         return -EBUSY;
3668 }
3669
3670 #define HSTATE_ATTR_RO(_name) \
3671         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3672
3673 #define HSTATE_ATTR_WO(_name) \
3674         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3675
3676 #define HSTATE_ATTR(_name) \
3677         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3678
3679 static struct kobject *hugepages_kobj;
3680 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3681
3682 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3683
3684 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3685 {
3686         int i;
3687
3688         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3689                 if (hstate_kobjs[i] == kobj) {
3690                         if (nidp)
3691                                 *nidp = NUMA_NO_NODE;
3692                         return &hstates[i];
3693                 }
3694
3695         return kobj_to_node_hstate(kobj, nidp);
3696 }
3697
3698 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3699                                         struct kobj_attribute *attr, char *buf)
3700 {
3701         struct hstate *h;
3702         unsigned long nr_huge_pages;
3703         int nid;
3704
3705         h = kobj_to_hstate(kobj, &nid);
3706         if (nid == NUMA_NO_NODE)
3707                 nr_huge_pages = h->nr_huge_pages;
3708         else
3709                 nr_huge_pages = h->nr_huge_pages_node[nid];
3710
3711         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3712 }
3713
3714 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3715                                            struct hstate *h, int nid,
3716                                            unsigned long count, size_t len)
3717 {
3718         int err;
3719         nodemask_t nodes_allowed, *n_mask;
3720
3721         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3722                 return -EINVAL;
3723
3724         if (nid == NUMA_NO_NODE) {
3725                 /*
3726                  * global hstate attribute
3727                  */
3728                 if (!(obey_mempolicy &&
3729                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3730                         n_mask = &node_states[N_MEMORY];
3731                 else
3732                         n_mask = &nodes_allowed;
3733         } else {
3734                 /*
3735                  * Node specific request.  count adjustment happens in
3736                  * set_max_huge_pages() after acquiring hugetlb_lock.
3737                  */
3738                 init_nodemask_of_node(&nodes_allowed, nid);
3739                 n_mask = &nodes_allowed;
3740         }
3741
3742         err = set_max_huge_pages(h, count, nid, n_mask);
3743
3744         return err ? err : len;
3745 }
3746
3747 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3748                                          struct kobject *kobj, const char *buf,
3749                                          size_t len)
3750 {
3751         struct hstate *h;
3752         unsigned long count;
3753         int nid;
3754         int err;
3755
3756         err = kstrtoul(buf, 10, &count);
3757         if (err)
3758                 return err;
3759
3760         h = kobj_to_hstate(kobj, &nid);
3761         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3762 }
3763
3764 static ssize_t nr_hugepages_show(struct kobject *kobj,
3765                                        struct kobj_attribute *attr, char *buf)
3766 {
3767         return nr_hugepages_show_common(kobj, attr, buf);
3768 }
3769
3770 static ssize_t nr_hugepages_store(struct kobject *kobj,
3771                struct kobj_attribute *attr, const char *buf, size_t len)
3772 {
3773         return nr_hugepages_store_common(false, kobj, buf, len);
3774 }
3775 HSTATE_ATTR(nr_hugepages);
3776
3777 #ifdef CONFIG_NUMA
3778
3779 /*
3780  * hstate attribute for optionally mempolicy-based constraint on persistent
3781  * huge page alloc/free.
3782  */
3783 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3784                                            struct kobj_attribute *attr,
3785                                            char *buf)
3786 {
3787         return nr_hugepages_show_common(kobj, attr, buf);
3788 }
3789
3790 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3791                struct kobj_attribute *attr, const char *buf, size_t len)
3792 {
3793         return nr_hugepages_store_common(true, kobj, buf, len);
3794 }
3795 HSTATE_ATTR(nr_hugepages_mempolicy);
3796 #endif
3797
3798
3799 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3800                                         struct kobj_attribute *attr, char *buf)
3801 {
3802         struct hstate *h = kobj_to_hstate(kobj, NULL);
3803         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3804 }
3805
3806 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3807                 struct kobj_attribute *attr, const char *buf, size_t count)
3808 {
3809         int err;
3810         unsigned long input;
3811         struct hstate *h = kobj_to_hstate(kobj, NULL);
3812
3813         if (hstate_is_gigantic(h))
3814                 return -EINVAL;
3815
3816         err = kstrtoul(buf, 10, &input);
3817         if (err)
3818                 return err;
3819
3820         spin_lock_irq(&hugetlb_lock);
3821         h->nr_overcommit_huge_pages = input;
3822         spin_unlock_irq(&hugetlb_lock);
3823
3824         return count;
3825 }
3826 HSTATE_ATTR(nr_overcommit_hugepages);
3827
3828 static ssize_t free_hugepages_show(struct kobject *kobj,
3829                                         struct kobj_attribute *attr, char *buf)
3830 {
3831         struct hstate *h;
3832         unsigned long free_huge_pages;
3833         int nid;
3834
3835         h = kobj_to_hstate(kobj, &nid);
3836         if (nid == NUMA_NO_NODE)
3837                 free_huge_pages = h->free_huge_pages;
3838         else
3839                 free_huge_pages = h->free_huge_pages_node[nid];
3840
3841         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3842 }
3843 HSTATE_ATTR_RO(free_hugepages);
3844
3845 static ssize_t resv_hugepages_show(struct kobject *kobj,
3846                                         struct kobj_attribute *attr, char *buf)
3847 {
3848         struct hstate *h = kobj_to_hstate(kobj, NULL);
3849         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3850 }
3851 HSTATE_ATTR_RO(resv_hugepages);
3852
3853 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3854                                         struct kobj_attribute *attr, char *buf)
3855 {
3856         struct hstate *h;
3857         unsigned long surplus_huge_pages;
3858         int nid;
3859
3860         h = kobj_to_hstate(kobj, &nid);
3861         if (nid == NUMA_NO_NODE)
3862                 surplus_huge_pages = h->surplus_huge_pages;
3863         else
3864                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3865
3866         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3867 }
3868 HSTATE_ATTR_RO(surplus_hugepages);
3869
3870 static ssize_t demote_store(struct kobject *kobj,
3871                struct kobj_attribute *attr, const char *buf, size_t len)
3872 {
3873         unsigned long nr_demote;
3874         unsigned long nr_available;
3875         nodemask_t nodes_allowed, *n_mask;
3876         struct hstate *h;
3877         int err;
3878         int nid;
3879
3880         err = kstrtoul(buf, 10, &nr_demote);
3881         if (err)
3882                 return err;
3883         h = kobj_to_hstate(kobj, &nid);
3884
3885         if (nid != NUMA_NO_NODE) {
3886                 init_nodemask_of_node(&nodes_allowed, nid);
3887                 n_mask = &nodes_allowed;
3888         } else {
3889                 n_mask = &node_states[N_MEMORY];
3890         }
3891
3892         /* Synchronize with other sysfs operations modifying huge pages */
3893         mutex_lock(&h->resize_lock);
3894         spin_lock_irq(&hugetlb_lock);
3895
3896         while (nr_demote) {
3897                 /*
3898                  * Check for available pages to demote each time thorough the
3899                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3900                  */
3901                 if (nid != NUMA_NO_NODE)
3902                         nr_available = h->free_huge_pages_node[nid];
3903                 else
3904                         nr_available = h->free_huge_pages;
3905                 nr_available -= h->resv_huge_pages;
3906                 if (!nr_available)
3907                         break;
3908
3909                 err = demote_pool_huge_page(h, n_mask);
3910                 if (err)
3911                         break;
3912
3913                 nr_demote--;
3914         }
3915
3916         spin_unlock_irq(&hugetlb_lock);
3917         mutex_unlock(&h->resize_lock);
3918
3919         if (err)
3920                 return err;
3921         return len;
3922 }
3923 HSTATE_ATTR_WO(demote);
3924
3925 static ssize_t demote_size_show(struct kobject *kobj,
3926                                         struct kobj_attribute *attr, char *buf)
3927 {
3928         struct hstate *h = kobj_to_hstate(kobj, NULL);
3929         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3930
3931         return sysfs_emit(buf, "%lukB\n", demote_size);
3932 }
3933
3934 static ssize_t demote_size_store(struct kobject *kobj,
3935                                         struct kobj_attribute *attr,
3936                                         const char *buf, size_t count)
3937 {
3938         struct hstate *h, *demote_hstate;
3939         unsigned long demote_size;
3940         unsigned int demote_order;
3941
3942         demote_size = (unsigned long)memparse(buf, NULL);
3943
3944         demote_hstate = size_to_hstate(demote_size);
3945         if (!demote_hstate)
3946                 return -EINVAL;
3947         demote_order = demote_hstate->order;
3948         if (demote_order < HUGETLB_PAGE_ORDER)
3949                 return -EINVAL;
3950
3951         /* demote order must be smaller than hstate order */
3952         h = kobj_to_hstate(kobj, NULL);
3953         if (demote_order >= h->order)
3954                 return -EINVAL;
3955
3956         /* resize_lock synchronizes access to demote size and writes */
3957         mutex_lock(&h->resize_lock);
3958         h->demote_order = demote_order;
3959         mutex_unlock(&h->resize_lock);
3960
3961         return count;
3962 }
3963 HSTATE_ATTR(demote_size);
3964
3965 static struct attribute *hstate_attrs[] = {
3966         &nr_hugepages_attr.attr,
3967         &nr_overcommit_hugepages_attr.attr,
3968         &free_hugepages_attr.attr,
3969         &resv_hugepages_attr.attr,
3970         &surplus_hugepages_attr.attr,
3971 #ifdef CONFIG_NUMA
3972         &nr_hugepages_mempolicy_attr.attr,
3973 #endif
3974         NULL,
3975 };
3976
3977 static const struct attribute_group hstate_attr_group = {
3978         .attrs = hstate_attrs,
3979 };
3980
3981 static struct attribute *hstate_demote_attrs[] = {
3982         &demote_size_attr.attr,
3983         &demote_attr.attr,
3984         NULL,
3985 };
3986
3987 static const struct attribute_group hstate_demote_attr_group = {
3988         .attrs = hstate_demote_attrs,
3989 };
3990
3991 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3992                                     struct kobject **hstate_kobjs,
3993                                     const struct attribute_group *hstate_attr_group)
3994 {
3995         int retval;
3996         int hi = hstate_index(h);
3997
3998         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3999         if (!hstate_kobjs[hi])
4000                 return -ENOMEM;
4001
4002         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4003         if (retval) {
4004                 kobject_put(hstate_kobjs[hi]);
4005                 hstate_kobjs[hi] = NULL;
4006                 return retval;
4007         }
4008
4009         if (h->demote_order) {
4010                 retval = sysfs_create_group(hstate_kobjs[hi],
4011                                             &hstate_demote_attr_group);
4012                 if (retval) {
4013                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4014                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4015                         kobject_put(hstate_kobjs[hi]);
4016                         hstate_kobjs[hi] = NULL;
4017                         return retval;
4018                 }
4019         }
4020
4021         return 0;
4022 }
4023
4024 #ifdef CONFIG_NUMA
4025 static bool hugetlb_sysfs_initialized __ro_after_init;
4026
4027 /*
4028  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4029  * with node devices in node_devices[] using a parallel array.  The array
4030  * index of a node device or _hstate == node id.
4031  * This is here to avoid any static dependency of the node device driver, in
4032  * the base kernel, on the hugetlb module.
4033  */
4034 struct node_hstate {
4035         struct kobject          *hugepages_kobj;
4036         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4037 };
4038 static struct node_hstate node_hstates[MAX_NUMNODES];
4039
4040 /*
4041  * A subset of global hstate attributes for node devices
4042  */
4043 static struct attribute *per_node_hstate_attrs[] = {
4044         &nr_hugepages_attr.attr,
4045         &free_hugepages_attr.attr,
4046         &surplus_hugepages_attr.attr,
4047         NULL,
4048 };
4049
4050 static const struct attribute_group per_node_hstate_attr_group = {
4051         .attrs = per_node_hstate_attrs,
4052 };
4053
4054 /*
4055  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4056  * Returns node id via non-NULL nidp.
4057  */
4058 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4059 {
4060         int nid;
4061
4062         for (nid = 0; nid < nr_node_ids; nid++) {
4063                 struct node_hstate *nhs = &node_hstates[nid];
4064                 int i;
4065                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4066                         if (nhs->hstate_kobjs[i] == kobj) {
4067                                 if (nidp)
4068                                         *nidp = nid;
4069                                 return &hstates[i];
4070                         }
4071         }
4072
4073         BUG();
4074         return NULL;
4075 }
4076
4077 /*
4078  * Unregister hstate attributes from a single node device.
4079  * No-op if no hstate attributes attached.
4080  */
4081 void hugetlb_unregister_node(struct node *node)
4082 {
4083         struct hstate *h;
4084         struct node_hstate *nhs = &node_hstates[node->dev.id];
4085
4086         if (!nhs->hugepages_kobj)
4087                 return;         /* no hstate attributes */
4088
4089         for_each_hstate(h) {
4090                 int idx = hstate_index(h);
4091                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4092
4093                 if (!hstate_kobj)
4094                         continue;
4095                 if (h->demote_order)
4096                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4097                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4098                 kobject_put(hstate_kobj);
4099                 nhs->hstate_kobjs[idx] = NULL;
4100         }
4101
4102         kobject_put(nhs->hugepages_kobj);
4103         nhs->hugepages_kobj = NULL;
4104 }
4105
4106
4107 /*
4108  * Register hstate attributes for a single node device.
4109  * No-op if attributes already registered.
4110  */
4111 void hugetlb_register_node(struct node *node)
4112 {
4113         struct hstate *h;
4114         struct node_hstate *nhs = &node_hstates[node->dev.id];
4115         int err;
4116
4117         if (!hugetlb_sysfs_initialized)
4118                 return;
4119
4120         if (nhs->hugepages_kobj)
4121                 return;         /* already allocated */
4122
4123         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4124                                                         &node->dev.kobj);
4125         if (!nhs->hugepages_kobj)
4126                 return;
4127
4128         for_each_hstate(h) {
4129                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4130                                                 nhs->hstate_kobjs,
4131                                                 &per_node_hstate_attr_group);
4132                 if (err) {
4133                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4134                                 h->name, node->dev.id);
4135                         hugetlb_unregister_node(node);
4136                         break;
4137                 }
4138         }
4139 }
4140
4141 /*
4142  * hugetlb init time:  register hstate attributes for all registered node
4143  * devices of nodes that have memory.  All on-line nodes should have
4144  * registered their associated device by this time.
4145  */
4146 static void __init hugetlb_register_all_nodes(void)
4147 {
4148         int nid;
4149
4150         for_each_online_node(nid)
4151                 hugetlb_register_node(node_devices[nid]);
4152 }
4153 #else   /* !CONFIG_NUMA */
4154
4155 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4156 {
4157         BUG();
4158         if (nidp)
4159                 *nidp = -1;
4160         return NULL;
4161 }
4162
4163 static void hugetlb_register_all_nodes(void) { }
4164
4165 #endif
4166
4167 #ifdef CONFIG_CMA
4168 static void __init hugetlb_cma_check(void);
4169 #else
4170 static inline __init void hugetlb_cma_check(void)
4171 {
4172 }
4173 #endif
4174
4175 static void __init hugetlb_sysfs_init(void)
4176 {
4177         struct hstate *h;
4178         int err;
4179
4180         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4181         if (!hugepages_kobj)
4182                 return;
4183
4184         for_each_hstate(h) {
4185                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4186                                          hstate_kobjs, &hstate_attr_group);
4187                 if (err)
4188                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4189         }
4190
4191 #ifdef CONFIG_NUMA
4192         hugetlb_sysfs_initialized = true;
4193 #endif
4194         hugetlb_register_all_nodes();
4195 }
4196
4197 static int __init hugetlb_init(void)
4198 {
4199         int i;
4200
4201         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4202                         __NR_HPAGEFLAGS);
4203
4204         if (!hugepages_supported()) {
4205                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4206                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4207                 return 0;
4208         }
4209
4210         /*
4211          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4212          * architectures depend on setup being done here.
4213          */
4214         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4215         if (!parsed_default_hugepagesz) {
4216                 /*
4217                  * If we did not parse a default huge page size, set
4218                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4219                  * number of huge pages for this default size was implicitly
4220                  * specified, set that here as well.
4221                  * Note that the implicit setting will overwrite an explicit
4222                  * setting.  A warning will be printed in this case.
4223                  */
4224                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4225                 if (default_hstate_max_huge_pages) {
4226                         if (default_hstate.max_huge_pages) {
4227                                 char buf[32];
4228
4229                                 string_get_size(huge_page_size(&default_hstate),
4230                                         1, STRING_UNITS_2, buf, 32);
4231                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4232                                         default_hstate.max_huge_pages, buf);
4233                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4234                                         default_hstate_max_huge_pages);
4235                         }
4236                         default_hstate.max_huge_pages =
4237                                 default_hstate_max_huge_pages;
4238
4239                         for_each_online_node(i)
4240                                 default_hstate.max_huge_pages_node[i] =
4241                                         default_hugepages_in_node[i];
4242                 }
4243         }
4244
4245         hugetlb_cma_check();
4246         hugetlb_init_hstates();
4247         gather_bootmem_prealloc();
4248         report_hugepages();
4249
4250         hugetlb_sysfs_init();
4251         hugetlb_cgroup_file_init();
4252
4253 #ifdef CONFIG_SMP
4254         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4255 #else
4256         num_fault_mutexes = 1;
4257 #endif
4258         hugetlb_fault_mutex_table =
4259                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4260                               GFP_KERNEL);
4261         BUG_ON(!hugetlb_fault_mutex_table);
4262
4263         for (i = 0; i < num_fault_mutexes; i++)
4264                 mutex_init(&hugetlb_fault_mutex_table[i]);
4265         return 0;
4266 }
4267 subsys_initcall(hugetlb_init);
4268
4269 /* Overwritten by architectures with more huge page sizes */
4270 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4271 {
4272         return size == HPAGE_SIZE;
4273 }
4274
4275 void __init hugetlb_add_hstate(unsigned int order)
4276 {
4277         struct hstate *h;
4278         unsigned long i;
4279
4280         if (size_to_hstate(PAGE_SIZE << order)) {
4281                 return;
4282         }
4283         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4284         BUG_ON(order == 0);
4285         h = &hstates[hugetlb_max_hstate++];
4286         mutex_init(&h->resize_lock);
4287         h->order = order;
4288         h->mask = ~(huge_page_size(h) - 1);
4289         for (i = 0; i < MAX_NUMNODES; ++i)
4290                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4291         INIT_LIST_HEAD(&h->hugepage_activelist);
4292         h->next_nid_to_alloc = first_memory_node;
4293         h->next_nid_to_free = first_memory_node;
4294         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4295                                         huge_page_size(h)/SZ_1K);
4296
4297         parsed_hstate = h;
4298 }
4299
4300 bool __init __weak hugetlb_node_alloc_supported(void)
4301 {
4302         return true;
4303 }
4304
4305 static void __init hugepages_clear_pages_in_node(void)
4306 {
4307         if (!hugetlb_max_hstate) {
4308                 default_hstate_max_huge_pages = 0;
4309                 memset(default_hugepages_in_node, 0,
4310                         sizeof(default_hugepages_in_node));
4311         } else {
4312                 parsed_hstate->max_huge_pages = 0;
4313                 memset(parsed_hstate->max_huge_pages_node, 0,
4314                         sizeof(parsed_hstate->max_huge_pages_node));
4315         }
4316 }
4317
4318 /*
4319  * hugepages command line processing
4320  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4321  * specification.  If not, ignore the hugepages value.  hugepages can also
4322  * be the first huge page command line  option in which case it implicitly
4323  * specifies the number of huge pages for the default size.
4324  */
4325 static int __init hugepages_setup(char *s)
4326 {
4327         unsigned long *mhp;
4328         static unsigned long *last_mhp;
4329         int node = NUMA_NO_NODE;
4330         int count;
4331         unsigned long tmp;
4332         char *p = s;
4333
4334         if (!parsed_valid_hugepagesz) {
4335                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4336                 parsed_valid_hugepagesz = true;
4337                 return 1;
4338         }
4339
4340         /*
4341          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4342          * yet, so this hugepages= parameter goes to the "default hstate".
4343          * Otherwise, it goes with the previously parsed hugepagesz or
4344          * default_hugepagesz.
4345          */
4346         else if (!hugetlb_max_hstate)
4347                 mhp = &default_hstate_max_huge_pages;
4348         else
4349                 mhp = &parsed_hstate->max_huge_pages;
4350
4351         if (mhp == last_mhp) {
4352                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4353                 return 1;
4354         }
4355
4356         while (*p) {
4357                 count = 0;
4358                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4359                         goto invalid;
4360                 /* Parameter is node format */
4361                 if (p[count] == ':') {
4362                         if (!hugetlb_node_alloc_supported()) {
4363                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4364                                 return 1;
4365                         }
4366                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4367                                 goto invalid;
4368                         node = array_index_nospec(tmp, MAX_NUMNODES);
4369                         p += count + 1;
4370                         /* Parse hugepages */
4371                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4372                                 goto invalid;
4373                         if (!hugetlb_max_hstate)
4374                                 default_hugepages_in_node[node] = tmp;
4375                         else
4376                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4377                         *mhp += tmp;
4378                         /* Go to parse next node*/
4379                         if (p[count] == ',')
4380                                 p += count + 1;
4381                         else
4382                                 break;
4383                 } else {
4384                         if (p != s)
4385                                 goto invalid;
4386                         *mhp = tmp;
4387                         break;
4388                 }
4389         }
4390
4391         /*
4392          * Global state is always initialized later in hugetlb_init.
4393          * But we need to allocate gigantic hstates here early to still
4394          * use the bootmem allocator.
4395          */
4396         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4397                 hugetlb_hstate_alloc_pages(parsed_hstate);
4398
4399         last_mhp = mhp;
4400
4401         return 1;
4402
4403 invalid:
4404         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4405         hugepages_clear_pages_in_node();
4406         return 1;
4407 }
4408 __setup("hugepages=", hugepages_setup);
4409
4410 /*
4411  * hugepagesz command line processing
4412  * A specific huge page size can only be specified once with hugepagesz.
4413  * hugepagesz is followed by hugepages on the command line.  The global
4414  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4415  * hugepagesz argument was valid.
4416  */
4417 static int __init hugepagesz_setup(char *s)
4418 {
4419         unsigned long size;
4420         struct hstate *h;
4421
4422         parsed_valid_hugepagesz = false;
4423         size = (unsigned long)memparse(s, NULL);
4424
4425         if (!arch_hugetlb_valid_size(size)) {
4426                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4427                 return 1;
4428         }
4429
4430         h = size_to_hstate(size);
4431         if (h) {
4432                 /*
4433                  * hstate for this size already exists.  This is normally
4434                  * an error, but is allowed if the existing hstate is the
4435                  * default hstate.  More specifically, it is only allowed if
4436                  * the number of huge pages for the default hstate was not
4437                  * previously specified.
4438                  */
4439                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4440                     default_hstate.max_huge_pages) {
4441                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4442                         return 1;
4443                 }
4444
4445                 /*
4446                  * No need to call hugetlb_add_hstate() as hstate already
4447                  * exists.  But, do set parsed_hstate so that a following
4448                  * hugepages= parameter will be applied to this hstate.
4449                  */
4450                 parsed_hstate = h;
4451                 parsed_valid_hugepagesz = true;
4452                 return 1;
4453         }
4454
4455         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4456         parsed_valid_hugepagesz = true;
4457         return 1;
4458 }
4459 __setup("hugepagesz=", hugepagesz_setup);
4460
4461 /*
4462  * default_hugepagesz command line input
4463  * Only one instance of default_hugepagesz allowed on command line.
4464  */
4465 static int __init default_hugepagesz_setup(char *s)
4466 {
4467         unsigned long size;
4468         int i;
4469
4470         parsed_valid_hugepagesz = false;
4471         if (parsed_default_hugepagesz) {
4472                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4473                 return 1;
4474         }
4475
4476         size = (unsigned long)memparse(s, NULL);
4477
4478         if (!arch_hugetlb_valid_size(size)) {
4479                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4480                 return 1;
4481         }
4482
4483         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4484         parsed_valid_hugepagesz = true;
4485         parsed_default_hugepagesz = true;
4486         default_hstate_idx = hstate_index(size_to_hstate(size));
4487
4488         /*
4489          * The number of default huge pages (for this size) could have been
4490          * specified as the first hugetlb parameter: hugepages=X.  If so,
4491          * then default_hstate_max_huge_pages is set.  If the default huge
4492          * page size is gigantic (>= MAX_ORDER), then the pages must be
4493          * allocated here from bootmem allocator.
4494          */
4495         if (default_hstate_max_huge_pages) {
4496                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4497                 for_each_online_node(i)
4498                         default_hstate.max_huge_pages_node[i] =
4499                                 default_hugepages_in_node[i];
4500                 if (hstate_is_gigantic(&default_hstate))
4501                         hugetlb_hstate_alloc_pages(&default_hstate);
4502                 default_hstate_max_huge_pages = 0;
4503         }
4504
4505         return 1;
4506 }
4507 __setup("default_hugepagesz=", default_hugepagesz_setup);
4508
4509 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4510 {
4511 #ifdef CONFIG_NUMA
4512         struct mempolicy *mpol = get_task_policy(current);
4513
4514         /*
4515          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4516          * (from policy_nodemask) specifically for hugetlb case
4517          */
4518         if (mpol->mode == MPOL_BIND &&
4519                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4520                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4521                 return &mpol->nodes;
4522 #endif
4523         return NULL;
4524 }
4525
4526 static unsigned int allowed_mems_nr(struct hstate *h)
4527 {
4528         int node;
4529         unsigned int nr = 0;
4530         nodemask_t *mbind_nodemask;
4531         unsigned int *array = h->free_huge_pages_node;
4532         gfp_t gfp_mask = htlb_alloc_mask(h);
4533
4534         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4535         for_each_node_mask(node, cpuset_current_mems_allowed) {
4536                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4537                         nr += array[node];
4538         }
4539
4540         return nr;
4541 }
4542
4543 #ifdef CONFIG_SYSCTL
4544 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4545                                           void *buffer, size_t *length,
4546                                           loff_t *ppos, unsigned long *out)
4547 {
4548         struct ctl_table dup_table;
4549
4550         /*
4551          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4552          * can duplicate the @table and alter the duplicate of it.
4553          */
4554         dup_table = *table;
4555         dup_table.data = out;
4556
4557         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4558 }
4559
4560 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4561                          struct ctl_table *table, int write,
4562                          void *buffer, size_t *length, loff_t *ppos)
4563 {
4564         struct hstate *h = &default_hstate;
4565         unsigned long tmp = h->max_huge_pages;
4566         int ret;
4567
4568         if (!hugepages_supported())
4569                 return -EOPNOTSUPP;
4570
4571         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4572                                              &tmp);
4573         if (ret)
4574                 goto out;
4575
4576         if (write)
4577                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4578                                                   NUMA_NO_NODE, tmp, *length);
4579 out:
4580         return ret;
4581 }
4582
4583 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4584                           void *buffer, size_t *length, loff_t *ppos)
4585 {
4586
4587         return hugetlb_sysctl_handler_common(false, table, write,
4588                                                         buffer, length, ppos);
4589 }
4590
4591 #ifdef CONFIG_NUMA
4592 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4593                           void *buffer, size_t *length, loff_t *ppos)
4594 {
4595         return hugetlb_sysctl_handler_common(true, table, write,
4596                                                         buffer, length, ppos);
4597 }
4598 #endif /* CONFIG_NUMA */
4599
4600 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4601                 void *buffer, size_t *length, loff_t *ppos)
4602 {
4603         struct hstate *h = &default_hstate;
4604         unsigned long tmp;
4605         int ret;
4606
4607         if (!hugepages_supported())
4608                 return -EOPNOTSUPP;
4609
4610         tmp = h->nr_overcommit_huge_pages;
4611
4612         if (write && hstate_is_gigantic(h))
4613                 return -EINVAL;
4614
4615         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4616                                              &tmp);
4617         if (ret)
4618                 goto out;
4619
4620         if (write) {
4621                 spin_lock_irq(&hugetlb_lock);
4622                 h->nr_overcommit_huge_pages = tmp;
4623                 spin_unlock_irq(&hugetlb_lock);
4624         }
4625 out:
4626         return ret;
4627 }
4628
4629 #endif /* CONFIG_SYSCTL */
4630
4631 void hugetlb_report_meminfo(struct seq_file *m)
4632 {
4633         struct hstate *h;
4634         unsigned long total = 0;
4635
4636         if (!hugepages_supported())
4637                 return;
4638
4639         for_each_hstate(h) {
4640                 unsigned long count = h->nr_huge_pages;
4641
4642                 total += huge_page_size(h) * count;
4643
4644                 if (h == &default_hstate)
4645                         seq_printf(m,
4646                                    "HugePages_Total:   %5lu\n"
4647                                    "HugePages_Free:    %5lu\n"
4648                                    "HugePages_Rsvd:    %5lu\n"
4649                                    "HugePages_Surp:    %5lu\n"
4650                                    "Hugepagesize:   %8lu kB\n",
4651                                    count,
4652                                    h->free_huge_pages,
4653                                    h->resv_huge_pages,
4654                                    h->surplus_huge_pages,
4655                                    huge_page_size(h) / SZ_1K);
4656         }
4657
4658         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4659 }
4660
4661 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4662 {
4663         struct hstate *h = &default_hstate;
4664
4665         if (!hugepages_supported())
4666                 return 0;
4667
4668         return sysfs_emit_at(buf, len,
4669                              "Node %d HugePages_Total: %5u\n"
4670                              "Node %d HugePages_Free:  %5u\n"
4671                              "Node %d HugePages_Surp:  %5u\n",
4672                              nid, h->nr_huge_pages_node[nid],
4673                              nid, h->free_huge_pages_node[nid],
4674                              nid, h->surplus_huge_pages_node[nid]);
4675 }
4676
4677 void hugetlb_show_meminfo_node(int nid)
4678 {
4679         struct hstate *h;
4680
4681         if (!hugepages_supported())
4682                 return;
4683
4684         for_each_hstate(h)
4685                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4686                         nid,
4687                         h->nr_huge_pages_node[nid],
4688                         h->free_huge_pages_node[nid],
4689                         h->surplus_huge_pages_node[nid],
4690                         huge_page_size(h) / SZ_1K);
4691 }
4692
4693 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4694 {
4695         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4696                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4697 }
4698
4699 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4700 unsigned long hugetlb_total_pages(void)
4701 {
4702         struct hstate *h;
4703         unsigned long nr_total_pages = 0;
4704
4705         for_each_hstate(h)
4706                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4707         return nr_total_pages;
4708 }
4709
4710 static int hugetlb_acct_memory(struct hstate *h, long delta)
4711 {
4712         int ret = -ENOMEM;
4713
4714         if (!delta)
4715                 return 0;
4716
4717         spin_lock_irq(&hugetlb_lock);
4718         /*
4719          * When cpuset is configured, it breaks the strict hugetlb page
4720          * reservation as the accounting is done on a global variable. Such
4721          * reservation is completely rubbish in the presence of cpuset because
4722          * the reservation is not checked against page availability for the
4723          * current cpuset. Application can still potentially OOM'ed by kernel
4724          * with lack of free htlb page in cpuset that the task is in.
4725          * Attempt to enforce strict accounting with cpuset is almost
4726          * impossible (or too ugly) because cpuset is too fluid that
4727          * task or memory node can be dynamically moved between cpusets.
4728          *
4729          * The change of semantics for shared hugetlb mapping with cpuset is
4730          * undesirable. However, in order to preserve some of the semantics,
4731          * we fall back to check against current free page availability as
4732          * a best attempt and hopefully to minimize the impact of changing
4733          * semantics that cpuset has.
4734          *
4735          * Apart from cpuset, we also have memory policy mechanism that
4736          * also determines from which node the kernel will allocate memory
4737          * in a NUMA system. So similar to cpuset, we also should consider
4738          * the memory policy of the current task. Similar to the description
4739          * above.
4740          */
4741         if (delta > 0) {
4742                 if (gather_surplus_pages(h, delta) < 0)
4743                         goto out;
4744
4745                 if (delta > allowed_mems_nr(h)) {
4746                         return_unused_surplus_pages(h, delta);
4747                         goto out;
4748                 }
4749         }
4750
4751         ret = 0;
4752         if (delta < 0)
4753                 return_unused_surplus_pages(h, (unsigned long) -delta);
4754
4755 out:
4756         spin_unlock_irq(&hugetlb_lock);
4757         return ret;
4758 }
4759
4760 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4761 {
4762         struct resv_map *resv = vma_resv_map(vma);
4763
4764         /*
4765          * HPAGE_RESV_OWNER indicates a private mapping.
4766          * This new VMA should share its siblings reservation map if present.
4767          * The VMA will only ever have a valid reservation map pointer where
4768          * it is being copied for another still existing VMA.  As that VMA
4769          * has a reference to the reservation map it cannot disappear until
4770          * after this open call completes.  It is therefore safe to take a
4771          * new reference here without additional locking.
4772          */
4773         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4774                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4775                 kref_get(&resv->refs);
4776         }
4777
4778         /*
4779          * vma_lock structure for sharable mappings is vma specific.
4780          * Clear old pointer (if copied via vm_area_dup) and allocate
4781          * new structure.  Before clearing, make sure vma_lock is not
4782          * for this vma.
4783          */
4784         if (vma->vm_flags & VM_MAYSHARE) {
4785                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4786
4787                 if (vma_lock) {
4788                         if (vma_lock->vma != vma) {
4789                                 vma->vm_private_data = NULL;
4790                                 hugetlb_vma_lock_alloc(vma);
4791                         } else
4792                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4793                 } else
4794                         hugetlb_vma_lock_alloc(vma);
4795         }
4796 }
4797
4798 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4799 {
4800         struct hstate *h = hstate_vma(vma);
4801         struct resv_map *resv;
4802         struct hugepage_subpool *spool = subpool_vma(vma);
4803         unsigned long reserve, start, end;
4804         long gbl_reserve;
4805
4806         hugetlb_vma_lock_free(vma);
4807
4808         resv = vma_resv_map(vma);
4809         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4810                 return;
4811
4812         start = vma_hugecache_offset(h, vma, vma->vm_start);
4813         end = vma_hugecache_offset(h, vma, vma->vm_end);
4814
4815         reserve = (end - start) - region_count(resv, start, end);
4816         hugetlb_cgroup_uncharge_counter(resv, start, end);
4817         if (reserve) {
4818                 /*
4819                  * Decrement reserve counts.  The global reserve count may be
4820                  * adjusted if the subpool has a minimum size.
4821                  */
4822                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4823                 hugetlb_acct_memory(h, -gbl_reserve);
4824         }
4825
4826         kref_put(&resv->refs, resv_map_release);
4827 }
4828
4829 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4830 {
4831         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4832                 return -EINVAL;
4833
4834         /*
4835          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4836          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4837          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4838          */
4839         if (addr & ~PUD_MASK) {
4840                 /*
4841                  * hugetlb_vm_op_split is called right before we attempt to
4842                  * split the VMA. We will need to unshare PMDs in the old and
4843                  * new VMAs, so let's unshare before we split.
4844                  */
4845                 unsigned long floor = addr & PUD_MASK;
4846                 unsigned long ceil = floor + PUD_SIZE;
4847
4848                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4849                         hugetlb_unshare_pmds(vma, floor, ceil);
4850         }
4851
4852         return 0;
4853 }
4854
4855 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4856 {
4857         return huge_page_size(hstate_vma(vma));
4858 }
4859
4860 /*
4861  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4862  * handle_mm_fault() to try to instantiate regular-sized pages in the
4863  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4864  * this far.
4865  */
4866 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4867 {
4868         BUG();
4869         return 0;
4870 }
4871
4872 /*
4873  * When a new function is introduced to vm_operations_struct and added
4874  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4875  * This is because under System V memory model, mappings created via
4876  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4877  * their original vm_ops are overwritten with shm_vm_ops.
4878  */
4879 const struct vm_operations_struct hugetlb_vm_ops = {
4880         .fault = hugetlb_vm_op_fault,
4881         .open = hugetlb_vm_op_open,
4882         .close = hugetlb_vm_op_close,
4883         .may_split = hugetlb_vm_op_split,
4884         .pagesize = hugetlb_vm_op_pagesize,
4885 };
4886
4887 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4888                                 int writable)
4889 {
4890         pte_t entry;
4891         unsigned int shift = huge_page_shift(hstate_vma(vma));
4892
4893         if (writable) {
4894                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4895                                          vma->vm_page_prot)));
4896         } else {
4897                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4898                                            vma->vm_page_prot));
4899         }
4900         entry = pte_mkyoung(entry);
4901         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4902
4903         return entry;
4904 }
4905
4906 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4907                                    unsigned long address, pte_t *ptep)
4908 {
4909         pte_t entry;
4910
4911         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4912         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4913                 update_mmu_cache(vma, address, ptep);
4914 }
4915
4916 bool is_hugetlb_entry_migration(pte_t pte)
4917 {
4918         swp_entry_t swp;
4919
4920         if (huge_pte_none(pte) || pte_present(pte))
4921                 return false;
4922         swp = pte_to_swp_entry(pte);
4923         if (is_migration_entry(swp))
4924                 return true;
4925         else
4926                 return false;
4927 }
4928
4929 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4930 {
4931         swp_entry_t swp;
4932
4933         if (huge_pte_none(pte) || pte_present(pte))
4934                 return false;
4935         swp = pte_to_swp_entry(pte);
4936         if (is_hwpoison_entry(swp))
4937                 return true;
4938         else
4939                 return false;
4940 }
4941
4942 static void
4943 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4944                      struct page *new_page)
4945 {
4946         __SetPageUptodate(new_page);
4947         hugepage_add_new_anon_rmap(new_page, vma, addr);
4948         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4949         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4950         SetHPageMigratable(new_page);
4951 }
4952
4953 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4954                             struct vm_area_struct *dst_vma,
4955                             struct vm_area_struct *src_vma)
4956 {
4957         pte_t *src_pte, *dst_pte, entry;
4958         struct page *ptepage;
4959         unsigned long addr;
4960         bool cow = is_cow_mapping(src_vma->vm_flags);
4961         struct hstate *h = hstate_vma(src_vma);
4962         unsigned long sz = huge_page_size(h);
4963         unsigned long npages = pages_per_huge_page(h);
4964         struct mmu_notifier_range range;
4965         unsigned long last_addr_mask;
4966         int ret = 0;
4967
4968         if (cow) {
4969                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4970                                         src_vma->vm_start,
4971                                         src_vma->vm_end);
4972                 mmu_notifier_invalidate_range_start(&range);
4973                 mmap_assert_write_locked(src);
4974                 raw_write_seqcount_begin(&src->write_protect_seq);
4975         } else {
4976                 /*
4977                  * For shared mappings the vma lock must be held before
4978                  * calling hugetlb_walk() in the src vma. Otherwise, the
4979                  * returned ptep could go away if part of a shared pmd and
4980                  * another thread calls huge_pmd_unshare.
4981                  */
4982                 hugetlb_vma_lock_read(src_vma);
4983         }
4984
4985         last_addr_mask = hugetlb_mask_last_page(h);
4986         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4987                 spinlock_t *src_ptl, *dst_ptl;
4988                 src_pte = hugetlb_walk(src_vma, addr, sz);
4989                 if (!src_pte) {
4990                         addr |= last_addr_mask;
4991                         continue;
4992                 }
4993                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4994                 if (!dst_pte) {
4995                         ret = -ENOMEM;
4996                         break;
4997                 }
4998
4999                 /*
5000                  * If the pagetables are shared don't copy or take references.
5001                  *
5002                  * dst_pte == src_pte is the common case of src/dest sharing.
5003                  * However, src could have 'unshared' and dst shares with
5004                  * another vma. So page_count of ptep page is checked instead
5005                  * to reliably determine whether pte is shared.
5006                  */
5007                 if (page_count(virt_to_page(dst_pte)) > 1) {
5008                         addr |= last_addr_mask;
5009                         continue;
5010                 }
5011
5012                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5013                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5014                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5015                 entry = huge_ptep_get(src_pte);
5016 again:
5017                 if (huge_pte_none(entry)) {
5018                         /*
5019                          * Skip if src entry none.
5020                          */
5021                         ;
5022                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5023                         bool uffd_wp = huge_pte_uffd_wp(entry);
5024
5025                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5026                                 entry = huge_pte_clear_uffd_wp(entry);
5027                         set_huge_pte_at(dst, addr, dst_pte, entry);
5028                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5029                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5030                         bool uffd_wp = huge_pte_uffd_wp(entry);
5031
5032                         if (!is_readable_migration_entry(swp_entry) && cow) {
5033                                 /*
5034                                  * COW mappings require pages in both
5035                                  * parent and child to be set to read.
5036                                  */
5037                                 swp_entry = make_readable_migration_entry(
5038                                                         swp_offset(swp_entry));
5039                                 entry = swp_entry_to_pte(swp_entry);
5040                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5041                                         entry = huge_pte_mkuffd_wp(entry);
5042                                 set_huge_pte_at(src, addr, src_pte, entry);
5043                         }
5044                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5045                                 entry = huge_pte_clear_uffd_wp(entry);
5046                         set_huge_pte_at(dst, addr, dst_pte, entry);
5047                 } else if (unlikely(is_pte_marker(entry))) {
5048                         /* No swap on hugetlb */
5049                         WARN_ON_ONCE(
5050                             is_swapin_error_entry(pte_to_swp_entry(entry)));
5051                         /*
5052                          * We copy the pte marker only if the dst vma has
5053                          * uffd-wp enabled.
5054                          */
5055                         if (userfaultfd_wp(dst_vma))
5056                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5057                 } else {
5058                         entry = huge_ptep_get(src_pte);
5059                         ptepage = pte_page(entry);
5060                         get_page(ptepage);
5061
5062                         /*
5063                          * Failing to duplicate the anon rmap is a rare case
5064                          * where we see pinned hugetlb pages while they're
5065                          * prone to COW. We need to do the COW earlier during
5066                          * fork.
5067                          *
5068                          * When pre-allocating the page or copying data, we
5069                          * need to be without the pgtable locks since we could
5070                          * sleep during the process.
5071                          */
5072                         if (!PageAnon(ptepage)) {
5073                                 page_dup_file_rmap(ptepage, true);
5074                         } else if (page_try_dup_anon_rmap(ptepage, true,
5075                                                           src_vma)) {
5076                                 pte_t src_pte_old = entry;
5077                                 struct page *new;
5078
5079                                 spin_unlock(src_ptl);
5080                                 spin_unlock(dst_ptl);
5081                                 /* Do not use reserve as it's private owned */
5082                                 new = alloc_huge_page(dst_vma, addr, 1);
5083                                 if (IS_ERR(new)) {
5084                                         put_page(ptepage);
5085                                         ret = PTR_ERR(new);
5086                                         break;
5087                                 }
5088                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
5089                                                     npages);
5090                                 put_page(ptepage);
5091
5092                                 /* Install the new huge page if src pte stable */
5093                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5094                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5095                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5096                                 entry = huge_ptep_get(src_pte);
5097                                 if (!pte_same(src_pte_old, entry)) {
5098                                         restore_reserve_on_error(h, dst_vma, addr,
5099                                                                 new);
5100                                         put_page(new);
5101                                         /* huge_ptep of dst_pte won't change as in child */
5102                                         goto again;
5103                                 }
5104                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5105                                 spin_unlock(src_ptl);
5106                                 spin_unlock(dst_ptl);
5107                                 continue;
5108                         }
5109
5110                         if (cow) {
5111                                 /*
5112                                  * No need to notify as we are downgrading page
5113                                  * table protection not changing it to point
5114                                  * to a new page.
5115                                  *
5116                                  * See Documentation/mm/mmu_notifier.rst
5117                                  */
5118                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5119                                 entry = huge_pte_wrprotect(entry);
5120                         }
5121
5122                         set_huge_pte_at(dst, addr, dst_pte, entry);
5123                         hugetlb_count_add(npages, dst);
5124                 }
5125                 spin_unlock(src_ptl);
5126                 spin_unlock(dst_ptl);
5127         }
5128
5129         if (cow) {
5130                 raw_write_seqcount_end(&src->write_protect_seq);
5131                 mmu_notifier_invalidate_range_end(&range);
5132         } else {
5133                 hugetlb_vma_unlock_read(src_vma);
5134         }
5135
5136         return ret;
5137 }
5138
5139 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5140                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5141 {
5142         struct hstate *h = hstate_vma(vma);
5143         struct mm_struct *mm = vma->vm_mm;
5144         spinlock_t *src_ptl, *dst_ptl;
5145         pte_t pte;
5146
5147         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5148         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5149
5150         /*
5151          * We don't have to worry about the ordering of src and dst ptlocks
5152          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5153          */
5154         if (src_ptl != dst_ptl)
5155                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5156
5157         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5158         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5159
5160         if (src_ptl != dst_ptl)
5161                 spin_unlock(src_ptl);
5162         spin_unlock(dst_ptl);
5163 }
5164
5165 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5166                              struct vm_area_struct *new_vma,
5167                              unsigned long old_addr, unsigned long new_addr,
5168                              unsigned long len)
5169 {
5170         struct hstate *h = hstate_vma(vma);
5171         struct address_space *mapping = vma->vm_file->f_mapping;
5172         unsigned long sz = huge_page_size(h);
5173         struct mm_struct *mm = vma->vm_mm;
5174         unsigned long old_end = old_addr + len;
5175         unsigned long last_addr_mask;
5176         pte_t *src_pte, *dst_pte;
5177         struct mmu_notifier_range range;
5178         bool shared_pmd = false;
5179
5180         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5181                                 old_end);
5182         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5183         /*
5184          * In case of shared PMDs, we should cover the maximum possible
5185          * range.
5186          */
5187         flush_cache_range(vma, range.start, range.end);
5188
5189         mmu_notifier_invalidate_range_start(&range);
5190         last_addr_mask = hugetlb_mask_last_page(h);
5191         /* Prevent race with file truncation */
5192         hugetlb_vma_lock_write(vma);
5193         i_mmap_lock_write(mapping);
5194         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5195                 src_pte = hugetlb_walk(vma, old_addr, sz);
5196                 if (!src_pte) {
5197                         old_addr |= last_addr_mask;
5198                         new_addr |= last_addr_mask;
5199                         continue;
5200                 }
5201                 if (huge_pte_none(huge_ptep_get(src_pte)))
5202                         continue;
5203
5204                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5205                         shared_pmd = true;
5206                         old_addr |= last_addr_mask;
5207                         new_addr |= last_addr_mask;
5208                         continue;
5209                 }
5210
5211                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5212                 if (!dst_pte)
5213                         break;
5214
5215                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5216         }
5217
5218         if (shared_pmd)
5219                 flush_tlb_range(vma, range.start, range.end);
5220         else
5221                 flush_tlb_range(vma, old_end - len, old_end);
5222         mmu_notifier_invalidate_range_end(&range);
5223         i_mmap_unlock_write(mapping);
5224         hugetlb_vma_unlock_write(vma);
5225
5226         return len + old_addr - old_end;
5227 }
5228
5229 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5230                                    unsigned long start, unsigned long end,
5231                                    struct page *ref_page, zap_flags_t zap_flags)
5232 {
5233         struct mm_struct *mm = vma->vm_mm;
5234         unsigned long address;
5235         pte_t *ptep;
5236         pte_t pte;
5237         spinlock_t *ptl;
5238         struct page *page;
5239         struct hstate *h = hstate_vma(vma);
5240         unsigned long sz = huge_page_size(h);
5241         unsigned long last_addr_mask;
5242         bool force_flush = false;
5243
5244         WARN_ON(!is_vm_hugetlb_page(vma));
5245         BUG_ON(start & ~huge_page_mask(h));
5246         BUG_ON(end & ~huge_page_mask(h));
5247
5248         /*
5249          * This is a hugetlb vma, all the pte entries should point
5250          * to huge page.
5251          */
5252         tlb_change_page_size(tlb, sz);
5253         tlb_start_vma(tlb, vma);
5254
5255         last_addr_mask = hugetlb_mask_last_page(h);
5256         address = start;
5257         for (; address < end; address += sz) {
5258                 ptep = hugetlb_walk(vma, address, sz);
5259                 if (!ptep) {
5260                         address |= last_addr_mask;
5261                         continue;
5262                 }
5263
5264                 ptl = huge_pte_lock(h, mm, ptep);
5265                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5266                         spin_unlock(ptl);
5267                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5268                         force_flush = true;
5269                         address |= last_addr_mask;
5270                         continue;
5271                 }
5272
5273                 pte = huge_ptep_get(ptep);
5274                 if (huge_pte_none(pte)) {
5275                         spin_unlock(ptl);
5276                         continue;
5277                 }
5278
5279                 /*
5280                  * Migrating hugepage or HWPoisoned hugepage is already
5281                  * unmapped and its refcount is dropped, so just clear pte here.
5282                  */
5283                 if (unlikely(!pte_present(pte))) {
5284                         /*
5285                          * If the pte was wr-protected by uffd-wp in any of the
5286                          * swap forms, meanwhile the caller does not want to
5287                          * drop the uffd-wp bit in this zap, then replace the
5288                          * pte with a marker.
5289                          */
5290                         if (pte_swp_uffd_wp_any(pte) &&
5291                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5292                                 set_huge_pte_at(mm, address, ptep,
5293                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5294                         else
5295                                 huge_pte_clear(mm, address, ptep, sz);
5296                         spin_unlock(ptl);
5297                         continue;
5298                 }
5299
5300                 page = pte_page(pte);
5301                 /*
5302                  * If a reference page is supplied, it is because a specific
5303                  * page is being unmapped, not a range. Ensure the page we
5304                  * are about to unmap is the actual page of interest.
5305                  */
5306                 if (ref_page) {
5307                         if (page != ref_page) {
5308                                 spin_unlock(ptl);
5309                                 continue;
5310                         }
5311                         /*
5312                          * Mark the VMA as having unmapped its page so that
5313                          * future faults in this VMA will fail rather than
5314                          * looking like data was lost
5315                          */
5316                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5317                 }
5318
5319                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5320                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5321                 if (huge_pte_dirty(pte))
5322                         set_page_dirty(page);
5323                 /* Leave a uffd-wp pte marker if needed */
5324                 if (huge_pte_uffd_wp(pte) &&
5325                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5326                         set_huge_pte_at(mm, address, ptep,
5327                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5328                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5329                 page_remove_rmap(page, vma, true);
5330
5331                 spin_unlock(ptl);
5332                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5333                 /*
5334                  * Bail out after unmapping reference page if supplied
5335                  */
5336                 if (ref_page)
5337                         break;
5338         }
5339         tlb_end_vma(tlb, vma);
5340
5341         /*
5342          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5343          * could defer the flush until now, since by holding i_mmap_rwsem we
5344          * guaranteed that the last refernece would not be dropped. But we must
5345          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5346          * dropped and the last reference to the shared PMDs page might be
5347          * dropped as well.
5348          *
5349          * In theory we could defer the freeing of the PMD pages as well, but
5350          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5351          * detect sharing, so we cannot defer the release of the page either.
5352          * Instead, do flush now.
5353          */
5354         if (force_flush)
5355                 tlb_flush_mmu_tlbonly(tlb);
5356 }
5357
5358 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5359                           struct vm_area_struct *vma, unsigned long start,
5360                           unsigned long end, struct page *ref_page,
5361                           zap_flags_t zap_flags)
5362 {
5363         hugetlb_vma_lock_write(vma);
5364         i_mmap_lock_write(vma->vm_file->f_mapping);
5365
5366         /* mmu notification performed in caller */
5367         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5368
5369         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5370                 /*
5371                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5372                  * When the vma_lock is freed, this makes the vma ineligible
5373                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5374                  * pmd sharing.  This is important as page tables for this
5375                  * unmapped range will be asynchrously deleted.  If the page
5376                  * tables are shared, there will be issues when accessed by
5377                  * someone else.
5378                  */
5379                 __hugetlb_vma_unlock_write_free(vma);
5380                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5381         } else {
5382                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5383                 hugetlb_vma_unlock_write(vma);
5384         }
5385 }
5386
5387 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5388                           unsigned long end, struct page *ref_page,
5389                           zap_flags_t zap_flags)
5390 {
5391         struct mmu_notifier_range range;
5392         struct mmu_gather tlb;
5393
5394         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5395                                 start, end);
5396         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5397         mmu_notifier_invalidate_range_start(&range);
5398         tlb_gather_mmu(&tlb, vma->vm_mm);
5399
5400         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5401
5402         mmu_notifier_invalidate_range_end(&range);
5403         tlb_finish_mmu(&tlb);
5404 }
5405
5406 /*
5407  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5408  * mapping it owns the reserve page for. The intention is to unmap the page
5409  * from other VMAs and let the children be SIGKILLed if they are faulting the
5410  * same region.
5411  */
5412 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5413                               struct page *page, unsigned long address)
5414 {
5415         struct hstate *h = hstate_vma(vma);
5416         struct vm_area_struct *iter_vma;
5417         struct address_space *mapping;
5418         pgoff_t pgoff;
5419
5420         /*
5421          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5422          * from page cache lookup which is in HPAGE_SIZE units.
5423          */
5424         address = address & huge_page_mask(h);
5425         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5426                         vma->vm_pgoff;
5427         mapping = vma->vm_file->f_mapping;
5428
5429         /*
5430          * Take the mapping lock for the duration of the table walk. As
5431          * this mapping should be shared between all the VMAs,
5432          * __unmap_hugepage_range() is called as the lock is already held
5433          */
5434         i_mmap_lock_write(mapping);
5435         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5436                 /* Do not unmap the current VMA */
5437                 if (iter_vma == vma)
5438                         continue;
5439
5440                 /*
5441                  * Shared VMAs have their own reserves and do not affect
5442                  * MAP_PRIVATE accounting but it is possible that a shared
5443                  * VMA is using the same page so check and skip such VMAs.
5444                  */
5445                 if (iter_vma->vm_flags & VM_MAYSHARE)
5446                         continue;
5447
5448                 /*
5449                  * Unmap the page from other VMAs without their own reserves.
5450                  * They get marked to be SIGKILLed if they fault in these
5451                  * areas. This is because a future no-page fault on this VMA
5452                  * could insert a zeroed page instead of the data existing
5453                  * from the time of fork. This would look like data corruption
5454                  */
5455                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5456                         unmap_hugepage_range(iter_vma, address,
5457                                              address + huge_page_size(h), page, 0);
5458         }
5459         i_mmap_unlock_write(mapping);
5460 }
5461
5462 /*
5463  * hugetlb_wp() should be called with page lock of the original hugepage held.
5464  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5465  * cannot race with other handlers or page migration.
5466  * Keep the pte_same checks anyway to make transition from the mutex easier.
5467  */
5468 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5469                        unsigned long address, pte_t *ptep, unsigned int flags,
5470                        struct page *pagecache_page, spinlock_t *ptl)
5471 {
5472         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5473         pte_t pte;
5474         struct hstate *h = hstate_vma(vma);
5475         struct page *old_page, *new_page;
5476         int outside_reserve = 0;
5477         vm_fault_t ret = 0;
5478         unsigned long haddr = address & huge_page_mask(h);
5479         struct mmu_notifier_range range;
5480
5481         /*
5482          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5483          * PTE mapped R/O such as maybe_mkwrite() would do.
5484          */
5485         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5486                 return VM_FAULT_SIGSEGV;
5487
5488         /* Let's take out MAP_SHARED mappings first. */
5489         if (vma->vm_flags & VM_MAYSHARE) {
5490                 set_huge_ptep_writable(vma, haddr, ptep);
5491                 return 0;
5492         }
5493
5494         pte = huge_ptep_get(ptep);
5495         old_page = pte_page(pte);
5496
5497         delayacct_wpcopy_start();
5498
5499 retry_avoidcopy:
5500         /*
5501          * If no-one else is actually using this page, we're the exclusive
5502          * owner and can reuse this page.
5503          */
5504         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5505                 if (!PageAnonExclusive(old_page))
5506                         page_move_anon_rmap(old_page, vma);
5507                 if (likely(!unshare))
5508                         set_huge_ptep_writable(vma, haddr, ptep);
5509
5510                 delayacct_wpcopy_end();
5511                 return 0;
5512         }
5513         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5514                        old_page);
5515
5516         /*
5517          * If the process that created a MAP_PRIVATE mapping is about to
5518          * perform a COW due to a shared page count, attempt to satisfy
5519          * the allocation without using the existing reserves. The pagecache
5520          * page is used to determine if the reserve at this address was
5521          * consumed or not. If reserves were used, a partial faulted mapping
5522          * at the time of fork() could consume its reserves on COW instead
5523          * of the full address range.
5524          */
5525         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5526                         old_page != pagecache_page)
5527                 outside_reserve = 1;
5528
5529         get_page(old_page);
5530
5531         /*
5532          * Drop page table lock as buddy allocator may be called. It will
5533          * be acquired again before returning to the caller, as expected.
5534          */
5535         spin_unlock(ptl);
5536         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5537
5538         if (IS_ERR(new_page)) {
5539                 /*
5540                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5541                  * it is due to references held by a child and an insufficient
5542                  * huge page pool. To guarantee the original mappers
5543                  * reliability, unmap the page from child processes. The child
5544                  * may get SIGKILLed if it later faults.
5545                  */
5546                 if (outside_reserve) {
5547                         struct address_space *mapping = vma->vm_file->f_mapping;
5548                         pgoff_t idx;
5549                         u32 hash;
5550
5551                         put_page(old_page);
5552                         /*
5553                          * Drop hugetlb_fault_mutex and vma_lock before
5554                          * unmapping.  unmapping needs to hold vma_lock
5555                          * in write mode.  Dropping vma_lock in read mode
5556                          * here is OK as COW mappings do not interact with
5557                          * PMD sharing.
5558                          *
5559                          * Reacquire both after unmap operation.
5560                          */
5561                         idx = vma_hugecache_offset(h, vma, haddr);
5562                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5563                         hugetlb_vma_unlock_read(vma);
5564                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5565
5566                         unmap_ref_private(mm, vma, old_page, haddr);
5567
5568                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5569                         hugetlb_vma_lock_read(vma);
5570                         spin_lock(ptl);
5571                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5572                         if (likely(ptep &&
5573                                    pte_same(huge_ptep_get(ptep), pte)))
5574                                 goto retry_avoidcopy;
5575                         /*
5576                          * race occurs while re-acquiring page table
5577                          * lock, and our job is done.
5578                          */
5579                         delayacct_wpcopy_end();
5580                         return 0;
5581                 }
5582
5583                 ret = vmf_error(PTR_ERR(new_page));
5584                 goto out_release_old;
5585         }
5586
5587         /*
5588          * When the original hugepage is shared one, it does not have
5589          * anon_vma prepared.
5590          */
5591         if (unlikely(anon_vma_prepare(vma))) {
5592                 ret = VM_FAULT_OOM;
5593                 goto out_release_all;
5594         }
5595
5596         copy_user_huge_page(new_page, old_page, address, vma,
5597                             pages_per_huge_page(h));
5598         __SetPageUptodate(new_page);
5599
5600         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5601                                 haddr + huge_page_size(h));
5602         mmu_notifier_invalidate_range_start(&range);
5603
5604         /*
5605          * Retake the page table lock to check for racing updates
5606          * before the page tables are altered
5607          */
5608         spin_lock(ptl);
5609         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5610         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5611                 /* Break COW or unshare */
5612                 huge_ptep_clear_flush(vma, haddr, ptep);
5613                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5614                 page_remove_rmap(old_page, vma, true);
5615                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5616                 set_huge_pte_at(mm, haddr, ptep,
5617                                 make_huge_pte(vma, new_page, !unshare));
5618                 SetHPageMigratable(new_page);
5619                 /* Make the old page be freed below */
5620                 new_page = old_page;
5621         }
5622         spin_unlock(ptl);
5623         mmu_notifier_invalidate_range_end(&range);
5624 out_release_all:
5625         /*
5626          * No restore in case of successful pagetable update (Break COW or
5627          * unshare)
5628          */
5629         if (new_page != old_page)
5630                 restore_reserve_on_error(h, vma, haddr, new_page);
5631         put_page(new_page);
5632 out_release_old:
5633         put_page(old_page);
5634
5635         spin_lock(ptl); /* Caller expects lock to be held */
5636
5637         delayacct_wpcopy_end();
5638         return ret;
5639 }
5640
5641 /*
5642  * Return whether there is a pagecache page to back given address within VMA.
5643  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5644  */
5645 static bool hugetlbfs_pagecache_present(struct hstate *h,
5646                         struct vm_area_struct *vma, unsigned long address)
5647 {
5648         struct address_space *mapping;
5649         pgoff_t idx;
5650         struct page *page;
5651
5652         mapping = vma->vm_file->f_mapping;
5653         idx = vma_hugecache_offset(h, vma, address);
5654
5655         page = find_get_page(mapping, idx);
5656         if (page)
5657                 put_page(page);
5658         return page != NULL;
5659 }
5660
5661 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5662                            pgoff_t idx)
5663 {
5664         struct folio *folio = page_folio(page);
5665         struct inode *inode = mapping->host;
5666         struct hstate *h = hstate_inode(inode);
5667         int err;
5668
5669         __folio_set_locked(folio);
5670         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5671
5672         if (unlikely(err)) {
5673                 __folio_clear_locked(folio);
5674                 return err;
5675         }
5676         ClearHPageRestoreReserve(page);
5677
5678         /*
5679          * mark folio dirty so that it will not be removed from cache/file
5680          * by non-hugetlbfs specific code paths.
5681          */
5682         folio_mark_dirty(folio);
5683
5684         spin_lock(&inode->i_lock);
5685         inode->i_blocks += blocks_per_huge_page(h);
5686         spin_unlock(&inode->i_lock);
5687         return 0;
5688 }
5689
5690 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5691                                                   struct address_space *mapping,
5692                                                   pgoff_t idx,
5693                                                   unsigned int flags,
5694                                                   unsigned long haddr,
5695                                                   unsigned long addr,
5696                                                   unsigned long reason)
5697 {
5698         u32 hash;
5699         struct vm_fault vmf = {
5700                 .vma = vma,
5701                 .address = haddr,
5702                 .real_address = addr,
5703                 .flags = flags,
5704
5705                 /*
5706                  * Hard to debug if it ends up being
5707                  * used by a callee that assumes
5708                  * something about the other
5709                  * uninitialized fields... same as in
5710                  * memory.c
5711                  */
5712         };
5713
5714         /*
5715          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5716          * userfault. Also mmap_lock could be dropped due to handling
5717          * userfault, any vma operation should be careful from here.
5718          */
5719         hugetlb_vma_unlock_read(vma);
5720         hash = hugetlb_fault_mutex_hash(mapping, idx);
5721         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5722         return handle_userfault(&vmf, reason);
5723 }
5724
5725 /*
5726  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5727  * false if pte changed or is changing.
5728  */
5729 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5730                                pte_t *ptep, pte_t old_pte)
5731 {
5732         spinlock_t *ptl;
5733         bool same;
5734
5735         ptl = huge_pte_lock(h, mm, ptep);
5736         same = pte_same(huge_ptep_get(ptep), old_pte);
5737         spin_unlock(ptl);
5738
5739         return same;
5740 }
5741
5742 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5743                         struct vm_area_struct *vma,
5744                         struct address_space *mapping, pgoff_t idx,
5745                         unsigned long address, pte_t *ptep,
5746                         pte_t old_pte, unsigned int flags)
5747 {
5748         struct hstate *h = hstate_vma(vma);
5749         vm_fault_t ret = VM_FAULT_SIGBUS;
5750         int anon_rmap = 0;
5751         unsigned long size;
5752         struct page *page;
5753         pte_t new_pte;
5754         spinlock_t *ptl;
5755         unsigned long haddr = address & huge_page_mask(h);
5756         bool new_page, new_pagecache_page = false;
5757         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5758
5759         /*
5760          * Currently, we are forced to kill the process in the event the
5761          * original mapper has unmapped pages from the child due to a failed
5762          * COW/unsharing. Warn that such a situation has occurred as it may not
5763          * be obvious.
5764          */
5765         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5766                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5767                            current->pid);
5768                 goto out;
5769         }
5770
5771         /*
5772          * Use page lock to guard against racing truncation
5773          * before we get page_table_lock.
5774          */
5775         new_page = false;
5776         page = find_lock_page(mapping, idx);
5777         if (!page) {
5778                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5779                 if (idx >= size)
5780                         goto out;
5781                 /* Check for page in userfault range */
5782                 if (userfaultfd_missing(vma)) {
5783                         /*
5784                          * Since hugetlb_no_page() was examining pte
5785                          * without pgtable lock, we need to re-test under
5786                          * lock because the pte may not be stable and could
5787                          * have changed from under us.  Try to detect
5788                          * either changed or during-changing ptes and retry
5789                          * properly when needed.
5790                          *
5791                          * Note that userfaultfd is actually fine with
5792                          * false positives (e.g. caused by pte changed),
5793                          * but not wrong logical events (e.g. caused by
5794                          * reading a pte during changing).  The latter can
5795                          * confuse the userspace, so the strictness is very
5796                          * much preferred.  E.g., MISSING event should
5797                          * never happen on the page after UFFDIO_COPY has
5798                          * correctly installed the page and returned.
5799                          */
5800                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5801                                 ret = 0;
5802                                 goto out;
5803                         }
5804
5805                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5806                                                         haddr, address,
5807                                                         VM_UFFD_MISSING);
5808                 }
5809
5810                 page = alloc_huge_page(vma, haddr, 0);
5811                 if (IS_ERR(page)) {
5812                         /*
5813                          * Returning error will result in faulting task being
5814                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5815                          * tasks from racing to fault in the same page which
5816                          * could result in false unable to allocate errors.
5817                          * Page migration does not take the fault mutex, but
5818                          * does a clear then write of pte's under page table
5819                          * lock.  Page fault code could race with migration,
5820                          * notice the clear pte and try to allocate a page
5821                          * here.  Before returning error, get ptl and make
5822                          * sure there really is no pte entry.
5823                          */
5824                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5825                                 ret = vmf_error(PTR_ERR(page));
5826                         else
5827                                 ret = 0;
5828                         goto out;
5829                 }
5830                 clear_huge_page(page, address, pages_per_huge_page(h));
5831                 __SetPageUptodate(page);
5832                 new_page = true;
5833
5834                 if (vma->vm_flags & VM_MAYSHARE) {
5835                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5836                         if (err) {
5837                                 /*
5838                                  * err can't be -EEXIST which implies someone
5839                                  * else consumed the reservation since hugetlb
5840                                  * fault mutex is held when add a hugetlb page
5841                                  * to the page cache. So it's safe to call
5842                                  * restore_reserve_on_error() here.
5843                                  */
5844                                 restore_reserve_on_error(h, vma, haddr, page);
5845                                 put_page(page);
5846                                 goto out;
5847                         }
5848                         new_pagecache_page = true;
5849                 } else {
5850                         lock_page(page);
5851                         if (unlikely(anon_vma_prepare(vma))) {
5852                                 ret = VM_FAULT_OOM;
5853                                 goto backout_unlocked;
5854                         }
5855                         anon_rmap = 1;
5856                 }
5857         } else {
5858                 /*
5859                  * If memory error occurs between mmap() and fault, some process
5860                  * don't have hwpoisoned swap entry for errored virtual address.
5861                  * So we need to block hugepage fault by PG_hwpoison bit check.
5862                  */
5863                 if (unlikely(PageHWPoison(page))) {
5864                         ret = VM_FAULT_HWPOISON_LARGE |
5865                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5866                         goto backout_unlocked;
5867                 }
5868
5869                 /* Check for page in userfault range. */
5870                 if (userfaultfd_minor(vma)) {
5871                         unlock_page(page);
5872                         put_page(page);
5873                         /* See comment in userfaultfd_missing() block above */
5874                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5875                                 ret = 0;
5876                                 goto out;
5877                         }
5878                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5879                                                         haddr, address,
5880                                                         VM_UFFD_MINOR);
5881                 }
5882         }
5883
5884         /*
5885          * If we are going to COW a private mapping later, we examine the
5886          * pending reservations for this page now. This will ensure that
5887          * any allocations necessary to record that reservation occur outside
5888          * the spinlock.
5889          */
5890         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5891                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5892                         ret = VM_FAULT_OOM;
5893                         goto backout_unlocked;
5894                 }
5895                 /* Just decrements count, does not deallocate */
5896                 vma_end_reservation(h, vma, haddr);
5897         }
5898
5899         ptl = huge_pte_lock(h, mm, ptep);
5900         ret = 0;
5901         /* If pte changed from under us, retry */
5902         if (!pte_same(huge_ptep_get(ptep), old_pte))
5903                 goto backout;
5904
5905         if (anon_rmap)
5906                 hugepage_add_new_anon_rmap(page, vma, haddr);
5907         else
5908                 page_dup_file_rmap(page, true);
5909         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5910                                 && (vma->vm_flags & VM_SHARED)));
5911         /*
5912          * If this pte was previously wr-protected, keep it wr-protected even
5913          * if populated.
5914          */
5915         if (unlikely(pte_marker_uffd_wp(old_pte)))
5916                 new_pte = huge_pte_mkuffd_wp(new_pte);
5917         set_huge_pte_at(mm, haddr, ptep, new_pte);
5918
5919         hugetlb_count_add(pages_per_huge_page(h), mm);
5920         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5921                 /* Optimization, do the COW without a second fault */
5922                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5923         }
5924
5925         spin_unlock(ptl);
5926
5927         /*
5928          * Only set HPageMigratable in newly allocated pages.  Existing pages
5929          * found in the pagecache may not have HPageMigratableset if they have
5930          * been isolated for migration.
5931          */
5932         if (new_page)
5933                 SetHPageMigratable(page);
5934
5935         unlock_page(page);
5936 out:
5937         hugetlb_vma_unlock_read(vma);
5938         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5939         return ret;
5940
5941 backout:
5942         spin_unlock(ptl);
5943 backout_unlocked:
5944         if (new_page && !new_pagecache_page)
5945                 restore_reserve_on_error(h, vma, haddr, page);
5946
5947         unlock_page(page);
5948         put_page(page);
5949         goto out;
5950 }
5951
5952 #ifdef CONFIG_SMP
5953 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5954 {
5955         unsigned long key[2];
5956         u32 hash;
5957
5958         key[0] = (unsigned long) mapping;
5959         key[1] = idx;
5960
5961         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5962
5963         return hash & (num_fault_mutexes - 1);
5964 }
5965 #else
5966 /*
5967  * For uniprocessor systems we always use a single mutex, so just
5968  * return 0 and avoid the hashing overhead.
5969  */
5970 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5971 {
5972         return 0;
5973 }
5974 #endif
5975
5976 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5977                         unsigned long address, unsigned int flags)
5978 {
5979         pte_t *ptep, entry;
5980         spinlock_t *ptl;
5981         vm_fault_t ret;
5982         u32 hash;
5983         pgoff_t idx;
5984         struct page *page = NULL;
5985         struct page *pagecache_page = NULL;
5986         struct hstate *h = hstate_vma(vma);
5987         struct address_space *mapping;
5988         int need_wait_lock = 0;
5989         unsigned long haddr = address & huge_page_mask(h);
5990
5991         /*
5992          * Serialize hugepage allocation and instantiation, so that we don't
5993          * get spurious allocation failures if two CPUs race to instantiate
5994          * the same page in the page cache.
5995          */
5996         mapping = vma->vm_file->f_mapping;
5997         idx = vma_hugecache_offset(h, vma, haddr);
5998         hash = hugetlb_fault_mutex_hash(mapping, idx);
5999         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6000
6001         /*
6002          * Acquire vma lock before calling huge_pte_alloc and hold
6003          * until finished with ptep.  This prevents huge_pmd_unshare from
6004          * being called elsewhere and making the ptep no longer valid.
6005          */
6006         hugetlb_vma_lock_read(vma);
6007         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6008         if (!ptep) {
6009                 hugetlb_vma_unlock_read(vma);
6010                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6011                 return VM_FAULT_OOM;
6012         }
6013
6014         entry = huge_ptep_get(ptep);
6015         /* PTE markers should be handled the same way as none pte */
6016         if (huge_pte_none_mostly(entry))
6017                 /*
6018                  * hugetlb_no_page will drop vma lock and hugetlb fault
6019                  * mutex internally, which make us return immediately.
6020                  */
6021                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6022                                       entry, flags);
6023
6024         ret = 0;
6025
6026         /*
6027          * entry could be a migration/hwpoison entry at this point, so this
6028          * check prevents the kernel from going below assuming that we have
6029          * an active hugepage in pagecache. This goto expects the 2nd page
6030          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6031          * properly handle it.
6032          */
6033         if (!pte_present(entry)) {
6034                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6035                         /*
6036                          * Release the hugetlb fault lock now, but retain
6037                          * the vma lock, because it is needed to guard the
6038                          * huge_pte_lockptr() later in
6039                          * migration_entry_wait_huge(). The vma lock will
6040                          * be released there.
6041                          */
6042                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6043                         migration_entry_wait_huge(vma, ptep);
6044                         return 0;
6045                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6046                         ret = VM_FAULT_HWPOISON_LARGE |
6047                             VM_FAULT_SET_HINDEX(hstate_index(h));
6048                 goto out_mutex;
6049         }
6050
6051         /*
6052          * If we are going to COW/unshare the mapping later, we examine the
6053          * pending reservations for this page now. This will ensure that any
6054          * allocations necessary to record that reservation occur outside the
6055          * spinlock. Also lookup the pagecache page now as it is used to
6056          * determine if a reservation has been consumed.
6057          */
6058         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6059             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6060                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6061                         ret = VM_FAULT_OOM;
6062                         goto out_mutex;
6063                 }
6064                 /* Just decrements count, does not deallocate */
6065                 vma_end_reservation(h, vma, haddr);
6066
6067                 pagecache_page = find_lock_page(mapping, idx);
6068         }
6069
6070         ptl = huge_pte_lock(h, mm, ptep);
6071
6072         /* Check for a racing update before calling hugetlb_wp() */
6073         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6074                 goto out_ptl;
6075
6076         /* Handle userfault-wp first, before trying to lock more pages */
6077         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6078             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6079                 struct vm_fault vmf = {
6080                         .vma = vma,
6081                         .address = haddr,
6082                         .real_address = address,
6083                         .flags = flags,
6084                 };
6085
6086                 spin_unlock(ptl);
6087                 if (pagecache_page) {
6088                         unlock_page(pagecache_page);
6089                         put_page(pagecache_page);
6090                 }
6091                 hugetlb_vma_unlock_read(vma);
6092                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6093                 return handle_userfault(&vmf, VM_UFFD_WP);
6094         }
6095
6096         /*
6097          * hugetlb_wp() requires page locks of pte_page(entry) and
6098          * pagecache_page, so here we need take the former one
6099          * when page != pagecache_page or !pagecache_page.
6100          */
6101         page = pte_page(entry);
6102         if (page != pagecache_page)
6103                 if (!trylock_page(page)) {
6104                         need_wait_lock = 1;
6105                         goto out_ptl;
6106                 }
6107
6108         get_page(page);
6109
6110         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6111                 if (!huge_pte_write(entry)) {
6112                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6113                                          pagecache_page, ptl);
6114                         goto out_put_page;
6115                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6116                         entry = huge_pte_mkdirty(entry);
6117                 }
6118         }
6119         entry = pte_mkyoung(entry);
6120         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6121                                                 flags & FAULT_FLAG_WRITE))
6122                 update_mmu_cache(vma, haddr, ptep);
6123 out_put_page:
6124         if (page != pagecache_page)
6125                 unlock_page(page);
6126         put_page(page);
6127 out_ptl:
6128         spin_unlock(ptl);
6129
6130         if (pagecache_page) {
6131                 unlock_page(pagecache_page);
6132                 put_page(pagecache_page);
6133         }
6134 out_mutex:
6135         hugetlb_vma_unlock_read(vma);
6136         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6137         /*
6138          * Generally it's safe to hold refcount during waiting page lock. But
6139          * here we just wait to defer the next page fault to avoid busy loop and
6140          * the page is not used after unlocked before returning from the current
6141          * page fault. So we are safe from accessing freed page, even if we wait
6142          * here without taking refcount.
6143          */
6144         if (need_wait_lock)
6145                 wait_on_page_locked(page);
6146         return ret;
6147 }
6148
6149 #ifdef CONFIG_USERFAULTFD
6150 /*
6151  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6152  * modifications for huge pages.
6153  */
6154 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6155                             pte_t *dst_pte,
6156                             struct vm_area_struct *dst_vma,
6157                             unsigned long dst_addr,
6158                             unsigned long src_addr,
6159                             enum mcopy_atomic_mode mode,
6160                             struct page **pagep,
6161                             bool wp_copy)
6162 {
6163         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6164         struct hstate *h = hstate_vma(dst_vma);
6165         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6166         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6167         unsigned long size;
6168         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6169         pte_t _dst_pte;
6170         spinlock_t *ptl;
6171         int ret = -ENOMEM;
6172         struct page *page;
6173         int writable;
6174         bool page_in_pagecache = false;
6175
6176         if (is_continue) {
6177                 ret = -EFAULT;
6178                 page = find_lock_page(mapping, idx);
6179                 if (!page)
6180                         goto out;
6181                 page_in_pagecache = true;
6182         } else if (!*pagep) {
6183                 /* If a page already exists, then it's UFFDIO_COPY for
6184                  * a non-missing case. Return -EEXIST.
6185                  */
6186                 if (vm_shared &&
6187                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6188                         ret = -EEXIST;
6189                         goto out;
6190                 }
6191
6192                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6193                 if (IS_ERR(page)) {
6194                         ret = -ENOMEM;
6195                         goto out;
6196                 }
6197
6198                 ret = copy_huge_page_from_user(page,
6199                                                 (const void __user *) src_addr,
6200                                                 pages_per_huge_page(h), false);
6201
6202                 /* fallback to copy_from_user outside mmap_lock */
6203                 if (unlikely(ret)) {
6204                         ret = -ENOENT;
6205                         /* Free the allocated page which may have
6206                          * consumed a reservation.
6207                          */
6208                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6209                         put_page(page);
6210
6211                         /* Allocate a temporary page to hold the copied
6212                          * contents.
6213                          */
6214                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6215                         if (!page) {
6216                                 ret = -ENOMEM;
6217                                 goto out;
6218                         }
6219                         *pagep = page;
6220                         /* Set the outparam pagep and return to the caller to
6221                          * copy the contents outside the lock. Don't free the
6222                          * page.
6223                          */
6224                         goto out;
6225                 }
6226         } else {
6227                 if (vm_shared &&
6228                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6229                         put_page(*pagep);
6230                         ret = -EEXIST;
6231                         *pagep = NULL;
6232                         goto out;
6233                 }
6234
6235                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6236                 if (IS_ERR(page)) {
6237                         put_page(*pagep);
6238                         ret = -ENOMEM;
6239                         *pagep = NULL;
6240                         goto out;
6241                 }
6242                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6243                                     pages_per_huge_page(h));
6244                 put_page(*pagep);
6245                 *pagep = NULL;
6246         }
6247
6248         /*
6249          * The memory barrier inside __SetPageUptodate makes sure that
6250          * preceding stores to the page contents become visible before
6251          * the set_pte_at() write.
6252          */
6253         __SetPageUptodate(page);
6254
6255         /* Add shared, newly allocated pages to the page cache. */
6256         if (vm_shared && !is_continue) {
6257                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6258                 ret = -EFAULT;
6259                 if (idx >= size)
6260                         goto out_release_nounlock;
6261
6262                 /*
6263                  * Serialization between remove_inode_hugepages() and
6264                  * hugetlb_add_to_page_cache() below happens through the
6265                  * hugetlb_fault_mutex_table that here must be hold by
6266                  * the caller.
6267                  */
6268                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6269                 if (ret)
6270                         goto out_release_nounlock;
6271                 page_in_pagecache = true;
6272         }
6273
6274         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6275
6276         ret = -EIO;
6277         if (PageHWPoison(page))
6278                 goto out_release_unlock;
6279
6280         /*
6281          * We allow to overwrite a pte marker: consider when both MISSING|WP
6282          * registered, we firstly wr-protect a none pte which has no page cache
6283          * page backing it, then access the page.
6284          */
6285         ret = -EEXIST;
6286         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6287                 goto out_release_unlock;
6288
6289         if (page_in_pagecache)
6290                 page_dup_file_rmap(page, true);
6291         else
6292                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6293
6294         /*
6295          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6296          * with wp flag set, don't set pte write bit.
6297          */
6298         if (wp_copy || (is_continue && !vm_shared))
6299                 writable = 0;
6300         else
6301                 writable = dst_vma->vm_flags & VM_WRITE;
6302
6303         _dst_pte = make_huge_pte(dst_vma, page, writable);
6304         /*
6305          * Always mark UFFDIO_COPY page dirty; note that this may not be
6306          * extremely important for hugetlbfs for now since swapping is not
6307          * supported, but we should still be clear in that this page cannot be
6308          * thrown away at will, even if write bit not set.
6309          */
6310         _dst_pte = huge_pte_mkdirty(_dst_pte);
6311         _dst_pte = pte_mkyoung(_dst_pte);
6312
6313         if (wp_copy)
6314                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6315
6316         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6317
6318         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6319
6320         /* No need to invalidate - it was non-present before */
6321         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6322
6323         spin_unlock(ptl);
6324         if (!is_continue)
6325                 SetHPageMigratable(page);
6326         if (vm_shared || is_continue)
6327                 unlock_page(page);
6328         ret = 0;
6329 out:
6330         return ret;
6331 out_release_unlock:
6332         spin_unlock(ptl);
6333         if (vm_shared || is_continue)
6334                 unlock_page(page);
6335 out_release_nounlock:
6336         if (!page_in_pagecache)
6337                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6338         put_page(page);
6339         goto out;
6340 }
6341 #endif /* CONFIG_USERFAULTFD */
6342
6343 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6344                                  int refs, struct page **pages,
6345                                  struct vm_area_struct **vmas)
6346 {
6347         int nr;
6348
6349         for (nr = 0; nr < refs; nr++) {
6350                 if (likely(pages))
6351                         pages[nr] = nth_page(page, nr);
6352                 if (vmas)
6353                         vmas[nr] = vma;
6354         }
6355 }
6356
6357 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6358                                                unsigned int flags, pte_t *pte,
6359                                                bool *unshare)
6360 {
6361         pte_t pteval = huge_ptep_get(pte);
6362
6363         *unshare = false;
6364         if (is_swap_pte(pteval))
6365                 return true;
6366         if (huge_pte_write(pteval))
6367                 return false;
6368         if (flags & FOLL_WRITE)
6369                 return true;
6370         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6371                 *unshare = true;
6372                 return true;
6373         }
6374         return false;
6375 }
6376
6377 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6378                                 unsigned long address, unsigned int flags)
6379 {
6380         struct hstate *h = hstate_vma(vma);
6381         struct mm_struct *mm = vma->vm_mm;
6382         unsigned long haddr = address & huge_page_mask(h);
6383         struct page *page = NULL;
6384         spinlock_t *ptl;
6385         pte_t *pte, entry;
6386
6387         /*
6388          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6389          * follow_hugetlb_page().
6390          */
6391         if (WARN_ON_ONCE(flags & FOLL_PIN))
6392                 return NULL;
6393
6394         hugetlb_vma_lock_read(vma);
6395         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6396         if (!pte)
6397                 goto out_unlock;
6398
6399         ptl = huge_pte_lock(h, mm, pte);
6400         entry = huge_ptep_get(pte);
6401         if (pte_present(entry)) {
6402                 page = pte_page(entry) +
6403                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6404                 /*
6405                  * Note that page may be a sub-page, and with vmemmap
6406                  * optimizations the page struct may be read only.
6407                  * try_grab_page() will increase the ref count on the
6408                  * head page, so this will be OK.
6409                  *
6410                  * try_grab_page() should always be able to get the page here,
6411                  * because we hold the ptl lock and have verified pte_present().
6412                  */
6413                 if (try_grab_page(page, flags)) {
6414                         page = NULL;
6415                         goto out;
6416                 }
6417         }
6418 out:
6419         spin_unlock(ptl);
6420 out_unlock:
6421         hugetlb_vma_unlock_read(vma);
6422         return page;
6423 }
6424
6425 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6426                          struct page **pages, struct vm_area_struct **vmas,
6427                          unsigned long *position, unsigned long *nr_pages,
6428                          long i, unsigned int flags, int *locked)
6429 {
6430         unsigned long pfn_offset;
6431         unsigned long vaddr = *position;
6432         unsigned long remainder = *nr_pages;
6433         struct hstate *h = hstate_vma(vma);
6434         int err = -EFAULT, refs;
6435
6436         while (vaddr < vma->vm_end && remainder) {
6437                 pte_t *pte;
6438                 spinlock_t *ptl = NULL;
6439                 bool unshare = false;
6440                 int absent;
6441                 struct page *page;
6442
6443                 /*
6444                  * If we have a pending SIGKILL, don't keep faulting pages and
6445                  * potentially allocating memory.
6446                  */
6447                 if (fatal_signal_pending(current)) {
6448                         remainder = 0;
6449                         break;
6450                 }
6451
6452                 hugetlb_vma_lock_read(vma);
6453                 /*
6454                  * Some archs (sparc64, sh*) have multiple pte_ts to
6455                  * each hugepage.  We have to make sure we get the
6456                  * first, for the page indexing below to work.
6457                  *
6458                  * Note that page table lock is not held when pte is null.
6459                  */
6460                 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6461                                    huge_page_size(h));
6462                 if (pte)
6463                         ptl = huge_pte_lock(h, mm, pte);
6464                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6465
6466                 /*
6467                  * When coredumping, it suits get_dump_page if we just return
6468                  * an error where there's an empty slot with no huge pagecache
6469                  * to back it.  This way, we avoid allocating a hugepage, and
6470                  * the sparse dumpfile avoids allocating disk blocks, but its
6471                  * huge holes still show up with zeroes where they need to be.
6472                  */
6473                 if (absent && (flags & FOLL_DUMP) &&
6474                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6475                         if (pte)
6476                                 spin_unlock(ptl);
6477                         hugetlb_vma_unlock_read(vma);
6478                         remainder = 0;
6479                         break;
6480                 }
6481
6482                 /*
6483                  * We need call hugetlb_fault for both hugepages under migration
6484                  * (in which case hugetlb_fault waits for the migration,) and
6485                  * hwpoisoned hugepages (in which case we need to prevent the
6486                  * caller from accessing to them.) In order to do this, we use
6487                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6488                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6489                  * both cases, and because we can't follow correct pages
6490                  * directly from any kind of swap entries.
6491                  */
6492                 if (absent ||
6493                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6494                         vm_fault_t ret;
6495                         unsigned int fault_flags = 0;
6496
6497                         if (pte)
6498                                 spin_unlock(ptl);
6499                         hugetlb_vma_unlock_read(vma);
6500
6501                         if (flags & FOLL_WRITE)
6502                                 fault_flags |= FAULT_FLAG_WRITE;
6503                         else if (unshare)
6504                                 fault_flags |= FAULT_FLAG_UNSHARE;
6505                         if (locked) {
6506                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6507                                         FAULT_FLAG_KILLABLE;
6508                                 if (flags & FOLL_INTERRUPTIBLE)
6509                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6510                         }
6511                         if (flags & FOLL_NOWAIT)
6512                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6513                                         FAULT_FLAG_RETRY_NOWAIT;
6514                         if (flags & FOLL_TRIED) {
6515                                 /*
6516                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6517                                  * FAULT_FLAG_TRIED can co-exist
6518                                  */
6519                                 fault_flags |= FAULT_FLAG_TRIED;
6520                         }
6521                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6522                         if (ret & VM_FAULT_ERROR) {
6523                                 err = vm_fault_to_errno(ret, flags);
6524                                 remainder = 0;
6525                                 break;
6526                         }
6527                         if (ret & VM_FAULT_RETRY) {
6528                                 if (locked &&
6529                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6530                                         *locked = 0;
6531                                 *nr_pages = 0;
6532                                 /*
6533                                  * VM_FAULT_RETRY must not return an
6534                                  * error, it will return zero
6535                                  * instead.
6536                                  *
6537                                  * No need to update "position" as the
6538                                  * caller will not check it after
6539                                  * *nr_pages is set to 0.
6540                                  */
6541                                 return i;
6542                         }
6543                         continue;
6544                 }
6545
6546                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6547                 page = pte_page(huge_ptep_get(pte));
6548
6549                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6550                                !PageAnonExclusive(page), page);
6551
6552                 /*
6553                  * If subpage information not requested, update counters
6554                  * and skip the same_page loop below.
6555                  */
6556                 if (!pages && !vmas && !pfn_offset &&
6557                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6558                     (remainder >= pages_per_huge_page(h))) {
6559                         vaddr += huge_page_size(h);
6560                         remainder -= pages_per_huge_page(h);
6561                         i += pages_per_huge_page(h);
6562                         spin_unlock(ptl);
6563                         hugetlb_vma_unlock_read(vma);
6564                         continue;
6565                 }
6566
6567                 /* vaddr may not be aligned to PAGE_SIZE */
6568                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6569                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6570
6571                 if (pages || vmas)
6572                         record_subpages_vmas(nth_page(page, pfn_offset),
6573                                              vma, refs,
6574                                              likely(pages) ? pages + i : NULL,
6575                                              vmas ? vmas + i : NULL);
6576
6577                 if (pages) {
6578                         /*
6579                          * try_grab_folio() should always succeed here,
6580                          * because: a) we hold the ptl lock, and b) we've just
6581                          * checked that the huge page is present in the page
6582                          * tables. If the huge page is present, then the tail
6583                          * pages must also be present. The ptl prevents the
6584                          * head page and tail pages from being rearranged in
6585                          * any way. As this is hugetlb, the pages will never
6586                          * be p2pdma or not longterm pinable. So this page
6587                          * must be available at this point, unless the page
6588                          * refcount overflowed:
6589                          */
6590                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6591                                                          flags))) {
6592                                 spin_unlock(ptl);
6593                                 hugetlb_vma_unlock_read(vma);
6594                                 remainder = 0;
6595                                 err = -ENOMEM;
6596                                 break;
6597                         }
6598                 }
6599
6600                 vaddr += (refs << PAGE_SHIFT);
6601                 remainder -= refs;
6602                 i += refs;
6603
6604                 spin_unlock(ptl);
6605                 hugetlb_vma_unlock_read(vma);
6606         }
6607         *nr_pages = remainder;
6608         /*
6609          * setting position is actually required only if remainder is
6610          * not zero but it's faster not to add a "if (remainder)"
6611          * branch.
6612          */
6613         *position = vaddr;
6614
6615         return i ? i : err;
6616 }
6617
6618 long hugetlb_change_protection(struct vm_area_struct *vma,
6619                 unsigned long address, unsigned long end,
6620                 pgprot_t newprot, unsigned long cp_flags)
6621 {
6622         struct mm_struct *mm = vma->vm_mm;
6623         unsigned long start = address;
6624         pte_t *ptep;
6625         pte_t pte;
6626         struct hstate *h = hstate_vma(vma);
6627         long pages = 0, psize = huge_page_size(h);
6628         bool shared_pmd = false;
6629         struct mmu_notifier_range range;
6630         unsigned long last_addr_mask;
6631         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6632         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6633
6634         /*
6635          * In the case of shared PMDs, the area to flush could be beyond
6636          * start/end.  Set range.start/range.end to cover the maximum possible
6637          * range if PMD sharing is possible.
6638          */
6639         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6640                                 0, vma, mm, start, end);
6641         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6642
6643         BUG_ON(address >= end);
6644         flush_cache_range(vma, range.start, range.end);
6645
6646         mmu_notifier_invalidate_range_start(&range);
6647         hugetlb_vma_lock_write(vma);
6648         i_mmap_lock_write(vma->vm_file->f_mapping);
6649         last_addr_mask = hugetlb_mask_last_page(h);
6650         for (; address < end; address += psize) {
6651                 spinlock_t *ptl;
6652                 ptep = hugetlb_walk(vma, address, psize);
6653                 if (!ptep) {
6654                         if (!uffd_wp) {
6655                                 address |= last_addr_mask;
6656                                 continue;
6657                         }
6658                         /*
6659                          * Userfaultfd wr-protect requires pgtable
6660                          * pre-allocations to install pte markers.
6661                          */
6662                         ptep = huge_pte_alloc(mm, vma, address, psize);
6663                         if (!ptep)
6664                                 break;
6665                 }
6666                 ptl = huge_pte_lock(h, mm, ptep);
6667                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6668                         /*
6669                          * When uffd-wp is enabled on the vma, unshare
6670                          * shouldn't happen at all.  Warn about it if it
6671                          * happened due to some reason.
6672                          */
6673                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6674                         pages++;
6675                         spin_unlock(ptl);
6676                         shared_pmd = true;
6677                         address |= last_addr_mask;
6678                         continue;
6679                 }
6680                 pte = huge_ptep_get(ptep);
6681                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6682                         /* Nothing to do. */
6683                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6684                         swp_entry_t entry = pte_to_swp_entry(pte);
6685                         struct page *page = pfn_swap_entry_to_page(entry);
6686                         pte_t newpte = pte;
6687
6688                         if (is_writable_migration_entry(entry)) {
6689                                 if (PageAnon(page))
6690                                         entry = make_readable_exclusive_migration_entry(
6691                                                                 swp_offset(entry));
6692                                 else
6693                                         entry = make_readable_migration_entry(
6694                                                                 swp_offset(entry));
6695                                 newpte = swp_entry_to_pte(entry);
6696                                 pages++;
6697                         }
6698
6699                         if (uffd_wp)
6700                                 newpte = pte_swp_mkuffd_wp(newpte);
6701                         else if (uffd_wp_resolve)
6702                                 newpte = pte_swp_clear_uffd_wp(newpte);
6703                         if (!pte_same(pte, newpte))
6704                                 set_huge_pte_at(mm, address, ptep, newpte);
6705                 } else if (unlikely(is_pte_marker(pte))) {
6706                         /* No other markers apply for now. */
6707                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6708                         if (uffd_wp_resolve)
6709                                 /* Safe to modify directly (non-present->none). */
6710                                 huge_pte_clear(mm, address, ptep, psize);
6711                 } else if (!huge_pte_none(pte)) {
6712                         pte_t old_pte;
6713                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6714
6715                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6716                         pte = huge_pte_modify(old_pte, newprot);
6717                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6718                         if (uffd_wp)
6719                                 pte = huge_pte_mkuffd_wp(pte);
6720                         else if (uffd_wp_resolve)
6721                                 pte = huge_pte_clear_uffd_wp(pte);
6722                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6723                         pages++;
6724                 } else {
6725                         /* None pte */
6726                         if (unlikely(uffd_wp))
6727                                 /* Safe to modify directly (none->non-present). */
6728                                 set_huge_pte_at(mm, address, ptep,
6729                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6730                 }
6731                 spin_unlock(ptl);
6732         }
6733         /*
6734          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6735          * may have cleared our pud entry and done put_page on the page table:
6736          * once we release i_mmap_rwsem, another task can do the final put_page
6737          * and that page table be reused and filled with junk.  If we actually
6738          * did unshare a page of pmds, flush the range corresponding to the pud.
6739          */
6740         if (shared_pmd)
6741                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6742         else
6743                 flush_hugetlb_tlb_range(vma, start, end);
6744         /*
6745          * No need to call mmu_notifier_invalidate_range() we are downgrading
6746          * page table protection not changing it to point to a new page.
6747          *
6748          * See Documentation/mm/mmu_notifier.rst
6749          */
6750         i_mmap_unlock_write(vma->vm_file->f_mapping);
6751         hugetlb_vma_unlock_write(vma);
6752         mmu_notifier_invalidate_range_end(&range);
6753
6754         return pages << h->order;
6755 }
6756
6757 /* Return true if reservation was successful, false otherwise.  */
6758 bool hugetlb_reserve_pages(struct inode *inode,
6759                                         long from, long to,
6760                                         struct vm_area_struct *vma,
6761                                         vm_flags_t vm_flags)
6762 {
6763         long chg = -1, add = -1;
6764         struct hstate *h = hstate_inode(inode);
6765         struct hugepage_subpool *spool = subpool_inode(inode);
6766         struct resv_map *resv_map;
6767         struct hugetlb_cgroup *h_cg = NULL;
6768         long gbl_reserve, regions_needed = 0;
6769
6770         /* This should never happen */
6771         if (from > to) {
6772                 VM_WARN(1, "%s called with a negative range\n", __func__);
6773                 return false;
6774         }
6775
6776         /*
6777          * vma specific semaphore used for pmd sharing and fault/truncation
6778          * synchronization
6779          */
6780         hugetlb_vma_lock_alloc(vma);
6781
6782         /*
6783          * Only apply hugepage reservation if asked. At fault time, an
6784          * attempt will be made for VM_NORESERVE to allocate a page
6785          * without using reserves
6786          */
6787         if (vm_flags & VM_NORESERVE)
6788                 return true;
6789
6790         /*
6791          * Shared mappings base their reservation on the number of pages that
6792          * are already allocated on behalf of the file. Private mappings need
6793          * to reserve the full area even if read-only as mprotect() may be
6794          * called to make the mapping read-write. Assume !vma is a shm mapping
6795          */
6796         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6797                 /*
6798                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6799                  * called for inodes for which resv_maps were created (see
6800                  * hugetlbfs_get_inode).
6801                  */
6802                 resv_map = inode_resv_map(inode);
6803
6804                 chg = region_chg(resv_map, from, to, &regions_needed);
6805         } else {
6806                 /* Private mapping. */
6807                 resv_map = resv_map_alloc();
6808                 if (!resv_map)
6809                         goto out_err;
6810
6811                 chg = to - from;
6812
6813                 set_vma_resv_map(vma, resv_map);
6814                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6815         }
6816
6817         if (chg < 0)
6818                 goto out_err;
6819
6820         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6821                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6822                 goto out_err;
6823
6824         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6825                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6826                  * of the resv_map.
6827                  */
6828                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6829         }
6830
6831         /*
6832          * There must be enough pages in the subpool for the mapping. If
6833          * the subpool has a minimum size, there may be some global
6834          * reservations already in place (gbl_reserve).
6835          */
6836         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6837         if (gbl_reserve < 0)
6838                 goto out_uncharge_cgroup;
6839
6840         /*
6841          * Check enough hugepages are available for the reservation.
6842          * Hand the pages back to the subpool if there are not
6843          */
6844         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6845                 goto out_put_pages;
6846
6847         /*
6848          * Account for the reservations made. Shared mappings record regions
6849          * that have reservations as they are shared by multiple VMAs.
6850          * When the last VMA disappears, the region map says how much
6851          * the reservation was and the page cache tells how much of
6852          * the reservation was consumed. Private mappings are per-VMA and
6853          * only the consumed reservations are tracked. When the VMA
6854          * disappears, the original reservation is the VMA size and the
6855          * consumed reservations are stored in the map. Hence, nothing
6856          * else has to be done for private mappings here
6857          */
6858         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6859                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6860
6861                 if (unlikely(add < 0)) {
6862                         hugetlb_acct_memory(h, -gbl_reserve);
6863                         goto out_put_pages;
6864                 } else if (unlikely(chg > add)) {
6865                         /*
6866                          * pages in this range were added to the reserve
6867                          * map between region_chg and region_add.  This
6868                          * indicates a race with alloc_huge_page.  Adjust
6869                          * the subpool and reserve counts modified above
6870                          * based on the difference.
6871                          */
6872                         long rsv_adjust;
6873
6874                         /*
6875                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6876                          * reference to h_cg->css. See comment below for detail.
6877                          */
6878                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6879                                 hstate_index(h),
6880                                 (chg - add) * pages_per_huge_page(h), h_cg);
6881
6882                         rsv_adjust = hugepage_subpool_put_pages(spool,
6883                                                                 chg - add);
6884                         hugetlb_acct_memory(h, -rsv_adjust);
6885                 } else if (h_cg) {
6886                         /*
6887                          * The file_regions will hold their own reference to
6888                          * h_cg->css. So we should release the reference held
6889                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6890                          * done.
6891                          */
6892                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6893                 }
6894         }
6895         return true;
6896
6897 out_put_pages:
6898         /* put back original number of pages, chg */
6899         (void)hugepage_subpool_put_pages(spool, chg);
6900 out_uncharge_cgroup:
6901         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6902                                             chg * pages_per_huge_page(h), h_cg);
6903 out_err:
6904         hugetlb_vma_lock_free(vma);
6905         if (!vma || vma->vm_flags & VM_MAYSHARE)
6906                 /* Only call region_abort if the region_chg succeeded but the
6907                  * region_add failed or didn't run.
6908                  */
6909                 if (chg >= 0 && add < 0)
6910                         region_abort(resv_map, from, to, regions_needed);
6911         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6912                 kref_put(&resv_map->refs, resv_map_release);
6913         return false;
6914 }
6915
6916 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6917                                                                 long freed)
6918 {
6919         struct hstate *h = hstate_inode(inode);
6920         struct resv_map *resv_map = inode_resv_map(inode);
6921         long chg = 0;
6922         struct hugepage_subpool *spool = subpool_inode(inode);
6923         long gbl_reserve;
6924
6925         /*
6926          * Since this routine can be called in the evict inode path for all
6927          * hugetlbfs inodes, resv_map could be NULL.
6928          */
6929         if (resv_map) {
6930                 chg = region_del(resv_map, start, end);
6931                 /*
6932                  * region_del() can fail in the rare case where a region
6933                  * must be split and another region descriptor can not be
6934                  * allocated.  If end == LONG_MAX, it will not fail.
6935                  */
6936                 if (chg < 0)
6937                         return chg;
6938         }
6939
6940         spin_lock(&inode->i_lock);
6941         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6942         spin_unlock(&inode->i_lock);
6943
6944         /*
6945          * If the subpool has a minimum size, the number of global
6946          * reservations to be released may be adjusted.
6947          *
6948          * Note that !resv_map implies freed == 0. So (chg - freed)
6949          * won't go negative.
6950          */
6951         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6952         hugetlb_acct_memory(h, -gbl_reserve);
6953
6954         return 0;
6955 }
6956
6957 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6958 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6959                                 struct vm_area_struct *vma,
6960                                 unsigned long addr, pgoff_t idx)
6961 {
6962         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6963                                 svma->vm_start;
6964         unsigned long sbase = saddr & PUD_MASK;
6965         unsigned long s_end = sbase + PUD_SIZE;
6966
6967         /* Allow segments to share if only one is marked locked */
6968         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6969         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6970
6971         /*
6972          * match the virtual addresses, permission and the alignment of the
6973          * page table page.
6974          *
6975          * Also, vma_lock (vm_private_data) is required for sharing.
6976          */
6977         if (pmd_index(addr) != pmd_index(saddr) ||
6978             vm_flags != svm_flags ||
6979             !range_in_vma(svma, sbase, s_end) ||
6980             !svma->vm_private_data)
6981                 return 0;
6982
6983         return saddr;
6984 }
6985
6986 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6987 {
6988         unsigned long start = addr & PUD_MASK;
6989         unsigned long end = start + PUD_SIZE;
6990
6991 #ifdef CONFIG_USERFAULTFD
6992         if (uffd_disable_huge_pmd_share(vma))
6993                 return false;
6994 #endif
6995         /*
6996          * check on proper vm_flags and page table alignment
6997          */
6998         if (!(vma->vm_flags & VM_MAYSHARE))
6999                 return false;
7000         if (!vma->vm_private_data)      /* vma lock required for sharing */
7001                 return false;
7002         if (!range_in_vma(vma, start, end))
7003                 return false;
7004         return true;
7005 }
7006
7007 /*
7008  * Determine if start,end range within vma could be mapped by shared pmd.
7009  * If yes, adjust start and end to cover range associated with possible
7010  * shared pmd mappings.
7011  */
7012 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7013                                 unsigned long *start, unsigned long *end)
7014 {
7015         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7016                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7017
7018         /*
7019          * vma needs to span at least one aligned PUD size, and the range
7020          * must be at least partially within in.
7021          */
7022         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7023                 (*end <= v_start) || (*start >= v_end))
7024                 return;
7025
7026         /* Extend the range to be PUD aligned for a worst case scenario */
7027         if (*start > v_start)
7028                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7029
7030         if (*end < v_end)
7031                 *end = ALIGN(*end, PUD_SIZE);
7032 }
7033
7034 /*
7035  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7036  * and returns the corresponding pte. While this is not necessary for the
7037  * !shared pmd case because we can allocate the pmd later as well, it makes the
7038  * code much cleaner. pmd allocation is essential for the shared case because
7039  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7040  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7041  * bad pmd for sharing.
7042  */
7043 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7044                       unsigned long addr, pud_t *pud)
7045 {
7046         struct address_space *mapping = vma->vm_file->f_mapping;
7047         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7048                         vma->vm_pgoff;
7049         struct vm_area_struct *svma;
7050         unsigned long saddr;
7051         pte_t *spte = NULL;
7052         pte_t *pte;
7053         spinlock_t *ptl;
7054
7055         i_mmap_lock_read(mapping);
7056         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7057                 if (svma == vma)
7058                         continue;
7059
7060                 saddr = page_table_shareable(svma, vma, addr, idx);
7061                 if (saddr) {
7062                         spte = hugetlb_walk(svma, saddr,
7063                                             vma_mmu_pagesize(svma));
7064                         if (spte) {
7065                                 get_page(virt_to_page(spte));
7066                                 break;
7067                         }
7068                 }
7069         }
7070
7071         if (!spte)
7072                 goto out;
7073
7074         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7075         if (pud_none(*pud)) {
7076                 pud_populate(mm, pud,
7077                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7078                 mm_inc_nr_pmds(mm);
7079         } else {
7080                 put_page(virt_to_page(spte));
7081         }
7082         spin_unlock(ptl);
7083 out:
7084         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7085         i_mmap_unlock_read(mapping);
7086         return pte;
7087 }
7088
7089 /*
7090  * unmap huge page backed by shared pte.
7091  *
7092  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7093  * indicated by page_count > 1, unmap is achieved by clearing pud and
7094  * decrementing the ref count. If count == 1, the pte page is not shared.
7095  *
7096  * Called with page table lock held.
7097  *
7098  * returns: 1 successfully unmapped a shared pte page
7099  *          0 the underlying pte page is not shared, or it is the last user
7100  */
7101 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7102                                         unsigned long addr, pte_t *ptep)
7103 {
7104         pgd_t *pgd = pgd_offset(mm, addr);
7105         p4d_t *p4d = p4d_offset(pgd, addr);
7106         pud_t *pud = pud_offset(p4d, addr);
7107
7108         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7109         hugetlb_vma_assert_locked(vma);
7110         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7111         if (page_count(virt_to_page(ptep)) == 1)
7112                 return 0;
7113
7114         pud_clear(pud);
7115         put_page(virt_to_page(ptep));
7116         mm_dec_nr_pmds(mm);
7117         return 1;
7118 }
7119
7120 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7121
7122 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7123                       unsigned long addr, pud_t *pud)
7124 {
7125         return NULL;
7126 }
7127
7128 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7129                                 unsigned long addr, pte_t *ptep)
7130 {
7131         return 0;
7132 }
7133
7134 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7135                                 unsigned long *start, unsigned long *end)
7136 {
7137 }
7138
7139 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7140 {
7141         return false;
7142 }
7143 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7144
7145 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7146 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7147                         unsigned long addr, unsigned long sz)
7148 {
7149         pgd_t *pgd;
7150         p4d_t *p4d;
7151         pud_t *pud;
7152         pte_t *pte = NULL;
7153
7154         pgd = pgd_offset(mm, addr);
7155         p4d = p4d_alloc(mm, pgd, addr);
7156         if (!p4d)
7157                 return NULL;
7158         pud = pud_alloc(mm, p4d, addr);
7159         if (pud) {
7160                 if (sz == PUD_SIZE) {
7161                         pte = (pte_t *)pud;
7162                 } else {
7163                         BUG_ON(sz != PMD_SIZE);
7164                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7165                                 pte = huge_pmd_share(mm, vma, addr, pud);
7166                         else
7167                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7168                 }
7169         }
7170         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7171
7172         return pte;
7173 }
7174
7175 /*
7176  * huge_pte_offset() - Walk the page table to resolve the hugepage
7177  * entry at address @addr
7178  *
7179  * Return: Pointer to page table entry (PUD or PMD) for
7180  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7181  * size @sz doesn't match the hugepage size at this level of the page
7182  * table.
7183  */
7184 pte_t *huge_pte_offset(struct mm_struct *mm,
7185                        unsigned long addr, unsigned long sz)
7186 {
7187         pgd_t *pgd;
7188         p4d_t *p4d;
7189         pud_t *pud;
7190         pmd_t *pmd;
7191
7192         pgd = pgd_offset(mm, addr);
7193         if (!pgd_present(*pgd))
7194                 return NULL;
7195         p4d = p4d_offset(pgd, addr);
7196         if (!p4d_present(*p4d))
7197                 return NULL;
7198
7199         pud = pud_offset(p4d, addr);
7200         if (sz == PUD_SIZE)
7201                 /* must be pud huge, non-present or none */
7202                 return (pte_t *)pud;
7203         if (!pud_present(*pud))
7204                 return NULL;
7205         /* must have a valid entry and size to go further */
7206
7207         pmd = pmd_offset(pud, addr);
7208         /* must be pmd huge, non-present or none */
7209         return (pte_t *)pmd;
7210 }
7211
7212 /*
7213  * Return a mask that can be used to update an address to the last huge
7214  * page in a page table page mapping size.  Used to skip non-present
7215  * page table entries when linearly scanning address ranges.  Architectures
7216  * with unique huge page to page table relationships can define their own
7217  * version of this routine.
7218  */
7219 unsigned long hugetlb_mask_last_page(struct hstate *h)
7220 {
7221         unsigned long hp_size = huge_page_size(h);
7222
7223         if (hp_size == PUD_SIZE)
7224                 return P4D_SIZE - PUD_SIZE;
7225         else if (hp_size == PMD_SIZE)
7226                 return PUD_SIZE - PMD_SIZE;
7227         else
7228                 return 0UL;
7229 }
7230
7231 #else
7232
7233 /* See description above.  Architectures can provide their own version. */
7234 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7235 {
7236 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7237         if (huge_page_size(h) == PMD_SIZE)
7238                 return PUD_SIZE - PMD_SIZE;
7239 #endif
7240         return 0UL;
7241 }
7242
7243 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7244
7245 /*
7246  * These functions are overwritable if your architecture needs its own
7247  * behavior.
7248  */
7249 int isolate_hugetlb(struct page *page, struct list_head *list)
7250 {
7251         int ret = 0;
7252
7253         spin_lock_irq(&hugetlb_lock);
7254         if (!PageHeadHuge(page) ||
7255             !HPageMigratable(page) ||
7256             !get_page_unless_zero(page)) {
7257                 ret = -EBUSY;
7258                 goto unlock;
7259         }
7260         ClearHPageMigratable(page);
7261         list_move_tail(&page->lru, list);
7262 unlock:
7263         spin_unlock_irq(&hugetlb_lock);
7264         return ret;
7265 }
7266
7267 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7268 {
7269         int ret = 0;
7270
7271         *hugetlb = false;
7272         spin_lock_irq(&hugetlb_lock);
7273         if (PageHeadHuge(page)) {
7274                 *hugetlb = true;
7275                 if (HPageFreed(page))
7276                         ret = 0;
7277                 else if (HPageMigratable(page) || unpoison)
7278                         ret = get_page_unless_zero(page);
7279                 else
7280                         ret = -EBUSY;
7281         }
7282         spin_unlock_irq(&hugetlb_lock);
7283         return ret;
7284 }
7285
7286 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7287                                 bool *migratable_cleared)
7288 {
7289         int ret;
7290
7291         spin_lock_irq(&hugetlb_lock);
7292         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7293         spin_unlock_irq(&hugetlb_lock);
7294         return ret;
7295 }
7296
7297 void putback_active_hugepage(struct page *page)
7298 {
7299         spin_lock_irq(&hugetlb_lock);
7300         SetHPageMigratable(page);
7301         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7302         spin_unlock_irq(&hugetlb_lock);
7303         put_page(page);
7304 }
7305
7306 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7307 {
7308         struct hstate *h = folio_hstate(old_folio);
7309
7310         hugetlb_cgroup_migrate(old_folio, new_folio);
7311         set_page_owner_migrate_reason(&new_folio->page, reason);
7312
7313         /*
7314          * transfer temporary state of the new hugetlb folio. This is
7315          * reverse to other transitions because the newpage is going to
7316          * be final while the old one will be freed so it takes over
7317          * the temporary status.
7318          *
7319          * Also note that we have to transfer the per-node surplus state
7320          * here as well otherwise the global surplus count will not match
7321          * the per-node's.
7322          */
7323         if (folio_test_hugetlb_temporary(new_folio)) {
7324                 int old_nid = folio_nid(old_folio);
7325                 int new_nid = folio_nid(new_folio);
7326
7327                 folio_set_hugetlb_temporary(old_folio);
7328                 folio_clear_hugetlb_temporary(new_folio);
7329
7330
7331                 /*
7332                  * There is no need to transfer the per-node surplus state
7333                  * when we do not cross the node.
7334                  */
7335                 if (new_nid == old_nid)
7336                         return;
7337                 spin_lock_irq(&hugetlb_lock);
7338                 if (h->surplus_huge_pages_node[old_nid]) {
7339                         h->surplus_huge_pages_node[old_nid]--;
7340                         h->surplus_huge_pages_node[new_nid]++;
7341                 }
7342                 spin_unlock_irq(&hugetlb_lock);
7343         }
7344 }
7345
7346 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7347                                    unsigned long start,
7348                                    unsigned long end)
7349 {
7350         struct hstate *h = hstate_vma(vma);
7351         unsigned long sz = huge_page_size(h);
7352         struct mm_struct *mm = vma->vm_mm;
7353         struct mmu_notifier_range range;
7354         unsigned long address;
7355         spinlock_t *ptl;
7356         pte_t *ptep;
7357
7358         if (!(vma->vm_flags & VM_MAYSHARE))
7359                 return;
7360
7361         if (start >= end)
7362                 return;
7363
7364         flush_cache_range(vma, start, end);
7365         /*
7366          * No need to call adjust_range_if_pmd_sharing_possible(), because
7367          * we have already done the PUD_SIZE alignment.
7368          */
7369         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7370                                 start, end);
7371         mmu_notifier_invalidate_range_start(&range);
7372         hugetlb_vma_lock_write(vma);
7373         i_mmap_lock_write(vma->vm_file->f_mapping);
7374         for (address = start; address < end; address += PUD_SIZE) {
7375                 ptep = hugetlb_walk(vma, address, sz);
7376                 if (!ptep)
7377                         continue;
7378                 ptl = huge_pte_lock(h, mm, ptep);
7379                 huge_pmd_unshare(mm, vma, address, ptep);
7380                 spin_unlock(ptl);
7381         }
7382         flush_hugetlb_tlb_range(vma, start, end);
7383         i_mmap_unlock_write(vma->vm_file->f_mapping);
7384         hugetlb_vma_unlock_write(vma);
7385         /*
7386          * No need to call mmu_notifier_invalidate_range(), see
7387          * Documentation/mm/mmu_notifier.rst.
7388          */
7389         mmu_notifier_invalidate_range_end(&range);
7390 }
7391
7392 /*
7393  * This function will unconditionally remove all the shared pmd pgtable entries
7394  * within the specific vma for a hugetlbfs memory range.
7395  */
7396 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7397 {
7398         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7399                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7400 }
7401
7402 #ifdef CONFIG_CMA
7403 static bool cma_reserve_called __initdata;
7404
7405 static int __init cmdline_parse_hugetlb_cma(char *p)
7406 {
7407         int nid, count = 0;
7408         unsigned long tmp;
7409         char *s = p;
7410
7411         while (*s) {
7412                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7413                         break;
7414
7415                 if (s[count] == ':') {
7416                         if (tmp >= MAX_NUMNODES)
7417                                 break;
7418                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7419
7420                         s += count + 1;
7421                         tmp = memparse(s, &s);
7422                         hugetlb_cma_size_in_node[nid] = tmp;
7423                         hugetlb_cma_size += tmp;
7424
7425                         /*
7426                          * Skip the separator if have one, otherwise
7427                          * break the parsing.
7428                          */
7429                         if (*s == ',')
7430                                 s++;
7431                         else
7432                                 break;
7433                 } else {
7434                         hugetlb_cma_size = memparse(p, &p);
7435                         break;
7436                 }
7437         }
7438
7439         return 0;
7440 }
7441
7442 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7443
7444 void __init hugetlb_cma_reserve(int order)
7445 {
7446         unsigned long size, reserved, per_node;
7447         bool node_specific_cma_alloc = false;
7448         int nid;
7449
7450         cma_reserve_called = true;
7451
7452         if (!hugetlb_cma_size)
7453                 return;
7454
7455         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7456                 if (hugetlb_cma_size_in_node[nid] == 0)
7457                         continue;
7458
7459                 if (!node_online(nid)) {
7460                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7461                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7462                         hugetlb_cma_size_in_node[nid] = 0;
7463                         continue;
7464                 }
7465
7466                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7467                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7468                                 nid, (PAGE_SIZE << order) / SZ_1M);
7469                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7470                         hugetlb_cma_size_in_node[nid] = 0;
7471                 } else {
7472                         node_specific_cma_alloc = true;
7473                 }
7474         }
7475
7476         /* Validate the CMA size again in case some invalid nodes specified. */
7477         if (!hugetlb_cma_size)
7478                 return;
7479
7480         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7481                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7482                         (PAGE_SIZE << order) / SZ_1M);
7483                 hugetlb_cma_size = 0;
7484                 return;
7485         }
7486
7487         if (!node_specific_cma_alloc) {
7488                 /*
7489                  * If 3 GB area is requested on a machine with 4 numa nodes,
7490                  * let's allocate 1 GB on first three nodes and ignore the last one.
7491                  */
7492                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7493                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7494                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7495         }
7496
7497         reserved = 0;
7498         for_each_online_node(nid) {
7499                 int res;
7500                 char name[CMA_MAX_NAME];
7501
7502                 if (node_specific_cma_alloc) {
7503                         if (hugetlb_cma_size_in_node[nid] == 0)
7504                                 continue;
7505
7506                         size = hugetlb_cma_size_in_node[nid];
7507                 } else {
7508                         size = min(per_node, hugetlb_cma_size - reserved);
7509                 }
7510
7511                 size = round_up(size, PAGE_SIZE << order);
7512
7513                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7514                 /*
7515                  * Note that 'order per bit' is based on smallest size that
7516                  * may be returned to CMA allocator in the case of
7517                  * huge page demotion.
7518                  */
7519                 res = cma_declare_contiguous_nid(0, size, 0,
7520                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7521                                                  0, false, name,
7522                                                  &hugetlb_cma[nid], nid);
7523                 if (res) {
7524                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7525                                 res, nid);
7526                         continue;
7527                 }
7528
7529                 reserved += size;
7530                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7531                         size / SZ_1M, nid);
7532
7533                 if (reserved >= hugetlb_cma_size)
7534                         break;
7535         }
7536
7537         if (!reserved)
7538                 /*
7539                  * hugetlb_cma_size is used to determine if allocations from
7540                  * cma are possible.  Set to zero if no cma regions are set up.
7541                  */
7542                 hugetlb_cma_size = 0;
7543 }
7544
7545 static void __init hugetlb_cma_check(void)
7546 {
7547         if (!hugetlb_cma_size || cma_reserve_called)
7548                 return;
7549
7550         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7551 }
7552
7553 #endif /* CONFIG_CMA */